modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-08 19:17:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
549 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-08 18:30:19
card
stringlengths
11
1.01M
weijiang2009/AlgmonQuestingAnsweringModel-finetune
weijiang2009
2022-12-13T07:59:31Z
5
1
transformers
[ "transformers", "pytorch", "en", "dataset:algmon_vertical_domian_0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-12-13T07:11:56Z
--- language: en widget: - text: "The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets." datasets: - algmon_vertical_domian_0 model-index: - name: weijiang2009/AlgmonQuestingAnsweringModel-finetune results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 79.9309 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDhhNjg5YzNiZGQ1YTIyYTAwZGUwOWEzZTRiYzdjM2QzYjA3ZTUxNDM1NjE1MTUyMjE1MGY1YzEzMjRjYzVjYiIsInZlcnNpb24iOjF9.EH5JJo8EEFwU7osPz3s7qanw_tigeCFhCXjSfyN0Y1nWVnSfulSxIk_DbAEI5iE80V4EKLyp5-mYFodWvL2KDA - type: f1 value: 82.9501 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjk5ZDYwOGQyNjNkMWI0OTE4YzRmOTlkY2JjNjQ0YTZkNTMzMzNkYTA0MDFmNmI3NjA3NjNlMjhiMDQ2ZjJjNSIsInZlcnNpb24iOjF9.DDm0LNTkdLbGsue58bg1aH_s67KfbcmkvL-6ZiI2s8IoxhHJMSf29H_uV2YLyevwx900t-MwTVOW3qfFnMMEAQ - type: total value: 11869 name: total verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGFkMmI2ODM0NmY5NGNkNmUxYWViOWYxZDNkY2EzYWFmOWI4N2VhYzY5MGEzMTVhOTU4Zjc4YWViOGNjOWJjMCIsInZlcnNpb24iOjF9.fexrU1icJK5_MiifBtZWkeUvpmFISqBLDXSQJ8E6UnrRof-7cU0s4tX_dIsauHWtUpIHMPZCf5dlMWQKXZuAAA --- # Algmon domain specific finetune for questioning & answering service * Algmon domain specific * base + finetune
thkkvui/xlm-roberta-base-finetuned-panx-en
thkkvui
2022-12-13T07:26:56Z
7
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-13T07:20:08Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6699779249448123 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4004 - F1: 0.6700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1798 | 1.0 | 50 | 0.6616 | 0.4612 | | 0.5404 | 2.0 | 100 | 0.4206 | 0.6551 | | 0.3714 | 3.0 | 150 | 0.4004 | 0.6700 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.13.0.dev20220711 - Datasets 2.4.0 - Tokenizers 0.12.1
devemrekoc/sd-tunable
devemrekoc
2022-12-13T07:24:12Z
0
1
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-12T08:30:59Z
--- license: creativeml-openrail-m --- Stable Diffusion v1-5 with the fine-tuned VAE `sd-vae-ft-mse` and files with config modifications for making it better to fine-tune made by [fast-stable-diffusion by TheLastBen](https://github.com/TheLastBen/fast-stable-diffusion) to be used on [fastDreambooth Colab Notebook](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) and on the [Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) Is not suited for inference and training elsewhere is under your own risk. The [model LICENSE](https://huggingface.co/spaces/CompVis/stable-diffusion-license) still applies normally for this use-case. Refer to the [original repository](https://huggingface.co/runwayml/stable-diffusion-v1-5) for the model card
weijiang2009/AlgmonQuestingAnsweringModel-base
weijiang2009
2022-12-13T07:21:35Z
4
1
transformers
[ "transformers", "pytorch", "tf", "jax", "rust", "roberta", "question-answering", "en", "dataset:squad_v2", "license:cc-by-4.0", "model-index", "endpoints_compatible", "region:us" ]
question-answering
2022-12-13T03:21:56Z
--- language: en license: cc-by-4.0 datasets: - squad_v2 model-index: - name: weijiang2009/AlgmonQuestingAnsweringModel results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 79.9309 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDhhNjg5YzNiZGQ1YTIyYTAwZGUwOWEzZTRiYzdjM2QzYjA3ZTUxNDM1NjE1MTUyMjE1MGY1YzEzMjRjYzVjYiIsInZlcnNpb24iOjF9.EH5JJo8EEFwU7osPz3s7qanw_tigeCFhCXjSfyN0Y1nWVnSfulSxIk_DbAEI5iE80V4EKLyp5-mYFodWvL2KDA - type: f1 value: 82.9501 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjk5ZDYwOGQyNjNkMWI0OTE4YzRmOTlkY2JjNjQ0YTZkNTMzMzNkYTA0MDFmNmI3NjA3NjNlMjhiMDQ2ZjJjNSIsInZlcnNpb24iOjF9.DDm0LNTkdLbGsue58bg1aH_s67KfbcmkvL-6ZiI2s8IoxhHJMSf29H_uV2YLyevwx900t-MwTVOW3qfFnMMEAQ - type: total value: 11869 name: total verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGFkMmI2ODM0NmY5NGNkNmUxYWViOWYxZDNkY2EzYWFmOWI4N2VhYzY5MGEzMTVhOTU4Zjc4YWViOGNjOWJjMCIsInZlcnNpb24iOjF9.fexrU1icJK5_MiifBtZWkeUvpmFISqBLDXSQJ8E6UnrRof-7cU0s4tX_dIsauHWtUpIHMPZCf5dlMWQKXZuAAA --- # algmon-base for QA This is the base model for QA [roberta-base](https://huggingface.co/roberta-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering. ## Overview **Language model:** roberta-base **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Infrastructure**: 4x Tesla v100 ## Hyperparameters ``` batch_size = 96 n_epochs = 2 base_LM_model = "roberta-base" max_seq_len = 386 learning_rate = 3e-5 lr_schedule = LinearWarmup warmup_proportion = 0.2 doc_stride=128 max_query_length=64 ``` ## Usage ### In Haystack Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/): ```python reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2") # or reader = TransformersReader(model_name_or_path="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2") ``` For a complete example of ``roberta-base-squad2`` being used for Question Answering, check out the [Tutorials in Haystack Documentation](https://haystack.deepset.ai/tutorials/first-qa-system) ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/roberta-base-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Performance Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/). ``` "exact": 79.87029394424324, "f1": 82.91251169582613, "total": 11873, "HasAns_exact": 77.93522267206478, "HasAns_f1": 84.02838248389763, "HasAns_total": 5928, "NoAns_exact": 81.79983179142137, "NoAns_f1": 81.79983179142137, "NoAns_total": 5945 ```
thkkvui/xlm-roberta-base-finetuned-panx-it
thkkvui
2022-12-13T07:19:41Z
7
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-13T07:11:40Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8168094655242758 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2601 - F1: 0.8168 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8182 | 1.0 | 70 | 0.3477 | 0.7319 | | 0.3068 | 2.0 | 140 | 0.2838 | 0.7765 | | 0.193 | 3.0 | 210 | 0.2601 | 0.8168 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.13.0.dev20220711 - Datasets 2.4.0 - Tokenizers 0.12.1
nerijs/coralchar-diffusion
nerijs
2022-12-13T06:47:52Z
85
9
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-05T01:32:40Z
