modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-09 00:41:25
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 549
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-09 00:41:08
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
adhavan23/olai_suvadi_ocr
|
adhavan23
| 2024-06-04T06:04:28Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2024-06-04T06:04:28Z |
---
license: apache-2.0
---
|
kiatkock/sentiment_pc_weightedLoss
|
kiatkock
| 2024-06-04T06:04:13Z | 107 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:ahmedrachid/FinancialBERT-Sentiment-Analysis",
"base_model:finetune:ahmedrachid/FinancialBERT-Sentiment-Analysis",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-31T01:30:25Z |
---
base_model: ahmedrachid/FinancialBERT-Sentiment-Analysis
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: sentiment_pc_weightedLoss
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment_pc_weightedLoss
This model is a fine-tuned version of [ahmedrachid/FinancialBERT-Sentiment-Analysis](https://huggingface.co/ahmedrachid/FinancialBERT-Sentiment-Analysis) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6463
- Accuracy: 0.86
- F1: 0.8290
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
| No log | 0.1739 | 50 | 0.6153 | 0.8087 | 0.7818 |
| No log | 0.3478 | 100 | 0.4938 | 0.8165 | 0.7843 |
| No log | 0.5217 | 150 | 0.4613 | 0.8339 | 0.8016 |
| No log | 0.6957 | 200 | 0.4918 | 0.7913 | 0.7619 |
| No log | 0.8696 | 250 | 0.4520 | 0.8283 | 0.7961 |
| No log | 1.0435 | 300 | 0.4821 | 0.8339 | 0.8054 |
| No log | 1.2174 | 350 | 0.4868 | 0.8639 | 0.8327 |
| No log | 1.3913 | 400 | 0.5093 | 0.8574 | 0.8259 |
| No log | 1.5652 | 450 | 0.4648 | 0.8474 | 0.8175 |
| 0.4528 | 1.7391 | 500 | 0.4556 | 0.8470 | 0.8151 |
| 0.4528 | 1.9130 | 550 | 0.4747 | 0.8361 | 0.8062 |
| 0.4528 | 2.0870 | 600 | 0.5520 | 0.8543 | 0.8234 |
| 0.4528 | 2.2609 | 650 | 0.6130 | 0.8652 | 0.8367 |
| 0.4528 | 2.4348 | 700 | 0.5657 | 0.8722 | 0.8415 |
| 0.4528 | 2.6087 | 750 | 0.5357 | 0.8339 | 0.8033 |
| 0.4528 | 2.7826 | 800 | 0.5729 | 0.8513 | 0.8233 |
| 0.4528 | 2.9565 | 850 | 0.5304 | 0.8522 | 0.8215 |
| 0.4528 | 3.1304 | 900 | 0.5982 | 0.8683 | 0.8375 |
| 0.4528 | 3.3043 | 950 | 0.5684 | 0.8513 | 0.8197 |
| 0.1978 | 3.4783 | 1000 | 0.6463 | 0.86 | 0.8290 |
| 0.1978 | 3.6522 | 1050 | 0.6566 | 0.8565 | 0.8262 |
| 0.1978 | 3.8261 | 1100 | 0.6497 | 0.8578 | 0.8282 |
| 0.1978 | 4.0 | 1150 | 0.6531 | 0.8591 | 0.8266 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|
srbdtwentyfour/mystery-llama-3-8b-v3
|
srbdtwentyfour
| 2024-06-04T06:02:53Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-Instruct-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-06-04T06:01:57Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-Instruct-bnb-4bit
---
# Uploaded model
- **Developed by:** srbdtwentyfour
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
goniii/Llama-3-Ko-8B-passthrough-merge-test
|
goniii
| 2024-06-04T06:02:46Z | 7 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:beomi/Llama-3-Open-Ko-8B",
"base_model:merge:beomi/Llama-3-Open-Ko-8B",
"base_model:beomi/Llama-3-Open-Ko-8B-Instruct-preview",
"base_model:merge:beomi/Llama-3-Open-Ko-8B-Instruct-preview",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-04T05:58:30Z |
---
base_model:
- beomi/Llama-3-Open-Ko-8B-Instruct-preview
- beomi/Llama-3-Open-Ko-8B
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the passthrough merge method.
### Models Merged
The following models were included in the merge:
* [beomi/Llama-3-Open-Ko-8B-Instruct-preview](https://huggingface.co/beomi/Llama-3-Open-Ko-8B-Instruct-preview)
* [beomi/Llama-3-Open-Ko-8B](https://huggingface.co/beomi/Llama-3-Open-Ko-8B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: beomi/Llama-3-Open-Ko-8B-Instruct-preview
layer_range: [0, 24]
- sources:
- model: beomi/Llama-3-Open-Ko-8B
layer_range: [8, 32]
merge_method: passthrough
dtype: bfloat16
```
|
tyzhu/find_marker_both_sent_train_400_eval_40_first_permute_meta-llama_Llama-2-7b-hf_3e-4_lora
|
tyzhu
| 2024-06-04T05:56:41Z | 0 | 0 | null |
[
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:finetune:meta-llama/Llama-2-7b-hf",
"license:llama2",
"region:us"
] | null | 2024-06-03T16:30:50Z |
---
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: find_marker_both_sent_train_400_eval_40_first_permute_meta-llama_Llama-2-7b-hf_3e-4_lora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# find_marker_both_sent_train_400_eval_40_first_permute_meta-llama_Llama-2-7b-hf_3e-4_lora
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1941
- Accuracy: 0.7845
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3448 | 0.99 | 130 | 1.0018 | 0.7086 |
| 0.7275 | 1.99 | 261 | 0.5024 | 0.7566 |
| 0.3211 | 3.0 | 392 | 0.2915 | 0.7763 |
| 0.1342 | 4.0 | 523 | 0.2350 | 0.7808 |
| 0.1216 | 5.0 | 654 | 0.2253 | 0.7828 |
| 0.1179 | 6.0 | 785 | 0.2039 | 0.7837 |
| 0.1051 | 7.0 | 916 | 0.1984 | 0.7847 |
| 0.1034 | 8.0 | 1047 | 0.1880 | 0.7856 |
| 0.0996 | 8.99 | 1177 | 0.1813 | 0.7862 |
| 0.0981 | 9.99 | 1308 | 0.1874 | 0.7862 |
| 0.098 | 11.0 | 1439 | 0.1819 | 0.7863 |
| 0.0983 | 12.0 | 1570 | 0.1802 | 0.7862 |
| 0.0965 | 13.0 | 1701 | 0.1807 | 0.7867 |
| 0.0941 | 14.0 | 1832 | 0.1746 | 0.7871 |
| 0.0936 | 15.0 | 1963 | 0.1701 | 0.7871 |
| 0.0922 | 16.0 | 2094 | 0.1714 | 0.7869 |
| 0.0913 | 16.99 | 2224 | 0.1724 | 0.7870 |
| 0.0939 | 17.99 | 2355 | 0.1826 | 0.7860 |
| 0.0993 | 19.0 | 2486 | 0.1853 | 0.7868 |
| 0.0982 | 20.0 | 2617 | 0.1809 | 0.7844 |
| 0.0951 | 21.0 | 2748 | 0.1692 | 0.7865 |
| 0.0927 | 22.0 | 2879 | 0.1745 | 0.7847 |
| 0.0899 | 23.0 | 3010 | 0.1816 | 0.7844 |
| 0.09 | 24.0 | 3141 | 0.2142 | 0.7818 |
| 0.0909 | 24.99 | 3271 | 0.2207 | 0.7821 |
| 0.0906 | 25.99 | 3402 | 0.2711 | 0.7819 |
| 0.0897 | 27.0 | 3533 | 0.2210 | 0.7815 |
| 0.0929 | 28.0 | 3664 | 0.2641 | 0.7809 |
| 0.0954 | 29.0 | 3795 | 0.2717 | 0.7804 |
| 0.0995 | 30.0 | 3926 | 0.2107 | 0.7814 |
| 0.1025 | 31.0 | 4057 | 0.2482 | 0.7806 |
| 0.1003 | 32.0 | 4188 | 0.2500 | 0.7819 |
| 0.0905 | 32.99 | 4318 | 0.2899 | 0.7816 |
| 0.0895 | 33.99 | 4449 | 0.2583 | 0.7814 |
| 0.0894 | 35.0 | 4580 | 0.2976 | 0.7814 |
| 0.0882 | 36.0 | 4711 | 0.2885 | 0.7814 |
| 0.0877 | 37.0 | 4842 | 0.2893 | 0.7813 |
| 0.0899 | 38.0 | 4973 | 0.2516 | 0.7813 |
| 0.0884 | 39.0 | 5104 | 0.3089 | 0.7813 |
| 0.0877 | 40.0 | 5235 | 0.2653 | 0.7814 |
| 0.0888 | 40.99 | 5365 | 0.2988 | 0.7812 |
| 0.0886 | 41.99 | 5496 | 0.3264 | 0.7814 |
| 0.0886 | 43.0 | 5627 | 0.3656 | 0.7812 |
| 0.0873 | 44.0 | 5758 | 0.3335 | 0.7812 |
| 0.0899 | 45.0 | 5889 | 0.1658 | 0.7874 |
| 0.0883 | 46.0 | 6020 | 0.2884 | 0.7816 |
| 0.0876 | 47.0 | 6151 | 0.3085 | 0.7809 |
| 0.0912 | 48.0 | 6282 | 0.2772 | 0.7811 |
| 0.1224 | 48.99 | 6412 | 0.1965 | 0.7839 |
| 0.1116 | 49.67 | 6500 | 0.1941 | 0.7845 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
|
WbjuSrceu/gamme2b_loar_New_data
|
WbjuSrceu
| 2024-06-04T05:54:02Z | 0 | 0 | null |
[
"safetensors",
"license:apache-2.0",
"region:us"
] | null | 2024-06-04T05:48:01Z |
---
license: apache-2.0
---
|
mradermacher/Medichat-V2-Llama3-8B-GGUF
|
mradermacher
| 2024-06-04T05:50:49Z | 22 | 1 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"medical",
"en",
"dataset:ruslanmv/ai-medical-chatbot",
"dataset:Locutusque/hercules-v5.0",
"base_model:sethuiyer/Medichat-V2-Llama3-8B",
"base_model:quantized:sethuiyer/Medichat-V2-Llama3-8B",
"license:other",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-06-02T13:42:48Z |
---
base_model: sethuiyer/Medichat-V2-Llama3-8B
datasets:
- ruslanmv/ai-medical-chatbot
- Locutusque/hercules-v5.0
language:
- en
library_name: transformers
license: other
quantized_by: mradermacher
tags:
- mergekit
- merge
- medical
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/sethuiyer/Medichat-V2-Llama3-8B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Medichat-V2-Llama3-8B-GGUF/resolve/main/Medichat-V2-Llama3-8B.Q2_K.gguf) | Q2_K | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Medichat-V2-Llama3-8B-GGUF/resolve/main/Medichat-V2-Llama3-8B.IQ3_XS.gguf) | IQ3_XS | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/Medichat-V2-Llama3-8B-GGUF/resolve/main/Medichat-V2-Llama3-8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
| [GGUF](https://huggingface.co/mradermacher/Medichat-V2-Llama3-8B-GGUF/resolve/main/Medichat-V2-Llama3-8B.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Medichat-V2-Llama3-8B-GGUF/resolve/main/Medichat-V2-Llama3-8B.IQ3_M.gguf) | IQ3_M | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Medichat-V2-Llama3-8B-GGUF/resolve/main/Medichat-V2-Llama3-8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Medichat-V2-Llama3-8B-GGUF/resolve/main/Medichat-V2-Llama3-8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/Medichat-V2-Llama3-8B-GGUF/resolve/main/Medichat-V2-Llama3-8B.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
| [GGUF](https://huggingface.co/mradermacher/Medichat-V2-Llama3-8B-GGUF/resolve/main/Medichat-V2-Llama3-8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Medichat-V2-Llama3-8B-GGUF/resolve/main/Medichat-V2-Llama3-8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Medichat-V2-Llama3-8B-GGUF/resolve/main/Medichat-V2-Llama3-8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/Medichat-V2-Llama3-8B-GGUF/resolve/main/Medichat-V2-Llama3-8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Medichat-V2-Llama3-8B-GGUF/resolve/main/Medichat-V2-Llama3-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Medichat-V2-Llama3-8B-GGUF/resolve/main/Medichat-V2-Llama3-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Medichat-V2-Llama3-8B-GGUF/resolve/main/Medichat-V2-Llama3-8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
mradermacher/TroyDoesAGI-GGUF
|
mradermacher
| 2024-06-04T05:49:52Z | 67 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:TroyDoesAI/TroyDoesAGI",
"base_model:quantized:TroyDoesAI/TroyDoesAGI",
"license:cc-by-nd-4.0",
"endpoints_compatible",
"region:us"
] | null | 2024-06-03T10:39:29Z |
---
base_model: TroyDoesAI/TroyDoesAGI
language:
- en
library_name: transformers
license: cc-by-nd-4.0
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/TroyDoesAI/TroyDoesAGI
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/TroyDoesAGI-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/TroyDoesAGI-GGUF/resolve/main/TroyDoesAGI.Q2_K.gguf) | Q2_K | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/TroyDoesAGI-GGUF/resolve/main/TroyDoesAGI.IQ3_XS.gguf) | IQ3_XS | 6.4 | |
| [GGUF](https://huggingface.co/mradermacher/TroyDoesAGI-GGUF/resolve/main/TroyDoesAGI.Q3_K_S.gguf) | Q3_K_S | 6.7 | |
| [GGUF](https://huggingface.co/mradermacher/TroyDoesAGI-GGUF/resolve/main/TroyDoesAGI.IQ3_S.gguf) | IQ3_S | 6.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/TroyDoesAGI-GGUF/resolve/main/TroyDoesAGI.IQ3_M.gguf) | IQ3_M | 7.0 | |
| [GGUF](https://huggingface.co/mradermacher/TroyDoesAGI-GGUF/resolve/main/TroyDoesAGI.Q3_K_M.gguf) | Q3_K_M | 7.5 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/TroyDoesAGI-GGUF/resolve/main/TroyDoesAGI.Q3_K_L.gguf) | Q3_K_L | 8.1 | |
| [GGUF](https://huggingface.co/mradermacher/TroyDoesAGI-GGUF/resolve/main/TroyDoesAGI.IQ4_XS.gguf) | IQ4_XS | 8.3 | |
| [GGUF](https://huggingface.co/mradermacher/TroyDoesAGI-GGUF/resolve/main/TroyDoesAGI.Q4_K_S.gguf) | Q4_K_S | 8.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/TroyDoesAGI-GGUF/resolve/main/TroyDoesAGI.Q4_K_M.gguf) | Q4_K_M | 9.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/TroyDoesAGI-GGUF/resolve/main/TroyDoesAGI.Q5_K_S.gguf) | Q5_K_S | 10.6 | |
| [GGUF](https://huggingface.co/mradermacher/TroyDoesAGI-GGUF/resolve/main/TroyDoesAGI.Q5_K_M.gguf) | Q5_K_M | 10.9 | |
| [GGUF](https://huggingface.co/mradermacher/TroyDoesAGI-GGUF/resolve/main/TroyDoesAGI.Q6_K.gguf) | Q6_K | 12.6 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/TroyDoesAGI-GGUF/resolve/main/TroyDoesAGI.Q8_0.gguf) | Q8_0 | 16.3 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
hilmiatha/ViT-Emotion-Classifier
|
hilmiatha
| 2024-06-04T05:49:45Z | 27 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:google/vit-base-patch16-224-in21k",
"base_model:finetune:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2024-06-04T04:28:12Z |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: ViT-Emotion-Classifier
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.575
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ViT-Emotion-Classifier
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3652
- Accuracy: 0.575
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 40 | 1.8992 | 0.3312 |
| No log | 2.0 | 80 | 1.5939 | 0.4062 |
| No log | 3.0 | 120 | 1.4776 | 0.4688 |
| No log | 4.0 | 160 | 1.4012 | 0.4813 |
| No log | 5.0 | 200 | 1.3471 | 0.4875 |
| No log | 6.0 | 240 | 1.2877 | 0.5375 |
| No log | 7.0 | 280 | 1.2598 | 0.575 |
| No log | 8.0 | 320 | 1.3595 | 0.4938 |
| No log | 9.0 | 360 | 1.2825 | 0.5375 |
| No log | 10.0 | 400 | 1.3291 | 0.5062 |
| No log | 11.0 | 440 | 1.2422 | 0.5563 |
| No log | 12.0 | 480 | 1.2659 | 0.575 |
| 1.0646 | 13.0 | 520 | 1.3048 | 0.5062 |
| 1.0646 | 14.0 | 560 | 1.2993 | 0.5563 |
| 1.0646 | 15.0 | 600 | 1.2935 | 0.5563 |
| 1.0646 | 16.0 | 640 | 1.3589 | 0.5437 |
| 1.0646 | 17.0 | 680 | 1.2447 | 0.5938 |
| 1.0646 | 18.0 | 720 | 1.3298 | 0.5563 |
| 1.0646 | 19.0 | 760 | 1.2829 | 0.6 |
| 1.0646 | 20.0 | 800 | 1.3092 | 0.5813 |
| 1.0646 | 21.0 | 840 | 1.2895 | 0.5875 |
| 1.0646 | 22.0 | 880 | 1.3810 | 0.5625 |
| 1.0646 | 23.0 | 920 | 1.3833 | 0.5563 |
| 1.0646 | 24.0 | 960 | 1.4841 | 0.5312 |
| 0.3074 | 25.0 | 1000 | 1.3619 | 0.6062 |
| 0.3074 | 26.0 | 1040 | 1.3776 | 0.5563 |
| 0.3074 | 27.0 | 1080 | 1.3917 | 0.5875 |
| 0.3074 | 28.0 | 1120 | 1.3585 | 0.575 |
| 0.3074 | 29.0 | 1160 | 1.3455 | 0.5625 |
| 0.3074 | 30.0 | 1200 | 1.4409 | 0.5813 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|
mradermacher/Dirty-Alice-GGUF
|
mradermacher
| 2024-06-04T05:49:23Z | 50 | 1 |
transformers
|
[
"transformers",
"gguf",
"nsfw",
"en",
"base_model:D1rtyB1rd/Dirty-Alice",
"base_model:quantized:D1rtyB1rd/Dirty-Alice",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-06-03T17:02:16Z |
---
base_model: D1rtyB1rd/Dirty-Alice
language:
- en
library_name: transformers
license: mit
quantized_by: mradermacher
tags:
- nsfw
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/D1rtyB1rd/Dirty-Alice
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Dirty-Alice-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Dirty-Alice-GGUF/resolve/main/Dirty-Alice.Q2_K.gguf) | Q2_K | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/Dirty-Alice-GGUF/resolve/main/Dirty-Alice.IQ3_XS.gguf) | IQ3_XS | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/Dirty-Alice-GGUF/resolve/main/Dirty-Alice.IQ3_S.gguf) | IQ3_S | 0.4 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Dirty-Alice-GGUF/resolve/main/Dirty-Alice.Q3_K_S.gguf) | Q3_K_S | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/Dirty-Alice-GGUF/resolve/main/Dirty-Alice.IQ3_M.gguf) | IQ3_M | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/Dirty-Alice-GGUF/resolve/main/Dirty-Alice.Q3_K_M.gguf) | Q3_K_M | 0.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Dirty-Alice-GGUF/resolve/main/Dirty-Alice.Q3_K_L.gguf) | Q3_K_L | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/Dirty-Alice-GGUF/resolve/main/Dirty-Alice.IQ4_XS.gguf) | IQ4_XS | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/Dirty-Alice-GGUF/resolve/main/Dirty-Alice.Q4_K_S.gguf) | Q4_K_S | 0.4 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Dirty-Alice-GGUF/resolve/main/Dirty-Alice.Q4_K_M.gguf) | Q4_K_M | 0.4 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Dirty-Alice-GGUF/resolve/main/Dirty-Alice.Q5_K_S.gguf) | Q5_K_S | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/Dirty-Alice-GGUF/resolve/main/Dirty-Alice.Q5_K_M.gguf) | Q5_K_M | 0.5 | |
| [GGUF](https://huggingface.co/mradermacher/Dirty-Alice-GGUF/resolve/main/Dirty-Alice.Q6_K.gguf) | Q6_K | 0.5 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Dirty-Alice-GGUF/resolve/main/Dirty-Alice.Q8_0.gguf) | Q8_0 | 0.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Dirty-Alice-GGUF/resolve/main/Dirty-Alice.f16.gguf) | f16 | 1.0 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
mradermacher/piano-medley-7b-GGUF
|
mradermacher
| 2024-06-04T05:48:58Z | 28 | 0 |
transformers
|
[
"transformers",
"gguf",
"merge",
"mergekit",
"en",
"dataset:pankajmathur/orca_mini_v1_dataset",
"dataset:openai/summarize_from_feedback",
"dataset:PygmalionAI/PIPPA",
"dataset:chargoddard/rpguild",
"dataset:lemonilia/LimaRP",
"dataset:PKU-Alignment/PKU-SafeRLHF",
"dataset:Intel/orca_dpo_pairs",
"dataset:allenai/ultrafeedback_binarized_cleaned",
"base_model:chargoddard/piano-medley-7b",
"base_model:quantized:chargoddard/piano-medley-7b",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] | null | 2024-06-04T03:46:01Z |
---
base_model: chargoddard/piano-medley-7b
datasets:
- pankajmathur/orca_mini_v1_dataset
- openai/summarize_from_feedback
- PygmalionAI/PIPPA
- chargoddard/rpguild
- lemonilia/LimaRP
- PKU-Alignment/PKU-SafeRLHF
- Intel/orca_dpo_pairs
- allenai/ultrafeedback_binarized_cleaned
language:
- en
library_name: transformers
license: cc-by-nc-4.0
quantized_by: mradermacher
tags:
- merge
- mergekit
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/chargoddard/piano-medley-7b
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/piano-medley-7b-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/piano-medley-7b-GGUF/resolve/main/piano-medley-7b.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/piano-medley-7b-GGUF/resolve/main/piano-medley-7b.IQ3_XS.gguf) | IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/piano-medley-7b-GGUF/resolve/main/piano-medley-7b.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/piano-medley-7b-GGUF/resolve/main/piano-medley-7b.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/piano-medley-7b-GGUF/resolve/main/piano-medley-7b.IQ3_M.gguf) | IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/piano-medley-7b-GGUF/resolve/main/piano-medley-7b.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/piano-medley-7b-GGUF/resolve/main/piano-medley-7b.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/piano-medley-7b-GGUF/resolve/main/piano-medley-7b.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/piano-medley-7b-GGUF/resolve/main/piano-medley-7b.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/piano-medley-7b-GGUF/resolve/main/piano-medley-7b.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/piano-medley-7b-GGUF/resolve/main/piano-medley-7b.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/piano-medley-7b-GGUF/resolve/main/piano-medley-7b.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/piano-medley-7b-GGUF/resolve/main/piano-medley-7b.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/piano-medley-7b-GGUF/resolve/main/piano-medley-7b.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/piano-medley-7b-GGUF/resolve/main/piano-medley-7b.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
corto-ai/bge-reranker-large-onnx
|
corto-ai
| 2024-06-04T05:46:55Z | 163 | 0 |
transformers
|
[
"transformers",
"onnx",
"xlm-roberta",
"text-classification",
"mteb",
"feature-extraction",
"en",
"zh",
"arxiv:2401.03462",
"arxiv:2312.15503",
"arxiv:2311.13534",
"arxiv:2310.07554",
"arxiv:2309.07597",
"license:mit",
"model-index",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2024-06-04T04:22:32Z |
---
license: mit
language:
- en
- zh
tags:
- mteb
model-index:
- name: bge-reranker-base
results:
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv1-reranking
name: MTEB CMedQAv1
config: default
split: test
revision: None
metrics:
- type: map
value: 81.27206722525007
- type: mrr
value: 84.14238095238095
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv2-reranking
name: MTEB CMedQAv2
config: default
split: test
revision: None
metrics:
- type: map
value: 84.10369934291236
- type: mrr
value: 86.79376984126984
- task:
type: Reranking
dataset:
type: C-MTEB/Mmarco-reranking
name: MTEB MMarcoReranking
config: default
split: dev
revision: None
metrics:
- type: map
value: 35.4600511272538
- type: mrr
value: 34.60238095238095
- task:
type: Reranking
dataset:
type: C-MTEB/T2Reranking
name: MTEB T2Reranking
config: default
split: dev
revision: None
metrics:
- type: map
value: 67.27728847727172
- type: mrr
value: 77.1315192743764
pipeline_tag: feature-extraction
---
<br><br>
# bge-reranker-large-onnx
This repo was forked from the **BAAI/bge-reranker-large** model and contains only the ONNX version of the model. Below is the original model card from the source repo.
---
**We have updated the [new reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), supporting larger lengths, more languages, and achieving better performance.**
<h1 align="center">FlagEmbedding</h1>
<h4 align="center">
<p>
<a href=#model-list>Model List</a> |
<a href=#frequently-asked-questions>FAQ</a> |
<a href=#usage>Usage</a> |
<a href="#evaluation">Evaluation</a> |
<a href="#train">Train</a> |
<a href="#citation">Citation</a> |
<a href="#license">License</a>
<p>
</h4>
**More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).**
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
FlagEmbedding focuses on retrieval-augmented LLMs, consisting of the following projects currently:
- **Long-Context LLM**: [Activation Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon)
- **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail)
- **Embedding Model**: [Visualized-BGE](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/visual), [BGE-M3](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3), [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding)
- **Reranker Model**: [llm rerankers](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
- **Benchmark**: [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB)
## News
- 3/18/2024: Release new [rerankers](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), built upon powerful M3 and LLM (GEMMA and MiniCPM, not so large actually) backbones, supporitng multi-lingual processing and larger inputs, massive improvements of ranking performances on BEIR, C-MTEB/Retrieval, MIRACL, LlamaIndex Evaluation.
- 3/18/2024: Release [Visualized-BGE](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/visual), equipping BGE with visual capabilities. Visualized-BGE can be utilized to generate embeddings for hybrid image-text data.
- 1/30/2024: Release **BGE-M3**, a new member to BGE model series! M3 stands for **M**ulti-linguality (100+ languages), **M**ulti-granularities (input length up to 8192), **M**ulti-Functionality (unification of dense, lexical, multi-vec/colbert retrieval).
It is the first embedding model which supports all three retrieval methods, achieving new SOTA on multi-lingual (MIRACL) and cross-lingual (MKQA) benchmarks.
[Technical Report](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf) and [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3). :fire:
- 1/9/2024: Release [Activation-Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon), an effective, efficient, compatible, and low-cost (training) method to extend the context length of LLM. [Technical Report](https://arxiv.org/abs/2401.03462) :fire:
- 12/24/2023: Release **LLaRA**, a LLaMA-7B based dense retriever, leading to state-of-the-art performances on MS MARCO and BEIR. Model and code will be open-sourced. Please stay tuned. [Technical Report](https://arxiv.org/abs/2312.15503)
- 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire:
- 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf)
- 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released
- 09/15/2023: The [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released
- 09/12/2023: New models:
- **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
- **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
<details>
<summary>More</summary>
<!-- ### More -->
- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
</details>
## Model List
`bge` is short for `BAAI general embedding`.
| Model | Language | | Description | query instruction for retrieval [1] |
|:-------------------------------|:--------:| :--------:| :--------:|:--------:|
| [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | [Inference](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3#usage) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3) | Multi-Functionality(dense retrieval, sparse retrieval, multi-vector(colbert)), Multi-Linguality, and Multi-Granularity(8192 tokens) | |
| [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) |
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
[1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
[2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI.
If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models .
## Frequently asked questions
<details>
<summary>1. How to fine-tune bge embedding model?</summary>
<!-- ### How to fine-tune bge embedding model? -->
Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
Some suggestions:
- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results.
Hard negatives also are needed to fine-tune reranker. Refer to this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) for the fine-tuning for reranker
</details>
<details>
<summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
<!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
Since we finetune the models by contrastive learning with a temperature of 0.01,
the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
For downstream tasks, such as passage retrieval or semantic similarity,
**what matters is the relative order of the scores, not the absolute value.**
If you need to filter similar sentences based on a similarity threshold,
please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
</details>
<details>
<summary>3. When does the query instruction need to be used</summary>
<!-- ### When does the query instruction need to be used -->
For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction.
No instruction only has a slight degradation in retrieval performance compared with using instruction.
So you can generate embedding without instruction in all cases for convenience.
For a retrieval task that uses short queries to find long related documents,
it is recommended to add instructions for these short queries.
**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
In all cases, the documents/passages do not need to add the instruction.
</details>
## Usage
### Usage for Embedding Model
Here are some examples for using `bge` models with
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
#### Using FlagEmbedding
```
pip install -U FlagEmbedding
```
If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
```python
from FlagEmbedding import FlagModel
sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-4"]
model = FlagModel('BAAI/bge-large-zh-v1.5',
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
embeddings_1 = model.encode(sentences_1)
embeddings_2 = model.encode(sentences_2)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
queries = ['query_1', 'query_2']
passages = ["样例文档-1", "样例文档-2"]
q_embeddings = model.encode_queries(queries)
p_embeddings = model.encode(passages)
scores = q_embeddings @ p_embeddings.T
```
For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
#### Using Sentence-Transformers
You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
```
pip install -U sentence-transformers
```
```python
from sentence_transformers import SentenceTransformer
sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-4"]
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
```
For s2p(short query to long passage) retrieval task,
each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
But the instruction is not needed for passages.
```python
from sentence_transformers import SentenceTransformer
queries = ['query_1', 'query_2']
passages = ["样例文档-1", "样例文档-2"]
instruction = "为这个句子生成表示以用于检索相关文章:"
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
p_embeddings = model.encode(passages, normalize_embeddings=True)
scores = q_embeddings @ p_embeddings.T
```
#### Using Langchain
You can use `bge` in langchain like this:
```python
from langchain.embeddings import HuggingFaceBgeEmbeddings
model_name = "BAAI/bge-large-en-v1.5"
model_kwargs = {'device': 'cuda'}
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
model = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
query_instruction="为这个句子生成表示以用于检索相关文章:"
)
model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
```
#### Using HuggingFace Transformers
With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
```python
from transformers import AutoTokenizer, AutoModel
import torch
# Sentences we want sentence embeddings for
sentences = ["样例数据-1", "样例数据-2"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5')
model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5')
model.eval()
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = model_output[0][:, 0]
# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:", sentence_embeddings)
```
### Usage for Reranker
Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
You can get a relevance score by inputting query and passage to the reranker.
The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
#### Using FlagEmbedding
```
pip install -U FlagEmbedding
```
Get relevance scores (higher scores indicate more relevance):
```python
from FlagEmbedding import FlagReranker
reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
score = reranker.compute_score(['query', 'passage'])
print(score)
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
print(scores)
```
#### Using Huggingface transformers
```python
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
model.eval()
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
with torch.no_grad():
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
print(scores)
```
#### Usage reranker with the ONNX files
```python
from optimum.onnxruntime import ORTModelForSequenceClassification # type: ignore
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base')
model_ort = ORTModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base', file_name="onnx/model.onnx")
# Sentences we want sentence embeddings for
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
# Tokenize sentences
encoded_input = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt')
scores_ort = model_ort(**encoded_input, return_dict=True).logits.view(-1, ).float()
# Compute token embeddings
with torch.inference_mode():
scores = model_ort(**encoded_input, return_dict=True).logits.view(-1, ).float()
# scores and scores_ort are identical
```
#### Usage reranker with infinity
Its also possible to deploy the onnx/torch files with the [infinity_emb](https://github.com/michaelfeil/infinity) pip package.
```python
import asyncio
from infinity_emb import AsyncEmbeddingEngine, EngineArgs
query='what is a panda?'
docs = ['The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear', "Paris is in France."]
engine = AsyncEmbeddingEngine.from_args(
EngineArgs(model_name_or_path = "BAAI/bge-reranker-base", device="cpu", engine="torch" # or engine="optimum" for onnx
))
async def main():
async with engine:
ranking, usage = await engine.rerank(query=query, docs=docs)
print(list(zip(ranking, docs)))
asyncio.run(main())
```
## Evaluation
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
- **MTEB**:
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
| [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
| [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
| [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
- **C-MTEB**:
We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
| [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
| [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
- **Reranking**:
See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
| multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
| multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
| m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
| m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
| bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
| bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks
## Train
### BAAI Embedding
We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning.
**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
### BGE Reranker
Cross-encoder will perform full-attention over the input pair,
which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
Therefore, it can be used to re-rank the top-k documents returned by embedding model.
We train the cross-encoder on a multilingual pair data,
The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker).
More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
## Citation
If you find this repository useful, please consider giving a star :star: and citation
```
@misc{bge_embedding,
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
year={2023},
eprint={2309.07597},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## License
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
Ariffiq99/CRAB_COPA_KUCI_Albert_Base_finetuned
|
Ariffiq99
| 2024-06-04T05:46:02Z | 108 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"albert",
"multiple-choice",
"generated_from_trainer",
"base_model:Ariffiq99/COPA_KUCI_albert_base_finetuned",
"base_model:finetune:Ariffiq99/COPA_KUCI_albert_base_finetuned",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
multiple-choice
| 2024-06-04T05:02:41Z |
---
license: apache-2.0
base_model: Ariffiq99/COPA_KUCI_albert_base_finetuned
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: CRAB_COPA_KUCI_Albert_Base_finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CRAB_COPA_KUCI_Albert_Base_finetuned
This model is a fine-tuned version of [Ariffiq99/COPA_KUCI_albert_base_finetuned](https://huggingface.co/Ariffiq99/COPA_KUCI_albert_base_finetuned) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0723
- F1: 0.7417
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.2662 | 1.0 | 2880 | 0.9492 | 0.7083 |
| 1.1817 | 2.0 | 5760 | 1.2988 | 0.7111 |
| 0.9847 | 3.0 | 8640 | 0.9879 | 0.7167 |
| 0.9304 | 4.0 | 11520 | 1.2139 | 0.7083 |
| 0.9566 | 5.0 | 14400 | 1.0738 | 0.7250 |
| 0.8718 | 6.0 | 17280 | 1.1113 | 0.7236 |
| 0.8314 | 7.0 | 20160 | 1.0836 | 0.7361 |
| 0.7331 | 8.0 | 23040 | 1.0723 | 0.7417 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|
windmaple/gemma-2-finetuned-model-axolotl
|
windmaple
| 2024-06-04T05:44:10Z | 7 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma",
"feature-extraction",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2024-06-04T02:52:21Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
MuhammadYousef/Quora-Sincerity-Insincerity
|
MuhammadYousef
| 2024-06-04T05:43:46Z | 191 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-06-04T05:43:28Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
kiatkock/sentiment_pc_combinedBase
|
kiatkock
| 2024-06-04T05:41:46Z | 107 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:ahmedrachid/FinancialBERT-Sentiment-Analysis",
"base_model:finetune:ahmedrachid/FinancialBERT-Sentiment-Analysis",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-05-31T01:05:21Z |
---
base_model: ahmedrachid/FinancialBERT-Sentiment-Analysis
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: sentiment_pc_combinedBase
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment_pc_combinedBase
This model is a fine-tuned version of [ahmedrachid/FinancialBERT-Sentiment-Analysis](https://huggingface.co/ahmedrachid/FinancialBERT-Sentiment-Analysis) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5153
- Accuracy: 0.8683
- F1: 0.8376
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
| No log | 0.1739 | 50 | 0.5234 | 0.8096 | 0.7723 |
| No log | 0.3478 | 100 | 0.4390 | 0.8457 | 0.8151 |
| No log | 0.5217 | 150 | 0.4168 | 0.8491 | 0.8137 |
| No log | 0.6957 | 200 | 0.4252 | 0.8522 | 0.8150 |
| No log | 0.8696 | 250 | 0.3931 | 0.8561 | 0.8196 |
| No log | 1.0435 | 300 | 0.4409 | 0.8409 | 0.8118 |
| No log | 1.2174 | 350 | 0.4108 | 0.8657 | 0.8271 |
| No log | 1.3913 | 400 | 0.4382 | 0.8613 | 0.8292 |
| No log | 1.5652 | 450 | 0.4147 | 0.8622 | 0.8287 |
| 0.415 | 1.7391 | 500 | 0.4069 | 0.8652 | 0.8331 |
| 0.415 | 1.9130 | 550 | 0.4170 | 0.8591 | 0.8275 |
| 0.415 | 2.0870 | 600 | 0.4533 | 0.8626 | 0.8296 |
| 0.415 | 2.2609 | 650 | 0.4613 | 0.87 | 0.8401 |
| 0.415 | 2.4348 | 700 | 0.4531 | 0.8770 | 0.8447 |
| 0.415 | 2.6087 | 750 | 0.4534 | 0.8583 | 0.8277 |
| 0.415 | 2.7826 | 800 | 0.4756 | 0.8570 | 0.8274 |
| 0.415 | 2.9565 | 850 | 0.4482 | 0.8683 | 0.8391 |
| 0.415 | 3.1304 | 900 | 0.4858 | 0.8665 | 0.8350 |
| 0.415 | 3.3043 | 950 | 0.4873 | 0.8639 | 0.8341 |
| 0.1812 | 3.4783 | 1000 | 0.5153 | 0.8683 | 0.8376 |
| 0.1812 | 3.6522 | 1050 | 0.5345 | 0.8578 | 0.8281 |
| 0.1812 | 3.8261 | 1100 | 0.5372 | 0.8609 | 0.8331 |
| 0.1812 | 4.0 | 1150 | 0.5172 | 0.8670 | 0.8379 |
| 0.1812 | 4.1739 | 1200 | 0.5643 | 0.8643 | 0.8342 |
| 0.1812 | 4.3478 | 1250 | 0.5783 | 0.8622 | 0.8326 |
| 0.1812 | 4.5217 | 1300 | 0.5909 | 0.8565 | 0.8273 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|
0xfaskety/Qwen-Qwen1.5-7B-1717478956
|
0xfaskety
| 2024-06-04T05:37:00Z | 7 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-04T05:29:24Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
alwanrahmana/indobert-large-p2_bus_focal_loss
|
alwanrahmana
| 2024-06-04T05:36:20Z | 39 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-06-04T05:35:48Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Ciel127/Baichuan2-7B-chat-mathreasoning_enhanced
|
Ciel127
| 2024-06-04T05:34:29Z | 0 | 0 | null |
[
"safetensors",
"license:mit",
"region:us"
] | null | 2024-05-30T14:55:49Z |
---
license: mit
---
# We are proud to present our customized LoRA model tailored specifically for the Baichuan2-7B-Chat LLM.
This meticulously crafted LoRA significantly enhances BaiChuan's mathematical reasoning capabilities.
Through rigorous testing, we have observed a remarkable improvement in accuracy on the GSM8K dataset – a leap from **6.55%** to **19.18%** (Zero-Shot).
Remarkably, this boost in mathematical prowess does not come at the expense of other functionalities: proficiency in Chinese language processing, translation abilities, general English comprehension, and knowledge of open-world subjects remain consistently high.
Integration is effortless, requiring only a simple **LoRA-Merge process** to unlock these enhanced capabilities.
Completed with Unakar,so you can also find it at https://huggingface.co/unakar/Baichuan2-7B-Chat_Math_Reasoning_Enhanced.