--- license: creativeml-openrail-m --- <div style="display: flex; flex-direction: row; flex-wrap: wrap"> <a href="https://www.patreon.com/user?u=29466374" target="_blank"> <img src="https://img.shields.io/badge/Patreon-F96854?style=for-the-badge&logo=patreon&logoColor=white" alt="Patreon"/> </a> <a href="https://twitter.com/nerijs" target="_blank"> <img src="https://img.shields.io/badge/Twitter-1DA1F2?style=for-the-badge&logo=twitter&logoColor=white" alt="Twitter"/> </a> </div> # coralchar-diffusion-v1 Stable Diffusion v1.5 model trained on to generate cute character portraits <div style="display: flex; flex-direction: row; flex-wrap: wrap"> <img src="https://s3.amazonaws.com/moonup/production/uploads/1670205150413-6303f37c3926de1f7ec42d3e.png" width="256"> <img src="https://s3.amazonaws.com/moonup/production/uploads/1670205171617-6303f37c3926de1f7ec42d3e.png" width="256"> </div> ## How to use - Download the model and use it on your desired UI (Tested on AUTOMATIC1111's) .ckpt and Diffusers version available - Trigger the style in your prompt with the **coralchar** token, look at the next section for more examples - If you want to use the inpainting model, you can use it like a normal v1.5 model ## Versions - **v1**: 1000-6000 steps checkpoints available to download - **inpainting** version available ## Examples on step-6000 model **a woman wearing blue jeans and a white tank top** Steps: 20, Sampler: DPM++ SDE, CFG scale: 7, Size: 512x768 <img src="https://s3.amazonaws.com/moonup/production/uploads/1670204360798-6303f37c3926de1f7ec42d3e.png" width="512"/> **a man wearing a black puffy vest** Steps: 20, Sampler: DPM++ SDE, CFG scale: 7, Size: 512x768 <img src="https://s3.amazonaws.com/moonup/production/uploads/1670204467592-6303f37c3926de1f7ec42d3e.png" width="512"/> ## Examples on inpainting model **a man wearing a blue puffy vest** Steps: 20, Sampler: DPM++ SDE, CFG scale: 7, Size: 512x768, 0.75 Denoising strength <h2>Original vs step_6000 vs inpainting version</h2> <div style="display: flex; flex-direction: row; flex-wrap: wrap"> <img src="https://s3.amazonaws.com/moonup/production/uploads/1670205036420-6303f37c3926de1f7ec42d3e.png" width="256"/> <img src="https://s3.amazonaws.com/moonup/production/uploads/1670204708270-6303f37c3926de1f7ec42d3e.png" width="256"/> <img src="https://s3.amazonaws.com/moonup/production/uploads/1670204954426-6303f37c3926de1f7ec42d3e.png" width="256"/> </div> ## Tips - Best results with 512x768, outputs full body portraits - Also high step count on Euler_a gives good results - Low CFG scale outputs great results - If you want to generate different expressions, generate a base character with txt2img then adjust your outfit and details with inpainting model and use inpainting again to generate different expressions and poses Please consider supporting further research on my Patreon: <a href="https://www.patreon.com/user?u=29466374" target="_blank"> <img src="https://img.shields.io/badge/Patreon-F96854?style=for-the-badge&logo=patreon&logoColor=white" alt="Patreon"/> </a> If you have any question, suggestion for new models or need help in general with SD related stuff, don't hesistate to reach out on Twitter: <a href="https://twitter.com/nerijs" target="_blank"> <img src="https://img.shields.io/badge/Twitter-1DA1F2?style=for-the-badge&logo=twitter&logoColor=white" alt="Twitter"/> </a>
ljh838/inpaint
ljh838
2022-12-13T06:32:54Z
0
0
null
[ "region:us" ]
null
2022-12-13T06:32:29Z
--- title: Paint by example emoji: 🔥 colorFrom: green colorTo: pink sdk: gradio sdk_version: 3.6 app_file: app.py pinned: false duplicated_from: akhaliq/paint-by-example --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
nadanainone/gigaschizonegs
nadanainone
2022-12-13T05:53:34Z
0
4
null
[ "stable-diffusion", "text-to-image", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-12-13T04:39:42Z
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - text-to-image inference: false --- Made with a custom merge, won't work with SD 2.x. Yes it's another one of these negative prompt embeddings, inspired by all the previous ones (bad_prompt, bad-artist, etc.) It's a good idea tbh, if anything just as a meme experiment. Cherrypicked examples, not enough of them No embedding: ![01095-1838347573-highly detailed vfx portrait of emma watson as warrior girl, stephen bliss, unreal engine, chrome reflect, greg rutkowski, tom b.png](https://s3.amazonaws.com/moonup/production/uploads/1670907109298-63716cac15aafbe231371caa.png) ![01054-3906507010-a beautiful painting of imogen poots representative of the art style of artgerm and wlop and wes anderson and spike jonze.png](https://s3.amazonaws.com/moonup/production/uploads/1670907207789-63716cac15aafbe231371caa.png) ![01288-69696969-kurisu makise steins gate anime, atmospheric, elegant, smiling, laughing, super highly detailed, professional digital painting,-before-highres-fix.png](https://s3.amazonaws.com/moonup/production/uploads/1670908574598-63716cac15aafbe231371caa.png) Embedding: ![01096-1838347573-highly detailed vfx portrait of emma watson as warrior girl, stephen bliss, unreal engine, chrome reflect, greg rutkowski, tom b.png](https://s3.amazonaws.com/moonup/production/uploads/1670907109348-63716cac15aafbe231371caa.png) ![01055-3906507010-a beautiful painting of imogen poots representative of the art style of artgerm and wlop and wes anderson and spike jonze.png](https://s3.amazonaws.com/moonup/production/uploads/1670907207778-63716cac15aafbe231371caa.png) ![01286-69696969-kurisu makise steins gate anime, atmospheric, elegant, smiling, laughing, super highly detailed, professional digital painting,-before-highres-fix.png](https://s3.amazonaws.com/moonup/production/uploads/1670908574564-63716cac15aafbe231371caa.png) Made with my own schizo negs that would get me dingdongbannu just posting and main credit goes to the HD negs from: https://huggingface.co/Deltaadams/HentaiDiffusion/blob/main/Universal%20Negative%20Prompt%20Text.txt What it's not: an actual guaranteed fix for anything What it is: something that steers outputs towards a certain style and any fixes are just coincidence Usage: Put it in negatives with gigaschizonegs, either alone or in between <> (might not be needed anymore), or between parenthesis like (gigaschizonegs:0.8) with a custom value to increase or decrease strenght. Put it in positives to see the monstruosities that were used to make it. Trained at 15k steps with 1000+ horrors made with the prompt. Yes I have no idea what I'm doing. I'm only putting this here as an online backup tee bee eich. I don't like making model cards.
mssongit/fndeberta-sentence
mssongit
2022-12-13T05:47:39Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "deberta-v2", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-13T05:27:43Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # mssongit/fndeberta-sentence This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('mssongit/fndeberta-sentence') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('mssongit/fndeberta-sentence') model = AutoModel.from_pretrained('mssongit/fndeberta-sentence') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=mssongit/fndeberta-sentence) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 365 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 6, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 219, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
dattaraj/distilgpt2-finetuned-wikitext2
dattaraj
2022-12-13T05:40:49Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-13T05:08:19Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.653 | 2.0 | 4668 | 3.6472 | | 3.6006 | 3.0 | 7002 | 3.6421 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
nadanainone/istolemyownwheat
nadanainone
2022-12-13T05:33:53Z
40
3
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "safetensors", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-15T20:29:11Z
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - safetensors inference: false --- Same dataset as istolemyownart (https://huggingface.co/nadanainone/istolemyownart) with 9 extra drawings I had around not uploaded on Tumblr. Based on Anything instead of a personal merge, also using some tweaked settings with the latest updated Dreambooth extension for Voldy's (AUTOMATIC1111)'s UI. Produces less random overdetailed backgrounds and focuses more on characters which might be a better/worse thing. Trained at 15k steps instead of 10k, files included are 5k, 10k and 15k steps. 5k steps produces more aesthetic results since my style isn't fully baked in, 10k is a middle point, 15k is why you should never draw like me. Prompt is still ludditesbtfo Same terms from istolemyownart apply, you can wrangle it with better artists to improve results. Examples: 5k steps ![00311-1131084824-1girl, ludditesbtfo, solo focus, pink hair, long hair, medium breasts, simple background.png](https://s3.amazonaws.com/moonup/production/uploads/1668544476783-63716cac15aafbe231371caa.png) 10k ![00310-1131084824-1girl, ludditesbtfo, solo focus, pink hair, long hair, medium breasts, simple background.png](https://s3.amazonaws.com/moonup/production/uploads/1668544481696-63716cac15aafbe231371caa.png) 15k ![00309-1131084824-1girl, ludditesbtfo, solo focus, pink hair, long hair, medium breasts, simple background.png](https://s3.amazonaws.com/moonup/production/uploads/1668544488452-63716cac15aafbe231371caa.png) Additional heavily cherry picked random examples at random steps because I'm too lazy to sort them: ![00301-2701705781-portrait of sansa dark crimson, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp fo.png](https://s3.amazonaws.com/moonup/production/uploads/1668544882956-63716cac15aafbe231371caa.png) ![00261-434223274-highly detailed portrait of a sewer punk lady student, blue eyes, tartan hoodie and scarf, white hair by atey ghailan, by greg r.png](https://s3.amazonaws.com/moonup/production/uploads/1668544911556-63716cac15aafbe231371caa.png) ![00291-10062718-beautiful full body portrait of a human like anime girl android with pale skin and fox ears, high quality, highly detailed, 4 k,.png](https://s3.amazonaws.com/moonup/production/uploads/1668544898006-63716cac15aafbe231371caa.png) ![00189-3229683580-SFW, Masterpiece, best quality, high detail, (detailed face and eyes_1.1), (style of silver and black theme_1.1), pov, looking a.png](https://s3.amazonaws.com/moonup/production/uploads/1668544924132-63716cac15aafbe231371caa.png) ![00184-114906268-SFW, 1girl, solo focus, Masterpiece, best quality, (style of a poster_1.3), from side, looking at viewer, teenager, mature, smal.png](https://s3.amazonaws.com/moonup/production/uploads/1668544936694-63716cac15aafbe231371caa.png) ![00221-1096241287-lofi underwater bioshock biopunk steampunk portrait, wearing corset, Pixar style, by Tristan Eaton Stanley Artgerm and Tom Bagsh.png](https://s3.amazonaws.com/moonup/production/uploads/1668544953235-63716cac15aafbe231371caa.png) >does it have bad pickles if you used Anything? Tested for bad pickles, bad pickle free >can I add bad pickles to incriminate you and win over gross AI chuds? imagine being this much of a redditor >Does this give me and everyone else the rights over your entire art and dataset and all your future artworks both made manually and with AI? lol no still >Can I use anything generated with this model for whatever I want though? Still can't stop fair use and derivative works >Can I sell your model? No, all models should always be free and open source. Always. >Can I train another model using your art? Sure, it'll probably be better than both my attempts. >Do I own that model if I make it? Nope, still lol no >Can I use this to impersonate you and make bad faith arguments to make MY stunning and brave anti AI argument win over your disgusting pro AI argument, chud? lmao even >Well your still art sucks! Si
alaaawad/ddpm-celebahq-finetuned-butterflies-2epochs
alaaawad
2022-12-13T05:01:21Z
1
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-13T05:00:12Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('alaaawad/ddpm-celebahq-finetuned-butterflies-2epochs') image = pipeline().images[0] image ```
abhinig2001/ppo-LunarLander-v2
abhinig2001
2022-12-13T04:47:22Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-11T02:10:24Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.04 +/- 16.16 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jonatasgrosman/whisper-small-pt-cv11-v5
jonatasgrosman
2022-12-13T04:38:49Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "pt", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-12T21:41:36Z
--- language: - pt license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Portuguese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 pt type: mozilla-foundation/common_voice_11_0 config: pt split: test args: pt metrics: - name: Wer type: wer value: 14.684129429892142 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Portuguese This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 pt dataset. It achieves the following results on the evaluation set: - Loss: 0.3056 - Wer: 14.6841 - Cer: 5.8856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:| | 0.2817 | 0.92 | 500 | 0.3352 | 15.9476 | 6.3609 | | 0.2245 | 1.84 | 1000 | 0.3047 | 15.0231 | 5.9326 | | 0.1587 | 2.76 | 1500 | 0.2985 | 15.0847 | 5.9326 | | 0.1181 | 3.68 | 2000 | 0.3056 | 14.6841 | 5.8856 | | 0.0741 | 4.6 | 2500 | 0.3162 | 14.9923 | 5.9906 | | 0.0438 | 5.52 | 3000 | 0.3466 | 15.4700 | 6.2255 | | 0.0294 | 6.45 | 3500 | 0.3799 | 15.2234 | 6.1647 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu116 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
yizhangliu/ppo-Huggy
yizhangliu