|
FINwillson/git_test_SFT
|
FINwillson
| 2024-06-04T05:34:00Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-06-04T05:33:00Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** FINwillson
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
hdve/google-gemma-7b-1717479082
|
hdve
| 2024-06-04T05:33:57Z | 7 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-04T05:31:25Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
olanasir/bart-cnn-dailymail
|
olanasir
| 2024-06-04T05:32:40Z | 120 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bart",
"text2text-generation",
"generated_from_trainer",
"base_model:facebook/bart-large-cnn",
"base_model:finetune:facebook/bart-large-cnn",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2024-06-04T04:11:20Z |
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
model-index:
- name: bart-cnn-dailymail
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-cnn-dailymail
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|
andricValdez/multilingual-e5-large-finetuned-autext24-subtask2
|
andricValdez
| 2024-06-04T05:29:09Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:intfloat/multilingual-e5-large",
"base_model:finetune:intfloat/multilingual-e5-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-06-04T01:17:16Z |
---
license: mit
base_model: intfloat/multilingual-e5-large
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: multilingual-e5-large-finetuned-autext24-subtask2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multilingual-e5-large-finetuned-autext24-subtask2
This model is a fine-tuned version of [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9903
- Accuracy: 0.8543
- F1: 0.8553
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 2571 | 0.6295 | 0.7574 | 0.7566 |
| 0.5796 | 2.0 | 5142 | 0.4672 | 0.8416 | 0.8424 |
| 0.5796 | 3.0 | 7713 | 0.7611 | 0.8160 | 0.8169 |
| 0.1763 | 4.0 | 10284 | 0.8108 | 0.8562 | 0.8571 |
| 0.1763 | 5.0 | 12855 | 0.9903 | 0.8543 | 0.8553 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|
apwic/nerui-unipelt-0
|
apwic
| 2024-06-04T05:28:28Z | 0 | 0 | null |
[
"tensorboard",
"generated_from_trainer",
"id",
"base_model:indolem/indobert-base-uncased",
"base_model:finetune:indolem/indobert-base-uncased",
"license:mit",
"region:us"
] | null | 2024-06-04T05:13:24Z |
---
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: nerui-unipelt-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nerui-unipelt-0
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0592
- Location Precision: 0.8738
- Location Recall: 0.9574
- Location F1: 0.9137
- Location Number: 94
- Organization Precision: 0.8994
- Organization Recall: 0.9102
- Organization F1: 0.9048
- Organization Number: 167
- Person Precision: 0.9781
- Person Recall: 0.9781
- Person F1: 0.9781
- Person Number: 137
- Overall Precision: 0.9193
- Overall Recall: 0.9447
- Overall F1: 0.9318
- Overall Accuracy: 0.9867
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Location Precision | Location Recall | Location F1 | Location Number | Organization Precision | Organization Recall | Organization F1 | Organization Number | Person Precision | Person Recall | Person F1 | Person Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:-------------:|:---------:|:-------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.8691 | 1.0 | 96 | 0.5068 | 0.0 | 0.0 | 0.0 | 94 | 0.6667 | 0.0120 | 0.0235 | 167 | 0.1429 | 0.0073 | 0.0139 | 137 | 0.3 | 0.0075 | 0.0147 | 0.8351 |
| 0.3831 | 2.0 | 192 | 0.2198 | 0.3763 | 0.3723 | 0.3743 | 94 | 0.4935 | 0.6826 | 0.5729 | 167 | 0.7453 | 0.8759 | 0.8054 | 137 | 0.5546 | 0.6759 | 0.6093 | 0.9318 |
| 0.1821 | 3.0 | 288 | 0.0957 | 0.7789 | 0.7872 | 0.7831 | 94 | 0.7407 | 0.8383 | 0.7865 | 167 | 0.9571 | 0.9781 | 0.9675 | 137 | 0.8208 | 0.8744 | 0.8467 | 0.9691 |
| 0.1207 | 4.0 | 384 | 0.0757 | 0.7632 | 0.9255 | 0.8365 | 94 | 0.7865 | 0.8383 | 0.8116 | 167 | 0.9712 | 0.9854 | 0.9783 | 137 | 0.8399 | 0.9095 | 0.8733 | 0.9740 |
| 0.0982 | 5.0 | 480 | 0.0582 | 0.8020 | 0.8617 | 0.8308 | 94 | 0.8820 | 0.8503 | 0.8659 | 167 | 0.9571 | 0.9781 | 0.9675 | 137 | 0.8881 | 0.8970 | 0.8925 | 0.9796 |
| 0.0798 | 6.0 | 576 | 0.0528 | 0.8019 | 0.9043 | 0.8500 | 94 | 0.8571 | 0.8982 | 0.8772 | 167 | 0.9855 | 0.9927 | 0.9891 | 137 | 0.8854 | 0.9322 | 0.9082 | 0.9818 |
| 0.0718 | 7.0 | 672 | 0.0513 | 0.7857 | 0.9362 | 0.8544 | 94 | 0.8735 | 0.8683 | 0.8709 | 167 | 0.9783 | 0.9854 | 0.9818 | 137 | 0.8846 | 0.9246 | 0.9042 | 0.9815 |
| 0.0652 | 8.0 | 768 | 0.0449 | 0.8241 | 0.9468 | 0.8812 | 94 | 0.8848 | 0.8743 | 0.8795 | 167 | 0.9926 | 0.9854 | 0.9890 | 137 | 0.9046 | 0.9296 | 0.9170 | 0.9840 |
| 0.0583 | 9.0 | 864 | 0.0453 | 0.8333 | 0.9574 | 0.8911 | 94 | 0.8963 | 0.8802 | 0.8882 | 167 | 0.9927 | 0.9927 | 0.9927 | 137 | 0.9120 | 0.9372 | 0.9244 | 0.9848 |
| 0.0527 | 10.0 | 960 | 0.0432 | 0.8544 | 0.9362 | 0.8934 | 94 | 0.8613 | 0.8922 | 0.8765 | 167 | 1.0 | 0.9781 | 0.9889 | 137 | 0.9049 | 0.9322 | 0.9183 | 0.9829 |
| 0.0489 | 11.0 | 1056 | 0.0411 | 0.8641 | 0.9468 | 0.9036 | 94 | 0.8922 | 0.8922 | 0.8922 | 167 | 0.9854 | 0.9854 | 0.9854 | 137 | 0.9165 | 0.9372 | 0.9267 | 0.9854 |
| 0.0463 | 12.0 | 1152 | 0.0461 | 0.8641 | 0.9468 | 0.9036 | 94 | 0.8795 | 0.8743 | 0.8769 | 167 | 0.9926 | 0.9854 | 0.9890 | 137 | 0.9136 | 0.9296 | 0.9215 | 0.9840 |
| 0.0432 | 13.0 | 1248 | 0.0435 | 0.8396 | 0.9468 | 0.89 | 94 | 0.8817 | 0.8922 | 0.8869 | 167 | 0.9779 | 0.9708 | 0.9744 | 137 | 0.9027 | 0.9322 | 0.9172 | 0.9851 |
| 0.0394 | 14.0 | 1344 | 0.0464 | 0.8529 | 0.9255 | 0.8878 | 94 | 0.8795 | 0.8743 | 0.8769 | 167 | 0.9571 | 0.9781 | 0.9675 | 137 | 0.8995 | 0.9221 | 0.9107 | 0.9820 |
| 0.0366 | 15.0 | 1440 | 0.0398 | 0.8980 | 0.9362 | 0.9167 | 94 | 0.9102 | 0.9102 | 0.9102 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9303 | 0.9397 | 0.9350 | 0.9856 |
| 0.0356 | 16.0 | 1536 | 0.0372 | 0.9158 | 0.9255 | 0.9206 | 94 | 0.9012 | 0.9281 | 0.9145 | 167 | 0.9852 | 0.9708 | 0.9779 | 137 | 0.9328 | 0.9422 | 0.9375 | 0.9867 |
| 0.0308 | 17.0 | 1632 | 0.0406 | 0.8641 | 0.9468 | 0.9036 | 94 | 0.9085 | 0.8922 | 0.9003 | 167 | 0.9710 | 0.9781 | 0.9745 | 137 | 0.9185 | 0.9347 | 0.9265 | 0.9848 |
| 0.0313 | 18.0 | 1728 | 0.0389 | 0.8725 | 0.9468 | 0.9082 | 94 | 0.9744 | 0.9102 | 0.9412 | 167 | 0.9571 | 0.9781 | 0.9675 | 137 | 0.9422 | 0.9422 | 0.9422 | 0.9876 |
| 0.0288 | 19.0 | 1824 | 0.0402 | 0.8878 | 0.9255 | 0.9062 | 94 | 0.9383 | 0.9102 | 0.9240 | 167 | 0.9783 | 0.9854 | 0.9818 | 137 | 0.9397 | 0.9397 | 0.9397 | 0.9873 |
| 0.0263 | 20.0 | 1920 | 0.0443 | 0.8544 | 0.9362 | 0.8934 | 94 | 0.9074 | 0.8802 | 0.8936 | 167 | 0.9783 | 0.9854 | 0.9818 | 137 | 0.9181 | 0.9296 | 0.9238 | 0.9854 |
| 0.0245 | 21.0 | 2016 | 0.0430 | 0.8365 | 0.9255 | 0.8788 | 94 | 0.8935 | 0.9042 | 0.8988 | 167 | 0.9783 | 0.9854 | 0.9818 | 137 | 0.9075 | 0.9372 | 0.9221 | 0.9848 |
| 0.0254 | 22.0 | 2112 | 0.0498 | 0.8381 | 0.9362 | 0.8844 | 94 | 0.8929 | 0.8982 | 0.8955 | 167 | 0.9854 | 0.9854 | 0.9854 | 137 | 0.9098 | 0.9372 | 0.9233 | 0.9837 |
| 0.0232 | 23.0 | 2208 | 0.0435 | 0.8667 | 0.9681 | 0.9146 | 94 | 0.9299 | 0.8743 | 0.9012 | 167 | 0.9854 | 0.9854 | 0.9854 | 137 | 0.9323 | 0.9347 | 0.9335 | 0.9859 |
| 0.0204 | 24.0 | 2304 | 0.0446 | 0.8679 | 0.9787 | 0.9200 | 94 | 0.8896 | 0.8683 | 0.8788 | 167 | 0.9640 | 0.9781 | 0.9710 | 137 | 0.9093 | 0.9322 | 0.9206 | 0.9856 |
| 0.0222 | 25.0 | 2400 | 0.0430 | 0.9010 | 0.9681 | 0.9333 | 94 | 0.9102 | 0.9102 | 0.9102 | 167 | 0.9855 | 0.9927 | 0.9891 | 137 | 0.9335 | 0.9523 | 0.9428 | 0.9865 |
| 0.0204 | 26.0 | 2496 | 0.0383 | 0.8878 | 0.9255 | 0.9062 | 94 | 0.8706 | 0.8862 | 0.8783 | 167 | 0.9783 | 0.9854 | 0.9818 | 137 | 0.9113 | 0.9296 | 0.9204 | 0.9859 |
| 0.0186 | 27.0 | 2592 | 0.0407 | 0.9167 | 0.9362 | 0.9263 | 94 | 0.8851 | 0.9222 | 0.9032 | 167 | 0.9855 | 0.9927 | 0.9891 | 137 | 0.9265 | 0.9497 | 0.9380 | 0.9873 |
| 0.0209 | 28.0 | 2688 | 0.0472 | 0.8462 | 0.9362 | 0.8889 | 94 | 0.8922 | 0.8922 | 0.8922 | 167 | 0.9855 | 0.9927 | 0.9891 | 137 | 0.9120 | 0.9372 | 0.9244 | 0.9845 |
| 0.0171 | 29.0 | 2784 | 0.0443 | 0.8713 | 0.9362 | 0.9026 | 94 | 0.9136 | 0.8862 | 0.8997 | 167 | 0.9783 | 0.9854 | 0.9818 | 137 | 0.9252 | 0.9322 | 0.9287 | 0.9856 |
| 0.0171 | 30.0 | 2880 | 0.0457 | 0.8958 | 0.9149 | 0.9053 | 94 | 0.8844 | 0.9162 | 0.9 | 167 | 0.9855 | 0.9927 | 0.9891 | 137 | 0.9214 | 0.9422 | 0.9317 | 0.9867 |
| 0.0164 | 31.0 | 2976 | 0.0497 | 0.8812 | 0.9468 | 0.9128 | 94 | 0.9136 | 0.8862 | 0.8997 | 167 | 0.9926 | 0.9854 | 0.9890 | 137 | 0.9323 | 0.9347 | 0.9335 | 0.9859 |
| 0.0151 | 32.0 | 3072 | 0.0477 | 0.8812 | 0.9468 | 0.9128 | 94 | 0.9024 | 0.8862 | 0.8943 | 167 | 0.9926 | 0.9854 | 0.9890 | 137 | 0.9277 | 0.9347 | 0.9312 | 0.9854 |
| 0.0147 | 33.0 | 3168 | 0.0459 | 0.8641 | 0.9468 | 0.9036 | 94 | 0.9080 | 0.8862 | 0.8970 | 167 | 0.9927 | 0.9927 | 0.9927 | 137 | 0.9256 | 0.9372 | 0.9313 | 0.9862 |
| 0.0142 | 34.0 | 3264 | 0.0485 | 0.8447 | 0.9255 | 0.8832 | 94 | 0.8941 | 0.9102 | 0.9021 | 167 | 0.9927 | 0.9927 | 0.9927 | 137 | 0.9146 | 0.9422 | 0.9282 | 0.9856 |
| 0.0134 | 35.0 | 3360 | 0.0579 | 0.8257 | 0.9574 | 0.8867 | 94 | 0.9091 | 0.8383 | 0.8723 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.91 | 0.9146 | 0.9123 | 0.9831 |
| 0.0123 | 36.0 | 3456 | 0.0508 | 0.8725 | 0.9468 | 0.9082 | 94 | 0.9102 | 0.9102 | 0.9102 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9236 | 0.9422 | 0.9328 | 0.9867 |
| 0.0133 | 37.0 | 3552 | 0.0473 | 0.9158 | 0.9255 | 0.9206 | 94 | 0.8715 | 0.9341 | 0.9017 | 167 | 0.9854 | 0.9854 | 0.9854 | 137 | 0.9197 | 0.9497 | 0.9345 | 0.9862 |
| 0.0105 | 38.0 | 3648 | 0.0483 | 0.8738 | 0.9574 | 0.9137 | 94 | 0.9212 | 0.9102 | 0.9157 | 167 | 0.9926 | 0.9781 | 0.9853 | 137 | 0.9330 | 0.9447 | 0.9388 | 0.9865 |
| 0.012 | 39.0 | 3744 | 0.0404 | 0.9293 | 0.9787 | 0.9534 | 94 | 0.9006 | 0.9222 | 0.9112 | 167 | 0.9710 | 0.9781 | 0.9745 | 137 | 0.9314 | 0.9548 | 0.9429 | 0.9895 |
| 0.0116 | 40.0 | 3840 | 0.0490 | 0.8627 | 0.9362 | 0.8980 | 94 | 0.8862 | 0.8862 | 0.8862 | 167 | 0.9640 | 0.9781 | 0.9710 | 137 | 0.9069 | 0.9296 | 0.9181 | 0.9862 |
| 0.0104 | 41.0 | 3936 | 0.0579 | 0.8544 | 0.9362 | 0.8934 | 94 | 0.8982 | 0.8982 | 0.8982 | 167 | 0.9927 | 0.9927 | 0.9927 | 137 | 0.9189 | 0.9397 | 0.9292 | 0.9848 |
| 0.0111 | 42.0 | 4032 | 0.0515 | 0.875 | 0.9681 | 0.9192 | 94 | 0.8902 | 0.8743 | 0.8822 | 167 | 0.9927 | 0.9927 | 0.9927 | 137 | 0.9210 | 0.9372 | 0.9290 | 0.9859 |
| 0.0094 | 43.0 | 4128 | 0.0655 | 0.8224 | 0.9362 | 0.8756 | 94 | 0.9042 | 0.9042 | 0.9042 | 167 | 0.9927 | 0.9927 | 0.9927 | 137 | 0.9124 | 0.9422 | 0.9271 | 0.9837 |
| 0.0091 | 44.0 | 4224 | 0.0648 | 0.8396 | 0.9468 | 0.89 | 94 | 0.9006 | 0.8683 | 0.8841 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9109 | 0.9246 | 0.9177 | 0.9845 |
| 0.0085 | 45.0 | 4320 | 0.0548 | 0.8738 | 0.9574 | 0.9137 | 94 | 0.8844 | 0.9162 | 0.9 | 167 | 0.9783 | 0.9854 | 0.9818 | 137 | 0.9130 | 0.9497 | 0.9310 | 0.9856 |
| 0.0092 | 46.0 | 4416 | 0.0582 | 0.8544 | 0.9362 | 0.8934 | 94 | 0.8795 | 0.8743 | 0.8769 | 167 | 0.9783 | 0.9854 | 0.9818 | 137 | 0.9066 | 0.9271 | 0.9168 | 0.9837 |
| 0.0086 | 47.0 | 4512 | 0.0598 | 0.8571 | 0.9574 | 0.9045 | 94 | 0.8929 | 0.8982 | 0.8955 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9122 | 0.9397 | 0.9257 | 0.9848 |
| 0.0088 | 48.0 | 4608 | 0.0569 | 0.8788 | 0.9255 | 0.9016 | 94 | 0.8929 | 0.8982 | 0.8955 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9183 | 0.9322 | 0.9252 | 0.9845 |
| 0.0079 | 49.0 | 4704 | 0.0570 | 0.8738 | 0.9574 | 0.9137 | 94 | 0.9 | 0.9162 | 0.9080 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9195 | 0.9472 | 0.9332 | 0.9854 |
| 0.008 | 50.0 | 4800 | 0.0592 | 0.8544 | 0.9362 | 0.8934 | 94 | 0.9030 | 0.8922 | 0.8976 | 167 | 0.9712 | 0.9854 | 0.9783 | 137 | 0.9140 | 0.9347 | 0.9242 | 0.9837 |
| 0.0075 | 51.0 | 4896 | 0.0636 | 0.8462 | 0.9362 | 0.8889 | 94 | 0.9241 | 0.8743 | 0.8985 | 167 | 0.9783 | 0.9854 | 0.9818 | 137 | 0.9225 | 0.9271 | 0.9248 | 0.9840 |
| 0.0065 | 52.0 | 4992 | 0.0522 | 0.8911 | 0.9574 | 0.9231 | 94 | 0.9053 | 0.9162 | 0.9107 | 167 | 0.9783 | 0.9854 | 0.9818 | 137 | 0.9265 | 0.9497 | 0.9380 | 0.9881 |
| 0.0059 | 53.0 | 5088 | 0.0700 | 0.8396 | 0.9468 | 0.89 | 94 | 0.9141 | 0.8922 | 0.9030 | 167 | 0.9712 | 0.9854 | 0.9783 | 137 | 0.9142 | 0.9372 | 0.9256 | 0.9831 |
| 0.0061 | 54.0 | 5184 | 0.0684 | 0.8544 | 0.9362 | 0.8934 | 94 | 0.8701 | 0.9222 | 0.8953 | 167 | 0.9779 | 0.9708 | 0.9744 | 137 | 0.9014 | 0.9422 | 0.9214 | 0.9840 |
| 0.0075 | 55.0 | 5280 | 0.0515 | 0.8990 | 0.9468 | 0.9223 | 94 | 0.9107 | 0.9162 | 0.9134 | 167 | 0.9712 | 0.9854 | 0.9783 | 137 | 0.9286 | 0.9472 | 0.9378 | 0.9870 |
| 0.0067 | 56.0 | 5376 | 0.0545 | 0.89 | 0.9468 | 0.9175 | 94 | 0.8908 | 0.9281 | 0.9091 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9197 | 0.9497 | 0.9345 | 0.9862 |
| 0.0068 | 57.0 | 5472 | 0.0620 | 0.8725 | 0.9468 | 0.9082 | 94 | 0.8895 | 0.9162 | 0.9027 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9148 | 0.9447 | 0.9295 | 0.9859 |
| 0.0064 | 58.0 | 5568 | 0.0645 | 0.8558 | 0.9468 | 0.8990 | 94 | 0.8941 | 0.9102 | 0.9021 | 167 | 0.9854 | 0.9854 | 0.9854 | 137 | 0.9148 | 0.9447 | 0.9295 | 0.9845 |
| 0.0081 | 59.0 | 5664 | 0.0579 | 0.8627 | 0.9362 | 0.8980 | 94 | 0.8909 | 0.8802 | 0.8855 | 167 | 0.9708 | 0.9708 | 0.9708 | 137 | 0.9109 | 0.9246 | 0.9177 | 0.9845 |
| 0.0047 | 60.0 | 5760 | 0.0560 | 0.8824 | 0.9574 | 0.9184 | 94 | 0.8862 | 0.8862 | 0.8862 | 167 | 0.9854 | 0.9854 | 0.9854 | 137 | 0.9187 | 0.9372 | 0.9279 | 0.9867 |
| 0.0051 | 61.0 | 5856 | 0.0563 | 0.8812 | 0.9468 | 0.9128 | 94 | 0.9042 | 0.9042 | 0.9042 | 167 | 0.9854 | 0.9854 | 0.9854 | 137 | 0.9259 | 0.9422 | 0.9340 | 0.9862 |
| 0.0047 | 62.0 | 5952 | 0.0566 | 0.8738 | 0.9574 | 0.9137 | 94 | 0.9130 | 0.8802 | 0.8963 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9252 | 0.9322 | 0.9287 | 0.9876 |
| 0.0048 | 63.0 | 6048 | 0.0556 | 0.875 | 0.9681 | 0.9192 | 94 | 0.9107 | 0.9162 | 0.9134 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9242 | 0.9497 | 0.9368 | 0.9870 |
| 0.0052 | 64.0 | 6144 | 0.0580 | 0.8911 | 0.9574 | 0.9231 | 94 | 0.9125 | 0.8743 | 0.8930 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9296 | 0.9296 | 0.9296 | 0.9878 |
| 0.0043 | 65.0 | 6240 | 0.0596 | 0.8812 | 0.9468 | 0.9128 | 94 | 0.9006 | 0.8683 | 0.8841 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9223 | 0.9246 | 0.9235 | 0.9862 |
| 0.0045 | 66.0 | 6336 | 0.0550 | 0.8911 | 0.9574 | 0.9231 | 94 | 0.8941 | 0.9102 | 0.9021 | 167 | 0.9926 | 0.9854 | 0.9890 | 137 | 0.9263 | 0.9472 | 0.9366 | 0.9873 |
| 0.0055 | 67.0 | 6432 | 0.0650 | 0.87 | 0.9255 | 0.8969 | 94 | 0.8908 | 0.9281 | 0.9091 | 167 | 0.9854 | 0.9854 | 0.9854 | 137 | 0.9173 | 0.9472 | 0.9320 | 0.9859 |
| 0.0044 | 68.0 | 6528 | 0.0656 | 0.8614 | 0.9255 | 0.8923 | 94 | 0.8929 | 0.8982 | 0.8955 | 167 | 0.9926 | 0.9854 | 0.9890 | 137 | 0.9185 | 0.9347 | 0.9265 | 0.9851 |
| 0.0043 | 69.0 | 6624 | 0.0586 | 0.8990 | 0.9468 | 0.9223 | 94 | 0.8941 | 0.9102 | 0.9021 | 167 | 0.9926 | 0.9854 | 0.9890 | 137 | 0.9284 | 0.9447 | 0.9365 | 0.9867 |
| 0.0047 | 70.0 | 6720 | 0.0600 | 0.88 | 0.9362 | 0.9072 | 94 | 0.9146 | 0.8982 | 0.9063 | 167 | 0.9926 | 0.9854 | 0.9890 | 137 | 0.9325 | 0.9372 | 0.9348 | 0.9862 |
| 0.0039 | 71.0 | 6816 | 0.0705 | 0.8544 | 0.9362 | 0.8934 | 94 | 0.8882 | 0.9042 | 0.8961 | 167 | 0.9854 | 0.9854 | 0.9854 | 137 | 0.9122 | 0.9397 | 0.9257 | 0.9848 |
| 0.0052 | 72.0 | 6912 | 0.0639 | 0.8713 | 0.9362 | 0.9026 | 94 | 0.8889 | 0.9102 | 0.8994 | 167 | 0.9926 | 0.9854 | 0.9890 | 137 | 0.9191 | 0.9422 | 0.9305 | 0.9859 |
| 0.0049 | 73.0 | 7008 | 0.0575 | 0.8922 | 0.9681 | 0.9286 | 94 | 0.9157 | 0.9102 | 0.9129 | 167 | 0.9926 | 0.9854 | 0.9890 | 137 | 0.9356 | 0.9497 | 0.9426 | 0.9887 |
| 0.0046 | 74.0 | 7104 | 0.0575 | 0.8911 | 0.9574 | 0.9231 | 94 | 0.9048 | 0.9102 | 0.9075 | 167 | 0.9926 | 0.9854 | 0.9890 | 137 | 0.9309 | 0.9472 | 0.9390 | 0.9876 |
| 0.0038 | 75.0 | 7200 | 0.0606 | 0.8812 | 0.9468 | 0.9128 | 94 | 0.9042 | 0.9042 | 0.9042 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9235 | 0.9397 | 0.9315 | 0.9862 |
| 0.0044 | 76.0 | 7296 | 0.0588 | 0.8889 | 0.9362 | 0.9119 | 94 | 0.9096 | 0.9042 | 0.9069 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9279 | 0.9372 | 0.9325 | 0.9862 |
| 0.0035 | 77.0 | 7392 | 0.0580 | 0.9020 | 0.9787 | 0.9388 | 94 | 0.9212 | 0.9102 | 0.9157 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9356 | 0.9497 | 0.9426 | 0.9876 |
| 0.0038 | 78.0 | 7488 | 0.0585 | 0.9 | 0.9574 | 0.9278 | 94 | 0.9202 | 0.8982 | 0.9091 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.935 | 0.9397 | 0.9373 | 0.9867 |
| 0.0044 | 79.0 | 7584 | 0.0628 | 0.89 | 0.9468 | 0.9175 | 94 | 0.8895 | 0.9162 | 0.9027 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9193 | 0.9447 | 0.9318 | 0.9862 |
| 0.0035 | 80.0 | 7680 | 0.0628 | 0.88 | 0.9362 | 0.9072 | 94 | 0.8743 | 0.9162 | 0.8947 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9102 | 0.9422 | 0.9259 | 0.9856 |
| 0.0029 | 81.0 | 7776 | 0.0658 | 0.8558 | 0.9468 | 0.8990 | 94 | 0.8882 | 0.9042 | 0.8961 | 167 | 0.9710 | 0.9781 | 0.9745 | 137 | 0.9078 | 0.9397 | 0.9235 | 0.9848 |
| 0.0024 | 82.0 | 7872 | 0.0574 | 0.8990 | 0.9468 | 0.9223 | 94 | 0.875 | 0.9222 | 0.8980 | 167 | 0.9708 | 0.9708 | 0.9708 | 137 | 0.9126 | 0.9447 | 0.9284 | 0.9862 |
| 0.0041 | 83.0 | 7968 | 0.0613 | 0.88 | 0.9362 | 0.9072 | 94 | 0.9048 | 0.9102 | 0.9075 | 167 | 0.9926 | 0.9854 | 0.9890 | 137 | 0.9282 | 0.9422 | 0.9352 | 0.9856 |
| 0.0041 | 84.0 | 8064 | 0.0559 | 0.8824 | 0.9574 | 0.9184 | 94 | 0.9102 | 0.9102 | 0.9102 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9261 | 0.9447 | 0.9353 | 0.9870 |
| 0.0035 | 85.0 | 8160 | 0.0533 | 0.9082 | 0.9468 | 0.9271 | 94 | 0.9321 | 0.9042 | 0.9179 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9421 | 0.9397 | 0.9409 | 0.9878 |
| 0.003 | 86.0 | 8256 | 0.0551 | 0.8835 | 0.9681 | 0.9239 | 94 | 0.9096 | 0.9042 | 0.9069 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9261 | 0.9447 | 0.9353 | 0.9876 |
| 0.0036 | 87.0 | 8352 | 0.0583 | 0.8824 | 0.9574 | 0.9184 | 94 | 0.8994 | 0.9102 | 0.9048 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9216 | 0.9447 | 0.9330 | 0.9862 |
| 0.0029 | 88.0 | 8448 | 0.0542 | 0.8824 | 0.9574 | 0.9184 | 94 | 0.9 | 0.9162 | 0.9080 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9218 | 0.9472 | 0.9343 | 0.9867 |
| 0.0025 | 89.0 | 8544 | 0.0624 | 0.8654 | 0.9574 | 0.9091 | 94 | 0.9091 | 0.8982 | 0.9036 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9212 | 0.9397 | 0.9303 | 0.9862 |
| 0.0026 | 90.0 | 8640 | 0.0577 | 0.8812 | 0.9468 | 0.9128 | 94 | 0.9212 | 0.9102 | 0.9157 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9305 | 0.9422 | 0.9363 | 0.9873 |
| 0.003 | 91.0 | 8736 | 0.0582 | 0.8738 | 0.9574 | 0.9137 | 94 | 0.8786 | 0.9102 | 0.8941 | 167 | 0.9926 | 0.9854 | 0.9890 | 137 | 0.9150 | 0.9472 | 0.9309 | 0.9862 |
| 0.0029 | 92.0 | 8832 | 0.0570 | 0.8738 | 0.9574 | 0.9137 | 94 | 0.8941 | 0.9102 | 0.9021 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9171 | 0.9447 | 0.9307 | 0.9870 |
| 0.0039 | 93.0 | 8928 | 0.0583 | 0.8835 | 0.9681 | 0.9239 | 94 | 0.9036 | 0.8982 | 0.9009 | 167 | 0.9926 | 0.9854 | 0.9890 | 137 | 0.9284 | 0.9447 | 0.9365 | 0.9867 |
| 0.0034 | 94.0 | 9024 | 0.0584 | 0.8641 | 0.9468 | 0.9036 | 94 | 0.8889 | 0.9102 | 0.8994 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9124 | 0.9422 | 0.9271 | 0.9867 |
| 0.0024 | 95.0 | 9120 | 0.0588 | 0.8738 | 0.9574 | 0.9137 | 94 | 0.9152 | 0.9042 | 0.9096 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9259 | 0.9422 | 0.9340 | 0.9873 |
| 0.0034 | 96.0 | 9216 | 0.0598 | 0.8641 | 0.9468 | 0.9036 | 94 | 0.8824 | 0.8982 | 0.8902 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9098 | 0.9372 | 0.9233 | 0.9856 |
| 0.003 | 97.0 | 9312 | 0.0613 | 0.8738 | 0.9574 | 0.9137 | 94 | 0.8876 | 0.8982 | 0.8929 | 167 | 0.9708 | 0.9708 | 0.9708 | 137 | 0.9120 | 0.9372 | 0.9244 | 0.9854 |
| 0.0027 | 98.0 | 9408 | 0.0602 | 0.8738 | 0.9574 | 0.9137 | 94 | 0.8988 | 0.9042 | 0.9015 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9191 | 0.9422 | 0.9305 | 0.9865 |
| 0.0023 | 99.0 | 9504 | 0.0590 | 0.8738 | 0.9574 | 0.9137 | 94 | 0.8994 | 0.9102 | 0.9048 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9193 | 0.9447 | 0.9318 | 0.9867 |
| 0.0024 | 100.0 | 9600 | 0.0592 | 0.8738 | 0.9574 | 0.9137 | 94 | 0.8994 | 0.9102 | 0.9048 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9193 | 0.9447 | 0.9318 | 0.9867 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
|
mynameisdidit/UTS_DeepLearning
|
mynameisdidit
| 2024-06-04T05:20:11Z | 0 | 0 | null |
[
"region:us"
] | null | 2024-06-04T05:17:29Z |
Name :
NPM :
Dataset :
Google Collab Link:
|
BVRA/convnext_base.in1k_ft_fungitastic_224
|
BVRA
| 2024-06-04T05:19:54Z | 10 | 0 |
DanishFungi
|
[
"DanishFungi",
"pytorch",
"image-classification",
"ecology",
"fungi",
"FGVC",
"license:cc-by-nc-4.0",
"region:us"
] |
image-classification
| 2024-05-26T20:20:34Z |
---
tags:
- image-classification
- ecology
- fungi
- FGVC
library_name: DanishFungi
license: cc-by-nc-4.0
---
# Model card for BVRA/convnext_base.in1k_ft_df24_224
## Model Details
- **Model Type:** Danish Fungi Classification
- **Model Stats:**
- Params (M): 90.5
- Image size: 224 x 224
- **Papers:**
- **Original:** ??
- **Train Dataset:** DF24 --> https://sites.google.com/view/danish-fungi-dataset
## Model Usage
### Image Embeddings
```python
import timm
import torch
import torchvision.transforms as T
from PIL import Image
from urllib.request import urlopen
model = timm.create_model("hf-hub:BVRA/convnext_base.in1k_ft_df24_224", pretrained=True)
model = model.eval()
train_transforms = T.Compose([T.Resize((224, 224)),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
img = Image.open(PATH_TO_YOUR_IMAGE)
output = model(train_transforms(img).unsqueeze(0))
# output is a (1, num_features) shaped tensor
```
## Citation
```bibtex
@InProceedings{Picek_2022_WACV,
author = {Picek, Luk'a{s} and {S}ulc, Milan and Matas, Ji{r}{'\i} and Jeppesen, Thomas S. and Heilmann-Clausen, Jacob and L{e}ss{\o}e, Thomas and Fr{\o}slev, Tobias},
title = {Danish Fungi 2020 - Not Just Another Image Recognition Dataset},
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
month = {January},
year = {2022},
pages = {1525-1535}
}
```
```bibtex
@article{picek2022automatic,
title={Automatic Fungi Recognition: Deep Learning Meets Mycology},
author={Picek, Luk{'a}{{s}} and {{S}}ulc, Milan and Matas, Ji{{r}}{'\i} and Heilmann-Clausen, Jacob and Jeppesen, Thomas S and Lind, Emil},
journal={Sensors},
volume={22},
number={2},
pages={633},
year={2022},
publisher={Multidisciplinary Digital Publishing Institute}
}
```
|
ALI-B/mistral-7b
|
ALI-B
| 2024-06-04T05:15:39Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mistral",
"text-generation",
"unsloth",
"trl",
"sft",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-04T04:58:49Z |
---
library_name: transformers
tags:
- unsloth
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
nttwt1597/test_v1_Biomed
|
nttwt1597
| 2024-06-04T05:14:51Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T09:24:19Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
KYUNGHYUN9/itos_v0.025_1.3b-1000step_onlyitos
|
KYUNGHYUN9
| 2024-06-04T05:14:44Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-06-04T05:14:42Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
kimdeokgi/ko-pt-model-test1
|
kimdeokgi
| 2024-06-04T05:14:01Z | 2,252 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"kor",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-04T04:39:48Z |
---
license: apache-2.0
language:
- kor
---
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
shinyice/chatvector-llava-v1.5-plus-houou-v3-7b
|
shinyice
| 2024-06-04T05:12:10Z | 9 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llava_llama",
"text-generation",
"vision",
"image-captioning",
"ja",
"arxiv:2310.04799",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-04T04:24:06Z |
---
license: cc-by-nc-4.0
language:
- ja
library_name: transformers
tags:
- vision
- image-captioning
---
# Chatvector-llava-v1.5-plus-Houou-v3-7b Model Card
# Model Details
※好奇心から生まれたモデルです。精度は保証できませんが、v1.6を用いたものよりは良い気がしています。<br>
chatvector-llava-v1.5-plus-houou-v3-7bは日本語で画像を説明することが可能なVLMです。<br>
[Chat Vector](https://arxiv.org/abs/2310.04799)の手法に影響を受けています。
このモデルはChat Vectorを参考に[llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b)と[houou-instruction-7b-v3](https://huggingface.co/moneyforward/houou-instruction-7b-v3)、[Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
の重みを以下のように加減算することで作成してみました。<br>
```
houou-instruction-7b-v3 + (llava-v1.5-7b - Llama-2-7b-hf)
```
次のプログラムは引用させていただいたサイトにあったものをベースにしています。以下文献もぜひご覧ください。
## Uses
```sh
git clone https://github.com/haotian-liu/LLaVA.git
cd LLaVA
pip install -e .
```
```python
import requests
import torch
import transformers
from PIL import Image
from transformers.generation.streamers import TextStreamer
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
from llava.mm_utils import tokenizer_image_token, process_images
model_path = "shinyice/chatvector-llava-v1.5-plus-houou-v3-7b"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = LlavaLlamaForCausalLM.from_pretrained(
model_path,
device_map=device,
low_cpu_mem_usage=True,
use_safetensors=True,
torch_dtype=torch.float16,
).eval()
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_path,
model_max_length=1024,
padding_side="right",
use_fast=False,
)
model.get_model().vision_tower.load_model()
model = model.to(device)
eos_token_id_list = [
tokenizer.eos_token_id,
tokenizer.bos_token_id,
]
image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg"
image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
if not isinstance(image, list):
image = [image]
image_tensor = process_images(image, model.get_model().vision_tower.image_processor, model.config)
image_sizes = [img.size for img in image]
if isinstance(image_tensor, list):
image_tensor = [img.to(model.device, dtype=torch.float16) for img in image_tensor]
else:
image_tensor = image_tensor.to(device, dtype=torch.float16)
image_sizes_tensor = torch.tensor(image_sizes, dtype=torch.int32, device=device)
conv_mode = "v1"
conv = conv_templates[conv_mode].copy()
prompt = "猫の隣には何がありますか?"
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(
prompt,
tokenizer,
IMAGE_TOKEN_INDEX,
return_tensors='pt'
).unsqueeze(0)
if device == "cuda":
input_ids = input_ids.to(device)
temperature = 0.0
top_p = 1.0
max_new_tokens = 256
with torch.inference_mode():
output = model.generate(
inputs=input_ids,
images=image_tensor,
image_sizes=image_sizes_tensor,
do_sample=True if temperature > 0 else False,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
use_cache=True,
eos_token_id=eos_token_id_list,
)
print(tokenizer.decode(output[0]))
```
## Bibliography
- [Chat VectorでLLaVAを日本語対応させる](https://zenn.dev/toshi_456/articles/0166a6eaa81c7b)
- [Chat Vectorを使って日本語LLMをチャットモデルに改造する](https://qiita.com/jovyan/items/ee6affa5ee5bdaada6b4)
|
mradermacher/ArMistral-GEC-GGUF
|
mradermacher
| 2024-06-04T05:09:02Z | 18 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:gagan3012/ArMistral-GEC",
"base_model:quantized:gagan3012/ArMistral-GEC",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-06-04T04:08:34Z |
---
base_model: gagan3012/ArMistral-GEC
language:
- en
library_name: transformers
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/gagan3012/ArMistral-GEC
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/ArMistral-GEC-GGUF/resolve/main/ArMistral-GEC.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/ArMistral-GEC-GGUF/resolve/main/ArMistral-GEC.IQ3_XS.gguf) | IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/ArMistral-GEC-GGUF/resolve/main/ArMistral-GEC.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/ArMistral-GEC-GGUF/resolve/main/ArMistral-GEC.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/ArMistral-GEC-GGUF/resolve/main/ArMistral-GEC.IQ3_M.gguf) | IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/ArMistral-GEC-GGUF/resolve/main/ArMistral-GEC.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/ArMistral-GEC-GGUF/resolve/main/ArMistral-GEC.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/ArMistral-GEC-GGUF/resolve/main/ArMistral-GEC.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/ArMistral-GEC-GGUF/resolve/main/ArMistral-GEC.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ArMistral-GEC-GGUF/resolve/main/ArMistral-GEC.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ArMistral-GEC-GGUF/resolve/main/ArMistral-GEC.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/ArMistral-GEC-GGUF/resolve/main/ArMistral-GEC.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/ArMistral-GEC-GGUF/resolve/main/ArMistral-GEC.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/ArMistral-GEC-GGUF/resolve/main/ArMistral-GEC.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/ArMistral-GEC-GGUF/resolve/main/ArMistral-GEC.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
gridoneai/Llama-3-8B-Jungso-Instruct-DoRA-3k
|
gridoneai
| 2024-06-04T05:08:31Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-04T04:33:41Z |
---
license: cc-by-nc-sa-4.0
---
|
LucasEllenberger/CSE144-science-final-test
|
LucasEllenberger
| 2024-06-04T05:06:42Z | 1 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"diffusers-training",
"lora",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2024-06-04T04:50:16Z |
---
license: creativeml-openrail-m
library_name: diffusers
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- diffusers-training
- lora
base_model: runwayml/stable-diffusion-v1-5
inference: true
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# LoRA text2image fine-tuning - LucasEllenberger/CSE144-science-final-test
These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the niabalaji123/googlewebscrapedataset dataset. You can find some example images in the following.




## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]
|
Minjae99/test_llama-3-Kor
|
Minjae99
| 2024-06-04T05:06:29Z | 77 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"en",
"ko",
"arxiv:1910.09700",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-06-03T23:37:50Z |
---
library_name: transformers
license: llama3
language:
- en
- ko
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
This model is an LLaMA3-based language model trained for text classification.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** L4 GPU
- **Hours used:** 1 hours
- **Cloud Provider:** Google Colab
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
|
martinsinnona/visdecode_vega_3
|
martinsinnona
| 2024-06-04T05:06:13Z | 49 | 0 |
transformers
|
[
"transformers",
"safetensors",
"pix2struct",
"image-text-to-text",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2024-06-04T04:27:43Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
dmavkgo/vilt_finetuned_200
|
dmavkgo
| 2024-06-04T05:02:13Z | 63 | 0 |
transformers
|
[
"transformers",
"safetensors",
"vilt",
"visual-question-answering",
"generated_from_trainer",
"dataset:vqa",
"base_model:dandelin/vilt-b32-mlm",
"base_model:finetune:dandelin/vilt-b32-mlm",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
visual-question-answering
| 2024-06-04T03:32:11Z |
---
license: apache-2.0
base_model: dandelin/vilt-b32-mlm
tags:
- generated_from_trainer
datasets:
- vqa
model-index:
- name: vilt_finetuned_200
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vilt_finetuned_200
This model is a fine-tuned version of [dandelin/vilt-b32-mlm](https://huggingface.co/dandelin/vilt-b32-mlm) on the vqa dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|
richardkelly/Qwen-Qwen1.5-1.8B-1717476207
|
richardkelly
| 2024-06-04T05:01:47Z | 142 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-04T04:43:27Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
FuturisticVibes/Meta-Llama-3-70B-Instruct-abliterated-v3.5-6.0bpw-h8-exl2
|
FuturisticVibes
| 2024-06-04T04:58:52Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"6-bit",
"exl2",
"region:us"
] |
text-generation
| 2024-06-04T04:51:48Z |
---
library_name: transformers
license: llama3
---
I have no idea what I’m doing… if this causes the apocalypse someone please let me know.
Meta-Llama-3-70B-Instruct-abliterated-v3.5 6.0bpw h8 EXL2
Includes [measurement.json](https://huggingface.co/FuturisticVibes/Meta-Llama-3-70B-Instruct-abliterated-v3.5-6.0bpw-h8-exl2/tree/measurement) file for further quantization
Up next is a new, old, long dead, but never forgotten friend… Assuming I can put enough money into RunPod to rent an H100 for a bit…
Original Model: https://huggingface.co/failspy/Meta-Llama-3-70B-Instruct-abliterated-v3.5
# Original Model Card
# Llama-3-70B-Instruct-abliterated-v3.5 Model Card
[My original Jupyter "cookbook" to replicate the methodology can be found here](https://huggingface.co/failspy/llama-3-70B-Instruct-abliterated/blob/main/ortho_cookbook.ipynb)
[My personal library o' code used](https://github.com/FailSpy/abliterator) (WIP, looking to improve and generalize)
This is [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) with orthogonalized bfloat16 safetensor weights, generated with a refined methodology based on that which was described in the preview paper/blog post: '[Refusal in LLMs is mediated by a single direction](https://www.alignmentforum.org/posts/jGuXSZgv6qfdhMCuJ/refusal-in-llms-is-mediated-by-a-single-direction)' which I encourage you to read to understand more.
## V3.5?
Second try. I felt that the V3 methodology of 70B wasn't well applied, and u/Nexesenex on reddit kinda confirmed my suspicions. So go blame them. :P
This one has only a single layer modified(!) and that seems to have completely eliminated moralizing disclaimers.
I hope you'll find this model better than 70B-V3! As well, this also fixes the tokenizer.
## Hang on, "abliteration"? Orthogonalization? Ablation? What is this?
TL;DR: This model has had certain weights manipulated to "inhibit" the model's ability to express refusal. It is not in anyway _guaranteed_ that it won't refuse you, understand your request, it may still lecture you about ethics/safety, etc. It is tuned in all other respects the same as the original 70B instruct model was, just with the strongest refusal directions orthogonalized out.
**TL;TL;DR;DR: It's uncensored in the purest form I can manage -- no new or changed behaviour in any other respect from the original model.**
As far as "abliteration": it's just a fun play-on-words using the original "ablation" term used in the original paper to refer to removing features, which I made up particularly to differentiate the model from "uncensored" fine-tunes.
Ablate + obliterated = Abliterated
Anyways, orthogonalization/ablation are both aspects to refer to the same thing here, the technique in which the refusal feature was "ablated" from the model was via orthogonalization.
## A little more on the methodology, and why this is interesting
To me, ablation (or applying the methodology for the inverse, "augmentation") seems to be good for inducing/removing very specific features that you'd have to spend way too many tokens on encouraging or discouraging in your system prompt.
Instead, you just apply your system prompt in the ablation script against a blank system prompt on the same dataset and orthogonalize for the desired behaviour in the final model weights.
> Why this over fine-tuning?
Ablation is much more surgical in nature whilst also being effectively executed with a _lot_ less data than fine-tuning, which I think is its main advantage.
As well, and its most valuable aspect is it keeps as much of the original model's knowledge and training intact, whilst removing its tendency to behave in one very specific undesireable manner. (In this case, refusing user requests.)
Fine tuning is still exceptionally useful and the go-to for broad behaviour changes; however, you may be able to get close to your desired behaviour with very few samples using the ablation/augmentation techniques.
It may also be a useful step to add to your model refinement: orthogonalize -> fine-tune or vice-versa.
I haven't really gotten around to exploring this model stacked with fine-tuning, I encourage others to give it a shot if they've got the capacity.
> Okay, fine, but why V3? There's no V2 70B?
Well, I released a V2 a while back for 8B under Cognitive Computations.
It ended up being not worth it to try V2 with 70B, I wanted to refine the model before wasting compute cycles on what might not even be a better model.
I am however quite pleased about this latest methodology, it seems to have induced fewer hallucinations.
So to show that it's a new fancy methodology from even that of the 8B V2, I decided to do a Microsoft and double up on my version jump because it's *such* an advancement (or so the excuse went, when in actuality it was because too many legacy but actively used Microsoft libraries checked for 'Windows 9' in the OS name to detect Windows 95/98 as one.)
## Quirkiness awareness notice
This model may come with interesting quirks, with the methodology being so new. I encourage you to play with the model, and post any quirks you notice in the community tab, as that'll help us further understand what this orthogonalization has in the way of side effects.
If you manage to develop further improvements, please share! This is really the most basic way to use ablation, but there are other possibilities that I believe are as-yet unexplored.
Additionally, feel free to reach out in any way about this. I'm on the Cognitive Computations Discord, I'm watching the Community tab, reach out! I'd love to see this methodology used in other ways, and so would gladly support whoever whenever I can.
|
bella05/pogny-1-64-test
|
bella05
| 2024-06-04T04:57:24Z | 111 | 0 |
transformers
|
[
"transformers",
"safetensors",
"roberta",
"text-classification",
"generated_from_trainer",
"base_model:klue/roberta-large",
"base_model:finetune:klue/roberta-large",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-06-04T04:30:40Z |
---
base_model: klue/roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: pogny-1-64-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/bella05/huggingface/runs/dhs60jrt)
# pogny-1-64-test
This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7022
- Accuracy: 0.4376
- F1: 0.2665
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.01
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.9657 | 1.0 | 1205 | 1.7022 | 0.4376 | 0.2665 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.2.2
- Datasets 2.19.1
- Tokenizers 0.19.1
|
nawadkar/human_ai_v2
|
nawadkar
| 2024-06-04T04:53:24Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-30T23:19:38Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** nawadkar
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Jimheaver/T5-text_code_Lora
|
Jimheaver
| 2024-06-04T04:52:02Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-06-03T12:46:56Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
jianzongwu/lgvi
|
jianzongwu
| 2024-06-04T04:50:56Z | 71 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"arxiv:2401.10226",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2024-03-04T07:04:25Z |
---
license: mit
---
# Model Card for LGVI
## Dataset Description
- **Paper:** https://arxiv.org/abs/2401.10226
- **Project Page:** https://jianzongwu.github.io/projects/rovi
- **Github Repository:** https://github.com/jianzongwu/Language-Driven-Video-Inpainting
### Model Summary
The LGVI model is trained on [ROVI](https://huggingface.co/datasets/jianzongwu/rovi) and [Inst-Inpaint](https://github.com/abyildirim/inst-inpaint) for the referring inpainting task. Please check our [project page](https://jianzongwu.github.io/projects/rovi) for more details.