2022-12-13T04:35:43Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-13T04:35:37Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: yizhangliu/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
KoichiYasuoka/roberta-base-thai-char
KoichiYasuoka
2022-12-13T03:39:37Z
12
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "thai", "masked-lm", "wikipedia", "th", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - "th" tags: - "thai" - "masked-lm" - "wikipedia" license: "apache-2.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" --- # roberta-base-thai-char ## Model Description This is a RoBERTa model pre-trained on Thai Wikipedia texts with character-wise embeddings to use BertTokenizerFast. You can fine-tune `roberta-base-thai-char` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-base-thai-char-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-base-thai-char-ud-goeswith), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-char") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-base-thai-char") ```
sohm/ppo-Huggy
sohm
2022-12-13T03:26:27Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-13T03:26:20Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: sohm/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
thkkvui/xlm-roberta-base-finetuned-panx-fr
thkkvui
2022-12-13T03:19:01Z
8
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-13T03:03:54Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8387205387205388 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2761 - F1: 0.8387 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6255 | 1.0 | 191 | 0.3532 | 0.7791 | | 0.2717 | 2.0 | 382 | 0.2793 | 0.8255 | | 0.1761 | 3.0 | 573 | 0.2761 | 0.8387 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.13.0.dev20220711 - Datasets 2.4.0 - Tokenizers 0.12.1
kimbochen/whisper-small-jp
kimbochen
2022-12-13T03:16:50Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "ja", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-10T01:43:00Z
--- language: - ja license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Japanese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 ja type: mozilla-foundation/common_voice_11_0 config: ja split: test args: ja metrics: - name: Wer type: wer value: 13.768684731417652 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Japanese This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 ja dataset. It achieves the following results on the evaluation set: - Loss: 0.2543 - Wer: 13.7687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2515 | 1.06 | 200 | 0.2881 | 16.9442 | | 0.2212 | 2.12 | 400 | 0.2616 | 14.6884 | | 0.0774 | 4.04 | 600 | 0.2543 | 13.7687 | | 0.0564 | 5.09 | 800 | 0.2731 | 13.9769 | | 0.0221 | 7.01 | 1000 | 0.2814 | 13.9700 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
sergey-antonov/q-Taxi-v3
sergey-antonov
2022-12-13T02:42:52Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T02:42:43Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="sergey-antonov/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jonatasgrosman/whisper-small-pt-cv11-v4_2
jonatasgrosman
2022-12-13T02:32:00Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "pt", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-12T23:01:44Z
--- language: - pt license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Portuguese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 pt type: mozilla-foundation/common_voice_11_0 config: pt split: test args: pt metrics: - name: Wer type: wer value: 14.237288135593221 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Portuguese This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 pt dataset. It achieves the following results on the evaluation set: - Loss: 0.3023 - Wer: 14.2373 - Cer: 5.5236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:| | 1.1113 | 0.92 | 500 | 0.3897 | 16.8721 | 6.7919 | | 0.9009 | 1.84 | 1000 | 0.3318 | 15.9322 | 6.2310 | | 0.7631 | 2.76 | 1500 | 0.3177 | 15.4854 | 5.8939 | | 0.7163 | 3.68 | 2000 | 0.3130 | 14.8998 | 5.7972 | | 0.6334 | 4.6 | 2500 | 0.3034 | 14.7920 | 5.6867 | | 0.5746 | 5.52 | 3000 | 0.3029 | 14.6225 | 5.6397 | | 0.5359 | 6.45 | 3500 | 0.3018 | 14.4838 | 5.5789 | | 0.5058 | 7.37 | 4000 | 0.3010 | 14.5917 | 5.6839 | | 0.4833 | 8.29 | 4500 | 0.3023 | 14.2373 | 5.5236 | | 0.4398 | 9.21 | 5000 | 0.3005 | 14.4222 | 5.5844 | | 0.4359 | 10.13 | 5500 | 0.2999 | 14.4838 | 5.6259 | | 0.4036 | 11.05 | 6000 | 0.2995 | 14.2835 | 5.5623 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu116 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
thkkvui/xlm-roberta-base-finetuned-panx-de-fr
thkkvui
2022-12-13T02:24:07Z
9
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-13T01:31:13Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1623 - F1: 0.8602 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2927 | 1.0 | 715 | 0.1798 | 0.8356 | | 0.1482 | 2.0 | 1430 | 0.1573 | 0.8507 | | 0.095 | 3.0 | 2145 | 0.1623 | 0.8602 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.13.0.dev20220711 - Datasets 2.4.0 - Tokenizers 0.12.1
sergey-antonov/q-FrozenLake-v1-4x4-noSlippery
sergey-antonov
2022-12-13T01:55:12Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T01:39:33Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="sergey-antonov/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jontang/ppo-LunarLander
jontang
2022-12-13T01:11:57Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T01:11:32Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.08 +/- 12.77 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
hli/xlm-roberta-base-finetuned-panx-de
hli
2022-12-13T00:41:37Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-13T00:07:40Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: train args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8638300289723342 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1358 - F1: 0.8638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 | | 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 | | 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
Isaacp/ppo-Huggy
Isaacp
2022-12-13T00:15:39Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-13T00:15:31Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Isaacp/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
anuragshas/whisper-large-v2-as
anuragshas
2022-12-12T23:57:09Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "as", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-12T22:05:52Z
--- language: - as license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large-v2 Assamese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 as type: mozilla-foundation/common_voice_11_0 config: as split: test args: as metrics: - name: Wer type: wer value: 23.69608373939722 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large-v2 Assamese This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 as dataset. It achieves the following results on the evaluation set: - Loss: 0.3451 - Wer: 23.6961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0008 | 8.47 | 500 | 0.3451 | 23.6961 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
bakisanlan/ppo_LunarLander_v2_bksnln
bakisanlan
2022-12-12T23:35:56Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T23:35:29Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 269.79 +/- 21.11 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Praboda/distilbert-base-uncased-finetuned-emotion
Praboda
2022-12-12T23:13:00Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-12T23:04:40Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2232 - Accuracy: 0.9255 - F1: 0.9255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8156 | 1.0 | 250 | 0.3216 | 0.906 | 0.9035 | | 0.2486 | 2.0 | 500 | 0.2232 | 0.9255 | 0.9255 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.13.0+cu116 - Datasets 1.16.1 - Tokenizers 0.10.3
BramVanroy/bert-base-multilingual-cased-hebban-reviews5
BramVanroy
2022-12-12T23:07:55Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "sentiment-analysis", "dutch", "text", "nl", "dataset:BramVanroy/hebban-reviews", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-29T07:37:05Z
--- datasets: - BramVanroy/hebban-reviews language: - nl license: mit metrics: - accuracy - f1 - precision - qwk - recall model-index: - name: bert-base-multilingual-cased-hebban-reviews5 results: - dataset: config: filtered_rating name: BramVanroy/hebban-reviews - filtered_rating - 2.0.0 revision: 2.0.0 split: test type: BramVanroy/hebban-reviews metrics: - name: Test accuracy type: accuracy value: 0.5898668639053254 - name: Test f1 type: f1 value: 0.5899204480029937 - name: Test precision type: precision value: 0.5971431895675179 - name: Test qwk type: qwk value: 0.7050840079198698 - name: Test recall type: recall value: 0.5898668639053254 task: name: sentiment analysis type: text-classification tags: - sentiment-analysis - dutch - text widget: - text: Wauw, wat een leuk boek! Ik heb me er er goed mee vermaakt. - text: Nee, deze vond ik niet goed. De auteur doet zijn best om je als lezer mee te trekken in het verhaal maar mij overtuigt het alleszins niet. - text: Ik vind het niet slecht maar de schrijfstijl trekt me ook niet echt aan. Het wordt een beetje saai vanaf het vijfde hoofdstuk --- # bert-base-multilingual-cased-hebban-reviews5 # Dataset - dataset_name: BramVanroy/hebban-reviews - dataset_config: filtered_rating - dataset_revision: 2.0.0 - labelcolumn: review_rating0 - textcolumn: review_text_without_quotes # Training - optim: adamw_hf - learning_rate: 5e-05 - per_device_train_batch_size: 64 - per_device_eval_batch_size: 64 - gradient_accumulation_steps: 1 - max_steps: 5001 - save_steps: 500 - metric_for_best_model: qwk # Best checkedpoint based on validation - best_metric: 0.697825193570947 - best_model_checkpoint: trained/hebban-reviews5/bert-base-multilingual-cased/checkpoint-4500 # Test results of best checkpoint - accuracy: 0.5898668639053254 - f1: 0.5899204480029937 - precision: 0.5971431895675179 - qwk: 0.7050840079198698 - recall: 0.5898668639053254 ## Confusion matrix ![cfm](fig/test_confusion_matrix.png) ## Normalized confusion matrix ![norm cfm](fig/test_confusion_matrix_norm.png) # Environment - cuda_capabilities: 8.0; 8.0 - cuda_device_count: 2 - cuda_devices: NVIDIA A100-SXM4-80GB; NVIDIA A100-SXM4-80GB - finetuner_commit: 8159b4c1d5e66b36f68dd263299927ffb8670ebd - platform: Linux-4.18.0-305.49.1.el8_4.x86_64-x86_64-with-glibc2.28 - python_version: 3.9.5 - toch_version: 1.10.0 - transformers_version: 4.21.0
numan966/ppo-LunarLander-v2
numan966
2022-12-12T23:06:02Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-10T19:57:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 283.09 +/- 15.42 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
rlpo/ddpm-butterflies-128
rlpo
2022-12-12T22:55:34Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-12-12T22:25:20Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/rlpo/ddpm-butterflies-128/tensorboard?#scalars)
bjarlestam/ppo-Huggy
bjarlestam
2022-12-12T22:47:47Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-12T22:35:41Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/ThomasSimonini/Huggy 2. Step 1: Write your model_id: bjarlestam/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
zhoppy/deep-rl-course-ppo-LunarLander-v2
zhoppy
2022-12-12T22:43:21Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T22:42:54Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 251.20 +/- 22.80 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
NeelK94/ppo-LunarLander-v2
NeelK94
2022-12-12T22:43:17Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T22:42:54Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 243.03 +/- 36.09 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
HayLahav/ppo-LunarLander-v2
HayLahav
2022-12-12T22:24:32Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-11T23:52:05Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 266.36 +/- 15.49 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
anuragshas/whisper-large-v2-pa-IN
anuragshas
2022-12-12T22:23:09Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "pa", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-12T20:53:26Z
--- language: - pa license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large-v2 Punjabi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 pa-IN type: mozilla-foundation/common_voice_11_0 config: pa-IN split: test args: pa-IN metrics: - name: Wer type: wer value: 21.27310061601643 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large-v2 Punjabi This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 pa-IN dataset. It achieves the following results on the evaluation set: - Loss: 0.3382 - Wer: 21.2731 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0002 | 14.29 | 500 | 0.3382 | 21.2731 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
DrishtiSharma/whisper-medium-serbian-v1
DrishtiSharma
2022-12-12T22:20:11Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "sr", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-12T18:07:33Z
--- language: - sr license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Serbian - Drishti Sharma results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: sr split: test args: sr metrics: - name: Wer type: wer value: 11.817078106029948 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium Serbian - Drishti Sharma This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4127 - Wer: 11.8171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0002 | 28.3 | 1500 | 0.4127 | 11.8171 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
joelkoch/q-Taxi-v3
joelkoch
2022-12-12T22:05:48Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T22:05:37Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.77 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="joelkoch/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ANHMA01/architecture
ANHMA01
2022-12-12T22:03:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-12T22:03:21Z
--- license: creativeml-openrail-m ---
joelkoch/q-FrozenLake-v1-4x4-noSlippery
joelkoch
2022-12-12T22:02:03Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T22:01:53Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="joelkoch/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