```
@article{wu2024lgvi,
title={Towards language-driven video inpainting via multimodal large language models},
author={Wu, Jianzong and Li, Xiangtai and Si, Chenyang and Zhou, Shangchen and Yang, Jingkang and Zhang, Jiangning and Li, Yining and Chen, Kai and Tong, Yunhai and Liu, Ziwei and others},
journal={arXiv preprint arXiv:2401.10226},
year={2024}
}
|
spsither/mms_300_v3.1020
|
spsither
| 2024-06-04T04:48:30Z | 97 | 0 |
transformers
|
[
"transformers",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2024-06-04T04:46:16Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
vaibhavchavan/flan-t5-small-finetuned-xsum
|
vaibhavchavan
| 2024-06-04T04:45:04Z | 110 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:google/flan-t5-small",
"base_model:finetune:google/flan-t5-small",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2024-05-30T03:20:29Z |
---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-small-finetuned-xsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-small-finetuned-xsum
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 3.5714
- Rouge2: 1.2195
- Rougel: 3.5714
- Rougelsum: 3.5714
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 1 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 2.0 | 2 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 3.0 | 3 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 4.0 | 4 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 5.0 | 5 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 6.0 | 6 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 7.0 | 7 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 8.0 | 8 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 9.0 | 9 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 10.0 | 10 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 11.0 | 11 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 12.0 | 12 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 13.0 | 13 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 14.0 | 14 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 15.0 | 15 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 16.0 | 16 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 17.0 | 17 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 18.0 | 18 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 19.0 | 19 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 20.0 | 20 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 21.0 | 21 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 22.0 | 22 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 23.0 | 23 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 24.0 | 24 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 25.0 | 25 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 26.0 | 26 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 27.0 | 27 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 28.0 | 28 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 29.0 | 29 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 30.0 | 30 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 31.0 | 31 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 32.0 | 32 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 33.0 | 33 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 34.0 | 34 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 35.0 | 35 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 36.0 | 36 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 37.0 | 37 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 38.0 | 38 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 39.0 | 39 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 40.0 | 40 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 41.0 | 41 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 42.0 | 42 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 43.0 | 43 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 44.0 | 44 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 45.0 | 45 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 46.0 | 46 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 47.0 | 47 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 48.0 | 48 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 49.0 | 49 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 50.0 | 50 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 51.0 | 51 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 52.0 | 52 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 53.0 | 53 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 54.0 | 54 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 55.0 | 55 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 56.0 | 56 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 57.0 | 57 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 58.0 | 58 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 59.0 | 59 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 60.0 | 60 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 61.0 | 61 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 62.0 | 62 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 63.0 | 63 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 64.0 | 64 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 65.0 | 65 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 66.0 | 66 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 67.0 | 67 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 68.0 | 68 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 69.0 | 69 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 70.0 | 70 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 71.0 | 71 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 72.0 | 72 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 73.0 | 73 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 74.0 | 74 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 75.0 | 75 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 76.0 | 76 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 77.0 | 77 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 78.0 | 78 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 79.0 | 79 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 80.0 | 80 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 81.0 | 81 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 82.0 | 82 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 83.0 | 83 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 84.0 | 84 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 85.0 | 85 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 86.0 | 86 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 87.0 | 87 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 88.0 | 88 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 89.0 | 89 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 90.0 | 90 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 91.0 | 91 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 92.0 | 92 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 93.0 | 93 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 94.0 | 94 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 95.0 | 95 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 96.0 | 96 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 97.0 | 97 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 98.0 | 98 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 99.0 | 99 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 100.0 | 100 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 101.0 | 101 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 102.0 | 102 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 103.0 | 103 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 104.0 | 104 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 105.0 | 105 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 106.0 | 106 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 107.0 | 107 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 108.0 | 108 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 109.0 | 109 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 110.0 | 110 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 111.0 | 111 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 112.0 | 112 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 113.0 | 113 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 114.0 | 114 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 115.0 | 115 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 116.0 | 116 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 117.0 | 117 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 118.0 | 118 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 119.0 | 119 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 120.0 | 120 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 121.0 | 121 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 122.0 | 122 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 123.0 | 123 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 124.0 | 124 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 125.0 | 125 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 126.0 | 126 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 127.0 | 127 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 128.0 | 128 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 129.0 | 129 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 130.0 | 130 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 131.0 | 131 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 132.0 | 132 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 133.0 | 133 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 134.0 | 134 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 135.0 | 135 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 136.0 | 136 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 137.0 | 137 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 138.0 | 138 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 139.0 | 139 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 140.0 | 140 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 141.0 | 141 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 142.0 | 142 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 143.0 | 143 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 144.0 | 144 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 145.0 | 145 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 146.0 | 146 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 147.0 | 147 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 148.0 | 148 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 149.0 | 149 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 150.0 | 150 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 151.0 | 151 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 152.0 | 152 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 153.0 | 153 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 154.0 | 154 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 155.0 | 155 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 156.0 | 156 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 157.0 | 157 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 158.0 | 158 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 159.0 | 159 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 160.0 | 160 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 161.0 | 161 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 162.0 | 162 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 163.0 | 163 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 164.0 | 164 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 165.0 | 165 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 166.0 | 166 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 167.0 | 167 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 168.0 | 168 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 169.0 | 169 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 170.0 | 170 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 171.0 | 171 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 172.0 | 172 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 173.0 | 173 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 174.0 | 174 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 175.0 | 175 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 176.0 | 176 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 177.0 | 177 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 178.0 | 178 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 179.0 | 179 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 180.0 | 180 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 181.0 | 181 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 182.0 | 182 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 183.0 | 183 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 184.0 | 184 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 185.0 | 185 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 186.0 | 186 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 187.0 | 187 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 188.0 | 188 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 189.0 | 189 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 190.0 | 190 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 191.0 | 191 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 192.0 | 192 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 193.0 | 193 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 194.0 | 194 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 195.0 | 195 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 196.0 | 196 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 197.0 | 197 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 198.0 | 198 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 199.0 | 199 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 200.0 | 200 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 201.0 | 201 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 202.0 | 202 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 203.0 | 203 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 204.0 | 204 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 205.0 | 205 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 206.0 | 206 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 207.0 | 207 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 208.0 | 208 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 209.0 | 209 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 210.0 | 210 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 211.0 | 211 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 212.0 | 212 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 213.0 | 213 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 214.0 | 214 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 215.0 | 215 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 216.0 | 216 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 217.0 | 217 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 218.0 | 218 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 219.0 | 219 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 220.0 | 220 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 221.0 | 221 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 222.0 | 222 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 223.0 | 223 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 224.0 | 224 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 225.0 | 225 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 226.0 | 226 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 227.0 | 227 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 228.0 | 228 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 229.0 | 229 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 230.0 | 230 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 231.0 | 231 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 232.0 | 232 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 233.0 | 233 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 234.0 | 234 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 235.0 | 235 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 236.0 | 236 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 237.0 | 237 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 238.0 | 238 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 239.0 | 239 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 240.0 | 240 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 241.0 | 241 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 242.0 | 242 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 243.0 | 243 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 244.0 | 244 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 245.0 | 245 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 246.0 | 246 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 247.0 | 247 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 248.0 | 248 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 249.0 | 249 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 250.0 | 250 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 251.0 | 251 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 252.0 | 252 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 253.0 | 253 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 254.0 | 254 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 255.0 | 255 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 256.0 | 256 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 257.0 | 257 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 258.0 | 258 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 259.0 | 259 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 260.0 | 260 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 261.0 | 261 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 262.0 | 262 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 263.0 | 263 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 264.0 | 264 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 265.0 | 265 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 266.0 | 266 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 267.0 | 267 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 268.0 | 268 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 269.0 | 269 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 270.0 | 270 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 271.0 | 271 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 272.0 | 272 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 273.0 | 273 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 274.0 | 274 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 275.0 | 275 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 276.0 | 276 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 277.0 | 277 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 278.0 | 278 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 279.0 | 279 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 280.0 | 280 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 281.0 | 281 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 282.0 | 282 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 283.0 | 283 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 284.0 | 284 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 285.0 | 285 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 286.0 | 286 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 287.0 | 287 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 288.0 | 288 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 289.0 | 289 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 290.0 | 290 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 291.0 | 291 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 292.0 | 292 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 293.0 | 293 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 294.0 | 294 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 295.0 | 295 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 296.0 | 296 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 297.0 | 297 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 298.0 | 298 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 299.0 | 299 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 300.0 | 300 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 301.0 | 301 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 302.0 | 302 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 303.0 | 303 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 304.0 | 304 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 305.0 | 305 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 306.0 | 306 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 307.0 | 307 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 308.0 | 308 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 309.0 | 309 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 310.0 | 310 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 311.0 | 311 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 312.0 | 312 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 313.0 | 313 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 314.0 | 314 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 315.0 | 315 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 316.0 | 316 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 317.0 | 317 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 318.0 | 318 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 319.0 | 319 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 320.0 | 320 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 321.0 | 321 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 322.0 | 322 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 323.0 | 323 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 324.0 | 324 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 325.0 | 325 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 326.0 | 326 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 327.0 | 327 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 328.0 | 328 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 329.0 | 329 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 330.0 | 330 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 331.0 | 331 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 332.0 | 332 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 333.0 | 333 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 334.0 | 334 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 335.0 | 335 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 336.0 | 336 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 337.0 | 337 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 338.0 | 338 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 339.0 | 339 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 340.0 | 340 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 341.0 | 341 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 342.0 | 342 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 343.0 | 343 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 344.0 | 344 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 345.0 | 345 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 346.0 | 346 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 347.0 | 347 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 348.0 | 348 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 349.0 | 349 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 350.0 | 350 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 351.0 | 351 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 352.0 | 352 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 353.0 | 353 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 354.0 | 354 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 355.0 | 355 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 356.0 | 356 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 357.0 | 357 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 358.0 | 358 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 359.0 | 359 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 360.0 | 360 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 361.0 | 361 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 362.0 | 362 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 363.0 | 363 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 364.0 | 364 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 365.0 | 365 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 366.0 | 366 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 367.0 | 367 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 368.0 | 368 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 369.0 | 369 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 370.0 | 370 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 371.0 | 371 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 372.0 | 372 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 373.0 | 373 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 374.0 | 374 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 375.0 | 375 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 376.0 | 376 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 377.0 | 377 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 378.0 | 378 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 379.0 | 379 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 380.0 | 380 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 381.0 | 381 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 382.0 | 382 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 383.0 | 383 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 384.0 | 384 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 385.0 | 385 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 386.0 | 386 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 387.0 | 387 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 388.0 | 388 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 389.0 | 389 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 390.0 | 390 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 391.0 | 391 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 392.0 | 392 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 393.0 | 393 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 394.0 | 394 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 395.0 | 395 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 396.0 | 396 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 397.0 | 397 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 398.0 | 398 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 399.0 | 399 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 400.0 | 400 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 401.0 | 401 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 402.0 | 402 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 403.0 | 403 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 404.0 | 404 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 405.0 | 405 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 406.0 | 406 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 407.0 | 407 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 408.0 | 408 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 409.0 | 409 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 410.0 | 410 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 411.0 | 411 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 412.0 | 412 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 413.0 | 413 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 414.0 | 414 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 415.0 | 415 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 416.0 | 416 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 417.0 | 417 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 418.0 | 418 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 419.0 | 419 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 420.0 | 420 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 421.0 | 421 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 422.0 | 422 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 423.0 | 423 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 424.0 | 424 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 425.0 | 425 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 426.0 | 426 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 427.0 | 427 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 428.0 | 428 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 429.0 | 429 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 430.0 | 430 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 431.0 | 431 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 432.0 | 432 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 433.0 | 433 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 434.0 | 434 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 435.0 | 435 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 436.0 | 436 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 437.0 | 437 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 438.0 | 438 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 439.0 | 439 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 440.0 | 440 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 441.0 | 441 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 442.0 | 442 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 443.0 | 443 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 444.0 | 444 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 445.0 | 445 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 446.0 | 446 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 447.0 | 447 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 448.0 | 448 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 449.0 | 449 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 450.0 | 450 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 451.0 | 451 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 452.0 | 452 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 453.0 | 453 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 454.0 | 454 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 455.0 | 455 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 456.0 | 456 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 457.0 | 457 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 458.0 | 458 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 459.0 | 459 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 460.0 | 460 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 461.0 | 461 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 462.0 | 462 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 463.0 | 463 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 464.0 | 464 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 465.0 | 465 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 466.0 | 466 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 467.0 | 467 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 468.0 | 468 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 469.0 | 469 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 470.0 | 470 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 471.0 | 471 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 472.0 | 472 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 473.0 | 473 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 474.0 | 474 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 475.0 | 475 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 476.0 | 476 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 477.0 | 477 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 478.0 | 478 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 479.0 | 479 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 480.0 | 480 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 481.0 | 481 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 482.0 | 482 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 483.0 | 483 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 484.0 | 484 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 485.0 | 485 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 486.0 | 486 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 487.0 | 487 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 488.0 | 488 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 489.0 | 489 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 490.0 | 490 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 491.0 | 491 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 492.0 | 492 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 493.0 | 493 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 494.0 | 494 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 495.0 | 495 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 496.0 | 496 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 497.0 | 497 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 498.0 | 498 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| No log | 499.0 | 499 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 500.0 | 500 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 501.0 | 501 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 502.0 | 502 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 503.0 | 503 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 504.0 | 504 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 505.0 | 505 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 506.0 | 506 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 507.0 | 507 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 508.0 | 508 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 509.0 | 509 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 510.0 | 510 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 511.0 | 511 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 512.0 | 512 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 513.0 | 513 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 514.0 | 514 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 515.0 | 515 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 516.0 | 516 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 517.0 | 517 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 518.0 | 518 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 519.0 | 519 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 520.0 | 520 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 521.0 | 521 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 522.0 | 522 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 523.0 | 523 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 524.0 | 524 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 525.0 | 525 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 526.0 | 526 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 527.0 | 527 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 528.0 | 528 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 529.0 | 529 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 530.0 | 530 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 531.0 | 531 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 532.0 | 532 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 533.0 | 533 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 534.0 | 534 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 535.0 | 535 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 536.0 | 536 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 537.0 | 537 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 538.0 | 538 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 539.0 | 539 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 540.0 | 540 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 541.0 | 541 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 542.0 | 542 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 543.0 | 543 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 544.0 | 544 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 545.0 | 545 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 546.0 | 546 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 547.0 | 547 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 548.0 | 548 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 549.0 | 549 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 550.0 | 550 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 551.0 | 551 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 552.0 | 552 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 553.0 | 553 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 554.0 | 554 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 555.0 | 555 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 556.0 | 556 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 557.0 | 557 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 558.0 | 558 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 559.0 | 559 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 560.0 | 560 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 561.0 | 561 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 562.0 | 562 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 563.0 | 563 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 564.0 | 564 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 565.0 | 565 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 566.0 | 566 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 567.0 | 567 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 568.0 | 568 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 569.0 | 569 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 570.0 | 570 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 571.0 | 571 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 572.0 | 572 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 573.0 | 573 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 574.0 | 574 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 575.0 | 575 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 576.0 | 576 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 577.0 | 577 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 578.0 | 578 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 579.0 | 579 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 580.0 | 580 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 581.0 | 581 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 582.0 | 582 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 583.0 | 583 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 584.0 | 584 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 585.0 | 585 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 586.0 | 586 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 587.0 | 587 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 588.0 | 588 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 589.0 | 589 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 590.0 | 590 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 591.0 | 591 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 592.0 | 592 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 593.0 | 593 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 594.0 | 594 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 595.0 | 595 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 596.0 | 596 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 597.0 | 597 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 598.0 | 598 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 599.0 | 599 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 600.0 | 600 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 601.0 | 601 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 602.0 | 602 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 603.0 | 603 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 604.0 | 604 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 605.0 | 605 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 606.0 | 606 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 607.0 | 607 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 608.0 | 608 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 609.0 | 609 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 610.0 | 610 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 611.0 | 611 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 612.0 | 612 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 613.0 | 613 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 614.0 | 614 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 615.0 | 615 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 616.0 | 616 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 617.0 | 617 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 618.0 | 618 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 619.0 | 619 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 620.0 | 620 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 621.0 | 621 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 622.0 | 622 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 623.0 | 623 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 624.0 | 624 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 625.0 | 625 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 626.0 | 626 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 627.0 | 627 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 628.0 | 628 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 629.0 | 629 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 630.0 | 630 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 631.0 | 631 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 632.0 | 632 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 633.0 | 633 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 634.0 | 634 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 635.0 | 635 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 636.0 | 636 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 637.0 | 637 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 638.0 | 638 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 639.0 | 639 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 640.0 | 640 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 641.0 | 641 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 642.0 | 642 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 643.0 | 643 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 644.0 | 644 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 645.0 | 645 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 646.0 | 646 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 647.0 | 647 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 648.0 | 648 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 649.0 | 649 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 650.0 | 650 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 651.0 | 651 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 652.0 | 652 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 653.0 | 653 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 654.0 | 654 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 655.0 | 655 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 656.0 | 656 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 657.0 | 657 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 658.0 | 658 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 659.0 | 659 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 660.0 | 660 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 661.0 | 661 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 662.0 | 662 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 663.0 | 663 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 664.0 | 664 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 665.0 | 665 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 666.0 | 666 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 667.0 | 667 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 668.0 | 668 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 669.0 | 669 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 670.0 | 670 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 671.0 | 671 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 672.0 | 672 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 673.0 | 673 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 674.0 | 674 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 675.0 | 675 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 676.0 | 676 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 677.0 | 677 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 678.0 | 678 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 679.0 | 679 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 680.0 | 680 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 681.0 | 681 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 682.0 | 682 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 683.0 | 683 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 684.0 | 684 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 685.0 | 685 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 686.0 | 686 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 687.0 | 687 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 688.0 | 688 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 689.0 | 689 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 690.0 | 690 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 691.0 | 691 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 692.0 | 692 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 693.0 | 693 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 694.0 | 694 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 695.0 | 695 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 696.0 | 696 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 697.0 | 697 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 698.0 | 698 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 699.0 | 699 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 700.0 | 700 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 701.0 | 701 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 702.0 | 702 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 703.0 | 703 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 704.0 | 704 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 705.0 | 705 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 706.0 | 706 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 707.0 | 707 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 708.0 | 708 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 709.0 | 709 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 710.0 | 710 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 711.0 | 711 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 712.0 | 712 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 713.0 | 713 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 714.0 | 714 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 715.0 | 715 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 716.0 | 716 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 717.0 | 717 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 718.0 | 718 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 719.0 | 719 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 720.0 | 720 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 721.0 | 721 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 722.0 | 722 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 723.0 | 723 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 724.0 | 724 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 725.0 | 725 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 726.0 | 726 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 727.0 | 727 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 728.0 | 728 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 729.0 | 729 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 730.0 | 730 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 731.0 | 731 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 732.0 | 732 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 733.0 | 733 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 734.0 | 734 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 735.0 | 735 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 736.0 | 736 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 737.0 | 737 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 738.0 | 738 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 739.0 | 739 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 740.0 | 740 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 741.0 | 741 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 742.0 | 742 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 743.0 | 743 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 744.0 | 744 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 745.0 | 745 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 746.0 | 746 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 747.0 | 747 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 748.0 | 748 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 749.0 | 749 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 750.0 | 750 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 751.0 | 751 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 752.0 | 752 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 753.0 | 753 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 754.0 | 754 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 755.0 | 755 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 756.0 | 756 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 757.0 | 757 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 758.0 | 758 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 759.0 | 759 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 760.0 | 760 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 761.0 | 761 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 762.0 | 762 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 763.0 | 763 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 764.0 | 764 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 765.0 | 765 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 766.0 | 766 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 767.0 | 767 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 768.0 | 768 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 769.0 | 769 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 770.0 | 770 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 771.0 | 771 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 772.0 | 772 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 773.0 | 773 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 774.0 | 774 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 775.0 | 775 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 776.0 | 776 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 777.0 | 777 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 778.0 | 778 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 779.0 | 779 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 780.0 | 780 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 781.0 | 781 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 782.0 | 782 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 783.0 | 783 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 784.0 | 784 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 785.0 | 785 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 786.0 | 786 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 787.0 | 787 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 788.0 | 788 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 789.0 | 789 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 790.0 | 790 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 791.0 | 791 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 792.0 | 792 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 793.0 | 793 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 794.0 | 794 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 795.0 | 795 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 796.0 | 796 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 797.0 | 797 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 798.0 | 798 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 799.0 | 799 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 800.0 | 800 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 801.0 | 801 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 802.0 | 802 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 803.0 | 803 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 804.0 | 804 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 805.0 | 805 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 806.0 | 806 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 807.0 | 807 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 808.0 | 808 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 809.0 | 809 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 810.0 | 810 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 811.0 | 811 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 812.0 | 812 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 813.0 | 813 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 814.0 | 814 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 815.0 | 815 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 816.0 | 816 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 817.0 | 817 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 818.0 | 818 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 819.0 | 819 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 820.0 | 820 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 821.0 | 821 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 822.0 | 822 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 823.0 | 823 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 824.0 | 824 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 825.0 | 825 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 826.0 | 826 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 827.0 | 827 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 828.0 | 828 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 829.0 | 829 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 830.0 | 830 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 831.0 | 831 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 832.0 | 832 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 833.0 | 833 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 834.0 | 834 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 835.0 | 835 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 836.0 | 836 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 837.0 | 837 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 838.0 | 838 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 839.0 | 839 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 840.0 | 840 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 841.0 | 841 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 842.0 | 842 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 843.0 | 843 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 844.0 | 844 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 845.0 | 845 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 846.0 | 846 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 847.0 | 847 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 848.0 | 848 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 849.0 | 849 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 850.0 | 850 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 851.0 | 851 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 852.0 | 852 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 853.0 | 853 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 854.0 | 854 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 855.0 | 855 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 856.0 | 856 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 857.0 | 857 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 858.0 | 858 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 859.0 | 859 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 860.0 | 860 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 861.0 | 861 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 862.0 | 862 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 863.0 | 863 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 864.0 | 864 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 865.0 | 865 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 866.0 | 866 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 867.0 | 867 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 868.0 | 868 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 869.0 | 869 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 870.0 | 870 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 871.0 | 871 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 872.0 | 872 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 873.0 | 873 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 874.0 | 874 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 875.0 | 875 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 876.0 | 876 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 877.0 | 877 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 878.0 | 878 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 879.0 | 879 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 880.0 | 880 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 881.0 | 881 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 882.0 | 882 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 883.0 | 883 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 884.0 | 884 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 885.0 | 885 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 886.0 | 886 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 887.0 | 887 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 888.0 | 888 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 889.0 | 889 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 890.0 | 890 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 891.0 | 891 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 892.0 | 892 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 893.0 | 893 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 894.0 | 894 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 895.0 | 895 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 896.0 | 896 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 897.0 | 897 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 898.0 | 898 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 899.0 | 899 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 900.0 | 900 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 901.0 | 901 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 902.0 | 902 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 903.0 | 903 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 904.0 | 904 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 905.0 | 905 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 906.0 | 906 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 907.0 | 907 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 908.0 | 908 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 909.0 | 909 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 910.0 | 910 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 911.0 | 911 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 912.0 | 912 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 913.0 | 913 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 914.0 | 914 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 915.0 | 915 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 916.0 | 916 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 917.0 | 917 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 918.0 | 918 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 919.0 | 919 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 920.0 | 920 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 921.0 | 921 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 922.0 | 922 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 923.0 | 923 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 924.0 | 924 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 925.0 | 925 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 926.0 | 926 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 927.0 | 927 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 928.0 | 928 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 929.0 | 929 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 930.0 | 930 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 931.0 | 931 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 932.0 | 932 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 933.0 | 933 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 934.0 | 934 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 935.0 | 935 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 936.0 | 936 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 937.0 | 937 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 938.0 | 938 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 939.0 | 939 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 940.0 | 940 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 941.0 | 941 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 942.0 | 942 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 943.0 | 943 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 944.0 | 944 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 945.0 | 945 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 946.0 | 946 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 947.0 | 947 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 948.0 | 948 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 949.0 | 949 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 950.0 | 950 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 951.0 | 951 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 952.0 | 952 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 953.0 | 953 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 954.0 | 954 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 955.0 | 955 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 956.0 | 956 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 957.0 | 957 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 958.0 | 958 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 959.0 | 959 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 960.0 | 960 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 961.0 | 961 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 962.0 | 962 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 963.0 | 963 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 964.0 | 964 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 965.0 | 965 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 966.0 | 966 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 967.0 | 967 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 968.0 | 968 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 969.0 | 969 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 970.0 | 970 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 971.0 | 971 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 972.0 | 972 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 973.0 | 973 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 974.0 | 974 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 975.0 | 975 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 976.0 | 976 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 977.0 | 977 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 978.0 | 978 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 979.0 | 979 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 980.0 | 980 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 981.0 | 981 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 982.0 | 982 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 983.0 | 983 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 984.0 | 984 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 985.0 | 985 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 986.0 | 986 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 987.0 | 987 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 988.0 | 988 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 989.0 | 989 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 990.0 | 990 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 991.0 | 991 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 992.0 | 992 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 993.0 | 993 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 994.0 | 994 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 995.0 | 995 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 996.0 | 996 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 997.0 | 997 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 998.0 | 998 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 999.0 | 999 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1000.0 | 1000 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1001.0 | 1001 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1002.0 | 1002 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1003.0 | 1003 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1004.0 | 1004 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1005.0 | 1005 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1006.0 | 1006 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1007.0 | 1007 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1008.0 | 1008 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1009.0 | 1009 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1010.0 | 1010 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1011.0 | 1011 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1012.0 | 1012 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1013.0 | 1013 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1014.0 | 1014 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1015.0 | 1015 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1016.0 | 1016 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1017.0 | 1017 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1018.0 | 1018 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1019.0 | 1019 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1020.0 | 1020 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1021.0 | 1021 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1022.0 | 1022 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1023.0 | 1023 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1024.0 | 1024 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1025.0 | 1025 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1026.0 | 1026 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1027.0 | 1027 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1028.0 | 1028 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1029.0 | 1029 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1030.0 | 1030 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1031.0 | 1031 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1032.0 | 1032 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1033.0 | 1033 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1034.0 | 1034 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1035.0 | 1035 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1036.0 | 1036 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1037.0 | 1037 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1038.0 | 1038 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1039.0 | 1039 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1040.0 | 1040 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1041.0 | 1041 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1042.0 | 1042 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1043.0 | 1043 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1044.0 | 1044 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1045.0 | 1045 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1046.0 | 1046 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1047.0 | 1047 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1048.0 | 1048 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1049.0 | 1049 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1050.0 | 1050 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1051.0 | 1051 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1052.0 | 1052 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1053.0 | 1053 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1054.0 | 1054 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1055.0 | 1055 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1056.0 | 1056 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1057.0 | 1057 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1058.0 | 1058 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1059.0 | 1059 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1060.0 | 1060 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1061.0 | 1061 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1062.0 | 1062 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1063.0 | 1063 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1064.0 | 1064 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1065.0 | 1065 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1066.0 | 1066 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1067.0 | 1067 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1068.0 | 1068 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1069.0 | 1069 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1070.0 | 1070 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1071.0 | 1071 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1072.0 | 1072 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1073.0 | 1073 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1074.0 | 1074 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1075.0 | 1075 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1076.0 | 1076 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1077.0 | 1077 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1078.0 | 1078 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1079.0 | 1079 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1080.0 | 1080 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1081.0 | 1081 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1082.0 | 1082 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1083.0 | 1083 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1084.0 | 1084 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1085.0 | 1085 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1086.0 | 1086 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1087.0 | 1087 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1088.0 | 1088 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1089.0 | 1089 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1090.0 | 1090 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1091.0 | 1091 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1092.0 | 1092 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1093.0 | 1093 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1094.0 | 1094 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1095.0 | 1095 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1096.0 | 1096 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1097.0 | 1097 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1098.0 | 1098 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1099.0 | 1099 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1100.0 | 1100 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1101.0 | 1101 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1102.0 | 1102 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1103.0 | 1103 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1104.0 | 1104 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1105.0 | 1105 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1106.0 | 1106 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1107.0 | 1107 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1108.0 | 1108 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1109.0 | 1109 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1110.0 | 1110 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1111.0 | 1111 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1112.0 | 1112 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1113.0 | 1113 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1114.0 | 1114 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1115.0 | 1115 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1116.0 | 1116 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1117.0 | 1117 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1118.0 | 1118 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1119.0 | 1119 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1120.0 | 1120 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1121.0 | 1121 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1122.0 | 1122 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1123.0 | 1123 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1124.0 | 1124 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1125.0 | 1125 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1126.0 | 1126 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1127.0 | 1127 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1128.0 | 1128 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1129.0 | 1129 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1130.0 | 1130 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1131.0 | 1131 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1132.0 | 1132 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1133.0 | 1133 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1134.0 | 1134 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1135.0 | 1135 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1136.0 | 1136 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1137.0 | 1137 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1138.0 | 1138 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1139.0 | 1139 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1140.0 | 1140 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1141.0 | 1141 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1142.0 | 1142 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1143.0 | 1143 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1144.0 | 1144 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1145.0 | 1145 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1146.0 | 1146 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1147.0 | 1147 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1148.0 | 1148 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1149.0 | 1149 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1150.0 | 1150 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1151.0 | 1151 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1152.0 | 1152 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1153.0 | 1153 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1154.0 | 1154 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1155.0 | 1155 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1156.0 | 1156 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1157.0 | 1157 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1158.0 | 1158 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1159.0 | 1159 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1160.0 | 1160 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1161.0 | 1161 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1162.0 | 1162 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1163.0 | 1163 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1164.0 | 1164 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1165.0 | 1165 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1166.0 | 1166 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1167.0 | 1167 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1168.0 | 1168 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1169.0 | 1169 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1170.0 | 1170 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1171.0 | 1171 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1172.0 | 1172 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1173.0 | 1173 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1174.0 | 1174 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1175.0 | 1175 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1176.0 | 1176 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1177.0 | 1177 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1178.0 | 1178 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1179.0 | 1179 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1180.0 | 1180 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1181.0 | 1181 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1182.0 | 1182 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1183.0 | 1183 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1184.0 | 1184 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1185.0 | 1185 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1186.0 | 1186 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1187.0 | 1187 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1188.0 | 1188 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1189.0 | 1189 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1190.0 | 1190 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1191.0 | 1191 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1192.0 | 1192 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1193.0 | 1193 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1194.0 | 1194 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1195.0 | 1195 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1196.0 | 1196 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1197.0 | 1197 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1198.0 | 1198 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1199.0 | 1199 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1200.0 | 1200 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1201.0 | 1201 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1202.0 | 1202 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1203.0 | 1203 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1204.0 | 1204 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1205.0 | 1205 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1206.0 | 1206 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1207.0 | 1207 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1208.0 | 1208 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1209.0 | 1209 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1210.0 | 1210 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1211.0 | 1211 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1212.0 | 1212 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1213.0 | 1213 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1214.0 | 1214 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1215.0 | 1215 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1216.0 | 1216 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1217.0 | 1217 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1218.0 | 1218 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1219.0 | 1219 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1220.0 | 1220 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1221.0 | 1221 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1222.0 | 1222 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1223.0 | 1223 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1224.0 | 1224 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1225.0 | 1225 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1226.0 | 1226 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1227.0 | 1227 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1228.0 | 1228 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1229.0 | 1229 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1230.0 | 1230 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1231.0 | 1231 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1232.0 | 1232 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1233.0 | 1233 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1234.0 | 1234 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1235.0 | 1235 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1236.0 | 1236 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1237.0 | 1237 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1238.0 | 1238 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1239.0 | 1239 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1240.0 | 1240 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1241.0 | 1241 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1242.0 | 1242 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1243.0 | 1243 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1244.0 | 1244 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1245.0 | 1245 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1246.0 | 1246 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1247.0 | 1247 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1248.0 | 1248 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1249.0 | 1249 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1250.0 | 1250 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1251.0 | 1251 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1252.0 | 1252 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1253.0 | 1253 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1254.0 | 1254 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1255.0 | 1255 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1256.0 | 1256 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1257.0 | 1257 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1258.0 | 1258 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1259.0 | 1259 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1260.0 | 1260 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1261.0 | 1261 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1262.0 | 1262 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1263.0 | 1263 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1264.0 | 1264 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1265.0 | 1265 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1266.0 | 1266 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1267.0 | 1267 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1268.0 | 1268 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1269.0 | 1269 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1270.0 | 1270 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1271.0 | 1271 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1272.0 | 1272 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1273.0 | 1273 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1274.0 | 1274 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1275.0 | 1275 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1276.0 | 1276 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1277.0 | 1277 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1278.0 | 1278 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1279.0 | 1279 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1280.0 | 1280 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1281.0 | 1281 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1282.0 | 1282 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1283.0 | 1283 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1284.0 | 1284 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1285.0 | 1285 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1286.0 | 1286 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1287.0 | 1287 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1288.0 | 1288 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1289.0 | 1289 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1290.0 | 1290 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1291.0 | 1291 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1292.0 | 1292 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1293.0 | 1293 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1294.0 | 1294 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1295.0 | 1295 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1296.0 | 1296 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1297.0 | 1297 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1298.0 | 1298 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1299.0 | 1299 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1300.0 | 1300 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1301.0 | 1301 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1302.0 | 1302 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1303.0 | 1303 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1304.0 | 1304 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1305.0 | 1305 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1306.0 | 1306 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1307.0 | 1307 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1308.0 | 1308 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1309.0 | 1309 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1310.0 | 1310 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1311.0 | 1311 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1312.0 | 1312 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1313.0 | 1313 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1314.0 | 1314 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1315.0 | 1315 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1316.0 | 1316 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1317.0 | 1317 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1318.0 | 1318 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1319.0 | 1319 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1320.0 | 1320 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1321.0 | 1321 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1322.0 | 1322 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1323.0 | 1323 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1324.0 | 1324 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1325.0 | 1325 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1326.0 | 1326 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1327.0 | 1327 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1328.0 | 1328 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1329.0 | 1329 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1330.0 | 1330 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1331.0 | 1331 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1332.0 | 1332 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1333.0 | 1333 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1334.0 | 1334 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1335.0 | 1335 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1336.0 | 1336 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1337.0 | 1337 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1338.0 | 1338 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1339.0 | 1339 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1340.0 | 1340 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1341.0 | 1341 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1342.0 | 1342 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1343.0 | 1343 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1344.0 | 1344 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1345.0 | 1345 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1346.0 | 1346 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1347.0 | 1347 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1348.0 | 1348 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1349.0 | 1349 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1350.0 | 1350 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1351.0 | 1351 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1352.0 | 1352 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1353.0 | 1353 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1354.0 | 1354 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1355.0 | 1355 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1356.0 | 1356 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1357.0 | 1357 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1358.0 | 1358 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1359.0 | 1359 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1360.0 | 1360 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1361.0 | 1361 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1362.0 | 1362 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1363.0 | 1363 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1364.0 | 1364 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1365.0 | 1365 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1366.0 | 1366 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1367.0 | 1367 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1368.0 | 1368 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1369.0 | 1369 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1370.0 | 1370 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1371.0 | 1371 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1372.0 | 1372 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1373.0 | 1373 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1374.0 | 1374 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1375.0 | 1375 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1376.0 | 1376 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1377.0 | 1377 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1378.0 | 1378 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1379.0 | 1379 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1380.0 | 1380 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1381.0 | 1381 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1382.0 | 1382 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1383.0 | 1383 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1384.0 | 1384 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1385.0 | 1385 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1386.0 | 1386 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1387.0 | 1387 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1388.0 | 1388 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1389.0 | 1389 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1390.0 | 1390 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1391.0 | 1391 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1392.0 | 1392 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1393.0 | 1393 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1394.0 | 1394 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1395.0 | 1395 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1396.0 | 1396 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1397.0 | 1397 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1398.0 | 1398 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1399.0 | 1399 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1400.0 | 1400 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1401.0 | 1401 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1402.0 | 1402 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1403.0 | 1403 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1404.0 | 1404 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1405.0 | 1405 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1406.0 | 1406 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1407.0 | 1407 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1408.0 | 1408 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1409.0 | 1409 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1410.0 | 1410 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1411.0 | 1411 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1412.0 | 1412 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1413.0 | 1413 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1414.0 | 1414 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1415.0 | 1415 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1416.0 | 1416 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1417.0 | 1417 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1418.0 | 1418 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1419.0 | 1419 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1420.0 | 1420 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1421.0 | 1421 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1422.0 | 1422 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1423.0 | 1423 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1424.0 | 1424 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1425.0 | 1425 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1426.0 | 1426 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1427.0 | 1427 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1428.0 | 1428 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1429.0 | 1429 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1430.0 | 1430 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1431.0 | 1431 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1432.0 | 1432 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1433.0 | 1433 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1434.0 | 1434 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1435.0 | 1435 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1436.0 | 1436 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1437.0 | 1437 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1438.0 | 1438 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1439.0 | 1439 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1440.0 | 1440 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1441.0 | 1441 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1442.0 | 1442 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1443.0 | 1443 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1444.0 | 1444 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1445.0 | 1445 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1446.0 | 1446 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1447.0 | 1447 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1448.0 | 1448 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1449.0 | 1449 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1450.0 | 1450 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1451.0 | 1451 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1452.0 | 1452 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1453.0 | 1453 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1454.0 | 1454 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1455.0 | 1455 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1456.0 | 1456 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1457.0 | 1457 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1458.0 | 1458 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1459.0 | 1459 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1460.0 | 1460 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1461.0 | 1461 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1462.0 | 1462 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1463.0 | 1463 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1464.0 | 1464 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1465.0 | 1465 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1466.0 | 1466 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1467.0 | 1467 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1468.0 | 1468 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1469.0 | 1469 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1470.0 | 1470 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1471.0 | 1471 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1472.0 | 1472 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1473.0 | 1473 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1474.0 | 1474 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1475.0 | 1475 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1476.0 | 1476 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1477.0 | 1477 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1478.0 | 1478 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1479.0 | 1479 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1480.0 | 1480 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1481.0 | 1481 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1482.0 | 1482 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1483.0 | 1483 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1484.0 | 1484 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1485.0 | 1485 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1486.0 | 1486 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1487.0 | 1487 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1488.0 | 1488 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1489.0 | 1489 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1490.0 | 1490 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1491.0 | 1491 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1492.0 | 1492 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1493.0 | 1493 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1494.0 | 1494 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1495.0 | 1495 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1496.0 | 1496 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1497.0 | 1497 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1498.0 | 1498 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1499.0 | 1499 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1500.0 | 1500 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1501.0 | 1501 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1502.0 | 1502 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1503.0 | 1503 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1504.0 | 1504 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1505.0 | 1505 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1506.0 | 1506 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1507.0 | 1507 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1508.0 | 1508 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1509.0 | 1509 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1510.0 | 1510 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1511.0 | 1511 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1512.0 | 1512 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1513.0 | 1513 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1514.0 | 1514 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1515.0 | 1515 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1516.0 | 1516 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1517.0 | 1517 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1518.0 | 1518 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1519.0 | 1519 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1520.0 | 1520 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1521.0 | 1521 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1522.0 | 1522 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1523.0 | 1523 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1524.0 | 1524 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1525.0 | 1525 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1526.0 | 1526 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1527.0 | 1527 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1528.0 | 1528 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1529.0 | 1529 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1530.0 | 1530 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1531.0 | 1531 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1532.0 | 1532 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1533.0 | 1533 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1534.0 | 1534 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1535.0 | 1535 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1536.0 | 1536 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1537.0 | 1537 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1538.0 | 1538 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1539.0 | 1539 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1540.0 | 1540 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1541.0 | 1541 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1542.0 | 1542 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1543.0 | 1543 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1544.0 | 1544 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1545.0 | 1545 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1546.0 | 1546 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1547.0 | 1547 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1548.0 | 1548 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1549.0 | 1549 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1550.0 | 1550 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1551.0 | 1551 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1552.0 | 1552 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1553.0 | 1553 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1554.0 | 1554 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1555.0 | 1555 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1556.0 | 1556 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1557.0 | 1557 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1558.0 | 1558 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1559.0 | 1559 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1560.0 | 1560 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1561.0 | 1561 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1562.0 | 1562 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1563.0 | 1563 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1564.0 | 1564 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1565.0 | 1565 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1566.0 | 1566 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1567.0 | 1567 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1568.0 | 1568 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1569.0 | 1569 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1570.0 | 1570 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1571.0 | 1571 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1572.0 | 1572 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1573.0 | 1573 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1574.0 | 1574 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1575.0 | 1575 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1576.0 | 1576 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1577.0 | 1577 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1578.0 | 1578 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1579.0 | 1579 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1580.0 | 1580 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1581.0 | 1581 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1582.0 | 1582 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1583.0 | 1583 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1584.0 | 1584 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1585.0 | 1585 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1586.0 | 1586 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1587.0 | 1587 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1588.0 | 1588 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1589.0 | 1589 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1590.0 | 1590 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1591.0 | 1591 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1592.0 | 1592 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1593.0 | 1593 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1594.0 | 1594 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1595.0 | 1595 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1596.0 | 1596 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1597.0 | 1597 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1598.0 | 1598 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1599.0 | 1599 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1600.0 | 1600 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1601.0 | 1601 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1602.0 | 1602 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1603.0 | 1603 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1604.0 | 1604 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1605.0 | 1605 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1606.0 | 1606 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1607.0 | 1607 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1608.0 | 1608 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1609.0 | 1609 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1610.0 | 1610 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1611.0 | 1611 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1612.0 | 1612 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1613.0 | 1613 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1614.0 | 1614 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1615.0 | 1615 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1616.0 | 1616 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1617.0 | 1617 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1618.0 | 1618 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1619.0 | 1619 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1620.0 | 1620 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1621.0 | 1621 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1622.0 | 1622 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1623.0 | 1623 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1624.0 | 1624 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1625.0 | 1625 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1626.0 | 1626 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1627.0 | 1627 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1628.0 | 1628 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1629.0 | 1629 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1630.0 | 1630 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1631.0 | 1631 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1632.0 | 1632 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1633.0 | 1633 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1634.0 | 1634 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1635.0 | 1635 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1636.0 | 1636 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1637.0 | 1637 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1638.0 | 1638 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1639.0 | 1639 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1640.0 | 1640 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1641.0 | 1641 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1642.0 | 1642 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1643.0 | 1643 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1644.0 | 1644 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1645.0 | 1645 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1646.0 | 1646 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1647.0 | 1647 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1648.0 | 1648 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1649.0 | 1649 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1650.0 | 1650 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1651.0 | 1651 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1652.0 | 1652 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1653.0 | 1653 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1654.0 | 1654 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1655.0 | 1655 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1656.0 | 1656 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1657.0 | 1657 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1658.0 | 1658 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1659.0 | 1659 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1660.0 | 1660 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1661.0 | 1661 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1662.0 | 1662 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1663.0 | 1663 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1664.0 | 1664 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1665.0 | 1665 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1666.0 | 1666 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1667.0 | 1667 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1668.0 | 1668 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1669.0 | 1669 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1670.0 | 1670 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1671.0 | 1671 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1672.0 | 1672 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1673.0 | 1673 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1674.0 | 1674 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1675.0 | 1675 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1676.0 | 1676 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1677.0 | 1677 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1678.0 | 1678 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1679.0 | 1679 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1680.0 | 1680 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1681.0 | 1681 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1682.0 | 1682 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1683.0 | 1683 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1684.0 | 1684 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1685.0 | 1685 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1686.0 | 1686 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1687.0 | 1687 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1688.0 | 1688 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1689.0 | 1689 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1690.0 | 1690 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1691.0 | 1691 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1692.0 | 1692 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1693.0 | 1693 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1694.0 | 1694 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1695.0 | 1695 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1696.0 | 1696 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1697.0 | 1697 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1698.0 | 1698 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1699.0 | 1699 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1700.0 | 1700 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1701.0 | 1701 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1702.0 | 1702 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1703.0 | 1703 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1704.0 | 1704 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1705.0 | 1705 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1706.0 | 1706 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1707.0 | 1707 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1708.0 | 1708 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1709.0 | 1709 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1710.0 | 1710 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1711.0 | 1711 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1712.0 | 1712 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1713.0 | 1713 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1714.0 | 1714 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1715.0 | 1715 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1716.0 | 1716 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1717.0 | 1717 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1718.0 | 1718 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1719.0 | 1719 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1720.0 | 1720 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1721.0 | 1721 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1722.0 | 1722 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1723.0 | 1723 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1724.0 | 1724 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1725.0 | 1725 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1726.0 | 1726 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1727.0 | 1727 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1728.0 | 1728 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1729.0 | 1729 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1730.0 | 1730 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1731.0 | 1731 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1732.0 | 1732 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1733.0 | 1733 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1734.0 | 1734 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1735.0 | 1735 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1736.0 | 1736 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1737.0 | 1737 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1738.0 | 1738 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1739.0 | 1739 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1740.0 | 1740 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1741.0 | 1741 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1742.0 | 1742 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1743.0 | 1743 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1744.0 | 1744 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1745.0 | 1745 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1746.0 | 1746 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1747.0 | 1747 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1748.0 | 1748 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1749.0 | 1749 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1750.0 | 1750 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1751.0 | 1751 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1752.0 | 1752 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1753.0 | 1753 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1754.0 | 1754 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1755.0 | 1755 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1756.0 | 1756 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1757.0 | 1757 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1758.0 | 1758 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1759.0 | 1759 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1760.0 | 1760 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1761.0 | 1761 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1762.0 | 1762 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1763.0 | 1763 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1764.0 | 1764 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1765.0 | 1765 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1766.0 | 1766 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1767.0 | 1767 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1768.0 | 1768 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1769.0 | 1769 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1770.0 | 1770 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1771.0 | 1771 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1772.0 | 1772 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1773.0 | 1773 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1774.0 | 1774 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1775.0 | 1775 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1776.0 | 1776 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1777.0 | 1777 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1778.0 | 1778 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1779.0 | 1779 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1780.0 | 1780 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1781.0 | 1781 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1782.0 | 1782 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1783.0 | 1783 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1784.0 | 1784 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1785.0 | 1785 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1786.0 | 1786 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1787.0 | 1787 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1788.0 | 1788 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1789.0 | 1789 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1790.0 | 1790 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1791.0 | 1791 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1792.0 | 1792 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1793.0 | 1793 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1794.0 | 1794 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1795.0 | 1795 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1796.0 | 1796 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1797.0 | 1797 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1798.0 | 1798 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1799.0 | 1799 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1800.0 | 1800 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1801.0 | 1801 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1802.0 | 1802 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1803.0 | 1803 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1804.0 | 1804 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1805.0 | 1805 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1806.0 | 1806 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1807.0 | 1807 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1808.0 | 1808 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1809.0 | 1809 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1810.0 | 1810 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1811.0 | 1811 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1812.0 | 1812 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1813.0 | 1813 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1814.0 | 1814 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1815.0 | 1815 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1816.0 | 1816 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1817.0 | 1817 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1818.0 | 1818 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1819.0 | 1819 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1820.0 | 1820 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1821.0 | 1821 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1822.0 | 1822 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1823.0 | 1823 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1824.0 | 1824 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1825.0 | 1825 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1826.0 | 1826 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1827.0 | 1827 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1828.0 | 1828 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1829.0 | 1829 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1830.0 | 1830 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1831.0 | 1831 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1832.0 | 1832 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1833.0 | 1833 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1834.0 | 1834 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1835.0 | 1835 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1836.0 | 1836 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1837.0 | 1837 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1838.0 | 1838 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1839.0 | 1839 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1840.0 | 1840 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1841.0 | 1841 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1842.0 | 1842 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1843.0 | 1843 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1844.0 | 1844 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1845.0 | 1845 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1846.0 | 1846 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1847.0 | 1847 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1848.0 | 1848 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1849.0 | 1849 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1850.0 | 1850 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1851.0 | 1851 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1852.0 | 1852 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1853.0 | 1853 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1854.0 | 1854 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1855.0 | 1855 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1856.0 | 1856 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1857.0 | 1857 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1858.0 | 1858 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1859.0 | 1859 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1860.0 | 1860 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1861.0 | 1861 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1862.0 | 1862 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1863.0 | 1863 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1864.0 | 1864 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1865.0 | 1865 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1866.0 | 1866 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1867.0 | 1867 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1868.0 | 1868 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1869.0 | 1869 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1870.0 | 1870 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1871.0 | 1871 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1872.0 | 1872 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1873.0 | 1873 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1874.0 | 1874 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1875.0 | 1875 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1876.0 | 1876 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1877.0 | 1877 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1878.0 | 1878 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1879.0 | 1879 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1880.0 | 1880 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1881.0 | 1881 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1882.0 | 1882 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1883.0 | 1883 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1884.0 | 1884 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1885.0 | 1885 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1886.0 | 1886 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1887.0 | 1887 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1888.0 | 1888 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1889.0 | 1889 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1890.0 | 1890 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1891.0 | 1891 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1892.0 | 1892 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1893.0 | 1893 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1894.0 | 1894 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1895.0 | 1895 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1896.0 | 1896 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1897.0 | 1897 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1898.0 | 1898 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1899.0 | 1899 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1900.0 | 1900 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1901.0 | 1901 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1902.0 | 1902 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1903.0 | 1903 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1904.0 | 1904 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1905.0 | 1905 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1906.0 | 1906 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1907.0 | 1907 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1908.0 | 1908 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1909.0 | 1909 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1910.0 | 1910 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1911.0 | 1911 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1912.0 | 1912 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1913.0 | 1913 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1914.0 | 1914 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1915.0 | 1915 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1916.0 | 1916 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1917.0 | 1917 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1918.0 | 1918 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1919.0 | 1919 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1920.0 | 1920 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1921.0 | 1921 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1922.0 | 1922 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1923.0 | 1923 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1924.0 | 1924 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1925.0 | 1925 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1926.0 | 1926 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1927.0 | 1927 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1928.0 | 1928 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1929.0 | 1929 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1930.0 | 1930 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1931.0 | 1931 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1932.0 | 1932 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1933.0 | 1933 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1934.0 | 1934 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1935.0 | 1935 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1936.0 | 1936 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1937.0 | 1937 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1938.0 | 1938 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1939.0 | 1939 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1940.0 | 1940 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1941.0 | 1941 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1942.0 | 1942 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1943.0 | 1943 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1944.0 | 1944 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1945.0 | 1945 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1946.0 | 1946 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1947.0 | 1947 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1948.0 | 1948 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1949.0 | 1949 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1950.0 | 1950 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1951.0 | 1951 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1952.0 | 1952 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1953.0 | 1953 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1954.0 | 1954 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1955.0 | 1955 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1956.0 | 1956 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1957.0 | 1957 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1958.0 | 1958 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1959.0 | 1959 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1960.0 | 1960 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1961.0 | 1961 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1962.0 | 1962 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1963.0 | 1963 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1964.0 | 1964 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1965.0 | 1965 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1966.0 | 1966 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1967.0 | 1967 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1968.0 | 1968 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1969.0 | 1969 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1970.0 | 1970 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1971.0 | 1971 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1972.0 | 1972 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1973.0 | 1973 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1974.0 | 1974 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1975.0 | 1975 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1976.0 | 1976 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1977.0 | 1977 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1978.0 | 1978 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1979.0 | 1979 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1980.0 | 1980 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1981.0 | 1981 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1982.0 | 1982 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1983.0 | 1983 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1984.0 | 1984 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1985.0 | 1985 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1986.0 | 1986 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1987.0 | 1987 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1988.0 | 1988 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1989.0 | 1989 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1990.0 | 1990 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1991.0 | 1991 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1992.0 | 1992 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1993.0 | 1993 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1994.0 | 1994 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1995.0 | 1995 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1996.0 | 1996 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1997.0 | 1997 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1998.0 | 1998 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 1999.0 | 1999 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
| 0.0 | 2000.0 | 2000 | nan | 3.5714 | 1.2195 | 3.5714 | 3.5714 | 19.0 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|
Ariffiq99/CRAB_COPA_KUCI_Bert_Base_Uncased_finetuned
|
Ariffiq99
| 2024-06-04T04:38:09Z | 105 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"multiple-choice",
"generated_from_trainer",
"base_model:Ariffiq99/COPA_KUCI_Bert_Base_Uncased_Finetuned",
"base_model:finetune:Ariffiq99/COPA_KUCI_Bert_Base_Uncased_Finetuned",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
multiple-choice
| 2024-06-04T03:39:36Z |
---
license: apache-2.0
base_model: Ariffiq99/COPA_KUCI_Bert_Base_Uncased_Finetuned
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: CRAB_COPA_KUCI_Bert_Base_Uncased_finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CRAB_COPA_KUCI_Bert_Base_Uncased_finetuned
This model is a fine-tuned version of [Ariffiq99/COPA_KUCI_Bert_Base_Uncased_Finetuned](https://huggingface.co/Ariffiq99/COPA_KUCI_Bert_Base_Uncased_Finetuned) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7686
- F1: 0.7694
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.0747 | 1.0 | 2880 | 0.9424 | 0.7014 |
| 0.9502 | 2.0 | 5760 | 0.8660 | 0.7167 |
| 0.8039 | 3.0 | 8640 | 0.7995 | 0.7278 |
| 0.7633 | 4.0 | 11520 | 0.8053 | 0.7333 |
| 0.7705 | 5.0 | 14400 | 0.8241 | 0.75 |
| 0.8075 | 6.0 | 17280 | 0.7628 | 0.7667 |
| 0.6885 | 7.0 | 20160 | 0.7813 | 0.7708 |
| 0.6746 | 8.0 | 23040 | 0.7686 | 0.7694 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|
mradermacher/Machroom-3B-model_stock-GGUF
|
mradermacher
| 2024-06-04T04:36:07Z | 6 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-06-04T04:25:44Z |
---
base_model: DreadPoor/Machroom-3B-model_stock
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/DreadPoor/Machroom-3B-model_stock
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Machroom-3B-model_stock-GGUF/resolve/main/Machroom-3B-model_stock.Q2_K.gguf) | Q2_K | 1.2 | |
| [GGUF](https://huggingface.co/mradermacher/Machroom-3B-model_stock-GGUF/resolve/main/Machroom-3B-model_stock.IQ3_XS.gguf) | IQ3_XS | 1.3 | |
| [GGUF](https://huggingface.co/mradermacher/Machroom-3B-model_stock-GGUF/resolve/main/Machroom-3B-model_stock.IQ3_S.gguf) | IQ3_S | 1.4 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Machroom-3B-model_stock-GGUF/resolve/main/Machroom-3B-model_stock.Q3_K_S.gguf) | Q3_K_S | 1.4 | |
| [GGUF](https://huggingface.co/mradermacher/Machroom-3B-model_stock-GGUF/resolve/main/Machroom-3B-model_stock.IQ3_M.gguf) | IQ3_M | 1.4 | |
| [GGUF](https://huggingface.co/mradermacher/Machroom-3B-model_stock-GGUF/resolve/main/Machroom-3B-model_stock.Q3_K_M.gguf) | Q3_K_M | 1.5 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Machroom-3B-model_stock-GGUF/resolve/main/Machroom-3B-model_stock.Q3_K_L.gguf) | Q3_K_L | 1.6 | |
| [GGUF](https://huggingface.co/mradermacher/Machroom-3B-model_stock-GGUF/resolve/main/Machroom-3B-model_stock.IQ4_XS.gguf) | IQ4_XS | 1.6 | |
| [GGUF](https://huggingface.co/mradermacher/Machroom-3B-model_stock-GGUF/resolve/main/Machroom-3B-model_stock.Q4_K_S.gguf) | Q4_K_S | 1.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Machroom-3B-model_stock-GGUF/resolve/main/Machroom-3B-model_stock.Q4_K_M.gguf) | Q4_K_M | 1.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Machroom-3B-model_stock-GGUF/resolve/main/Machroom-3B-model_stock.Q5_K_S.gguf) | Q5_K_S | 2.0 | |
| [GGUF](https://huggingface.co/mradermacher/Machroom-3B-model_stock-GGUF/resolve/main/Machroom-3B-model_stock.Q5_K_M.gguf) | Q5_K_M | 2.1 | |
| [GGUF](https://huggingface.co/mradermacher/Machroom-3B-model_stock-GGUF/resolve/main/Machroom-3B-model_stock.Q6_K.gguf) | Q6_K | 2.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Machroom-3B-model_stock-GGUF/resolve/main/Machroom-3B-model_stock.Q8_0.gguf) | Q8_0 | 3.1 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Machroom-3B-model_stock-GGUF/resolve/main/Machroom-3B-model_stock.f16.gguf) | f16 | 5.7 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
MubarakB/zxCm3h8ADcB3R0ve2rgC
|
MubarakB
| 2024-06-04T04:35:51Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:NousResearch/Llama-2-7b-chat-hf",
"base_model:adapter:NousResearch/Llama-2-7b-chat-hf",
"region:us"
] | null | 2024-06-04T04:35:47Z |
---
library_name: peft
base_model: NousResearch/Llama-2-7b-chat-hf
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
hdve/google-gemma-2b-1717475491
|
hdve
| 2024-06-04T04:33:55Z | 141 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-04T04:31:33Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
bamaxi/ruBert-base-sakha
|
bamaxi
| 2024-06-04T04:28:42Z | 127 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"fill-mask",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2024-06-03T23:19:14Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mradermacher/Adamus-7B-slerp-GGUF
|
mradermacher
| 2024-06-04T04:28:17Z | 22 | 0 |
transformers
|
[
"transformers",
"gguf",
"merge",
"mergekit",
"lazymergekit",
"mlabonne/NeuralBeagle14-7B",
"cognitivecomputations/dolphin-2.8-mistral-7b-v02",
"en",
"base_model:vtboyarc/Adamus-7B-slerp",
"base_model:quantized:vtboyarc/Adamus-7B-slerp",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-06-04T04:02:00Z |
---
base_model: vtboyarc/Adamus-7B-slerp
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- merge
- mergekit
- lazymergekit
- mlabonne/NeuralBeagle14-7B
- cognitivecomputations/dolphin-2.8-mistral-7b-v02
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/vtboyarc/Adamus-7B-slerp
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Adamus-7B-slerp-GGUF/resolve/main/Adamus-7B-slerp.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/Adamus-7B-slerp-GGUF/resolve/main/Adamus-7B-slerp.IQ3_XS.gguf) | IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/Adamus-7B-slerp-GGUF/resolve/main/Adamus-7B-slerp.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Adamus-7B-slerp-GGUF/resolve/main/Adamus-7B-slerp.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Adamus-7B-slerp-GGUF/resolve/main/Adamus-7B-slerp.IQ3_M.gguf) | IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/Adamus-7B-slerp-GGUF/resolve/main/Adamus-7B-slerp.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Adamus-7B-slerp-GGUF/resolve/main/Adamus-7B-slerp.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Adamus-7B-slerp-GGUF/resolve/main/Adamus-7B-slerp.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/Adamus-7B-slerp-GGUF/resolve/main/Adamus-7B-slerp.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Adamus-7B-slerp-GGUF/resolve/main/Adamus-7B-slerp.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Adamus-7B-slerp-GGUF/resolve/main/Adamus-7B-slerp.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/Adamus-7B-slerp-GGUF/resolve/main/Adamus-7B-slerp.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/Adamus-7B-slerp-GGUF/resolve/main/Adamus-7B-slerp.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Adamus-7B-slerp-GGUF/resolve/main/Adamus-7B-slerp.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Adamus-7B-slerp-GGUF/resolve/main/Adamus-7B-slerp.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
Zoyd/nyunai_nyun-llama3-62B-3_5bpw_exl2
|
Zoyd
| 2024-06-04T04:20:09Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"exl2",
"region:us"
] |
text-generation
| 2024-06-03T17:18:31Z |
---
license: llama3
---
**Exllamav2** quant (**exl2** / **3.5 bpw**) made with ExLlamaV2 v0.1.3
Other EXL2 quants:
| **Quant** | **Model Size** | **lm_head** |
| ----- | ---------- | ------- |
|<center>**[2.2](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-2_2bpw_exl2)**</center> | <center>18625 MB</center> | <center>6</center> |
|<center>**[2.5](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-2_5bpw_exl2)**</center> | <center>20645 MB</center> | <center>6</center> |
|<center>**[3.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-3_0bpw_exl2)**</center> | <center>24211 MB</center> | <center>6</center> |
|<center>**[3.5](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-3_5bpw_exl2)**</center> | <center>27784 MB</center> | <center>6</center> |
|<center>**[3.75](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-3_75bpw_exl2)**</center> | <center>29572 MB</center> | <center>6</center> |
|<center>**[4.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-4_0bpw_exl2)**</center> | <center>31359 MB</center> | <center>6</center> |
|<center>**[4.25](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-4_25bpw_exl2)**</center> | <center>33139 MB</center> | <center>6</center> |
|<center>**[5.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-5_0bpw_exl2)**</center> | <center>38500 MB</center> | <center>6</center> |
|<center>**[6.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-6_0bpw_exl2)**</center> | <center>45805 MB</center> | <center>8</center> |
|<center>**[6.5](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-6_5bpw_exl2)**</center> | <center>49410 MB</center> | <center>8</center> |
|<center>**[8.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-8_0bpw_exl2)**</center> | <center>54655 MB</center> | <center>8</center> |
|
SEHYONG/Llama-3-Open-Ko-8B-Instruct-kookmin7
|
SEHYONG
| 2024-06-04T04:11:42Z | 7 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:SEHYONG/Llama-3-Open-Ko-8B-Instruct-kookmin6",
"base_model:finetune:SEHYONG/Llama-3-Open-Ko-8B-Instruct-kookmin6",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-04T04:05:37Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: SEHYONG/Llama-3-Open-Ko-8B-Instruct-kookmin6
---
# Uploaded model
- **Developed by:** SEHYONG
- **License:** apache-2.0
- **Finetuned from model :** SEHYONG/Llama-3-Open-Ko-8B-Instruct-kookmin6
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Rudra360/Emoji_Suggester
|
Rudra360
| 2024-06-04T04:09:27Z | 0 | 0 |
spacy
|
[
"spacy",
"en",
"region:us"
] | null | 2024-06-03T14:17:44Z |
---
language:
- en
library_name: spacy
---
# Emoji Suggester
Emoji Suggester is a tool designed to recommend relevant emojis based on incoming messages from social media apps, enhancing expressiveness and engagement in your conversations. The suggestions are powered by a model trained on a dataset of Twitter messages.
## Table of Contents
- [Installation](#installation)
- [Usage](#usage)
- [Contributing](#contributing)
- [License](#license)
- [Contact](#contact)
## Installation
To install Emoji Suggester, follow these steps:
1. Clone the repository:
```bash
git clone https://huggingface.co/Rudra360/Emoji_Suggester
or
```bash
git clone git@huggingface.co:Rudra360/Emoji_Suggester.git
## Usage
Change the Directory
1. go to emoji_suggester
```bash
cd Emoji_Suggester
Then the run the follwing script
2. from util import predict
3. message = "I'm so happy today!"
suggested_emojis = predict(message)
print(suggested_emojis)
|
hdve/Qwen-Qwen1.5-7B-1717473930
|
hdve
| 2024-06-04T04:08:43Z | 7 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-04T04:06:13Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
andikazf15/IndoBERT-QA-product-pred
|
andikazf15
| 2024-06-04T04:08:06Z | 36 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"question-answering",
"generated_from_trainer",
"base_model:rizquuula/mBERT-IndoSQuADv2_1691852742-16-2e-06-0.01-5",
"base_model:finetune:rizquuula/mBERT-IndoSQuADv2_1691852742-16-2e-06-0.01-5",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2024-06-03T03:02:51Z |
---
license: apache-2.0
base_model: rizquuula/mBERT-IndoSQuADv2_1691852742-16-2e-06-0.01-5
tags:
- generated_from_trainer
model-index:
- name: IndoBERT-QA-product-pred
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IndoBERT-QA-product-pred
This model is a fine-tuned version of [rizquuula/mBERT-IndoSQuADv2_1691852742-16-2e-06-0.01-5](https://huggingface.co/rizquuula/mBERT-IndoSQuADv2_1691852742-16-2e-06-0.01-5) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|
chainup244/Qwen-Qwen1.5-7B-1717473432
|
chainup244
| 2024-06-04T04:04:37Z | 7 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-04T03:57:17Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
cgus/AlchemistCoder-DS-6.7B-exl2
|
cgus
| 2024-06-04T03:59:59Z | 5 | 0 |
transformers
|
[
"transformers",
"llama",
"text-generation",
"code generation",
"conversational",
"arxiv:2405.19265",
"base_model:internlm/AlchemistCoder-DS-6.7B",
"base_model:quantized:internlm/AlchemistCoder-DS-6.7B",
"license:apache-2.0",
"autotrain_compatible",
"4-bit",
"exl2",
"region:us"
] |
text-generation
| 2024-06-03T23:59:24Z |
---
license: apache-2.0
base_model: internlm/AlchemistCoder-DS-6.7B
inference: false
tags:
- code generation
---
# AlchemistCoder-DS-6.7B-exl2
Original model: [AlchemistCoder-DS-6.7B](https://huggingface.co/internlm/AlchemistCoder-DS-6.7B)
Model creator: [InternLM](https://huggingface.co/internlm)
## Quants
[4bpw h6 (main)](https://huggingface.co/cgus/AlchemistCoder-DS-6.7B-exl2/tree/main)
[4.25bpw h6](https://huggingface.co/cgus/AlchemistCoder-DS-6.7B-exl2/tree/4.25bpw-h6)
[4.65bpw h6](https://huggingface.co/cgus/AlchemistCoder-DS-6.7B-exl2/tree/4.65bpw-h6)
[5bpw h6](https://huggingface.co/cgus/AlchemistCoder-DS-6.7B-exl2/tree/5bpw-h6)
[6bpw h6](https://huggingface.co/cgus/AlchemistCoder-DS-6.7B-exl2/tree/6bpw-h6)
[8bpw h8](https://huggingface.co/cgus/AlchemistCoder-DS-6.7B-exl2/tree/8bpw-h8)
## Quantization notes
Made with Exllamav2 0.1.3 with the default dataset.
## How to run
This model is meant to be used with Exllamav2 loader that requires the model to be fully loaded into GPU VRAM.
It primarily requires a Nvidia RTX card on Windows/Linux or AMD card on Linux.
If you want to use this model but your system doesn't meet these requirements, you should look for GGUF versions of the model.
It can be used with apps like:
[Text Generation Webui](https://github.com/oobabooga/text-generation-webui)
[KoboldAI](https://github.com/henk717/KoboldAI)
[ExUI](https://github.com/turboderp/exui)
[lollms-webui](https://github.com/ParisNeo/lollms-webui)
# Original model card
# AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data
[[🤗 HuggingFace](https://huggingface.co/internlm/AlchemistCoder-DS-6.7B)]
[[📃 Paper](https://arxiv.org/abs/2405.19265)]
[[🌐 Project Page](https://internlm.github.io/AlchemistCoder/)]
## ✨ Highlights
> **Abstract:** *Open-source Large Language Models (LLMs) and their specialized variants, particularly Code LLMs, have recently delivered impressive performance. However, previous Code LLMs are typically fine-tuned on single-source data with limited quality and diversity, which may insufficiently elicit the potential of pre-trained Code LLMs. In this paper, we present AlchemistCoder, a series of Code LLMs with enhanced code generation and generalization capabilities fine-tuned on multi-source data. To achieve this, we pioneer to unveil inherent conflicts among the various styles and qualities in multi-source code corpora and introduce data-specific prompts with hindsight relabeling, termed AlchemistPrompts, to harmonize different data sources and instruction-response pairs. Additionally, we propose incorporating the data construction process into the fine-tuning data as code comprehension tasks, including instruction evolution, data filtering, and code review. Extensive experiments demonstrate that AlchemistCoder holds a clear lead among all models of the same size (6.7B/7B) and rivals or even surpasses larger models (15B/33B/70B), showcasing the efficacy of our method in refining instruction-following capabilities and advancing the boundaries of code intelligence.*
- **AlchemistPrompts**: Designed as data-specific prompts for harmonizing inherent conflicts in multi-source data and mitigating the instruction/response misalignment at a fined-grained level.
- **Code Comprehenstion Tasks**: Sourced from the process of data construction, consisting of instruction evolution, data filtering, and code review.
- **Harmonized Multi-source Data**: Instruction tuned on 200M tokens, including 6 types of high-quality data.
- **Superior Model Performance**: Surpassing all the open-source models of the same size (6.7/7B), and rivaling or even beating larger models (15B/33B/70B/ChatGPT) on 6 code benchmarks.
- **Advanced generic capabilities**: Demonstrated by the significant improvements on MMLU, BBH, and GSM8K.
## 🚀 Quick Start
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("internlm/AlchemistCoder-DS-6.7B", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("internlm/AlchemistCoder-DS-6.7B", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
model = model.eval()
input_text = "Implement the Dijkstra algorithm in Python"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
The above code will generate the following result:
```python
import heapq
def dijkstra(graph, start, end):
"""
Find the shortest path between two nodes in a graph using Dijkstra's algorithm.
Args:
graph (dict): A dictionary representing the graph, where the keys are nodes and the values are dictionaries
containing the neighboring nodes and their edge weights.
start: The starting node.
end: The target node.
Returns:
list: The shortest path from the start node to the target node as a list of nodes.
Raises:
ValueError: If either the start or end node is not present in the graph.
"""
# Check if start and end nodes are in the graph
if start not in graph:
raise ValueError("Start node is not present in the graph.")
if end not in graph:
raise ValueError("End node is not present in the graph.")
# Initialize the distance dictionary with infinite distances for all nodes
distances = {node: float('inf') for node in graph}
# Set the distance of the start node to 0
distances[start] = 0
# Initialize the heap with the start node
heap = [(0, start)]
# Initialize the previous dictionary to keep track of the path
previous = {}
while heap:
# Pop the node with the smallest distance from the heap
current_distance, current_node = heapq.heappop(heap)
# If the current node is the end node, we have found the shortest path
if current_node == end:
# Reconstruct the path by following the previous nodes
path = []
while current_node in previous:
path.append(current_node)
current_node = previous[current_node]
path.append(start)
# Reverse the path to get the correct order
return path[::-1]
# Iterate over the neighboring nodes and update their distances
for neighbor, weight in graph[current_node].items():
new_distance = current_distance + weight
# If a shorter path is found, update the distance and previous node
if new_distance < distances[neighbor]:
distances[neighbor] = new_distance
previous[neighbor] = current_node
heapq.heappush(heap, (new_distance, neighbor))
# If there is no path between the start and end nodes, return an empty list
return []
```
> The `dijkstra` function takes three arguments: `graph`, `start`, and `end`. The `graph` argument is a dictionary representing the graph, where the keys are nodes and the values are dictionaries containing the neighboring nodes and their edge weights. The `start` argument is the starting node, and the `end` argument is the target node.
> The function first checks if the start and end nodes are present in the graph. If either node is not present, a `ValueError` is raised.
> The function then initializes a `distances` dictionary with infinite distances for all nodes. It sets the distance of the start node to 0. It also initializes a heap with the start node and a `previous` dictionary to keep track of the path.
> The algorithm then iterates over the nodes in the heap. For each node, it checks if it is the end node. If it is, the function reconstructs the path by following the previous nodes and returns the shortest path as a list of nodes in the correct order.
> If the current node is not the end node, the algorithm iterates over its neighboring nodes and updates their distances if a shorter path is found. It also updates the `previous` dictionary to keep track of the path.
> If there is no path between the start and end nodes, the function returns an empty list.
> Note that this implementation assumes that the graph is a directed graph, and it uses a heap data structure to efficiently select the node with the smallest distance at each step.
## 🧪 Evaluation and Fine-tune
Please refer to [**AlchemistCoder**](https://github.com/InternLM/AlchemistCoder) and [**InternLM**](https://github.com/InternLM/InternLM/tree/main).
## 😃 Acknowledgments
*AlchemistCoder* is built with [**InternLM**](https://github.com/InternLM) and [**OpenCompass**](https://github.com/open-compass). Thanks for their awesome work!
## 📧 Contact
If you have any questions, please create an issue on this repository or contact us at:
- sugger@tongji.edu.cn
- zhangwenwei@pjlab.org.cn
## 🌟 Citation
If you find our work useful, please consider citing:
```bibtex
@misc{song2024alchemistcoder,
title={AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data},
author={Zifan Song and Yudong Wang and Wenwei Zhang and Kuikun Liu and Chengqi Lyu and Demin Song and Qipeng Guo and Hang Yan and Dahua Lin and Kai Chen and Cairong Zhao},
year={2024},
eprint={2405.19265},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
Zoyd/nyunai_nyun-llama3-62B-4_0bpw_exl2
|
Zoyd
| 2024-06-04T03:48:58Z | 8 | 1 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"exl2",
"region:us"
] |
text-generation
| 2024-06-03T19:56:00Z |
---
license: llama3
---
**Exllamav2** quant (**exl2** / **4.0 bpw**) made with ExLlamaV2 v0.1.3
Other EXL2 quants:
| **Quant** | **Model Size** | **lm_head** |
| ----- | ---------- | ------- |
|<center>**[2.2](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-2_2bpw_exl2)**</center> | <center>18625 MB</center> | <center>6</center> |
|<center>**[2.5](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-2_5bpw_exl2)**</center> | <center>20645 MB</center> | <center>6</center> |
|<center>**[3.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-3_0bpw_exl2)**</center> | <center>24211 MB</center> | <center>6</center> |
|<center>**[3.5](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-3_5bpw_exl2)**</center> | <center>27784 MB</center> | <center>6</center> |
|<center>**[3.75](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-3_75bpw_exl2)**</center> | <center>29572 MB</center> | <center>6</center> |
|<center>**[4.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-4_0bpw_exl2)**</center> | <center>31359 MB</center> | <center>6</center> |
|<center>**[4.25](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-4_25bpw_exl2)**</center> | <center>33139 MB</center> | <center>6</center> |
|<center>**[5.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-5_0bpw_exl2)**</center> | <center>38500 MB</center> | <center>6</center> |
|<center>**[6.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-6_0bpw_exl2)**</center> | <center>45805 MB</center> | <center>8</center> |
|<center>**[6.5](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-6_5bpw_exl2)**</center> | <center>49410 MB</center> | <center>8</center> |
|<center>**[8.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-8_0bpw_exl2)**</center> | <center>54655 MB</center> | <center>8</center> |
|
deewuok/sentiment-lora
|
deewuok
| 2024-06-04T03:44:18Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-06-04T03:43:16Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Zoyd/nyunai_nyun-llama3-62B-2_5bpw_exl2
|
Zoyd
| 2024-06-04T03:41:15Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"exl2",
"region:us"
] |
text-generation
| 2024-06-03T14:47:50Z |
---
license: llama3
---
**Exllamav2** quant (**exl2** / **2.5 bpw**) made with ExLlamaV2 v0.1.3
Other EXL2 quants:
| **Quant** | **Model Size** | **lm_head** |
| ----- | ---------- | ------- |
|<center>**[2.2](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-2_2bpw_exl2)**</center> | <center>18625 MB</center> | <center>6</center> |
|<center>**[2.5](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-2_5bpw_exl2)**</center> | <center>20645 MB</center> | <center>6</center> |
|<center>**[3.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-3_0bpw_exl2)**</center> | <center>24211 MB</center> | <center>6</center> |
|<center>**[3.5](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-3_5bpw_exl2)**</center> | <center>27784 MB</center> | <center>6</center> |
|<center>**[3.75](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-3_75bpw_exl2)**</center> | <center>29572 MB</center> | <center>6</center> |
|<center>**[4.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-4_0bpw_exl2)**</center> | <center>31359 MB</center> | <center>6</center> |
|<center>**[4.25](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-4_25bpw_exl2)**</center> | <center>33139 MB</center> | <center>6</center> |
|<center>**[5.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-5_0bpw_exl2)**</center> | <center>38500 MB</center> | <center>6</center> |
|<center>**[6.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-6_0bpw_exl2)**</center> | <center>45805 MB</center> | <center>8</center> |
|<center>**[6.5](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-6_5bpw_exl2)**</center> | <center>49410 MB</center> | <center>8</center> |
|<center>**[8.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-8_0bpw_exl2)**</center> | <center>54655 MB</center> | <center>8</center> |
|
srbdtwentyfour/mystery-llama-3-8b-v2
|
srbdtwentyfour
| 2024-06-04T03:39:26Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-Instruct-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-06-03T08:18:31Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-Instruct-bnb-4bit
---
# Uploaded model
- **Developed by:** srbdtwentyfour
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
srbdtwentyfour/mystery-llama-3-8b-v1
|
srbdtwentyfour
| 2024-06-04T03:39:03Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-Instruct-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-06-04T03:37:30Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-Instruct-bnb-4bit
---
# Uploaded model
- **Developed by:** srbdtwentyfour
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
hienbm/llama-3-8b-bnb-4bit_mtast
|
hienbm
| 2024-06-04T03:34:23Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-05-28T05:26:48Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** hienbm
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Zoyd/nyunai_nyun-llama3-62B-8_0bpw_exl2
|
Zoyd
| 2024-06-04T03:33:44Z | 6 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"exl2",
"region:us"
] |
text-generation
| 2024-06-04T02:43:52Z |
---
license: llama3
---
**Exllamav2** quant (**exl2** / **8.0 bpw**) made with ExLlamaV2 v0.1.3
Other EXL2 quants:
| **Quant** | **Model Size** | **lm_head** |
| ----- | ---------- | ------- |
|<center>**[2.2](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-2_2bpw_exl2)**</center> | <center>18625 MB</center> | <center>6</center> |
|<center>**[2.5](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-2_5bpw_exl2)**</center> | <center>20645 MB</center> | <center>6</center> |
|<center>**[3.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-3_0bpw_exl2)**</center> | <center>24211 MB</center> | <center>6</center> |
|<center>**[3.5](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-3_5bpw_exl2)**</center> | <center>27784 MB</center> | <center>6</center> |
|<center>**[3.75](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-3_75bpw_exl2)**</center> | <center>29572 MB</center> | <center>6</center> |
|<center>**[4.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-4_0bpw_exl2)**</center> | <center>31359 MB</center> | <center>6</center> |
|<center>**[4.25](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-4_25bpw_exl2)**</center> | <center>33139 MB</center> | <center>6</center> |
|<center>**[5.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-5_0bpw_exl2)**</center> | <center>38500 MB</center> | <center>6</center> |
|<center>**[6.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-6_0bpw_exl2)**</center> | <center>45805 MB</center> | <center>8</center> |
|<center>**[6.5](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-6_5bpw_exl2)**</center> | <center>49410 MB</center> | <center>8</center> |
|<center>**[8.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-8_0bpw_exl2)**</center> | <center>54655 MB</center> | <center>8</center> |
|
smfire/my-custom-bert
|
smfire
| 2024-06-04T03:29:23Z | 161 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"feature-extraction",
"custom",
"custom-bert",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2024-06-04T02:21:12Z |
---
library_name: transformers
tags:
- custom
- custom-bert
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF
|
bartowski
| 2024-06-04T03:26:56Z | 150 | 0 | null |
[
"gguf",
"text-generation",
"en",
"license:llama3",
"endpoints_compatible",
"region:us",
"conversational"
] |
text-generation
| 2024-06-04T03:09:56Z |
---
language:
- en
license: llama3
quantized_by: bartowski
pipeline_tag: text-generation
---
## Llamacpp imatrix Quantizations of Llama-3-Instruct-8B-SimPO-ExPO
Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3070">b3070</a> for quantization.
Original model: https://huggingface.co/chujiezheng/Llama-3-Instruct-8B-SimPO-ExPO
All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)
## Prompt format
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
## Download a file (not the whole branch) from below:
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Llama-3-Instruct-8B-SimPO-ExPO-Q8_0.gguf](https://huggingface.co/bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF/blob/main/Llama-3-Instruct-8B-SimPO-ExPO-Q8_0.gguf) | Q8_0 | 8.54GB | Extremely high quality, generally unneeded but max available quant. |
| [Llama-3-Instruct-8B-SimPO-ExPO-Q6_K.gguf](https://huggingface.co/bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF/blob/main/Llama-3-Instruct-8B-SimPO-ExPO-Q6_K.gguf) | Q6_K | 6.59GB | Very high quality, near perfect, *recommended*. |
| [Llama-3-Instruct-8B-SimPO-ExPO-Q5_K_M.gguf](https://huggingface.co/bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF/blob/main/Llama-3-Instruct-8B-SimPO-ExPO-Q5_K_M.gguf) | Q5_K_M | 5.73GB | High quality, *recommended*. |
| [Llama-3-Instruct-8B-SimPO-ExPO-Q5_K_S.gguf](https://huggingface.co/bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF/blob/main/Llama-3-Instruct-8B-SimPO-ExPO-Q5_K_S.gguf) | Q5_K_S | 5.59GB | High quality, *recommended*. |
| [Llama-3-Instruct-8B-SimPO-ExPO-Q4_K_M.gguf](https://huggingface.co/bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF/blob/main/Llama-3-Instruct-8B-SimPO-ExPO-Q4_K_M.gguf) | Q4_K_M | 4.92GB | Good quality, uses about 4.83 bits per weight, *recommended*. |
| [Llama-3-Instruct-8B-SimPO-ExPO-Q4_K_S.gguf](https://huggingface.co/bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF/blob/main/Llama-3-Instruct-8B-SimPO-ExPO-Q4_K_S.gguf) | Q4_K_S | 4.69GB | Slightly lower quality with more space savings, *recommended*. |
| [Llama-3-Instruct-8B-SimPO-ExPO-IQ4_XS.gguf](https://huggingface.co/bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF/blob/main/Llama-3-Instruct-8B-SimPO-ExPO-IQ4_XS.gguf) | IQ4_XS | 4.44GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
| [Llama-3-Instruct-8B-SimPO-ExPO-Q3_K_L.gguf](https://huggingface.co/bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF/blob/main/Llama-3-Instruct-8B-SimPO-ExPO-Q3_K_L.gguf) | Q3_K_L | 4.32GB | Lower quality but usable, good for low RAM availability. |
| [Llama-3-Instruct-8B-SimPO-ExPO-Q3_K_M.gguf](https://huggingface.co/bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF/blob/main/Llama-3-Instruct-8B-SimPO-ExPO-Q3_K_M.gguf) | Q3_K_M | 4.01GB | Even lower quality. |
| [Llama-3-Instruct-8B-SimPO-ExPO-IQ3_M.gguf](https://huggingface.co/bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF/blob/main/Llama-3-Instruct-8B-SimPO-ExPO-IQ3_M.gguf) | IQ3_M | 3.78GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
| [Llama-3-Instruct-8B-SimPO-ExPO-Q3_K_S.gguf](https://huggingface.co/bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF/blob/main/Llama-3-Instruct-8B-SimPO-ExPO-Q3_K_S.gguf) | Q3_K_S | 3.66GB | Low quality, not recommended. |
| [Llama-3-Instruct-8B-SimPO-ExPO-IQ3_XS.gguf](https://huggingface.co/bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF/blob/main/Llama-3-Instruct-8B-SimPO-ExPO-IQ3_XS.gguf) | IQ3_XS | 3.51GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
| [Llama-3-Instruct-8B-SimPO-ExPO-IQ3_XXS.gguf](https://huggingface.co/bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF/blob/main/Llama-3-Instruct-8B-SimPO-ExPO-IQ3_XXS.gguf) | IQ3_XXS | 3.27GB | Lower quality, new method with decent performance, comparable to Q3 quants. |
| [Llama-3-Instruct-8B-SimPO-ExPO-Q2_K.gguf](https://huggingface.co/bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF/blob/main/Llama-3-Instruct-8B-SimPO-ExPO-Q2_K.gguf) | Q2_K | 3.17GB | Very low quality but surprisingly usable. |
| [Llama-3-Instruct-8B-SimPO-ExPO-IQ2_M.gguf](https://huggingface.co/bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF/blob/main/Llama-3-Instruct-8B-SimPO-ExPO-IQ2_M.gguf) | IQ2_M | 2.94GB | Very low quality, uses SOTA techniques to also be surprisingly usable. |
| [Llama-3-Instruct-8B-SimPO-ExPO-IQ2_S.gguf](https://huggingface.co/bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF/blob/main/Llama-3-Instruct-8B-SimPO-ExPO-IQ2_S.gguf) | IQ2_S | 2.75GB | Very low quality, uses SOTA techniques to be usable. |
| [Llama-3-Instruct-8B-SimPO-ExPO-IQ2_XS.gguf](https://huggingface.co/bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF/blob/main/Llama-3-Instruct-8B-SimPO-ExPO-IQ2_XS.gguf) | IQ2_XS | 2.60GB | Very low quality, uses SOTA techniques to be usable. |
## Downloading using huggingface-cli
First, make sure you have hugginface-cli installed:
```
pip install -U "huggingface_hub[cli]"
```
Then, you can target the specific file you want:
```
huggingface-cli download bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF --include "Llama-3-Instruct-8B-SimPO-ExPO-Q4_K_M.gguf" --local-dir ./
```
If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
```
huggingface-cli download bartowski/Llama-3-Instruct-8B-SimPO-ExPO-GGUF --include "Llama-3-Instruct-8B-SimPO-ExPO-Q8_0.gguf/*" --local-dir Llama-3-Instruct-8B-SimPO-ExPO-Q8_0
```
You can either specify a new local-dir (Llama-3-Instruct-8B-SimPO-ExPO-Q8_0) or download them all in place (./)
## Which file should I choose?
A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
If you want to get more into the weeds, you can check out this extremely useful feature chart:
[llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
|
Zoyd/nyunai_nyun-llama3-62B-6_0bpw_exl2
|
Zoyd
| 2024-06-04T03:19:34Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"6-bit",
"exl2",
"region:us"
] |
text-generation
| 2024-06-03T23:58:04Z |
---
license: llama3
---
**Exllamav2** quant (**exl2** / **6.0 bpw**) made with ExLlamaV2 v0.1.3
Other EXL2 quants:
| **Quant** | **Model Size** | **lm_head** |
| ----- | ---------- | ------- |
|<center>**[2.2](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-2_2bpw_exl2)**</center> | <center>18625 MB</center> | <center>6</center> |
|<center>**[2.5](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-2_5bpw_exl2)**</center> | <center>20645 MB</center> | <center>6</center> |
|<center>**[3.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-3_0bpw_exl2)**</center> | <center>24211 MB</center> | <center>6</center> |
|<center>**[3.5](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-3_5bpw_exl2)**</center> | <center>27784 MB</center> | <center>6</center> |
|<center>**[3.75](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-3_75bpw_exl2)**</center> | <center>29572 MB</center> | <center>6</center> |
|<center>**[4.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-4_0bpw_exl2)**</center> | <center>31359 MB</center> | <center>6</center> |
|<center>**[4.25](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-4_25bpw_exl2)**</center> | <center>33139 MB</center> | <center>6</center> |
|<center>**[5.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-5_0bpw_exl2)**</center> | <center>38500 MB</center> | <center>6</center> |
|<center>**[6.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-6_0bpw_exl2)**</center> | <center>45805 MB</center> | <center>8</center> |
|<center>**[6.5](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-6_5bpw_exl2)**</center> | <center>49410 MB</center> | <center>8</center> |
|<center>**[8.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-8_0bpw_exl2)**</center> | <center>54655 MB</center> | <center>8</center> |
|
k707peepee/llama-3-8b-bnb-4bit
|
k707peepee
| 2024-06-04T03:15:55Z | 4 | 0 |
transformers
|
[
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:quantized:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-06-04T03:07:55Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** k707peepee
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
MubarakB/VRJfqhGhBufxd2DZbN38
|
MubarakB
| 2024-06-04T03:10:29Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:NousResearch/Llama-2-7b-chat-hf",
"base_model:adapter:NousResearch/Llama-2-7b-chat-hf",
"region:us"
] | null | 2024-06-04T03:10:25Z |
---
library_name: peft
base_model: NousResearch/Llama-2-7b-chat-hf
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
ALI-B/phi3-mini
|
ALI-B
| 2024-06-04T03:10:28Z | 77 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"unsloth",
"trl",
"sft",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-04T03:07:14Z |
---
library_name: transformers
tags:
- unsloth
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
HuggingFaceFW/ablation-exp-dedup-global_minhash-350BT
|
HuggingFaceFW
| 2024-06-04T03:10:19Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-03T23:35:11Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Zoyd/nyunai_nyun-llama3-62B-4_25bpw_exl2
|
Zoyd
| 2024-06-04T03:08:17Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"exl2",
"region:us"
] |
text-generation
| 2024-06-03T21:15:12Z |
---
license: llama3
---
**Exllamav2** quant (**exl2** / **4.25 bpw**) made with ExLlamaV2 v0.1.3
Other EXL2 quants:
| **Quant** | **Model Size** | **lm_head** |
| ----- | ---------- | ------- |
|<center>**[2.2](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-2_2bpw_exl2)**</center> | <center>18625 MB</center> | <center>6</center> |
|<center>**[2.5](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-2_5bpw_exl2)**</center> | <center>20645 MB</center> | <center>6</center> |
|<center>**[3.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-3_0bpw_exl2)**</center> | <center>24211 MB</center> | <center>6</center> |
|<center>**[3.5](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-3_5bpw_exl2)**</center> | <center>27784 MB</center> | <center>6</center> |
|<center>**[3.75](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-3_75bpw_exl2)**</center> | <center>29572 MB</center> | <center>6</center> |
|<center>**[4.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-4_0bpw_exl2)**</center> | <center>31359 MB</center> | <center>6</center> |
|<center>**[4.25](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-4_25bpw_exl2)**</center> | <center>33139 MB</center> | <center>6</center> |
|<center>**[5.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-5_0bpw_exl2)**</center> | <center>38500 MB</center> | <center>6</center> |
|<center>**[6.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-6_0bpw_exl2)**</center> | <center>45805 MB</center> | <center>8</center> |
|<center>**[6.5](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-6_5bpw_exl2)**</center> | <center>49410 MB</center> | <center>8</center> |
|<center>**[8.0](https://huggingface.co/Zoyd/nyunai_nyun-llama3-62B-8_0bpw_exl2)**</center> | <center>54655 MB</center> | <center>8</center> |
|
Abhinay45/outputs
|
Abhinay45
| 2024-06-04T03:08:04Z | 0 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"unsloth",
"generated_from_trainer",
"dataset:yahma/alpaca-cleaned",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:adapter:unsloth/llama-3-8b-bnb-4bit",
"license:llama2",
"region:us"
] | null | 2024-06-04T03:05:36Z |
---
license: llama2
library_name: peft
tags:
- trl
- sft
- unsloth
- generated_from_trainer
base_model: unsloth/llama-3-8b-bnb-4bit
datasets:
- yahma/alpaca-cleaned
model-index:
- name: Alpaca + Llama-3 8b Unsloth 2x faster finetuning.
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Alpaca + Llama-3 8b Unsloth 2x faster finetuning.
This model is a fine-tuned version of [unsloth/llama-3-8b-bnb-4bit](https://huggingface.co/unsloth/llama-3-8b-bnb-4bit) on the alpaca dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 60
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|
RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf
|
RichardErkhov
| 2024-06-04T02:59:56Z | 69 | 0 | null |
[
"gguf",
"arxiv:2405.04324",
"region:us"
] | null | 2024-06-04T01:18:38Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
granite-20b-code-base - GGUF
- Model creator: https://huggingface.co/ibm-granite/
- Original model: https://huggingface.co/ibm-granite/granite-20b-code-base/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [granite-20b-code-base.Q2_K.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.Q2_K.gguf) | Q2_K | 7.38GB |
| [granite-20b-code-base.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.IQ3_XS.gguf) | IQ3_XS | 8.06GB |
| [granite-20b-code-base.IQ3_S.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.IQ3_S.gguf) | IQ3_S | 1.45GB |
| [granite-20b-code-base.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.Q3_K_S.gguf) | Q3_K_S | 8.32GB |
| [granite-20b-code-base.IQ3_M.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.IQ3_M.gguf) | IQ3_M | 2.21GB |
| [granite-20b-code-base.Q3_K.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.Q3_K.gguf) | Q3_K | 1.42GB |
| [granite-20b-code-base.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.Q3_K_M.gguf) | Q3_K_M | 0.87GB |
| [granite-20b-code-base.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.Q3_K_L.gguf) | Q3_K_L | 0.51GB |
| [granite-20b-code-base.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.IQ4_XS.gguf) | IQ4_XS | 0.11GB |
| [granite-20b-code-base.Q4_0.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.Q4_0.gguf) | Q4_0 | 0.1GB |
| [granite-20b-code-base.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.IQ4_NL.gguf) | IQ4_NL | 0.02GB |
| [granite-20b-code-base.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.Q4_K_S.gguf) | Q4_K_S | 0.01GB |
| [granite-20b-code-base.Q4_K.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.Q4_K.gguf) | Q4_K | 0.01GB |
| [granite-20b-code-base.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.Q4_K_M.gguf) | Q4_K_M | 0.0GB |
| [granite-20b-code-base.Q4_1.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.Q4_1.gguf) | Q4_1 | 0.0GB |
| [granite-20b-code-base.Q5_0.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.Q5_0.gguf) | Q5_0 | 0.0GB |
| [granite-20b-code-base.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.Q5_K_S.gguf) | Q5_K_S | 0.0GB |
| [granite-20b-code-base.Q5_K.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.Q5_K.gguf) | Q5_K | 0.0GB |
| [granite-20b-code-base.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.Q5_K_M.gguf) | Q5_K_M | 0.0GB |
| [granite-20b-code-base.Q5_1.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.Q5_1.gguf) | Q5_1 | 0.0GB |
| [granite-20b-code-base.Q6_K.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.Q6_K.gguf) | Q6_K | 0.0GB |
| [granite-20b-code-base.Q8_0.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-base-gguf/blob/main/granite-20b-code-base.Q8_0.gguf) | Q8_0 | 0.0GB |
Original model description:
---
pipeline_tag: text-generation
inference: true
license: apache-2.0
datasets:
- codeparrot/github-code-clean
- bigcode/starcoderdata
# - Stackexchange
# - CommonCrawl
- open-web-math/open-web-math
- math-ai/StackMathQA
# - Arxiv
# - Wikipedia
# - conceptofmind/FLAN_2022 # Original link is broken, we used IBM's filtered version | Phase 2
metrics:
- code_eval
library_name: transformers
tags:
- code
- granite
model-index:
- name: granite-20b-code-base
results:
- task:
type: text-generation
dataset:
type: mbpp
name: MBPP
metrics:
- name: pass@1
type: pass@1
value: 43.8
veriefied: false
- task:
type: text-generation
dataset:
type: evalplus/mbppplus
name: MBPP+
metrics:
- name: pass@1
type: pass@1
value: 51.6
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(Python)
metrics:
- name: pass@1
type: pass@1
value: 48.2
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(JavaScript)
metrics:
- name: pass@1
type: pass@1
value: 50.0
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(Java)
metrics:
- name: pass@1
type: pass@1
value: 59.1
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(Go)
metrics:
- name: pass@1
type: pass@1
value: 32.3
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(C++)
metrics:
- name: pass@1
type: pass@1
value: 40.9
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(Rust)
metrics:
- name: pass@1
type: pass@1
value: 35.4
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(Python)
metrics:
- name: pass@1
type: pass@1
value: 17.1
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(JavaScript)
metrics:
- name: pass@1
type: pass@1
value: 18.3
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(Java)
metrics:
- name: pass@1
type: pass@1
value: 23.2
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(Go)
metrics:
- name: pass@1
type: pass@1
value: 10.4
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(C++)
metrics:
- name: pass@1
type: pass@1
value: 25.6
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(Rust)
metrics:
- name: pass@1
type: pass@1
value: 18.3
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(Python)
metrics:
- name: pass@1
type: pass@1
value: 23.2
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(JavaScript)
metrics:
- name: pass@1
type: pass@1
value: 23.8
veriefied: false # Check
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(Java)
metrics:
- name: pass@1
type: pass@1
value: 14.6
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(Go)
metrics:
- name: pass@1
type: pass@1
value: 26.2
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(C++)
metrics:
- name: pass@1
type: pass@1
value: 15.2
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(Rust)
metrics:
- name: pass@1
type: pass@1
value: 3.0
veriefied: false
---

# Granite-20B-Code-Base
## Model Summary
**Granite-20B-Code-Base** is a decoder-only code model designed for code generative tasks (e.g., code generation, code explanation, code fixing, etc.). It is trained from scratch with a two-phase training strategy. In phase 1, our model is trained on 3 trillion tokens sourced from 116 programming languages, ensuring a comprehensive understanding of programming languages and syntax. In phase 2, our model is trained on 500 billion tokens with a carefully designed mixture of high-quality data from code and natural language domains to improve the models’ ability to reason and follow instructions.