fuatenginoruc/ppo-LunarLander-v2
fuatenginoruc
2022-12-12T21:55:53Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T21:55:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 226.81 +/- 76.53 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dmontemayor/ppo-LunarLander-v2
dmontemayor
2022-12-12T21:54:44Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T21:54:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 246.59 +/- 22.82 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
RamonAnkersmit/q-Taxi-v3
RamonAnkersmit
2022-12-12T21:33:48Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T20:49:47Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="RamonAnkersmit/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jinghua2tang/Taxi-v3
jinghua2tang
2022-12-12T21:29:59Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T21:29:55Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.69 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jinghua2tang/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
robinhad/gpt2-uk-conversational
robinhad
2022-12-12T21:21:53Z
13
4
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-14T19:35:49Z
--- tags: - conversational license: mit widget: - text: "привіт, як тебе звати?" example_title: "Питаємо ім'я" --- # Ukrainian AI chatbot alpha release This model was trained on dataset of movie dialogs (uncleaned) from opensubtitles.org. Link to training scripts: [https://github.com/robinhad/ukrainian-ai](https://github.com/robinhad/ukrainian-ai). Link to end-to-end open source AI demo (speech-to-text-to-AI-to-voice): [https://huggingface.co/spaces/robinhad/ukrainian-ai](https://huggingface.co/spaces/robinhad/ukrainian-ai). # Example usage ```python from transformers import Conversation, pipeline, ConversationalPipeline conv: ConversationalPipeline = pipeline("conversational", "robinhad/gpt2-uk-conversational") text = "привіт, як тебе звати?" result = conv(Conversation(text)) # result.add_user_input() print(result) ``` <img src="https://visitor-badge-reloaded.herokuapp.com/badge?page_id=robinhad.ukrainian-ai-chatbot" alt="visitors badge"/>
jinghua2tang/q-FrozenLake-v1-4x4-noSlippery
jinghua2tang
2022-12-12T21:19:11Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T21:19:07Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="jinghua2tang/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
madhavsankar/qp-mscoco-sbert-lr5e-5
madhavsankar
2022-12-12T21:13:55Z
6
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-07T15:44:11Z
# QP ``` Dataset: MSCOCO Learning Rate: 5e-5 ``` ## Text Diversity Metrics ``` Semantic Similarity: SBERT Syntactic Diversity: Dependency Parse Tree edit distance Lexical Diversity: Character-level edit distance Phonological Diversity: Rhythmic Diversity Morphological Diversity: POS edit distance. ``` ## Results ``` Train Loss (MSE): 0.0127 Dev Loss (MSE): 0.0136 ```
plundin/distilbert-base-uncased-finetuned-reviews-english
plundin
2022-12-12T20:59:49Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-12T20:51:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-reviews-english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-reviews-english This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1285 - Accuracy: 0.9667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
SanDiegoDude/InkPunk768
SanDiegoDude
2022-12-12T20:58:48Z
0
15
null
[ "license:mit", "region:us" ]
null
2022-12-12T20:47:37Z
--- license: mit --- For image samples, please visit https://civitai.com/models/1288/inkpunk768 - Hosting here on HF as CivitAI is bugged and only allowing download of one version. These InkPunk embeddings were all trained on 51 768x768 images that were cleaned up and labeled for training. Training was performed at 0.0005 learning rate, stopped at 3500 steps as it was starting to overtrain by that point. I've included 4 different embeddings to use: InkPunkHeavy768 - This will lay down thick lines and cross hatching, but still give a beautiful inked and sketched style. InkPunk768 - This one outputs closest to the InkPunk custom checkpoint in my opinion, you'll get a nice mixture of hand drawn and painted look InkPunkLite768 - If you're finding that you're losing too much detail to the hand drawn look, this light embedding may bring back some of the detail you're looking for. InkPunkLandscapes768 - This 1200 step trained embedding doesn't look great for people, but it sure can make some pretty buildings and landscapes in the hand inked style. All of these embeddings require model version 2.0 and up. They are all trained on 768x768 images, and use a total of 8 vectors. They will work just fine with the 2.0 512 models as well, including the depth mapping model (in img2img mode) ![collage.png](https://s3.amazonaws.com/moonup/production/uploads/1670878597036-6321f8e67bb41a713dacb197.png)
plundin/finetuning-sentiment-model-3000-samples
plundin
2022-12-12T20:48:13Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-11T13:10:55Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1285 - Accuracy: 0.9667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
mkuntz/ppo-Huggy
mkuntz
2022-12-12T20:44:48Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-12T20:44:40Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: mktz/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kanik155/uiicon
kanik155
2022-12-12T20:37:21Z
4
5
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-12T20:35:33Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: uiicon --- ### uiicon Dreambooth model trained by kanik155 with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v2-1-768 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: uiicon (use that on your prompt) ![uiicon 0](https://huggingface.co/kanik155/uiicon/resolve/main/concept_images/uiicon_%281%29.jpg)![uiicon 1](https://huggingface.co/kanik155/uiicon/resolve/main/concept_images/uiicon_%282%29.jpg)![uiicon 2](https://huggingface.co/kanik155/uiicon/resolve/main/concept_images/uiicon_%283%29.jpg)![uiicon 3](https://huggingface.co/kanik155/uiicon/resolve/main/concept_images/uiicon_%284%29.jpg)![uiicon 4](https://huggingface.co/kanik155/uiicon/resolve/main/concept_images/uiicon_%285%29.jpg)![uiicon 5](https://huggingface.co/kanik155/uiicon/resolve/main/concept_images/uiicon_%286%29.jpg)![uiicon 6](https://huggingface.co/kanik155/uiicon/resolve/main/concept_images/uiicon_%287%29.jpg)![uiicon 7](https://huggingface.co/kanik155/uiicon/resolve/main/concept_images/uiicon_%288%29.jpg)![uiicon 8](https://huggingface.co/kanik155/uiicon/resolve/main/concept_images/uiicon_%289%29.jpg)![uiicon 9](https://huggingface.co/kanik155/uiicon/resolve/main/concept_images/uiicon_%2810%29.jpg)![uiicon 10](https://huggingface.co/kanik155/uiicon/resolve/main/concept_images/uiicon_%2811%29.jpg)
Aitor/ppo-Huggy
Aitor
2022-12-12T20:36:30Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-12T20:36:23Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Aitor/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
lewtun/setfit-mnpet-distilled
lewtun