- **Developers:** IBM Research
- **GitHub Repository:** [ibm-granite/granite-code-models](https://github.com/ibm-granite/granite-code-models)
- **Paper:** [Granite Code Models: A Family of Open Foundation Models for Code Intelligence](https://arxiv.org/abs/2405.04324)
- **Release Date**: May 6th, 2024
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0).
## Usage
### Intended use
Prominent enterprise use cases of LLMs in software engineering productivity include code generation, code explanation, code fixing, generating unit tests, generating documentation, addressing technical debt issues, vulnerability detection, code translation, and more. All Granite Code Base models, including the **20B parameter model**, are able to handle these tasks as they were trained on a large amount of code data from 116 programming languages.
### Generation
This is a simple example of how to use **Granite-20B-Code-Base** model.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # or "cpu"
model_path = "ibm-granite/granite-20b-code-base"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
input_text = "def generate():"
# tokenize the text
input_tokens = tokenizer(input_text, return_tensors="pt")
# transfer tokenized inputs to the device
for i in input_tokens:
input_tokens[i] = input_tokens[i].to(device)
# generate output tokens
output = model.generate(**input_tokens)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# loop over the batch to print, in this example the batch size is 1
for i in output:
print(i)
```
## Training Data
- **Data Collection and Filtering:** Pretraining code data is sourced from a combination of publicly available datasets (e.g., [GitHub Code Clean](https://huggingface.co/datasets/codeparrot/github-code-clean), [Starcoder data](https://huggingface.co/datasets/bigcode/starcoderdata)), and additional public code repositories and issues from GitHub. We filter raw data to retain a list of 116 programming languages. After language filtering, we also filter out low-quality code.
- **Exact and Fuzzy Deduplication:** We adopt an aggressive deduplication strategy that includes both exact and fuzzy deduplication to remove documents having (near) identical code content.
- **HAP, PII, Malware Filtering:** We apply a HAP content filter that reduces models' likelihood of generating hateful, abusive, or profane language. We also make sure to redact Personally Identifiable Information (PII) by replacing PII content (e.g., names, email addresses, keys, passwords) with corresponding tokens (e.g., ⟨NAME⟩, ⟨EMAIL⟩, ⟨KEY⟩, ⟨PASSWORD⟩). Moreover, we scan all datasets using [ClamAV](https://www.clamav.net/) to identify and remove instances of malware in the source code.
- **Natural Language Datasets:** In addition to collecting code data for model training, we curate several publicly available high-quality natural language datasets to improve models' proficiency in language understanding and mathematical reasoning. Unlike the code data, we do not deduplicate these datasets.
## Infrastructure
We train the Granite Code models using two of IBM's super computing clusters, namely Vela and Blue Vela, both outfitted with NVIDIA A100 and H100 GPUs respectively. These clusters provide a scalable and efficient infrastructure for training our models over thousands of GPUs.
## Ethical Considerations and Limitations
The use of Large Language Models involves risks and ethical considerations people must be aware of. Regarding code generation, caution is urged against complete reliance on specific code models for crucial decisions or impactful information as the generated code is not guaranteed to work as intended. **Granite-20B-Code-Base** model is not the exception in this regard. Even though this model is suited for multiple code-related tasks, it has not undergone any safety alignment, there it may produce problematic outputs. Additionally, it remains uncertain whether smaller models might exhibit increased susceptibility to hallucination in generation scenarios by copying source code verbatim from the training dataset due to their reduced sizes and memorization capacities. This aspect is currently an active area of research, and we anticipate more rigorous exploration, comprehension, and mitigations in this domain. Regarding ethics, a latent risk associated with all Large Language Models is their malicious utilization. We urge the community to use **Granite-20B-Code-Base** model with ethical intentions and in a responsible way.
|
0xfaskety/Qwen-Qwen1.5-7B-1717469455
|
0xfaskety
| 2024-06-04T02:57:47Z | 10 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-04T02:50:57Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
GuiTap/xlm-roberta-base-finetuned-ner-lenerBr
|
GuiTap
| 2024-06-04T02:57:09Z | 3 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:lener_br",
"base_model:FacebookAI/xlm-roberta-base",
"base_model:finetune:FacebookAI/xlm-roberta-base",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2024-06-03T00:48:45Z |
---
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
datasets:
- lener_br
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlm-roberta-base-finetuned-ner-lenerBr
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: lener_br
type: lener_br
config: lener_br
split: validation
args: lener_br
metrics:
- name: Precision
type: precision
value: 0.7397260273972602
- name: Recall
type: recall
value: 0.9211682605324373
- name: F1
type: f1
value: 0.8205364337515828
- name: Accuracy
type: accuracy
value: 0.970340819101409
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-ner-lenerBr
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the lener_br dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1294
- Precision: 0.7397
- Recall: 0.9212
- F1: 0.8205
- Accuracy: 0.9703
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 245 | 0.1569 | 0.7358 | 0.7788 | 0.7567 | 0.9534 |
| No log | 2.0 | 490 | 0.1310 | 0.6909 | 0.8927 | 0.7790 | 0.9632 |
| 0.1674 | 3.0 | 735 | 0.1148 | 0.7174 | 0.9119 | 0.8030 | 0.9677 |
| 0.1674 | 4.0 | 980 | 0.1550 | 0.7209 | 0.8979 | 0.7997 | 0.9658 |
| 0.0276 | 5.0 | 1225 | 0.1441 | 0.7183 | 0.9173 | 0.8057 | 0.9682 |
| 0.0276 | 6.0 | 1470 | 0.1482 | 0.7326 | 0.8752 | 0.7976 | 0.9665 |
| 0.0154 | 7.0 | 1715 | 0.1209 | 0.7418 | 0.9284 | 0.8247 | 0.9710 |
| 0.0154 | 8.0 | 1960 | 0.1266 | 0.7375 | 0.9243 | 0.8204 | 0.9708 |
| 0.0096 | 9.0 | 2205 | 0.1394 | 0.7356 | 0.9147 | 0.8154 | 0.9690 |
| 0.0096 | 10.0 | 2450 | 0.1294 | 0.7397 | 0.9212 | 0.8205 | 0.9703 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.19.1
|
chainup244/Qwen-Qwen1.5-1.8B-1717469101
|
chainup244
| 2024-06-04T02:47:57Z | 141 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-04T02:45:03Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
martinsinnona/visdecode_vega_2
|
martinsinnona
| 2024-06-04T02:42:03Z | 51 | 0 |
transformers
|
[
"transformers",
"safetensors",
"pix2struct",
"image-text-to-text",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2024-06-04T02:01:16Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Chanakan5591/llama-3-typhoon-v1.5-8b-nf4
|
Chanakan5591
| 2024-06-04T02:40:51Z | 79 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-06-04T02:36:06Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ehottl/distilbert-base-uncased-finetuned-clinc
|
ehottl
| 2024-06-04T02:36:06Z | 113 | 0 |
transformers
|
[
"transformers",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-06-04T02:24:15Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-clinc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-clinc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8020
- Accuracy: 0.9158
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 4.3069 | 1.0 | 318 | 3.3020 | 0.7177 |
| 2.6569 | 2.0 | 636 | 1.9007 | 0.8468 |
| 1.5836 | 3.0 | 954 | 1.1867 | 0.8881 |
| 1.0474 | 4.0 | 1272 | 0.8876 | 0.9116 |
| 0.8287 | 5.0 | 1590 | 0.8020 | 0.9158 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2.post303
- Datasets 2.19.1
- Tokenizers 0.15.2
|
RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf
|
RichardErkhov
| 2024-06-04T02:30:40Z | 157 | 0 | null |
[
"gguf",
"arxiv:2405.04324",
"region:us"
] | null | 2024-06-04T01:24:21Z |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
granite-20b-code-instruct - GGUF
- Model creator: https://huggingface.co/ibm-granite/
- Original model: https://huggingface.co/ibm-granite/granite-20b-code-instruct/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [granite-20b-code-instruct.Q2_K.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.Q2_K.gguf) | Q2_K | 7.38GB |
| [granite-20b-code-instruct.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.IQ3_XS.gguf) | IQ3_XS | 8.06GB |
| [granite-20b-code-instruct.IQ3_S.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.IQ3_S.gguf) | IQ3_S | 0.79GB |
| [granite-20b-code-instruct.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.Q3_K_S.gguf) | Q3_K_S | 0.56GB |
| [granite-20b-code-instruct.IQ3_M.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.IQ3_M.gguf) | IQ3_M | 0.06GB |
| [granite-20b-code-instruct.Q3_K.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.Q3_K.gguf) | Q3_K | 0.04GB |
| [granite-20b-code-instruct.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.Q3_K_M.gguf) | Q3_K_M | 0.0GB |
| [granite-20b-code-instruct.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.Q3_K_L.gguf) | Q3_K_L | 0.0GB |
| [granite-20b-code-instruct.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.IQ4_XS.gguf) | IQ4_XS | 0.0GB |
| [granite-20b-code-instruct.Q4_0.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.Q4_0.gguf) | Q4_0 | 0.0GB |
| [granite-20b-code-instruct.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.IQ4_NL.gguf) | IQ4_NL | 0.0GB |
| [granite-20b-code-instruct.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.Q4_K_S.gguf) | Q4_K_S | 0.0GB |
| [granite-20b-code-instruct.Q4_K.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.Q4_K.gguf) | Q4_K | 0.0GB |
| [granite-20b-code-instruct.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.Q4_K_M.gguf) | Q4_K_M | 0.0GB |
| [granite-20b-code-instruct.Q4_1.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.Q4_1.gguf) | Q4_1 | 0.0GB |
| [granite-20b-code-instruct.Q5_0.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.Q5_0.gguf) | Q5_0 | 0.0GB |
| [granite-20b-code-instruct.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.Q5_K_S.gguf) | Q5_K_S | 0.0GB |
| [granite-20b-code-instruct.Q5_K.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.Q5_K.gguf) | Q5_K | 0.0GB |
| [granite-20b-code-instruct.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.Q5_K_M.gguf) | Q5_K_M | 0.0GB |
| [granite-20b-code-instruct.Q5_1.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.Q5_1.gguf) | Q5_1 | 0.0GB |
| [granite-20b-code-instruct.Q6_K.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.Q6_K.gguf) | Q6_K | 0.0GB |
| [granite-20b-code-instruct.Q8_0.gguf](https://huggingface.co/RichardErkhov/ibm-granite_-_granite-20b-code-instruct-gguf/blob/main/granite-20b-code-instruct.Q8_0.gguf) | Q8_0 | 0.0GB |
Original model description:
---
pipeline_tag: text-generation
base_model: ibm-granite/granite-20b-code-base
inference: true
license: apache-2.0
datasets:
- bigcode/commitpackft
- TIGER-Lab/MathInstruct
- meta-math/MetaMathQA
- glaiveai/glaive-code-assistant-v3
- glaive-function-calling-v2
- bugdaryan/sql-create-context-instruction
- garage-bAInd/Open-Platypus
- nvidia/HelpSteer
metrics:
- code_eval
library_name: transformers
tags:
- code
- granite
model-index:
- name: granite-20b-code-instruct
results:
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(Python)
metrics:
- name: pass@1
type: pass@1
value: 60.4
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(JavaScript)
metrics:
- name: pass@1
type: pass@1
value: 53.7
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(Java)
metrics:
- name: pass@1
type: pass@1
value: 58.5
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(Go)
metrics:
- name: pass@1
type: pass@1
value: 42.1
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(C++)
metrics:
- name: pass@1
type: pass@1
value: 45.7
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(Rust)
metrics:
- name: pass@1
type: pass@1
value: 42.7
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(Python)
metrics:
- name: pass@1
type: pass@1
value: 44.5
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(JavaScript)
metrics:
- name: pass@1
type: pass@1
value: 42.7
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(Java)
metrics:
- name: pass@1
type: pass@1
value: 49.4
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(Go)
metrics:
- name: pass@1
type: pass@1
value: 32.3
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(C++)
metrics:
- name: pass@1
type: pass@1
value: 42.1
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(Rust)
metrics:
- name: pass@1
type: pass@1
value: 18.3
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(Python)
metrics:
- name: pass@1
type: pass@1
value: 43.9
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(JavaScript)
metrics:
- name: pass@1
type: pass@1
value: 43.9
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(Java)
metrics:
- name: pass@1
type: pass@1
value: 45.7
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(Go)
metrics:
- name: pass@1
type: pass@1
value: 41.5
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(C++)
metrics:
- name: pass@1
type: pass@1
value: 41.5
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(Rust)
metrics:
- name: pass@1
type: pass@1
value: 29.9
veriefied: false
---

# Granite-20B-Code-Instruct
## Model Summary
**Granite-20B-Code-Instruct** is a 20B parameter model fine tuned from *Granite-20B-Code-Base* on a combination of **permissively licensed** instruction data to enhance instruction following capabilities including logical reasoning and problem-solving skills.
- **Developers:** IBM Research
- **GitHub Repository:** [ibm-granite/granite-code-models](https://github.com/ibm-granite/granite-code-models)
- **Paper:** [Granite Code Models: A Family of Open Foundation Models for Code Intelligence](https://arxiv.org/abs/2405.04324)
- **Release Date**: May 6th, 2024
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0).
## Usage
### Intended use
The model is designed to respond to coding related instructions and can be used to build coding assitants.
<!-- TO DO: Check starcoder2 instruct code example that includes the template https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1 -->
### Generation
This is a simple example of how to use **Granite-20B-Code-Instruct** model.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # or "cpu"
model_path = "ibm-granite/granite-20b-code-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
chat = [
{ "role": "user", "content": "Write a code to find the maximum value in a list of numbers." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
# tokenize the text
input_tokens = tokenizer(chat, return_tensors="pt")
# transfer tokenized inputs to the device
for i in input_tokens:
input_tokens[i] = input_tokens[i].to(device)
# generate output tokens
output = model.generate(**input_tokens, max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# loop over the batch to print, in this example the batch size is 1
for i in output:
print(i)
```
<!-- TO DO: Check this part -->
## Training Data
Granite Code Instruct models are trained on the following types of data.
* Code Commits Datasets: we sourced code commits data from the [CommitPackFT](https://huggingface.co/datasets/bigcode/commitpackft) dataset, a filtered version of the full CommitPack dataset. From CommitPackFT dataset, we only consider data for 92 programming languages. Our inclusion criteria boils down to selecting programming languages common across CommitPackFT and the 116 languages that we considered to pretrain the code-base model (*Granite-20B-Code-Base*).
* Math Datasets: We consider two high-quality math datasets, [MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct) and [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA). Due to license issues, we filtered out GSM8K-RFT and Camel-Math from MathInstruct dataset.
* Code Instruction Datasets: We use [Glaive-Code-Assistant-v3](https://huggingface.co/datasets/glaiveai/glaive-code-assistant-v3), [Glaive-Function-Calling-v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2), [NL2SQL11](https://huggingface.co/datasets/bugdaryan/sql-create-context-instruction) and a small collection of synthetic API calling datasets.
* Language Instruction Datasets: We include high-quality datasets such as [HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer) and an open license-filtered version of [Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). We also include a collection of hardcoded prompts to ensure our model generates correct outputs given inquiries about its name or developers.
## Infrastructure
We train the Granite Code models using two of IBM's super computing clusters, namely Vela and Blue Vela, both outfitted with NVIDIA A100 and H100 GPUs respectively. These clusters provide a scalable and efficient infrastructure for training our models over thousands of GPUs.
## Ethical Considerations and Limitations
Granite code instruct models are primarily finetuned using instruction-response pairs across a specific set of programming languages. Thus, their performance may be limited with out-of-domain programming languages. In this situation, it is beneficial providing few-shot examples to steer the model's output. Moreover, developers should perform safety testing and target-specific tuning before deploying these models on critical applications. The model also inherits ethical considerations and limitations from its base model. For more information, please refer to *[Granite-20B-Code-Base](https://huggingface.co/ibm-granite/granite-20b-code-base)* model card.
|
apwic/nerui-lora-r16-3
|
apwic
| 2024-06-04T02:30:22Z | 0 | 0 | null |
[
"tensorboard",
"generated_from_trainer",
"id",
"base_model:indolem/indobert-base-uncased",
"base_model:finetune:indolem/indobert-base-uncased",
"license:mit",
"region:us"
] | null | 2024-05-28T14:17:21Z |
---
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: nerui-lora-r16-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nerui-lora-r16-3
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0458
- Location Precision: 0.9022
- Location Recall: 0.9651
- Location F1: 0.9326
- Location Number: 86
- Organization Precision: 0.9314
- Organization Recall: 0.9157
- Organization F1: 0.9235
- Organization Number: 178
- Person Precision: 0.9843
- Person Recall: 0.9766
- Person F1: 0.9804
- Person Number: 128
- Overall Precision: 0.9416
- Overall Recall: 0.9464
- Overall F1: 0.9440
- Overall Accuracy: 0.9884
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Location Precision | Location Recall | Location F1 | Location Number | Organization Precision | Organization Recall | Organization F1 | Organization Number | Person Precision | Person Recall | Person F1 | Person Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:-------------:|:---------:|:-------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.0611 | 1.0 | 96 | 0.6536 | 0.0 | 0.0 | 0.0 | 86 | 0.0 | 0.0 | 0.0 | 178 | 0.0 | 0.0 | 0.0 | 128 | 0.0 | 0.0 | 0.0 | 0.8435 |
| 0.6324 | 2.0 | 192 | 0.5023 | 0.0 | 0.0 | 0.0 | 86 | 0.5556 | 0.0281 | 0.0535 | 178 | 0.0 | 0.0 | 0.0 | 128 | 0.4167 | 0.0128 | 0.0248 | 0.8448 |
| 0.4878 | 3.0 | 288 | 0.3482 | 0.25 | 0.0233 | 0.0426 | 86 | 0.3936 | 0.2079 | 0.2721 | 178 | 0.3543 | 0.3516 | 0.3529 | 128 | 0.3668 | 0.2143 | 0.2705 | 0.8799 |
| 0.341 | 4.0 | 384 | 0.2386 | 0.5185 | 0.3256 | 0.4 | 86 | 0.5308 | 0.6292 | 0.5758 | 178 | 0.5767 | 0.7344 | 0.6460 | 128 | 0.5467 | 0.5969 | 0.5707 | 0.9296 |
| 0.2391 | 5.0 | 480 | 0.1745 | 0.7179 | 0.6512 | 0.6829 | 86 | 0.6603 | 0.7753 | 0.7132 | 178 | 0.8151 | 0.9297 | 0.8686 | 128 | 0.7229 | 0.7985 | 0.7588 | 0.9547 |
| 0.1867 | 6.0 | 576 | 0.1380 | 0.7396 | 0.8256 | 0.7802 | 86 | 0.7385 | 0.8090 | 0.7721 | 178 | 0.9118 | 0.9688 | 0.9394 | 128 | 0.7939 | 0.8648 | 0.8278 | 0.9655 |
| 0.1578 | 7.0 | 672 | 0.1150 | 0.75 | 0.8372 | 0.7912 | 86 | 0.7755 | 0.8539 | 0.8128 | 178 | 0.9058 | 0.9766 | 0.9398 | 128 | 0.8116 | 0.8903 | 0.8491 | 0.9690 |
| 0.1374 | 8.0 | 768 | 0.0980 | 0.7766 | 0.8488 | 0.8111 | 86 | 0.8105 | 0.8652 | 0.8370 | 178 | 0.9191 | 0.9766 | 0.9470 | 128 | 0.8381 | 0.8980 | 0.8670 | 0.9730 |
| 0.1267 | 9.0 | 864 | 0.0882 | 0.77 | 0.8953 | 0.8280 | 86 | 0.8511 | 0.8989 | 0.8743 | 178 | 0.9328 | 0.9766 | 0.9542 | 128 | 0.8578 | 0.9235 | 0.8894 | 0.9749 |
| 0.115 | 10.0 | 960 | 0.0822 | 0.8061 | 0.9186 | 0.8587 | 86 | 0.8474 | 0.9045 | 0.8750 | 178 | 0.9328 | 0.9766 | 0.9542 | 128 | 0.8649 | 0.9311 | 0.8968 | 0.9765 |
| 0.1082 | 11.0 | 1056 | 0.0755 | 0.7835 | 0.8837 | 0.8306 | 86 | 0.8495 | 0.8876 | 0.8681 | 178 | 0.9466 | 0.9688 | 0.9575 | 128 | 0.8647 | 0.9133 | 0.8883 | 0.9768 |
| 0.1032 | 12.0 | 1152 | 0.0724 | 0.8495 | 0.9186 | 0.8827 | 86 | 0.8579 | 0.9157 | 0.8859 | 178 | 0.9323 | 0.9688 | 0.9502 | 128 | 0.8798 | 0.9337 | 0.9059 | 0.9781 |
| 0.0944 | 13.0 | 1248 | 0.0646 | 0.8778 | 0.9186 | 0.8977 | 86 | 0.875 | 0.9045 | 0.8895 | 178 | 0.9466 | 0.9688 | 0.9575 | 128 | 0.8988 | 0.9286 | 0.9134 | 0.9800 |
| 0.0923 | 14.0 | 1344 | 0.0638 | 0.8242 | 0.8721 | 0.8475 | 86 | 0.8743 | 0.8989 | 0.8864 | 178 | 0.9538 | 0.9688 | 0.9612 | 128 | 0.8886 | 0.9158 | 0.9020 | 0.9798 |
| 0.0918 | 15.0 | 1440 | 0.0623 | 0.8571 | 0.9070 | 0.8814 | 86 | 0.8859 | 0.9157 | 0.9006 | 178 | 0.9615 | 0.9766 | 0.9690 | 128 | 0.9037 | 0.9337 | 0.9184 | 0.9806 |
| 0.0848 | 16.0 | 1536 | 0.0615 | 0.8298 | 0.9070 | 0.8667 | 86 | 0.8696 | 0.8989 | 0.8840 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.8941 | 0.9260 | 0.9098 | 0.9798 |
| 0.0818 | 17.0 | 1632 | 0.0594 | 0.8495 | 0.9186 | 0.8827 | 86 | 0.8840 | 0.8989 | 0.8914 | 178 | 0.9690 | 0.9766 | 0.9728 | 128 | 0.9032 | 0.9286 | 0.9157 | 0.9814 |
| 0.0797 | 18.0 | 1728 | 0.0577 | 0.8764 | 0.9070 | 0.8914 | 86 | 0.8840 | 0.8989 | 0.8914 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9121 | 0.9260 | 0.9190 | 0.9814 |
| 0.0745 | 19.0 | 1824 | 0.0573 | 0.8667 | 0.9070 | 0.8864 | 86 | 0.8852 | 0.9101 | 0.8975 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9102 | 0.9311 | 0.9206 | 0.9814 |
| 0.0747 | 20.0 | 1920 | 0.0554 | 0.8478 | 0.9070 | 0.8764 | 86 | 0.8907 | 0.9157 | 0.9030 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9082 | 0.9337 | 0.9208 | 0.9816 |
| 0.0702 | 21.0 | 2016 | 0.0560 | 0.8387 | 0.9070 | 0.8715 | 86 | 0.8876 | 0.8876 | 0.8876 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9048 | 0.9209 | 0.9128 | 0.9811 |
| 0.0701 | 22.0 | 2112 | 0.0550 | 0.8316 | 0.9186 | 0.8729 | 86 | 0.8871 | 0.9270 | 0.9066 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9022 | 0.9413 | 0.9213 | 0.9822 |
| 0.0663 | 23.0 | 2208 | 0.0520 | 0.8478 | 0.9070 | 0.8764 | 86 | 0.9045 | 0.9045 | 0.9045 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9146 | 0.9286 | 0.9215 | 0.9833 |
| 0.0666 | 24.0 | 2304 | 0.0543 | 0.8211 | 0.9070 | 0.8619 | 86 | 0.8870 | 0.8820 | 0.8845 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9 | 0.9184 | 0.9091 | 0.9806 |
| 0.0635 | 25.0 | 2400 | 0.0524 | 0.8316 | 0.9186 | 0.8729 | 86 | 0.8927 | 0.8876 | 0.8901 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.905 | 0.9235 | 0.9141 | 0.9822 |
| 0.0632 | 26.0 | 2496 | 0.0519 | 0.8421 | 0.9302 | 0.8840 | 86 | 0.8927 | 0.8876 | 0.8901 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9075 | 0.9260 | 0.9167 | 0.9825 |
| 0.0596 | 27.0 | 2592 | 0.0489 | 0.8495 | 0.9186 | 0.8827 | 86 | 0.8840 | 0.8989 | 0.8914 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9055 | 0.9286 | 0.9169 | 0.9830 |
| 0.0608 | 28.0 | 2688 | 0.0508 | 0.8316 | 0.9186 | 0.8729 | 86 | 0.8927 | 0.8876 | 0.8901 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9073 | 0.9235 | 0.9153 | 0.9825 |
| 0.0591 | 29.0 | 2784 | 0.0464 | 0.8966 | 0.9070 | 0.9017 | 86 | 0.8962 | 0.9213 | 0.9086 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9221 | 0.9362 | 0.9291 | 0.9843 |
| 0.0582 | 30.0 | 2880 | 0.0472 | 0.8864 | 0.9070 | 0.8966 | 86 | 0.9126 | 0.9382 | 0.9252 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9273 | 0.9439 | 0.9355 | 0.9857 |
| 0.0567 | 31.0 | 2976 | 0.0518 | 0.8333 | 0.9302 | 0.8791 | 86 | 0.8971 | 0.8820 | 0.8895 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9073 | 0.9235 | 0.9153 | 0.9825 |
| 0.0545 | 32.0 | 3072 | 0.0493 | 0.8681 | 0.9186 | 0.8927 | 86 | 0.8956 | 0.9157 | 0.9056 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9152 | 0.9362 | 0.9256 | 0.9841 |
| 0.0526 | 33.0 | 3168 | 0.0488 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.8944 | 0.9045 | 0.8994 | 178 | 0.9688 | 0.9688 | 0.9688 | 128 | 0.9125 | 0.9311 | 0.9217 | 0.9843 |
| 0.0536 | 34.0 | 3264 | 0.0481 | 0.8989 | 0.9302 | 0.9143 | 86 | 0.9213 | 0.9213 | 0.9213 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9342 | 0.9413 | 0.9377 | 0.9843 |
| 0.0501 | 35.0 | 3360 | 0.0482 | 0.8889 | 0.9302 | 0.9091 | 86 | 0.9157 | 0.9157 | 0.9157 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9293 | 0.9388 | 0.9340 | 0.9846 |
| 0.0541 | 36.0 | 3456 | 0.0481 | 0.8889 | 0.9302 | 0.9091 | 86 | 0.9270 | 0.9270 | 0.9270 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9343 | 0.9439 | 0.9391 | 0.9857 |
| 0.0513 | 37.0 | 3552 | 0.0475 | 0.8778 | 0.9186 | 0.8977 | 86 | 0.9162 | 0.9213 | 0.9188 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9270 | 0.9388 | 0.9328 | 0.9857 |
| 0.0506 | 38.0 | 3648 | 0.0483 | 0.8602 | 0.9302 | 0.8939 | 86 | 0.9045 | 0.9045 | 0.9045 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9196 | 0.9337 | 0.9266 | 0.9846 |
| 0.0483 | 39.0 | 3744 | 0.0498 | 0.8617 | 0.9419 | 0.9000 | 86 | 0.9213 | 0.9213 | 0.9213 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9273 | 0.9439 | 0.9355 | 0.9854 |
| 0.0481 | 40.0 | 3840 | 0.0467 | 0.8876 | 0.9186 | 0.9029 | 86 | 0.8950 | 0.9101 | 0.9025 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9219 | 0.9337 | 0.9278 | 0.9846 |
| 0.0463 | 41.0 | 3936 | 0.0471 | 0.8791 | 0.9302 | 0.9040 | 86 | 0.9050 | 0.9101 | 0.9076 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9221 | 0.9362 | 0.9291 | 0.9846 |
| 0.0461 | 42.0 | 4032 | 0.0456 | 0.8977 | 0.9186 | 0.9080 | 86 | 0.9282 | 0.9438 | 0.9359 | 178 | 0.9764 | 0.9688 | 0.9725 | 128 | 0.9369 | 0.9464 | 0.9416 | 0.9870 |
| 0.0454 | 43.0 | 4128 | 0.0459 | 0.8791 | 0.9302 | 0.9040 | 86 | 0.9111 | 0.9213 | 0.9162 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9271 | 0.9413 | 0.9342 | 0.9860 |
| 0.0459 | 44.0 | 4224 | 0.0470 | 0.8804 | 0.9419 | 0.9101 | 86 | 0.9282 | 0.9438 | 0.9359 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.935 | 0.9541 | 0.9444 | 0.9873 |
| 0.0465 | 45.0 | 4320 | 0.0464 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.9322 | 0.9270 | 0.9296 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9343 | 0.9439 | 0.9391 | 0.9870 |
| 0.0468 | 46.0 | 4416 | 0.0483 | 0.8901 | 0.9419 | 0.9153 | 86 | 0.9157 | 0.9157 | 0.9157 | 178 | 0.9764 | 0.9688 | 0.9725 | 128 | 0.9293 | 0.9388 | 0.9340 | 0.9854 |
| 0.0432 | 47.0 | 4512 | 0.0477 | 0.8901 | 0.9419 | 0.9153 | 86 | 0.9157 | 0.9157 | 0.9157 | 178 | 0.9764 | 0.9688 | 0.9725 | 128 | 0.9293 | 0.9388 | 0.9340 | 0.9857 |
| 0.0434 | 48.0 | 4608 | 0.0450 | 0.8681 | 0.9186 | 0.8927 | 86 | 0.9270 | 0.9270 | 0.9270 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9318 | 0.9413 | 0.9365 | 0.9868 |
| 0.0442 | 49.0 | 4704 | 0.0464 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.9253 | 0.9045 | 0.9148 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9289 | 0.9337 | 0.9313 | 0.9849 |
| 0.0421 | 50.0 | 4800 | 0.0474 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.9218 | 0.9270 | 0.9244 | 178 | 0.9764 | 0.9688 | 0.9725 | 128 | 0.9271 | 0.9413 | 0.9342 | 0.9865 |
| 0.0421 | 51.0 | 4896 | 0.0462 | 0.8901 | 0.9419 | 0.9153 | 86 | 0.9106 | 0.9157 | 0.9132 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9271 | 0.9413 | 0.9342 | 0.9862 |
| 0.0415 | 52.0 | 4992 | 0.0461 | 0.8602 | 0.9302 | 0.8939 | 86 | 0.9056 | 0.9157 | 0.9106 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.92 | 0.9388 | 0.9293 | 0.9865 |
| 0.0418 | 53.0 | 5088 | 0.0455 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.9050 | 0.9101 | 0.9076 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9198 | 0.9362 | 0.9279 | 0.9857 |
| 0.0416 | 54.0 | 5184 | 0.0450 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.9162 | 0.9213 | 0.9188 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9271 | 0.9413 | 0.9342 | 0.9865 |
| 0.0403 | 55.0 | 5280 | 0.0456 | 0.8901 | 0.9419 | 0.9153 | 86 | 0.9153 | 0.9101 | 0.9127 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9316 | 0.9388 | 0.9352 | 0.9862 |
| 0.0424 | 56.0 | 5376 | 0.0458 | 0.8804 | 0.9419 | 0.9101 | 86 | 0.9195 | 0.8989 | 0.9091 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9289 | 0.9337 | 0.9313 | 0.9843 |
| 0.0391 | 57.0 | 5472 | 0.0450 | 0.8901 | 0.9419 | 0.9153 | 86 | 0.9111 | 0.9213 | 0.9162 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9273 | 0.9439 | 0.9355 | 0.9868 |
| 0.039 | 58.0 | 5568 | 0.0462 | 0.8901 | 0.9419 | 0.9153 | 86 | 0.9101 | 0.9101 | 0.9101 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9270 | 0.9388 | 0.9328 | 0.9857 |
| 0.0367 | 59.0 | 5664 | 0.0457 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.8939 | 0.8989 | 0.8964 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9148 | 0.9311 | 0.9229 | 0.9860 |
| 0.0396 | 60.0 | 5760 | 0.0450 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.9101 | 0.9101 | 0.9101 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9221 | 0.9362 | 0.9291 | 0.9865 |
| 0.038 | 61.0 | 5856 | 0.0451 | 0.8913 | 0.9535 | 0.9213 | 86 | 0.9209 | 0.9157 | 0.9183 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9343 | 0.9439 | 0.9391 | 0.9876 |
| 0.0359 | 62.0 | 5952 | 0.0451 | 0.8913 | 0.9535 | 0.9213 | 86 | 0.9261 | 0.9157 | 0.9209 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9367 | 0.9439 | 0.9403 | 0.9870 |
| 0.0366 | 63.0 | 6048 | 0.0456 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9213 | 0.9213 | 0.9213 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9370 | 0.9490 | 0.9430 | 0.9881 |
| 0.0346 | 64.0 | 6144 | 0.0452 | 0.8901 | 0.9419 | 0.9153 | 86 | 0.9157 | 0.9157 | 0.9157 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9318 | 0.9413 | 0.9365 | 0.9876 |
| 0.0338 | 65.0 | 6240 | 0.0457 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9162 | 0.9213 | 0.9188 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9347 | 0.9490 | 0.9418 | 0.9881 |
| 0.0352 | 66.0 | 6336 | 0.0455 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.9101 | 0.9101 | 0.9101 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9244 | 0.9362 | 0.9303 | 0.9873 |
| 0.0351 | 67.0 | 6432 | 0.0456 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.9040 | 0.8989 | 0.9014 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9217 | 0.9311 | 0.9264 | 0.9857 |
| 0.0333 | 68.0 | 6528 | 0.0462 | 0.8817 | 0.9535 | 0.9162 | 86 | 0.9116 | 0.9270 | 0.9192 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9277 | 0.9490 | 0.9382 | 0.9881 |
| 0.0356 | 69.0 | 6624 | 0.0452 | 0.8901 | 0.9419 | 0.9153 | 86 | 0.9091 | 0.8989 | 0.9040 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9289 | 0.9337 | 0.9313 | 0.9862 |
| 0.0336 | 70.0 | 6720 | 0.0455 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.9266 | 0.9213 | 0.9239 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9318 | 0.9413 | 0.9365 | 0.9879 |
| 0.0331 | 71.0 | 6816 | 0.0459 | 0.8710 | 0.9419 | 0.9050 | 86 | 0.9116 | 0.9270 | 0.9192 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9252 | 0.9464 | 0.9357 | 0.9876 |
| 0.0351 | 72.0 | 6912 | 0.0469 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.8989 | 0.8989 | 0.8989 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9194 | 0.9311 | 0.9252 | 0.9852 |
| 0.0333 | 73.0 | 7008 | 0.0466 | 0.8817 | 0.9535 | 0.9162 | 86 | 0.9261 | 0.9157 | 0.9209 | 178 | 0.9764 | 0.9688 | 0.9725 | 128 | 0.9318 | 0.9413 | 0.9365 | 0.9876 |
| 0.0345 | 74.0 | 7104 | 0.0455 | 0.8817 | 0.9535 | 0.9162 | 86 | 0.9101 | 0.9101 | 0.9101 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9271 | 0.9413 | 0.9342 | 0.9873 |
| 0.033 | 75.0 | 7200 | 0.0458 | 0.8710 | 0.9419 | 0.9050 | 86 | 0.9261 | 0.9157 | 0.9209 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9318 | 0.9413 | 0.9365 | 0.9879 |
| 0.0334 | 76.0 | 7296 | 0.0455 | 0.8913 | 0.9535 | 0.9213 | 86 | 0.9205 | 0.9101 | 0.9153 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9342 | 0.9413 | 0.9377 | 0.9881 |
| 0.0332 | 77.0 | 7392 | 0.0442 | 0.8710 | 0.9419 | 0.9050 | 86 | 0.9213 | 0.9213 | 0.9213 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9296 | 0.9439 | 0.9367 | 0.9884 |
| 0.0337 | 78.0 | 7488 | 0.0470 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9314 | 0.9157 | 0.9235 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9416 | 0.9464 | 0.9440 | 0.9881 |
| 0.0334 | 79.0 | 7584 | 0.0465 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9209 | 0.9157 | 0.9183 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9369 | 0.9464 | 0.9416 | 0.9873 |
| 0.0319 | 80.0 | 7680 | 0.0455 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9318 | 0.9213 | 0.9266 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9418 | 0.9490 | 0.9454 | 0.9879 |
| 0.032 | 81.0 | 7776 | 0.0465 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9318 | 0.9213 | 0.9266 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9418 | 0.9490 | 0.9454 | 0.9876 |
| 0.0328 | 82.0 | 7872 | 0.0450 | 0.8817 | 0.9535 | 0.9162 | 86 | 0.9106 | 0.9157 | 0.9132 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9273 | 0.9439 | 0.9355 | 0.9884 |
| 0.032 | 83.0 | 7968 | 0.0449 | 0.8817 | 0.9535 | 0.9162 | 86 | 0.9106 | 0.9157 | 0.9132 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9273 | 0.9439 | 0.9355 | 0.9881 |
| 0.0309 | 84.0 | 8064 | 0.0451 | 0.8817 | 0.9535 | 0.9162 | 86 | 0.9106 | 0.9157 | 0.9132 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9273 | 0.9439 | 0.9355 | 0.9879 |
| 0.0315 | 85.0 | 8160 | 0.0455 | 0.8913 | 0.9535 | 0.9213 | 86 | 0.9205 | 0.9101 | 0.9153 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9342 | 0.9413 | 0.9377 | 0.9879 |
| 0.0305 | 86.0 | 8256 | 0.0456 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9266 | 0.9213 | 0.9239 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9394 | 0.9490 | 0.9442 | 0.9879 |
| 0.0318 | 87.0 | 8352 | 0.0457 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9209 | 0.9157 | 0.9183 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9369 | 0.9464 | 0.9416 | 0.9873 |
| 0.0317 | 88.0 | 8448 | 0.0459 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9209 | 0.9157 | 0.9183 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9369 | 0.9464 | 0.9416 | 0.9873 |
| 0.0319 | 89.0 | 8544 | 0.0463 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9261 | 0.9157 | 0.9209 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9392 | 0.9464 | 0.9428 | 0.9876 |
| 0.0311 | 90.0 | 8640 | 0.0465 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9314 | 0.9157 | 0.9235 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9416 | 0.9464 | 0.9440 | 0.9870 |
| 0.0297 | 91.0 | 8736 | 0.0460 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9257 | 0.9101 | 0.9178 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9391 | 0.9439 | 0.9415 | 0.9876 |
| 0.0306 | 92.0 | 8832 | 0.0462 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9257 | 0.9101 | 0.9178 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9391 | 0.9439 | 0.9415 | 0.9876 |
| 0.0335 | 93.0 | 8928 | 0.0460 | 0.8913 | 0.9535 | 0.9213 | 86 | 0.92 | 0.9045 | 0.9122 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9340 | 0.9388 | 0.9364 | 0.9870 |
| 0.0288 | 94.0 | 9024 | 0.0462 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9318 | 0.9213 | 0.9266 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9418 | 0.9490 | 0.9454 | 0.9881 |
| 0.0296 | 95.0 | 9120 | 0.0459 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9368 | 0.9157 | 0.9261 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9440 | 0.9464 | 0.9452 | 0.9881 |
| 0.0317 | 96.0 | 9216 | 0.0455 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9314 | 0.9157 | 0.9235 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9416 | 0.9464 | 0.9440 | 0.9884 |
| 0.0298 | 97.0 | 9312 | 0.0457 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9314 | 0.9157 | 0.9235 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9416 | 0.9464 | 0.9440 | 0.9884 |
| 0.0295 | 98.0 | 9408 | 0.0456 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9314 | 0.9157 | 0.9235 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9416 | 0.9464 | 0.9440 | 0.9884 |
| 0.0303 | 99.0 | 9504 | 0.0458 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9314 | 0.9157 | 0.9235 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9416 | 0.9464 | 0.9440 | 0.9884 |
| 0.0304 | 100.0 | 9600 | 0.0458 | 0.9022 | 0.9651 | 0.9326 | 86 | 0.9314 | 0.9157 | 0.9235 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9416 | 0.9464 | 0.9440 | 0.9884 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
|
flammenai/Mahou-1.3a-mistral-7B-GGUF
|
flammenai
| 2024-06-04T02:26:13Z | 0 | 1 |
transformers
|
[
"transformers",
"gguf",
"dataset:flammenai/MahouMix-v1",
"base_model:flammenai/Mahou-1.3a-mistral-7B",
"base_model:quantized:flammenai/Mahou-1.3a-mistral-7B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-06-02T03:39:19Z |
---
library_name: transformers
license: apache-2.0
base_model:
- flammenai/Mahou-1.3a-mistral-7B
datasets:
- flammenai/MahouMix-v1
---

# Mahou-1.3a-mistral-7B
Mahou is designed to provide short messages in a conversational context. It is capable of casual conversation and character roleplay.
### Chat Format
This model has been trained to use ChatML format.
```
<|im_start|>system
{{system}}<|im_end|>
<|im_start|>{{char}}
{{message}}<|im_end|>
<|im_start|>{{user}}
{{message}}<|im_end|>
```
### Roleplay Format
- Speech without quotes.
- Actions in `*asterisks*`
```
*leans against wall cooly* so like, i just casted a super strong spell at magician academy today, not gonna lie, felt badass.
```
### SillyTavern Settings
1. Use ChatML for the Context Template.
2. Enable Instruct Mode.
3. Use the [Mahou preset](https://huggingface.co/datasets/flammenai/Mahou-ST-ChatML-Instruct/raw/main/Mahou.json).
4. *Recommended* Additonal stopping strings: `["\n", "<|", "</"]`
### Method
DPO finetuned for 6 epochs using an A100 on Google Colab.