2022-12-12T20:33:52Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-12T20:33:42Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2500 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 2500, "warmup_steps": 250, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
saveale/ddpm-celebahq-finetuned-butterflies-2epochs
saveale
2022-12-12T20:30:55Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-12T20:29:59Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('saveale/ddpm-celebahq-finetuned-butterflies-2epochs') image = pipeline().images[0] image ```
elRivx/neonHorrorV2
elRivx
2022-12-12T20:17:00Z
0
0
null
[ "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-12-12T13:54:30Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- # neonHorrorV2 This is a Stable Diffusion updated model to Stable Diffusion 2.1. This model bring to us horror illustrations with a little bit of neon lights. Some recomendations: the magic word for your prompts is neonHorror . The test are made with Automatic1111 GUI 'cause, I'm not Windows user. If you enjoy my work, please consider supporting me: [![Buy me a coffee](https://badgen.net/badge/icon/buymeacoffee?icon=buymeacoffee&label)](https://www.buymeacoffee.com/elrivx) Examples: <img src=https://imgur.com/WTsWIaz.png width=30% height=30%> <img src=https://imgur.com/cHQSina.png width=30% height=30%> <img src=https://imgur.com/UN9y0cN.png width=30% height=30%> <img src=https://imgur.com/UXEWvQX.png width=30% height=30%> <img src=https://imgur.com/IK7YADw.png width=30% height=30%> <img src=https://imgur.com/XFzgW0n.png width=30% height=30%> ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
kfahn/ppo-LunarLander-v2
kfahn
2022-12-12T20:16:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T20:16:09Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 243.29 +/- 48.23 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mandgie/ppo-LunarLander-v2
mandgie
2022-12-12T19:59:11Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T19:58:38Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 274.53 +/- 22.88 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Lorea/ddpm-celebahq-finetuned-butterflies-2epochs
Lorea
2022-12-12T19:19:04Z
17
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-12T19:18:53Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Lorea/ddpm-celebahq-finetuned-butterflies-2epochs') image = pipeline().images[0] image ```
zates/distilbert-base-uncased-finetuned-squad-seed-420-finetuned-squad-seed-420
zates
2022-12-12T19:03:29Z
6
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-12-11T01:23:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad-seed-420-finetuned-squad-seed-420 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad-seed-420-finetuned-squad-seed-420 This model is a fine-tuned version of [zates/distilbert-base-uncased-finetuned-squad-seed-420](https://huggingface.co/zates/distilbert-base-uncased-finetuned-squad-seed-420) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
humeur/lab2_id2223
humeur
2022-12-12T18:58:55Z
21
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "sv", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-25T12:27:47Z
--- language: - sv license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small sv-SE - KTH results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: sv split: test metrics: - name: Wer type: wer value: 19.11929903392496 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small sv-SE - KTH This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3310 - Wer: 19.1193 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1015 | 1.29 | 1000 | 0.2880 | 20.4134 | | 0.0387 | 2.59 | 2000 | 0.2959 | 19.6810 | | 0.0126 | 3.88 | 3000 | 0.3103 | 19.2990 | | 0.0035 | 5.17 | 4000 | 0.3310 | 19.1193 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
gngpostalsrvc/whisper_ami_finetuned
gngpostalsrvc
2022-12-12T18:52:23Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-12T17:10:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper_ami_finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_ami_finetuned This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0307 - Wer: 28.8275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.3847 | 1.0 | 649 | 0.7598 | 29.7442 | | 0.6419 | 2.0 | 1298 | 0.7462 | 28.5128 | | 0.4658 | 3.0 | 1947 | 0.7728 | 28.7454 | | 0.154 | 4.0 | 2596 | 0.8675 | 29.2516 | | 0.0852 | 5.0 | 3245 | 1.0307 | 28.8275 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
mewbot97/q-Taxi-v3
mewbot97
2022-12-12T18:48:11Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T18:38:20Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="mewbot97/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
mewbot97/q-FrozenLake-v1-4x4-noSlippery
mewbot97
2022-12-12T18:35:04Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T18:35:00Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="mewbot97/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Neruoy/swin-finetuned-food101
Neruoy
2022-12-12T18:31:22Z
46
1
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:food101", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-11T22:33:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: swin-finetuned-food101 results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9220198019801981 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-finetuned-food101 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.4401 - Accuracy: 0.9220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0579 | 1.0 | 1183 | 0.4190 | 0.9102 | | 0.0129 | 2.0 | 2366 | 0.4179 | 0.9155 | | 0.0076 | 3.0 | 3549 | 0.4219 | 0.9198 | | 0.0197 | 4.0 | 4732 | 0.4487 | 0.9160 | | 0.0104 | 5.0 | 5915 | 0.4414 | 0.9210 | | 0.0007 | 6.0 | 7098 | 0.4401 | 0.9220 | | 0.0021 | 7.0 | 8281 | 0.4401 | 0.9220 | | 0.0015 | 8.0 | 9464 | 0.4401 | 0.9220 | | 0.0056 | 9.0 | 10647 | 0.4401 | 0.9220 | | 0.0019 | 10.0 | 11830 | 0.4401 | 0.9220 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
ghatgetanuj/roberta-large_cls_subj
ghatgetanuj
2022-12-12T18:24:33Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-12T18:00:22Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-large_cls_subj results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large_cls_subj This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6931 - Accuracy: 0.4835 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3714 | 1.0 | 500 | 0.2392 | 0.9335 | | 0.395 | 2.0 | 1000 | 0.7052 | 0.4855 | | 0.5316 | 3.0 | 1500 | 0.6932 | 0.5055 | | 0.7051 | 4.0 | 2000 | 0.6926 | 0.5165 | | 0.6965 | 5.0 | 2500 | 0.6931 | 0.4835 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
emmanuel17/Taxi_v3
emmanuel17
2022-12-12T18:24:03Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T18:23:52Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi_v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="emmanuel17/Taxi_v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ShadoWxShinigamI/SD-2-MJart
ShadoWxShinigamI
2022-12-12T18:20:44Z
0
21
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-12T06:39:36Z