[Fine-tune a Mistral-7b model with Direct Preference Optimization](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac) - [Maxime Labonne](https://huggingface.co/mlabonne)
|
Ariffiq99/CRAB_COPA_KUCI_xlm_roberta_large_finetuned
|
Ariffiq99
| 2024-06-04T02:25:44Z | 6 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"multiple-choice",
"generated_from_trainer",
"base_model:Ariffiq99/COPA_KUCI_xlm_roberta_large_finetuned",
"base_model:finetune:Ariffiq99/COPA_KUCI_xlm_roberta_large_finetuned",
"license:mit",
"endpoints_compatible",
"region:us"
] |
multiple-choice
| 2024-06-04T00:05:24Z |
---
license: mit
base_model: Ariffiq99/COPA_KUCI_xlm_roberta_large_finetuned
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: CRAB_COPA_KUCI_xlm_roberta_large_finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CRAB_COPA_KUCI_xlm_roberta_large_finetuned
This model is a fine-tuned version of [Ariffiq99/COPA_KUCI_xlm_roberta_large_finetuned](https://huggingface.co/Ariffiq99/COPA_KUCI_xlm_roberta_large_finetuned) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2852
- F1: 0.7250
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.1412 | 1.0 | 2880 | 1.4904 | 0.675 |
| 1.0659 | 2.0 | 5760 | 1.7656 | 0.6986 |
| 0.9118 | 3.0 | 8640 | 1.4802 | 0.7083 |
| 0.8833 | 4.0 | 11520 | 0.9360 | 0.7208 |
| 0.9054 | 5.0 | 14400 | 1.3935 | 0.7111 |
| 0.8062 | 6.0 | 17280 | 1.1927 | 0.7194 |
| 0.8188 | 7.0 | 20160 | 1.1275 | 0.7278 |
| 0.7608 | 8.0 | 23040 | 1.2852 | 0.7250 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|
TTTXXX01/LS-zephyr-7b-sft-full
|
TTTXXX01
| 2024-06-04T02:25:00Z | 8 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"alignment-handbook",
"trl",
"dpo",
"generated_from_trainer",
"conversational",
"dataset:HuggingFaceH4/ultrafeedback_binarized",
"base_model:alignment-handbook/zephyr-7b-sft-full",
"base_model:finetune:alignment-handbook/zephyr-7b-sft-full",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-03T18:08:07Z |
---
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: LS-zephyr-7b-sft-full
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# LS-zephyr-7b-sft-full
This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the HuggingFaceH4/ultrafeedback_binarized dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 3
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- total_train_batch_size: 9
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|
Larbz-7/swin-tiny-patch4-window7-224-finetuned-eurosat
|
Larbz-7
| 2024-06-04T02:22:07Z | 219 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"swin",
"image-classification",
"generated_from_trainer",
"base_model:microsoft/swin-tiny-patch4-window7-224",
"base_model:finetune:microsoft/swin-tiny-patch4-window7-224",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2024-06-03T23:03:14Z |
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1335
- Accuracy: 0.5414
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 2.3862 | 0.9994 | 788 | 2.2541 | 0.5365 |
| 2.1651 | 2.0 | 1577 | 2.1688 | 0.5395 |
| 2.1559 | 2.9981 | 2364 | 2.1335 | 0.5414 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|
apwic/nerui-lora-r8-3
|
apwic
| 2024-06-04T02:20:47Z | 0 | 0 | null |
[
"tensorboard",
"generated_from_trainer",
"id",
"base_model:indolem/indobert-base-uncased",
"base_model:finetune:indolem/indobert-base-uncased",
"license:mit",
"region:us"
] | null | 2024-05-28T13:59:10Z |
---
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: nerui-lora-r8-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nerui-lora-r8-3
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0484
- Location Precision: 0.9
- Location Recall: 0.9419
- Location F1: 0.9205
- Location Number: 86
- Organization Precision: 0.9364
- Organization Recall: 0.9101
- Organization F1: 0.9231
- Organization Number: 178
- Person Precision: 0.9843
- Person Recall: 0.9766
- Person F1: 0.9804
- Person Number: 128
- Overall Precision: 0.9436
- Overall Recall: 0.9388
- Overall F1: 0.9412
- Overall Accuracy: 0.9846
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Location Precision | Location Recall | Location F1 | Location Number | Organization Precision | Organization Recall | Organization F1 | Organization Number | Person Precision | Person Recall | Person F1 | Person Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:-------------:|:---------:|:-------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.1489 | 1.0 | 96 | 0.6808 | 0.0 | 0.0 | 0.0 | 86 | 0.0 | 0.0 | 0.0 | 178 | 0.0 | 0.0 | 0.0 | 128 | 0.0 | 0.0 | 0.0 | 0.8435 |
| 0.6648 | 2.0 | 192 | 0.5508 | 0.0 | 0.0 | 0.0 | 86 | 0.5 | 0.0056 | 0.0111 | 178 | 0.0 | 0.0 | 0.0 | 128 | 0.3333 | 0.0026 | 0.0051 | 0.8437 |
| 0.5545 | 3.0 | 288 | 0.4324 | 0.0 | 0.0 | 0.0 | 86 | 0.3793 | 0.0618 | 0.1063 | 178 | 0.3714 | 0.1016 | 0.1595 | 128 | 0.3636 | 0.0612 | 0.1048 | 0.8543 |
| 0.4347 | 4.0 | 384 | 0.3185 | 0.3077 | 0.0465 | 0.0808 | 86 | 0.3876 | 0.2809 | 0.3257 | 178 | 0.4167 | 0.5078 | 0.4577 | 128 | 0.3993 | 0.3036 | 0.3449 | 0.8910 |
| 0.3178 | 5.0 | 480 | 0.2349 | 0.5714 | 0.3721 | 0.4507 | 86 | 0.5476 | 0.6461 | 0.5928 | 178 | 0.5890 | 0.75 | 0.6598 | 128 | 0.5664 | 0.6199 | 0.5920 | 0.9320 |
| 0.2406 | 6.0 | 576 | 0.1835 | 0.7407 | 0.6977 | 0.7186 | 86 | 0.6716 | 0.7584 | 0.7124 | 178 | 0.7467 | 0.875 | 0.8058 | 128 | 0.7106 | 0.7832 | 0.7451 | 0.9536 |
| 0.1942 | 7.0 | 672 | 0.1519 | 0.7701 | 0.7791 | 0.7746 | 86 | 0.7114 | 0.8034 | 0.7546 | 178 | 0.8786 | 0.9609 | 0.9179 | 128 | 0.7780 | 0.8495 | 0.8122 | 0.9625 |
| 0.1647 | 8.0 | 768 | 0.1279 | 0.7882 | 0.7791 | 0.7836 | 86 | 0.7487 | 0.8034 | 0.7751 | 178 | 0.8986 | 0.9688 | 0.9323 | 128 | 0.8068 | 0.8520 | 0.8288 | 0.9660 |
| 0.1479 | 9.0 | 864 | 0.1130 | 0.7978 | 0.8256 | 0.8114 | 86 | 0.7602 | 0.8371 | 0.7968 | 178 | 0.9118 | 0.9688 | 0.9394 | 128 | 0.8171 | 0.8776 | 0.8462 | 0.9690 |
| 0.135 | 10.0 | 960 | 0.1037 | 0.7660 | 0.8372 | 0.8 | 86 | 0.7755 | 0.8539 | 0.8128 | 178 | 0.9179 | 0.9609 | 0.9389 | 128 | 0.8184 | 0.8852 | 0.8505 | 0.9682 |
| 0.1317 | 11.0 | 1056 | 0.0951 | 0.7935 | 0.8488 | 0.8202 | 86 | 0.8182 | 0.8596 | 0.8384 | 178 | 0.9466 | 0.9688 | 0.9575 | 128 | 0.8537 | 0.8929 | 0.8728 | 0.9733 |
| 0.1196 | 12.0 | 1152 | 0.0904 | 0.7708 | 0.8605 | 0.8132 | 86 | 0.8404 | 0.8876 | 0.8634 | 178 | 0.9328 | 0.9766 | 0.9542 | 128 | 0.8541 | 0.9107 | 0.8815 | 0.9749 |
| 0.1108 | 13.0 | 1248 | 0.0824 | 0.7979 | 0.8721 | 0.8333 | 86 | 0.8466 | 0.8989 | 0.8719 | 178 | 0.9466 | 0.9688 | 0.9575 | 128 | 0.8671 | 0.9158 | 0.8908 | 0.9768 |
| 0.107 | 14.0 | 1344 | 0.0797 | 0.8 | 0.8837 | 0.8398 | 86 | 0.8729 | 0.8876 | 0.8802 | 178 | 0.9394 | 0.9688 | 0.9538 | 128 | 0.8775 | 0.9133 | 0.895 | 0.9781 |
| 0.1063 | 15.0 | 1440 | 0.0760 | 0.7872 | 0.8605 | 0.8222 | 86 | 0.8610 | 0.9045 | 0.8822 | 178 | 0.9394 | 0.9688 | 0.9538 | 128 | 0.8692 | 0.9158 | 0.8919 | 0.9776 |
| 0.1 | 16.0 | 1536 | 0.0724 | 0.8462 | 0.8953 | 0.8701 | 86 | 0.8703 | 0.9045 | 0.8871 | 178 | 0.9538 | 0.9688 | 0.9612 | 128 | 0.8916 | 0.9235 | 0.9073 | 0.9795 |
| 0.095 | 17.0 | 1632 | 0.0705 | 0.8261 | 0.8837 | 0.8539 | 86 | 0.8710 | 0.9101 | 0.8901 | 178 | 0.9466 | 0.9688 | 0.9575 | 128 | 0.8851 | 0.9235 | 0.9039 | 0.9789 |
| 0.0932 | 18.0 | 1728 | 0.0698 | 0.8370 | 0.8953 | 0.8652 | 86 | 0.8944 | 0.9045 | 0.8994 | 178 | 0.9466 | 0.9688 | 0.9575 | 128 | 0.8983 | 0.9235 | 0.9107 | 0.9803 |
| 0.0871 | 19.0 | 1824 | 0.0672 | 0.8387 | 0.9070 | 0.8715 | 86 | 0.8944 | 0.9045 | 0.8994 | 178 | 0.9466 | 0.9688 | 0.9575 | 128 | 0.8985 | 0.9260 | 0.9121 | 0.9800 |
| 0.0883 | 20.0 | 1920 | 0.0650 | 0.8298 | 0.9070 | 0.8667 | 86 | 0.8944 | 0.9045 | 0.8994 | 178 | 0.9612 | 0.9688 | 0.9650 | 128 | 0.9007 | 0.9260 | 0.9132 | 0.9803 |
| 0.0832 | 21.0 | 2016 | 0.0651 | 0.8298 | 0.9070 | 0.8667 | 86 | 0.8994 | 0.9045 | 0.9020 | 178 | 0.9612 | 0.9688 | 0.9650 | 128 | 0.9030 | 0.9260 | 0.9144 | 0.9811 |
| 0.0829 | 22.0 | 2112 | 0.0645 | 0.8125 | 0.9070 | 0.8571 | 86 | 0.8663 | 0.9101 | 0.8877 | 178 | 0.9466 | 0.9688 | 0.9575 | 128 | 0.8792 | 0.9286 | 0.9032 | 0.9787 |
| 0.0789 | 23.0 | 2208 | 0.0601 | 0.8211 | 0.9070 | 0.8619 | 86 | 0.8994 | 0.9045 | 0.9020 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9055 | 0.9286 | 0.9169 | 0.9819 |
| 0.078 | 24.0 | 2304 | 0.0612 | 0.8211 | 0.9070 | 0.8619 | 86 | 0.8927 | 0.8876 | 0.8901 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9025 | 0.9209 | 0.9116 | 0.9806 |
| 0.0756 | 25.0 | 2400 | 0.0594 | 0.8298 | 0.9070 | 0.8667 | 86 | 0.9045 | 0.9045 | 0.9045 | 178 | 0.9615 | 0.9766 | 0.9690 | 128 | 0.9055 | 0.9286 | 0.9169 | 0.9806 |
| 0.0767 | 26.0 | 2496 | 0.0588 | 0.7822 | 0.9186 | 0.8449 | 86 | 0.8960 | 0.8708 | 0.8832 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.8930 | 0.9158 | 0.9043 | 0.9800 |
| 0.0721 | 27.0 | 2592 | 0.0561 | 0.8125 | 0.9070 | 0.8571 | 86 | 0.8852 | 0.9101 | 0.8975 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.8968 | 0.9311 | 0.9136 | 0.9814 |
| 0.0719 | 28.0 | 2688 | 0.0559 | 0.8404 | 0.9186 | 0.8778 | 86 | 0.9040 | 0.8989 | 0.9014 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9123 | 0.9286 | 0.9204 | 0.9819 |
| 0.0702 | 29.0 | 2784 | 0.0543 | 0.8478 | 0.9070 | 0.8764 | 86 | 0.9016 | 0.9270 | 0.9141 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9132 | 0.9388 | 0.9258 | 0.9816 |
| 0.0711 | 30.0 | 2880 | 0.0539 | 0.8667 | 0.9070 | 0.8864 | 86 | 0.9066 | 0.9270 | 0.9167 | 178 | 0.9690 | 0.9766 | 0.9728 | 128 | 0.9177 | 0.9388 | 0.9281 | 0.9819 |
| 0.067 | 31.0 | 2976 | 0.0576 | 0.8061 | 0.9186 | 0.8587 | 86 | 0.9101 | 0.9101 | 0.9101 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9059 | 0.9337 | 0.9196 | 0.9819 |
| 0.0664 | 32.0 | 3072 | 0.0567 | 0.8211 | 0.9070 | 0.8619 | 86 | 0.9011 | 0.9213 | 0.9111 | 178 | 0.9690 | 0.9766 | 0.9728 | 128 | 0.9039 | 0.9362 | 0.9198 | 0.9814 |
| 0.0642 | 33.0 | 3168 | 0.0558 | 0.8316 | 0.9186 | 0.8729 | 86 | 0.9096 | 0.9045 | 0.9070 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9125 | 0.9311 | 0.9217 | 0.9825 |
| 0.0642 | 34.0 | 3264 | 0.0545 | 0.8587 | 0.9186 | 0.8876 | 86 | 0.9157 | 0.9157 | 0.9157 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9221 | 0.9362 | 0.9291 | 0.9835 |
| 0.0624 | 35.0 | 3360 | 0.0542 | 0.8681 | 0.9186 | 0.8927 | 86 | 0.9111 | 0.9213 | 0.9162 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9223 | 0.9388 | 0.9305 | 0.9830 |
| 0.0651 | 36.0 | 3456 | 0.0535 | 0.8778 | 0.9186 | 0.8977 | 86 | 0.9213 | 0.9213 | 0.9213 | 178 | 0.9690 | 0.9766 | 0.9728 | 128 | 0.9270 | 0.9388 | 0.9328 | 0.9833 |
| 0.0635 | 37.0 | 3552 | 0.0523 | 0.8864 | 0.9070 | 0.8966 | 86 | 0.9111 | 0.9213 | 0.9162 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9268 | 0.9362 | 0.9315 | 0.9833 |
| 0.0617 | 38.0 | 3648 | 0.0528 | 0.8587 | 0.9186 | 0.8876 | 86 | 0.9157 | 0.9157 | 0.9157 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9221 | 0.9362 | 0.9291 | 0.9838 |
| 0.0581 | 39.0 | 3744 | 0.0548 | 0.8061 | 0.9186 | 0.8587 | 86 | 0.9091 | 0.8989 | 0.9040 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9055 | 0.9286 | 0.9169 | 0.9827 |
| 0.0597 | 40.0 | 3840 | 0.0510 | 0.8778 | 0.9186 | 0.8977 | 86 | 0.9270 | 0.9270 | 0.9270 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9318 | 0.9413 | 0.9365 | 0.9846 |
| 0.0569 | 41.0 | 3936 | 0.0505 | 0.8778 | 0.9186 | 0.8977 | 86 | 0.9270 | 0.9270 | 0.9270 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9318 | 0.9413 | 0.9365 | 0.9849 |
| 0.0579 | 42.0 | 4032 | 0.0504 | 0.8778 | 0.9186 | 0.8977 | 86 | 0.9270 | 0.9270 | 0.9270 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9318 | 0.9413 | 0.9365 | 0.9843 |
| 0.0564 | 43.0 | 4128 | 0.0506 | 0.8681 | 0.9186 | 0.8927 | 86 | 0.9106 | 0.9157 | 0.9132 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9244 | 0.9362 | 0.9303 | 0.9843 |
| 0.0572 | 44.0 | 4224 | 0.0499 | 0.8681 | 0.9186 | 0.8927 | 86 | 0.9116 | 0.9270 | 0.9192 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9248 | 0.9413 | 0.9330 | 0.9849 |
| 0.0563 | 45.0 | 4320 | 0.0488 | 0.8681 | 0.9186 | 0.8927 | 86 | 0.9213 | 0.9213 | 0.9213 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9293 | 0.9388 | 0.9340 | 0.9843 |
| 0.0594 | 46.0 | 4416 | 0.0507 | 0.8681 | 0.9186 | 0.8927 | 86 | 0.9167 | 0.9270 | 0.9218 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9248 | 0.9413 | 0.9330 | 0.9841 |
| 0.0545 | 47.0 | 4512 | 0.0497 | 0.8681 | 0.9186 | 0.8927 | 86 | 0.9162 | 0.9213 | 0.9188 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9246 | 0.9388 | 0.9316 | 0.9846 |
| 0.0536 | 48.0 | 4608 | 0.0487 | 0.8681 | 0.9186 | 0.8927 | 86 | 0.9162 | 0.9213 | 0.9188 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9246 | 0.9388 | 0.9316 | 0.9849 |
| 0.0556 | 49.0 | 4704 | 0.0501 | 0.8681 | 0.9186 | 0.8927 | 86 | 0.9096 | 0.9045 | 0.9070 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9217 | 0.9311 | 0.9264 | 0.9833 |
| 0.0522 | 50.0 | 4800 | 0.0506 | 0.8791 | 0.9302 | 0.9040 | 86 | 0.9162 | 0.9213 | 0.9188 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9271 | 0.9413 | 0.9342 | 0.9854 |
| 0.0527 | 51.0 | 4896 | 0.0496 | 0.8791 | 0.9302 | 0.9040 | 86 | 0.9318 | 0.9213 | 0.9266 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9342 | 0.9413 | 0.9377 | 0.9852 |
| 0.0529 | 52.0 | 4992 | 0.0490 | 0.8791 | 0.9302 | 0.9040 | 86 | 0.9266 | 0.9213 | 0.9239 | 178 | 0.9688 | 0.9688 | 0.9688 | 128 | 0.9293 | 0.9388 | 0.9340 | 0.9852 |
| 0.0522 | 53.0 | 5088 | 0.0494 | 0.8791 | 0.9302 | 0.9040 | 86 | 0.9157 | 0.9157 | 0.9157 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9270 | 0.9388 | 0.9328 | 0.9846 |
| 0.0525 | 54.0 | 5184 | 0.0482 | 0.8889 | 0.9302 | 0.9091 | 86 | 0.9270 | 0.9270 | 0.9270 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9343 | 0.9439 | 0.9391 | 0.9860 |
| 0.0512 | 55.0 | 5280 | 0.0488 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.9318 | 0.9213 | 0.9266 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9318 | 0.9413 | 0.9365 | 0.9854 |
| 0.053 | 56.0 | 5376 | 0.0487 | 0.8791 | 0.9302 | 0.9040 | 86 | 0.9205 | 0.9101 | 0.9153 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9291 | 0.9362 | 0.9327 | 0.9849 |
| 0.0498 | 57.0 | 5472 | 0.0486 | 0.8791 | 0.9302 | 0.9040 | 86 | 0.9209 | 0.9157 | 0.9183 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9293 | 0.9388 | 0.9340 | 0.9846 |
| 0.0504 | 58.0 | 5568 | 0.0489 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.9318 | 0.9213 | 0.9266 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9318 | 0.9413 | 0.9365 | 0.9854 |
| 0.0456 | 59.0 | 5664 | 0.0492 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.9148 | 0.9045 | 0.9096 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9242 | 0.9337 | 0.9289 | 0.9846 |
| 0.0504 | 60.0 | 5760 | 0.0475 | 0.8681 | 0.9186 | 0.8927 | 86 | 0.9153 | 0.9101 | 0.9127 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9242 | 0.9337 | 0.9289 | 0.9849 |
| 0.0494 | 61.0 | 5856 | 0.0476 | 0.8681 | 0.9186 | 0.8927 | 86 | 0.9314 | 0.9157 | 0.9235 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9315 | 0.9362 | 0.9338 | 0.9852 |
| 0.046 | 62.0 | 5952 | 0.0478 | 0.8901 | 0.9419 | 0.9153 | 86 | 0.9318 | 0.9213 | 0.9266 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9391 | 0.9439 | 0.9415 | 0.9860 |
| 0.0463 | 63.0 | 6048 | 0.0485 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.9162 | 0.9213 | 0.9188 | 178 | 0.9688 | 0.9688 | 0.9688 | 128 | 0.9223 | 0.9388 | 0.9305 | 0.9849 |
| 0.0452 | 64.0 | 6144 | 0.0482 | 0.8791 | 0.9302 | 0.9040 | 86 | 0.9213 | 0.9213 | 0.9213 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9295 | 0.9413 | 0.9354 | 0.9852 |
| 0.0446 | 65.0 | 6240 | 0.0492 | 0.8791 | 0.9302 | 0.9040 | 86 | 0.9111 | 0.9213 | 0.9162 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9271 | 0.9413 | 0.9342 | 0.9854 |
| 0.0463 | 66.0 | 6336 | 0.0495 | 0.8587 | 0.9186 | 0.8876 | 86 | 0.9101 | 0.9101 | 0.9101 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9196 | 0.9337 | 0.9266 | 0.9843 |
| 0.0466 | 67.0 | 6432 | 0.0491 | 0.8791 | 0.9302 | 0.9040 | 86 | 0.9101 | 0.9101 | 0.9101 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9244 | 0.9362 | 0.9303 | 0.9846 |
| 0.0451 | 68.0 | 6528 | 0.0499 | 0.8791 | 0.9302 | 0.9040 | 86 | 0.9111 | 0.9213 | 0.9162 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9248 | 0.9413 | 0.9330 | 0.9852 |
| 0.047 | 69.0 | 6624 | 0.0493 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.9209 | 0.9157 | 0.9183 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9270 | 0.9388 | 0.9328 | 0.9852 |
| 0.0435 | 70.0 | 6720 | 0.0485 | 0.8791 | 0.9302 | 0.9040 | 86 | 0.9157 | 0.9157 | 0.9157 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9270 | 0.9388 | 0.9328 | 0.9849 |
| 0.045 | 71.0 | 6816 | 0.0490 | 0.8791 | 0.9302 | 0.9040 | 86 | 0.9111 | 0.9213 | 0.9162 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9248 | 0.9413 | 0.9330 | 0.9852 |
| 0.0458 | 72.0 | 6912 | 0.0497 | 0.8901 | 0.9419 | 0.9153 | 86 | 0.9257 | 0.9101 | 0.9178 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9340 | 0.9388 | 0.9364 | 0.9849 |
| 0.0442 | 73.0 | 7008 | 0.0495 | 0.8901 | 0.9419 | 0.9153 | 86 | 0.9157 | 0.9157 | 0.9157 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9295 | 0.9413 | 0.9354 | 0.9854 |
| 0.0442 | 74.0 | 7104 | 0.0490 | 0.8901 | 0.9419 | 0.9153 | 86 | 0.9153 | 0.9101 | 0.9127 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9293 | 0.9388 | 0.9340 | 0.9852 |
| 0.0437 | 75.0 | 7200 | 0.0487 | 0.8681 | 0.9186 | 0.8927 | 86 | 0.9209 | 0.9157 | 0.9183 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9268 | 0.9362 | 0.9315 | 0.9841 |
| 0.0458 | 76.0 | 7296 | 0.0493 | 0.8791 | 0.9302 | 0.9040 | 86 | 0.9209 | 0.9157 | 0.9183 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9316 | 0.9388 | 0.9352 | 0.9843 |
| 0.0448 | 77.0 | 7392 | 0.0487 | 0.8681 | 0.9186 | 0.8927 | 86 | 0.9153 | 0.9101 | 0.9127 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9266 | 0.9337 | 0.9301 | 0.9838 |
| 0.0451 | 78.0 | 7488 | 0.0495 | 0.8791 | 0.9302 | 0.9040 | 86 | 0.9209 | 0.9157 | 0.9183 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9293 | 0.9388 | 0.9340 | 0.9843 |
| 0.0449 | 79.0 | 7584 | 0.0498 | 0.8791 | 0.9302 | 0.9040 | 86 | 0.9213 | 0.9213 | 0.9213 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9318 | 0.9413 | 0.9365 | 0.9846 |
| 0.0436 | 80.0 | 7680 | 0.0493 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.9205 | 0.9101 | 0.9153 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9291 | 0.9362 | 0.9327 | 0.9843 |
| 0.044 | 81.0 | 7776 | 0.0494 | 0.8804 | 0.9419 | 0.9101 | 86 | 0.9209 | 0.9157 | 0.9183 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9318 | 0.9413 | 0.9365 | 0.9852 |
| 0.0438 | 82.0 | 7872 | 0.0485 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.9257 | 0.9101 | 0.9178 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9291 | 0.9362 | 0.9327 | 0.9846 |
| 0.0434 | 83.0 | 7968 | 0.0482 | 0.8901 | 0.9419 | 0.9153 | 86 | 0.9162 | 0.9213 | 0.9188 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9296 | 0.9439 | 0.9367 | 0.9857 |
| 0.0418 | 84.0 | 8064 | 0.0485 | 0.8696 | 0.9302 | 0.8989 | 86 | 0.9101 | 0.9101 | 0.9101 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9221 | 0.9362 | 0.9291 | 0.9846 |
| 0.0424 | 85.0 | 8160 | 0.0484 | 0.8901 | 0.9419 | 0.9153 | 86 | 0.9310 | 0.9101 | 0.9205 | 178 | 0.9766 | 0.9766 | 0.9766 | 128 | 0.9364 | 0.9388 | 0.9376 | 0.9849 |
| 0.042 | 86.0 | 8256 | 0.0482 | 0.8901 | 0.9419 | 0.9153 | 86 | 0.9266 | 0.9213 | 0.9239 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9367 | 0.9439 | 0.9403 | 0.9857 |
| 0.0431 | 87.0 | 8352 | 0.0482 | 0.8804 | 0.9419 | 0.9101 | 86 | 0.9257 | 0.9101 | 0.9178 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9340 | 0.9388 | 0.9364 | 0.9852 |
| 0.0417 | 88.0 | 8448 | 0.0482 | 0.8901 | 0.9419 | 0.9153 | 86 | 0.9257 | 0.9101 | 0.9178 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9364 | 0.9388 | 0.9376 | 0.9849 |
| 0.0421 | 89.0 | 8544 | 0.0482 | 0.8901 | 0.9419 | 0.9153 | 86 | 0.9261 | 0.9157 | 0.9209 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9365 | 0.9413 | 0.9389 | 0.9854 |
| 0.0412 | 90.0 | 8640 | 0.0485 | 0.8901 | 0.9419 | 0.9153 | 86 | 0.9257 | 0.9101 | 0.9178 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9364 | 0.9388 | 0.9376 | 0.9852 |
| 0.0407 | 91.0 | 8736 | 0.0484 | 0.8901 | 0.9419 | 0.9153 | 86 | 0.9310 | 0.9101 | 0.9205 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9388 | 0.9388 | 0.9388 | 0.9849 |
| 0.0405 | 92.0 | 8832 | 0.0487 | 0.9 | 0.9419 | 0.9205 | 86 | 0.9364 | 0.9101 | 0.9231 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9436 | 0.9388 | 0.9412 | 0.9846 |
| 0.0447 | 93.0 | 8928 | 0.0487 | 0.9 | 0.9419 | 0.9205 | 86 | 0.9364 | 0.9101 | 0.9231 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9436 | 0.9388 | 0.9412 | 0.9846 |
| 0.0402 | 94.0 | 9024 | 0.0487 | 0.9 | 0.9419 | 0.9205 | 86 | 0.9310 | 0.9101 | 0.9205 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9412 | 0.9388 | 0.9400 | 0.9849 |
| 0.0406 | 95.0 | 9120 | 0.0485 | 0.9 | 0.9419 | 0.9205 | 86 | 0.9364 | 0.9101 | 0.9231 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9436 | 0.9388 | 0.9412 | 0.9846 |
| 0.0413 | 96.0 | 9216 | 0.0485 | 0.9 | 0.9419 | 0.9205 | 86 | 0.9364 | 0.9101 | 0.9231 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9436 | 0.9388 | 0.9412 | 0.9846 |
| 0.0404 | 97.0 | 9312 | 0.0484 | 0.9 | 0.9419 | 0.9205 | 86 | 0.9368 | 0.9157 | 0.9261 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9437 | 0.9413 | 0.9425 | 0.9852 |
| 0.0403 | 98.0 | 9408 | 0.0485 | 0.9 | 0.9419 | 0.9205 | 86 | 0.9364 | 0.9101 | 0.9231 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9436 | 0.9388 | 0.9412 | 0.9846 |
| 0.0403 | 99.0 | 9504 | 0.0484 | 0.9 | 0.9419 | 0.9205 | 86 | 0.9364 | 0.9101 | 0.9231 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9436 | 0.9388 | 0.9412 | 0.9846 |
| 0.0417 | 100.0 | 9600 | 0.0484 | 0.9 | 0.9419 | 0.9205 | 86 | 0.9364 | 0.9101 | 0.9231 | 178 | 0.9843 | 0.9766 | 0.9804 | 128 | 0.9436 | 0.9388 | 0.9412 | 0.9846 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
|
rubenamtz0/llama-3-8b-lora-law2entity
|
rubenamtz0
| 2024-06-04T02:19:37Z | 15 | 1 |
peft
|
[
"peft",
"safetensors",
"gguf",
"llama",
"axolotl",
"generated_from_trainer",
"dataset:rubenamtz0/law_entity_recognition",
"base_model:meta-llama/Meta-Llama-3-8B",
"base_model:adapter:meta-llama/Meta-Llama-3-8B",
"license:llama3",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2024-06-02T01:21:16Z |
---
license: llama3
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B
model-index:
- name: llama-3-8b-lora-law2entity
results: []
datasets:
- rubenamtz0/law_entity_recognition
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: rubenamtz0/law_entity_recognition
type: alpaca
dataset_prepared_path:
val_set_size: 0.1
output_dir: ./outputs/lora-law
hub_model_id: rubenamtz0/llama-3-8b-lora-law2entity
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: entity-relationship-claim-ft
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
# llama-3-8b-lora-law2entity
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the rubenamtz0/law_entity_recognition dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1490
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- total_eval_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.2735 | 0.05 | 1 | 0.2923 |
| 0.2852 | 0.25 | 5 | 0.2742 |
| 0.2007 | 0.5 | 10 | 0.2015 |
| 0.1742 | 0.75 | 15 | 0.1807 |
| 0.1854 | 1.0 | 20 | 0.1688 |
| 0.159 | 1.1125 | 25 | 0.1630 |
| 0.1444 | 1.3625 | 30 | 0.1592 |
| 0.1479 | 1.6125 | 35 | 0.1565 |
| 0.1505 | 1.8625 | 40 | 0.1538 |
| 0.1369 | 2.1125 | 45 | 0.1518 |
| 0.1348 | 2.2125 | 50 | 0.1512 |
| 0.1287 | 2.4625 | 55 | 0.1510 |
| 0.1359 | 2.7125 | 60 | 0.1498 |
| 0.1367 | 2.9625 | 65 | 0.1491 |
| 0.1218 | 3.075 | 70 | 0.1491 |
| 0.1285 | 3.325 | 75 | 0.1493 |
| 0.1307 | 3.575 | 80 | 0.1490 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
|
amir1226/q-taxi-v3
|
amir1226
| 2024-06-04T02:16:11Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2024-06-04T02:16:09Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="amir1226/q-taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
apwic/nerui-lora-r16-2
|
apwic
| 2024-06-04T02:11:49Z | 0 | 0 | null |
[
"tensorboard",
"generated_from_trainer",
"id",
"base_model:indolem/indobert-base-uncased",
"base_model:finetune:indolem/indobert-base-uncased",
"license:mit",
"region:us"
] | null | 2024-05-28T13:41:36Z |
---
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: nerui-lora-r16-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nerui-lora-r16-2
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0417
- Location Precision: 0.8713
- Location Recall: 0.9462
- Location F1: 0.9072
- Location Number: 93
- Organization Precision: 0.8909
- Organization Recall: 0.8855
- Organization F1: 0.8882
- Organization Number: 166
- Person Precision: 0.9787
- Person Recall: 0.9718
- Person F1: 0.9753
- Person Number: 142
- Overall Precision: 0.9165
- Overall Recall: 0.9302
- Overall F1: 0.9233
- Overall Accuracy: 0.9868
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Location Precision | Location Recall | Location F1 | Location Number | Organization Precision | Organization Recall | Organization F1 | Organization Number | Person Precision | Person Recall | Person F1 | Person Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:-------------:|:---------:|:-------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.0607 | 1.0 | 96 | 0.6772 | 0.0 | 0.0 | 0.0 | 93 | 0.0 | 0.0 | 0.0 | 166 | 0.0 | 0.0 | 0.0 | 142 | 0.0 | 0.0 | 0.0 | 0.8343 |
| 0.6351 | 2.0 | 192 | 0.5251 | 0.0 | 0.0 | 0.0 | 93 | 0.5 | 0.0120 | 0.0235 | 166 | 0.0 | 0.0 | 0.0 | 142 | 0.3333 | 0.0050 | 0.0098 | 0.8348 |
| 0.4897 | 3.0 | 288 | 0.3649 | 0.0 | 0.0 | 0.0 | 93 | 0.3529 | 0.2169 | 0.2687 | 166 | 0.3286 | 0.3239 | 0.3262 | 142 | 0.3267 | 0.2045 | 0.2515 | 0.8763 |
| 0.335 | 4.0 | 384 | 0.2323 | 0.3684 | 0.3011 | 0.3314 | 93 | 0.5099 | 0.6205 | 0.5598 | 166 | 0.5683 | 0.7324 | 0.6400 | 142 | 0.5098 | 0.5860 | 0.5452 | 0.9289 |
| 0.2342 | 5.0 | 480 | 0.1642 | 0.5895 | 0.6022 | 0.5957 | 93 | 0.6396 | 0.7590 | 0.6942 | 166 | 0.8269 | 0.9085 | 0.8658 | 142 | 0.6942 | 0.7756 | 0.7326 | 0.9564 |
| 0.1832 | 6.0 | 576 | 0.1316 | 0.7027 | 0.8387 | 0.7647 | 93 | 0.7432 | 0.8193 | 0.7794 | 166 | 0.9257 | 0.9648 | 0.9448 | 142 | 0.7941 | 0.8753 | 0.8327 | 0.9657 |
| 0.1526 | 7.0 | 672 | 0.1085 | 0.7692 | 0.8602 | 0.8122 | 93 | 0.7433 | 0.8373 | 0.7875 | 166 | 0.9079 | 0.9718 | 0.9388 | 142 | 0.8059 | 0.8903 | 0.8460 | 0.9690 |
| 0.136 | 8.0 | 768 | 0.0910 | 0.75 | 0.8710 | 0.8060 | 93 | 0.8011 | 0.8494 | 0.8246 | 166 | 0.9262 | 0.9718 | 0.9485 | 142 | 0.8314 | 0.8978 | 0.8633 | 0.9734 |
| 0.1234 | 9.0 | 864 | 0.0817 | 0.7981 | 0.8925 | 0.8426 | 93 | 0.8229 | 0.8675 | 0.8446 | 166 | 0.9133 | 0.9648 | 0.9384 | 142 | 0.8485 | 0.9077 | 0.8771 | 0.9753 |
| 0.1123 | 10.0 | 960 | 0.0774 | 0.7981 | 0.8925 | 0.8426 | 93 | 0.8207 | 0.9096 | 0.8629 | 166 | 0.9388 | 0.9718 | 0.9550 | 142 | 0.8552 | 0.9277 | 0.8900 | 0.9772 |
| 0.1042 | 11.0 | 1056 | 0.0683 | 0.8039 | 0.8817 | 0.8410 | 93 | 0.8371 | 0.8976 | 0.8663 | 166 | 0.9448 | 0.9648 | 0.9547 | 142 | 0.8659 | 0.9177 | 0.8910 | 0.9789 |
| 0.1 | 12.0 | 1152 | 0.0661 | 0.8317 | 0.9032 | 0.8660 | 93 | 0.8436 | 0.9096 | 0.8754 | 166 | 0.9514 | 0.9648 | 0.9580 | 142 | 0.8774 | 0.9277 | 0.9018 | 0.9800 |
| 0.0949 | 13.0 | 1248 | 0.0622 | 0.8416 | 0.9140 | 0.8763 | 93 | 0.8571 | 0.9036 | 0.8798 | 166 | 0.9580 | 0.9648 | 0.9614 | 142 | 0.8878 | 0.9277 | 0.9073 | 0.9811 |
| 0.091 | 14.0 | 1344 | 0.0597 | 0.8173 | 0.9140 | 0.8629 | 93 | 0.8788 | 0.8735 | 0.8761 | 166 | 0.9580 | 0.9648 | 0.9614 | 142 | 0.8908 | 0.9152 | 0.9028 | 0.9802 |
| 0.0852 | 15.0 | 1440 | 0.0593 | 0.84 | 0.9032 | 0.8705 | 93 | 0.8306 | 0.9157 | 0.8711 | 166 | 0.9650 | 0.9718 | 0.9684 | 142 | 0.8779 | 0.9327 | 0.9045 | 0.9800 |
| 0.0874 | 16.0 | 1536 | 0.0591 | 0.7838 | 0.9355 | 0.8529 | 93 | 0.8538 | 0.8795 | 0.8665 | 166 | 0.9514 | 0.9648 | 0.9580 | 142 | 0.8685 | 0.9227 | 0.8948 | 0.9797 |
| 0.0817 | 17.0 | 1632 | 0.0538 | 0.8350 | 0.9247 | 0.8776 | 93 | 0.8876 | 0.9036 | 0.8955 | 166 | 0.9580 | 0.9648 | 0.9614 | 142 | 0.8988 | 0.9302 | 0.9142 | 0.9830 |
| 0.0784 | 18.0 | 1728 | 0.0511 | 0.8350 | 0.9247 | 0.8776 | 93 | 0.8830 | 0.9096 | 0.8961 | 166 | 0.9580 | 0.9648 | 0.9614 | 142 | 0.8969 | 0.9327 | 0.9144 | 0.9833 |
| 0.0764 | 19.0 | 1824 | 0.0523 | 0.7890 | 0.9247 | 0.8515 | 93 | 0.8841 | 0.8735 | 0.8788 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.8892 | 0.9202 | 0.9044 | 0.9822 |
| 0.0735 | 20.0 | 1920 | 0.0524 | 0.8018 | 0.9570 | 0.8725 | 93 | 0.8889 | 0.8675 | 0.8780 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.8940 | 0.9252 | 0.9093 | 0.9819 |
| 0.074 | 21.0 | 2016 | 0.0519 | 0.8 | 0.9462 | 0.8670 | 93 | 0.8788 | 0.8735 | 0.8761 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.8897 | 0.9252 | 0.9071 | 0.9822 |
| 0.0695 | 22.0 | 2112 | 0.0529 | 0.7857 | 0.9462 | 0.8585 | 93 | 0.8353 | 0.8554 | 0.8452 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.8679 | 0.9177 | 0.8921 | 0.9805 |
| 0.0673 | 23.0 | 2208 | 0.0519 | 0.8056 | 0.9355 | 0.8657 | 93 | 0.9045 | 0.8554 | 0.8793 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.9017 | 0.9152 | 0.9084 | 0.9824 |
| 0.0677 | 24.0 | 2304 | 0.0530 | 0.7982 | 0.9355 | 0.8614 | 93 | 0.9045 | 0.8554 | 0.8793 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.8995 | 0.9152 | 0.9073 | 0.9811 |
| 0.0649 | 25.0 | 2400 | 0.0501 | 0.8018 | 0.9570 | 0.8725 | 93 | 0.8994 | 0.8614 | 0.8800 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.8981 | 0.9227 | 0.9102 | 0.9822 |
| 0.0647 | 26.0 | 2496 | 0.0478 | 0.8365 | 0.9355 | 0.8832 | 93 | 0.9057 | 0.8675 | 0.8862 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.9111 | 0.9202 | 0.9156 | 0.9838 |
| 0.0579 | 27.0 | 2592 | 0.0466 | 0.8208 | 0.9355 | 0.8744 | 93 | 0.8963 | 0.8855 | 0.8909 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.9029 | 0.9277 | 0.9151 | 0.9835 |
| 0.0627 | 28.0 | 2688 | 0.0488 | 0.8131 | 0.9355 | 0.8700 | 93 | 0.8855 | 0.8855 | 0.8855 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.8964 | 0.9277 | 0.9118 | 0.9819 |
| 0.0601 | 29.0 | 2784 | 0.0487 | 0.8131 | 0.9355 | 0.8700 | 93 | 0.8882 | 0.9096 | 0.8988 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.8974 | 0.9377 | 0.9171 | 0.9827 |
| 0.0575 | 30.0 | 2880 | 0.0459 | 0.8286 | 0.9355 | 0.8788 | 93 | 0.8922 | 0.8976 | 0.8949 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.9034 | 0.9327 | 0.9178 | 0.9833 |
| 0.0569 | 31.0 | 2976 | 0.0455 | 0.8073 | 0.9462 | 0.8713 | 93 | 0.8951 | 0.8735 | 0.8841 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.8983 | 0.9252 | 0.9115 | 0.9841 |
| 0.0548 | 32.0 | 3072 | 0.0445 | 0.8224 | 0.9462 | 0.88 | 93 | 0.8889 | 0.8675 | 0.8780 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.9002 | 0.9227 | 0.9113 | 0.9846 |
| 0.0528 | 33.0 | 3168 | 0.0471 | 0.7946 | 0.9570 | 0.8683 | 93 | 0.8944 | 0.8675 | 0.8807 | 166 | 0.9858 | 0.9789 | 0.9823 | 142 | 0.8986 | 0.9277 | 0.9129 | 0.9827 |
| 0.0533 | 34.0 | 3264 | 0.0445 | 0.8073 | 0.9462 | 0.8713 | 93 | 0.8802 | 0.8855 | 0.8829 | 166 | 0.9789 | 0.9789 | 0.9789 | 142 | 0.8947 | 0.9327 | 0.9133 | 0.9833 |
| 0.0503 | 35.0 | 3360 | 0.0425 | 0.8286 | 0.9355 | 0.8788 | 93 | 0.8922 | 0.8976 | 0.8949 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.9034 | 0.9327 | 0.9178 | 0.9852 |
| 0.0531 | 36.0 | 3456 | 0.0447 | 0.7928 | 0.9462 | 0.8627 | 93 | 0.8957 | 0.8795 | 0.8875 | 166 | 0.9648 | 0.9648 | 0.9648 | 142 | 0.8918 | 0.9252 | 0.9082 | 0.9830 |
| 0.0493 | 37.0 | 3552 | 0.0442 | 0.8365 | 0.9355 | 0.8832 | 93 | 0.8970 | 0.8916 | 0.8943 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.9075 | 0.9302 | 0.9187 | 0.9841 |
| 0.05 | 38.0 | 3648 | 0.0423 | 0.87 | 0.9355 | 0.9016 | 93 | 0.9042 | 0.9096 | 0.9069 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.9193 | 0.9377 | 0.9284 | 0.9857 |
| 0.0489 | 39.0 | 3744 | 0.0416 | 0.8529 | 0.9355 | 0.8923 | 93 | 0.8994 | 0.9157 | 0.9075 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.9128 | 0.9401 | 0.9263 | 0.9855 |
| 0.0481 | 40.0 | 3840 | 0.0411 | 0.8544 | 0.9462 | 0.8980 | 93 | 0.9068 | 0.8795 | 0.8930 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.9163 | 0.9277 | 0.9219 | 0.9852 |
| 0.0462 | 41.0 | 3936 | 0.0429 | 0.8286 | 0.9355 | 0.8788 | 93 | 0.9036 | 0.9036 | 0.9036 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9102 | 0.9352 | 0.9225 | 0.9855 |
| 0.0468 | 42.0 | 4032 | 0.0435 | 0.8302 | 0.9462 | 0.8844 | 93 | 0.9030 | 0.8976 | 0.9003 | 166 | 0.9858 | 0.9789 | 0.9823 | 142 | 0.9126 | 0.9377 | 0.9250 | 0.9846 |
| 0.0469 | 43.0 | 4128 | 0.0423 | 0.8878 | 0.9355 | 0.9110 | 93 | 0.8976 | 0.8976 | 0.8976 | 166 | 0.9858 | 0.9789 | 0.9823 | 142 | 0.9259 | 0.9352 | 0.9305 | 0.9860 |
| 0.0472 | 44.0 | 4224 | 0.0460 | 0.8148 | 0.9462 | 0.8756 | 93 | 0.8938 | 0.8614 | 0.8773 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.9 | 0.9202 | 0.9100 | 0.9830 |
| 0.0468 | 45.0 | 4320 | 0.0420 | 0.8713 | 0.9462 | 0.9072 | 93 | 0.9062 | 0.8735 | 0.8896 | 166 | 0.9858 | 0.9789 | 0.9823 | 142 | 0.9254 | 0.9277 | 0.9265 | 0.9852 |
| 0.0453 | 46.0 | 4416 | 0.0425 | 0.8462 | 0.9462 | 0.8934 | 93 | 0.8994 | 0.8614 | 0.8800 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.9111 | 0.9202 | 0.9156 | 0.9852 |
| 0.0428 | 47.0 | 4512 | 0.0432 | 0.8788 | 0.9355 | 0.9062 | 93 | 0.8902 | 0.9277 | 0.9086 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9177 | 0.9451 | 0.9312 | 0.9855 |
| 0.043 | 48.0 | 4608 | 0.0433 | 0.8381 | 0.9462 | 0.8889 | 93 | 0.8924 | 0.8494 | 0.8704 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.9062 | 0.9152 | 0.9107 | 0.9841 |
| 0.0443 | 49.0 | 4704 | 0.0437 | 0.8529 | 0.9355 | 0.8923 | 93 | 0.8929 | 0.9036 | 0.8982 | 166 | 0.9648 | 0.9648 | 0.9648 | 142 | 0.9078 | 0.9327 | 0.9200 | 0.9846 |
| 0.0466 | 50.0 | 4800 | 0.0430 | 0.8627 | 0.9462 | 0.9026 | 93 | 0.8922 | 0.8976 | 0.8949 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9146 | 0.9352 | 0.9248 | 0.9860 |
| 0.0419 | 51.0 | 4896 | 0.0430 | 0.8462 | 0.9462 | 0.8934 | 93 | 0.8951 | 0.8735 | 0.8841 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9115 | 0.9252 | 0.9183 | 0.9852 |
| 0.0421 | 52.0 | 4992 | 0.0404 | 0.9158 | 0.9355 | 0.9255 | 93 | 0.8953 | 0.9277 | 0.9112 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9289 | 0.9451 | 0.9370 | 0.9874 |
| 0.0409 | 53.0 | 5088 | 0.0431 | 0.8462 | 0.9462 | 0.8934 | 93 | 0.8982 | 0.9036 | 0.9009 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9126 | 0.9377 | 0.9250 | 0.9857 |
| 0.0391 | 54.0 | 5184 | 0.0417 | 0.8969 | 0.9355 | 0.9158 | 93 | 0.9012 | 0.9337 | 0.9172 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9268 | 0.9476 | 0.9371 | 0.9868 |
| 0.0383 | 55.0 | 5280 | 0.0402 | 0.8980 | 0.9462 | 0.9215 | 93 | 0.9053 | 0.9217 | 0.9134 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9289 | 0.9451 | 0.9370 | 0.9877 |
| 0.0399 | 56.0 | 5376 | 0.0431 | 0.8627 | 0.9462 | 0.9026 | 93 | 0.9048 | 0.9157 | 0.9102 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9197 | 0.9426 | 0.9310 | 0.9855 |
| 0.04 | 57.0 | 5472 | 0.0425 | 0.8544 | 0.9462 | 0.8980 | 93 | 0.9024 | 0.8916 | 0.8970 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9167 | 0.9327 | 0.9246 | 0.9855 |
| 0.04 | 58.0 | 5568 | 0.0422 | 0.8713 | 0.9462 | 0.9072 | 93 | 0.9146 | 0.9036 | 0.9091 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9261 | 0.9377 | 0.9318 | 0.9868 |
| 0.0372 | 59.0 | 5664 | 0.0425 | 0.8713 | 0.9462 | 0.9072 | 93 | 0.9036 | 0.9036 | 0.9036 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9216 | 0.9377 | 0.9295 | 0.9863 |
| 0.0384 | 60.0 | 5760 | 0.0422 | 0.8713 | 0.9462 | 0.9072 | 93 | 0.9146 | 0.9036 | 0.9091 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9261 | 0.9377 | 0.9318 | 0.9866 |
| 0.0379 | 61.0 | 5856 | 0.0402 | 0.8627 | 0.9462 | 0.9026 | 93 | 0.9091 | 0.9036 | 0.9063 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9216 | 0.9377 | 0.9295 | 0.9877 |
| 0.0362 | 62.0 | 5952 | 0.0387 | 0.8889 | 0.9462 | 0.9167 | 93 | 0.9036 | 0.9036 | 0.9036 | 166 | 0.9648 | 0.9648 | 0.9648 | 142 | 0.9214 | 0.9352 | 0.9282 | 0.9871 |
| 0.036 | 63.0 | 6048 | 0.0424 | 0.8381 | 0.9462 | 0.8889 | 93 | 0.9030 | 0.8976 | 0.9003 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9124 | 0.9352 | 0.9236 | 0.9852 |
| 0.036 | 64.0 | 6144 | 0.0404 | 0.88 | 0.9462 | 0.9119 | 93 | 0.9024 | 0.8916 | 0.8970 | 166 | 0.9580 | 0.9648 | 0.9614 | 142 | 0.9165 | 0.9302 | 0.9233 | 0.9857 |
| 0.033 | 65.0 | 6240 | 0.0419 | 0.8544 | 0.9462 | 0.8980 | 93 | 0.9030 | 0.8976 | 0.9003 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9169 | 0.9352 | 0.9259 | 0.9857 |
| 0.0348 | 66.0 | 6336 | 0.0396 | 0.88 | 0.9462 | 0.9119 | 93 | 0.9024 | 0.8916 | 0.8970 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9235 | 0.9327 | 0.9280 | 0.9868 |
| 0.0346 | 67.0 | 6432 | 0.0410 | 0.8627 | 0.9462 | 0.9026 | 93 | 0.8862 | 0.8916 | 0.8889 | 166 | 0.9648 | 0.9648 | 0.9648 | 142 | 0.9075 | 0.9302 | 0.9187 | 0.9849 |
| 0.0337 | 68.0 | 6528 | 0.0416 | 0.8544 | 0.9462 | 0.8980 | 93 | 0.9030 | 0.8976 | 0.9003 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9169 | 0.9352 | 0.9259 | 0.9857 |
| 0.0355 | 69.0 | 6624 | 0.0418 | 0.8627 | 0.9462 | 0.9026 | 93 | 0.8909 | 0.8855 | 0.8882 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9142 | 0.9302 | 0.9221 | 0.9855 |
| 0.0337 | 70.0 | 6720 | 0.0408 | 0.8713 | 0.9462 | 0.9072 | 93 | 0.9146 | 0.9036 | 0.9091 | 166 | 0.9718 | 0.9718 | 0.9718 | 142 | 0.9238 | 0.9377 | 0.9307 | 0.9863 |
| 0.0351 | 71.0 | 6816 | 0.0411 | 0.8713 | 0.9462 | 0.9072 | 93 | 0.9152 | 0.9096 | 0.9124 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9263 | 0.9401 | 0.9332 | 0.9860 |
| 0.0337 | 72.0 | 6912 | 0.0411 | 0.9072 | 0.9462 | 0.9263 | 93 | 0.8929 | 0.9036 | 0.8982 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9261 | 0.9377 | 0.9318 | 0.9866 |
| 0.0317 | 73.0 | 7008 | 0.0415 | 0.8713 | 0.9462 | 0.9072 | 93 | 0.9036 | 0.9036 | 0.9036 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9216 | 0.9377 | 0.9295 | 0.9860 |
| 0.0308 | 74.0 | 7104 | 0.0442 | 0.8558 | 0.9570 | 0.9036 | 93 | 0.9202 | 0.9036 | 0.9119 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9240 | 0.9401 | 0.9320 | 0.9860 |
| 0.0331 | 75.0 | 7200 | 0.0416 | 0.9072 | 0.9462 | 0.9263 | 93 | 0.9053 | 0.9217 | 0.9134 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9312 | 0.9451 | 0.9381 | 0.9879 |
| 0.0307 | 76.0 | 7296 | 0.0426 | 0.8725 | 0.9570 | 0.9128 | 93 | 0.8963 | 0.8855 | 0.8909 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9189 | 0.9327 | 0.9257 | 0.9860 |
| 0.0311 | 77.0 | 7392 | 0.0411 | 0.8889 | 0.9462 | 0.9167 | 93 | 0.8869 | 0.8976 | 0.8922 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9191 | 0.9352 | 0.9271 | 0.9871 |
| 0.0321 | 78.0 | 7488 | 0.0421 | 0.8713 | 0.9462 | 0.9072 | 93 | 0.8862 | 0.8916 | 0.8889 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9144 | 0.9327 | 0.9235 | 0.9863 |
| 0.0314 | 79.0 | 7584 | 0.0419 | 0.88 | 0.9462 | 0.9119 | 93 | 0.8869 | 0.8976 | 0.8922 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9169 | 0.9352 | 0.9259 | 0.9866 |
| 0.0327 | 80.0 | 7680 | 0.0420 | 0.88 | 0.9462 | 0.9119 | 93 | 0.9096 | 0.9096 | 0.9096 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9263 | 0.9401 | 0.9332 | 0.9868 |
| 0.0338 | 81.0 | 7776 | 0.0423 | 0.8713 | 0.9462 | 0.9072 | 93 | 0.9091 | 0.9036 | 0.9063 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9238 | 0.9377 | 0.9307 | 0.9871 |
| 0.0326 | 82.0 | 7872 | 0.0430 | 0.8713 | 0.9462 | 0.9072 | 93 | 0.9080 | 0.8916 | 0.8997 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9235 | 0.9327 | 0.9280 | 0.9857 |
| 0.0311 | 83.0 | 7968 | 0.0420 | 0.8889 | 0.9462 | 0.9167 | 93 | 0.8970 | 0.8916 | 0.8943 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9235 | 0.9327 | 0.9280 | 0.9857 |
| 0.0319 | 84.0 | 8064 | 0.0435 | 0.8462 | 0.9462 | 0.8934 | 93 | 0.8970 | 0.8916 | 0.8943 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9122 | 0.9327 | 0.9223 | 0.9855 |
| 0.0312 | 85.0 | 8160 | 0.0414 | 0.88 | 0.9462 | 0.9119 | 93 | 0.8909 | 0.8855 | 0.8882 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9187 | 0.9302 | 0.9244 | 0.9863 |
| 0.0313 | 86.0 | 8256 | 0.0418 | 0.88 | 0.9462 | 0.9119 | 93 | 0.8862 | 0.8916 | 0.8889 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9167 | 0.9327 | 0.9246 | 0.9866 |
| 0.0315 | 87.0 | 8352 | 0.0414 | 0.88 | 0.9462 | 0.9119 | 93 | 0.8916 | 0.8916 | 0.8916 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9189 | 0.9327 | 0.9257 | 0.9868 |
| 0.0314 | 88.0 | 8448 | 0.0415 | 0.88 | 0.9462 | 0.9119 | 93 | 0.9024 | 0.8916 | 0.8970 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9235 | 0.9327 | 0.9280 | 0.9866 |
| 0.0301 | 89.0 | 8544 | 0.0416 | 0.88 | 0.9462 | 0.9119 | 93 | 0.8970 | 0.8916 | 0.8943 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9212 | 0.9327 | 0.9269 | 0.9868 |
| 0.0303 | 90.0 | 8640 | 0.0410 | 0.88 | 0.9462 | 0.9119 | 93 | 0.9030 | 0.8976 | 0.9003 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9236 | 0.9352 | 0.9294 | 0.9866 |
| 0.0292 | 91.0 | 8736 | 0.0412 | 0.8713 | 0.9462 | 0.9072 | 93 | 0.8909 | 0.8855 | 0.8882 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9165 | 0.9302 | 0.9233 | 0.9863 |
| 0.0292 | 92.0 | 8832 | 0.0424 | 0.88 | 0.9462 | 0.9119 | 93 | 0.9080 | 0.8916 | 0.8997 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9257 | 0.9327 | 0.9292 | 0.9868 |
| 0.0295 | 93.0 | 8928 | 0.0426 | 0.88 | 0.9462 | 0.9119 | 93 | 0.9080 | 0.8916 | 0.8997 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9257 | 0.9327 | 0.9292 | 0.9866 |
| 0.0304 | 94.0 | 9024 | 0.0422 | 0.88 | 0.9462 | 0.9119 | 93 | 0.8963 | 0.8855 | 0.8909 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9210 | 0.9302 | 0.9256 | 0.9866 |
| 0.0304 | 95.0 | 9120 | 0.0415 | 0.8713 | 0.9462 | 0.9072 | 93 | 0.8855 | 0.8855 | 0.8855 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9142 | 0.9302 | 0.9221 | 0.9866 |
| 0.0312 | 96.0 | 9216 | 0.0415 | 0.88 | 0.9462 | 0.9119 | 93 | 0.8862 | 0.8916 | 0.8889 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9167 | 0.9327 | 0.9246 | 0.9868 |
| 0.0291 | 97.0 | 9312 | 0.0418 | 0.8713 | 0.9462 | 0.9072 | 93 | 0.8855 | 0.8855 | 0.8855 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9142 | 0.9302 | 0.9221 | 0.9866 |
| 0.0306 | 98.0 | 9408 | 0.0417 | 0.88 | 0.9462 | 0.9119 | 93 | 0.8916 | 0.8916 | 0.8916 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9189 | 0.9327 | 0.9257 | 0.9871 |
| 0.0293 | 99.0 | 9504 | 0.0417 | 0.8713 | 0.9462 | 0.9072 | 93 | 0.8909 | 0.8855 | 0.8882 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9165 | 0.9302 | 0.9233 | 0.9868 |
| 0.0302 | 100.0 | 9600 | 0.0417 | 0.8713 | 0.9462 | 0.9072 | 93 | 0.8909 | 0.8855 | 0.8882 | 166 | 0.9787 | 0.9718 | 0.9753 | 142 | 0.9165 | 0.9302 | 0.9233 | 0.9868 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
|
zaynu/llama2-finetune
|
zaynu
| 2024-06-04T01:56:39Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-04T01:35:17Z |
---
license: apache-2.0
---
|
apwic/nerui-lora-r16-1
|
apwic
| 2024-06-04T01:54:08Z | 0 | 0 | null |
[
"tensorboard",
"generated_from_trainer",
"id",
"base_model:indolem/indobert-base-uncased",
"base_model:finetune:indolem/indobert-base-uncased",
"license:mit",
"region:us"
] | null | 2024-05-28T13:06:00Z |
---
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: nerui-lora-r16-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nerui-lora-r16-1
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0342
- Location Precision: 0.9316
- Location Recall: 0.9397
- Location F1: 0.9356
- Location Number: 116
- Organization Precision: 0.9484
- Organization Recall: 0.9304
- Organization F1: 0.9393
- Organization Number: 158
- Person Precision: 0.984
- Person Recall: 0.9919
- Person F1: 0.9880
- Person Number: 124
- Overall Precision: 0.9547
- Overall Recall: 0.9523
- Overall F1: 0.9535
- Overall Accuracy: 0.9896
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Location Precision | Location Recall | Location F1 | Location Number | Organization Precision | Organization Recall | Organization F1 | Organization Number | Person Precision | Person Recall | Person F1 | Person Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:-------------:|:---------:|:-------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.0545 | 1.0 | 96 | 0.6622 | 0.0 | 0.0 | 0.0 | 116 | 0.0 | 0.0 | 0.0 | 158 | 0.0 | 0.0 | 0.0 | 124 | 0.0 | 0.0 | 0.0 | 0.8394 |
| 0.64 | 2.0 | 192 | 0.5206 | 0.0 | 0.0 | 0.0 | 116 | 0.5 | 0.0127 | 0.0247 | 158 | 0.0 | 0.0 | 0.0 | 124 | 0.3333 | 0.0050 | 0.0099 | 0.8400 |
| 0.503 | 3.0 | 288 | 0.3728 | 0.0833 | 0.0086 | 0.0156 | 116 | 0.3625 | 0.1835 | 0.2437 | 158 | 0.36 | 0.2903 | 0.3214 | 124 | 0.3438 | 0.1658 | 0.2237 | 0.8718 |
| 0.3537 | 4.0 | 384 | 0.2518 | 0.3947 | 0.2586 | 0.3125 | 116 | 0.4885 | 0.5380 | 0.5120 | 158 | 0.5521 | 0.7258 | 0.6272 | 124 | 0.4964 | 0.5151 | 0.5055 | 0.9198 |
| 0.2513 | 5.0 | 480 | 0.1812 | 0.6111 | 0.5690 | 0.5893 | 116 | 0.5979 | 0.7342 | 0.6591 | 158 | 0.8028 | 0.9194 | 0.8571 | 124 | 0.6667 | 0.7437 | 0.7031 | 0.9498 |
| 0.1948 | 6.0 | 576 | 0.1359 | 0.7438 | 0.7759 | 0.7595 | 116 | 0.7368 | 0.7975 | 0.7660 | 158 | 0.8905 | 0.9839 | 0.9349 | 124 | 0.7879 | 0.8492 | 0.8174 | 0.9657 |
| 0.1623 | 7.0 | 672 | 0.1109 | 0.7917 | 0.8190 | 0.8051 | 116 | 0.7619 | 0.8101 | 0.7853 | 158 | 0.9104 | 0.9839 | 0.9457 | 124 | 0.8175 | 0.8668 | 0.8415 | 0.9701 |
| 0.1397 | 8.0 | 768 | 0.0954 | 0.8083 | 0.8362 | 0.8220 | 116 | 0.7976 | 0.8481 | 0.8221 | 158 | 0.9389 | 0.9919 | 0.9647 | 124 | 0.8449 | 0.8894 | 0.8666 | 0.9739 |
| 0.1266 | 9.0 | 864 | 0.0877 | 0.8189 | 0.8966 | 0.8560 | 116 | 0.8155 | 0.8671 | 0.8405 | 158 | 0.9318 | 0.9919 | 0.9609 | 124 | 0.8525 | 0.9146 | 0.8824 | 0.9761 |
| 0.1157 | 10.0 | 960 | 0.0731 | 0.8607 | 0.9052 | 0.8824 | 116 | 0.8519 | 0.8734 | 0.8625 | 158 | 0.9609 | 0.9919 | 0.9762 | 124 | 0.8883 | 0.9196 | 0.9037 | 0.9800 |
| 0.1111 | 11.0 | 1056 | 0.0673 | 0.8760 | 0.9138 | 0.8945 | 116 | 0.8606 | 0.8987 | 0.8793 | 158 | 0.9685 | 0.9919 | 0.9801 | 124 | 0.8983 | 0.9322 | 0.9149 | 0.9813 |
| 0.1044 | 12.0 | 1152 | 0.0635 | 0.8760 | 0.9138 | 0.8945 | 116 | 0.8554 | 0.8987 | 0.8765 | 158 | 0.9685 | 0.9919 | 0.9801 | 124 | 0.8961 | 0.9322 | 0.9138 | 0.9811 |
| 0.098 | 13.0 | 1248 | 0.0578 | 0.8898 | 0.9052 | 0.8974 | 116 | 0.8589 | 0.8861 | 0.8723 | 158 | 0.9762 | 0.9919 | 0.9840 | 124 | 0.9042 | 0.9246 | 0.9143 | 0.9816 |
| 0.0939 | 14.0 | 1344 | 0.0559 | 0.875 | 0.9052 | 0.8898 | 116 | 0.8642 | 0.8861 | 0.8750 | 158 | 0.9762 | 0.9919 | 0.9840 | 124 | 0.9020 | 0.9246 | 0.9132 | 0.9819 |
| 0.091 | 15.0 | 1440 | 0.0558 | 0.8824 | 0.9052 | 0.8936 | 116 | 0.8402 | 0.8987 | 0.8685 | 158 | 0.9685 | 0.9919 | 0.9801 | 124 | 0.8916 | 0.9296 | 0.9102 | 0.9816 |
| 0.088 | 16.0 | 1536 | 0.0555 | 0.875 | 0.9052 | 0.8898 | 116 | 0.8452 | 0.8987 | 0.8712 | 158 | 0.9535 | 0.9919 | 0.9723 | 124 | 0.8873 | 0.9296 | 0.9080 | 0.9811 |
| 0.0857 | 17.0 | 1632 | 0.0523 | 0.8824 | 0.9052 | 0.8936 | 116 | 0.8868 | 0.8924 | 0.8896 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9156 | 0.9271 | 0.9213 | 0.9846 |
| 0.0809 | 18.0 | 1728 | 0.0498 | 0.8678 | 0.9052 | 0.8861 | 116 | 0.8659 | 0.8987 | 0.8820 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9024 | 0.9296 | 0.9158 | 0.9833 |
| 0.0773 | 19.0 | 1824 | 0.0482 | 0.8898 | 0.9052 | 0.8974 | 116 | 0.8827 | 0.9051 | 0.8938 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9160 | 0.9322 | 0.9240 | 0.9844 |
| 0.0765 | 20.0 | 1920 | 0.0521 | 0.8833 | 0.9138 | 0.8983 | 116 | 0.8571 | 0.9114 | 0.8834 | 158 | 0.9685 | 0.9919 | 0.9801 | 124 | 0.8988 | 0.9372 | 0.9176 | 0.9822 |
| 0.0754 | 21.0 | 2016 | 0.0484 | 0.875 | 0.9052 | 0.8898 | 116 | 0.8735 | 0.9177 | 0.8951 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9075 | 0.9372 | 0.9221 | 0.9841 |
| 0.072 | 22.0 | 2112 | 0.0469 | 0.875 | 0.9052 | 0.8898 | 116 | 0.8606 | 0.8987 | 0.8793 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9024 | 0.9296 | 0.9158 | 0.9835 |
| 0.0689 | 23.0 | 2208 | 0.0440 | 0.8898 | 0.9052 | 0.8974 | 116 | 0.8944 | 0.9114 | 0.9028 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9208 | 0.9347 | 0.9277 | 0.9844 |
| 0.0697 | 24.0 | 2304 | 0.0456 | 0.8974 | 0.9052 | 0.9013 | 116 | 0.8968 | 0.8797 | 0.8882 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9244 | 0.9221 | 0.9233 | 0.9846 |
| 0.0656 | 25.0 | 2400 | 0.0436 | 0.8983 | 0.9138 | 0.9060 | 116 | 0.8812 | 0.8924 | 0.8868 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9181 | 0.9296 | 0.9238 | 0.9846 |
| 0.0658 | 26.0 | 2496 | 0.0427 | 0.8974 | 0.9052 | 0.9013 | 116 | 0.8704 | 0.8924 | 0.8812 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9134 | 0.9271 | 0.9202 | 0.9841 |
| 0.065 | 27.0 | 2592 | 0.0421 | 0.9052 | 0.9052 | 0.9052 | 116 | 0.8834 | 0.9114 | 0.8972 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9208 | 0.9347 | 0.9277 | 0.9855 |
| 0.0613 | 28.0 | 2688 | 0.0418 | 0.8833 | 0.9138 | 0.8983 | 116 | 0.8882 | 0.9051 | 0.8966 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9163 | 0.9347 | 0.9254 | 0.9855 |
| 0.0591 | 29.0 | 2784 | 0.0398 | 0.9060 | 0.9138 | 0.9099 | 116 | 0.8882 | 0.9051 | 0.8966 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9231 | 0.9347 | 0.9288 | 0.9874 |
| 0.06 | 30.0 | 2880 | 0.0395 | 0.9060 | 0.9138 | 0.9099 | 116 | 0.8994 | 0.9051 | 0.9022 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9277 | 0.9347 | 0.9312 | 0.9865 |
| 0.0566 | 31.0 | 2976 | 0.0386 | 0.8983 | 0.9138 | 0.9060 | 116 | 0.8827 | 0.9051 | 0.8938 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9185 | 0.9347 | 0.9265 | 0.9863 |
| 0.0566 | 32.0 | 3072 | 0.0392 | 0.8889 | 0.8966 | 0.8927 | 116 | 0.9045 | 0.8987 | 0.9016 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9248 | 0.9271 | 0.9260 | 0.9857 |
| 0.0566 | 33.0 | 3168 | 0.0398 | 0.8992 | 0.9224 | 0.9106 | 116 | 0.9045 | 0.8987 | 0.9016 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9277 | 0.9347 | 0.9312 | 0.9865 |
| 0.0568 | 34.0 | 3264 | 0.0396 | 0.9224 | 0.9224 | 0.9224 | 116 | 0.8951 | 0.9177 | 0.9062 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9305 | 0.9422 | 0.9363 | 0.9871 |
| 0.0532 | 35.0 | 3360 | 0.0379 | 0.8983 | 0.9138 | 0.9060 | 116 | 0.9051 | 0.9051 | 0.9051 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9277 | 0.9347 | 0.9312 | 0.9871 |
| 0.052 | 36.0 | 3456 | 0.0403 | 0.9231 | 0.9310 | 0.9270 | 116 | 0.9012 | 0.9241 | 0.9125 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9332 | 0.9472 | 0.9401 | 0.9879 |
| 0.0516 | 37.0 | 3552 | 0.0386 | 0.8983 | 0.9138 | 0.9060 | 116 | 0.9 | 0.9114 | 0.9057 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9256 | 0.9372 | 0.9313 | 0.9874 |
| 0.0497 | 38.0 | 3648 | 0.0378 | 0.8992 | 0.9224 | 0.9106 | 116 | 0.8994 | 0.9051 | 0.9022 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9256 | 0.9372 | 0.9313 | 0.9879 |
| 0.052 | 39.0 | 3744 | 0.0366 | 0.9138 | 0.9138 | 0.9138 | 116 | 0.9006 | 0.9177 | 0.9091 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9303 | 0.9397 | 0.9350 | 0.9885 |
| 0.0472 | 40.0 | 3840 | 0.0367 | 0.9138 | 0.9138 | 0.9138 | 116 | 0.8987 | 0.8987 | 0.8987 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9298 | 0.9322 | 0.9310 | 0.9868 |
| 0.0486 | 41.0 | 3936 | 0.0388 | 0.9076 | 0.9310 | 0.9191 | 116 | 0.9074 | 0.9304 | 0.9187 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9310 | 0.9497 | 0.9403 | 0.9882 |
| 0.047 | 42.0 | 4032 | 0.0375 | 0.9068 | 0.9224 | 0.9145 | 116 | 0.9161 | 0.8987 | 0.9073 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9347 | 0.9347 | 0.9347 | 0.9874 |
| 0.0481 | 43.0 | 4128 | 0.0380 | 0.8983 | 0.9138 | 0.9060 | 116 | 0.9051 | 0.9051 | 0.9051 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9277 | 0.9347 | 0.9312 | 0.9860 |
| 0.0468 | 44.0 | 4224 | 0.0391 | 0.9231 | 0.9310 | 0.9270 | 116 | 0.9062 | 0.9177 | 0.9119 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9353 | 0.9447 | 0.94 | 0.9876 |
| 0.0473 | 45.0 | 4320 | 0.0366 | 0.8992 | 0.9224 | 0.9106 | 116 | 0.9045 | 0.8987 | 0.9016 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9277 | 0.9347 | 0.9312 | 0.9868 |
| 0.0441 | 46.0 | 4416 | 0.0372 | 0.9 | 0.9310 | 0.9153 | 116 | 0.9006 | 0.9177 | 0.9091 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9261 | 0.9447 | 0.9353 | 0.9887 |
| 0.0441 | 47.0 | 4512 | 0.0375 | 0.9224 | 0.9224 | 0.9224 | 116 | 0.9068 | 0.9241 | 0.9154 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9353 | 0.9447 | 0.94 | 0.9887 |
| 0.0416 | 48.0 | 4608 | 0.0359 | 0.9237 | 0.9397 | 0.9316 | 116 | 0.9363 | 0.9304 | 0.9333 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9475 | 0.9523 | 0.9499 | 0.9898 |
| 0.0446 | 49.0 | 4704 | 0.0355 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.8931 | 0.8987 | 0.8959 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9279 | 0.9372 | 0.9325 | 0.9876 |
| 0.0425 | 50.0 | 4800 | 0.0366 | 0.9160 | 0.9397 | 0.9277 | 116 | 0.9 | 0.9114 | 0.9057 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9307 | 0.9447 | 0.9377 | 0.9887 |
| 0.0422 | 51.0 | 4896 | 0.0364 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9167 | 0.9051 | 0.9108 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9373 | 0.9397 | 0.9385 | 0.9871 |
| 0.0409 | 52.0 | 4992 | 0.0357 | 0.9145 | 0.9224 | 0.9185 | 116 | 0.9074 | 0.9304 | 0.9187 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9332 | 0.9472 | 0.9401 | 0.9896 |
| 0.0414 | 53.0 | 5088 | 0.0359 | 0.9231 | 0.9310 | 0.9270 | 116 | 0.9136 | 0.9367 | 0.9250 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9381 | 0.9523 | 0.9451 | 0.9901 |
| 0.0403 | 54.0 | 5184 | 0.0353 | 0.9231 | 0.9310 | 0.9270 | 116 | 0.8963 | 0.9304 | 0.9130 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9310 | 0.9497 | 0.9403 | 0.9896 |
| 0.0393 | 55.0 | 5280 | 0.0352 | 0.9145 | 0.9224 | 0.9185 | 116 | 0.9136 | 0.9367 | 0.9250 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9356 | 0.9497 | 0.9426 | 0.9898 |
| 0.0405 | 56.0 | 5376 | 0.0359 | 0.9237 | 0.9397 | 0.9316 | 116 | 0.9430 | 0.9430 | 0.9430 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9501 | 0.9573 | 0.9537 | 0.9901 |
| 0.0404 | 57.0 | 5472 | 0.0370 | 0.9160 | 0.9397 | 0.9277 | 116 | 0.9371 | 0.9430 | 0.9401 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9454 | 0.9573 | 0.9513 | 0.9896 |
| 0.0398 | 58.0 | 5568 | 0.0355 | 0.9316 | 0.9397 | 0.9356 | 116 | 0.9308 | 0.9367 | 0.9338 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9476 | 0.9548 | 0.9512 | 0.9904 |
| 0.0382 | 59.0 | 5664 | 0.0355 | 0.9397 | 0.9397 | 0.9397 | 116 | 0.9551 | 0.9430 | 0.9490 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9597 | 0.9573 | 0.9585 | 0.9904 |
| 0.0396 | 60.0 | 5760 | 0.0344 | 0.9160 | 0.9397 | 0.9277 | 116 | 0.9125 | 0.9241 | 0.9182 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9356 | 0.9497 | 0.9426 | 0.9893 |
| 0.0362 | 61.0 | 5856 | 0.0356 | 0.9231 | 0.9310 | 0.9270 | 116 | 0.9226 | 0.9051 | 0.9137 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9421 | 0.9397 | 0.9409 | 0.9879 |
| 0.037 | 62.0 | 5952 | 0.0360 | 0.9237 | 0.9397 | 0.9316 | 116 | 0.9167 | 0.9051 | 0.9108 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9398 | 0.9422 | 0.9410 | 0.9882 |
| 0.0386 | 63.0 | 6048 | 0.0364 | 0.9310 | 0.9310 | 0.9310 | 116 | 0.9367 | 0.9367 | 0.9367 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9499 | 0.9523 | 0.9511 | 0.9896 |
| 0.0365 | 64.0 | 6144 | 0.0360 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9412 | 0.9114 | 0.9260 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9470 | 0.9422 | 0.9446 | 0.9887 |
| 0.0347 | 65.0 | 6240 | 0.0354 | 0.9237 | 0.9397 | 0.9316 | 116 | 0.9416 | 0.9177 | 0.9295 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9496 | 0.9472 | 0.9484 | 0.9887 |
| 0.0393 | 66.0 | 6336 | 0.0366 | 0.9397 | 0.9397 | 0.9397 | 116 | 0.9355 | 0.9177 | 0.9265 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9520 | 0.9472 | 0.9496 | 0.9887 |
| 0.0359 | 67.0 | 6432 | 0.0348 | 0.9316 | 0.9397 | 0.9356 | 116 | 0.9241 | 0.9241 | 0.9241 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.945 | 0.9497 | 0.9474 | 0.9893 |
| 0.0331 | 68.0 | 6528 | 0.0347 | 0.9316 | 0.9397 | 0.9356 | 116 | 0.9177 | 0.9177 | 0.9177 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9425 | 0.9472 | 0.9449 | 0.9890 |
| 0.0344 | 69.0 | 6624 | 0.0341 | 0.9391 | 0.9310 | 0.9351 | 116 | 0.9363 | 0.9304 | 0.9333 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9521 | 0.9497 | 0.9509 | 0.9898 |
| 0.0349 | 70.0 | 6720 | 0.0345 | 0.9397 | 0.9397 | 0.9397 | 116 | 0.9427 | 0.9367 | 0.9397 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9548 | 0.9548 | 0.9548 | 0.9901 |
| 0.0349 | 71.0 | 6816 | 0.0354 | 0.9310 | 0.9310 | 0.9310 | 116 | 0.9299 | 0.9241 | 0.9270 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9472 | 0.9472 | 0.9472 | 0.9885 |
| 0.0342 | 72.0 | 6912 | 0.0343 | 0.9237 | 0.9397 | 0.9316 | 116 | 0.9299 | 0.9241 | 0.9270 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.945 | 0.9497 | 0.9474 | 0.9887 |
| 0.0333 | 73.0 | 7008 | 0.0354 | 0.9391 | 0.9310 | 0.9351 | 116 | 0.9241 | 0.9241 | 0.9241 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9472 | 0.9472 | 0.9472 | 0.9890 |
| 0.0332 | 74.0 | 7104 | 0.0346 | 0.9231 | 0.9310 | 0.9270 | 116 | 0.9241 | 0.9241 | 0.9241 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9425 | 0.9472 | 0.9449 | 0.9893 |
| 0.0346 | 75.0 | 7200 | 0.0342 | 0.9310 | 0.9310 | 0.9310 | 116 | 0.9245 | 0.9304 | 0.9274 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.945 | 0.9497 | 0.9474 | 0.9896 |
| 0.0334 | 76.0 | 7296 | 0.0346 | 0.9224 | 0.9224 | 0.9224 | 116 | 0.925 | 0.9367 | 0.9308 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9426 | 0.9497 | 0.9462 | 0.9904 |
| 0.034 | 77.0 | 7392 | 0.0350 | 0.9397 | 0.9397 | 0.9397 | 116 | 0.9299 | 0.9241 | 0.9270 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9497 | 0.9497 | 0.9497 | 0.9896 |
| 0.0341 | 78.0 | 7488 | 0.0340 | 0.9316 | 0.9397 | 0.9356 | 116 | 0.9363 | 0.9304 | 0.9333 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9499 | 0.9523 | 0.9511 | 0.9904 |
| 0.033 | 79.0 | 7584 | 0.0348 | 0.9304 | 0.9224 | 0.9264 | 116 | 0.925 | 0.9367 | 0.9308 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.945 | 0.9497 | 0.9474 | 0.9896 |
| 0.0308 | 80.0 | 7680 | 0.0337 | 0.9138 | 0.9138 | 0.9138 | 116 | 0.9193 | 0.9367 | 0.9279 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9378 | 0.9472 | 0.9425 | 0.9898 |
| 0.031 | 81.0 | 7776 | 0.0341 | 0.9224 | 0.9224 | 0.9224 | 116 | 0.9193 | 0.9367 | 0.9279 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9403 | 0.9497 | 0.9450 | 0.9901 |
| 0.0315 | 82.0 | 7872 | 0.0340 | 0.9237 | 0.9397 | 0.9316 | 116 | 0.9363 | 0.9304 | 0.9333 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9475 | 0.9523 | 0.9499 | 0.9904 |
| 0.0321 | 83.0 | 7968 | 0.0343 | 0.9391 | 0.9310 | 0.9351 | 116 | 0.9367 | 0.9367 | 0.9367 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9523 | 0.9523 | 0.9523 | 0.9901 |
| 0.0317 | 84.0 | 8064 | 0.0340 | 0.9391 | 0.9310 | 0.9351 | 116 | 0.9367 | 0.9367 | 0.9367 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9523 | 0.9523 | 0.9523 | 0.9901 |
| 0.0324 | 85.0 | 8160 | 0.0340 | 0.9145 | 0.9224 | 0.9185 | 116 | 0.9187 | 0.9304 | 0.9245 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9378 | 0.9472 | 0.9425 | 0.9893 |
| 0.0317 | 86.0 | 8256 | 0.0339 | 0.9316 | 0.9397 | 0.9356 | 116 | 0.9423 | 0.9304 | 0.9363 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9523 | 0.9523 | 0.9523 | 0.9901 |
| 0.0308 | 87.0 | 8352 | 0.0347 | 0.9316 | 0.9397 | 0.9356 | 116 | 0.9423 | 0.9304 | 0.9363 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9523 | 0.9523 | 0.9523 | 0.9898 |
| 0.0311 | 88.0 | 8448 | 0.0344 | 0.9391 | 0.9310 | 0.9351 | 116 | 0.9367 | 0.9367 | 0.9367 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9523 | 0.9523 | 0.9523 | 0.9898 |
| 0.0295 | 89.0 | 8544 | 0.0346 | 0.9391 | 0.9310 | 0.9351 | 116 | 0.9427 | 0.9367 | 0.9397 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9547 | 0.9523 | 0.9535 | 0.9896 |
| 0.0304 | 90.0 | 8640 | 0.0343 | 0.9391 | 0.9310 | 0.9351 | 116 | 0.9427 | 0.9367 | 0.9397 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9547 | 0.9523 | 0.9535 | 0.9896 |
| 0.0315 | 91.0 | 8736 | 0.0343 | 0.9391 | 0.9310 | 0.9351 | 116 | 0.9427 | 0.9367 | 0.9397 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9547 | 0.9523 | 0.9535 | 0.9896 |
| 0.0314 | 92.0 | 8832 | 0.0342 | 0.9391 | 0.9310 | 0.9351 | 116 | 0.9427 | 0.9367 | 0.9397 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9547 | 0.9523 | 0.9535 | 0.9896 |
| 0.0322 | 93.0 | 8928 | 0.0340 | 0.9391 | 0.9310 | 0.9351 | 116 | 0.9427 | 0.9367 | 0.9397 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9547 | 0.9523 | 0.9535 | 0.9898 |
| 0.0303 | 94.0 | 9024 | 0.0343 | 0.9391 | 0.9310 | 0.9351 | 116 | 0.9367 | 0.9367 | 0.9367 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9523 | 0.9523 | 0.9523 | 0.9898 |
| 0.0316 | 95.0 | 9120 | 0.0343 | 0.9391 | 0.9310 | 0.9351 | 116 | 0.9367 | 0.9367 | 0.9367 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9523 | 0.9523 | 0.9523 | 0.9898 |
| 0.0317 | 96.0 | 9216 | 0.0342 | 0.9391 | 0.9310 | 0.9351 | 116 | 0.9427 | 0.9367 | 0.9397 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9547 | 0.9523 | 0.9535 | 0.9896 |
| 0.0321 | 97.0 | 9312 | 0.0341 | 0.9316 | 0.9397 | 0.9356 | 116 | 0.9484 | 0.9304 | 0.9393 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9547 | 0.9523 | 0.9535 | 0.9898 |
| 0.0295 | 98.0 | 9408 | 0.0342 | 0.9316 | 0.9397 | 0.9356 | 116 | 0.9484 | 0.9304 | 0.9393 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9547 | 0.9523 | 0.9535 | 0.9898 |
| 0.031 | 99.0 | 9504 | 0.0341 | 0.9316 | 0.9397 | 0.9356 | 116 | 0.9484 | 0.9304 | 0.9393 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9547 | 0.9523 | 0.9535 | 0.9898 |
| 0.0299 | 100.0 | 9600 | 0.0342 | 0.9316 | 0.9397 | 0.9356 | 116 | 0.9484 | 0.9304 | 0.9393 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9547 | 0.9523 | 0.9535 | 0.9896 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
|
vaiv/GeM2-Llamion-14B-Chat
|
vaiv
| 2024-06-04T01:49:33Z | 2,245 | 1 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-13T08:43:21Z |
---
license: apache-2.0
---
# **GeM2-Llamion-14B**
We have released **Llamion** as **GeM 2.0**, the second series of generative models developed by VAIV Company to address the our principal business needs.
**Llamion** (Llamafied Orion) is derived from transforming the [Orion model](https://huggingface.co/OrionStarAI/Orion-14B-Chat)
into [the standard LLaMA architecture](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py)
through parameter mapping and offline knowledge transfer.
Further technical specifications and study results will be detailed in our upcoming paper, available on this page.
<!-- Note that this model has NOT been contaminated to artificially inflate its scores for the Open LLM Leaderboards,
unlike some recent models which have been intentionally tainted. -->

### Contributors
- VAIV Company AI Lab ([vaiv.kr](https://www.vaiv.kr/))
|
vaiv/GeM2-Llamion-14B-Base
|
vaiv
| 2024-06-04T01:49:19Z | 3,505 | 6 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-13T08:42:16Z |
---
license: apache-2.0
---
# **GeM2-Llamion-14B**
We have released **Llamion** as **GeM 2.0**, the second series of generative models developed by VAIV Company to address the our principal business needs.
**Llamion** (Llamafied Orion) is derived from transforming the [Orion model](https://huggingface.co/OrionStarAI/Orion-14B-Base)
into [the standard LLaMA architecture](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py)
through parameter mapping and offline knowledge transfer.
Further technical specifications and study results will be detailed in our upcoming paper, available on this page.
<!-- Note that this model has NOT been contaminated to artificially inflate its scores for the Open LLM Leaderboards,
unlike some recent models which have been intentionally tainted. -->

### Contributors
- VAIV Company AI Lab ([vaiv.kr](https://www.vaiv.kr/))
|
apwic/nerui-lora-r8-1
|
apwic
| 2024-06-04T01:45:11Z | 0 | 0 | null |
[
"tensorboard",
"generated_from_trainer",
"id",
"base_model:indolem/indobert-base-uncased",
"base_model:finetune:indolem/indobert-base-uncased",
"license:mit",
"region:us"
] | null | 2024-05-28T12:48:14Z |
---
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: nerui-lora-r8-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nerui-lora-r8-1
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0379
- Location Precision: 0.9153
- Location Recall: 0.9310
- Location F1: 0.9231
- Location Number: 116
- Organization Precision: 0.9012
- Organization Recall: 0.9241
- Organization F1: 0.9125
- Organization Number: 158
- Person Precision: 0.984
- Person Recall: 0.9919
- Person F1: 0.9880
- Person Number: 124
- Overall Precision: 0.9309
- Overall Recall: 0.9472
- Overall F1: 0.9390
- Overall Accuracy: 0.9868
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Location Precision | Location Recall | Location F1 | Location Number | Organization Precision | Organization Recall | Organization F1 | Organization Number | Person Precision | Person Recall | Person F1 | Person Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:-------------:|:---------:|:-------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.1502 | 1.0 | 96 | 0.6915 | 0.0 | 0.0 | 0.0 | 116 | 0.0 | 0.0 | 0.0 | 158 | 0.0 | 0.0 | 0.0 | 124 | 0.0 | 0.0 | 0.0 | 0.8394 |
| 0.6681 | 2.0 | 192 | 0.5641 | 0.0 | 0.0 | 0.0 | 116 | 0.5 | 0.0063 | 0.0125 | 158 | 0.0 | 0.0 | 0.0 | 124 | 0.5 | 0.0025 | 0.005 | 0.8397 |
| 0.5591 | 3.0 | 288 | 0.4474 | 0.0 | 0.0 | 0.0 | 116 | 0.4286 | 0.0570 | 0.1006 | 158 | 0.2727 | 0.0484 | 0.0822 | 124 | 0.3333 | 0.0377 | 0.0677 | 0.8471 |
| 0.4414 | 4.0 | 384 | 0.3290 | 0.2692 | 0.0603 | 0.0986 | 116 | 0.3592 | 0.2342 | 0.2835 | 158 | 0.4071 | 0.4597 | 0.4318 | 124 | 0.3755 | 0.2538 | 0.3028 | 0.8847 |
| 0.3301 | 5.0 | 480 | 0.2424 | 0.4459 | 0.2845 | 0.3474 | 116 | 0.4874 | 0.6139 | 0.5434 | 158 | 0.5669 | 0.7177 | 0.6335 | 124 | 0.5093 | 0.5503 | 0.5290 | 0.9256 |
| 0.2536 | 6.0 | 576 | 0.1846 | 0.6372 | 0.6207 | 0.6288 | 116 | 0.6264 | 0.7215 | 0.6706 | 158 | 0.7347 | 0.8710 | 0.7970 | 124 | 0.6652 | 0.7387 | 0.7 | 0.9525 |
| 0.2029 | 7.0 | 672 | 0.1468 | 0.7328 | 0.7328 | 0.7328 | 116 | 0.6778 | 0.7722 | 0.7219 | 158 | 0.8676 | 0.9516 | 0.9077 | 124 | 0.7523 | 0.8166 | 0.7831 | 0.9629 |
| 0.1712 | 8.0 | 768 | 0.1217 | 0.7949 | 0.8017 | 0.7983 | 116 | 0.7356 | 0.8101 | 0.7711 | 158 | 0.9104 | 0.9839 | 0.9457 | 124 | 0.8071 | 0.8618 | 0.8335 | 0.9679 |
| 0.1504 | 9.0 | 864 | 0.1066 | 0.8220 | 0.8362 | 0.8291 | 116 | 0.7630 | 0.8354 | 0.7976 | 158 | 0.9173 | 0.9839 | 0.9494 | 124 | 0.8278 | 0.8819 | 0.8540 | 0.9717 |
| 0.1356 | 10.0 | 960 | 0.0944 | 0.8305 | 0.8448 | 0.8376 | 116 | 0.7917 | 0.8418 | 0.8160 | 158 | 0.9173 | 0.9839 | 0.9494 | 124 | 0.8425 | 0.8869 | 0.8641 | 0.9734 |
| 0.1276 | 11.0 | 1056 | 0.0848 | 0.8305 | 0.8448 | 0.8376 | 116 | 0.8084 | 0.8544 | 0.8308 | 158 | 0.9173 | 0.9839 | 0.9494 | 124 | 0.8493 | 0.8920 | 0.8701 | 0.9745 |
| 0.1202 | 12.0 | 1152 | 0.0797 | 0.8739 | 0.8966 | 0.8851 | 116 | 0.8313 | 0.8734 | 0.8519 | 158 | 0.9173 | 0.9839 | 0.9494 | 124 | 0.8708 | 0.9146 | 0.8922 | 0.9769 |
| 0.1131 | 13.0 | 1248 | 0.0725 | 0.8824 | 0.9052 | 0.8936 | 116 | 0.8274 | 0.8797 | 0.8528 | 158 | 0.9531 | 0.9839 | 0.9683 | 124 | 0.8819 | 0.9196 | 0.9004 | 0.9786 |
| 0.1074 | 14.0 | 1344 | 0.0678 | 0.8983 | 0.9138 | 0.9060 | 116 | 0.8625 | 0.8734 | 0.8679 | 158 | 0.9457 | 0.9839 | 0.9644 | 124 | 0.8993 | 0.9196 | 0.9093 | 0.9797 |
| 0.1046 | 15.0 | 1440 | 0.0671 | 0.8618 | 0.9138 | 0.8870 | 116 | 0.8383 | 0.8861 | 0.8615 | 158 | 0.9462 | 0.9919 | 0.9685 | 124 | 0.8786 | 0.9271 | 0.9022 | 0.9786 |
| 0.0992 | 16.0 | 1536 | 0.0648 | 0.8833 | 0.9138 | 0.8983 | 116 | 0.8393 | 0.8924 | 0.8650 | 158 | 0.9535 | 0.9919 | 0.9723 | 124 | 0.8873 | 0.9296 | 0.9080 | 0.9800 |
| 0.0972 | 17.0 | 1632 | 0.0611 | 0.9052 | 0.9052 | 0.9052 | 116 | 0.8805 | 0.8861 | 0.8833 | 158 | 0.9531 | 0.9839 | 0.9683 | 124 | 0.9107 | 0.9221 | 0.9164 | 0.9822 |
| 0.0908 | 18.0 | 1728 | 0.0583 | 0.8678 | 0.9052 | 0.8861 | 116 | 0.8720 | 0.9051 | 0.8882 | 158 | 0.9683 | 0.9839 | 0.976 | 124 | 0.9002 | 0.9296 | 0.9147 | 0.9822 |
| 0.089 | 19.0 | 1824 | 0.0568 | 0.8678 | 0.9052 | 0.8861 | 116 | 0.8805 | 0.8861 | 0.8833 | 158 | 0.9606 | 0.9839 | 0.9721 | 124 | 0.9017 | 0.9221 | 0.9118 | 0.9816 |
| 0.0872 | 20.0 | 1920 | 0.0591 | 0.8824 | 0.9052 | 0.8936 | 116 | 0.8462 | 0.9051 | 0.8746 | 158 | 0.9535 | 0.9919 | 0.9723 | 124 | 0.8897 | 0.9322 | 0.9104 | 0.9805 |
| 0.0863 | 21.0 | 2016 | 0.0565 | 0.8770 | 0.9224 | 0.8992 | 116 | 0.8421 | 0.9114 | 0.8754 | 158 | 0.9762 | 0.9919 | 0.9840 | 124 | 0.8926 | 0.9397 | 0.9155 | 0.9822 |
| 0.0834 | 22.0 | 2112 | 0.0545 | 0.8833 | 0.9138 | 0.8983 | 116 | 0.8471 | 0.9114 | 0.8780 | 158 | 0.9762 | 0.9919 | 0.9840 | 124 | 0.8966 | 0.9372 | 0.9165 | 0.9822 |
| 0.0795 | 23.0 | 2208 | 0.0511 | 0.8824 | 0.9052 | 0.8936 | 116 | 0.8667 | 0.9051 | 0.8854 | 158 | 0.9683 | 0.9839 | 0.976 | 124 | 0.9024 | 0.9296 | 0.9158 | 0.9835 |
| 0.0815 | 24.0 | 2304 | 0.0501 | 0.8898 | 0.9052 | 0.8974 | 116 | 0.8861 | 0.8861 | 0.8861 | 158 | 0.9762 | 0.9919 | 0.9840 | 124 | 0.9154 | 0.9246 | 0.92 | 0.9824 |
| 0.0764 | 25.0 | 2400 | 0.0491 | 0.8974 | 0.9052 | 0.9013 | 116 | 0.8727 | 0.9114 | 0.8916 | 158 | 0.9762 | 0.9919 | 0.9840 | 124 | 0.9118 | 0.9347 | 0.9231 | 0.9844 |
| 0.077 | 26.0 | 2496 | 0.0477 | 0.9052 | 0.9052 | 0.9052 | 116 | 0.8788 | 0.9177 | 0.8978 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9187 | 0.9372 | 0.9279 | 0.9849 |
| 0.0749 | 27.0 | 2592 | 0.0504 | 0.9060 | 0.9138 | 0.9099 | 116 | 0.8855 | 0.9304 | 0.9074 | 158 | 0.9762 | 0.9919 | 0.9840 | 124 | 0.9193 | 0.9447 | 0.9318 | 0.9844 |
| 0.0728 | 28.0 | 2688 | 0.0490 | 0.8824 | 0.9052 | 0.8936 | 116 | 0.8667 | 0.9051 | 0.8854 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9071 | 0.9322 | 0.9195 | 0.9841 |
| 0.0698 | 29.0 | 2784 | 0.0478 | 0.8824 | 0.9052 | 0.8936 | 116 | 0.8727 | 0.9114 | 0.8916 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9095 | 0.9347 | 0.9219 | 0.9841 |
| 0.0694 | 30.0 | 2880 | 0.0466 | 0.9052 | 0.9052 | 0.9052 | 116 | 0.8683 | 0.9177 | 0.8923 | 158 | 0.9683 | 0.9839 | 0.976 | 124 | 0.9095 | 0.9347 | 0.9219 | 0.9846 |
| 0.0661 | 31.0 | 2976 | 0.0459 | 0.9060 | 0.9138 | 0.9099 | 116 | 0.8848 | 0.9241 | 0.9040 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9214 | 0.9422 | 0.9317 | 0.9855 |
| 0.0672 | 32.0 | 3072 | 0.0454 | 0.8974 | 0.9052 | 0.9013 | 116 | 0.8659 | 0.8987 | 0.8820 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9113 | 0.9296 | 0.9204 | 0.9849 |
| 0.0663 | 33.0 | 3168 | 0.0459 | 0.8974 | 0.9052 | 0.9013 | 116 | 0.8606 | 0.8987 | 0.8793 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9091 | 0.9296 | 0.9193 | 0.9846 |
| 0.067 | 34.0 | 3264 | 0.0461 | 0.8824 | 0.9052 | 0.8936 | 116 | 0.8667 | 0.9051 | 0.8854 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9071 | 0.9322 | 0.9195 | 0.9841 |
| 0.0628 | 35.0 | 3360 | 0.0449 | 0.9052 | 0.9052 | 0.9052 | 116 | 0.8675 | 0.9114 | 0.8889 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9140 | 0.9347 | 0.9242 | 0.9852 |
| 0.0617 | 36.0 | 3456 | 0.0461 | 0.8992 | 0.9224 | 0.9106 | 116 | 0.8780 | 0.9114 | 0.8944 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9167 | 0.9397 | 0.9280 | 0.9852 |
| 0.0617 | 37.0 | 3552 | 0.0432 | 0.8974 | 0.9052 | 0.9013 | 116 | 0.8788 | 0.9177 | 0.8978 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9165 | 0.9372 | 0.9267 | 0.9855 |
| 0.0603 | 38.0 | 3648 | 0.0430 | 0.8992 | 0.9224 | 0.9106 | 116 | 0.8944 | 0.9114 | 0.9028 | 158 | 0.9683 | 0.9839 | 0.976 | 124 | 0.9187 | 0.9372 | 0.9279 | 0.9860 |
| 0.0617 | 39.0 | 3744 | 0.0413 | 0.8974 | 0.9052 | 0.9013 | 116 | 0.8727 | 0.9114 | 0.8916 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9140 | 0.9347 | 0.9242 | 0.9852 |
| 0.0563 | 40.0 | 3840 | 0.0410 | 0.8983 | 0.9138 | 0.9060 | 116 | 0.8827 | 0.9051 | 0.8938 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9185 | 0.9347 | 0.9265 | 0.9855 |
| 0.0579 | 41.0 | 3936 | 0.0427 | 0.9008 | 0.9397 | 0.9198 | 116 | 0.8938 | 0.9051 | 0.8994 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9236 | 0.9422 | 0.9328 | 0.9857 |
| 0.0566 | 42.0 | 4032 | 0.0413 | 0.8926 | 0.9310 | 0.9114 | 116 | 0.8875 | 0.8987 | 0.8931 | 158 | 0.9683 | 0.9839 | 0.976 | 124 | 0.9140 | 0.9347 | 0.9242 | 0.9855 |
| 0.0578 | 43.0 | 4128 | 0.0422 | 0.9060 | 0.9138 | 0.9099 | 116 | 0.8944 | 0.9114 | 0.9028 | 158 | 0.9683 | 0.9839 | 0.976 | 124 | 0.9208 | 0.9347 | 0.9277 | 0.9860 |
| 0.0567 | 44.0 | 4224 | 0.0414 | 0.9068 | 0.9224 | 0.9145 | 116 | 0.9125 | 0.9241 | 0.9182 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9330 | 0.9447 | 0.9388 | 0.9871 |
| 0.0568 | 45.0 | 4320 | 0.0400 | 0.8926 | 0.9310 | 0.9114 | 116 | 0.8994 | 0.9051 | 0.9022 | 158 | 0.9683 | 0.9839 | 0.976 | 124 | 0.9187 | 0.9372 | 0.9279 | 0.9860 |
| 0.053 | 46.0 | 4416 | 0.0409 | 0.9076 | 0.9310 | 0.9191 | 116 | 0.9012 | 0.9241 | 0.9125 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9286 | 0.9472 | 0.9378 | 0.9865 |
| 0.0536 | 47.0 | 4512 | 0.0408 | 0.9068 | 0.9224 | 0.9145 | 116 | 0.9018 | 0.9304 | 0.9159 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9286 | 0.9472 | 0.9378 | 0.9865 |
| 0.0519 | 48.0 | 4608 | 0.0401 | 0.8917 | 0.9224 | 0.9068 | 116 | 0.8951 | 0.9177 | 0.9062 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9214 | 0.9422 | 0.9317 | 0.9865 |
| 0.0539 | 49.0 | 4704 | 0.0401 | 0.9068 | 0.9224 | 0.9145 | 116 | 0.9125 | 0.9241 | 0.9182 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9330 | 0.9447 | 0.9388 | 0.9865 |
| 0.0522 | 50.0 | 4800 | 0.0418 | 0.9008 | 0.9397 | 0.9198 | 116 | 0.9 | 0.9114 | 0.9057 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9261 | 0.9447 | 0.9353 | 0.9865 |
| 0.0518 | 51.0 | 4896 | 0.0404 | 0.8992 | 0.9224 | 0.9106 | 116 | 0.9062 | 0.9177 | 0.9119 | 158 | 0.9683 | 0.9839 | 0.976 | 124 | 0.9235 | 0.9397 | 0.9315 | 0.9863 |
| 0.0503 | 52.0 | 4992 | 0.0393 | 0.9138 | 0.9138 | 0.9138 | 116 | 0.8916 | 0.9367 | 0.9136 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9263 | 0.9472 | 0.9366 | 0.9868 |
| 0.0499 | 53.0 | 5088 | 0.0392 | 0.9237 | 0.9397 | 0.9316 | 116 | 0.8963 | 0.9304 | 0.9130 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9312 | 0.9523 | 0.9416 | 0.9876 |
| 0.0498 | 54.0 | 5184 | 0.0393 | 0.9068 | 0.9224 | 0.9145 | 116 | 0.9018 | 0.9304 | 0.9159 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9286 | 0.9472 | 0.9378 | 0.9871 |
| 0.0492 | 55.0 | 5280 | 0.0390 | 0.9068 | 0.9224 | 0.9145 | 116 | 0.9018 | 0.9304 | 0.9159 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9286 | 0.9472 | 0.9378 | 0.9874 |
| 0.0503 | 56.0 | 5376 | 0.0399 | 0.9237 | 0.9397 | 0.9316 | 116 | 0.9024 | 0.9367 | 0.9193 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9337 | 0.9548 | 0.9441 | 0.9876 |
| 0.0491 | 57.0 | 5472 | 0.0408 | 0.9237 | 0.9397 | 0.9316 | 116 | 0.9024 | 0.9367 | 0.9193 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9337 | 0.9548 | 0.9441 | 0.9876 |
| 0.0492 | 58.0 | 5568 | 0.0387 | 0.9237 | 0.9397 | 0.9316 | 116 | 0.9024 | 0.9367 | 0.9193 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9337 | 0.9548 | 0.9441 | 0.9882 |
| 0.0477 | 59.0 | 5664 | 0.0390 | 0.9237 | 0.9397 | 0.9316 | 116 | 0.9136 | 0.9367 | 0.9250 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9383 | 0.9548 | 0.9465 | 0.9882 |
| 0.0489 | 60.0 | 5760 | 0.0385 | 0.9244 | 0.9483 | 0.9362 | 116 | 0.9074 | 0.9304 | 0.9187 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9360 | 0.9548 | 0.9453 | 0.9879 |
| 0.0446 | 61.0 | 5856 | 0.0391 | 0.9160 | 0.9397 | 0.9277 | 116 | 0.9177 | 0.9177 | 0.9177 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9378 | 0.9472 | 0.9425 | 0.9865 |
| 0.0463 | 62.0 | 5952 | 0.0402 | 0.9237 | 0.9397 | 0.9316 | 116 | 0.9245 | 0.9304 | 0.9274 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9428 | 0.9523 | 0.9475 | 0.9871 |
| 0.0482 | 63.0 | 6048 | 0.0401 | 0.9316 | 0.9397 | 0.9356 | 116 | 0.9130 | 0.9304 | 0.9216 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9404 | 0.9523 | 0.9463 | 0.9868 |
| 0.0455 | 64.0 | 6144 | 0.0387 | 0.9068 | 0.9224 | 0.9145 | 116 | 0.9231 | 0.9114 | 0.9172 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9373 | 0.9397 | 0.9385 | 0.9863 |
| 0.0432 | 65.0 | 6240 | 0.0392 | 0.9231 | 0.9310 | 0.9270 | 116 | 0.9125 | 0.9241 | 0.9182 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9378 | 0.9472 | 0.9425 | 0.9865 |
| 0.0484 | 66.0 | 6336 | 0.0392 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9068 | 0.9241 | 0.9154 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9332 | 0.9472 | 0.9401 | 0.9865 |
| 0.044 | 67.0 | 6432 | 0.0385 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9068 | 0.9241 | 0.9154 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9332 | 0.9472 | 0.9401 | 0.9865 |
| 0.0425 | 68.0 | 6528 | 0.0386 | 0.9237 | 0.9397 | 0.9316 | 116 | 0.9012 | 0.9241 | 0.9125 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9333 | 0.9497 | 0.9415 | 0.9871 |
| 0.044 | 69.0 | 6624 | 0.0381 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9012 | 0.9241 | 0.9125 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9309 | 0.9472 | 0.9390 | 0.9865 |
| 0.0447 | 70.0 | 6720 | 0.0381 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9074 | 0.9304 | 0.9187 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9333 | 0.9497 | 0.9415 | 0.9868 |
| 0.0439 | 71.0 | 6816 | 0.0389 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9074 | 0.9304 | 0.9187 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9333 | 0.9497 | 0.9415 | 0.9871 |
| 0.0426 | 72.0 | 6912 | 0.0383 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9006 | 0.9177 | 0.9091 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9307 | 0.9447 | 0.9377 | 0.9860 |
| 0.0423 | 73.0 | 7008 | 0.0387 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9074 | 0.9304 | 0.9187 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9333 | 0.9497 | 0.9415 | 0.9871 |
| 0.0427 | 74.0 | 7104 | 0.0385 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9012 | 0.9241 | 0.9125 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9309 | 0.9472 | 0.9390 | 0.9871 |
| 0.044 | 75.0 | 7200 | 0.0387 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9018 | 0.9304 | 0.9159 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9310 | 0.9497 | 0.9403 | 0.9871 |
| 0.0415 | 76.0 | 7296 | 0.0386 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9018 | 0.9304 | 0.9159 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9310 | 0.9497 | 0.9403 | 0.9874 |
| 0.0421 | 77.0 | 7392 | 0.0385 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9068 | 0.9241 | 0.9154 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9332 | 0.9472 | 0.9401 | 0.9874 |
| 0.0428 | 78.0 | 7488 | 0.0380 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9125 | 0.9241 | 0.9182 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9355 | 0.9472 | 0.9413 | 0.9871 |
| 0.0414 | 79.0 | 7584 | 0.0385 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.8896 | 0.9177 | 0.9034 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9261 | 0.9447 | 0.9353 | 0.9865 |
| 0.0394 | 80.0 | 7680 | 0.0380 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.8841 | 0.9177 | 0.9006 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9238 | 0.9447 | 0.9342 | 0.9868 |
| 0.0402 | 81.0 | 7776 | 0.0385 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.8963 | 0.9304 | 0.9130 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9287 | 0.9497 | 0.9391 | 0.9876 |
| 0.0404 | 82.0 | 7872 | 0.0377 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.8957 | 0.9241 | 0.9097 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9286 | 0.9472 | 0.9378 | 0.9874 |
| 0.0407 | 83.0 | 7968 | 0.0381 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.8957 | 0.9241 | 0.9097 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9286 | 0.9472 | 0.9378 | 0.9871 |
| 0.0406 | 84.0 | 8064 | 0.0380 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.8902 | 0.9241 | 0.9068 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9263 | 0.9472 | 0.9366 | 0.9874 |
| 0.0425 | 85.0 | 8160 | 0.0381 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.8963 | 0.9304 | 0.9130 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9287 | 0.9497 | 0.9391 | 0.9876 |
| 0.0402 | 86.0 | 8256 | 0.0374 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9062 | 0.9177 | 0.9119 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9330 | 0.9447 | 0.9388 | 0.9868 |
| 0.0402 | 87.0 | 8352 | 0.0379 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9012 | 0.9241 | 0.9125 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9309 | 0.9472 | 0.9390 | 0.9871 |
| 0.0407 | 88.0 | 8448 | 0.0380 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.8902 | 0.9241 | 0.9068 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9263 | 0.9472 | 0.9366 | 0.9874 |
| 0.0385 | 89.0 | 8544 | 0.0379 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.8957 | 0.9241 | 0.9097 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9286 | 0.9472 | 0.9378 | 0.9871 |
| 0.0388 | 90.0 | 8640 | 0.0377 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.8957 | 0.9241 | 0.9097 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9286 | 0.9472 | 0.9378 | 0.9871 |
| 0.0406 | 91.0 | 8736 | 0.0380 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.8957 | 0.9241 | 0.9097 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9286 | 0.9472 | 0.9378 | 0.9871 |
| 0.0404 | 92.0 | 8832 | 0.0377 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.8957 | 0.9241 | 0.9097 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9286 | 0.9472 | 0.9378 | 0.9871 |
| 0.0409 | 93.0 | 8928 | 0.0377 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.8951 | 0.9177 | 0.9062 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9284 | 0.9447 | 0.9365 | 0.9865 |
| 0.0382 | 94.0 | 9024 | 0.0380 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.8957 | 0.9241 | 0.9097 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9286 | 0.9472 | 0.9378 | 0.9871 |
| 0.0409 | 95.0 | 9120 | 0.0379 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9012 | 0.9241 | 0.9125 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9309 | 0.9472 | 0.9390 | 0.9868 |
| 0.0406 | 96.0 | 9216 | 0.0379 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9012 | 0.9241 | 0.9125 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9309 | 0.9472 | 0.9390 | 0.9868 |
| 0.0413 | 97.0 | 9312 | 0.0378 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.8951 | 0.9177 | 0.9062 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9284 | 0.9447 | 0.9365 | 0.9865 |
| 0.0384 | 98.0 | 9408 | 0.0379 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9012 | 0.9241 | 0.9125 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9309 | 0.9472 | 0.9390 | 0.9868 |
| 0.0394 | 99.0 | 9504 | 0.0379 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9012 | 0.9241 | 0.9125 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9309 | 0.9472 | 0.9390 | 0.9868 |
| 0.0386 | 100.0 | 9600 | 0.0379 | 0.9153 | 0.9310 | 0.9231 | 116 | 0.9012 | 0.9241 | 0.9125 | 158 | 0.984 | 0.9919 | 0.9880 | 124 | 0.9309 | 0.9472 | 0.9390 | 0.9868 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
|
0xfaskety/Qwen-Qwen1.5-7B-1717464763
|
0xfaskety
| 2024-06-04T01:39:28Z | 7 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-04T01:32:50Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
DarkJanissary/neural-chat-7b-v3-2-Q6_K-GGUF
|
DarkJanissary
| 2024-06-04T01:39:03Z | 3 | 0 | null |
[
"gguf",
"LLMs",
"mistral",
"math",
"Intel",
"llama-cpp",
"gguf-my-repo",
"en",
"dataset:meta-math/MetaMathQA",
"base_model:Intel/neural-chat-7b-v3-2",
"base_model:quantized:Intel/neural-chat-7b-v3-2",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | null | 2024-06-04T01:38:48Z |
---
language:
- en
license: apache-2.0
tags:
- LLMs
- mistral
- math
- Intel
- llama-cpp
- gguf-my-repo
base_model: Intel/neural-chat-7b-v3-2
datasets:
- meta-math/MetaMathQA
model-index:
- name: neural-chat-7b-v3-2
results:
- task:
type: Large Language Model
name: Large Language Model
dataset:
name: meta-math/MetaMathQA
type: meta-math/MetaMathQA
metrics:
- type: ARC (25-shot)
value: 67.49
name: ARC (25-shot)
verified: true
- type: HellaSwag (10-shot)
value: 83.92
name: HellaSwag (10-shot)
verified: true
- type: MMLU (5-shot)
value: 63.55
name: MMLU (5-shot)
verified: true
- type: TruthfulQA (0-shot)
value: 59.68
name: TruthfulQA (0-shot)
verified: true
- type: Winogrande (5-shot)
value: 79.95
name: Winogrande (5-shot)
verified: true
- type: GSM8K (5-shot)
value: 55.12
name: GSM8K (5-shot)
verified: true
---
# DarkJanissary/neural-chat-7b-v3-2-Q6_K-GGUF
This model was converted to GGUF format from [`Intel/neural-chat-7b-v3-2`](https://huggingface.co/Intel/neural-chat-7b-v3-2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Intel/neural-chat-7b-v3-2) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama --hf-repo DarkJanissary/neural-chat-7b-v3-2-Q6_K-GGUF --hf-file neural-chat-7b-v3-2-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo DarkJanissary/neural-chat-7b-v3-2-Q6_K-GGUF --hf-file neural-chat-7b-v3-2-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./main --hf-repo DarkJanissary/neural-chat-7b-v3-2-Q6_K-GGUF --hf-file neural-chat-7b-v3-2-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./server --hf-repo DarkJanissary/neural-chat-7b-v3-2-Q6_K-GGUF --hf-file neural-chat-7b-v3-2-q6_k.gguf -c 2048
```
|
apwic/nerui-lora-r16-0
|
apwic
| 2024-06-04T01:35:19Z | 0 | 0 | null |
[
"tensorboard",
"generated_from_trainer",
"id",
"base_model:indolem/indobert-base-uncased",
"base_model:finetune:indolem/indobert-base-uncased",
"license:mit",
"region:us"
] | null | 2024-05-28T12:30:18Z |
---
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: nerui-lora-r16-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nerui-lora-r16-0
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0440
- Location Precision: 0.8318
- Location Recall: 0.9468
- Location F1: 0.8856
- Location Number: 94
- Organization Precision: 0.8827
- Organization Recall: 0.8563
- Organization F1: 0.8693
- Organization Number: 167
- Person Precision: 1.0
- Person Recall: 0.9854
- Person F1: 0.9926
- Person Number: 137
- Overall Precision: 0.9084
- Overall Recall: 0.9221
- Overall F1: 0.9152
- Overall Accuracy: 0.9845
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Location Precision | Location Recall | Location F1 | Location Number | Organization Precision | Organization Recall | Organization F1 | Organization Number | Person Precision | Person Recall | Person F1 | Person Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:-------------:|:---------:|:-------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.0607 | 1.0 | 96 | 0.6834 | 0.0 | 0.0 | 0.0 | 94 | 0.0 | 0.0 | 0.0 | 167 | 0.0 | 0.0 | 0.0 | 137 | 0.0 | 0.0 | 0.0 | 0.8343 |
| 0.6397 | 2.0 | 192 | 0.5323 | 0.0 | 0.0 | 0.0 | 94 | 0.6667 | 0.0240 | 0.0462 | 167 | 0.2 | 0.0146 | 0.0272 | 137 | 0.375 | 0.0151 | 0.0290 | 0.8367 |
| 0.4975 | 3.0 | 288 | 0.3811 | 0.16 | 0.0426 | 0.0672 | 94 | 0.2903 | 0.1617 | 0.2077 | 167 | 0.2606 | 0.2701 | 0.2652 | 137 | 0.2615 | 0.1709 | 0.2067 | 0.8663 |
| 0.3542 | 4.0 | 384 | 0.2727 | 0.3231 | 0.2234 | 0.2642 | 94 | 0.4834 | 0.6108 | 0.5397 | 167 | 0.4343 | 0.6277 | 0.5134 | 137 | 0.4409 | 0.5251 | 0.4794 | 0.9141 |
| 0.2514 | 5.0 | 480 | 0.1973 | 0.5393 | 0.5106 | 0.5246 | 94 | 0.6049 | 0.7425 | 0.6667 | 167 | 0.7532 | 0.8686 | 0.8068 | 137 | 0.6438 | 0.7312 | 0.6847 | 0.9434 |
| 0.2019 | 6.0 | 576 | 0.1491 | 0.6915 | 0.6915 | 0.6915 | 94 | 0.7228 | 0.7964 | 0.7578 | 167 | 0.9161 | 0.9562 | 0.9357 | 137 | 0.7815 | 0.8266 | 0.8034 | 0.9602 |
| 0.1643 | 7.0 | 672 | 0.1244 | 0.7170 | 0.8085 | 0.76 | 94 | 0.7308 | 0.7964 | 0.7622 | 167 | 0.9301 | 0.9708 | 0.9500 | 137 | 0.7935 | 0.8593 | 0.8251 | 0.9644 |
| 0.1449 | 8.0 | 768 | 0.1025 | 0.7475 | 0.7872 | 0.7668 | 94 | 0.7697 | 0.8204 | 0.7942 | 167 | 0.9496 | 0.9635 | 0.9565 | 137 | 0.8245 | 0.8618 | 0.8428 | 0.9693 |
| 0.1318 | 9.0 | 864 | 0.0919 | 0.8163 | 0.8511 | 0.8333 | 94 | 0.7838 | 0.8683 | 0.8239 | 167 | 0.95 | 0.9708 | 0.9603 | 137 | 0.8463 | 0.8995 | 0.8721 | 0.9721 |
| 0.1184 | 10.0 | 960 | 0.0846 | 0.8 | 0.8936 | 0.8442 | 94 | 0.8246 | 0.8443 | 0.8343 | 167 | 0.9504 | 0.9781 | 0.9640 | 137 | 0.8609 | 0.9020 | 0.8810 | 0.9751 |
| 0.11 | 11.0 | 1056 | 0.0744 | 0.8454 | 0.8723 | 0.8586 | 94 | 0.8324 | 0.8623 | 0.8471 | 167 | 0.9571 | 0.9781 | 0.9675 | 137 | 0.8780 | 0.9045 | 0.8911 | 0.9773 |
| 0.103 | 12.0 | 1152 | 0.0714 | 0.8431 | 0.9149 | 0.8776 | 94 | 0.8471 | 0.8623 | 0.8546 | 167 | 0.9571 | 0.9781 | 0.9675 | 137 | 0.8835 | 0.9146 | 0.8988 | 0.9776 |
| 0.0954 | 13.0 | 1248 | 0.0672 | 0.8586 | 0.9043 | 0.8808 | 94 | 0.8471 | 0.8623 | 0.8546 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.8963 | 0.9121 | 0.9041 | 0.9790 |
| 0.0896 | 14.0 | 1344 | 0.0617 | 0.8673 | 0.9043 | 0.8854 | 94 | 0.8466 | 0.8922 | 0.8688 | 167 | 0.9710 | 0.9781 | 0.9745 | 137 | 0.8932 | 0.9246 | 0.9086 | 0.9804 |
| 0.0894 | 15.0 | 1440 | 0.0573 | 0.8687 | 0.9149 | 0.8912 | 94 | 0.8596 | 0.8802 | 0.8698 | 167 | 0.9640 | 0.9781 | 0.9710 | 137 | 0.8973 | 0.9221 | 0.9095 | 0.9801 |
| 0.0853 | 16.0 | 1536 | 0.0628 | 0.8462 | 0.9362 | 0.8889 | 94 | 0.8457 | 0.8862 | 0.8655 | 167 | 0.9783 | 0.9854 | 0.9818 | 137 | 0.8897 | 0.9322 | 0.9104 | 0.9798 |
| 0.0813 | 17.0 | 1632 | 0.0562 | 0.8763 | 0.9043 | 0.8901 | 94 | 0.8629 | 0.9042 | 0.8830 | 167 | 0.9640 | 0.9781 | 0.9710 | 137 | 0.9002 | 0.9296 | 0.9147 | 0.9815 |
| 0.0804 | 18.0 | 1728 | 0.0545 | 0.85 | 0.9043 | 0.8763 | 94 | 0.8529 | 0.8683 | 0.8605 | 167 | 0.9571 | 0.9781 | 0.9675 | 137 | 0.8878 | 0.9146 | 0.9010 | 0.9798 |
| 0.0761 | 19.0 | 1824 | 0.0517 | 0.84 | 0.8936 | 0.8660 | 94 | 0.8675 | 0.8623 | 0.8649 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9005 | 0.9095 | 0.905 | 0.9812 |
| 0.0761 | 20.0 | 1920 | 0.0532 | 0.84 | 0.8936 | 0.8660 | 94 | 0.8706 | 0.8862 | 0.8783 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.8993 | 0.9196 | 0.9093 | 0.9815 |
| 0.071 | 21.0 | 2016 | 0.0553 | 0.8462 | 0.9362 | 0.8889 | 94 | 0.8659 | 0.8503 | 0.8580 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.8988 | 0.9146 | 0.9066 | 0.9812 |
| 0.07 | 22.0 | 2112 | 0.0499 | 0.85 | 0.9043 | 0.8763 | 94 | 0.8728 | 0.9042 | 0.8882 | 167 | 0.9926 | 0.9854 | 0.9890 | 137 | 0.9071 | 0.9322 | 0.9195 | 0.9834 |
| 0.0673 | 23.0 | 2208 | 0.0517 | 0.8286 | 0.9255 | 0.8744 | 94 | 0.8712 | 0.8503 | 0.8606 | 167 | 0.9783 | 0.9854 | 0.9818 | 137 | 0.8966 | 0.9146 | 0.9055 | 0.9820 |
| 0.0657 | 24.0 | 2304 | 0.0489 | 0.8515 | 0.9149 | 0.8821 | 94 | 0.8772 | 0.8982 | 0.8876 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9069 | 0.9296 | 0.9181 | 0.9831 |
| 0.0643 | 25.0 | 2400 | 0.0501 | 0.8148 | 0.9362 | 0.8713 | 94 | 0.8805 | 0.8383 | 0.8589 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9030 | 0.9121 | 0.9075 | 0.9823 |
| 0.0607 | 26.0 | 2496 | 0.0486 | 0.8317 | 0.8936 | 0.8615 | 94 | 0.8841 | 0.8683 | 0.8761 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.91 | 0.9146 | 0.9123 | 0.9837 |
| 0.0629 | 27.0 | 2592 | 0.0493 | 0.8571 | 0.8936 | 0.875 | 94 | 0.8802 | 0.8802 | 0.8802 | 167 | 0.9779 | 0.9708 | 0.9744 | 137 | 0.9077 | 0.9146 | 0.9111 | 0.9826 |
| 0.0571 | 28.0 | 2688 | 0.0495 | 0.85 | 0.9043 | 0.8763 | 94 | 0.8727 | 0.8623 | 0.8675 | 167 | 0.9926 | 0.9781 | 0.9853 | 137 | 0.9075 | 0.9121 | 0.9098 | 0.9823 |
| 0.0564 | 29.0 | 2784 | 0.0469 | 0.8544 | 0.9362 | 0.8934 | 94 | 0.8909 | 0.8802 | 0.8855 | 167 | 0.9926 | 0.9781 | 0.9853 | 137 | 0.9156 | 0.9271 | 0.9213 | 0.9851 |
| 0.0578 | 30.0 | 2880 | 0.0486 | 0.8476 | 0.9468 | 0.8945 | 94 | 0.875 | 0.8802 | 0.8776 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9046 | 0.9296 | 0.9170 | 0.9837 |
| 0.0571 | 31.0 | 2976 | 0.0466 | 0.87 | 0.9255 | 0.8969 | 94 | 0.8727 | 0.8623 | 0.8675 | 167 | 0.9926 | 0.9781 | 0.9853 | 137 | 0.9125 | 0.9171 | 0.9148 | 0.9848 |
| 0.0517 | 32.0 | 3072 | 0.0480 | 0.8091 | 0.9468 | 0.8725 | 94 | 0.8704 | 0.8443 | 0.8571 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.8968 | 0.9171 | 0.9068 | 0.9829 |
| 0.0509 | 33.0 | 3168 | 0.0467 | 0.8224 | 0.9362 | 0.8756 | 94 | 0.8720 | 0.8563 | 0.8640 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9015 | 0.9196 | 0.9104 | 0.9837 |
| 0.051 | 34.0 | 3264 | 0.0469 | 0.8286 | 0.9255 | 0.8744 | 94 | 0.8780 | 0.8623 | 0.8701 | 167 | 0.9926 | 0.9781 | 0.9853 | 137 | 0.9035 | 0.9171 | 0.9102 | 0.9834 |
| 0.0509 | 35.0 | 3360 | 0.0447 | 0.85 | 0.9043 | 0.8763 | 94 | 0.8848 | 0.8743 | 0.8795 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.915 | 0.9196 | 0.9173 | 0.9845 |
| 0.0498 | 36.0 | 3456 | 0.0467 | 0.8614 | 0.9255 | 0.8923 | 94 | 0.8713 | 0.8922 | 0.8817 | 167 | 0.9926 | 0.9781 | 0.9853 | 137 | 0.9091 | 0.9296 | 0.9193 | 0.9843 |
| 0.0486 | 37.0 | 3552 | 0.0439 | 0.86 | 0.9149 | 0.8866 | 94 | 0.8862 | 0.8862 | 0.8862 | 167 | 0.9926 | 0.9781 | 0.9853 | 137 | 0.9154 | 0.9246 | 0.92 | 0.9845 |
| 0.0486 | 38.0 | 3648 | 0.0430 | 0.8529 | 0.9255 | 0.8878 | 94 | 0.8896 | 0.8683 | 0.8788 | 167 | 0.9926 | 0.9781 | 0.9853 | 137 | 0.915 | 0.9196 | 0.9173 | 0.9845 |
| 0.0508 | 39.0 | 3744 | 0.0458 | 0.8224 | 0.9362 | 0.8756 | 94 | 0.8758 | 0.8443 | 0.8598 | 167 | 0.9926 | 0.9781 | 0.9853 | 137 | 0.9007 | 0.9121 | 0.9064 | 0.9837 |
| 0.0487 | 40.0 | 3840 | 0.0416 | 0.8544 | 0.9362 | 0.8934 | 94 | 0.8869 | 0.8922 | 0.8896 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9163 | 0.9347 | 0.9254 | 0.9859 |
| 0.0453 | 41.0 | 3936 | 0.0431 | 0.8302 | 0.9362 | 0.88 | 94 | 0.8889 | 0.8623 | 0.8754 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9107 | 0.9221 | 0.9164 | 0.9848 |
| 0.0459 | 42.0 | 4032 | 0.0421 | 0.8673 | 0.9043 | 0.8854 | 94 | 0.8909 | 0.8802 | 0.8855 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9221 | 0.9221 | 0.9221 | 0.9854 |
| 0.0461 | 43.0 | 4128 | 0.0444 | 0.8286 | 0.9255 | 0.8744 | 94 | 0.8773 | 0.8563 | 0.8667 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9057 | 0.9171 | 0.9114 | 0.9840 |
| 0.0436 | 44.0 | 4224 | 0.0418 | 0.8515 | 0.9149 | 0.8821 | 94 | 0.8712 | 0.8503 | 0.8606 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9098 | 0.9121 | 0.9109 | 0.9837 |
| 0.0444 | 45.0 | 4320 | 0.0397 | 0.8614 | 0.9255 | 0.8923 | 94 | 0.8970 | 0.8862 | 0.8916 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9227 | 0.9296 | 0.9262 | 0.9867 |
| 0.042 | 46.0 | 4416 | 0.0421 | 0.8286 | 0.9255 | 0.8744 | 94 | 0.8820 | 0.8503 | 0.8659 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9077 | 0.9146 | 0.9111 | 0.9848 |
| 0.0425 | 47.0 | 4512 | 0.0443 | 0.8241 | 0.9468 | 0.8812 | 94 | 0.8841 | 0.8683 | 0.8761 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9066 | 0.9271 | 0.9168 | 0.9845 |
| 0.0416 | 48.0 | 4608 | 0.0418 | 0.8462 | 0.9362 | 0.8889 | 94 | 0.9012 | 0.8743 | 0.8875 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9202 | 0.9271 | 0.9237 | 0.9862 |
| 0.0401 | 49.0 | 4704 | 0.0418 | 0.8544 | 0.9362 | 0.8934 | 94 | 0.8841 | 0.8683 | 0.8761 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9154 | 0.9246 | 0.92 | 0.9854 |
| 0.0395 | 50.0 | 4800 | 0.0428 | 0.8365 | 0.9255 | 0.8788 | 94 | 0.8773 | 0.8563 | 0.8667 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9080 | 0.9171 | 0.9125 | 0.9848 |
| 0.0404 | 51.0 | 4896 | 0.0426 | 0.8462 | 0.9362 | 0.8889 | 94 | 0.8712 | 0.8503 | 0.8606 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9080 | 0.9171 | 0.9125 | 0.9848 |
| 0.0388 | 52.0 | 4992 | 0.0405 | 0.8889 | 0.9362 | 0.9119 | 94 | 0.8824 | 0.8982 | 0.8902 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9233 | 0.9372 | 0.9302 | 0.9876 |
| 0.0406 | 53.0 | 5088 | 0.0409 | 0.87 | 0.9255 | 0.8969 | 94 | 0.875 | 0.8802 | 0.8776 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9156 | 0.9271 | 0.9213 | 0.9856 |
| 0.0403 | 54.0 | 5184 | 0.0410 | 0.8713 | 0.9362 | 0.9026 | 94 | 0.8855 | 0.8802 | 0.8829 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9204 | 0.9296 | 0.925 | 0.9856 |
| 0.0393 | 55.0 | 5280 | 0.0407 | 0.8529 | 0.9255 | 0.8878 | 94 | 0.8580 | 0.8683 | 0.8631 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9039 | 0.9221 | 0.9129 | 0.9854 |
| 0.0397 | 56.0 | 5376 | 0.0408 | 0.8302 | 0.9362 | 0.88 | 94 | 0.8598 | 0.8443 | 0.8520 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.8988 | 0.9146 | 0.9066 | 0.9834 |
| 0.0376 | 57.0 | 5472 | 0.0423 | 0.8257 | 0.9574 | 0.8867 | 94 | 0.8812 | 0.8443 | 0.8624 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9059 | 0.9196 | 0.9127 | 0.9845 |
| 0.0385 | 58.0 | 5568 | 0.0406 | 0.8687 | 0.9149 | 0.8912 | 94 | 0.8743 | 0.8743 | 0.8743 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9152 | 0.9221 | 0.9186 | 0.9856 |
| 0.0371 | 59.0 | 5664 | 0.0407 | 0.8776 | 0.9149 | 0.8958 | 94 | 0.8855 | 0.8802 | 0.8829 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9223 | 0.9246 | 0.9235 | 0.9865 |
| 0.0361 | 60.0 | 5760 | 0.0428 | 0.8318 | 0.9468 | 0.8856 | 94 | 0.9062 | 0.8683 | 0.8869 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9179 | 0.9271 | 0.9225 | 0.9851 |
| 0.036 | 61.0 | 5856 | 0.0413 | 0.8713 | 0.9362 | 0.9026 | 94 | 0.8935 | 0.9042 | 0.8988 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9235 | 0.9397 | 0.9315 | 0.9862 |
| 0.0383 | 62.0 | 5952 | 0.0421 | 0.8302 | 0.9362 | 0.88 | 94 | 0.8909 | 0.8802 | 0.8855 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9113 | 0.9296 | 0.9204 | 0.9848 |
| 0.0339 | 63.0 | 6048 | 0.0419 | 0.8381 | 0.9362 | 0.8844 | 94 | 0.9012 | 0.8743 | 0.8875 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9179 | 0.9271 | 0.9225 | 0.9854 |
| 0.0363 | 64.0 | 6144 | 0.0428 | 0.8241 | 0.9468 | 0.8812 | 94 | 0.875 | 0.8383 | 0.8563 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9032 | 0.9146 | 0.9089 | 0.9845 |
| 0.0355 | 65.0 | 6240 | 0.0422 | 0.8224 | 0.9362 | 0.8756 | 94 | 0.8650 | 0.8443 | 0.8545 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.8988 | 0.9146 | 0.9066 | 0.9845 |
| 0.0339 | 66.0 | 6336 | 0.0448 | 0.8241 | 0.9468 | 0.8812 | 94 | 0.8831 | 0.8144 | 0.8474 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9068 | 0.9045 | 0.9057 | 0.9829 |
| 0.0352 | 67.0 | 6432 | 0.0429 | 0.8318 | 0.9468 | 0.8856 | 94 | 0.8820 | 0.8503 | 0.8659 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9082 | 0.9196 | 0.9139 | 0.9843 |
| 0.0337 | 68.0 | 6528 | 0.0458 | 0.8241 | 0.9468 | 0.8812 | 94 | 0.8710 | 0.8084 | 0.8385 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9020 | 0.9020 | 0.9020 | 0.9826 |
| 0.0353 | 69.0 | 6624 | 0.0425 | 0.8381 | 0.9362 | 0.8844 | 94 | 0.8841 | 0.8683 | 0.8761 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9109 | 0.9246 | 0.9177 | 0.9851 |
| 0.0338 | 70.0 | 6720 | 0.0428 | 0.8365 | 0.9255 | 0.8788 | 94 | 0.8589 | 0.8383 | 0.8485 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9005 | 0.9095 | 0.905 | 0.9834 |
| 0.0348 | 71.0 | 6816 | 0.0432 | 0.8318 | 0.9468 | 0.8856 | 94 | 0.9012 | 0.8743 | 0.8875 | 167 | 0.9926 | 0.9781 | 0.9853 | 137 | 0.9134 | 0.9271 | 0.9202 | 0.9851 |
| 0.0351 | 72.0 | 6912 | 0.0449 | 0.8091 | 0.9468 | 0.8725 | 94 | 0.8868 | 0.8443 | 0.8650 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9035 | 0.9171 | 0.9102 | 0.9837 |
| 0.0327 | 73.0 | 7008 | 0.0439 | 0.8091 | 0.9468 | 0.8725 | 94 | 0.8625 | 0.8263 | 0.8440 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.8938 | 0.9095 | 0.9016 | 0.9826 |
| 0.0314 | 74.0 | 7104 | 0.0431 | 0.8462 | 0.9362 | 0.8889 | 94 | 0.8758 | 0.8443 | 0.8598 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.91 | 0.9146 | 0.9123 | 0.9837 |
| 0.0332 | 75.0 | 7200 | 0.0430 | 0.8302 | 0.9362 | 0.88 | 94 | 0.8485 | 0.8383 | 0.8434 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.8941 | 0.9121 | 0.9030 | 0.9834 |
| 0.0311 | 76.0 | 7296 | 0.0438 | 0.8365 | 0.9255 | 0.8788 | 94 | 0.8598 | 0.8443 | 0.8520 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9007 | 0.9121 | 0.9064 | 0.9840 |
| 0.0322 | 77.0 | 7392 | 0.0455 | 0.8165 | 0.9468 | 0.8768 | 94 | 0.8671 | 0.8204 | 0.8431 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.8980 | 0.9070 | 0.9025 | 0.9823 |
| 0.0313 | 78.0 | 7488 | 0.0442 | 0.8302 | 0.9362 | 0.88 | 94 | 0.8712 | 0.8503 | 0.8606 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9035 | 0.9171 | 0.9102 | 0.9840 |
| 0.0313 | 79.0 | 7584 | 0.0435 | 0.8302 | 0.9362 | 0.88 | 94 | 0.8659 | 0.8503 | 0.8580 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9012 | 0.9171 | 0.9091 | 0.9845 |
| 0.0321 | 80.0 | 7680 | 0.0450 | 0.8165 | 0.9468 | 0.8768 | 94 | 0.8812 | 0.8443 | 0.8624 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9035 | 0.9171 | 0.9102 | 0.9831 |
| 0.0303 | 81.0 | 7776 | 0.0441 | 0.8318 | 0.9468 | 0.8856 | 94 | 0.8765 | 0.8503 | 0.8632 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9059 | 0.9196 | 0.9127 | 0.9843 |
| 0.0322 | 82.0 | 7872 | 0.0442 | 0.8318 | 0.9468 | 0.8856 | 94 | 0.8797 | 0.8323 | 0.8554 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9075 | 0.9121 | 0.9098 | 0.9834 |
| 0.0313 | 83.0 | 7968 | 0.0447 | 0.8318 | 0.9468 | 0.8856 | 94 | 0.8812 | 0.8443 | 0.8624 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9080 | 0.9171 | 0.9125 | 0.9834 |
| 0.0292 | 84.0 | 8064 | 0.0448 | 0.8318 | 0.9468 | 0.8856 | 94 | 0.8765 | 0.8503 | 0.8632 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9059 | 0.9196 | 0.9127 | 0.9840 |
| 0.03 | 85.0 | 8160 | 0.0465 | 0.8396 | 0.9468 | 0.89 | 94 | 0.8734 | 0.8263 | 0.8492 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9073 | 0.9095 | 0.9084 | 0.9831 |
| 0.0311 | 86.0 | 8256 | 0.0455 | 0.8302 | 0.9362 | 0.88 | 94 | 0.8773 | 0.8563 | 0.8667 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9059 | 0.9196 | 0.9127 | 0.9837 |
| 0.0302 | 87.0 | 8352 | 0.0458 | 0.8318 | 0.9468 | 0.8856 | 94 | 0.8696 | 0.8383 | 0.8537 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9032 | 0.9146 | 0.9089 | 0.9834 |
| 0.0311 | 88.0 | 8448 | 0.0445 | 0.8318 | 0.9468 | 0.8856 | 94 | 0.8758 | 0.8443 | 0.8598 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9057 | 0.9171 | 0.9114 | 0.9834 |
| 0.0306 | 89.0 | 8544 | 0.0432 | 0.8365 | 0.9255 | 0.8788 | 94 | 0.8727 | 0.8623 | 0.8675 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9059 | 0.9196 | 0.9127 | 0.9843 |
| 0.0292 | 90.0 | 8640 | 0.0444 | 0.8396 | 0.9468 | 0.89 | 94 | 0.8827 | 0.8563 | 0.8693 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9107 | 0.9221 | 0.9164 | 0.9837 |
| 0.0302 | 91.0 | 8736 | 0.0451 | 0.8318 | 0.9468 | 0.8856 | 94 | 0.875 | 0.8383 | 0.8563 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9055 | 0.9146 | 0.91 | 0.9829 |
| 0.0288 | 92.0 | 8832 | 0.0445 | 0.8396 | 0.9468 | 0.89 | 94 | 0.8773 | 0.8563 | 0.8667 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9084 | 0.9221 | 0.9152 | 0.9845 |
| 0.0313 | 93.0 | 8928 | 0.0444 | 0.8318 | 0.9468 | 0.8856 | 94 | 0.8827 | 0.8563 | 0.8693 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9084 | 0.9221 | 0.9152 | 0.9845 |
| 0.0293 | 94.0 | 9024 | 0.0441 | 0.8318 | 0.9468 | 0.8856 | 94 | 0.8944 | 0.8623 | 0.8780 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9132 | 0.9246 | 0.9189 | 0.9848 |
| 0.03 | 95.0 | 9120 | 0.0450 | 0.8318 | 0.9468 | 0.8856 | 94 | 0.8812 | 0.8443 | 0.8624 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9080 | 0.9171 | 0.9125 | 0.9837 |
| 0.0313 | 96.0 | 9216 | 0.0443 | 0.8318 | 0.9468 | 0.8856 | 94 | 0.8827 | 0.8563 | 0.8693 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9084 | 0.9221 | 0.9152 | 0.9845 |
| 0.0299 | 97.0 | 9312 | 0.0445 | 0.8318 | 0.9468 | 0.8856 | 94 | 0.875 | 0.8383 | 0.8563 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9055 | 0.9146 | 0.91 | 0.9837 |
| 0.0316 | 98.0 | 9408 | 0.0442 | 0.8318 | 0.9468 | 0.8856 | 94 | 0.8827 | 0.8563 | 0.8693 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9084 | 0.9221 | 0.9152 | 0.9845 |
| 0.0301 | 99.0 | 9504 | 0.0439 | 0.8318 | 0.9468 | 0.8856 | 94 | 0.8827 | 0.8563 | 0.8693 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9084 | 0.9221 | 0.9152 | 0.9845 |
| 0.0308 | 100.0 | 9600 | 0.0440 | 0.8318 | 0.9468 | 0.8856 | 94 | 0.8827 | 0.8563 | 0.8693 | 167 | 1.0 | 0.9854 | 0.9926 | 137 | 0.9084 | 0.9221 | 0.9152 | 0.9845 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
|
Charixfox/Llama-3-70b-Uncensored-Lumi-Tess-gradient-AWQ-4bit
|
Charixfox
| 2024-06-04T01:35:15Z | 21 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"awq",
"region:us"
] |
text-generation
| 2024-06-04T00:25:26Z |
---
license: other
license_name: llama3
license_link: https://llama.meta.com/llama3/license/
---
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.