--- license: creativeml-openrail-m --- ##Textual Inversion Embed + Hypernetwork For SD 2 models by ShadoWxShinigamI Trained on 200 BLIP Captioned images from my personal MJ Generations. Meant to be used with 768 Models. 16 Vectors - 625 Steps - TI Embed Swish - 10000 Steps - Hypernetwork. The Hypernetwork is meant to be an augment to be used alongside the embed. Using at 0.5 Strength tends to produce the best output (YMMV) Examples :- ![image.png](https://s3.amazonaws.com/moonup/production/uploads/1670827476778-633a520aecbd8b19357b4806.png) ![00001-335098425.png](https://s3.amazonaws.com/moonup/production/uploads/1670828191063-633a520aecbd8b19357b4806.png) ![anime.png](https://s3.amazonaws.com/moonup/production/uploads/1670828241828-633a520aecbd8b19357b4806.png) ![monkey.png](https://s3.amazonaws.com/moonup/production/uploads/1670828303588-633a520aecbd8b19357b4806.png) ![panda.png](https://s3.amazonaws.com/moonup/production/uploads/1670828302002-633a520aecbd8b19357b4806.png)
Krawcts/ppo-LunarLander-v2-TEST
Krawcts
2022-12-12T18:16:53Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T18:16:34Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 258.72 +/- 21.55 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ksaml/mnist-fashion_64
ksaml
2022-12-12T18:14:13Z
15
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-12T18:13:49Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of mnist-fashion-like clothes. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('ksaml/mnist-fashion_64') image = pipeline().images[0] image ```
ghatgetanuj/distilbert-base-uncased_cls_subj
ghatgetanuj
2022-12-12T18:04:05Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-12T17:58:50Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased_cls_subj results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_cls_subj This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2002 - Accuracy: 0.965 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2771 | 1.0 | 500 | 0.1508 | 0.957 | | 0.1284 | 2.0 | 1000 | 0.1629 | 0.9525 | | 0.0434 | 3.0 | 1500 | 0.1686 | 0.9645 | | 0.0106 | 4.0 | 2000 | 0.1978 | 0.9645 | | 0.0027 | 5.0 | 2500 | 0.2002 | 0.965 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
LukeSajkowski/ppo-Huggy
LukeSajkowski
2022-12-12T17:57:58Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-12T13:22:37Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: lukee/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Grendar/blenderbot-400M-distill-Shiro
Grendar
2022-12-12T17:53:52Z
5
0
transformers
[ "transformers", "pytorch", "blenderbot", "text2text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-12T17:20:15Z
--- license: mit tags: - conversational ---
neatbullshit/sd-class-butterflies-32_neatbullshit
neatbullshit
2022-12-12T17:44:17Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-12T17:43:32Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('neatbullshit/sd-class-butterflies-32_neatbullshit') image = pipeline().images[0] image ```
Praboda/xlm-roberta-base-finetuned-panx-it
Praboda
2022-12-12T17:40:51Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-12T17:26:04Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8322368421052632 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2369 - F1: 0.8322 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8113 | 1.0 | 70 | 0.3088 | 0.7546 | | 0.259 | 2.0 | 140 | 0.2541 | 0.8155 | | 0.1791 | 3.0 | 210 | 0.2369 | 0.8322 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.0+cu116 - Datasets 1.16.1 - Tokenizers 0.10.3
shripadbhat/whisper-large-v2-hindi
shripadbhat
2022-12-12T17:39:17Z
16
2
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-11T06:17:51Z
--- language: - hi license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large v2 Hindi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: hi metrics: - name: Wer type: wer value: 12.424051358477588 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large v2 Hindi This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1915 - Wer: 12.4241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0936 | 0.37 | 100 | 0.2300 | 16.2100 | | 0.09 | 0.73 | 200 | 0.2117 | 14.4876 | | 0.0415 | 1.1 | 300 | 0.2048 | 13.0832 | | 0.0372 | 1.47 | 400 | 0.1951 | 12.5559 | | 0.0307 | 1.84 | 500 | 0.1915 | 12.4241 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
magnomont12/huggy
magnomont12
2022-12-12T17:30:15Z
10
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-12T17:29:53Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: magnomont12/huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
marik0/q-Taxi-v3
marik0
2022-12-12T17:24:52Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T17:24:45Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="marik0/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jonatasgrosman/exp_w2v2r_fr_xls-r_age_teens-8_sixties-2_s187
jonatasgrosman
2022-12-12T17:16:31Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-12T17:16:11Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_xls-r_age_teens-8_sixties-2_s187 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
BAJAJSAAB/HBK
BAJAJSAAB
2022-12-12T17:15:23Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-12T17:15:23Z
--- license: creativeml-openrail-m ---
marik0/q-FrozenLake-v1-4x4-noSlippery
marik0
2022-12-12T17:15:22Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T17:15:15Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="marik0/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jonatasgrosman/exp_w2v2r_fr_xls-r_age_teens-2_sixties-8_s82
jonatasgrosman
2022-12-12T17:11:25Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-12T17:11:12Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_xls-r_age_teens-2_sixties-8_s82 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Igorysha223/Anime
Igorysha223
2022-12-12T17:08:27Z
0
0
null
[ "region:us" ]
null
2022-12-12T17:05:25Z
Photoleap_12_12_2022_16_22_46_9580000.jpg
jonatasgrosman/exp_w2v2r_fr_xls-r_age_teens-10_sixties-0_s885
jonatasgrosman
2022-12-12T17:01:18Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-12T17:00:57Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_xls-r_age_teens-10_sixties-0_s885 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
kinkpunk/Lunar-Landing-Program
kinkpunk
2022-12-12T16:59:01Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T21:59:04Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 285.36 +/- 14.99 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) ```python from huggingface_sb3 import load_from_hub from stable_baselines3 import PPO from stable_baselines3.common.evaluation import evaluate_policy from stable_baselines3.common.env_util import make_vec_env repo_id = "kinkpunk/Lunar-Landing-Program" filename = "LunarProgram-PPO.zip" custom_objects = { "learning_rate": 0.0, "lr_schedule": lambda _: 0.0, "clip_range": lambda _: 0.0, } checkpoint = load_from_hub(repo_id, filename) model = PPO.load(checkpoint, custom_objects=custom_objects, print_system_info=True) env = make_vec_env('LunarLander-v2', n_envs=1) # Evaluate the model mean_reward, std_reward = evaluate_policy(model, env, n_eval_episodes=10, deterministic=True) # Print the results print('mean_reward={:.2f} +/- {:.2f}'.format(mean_reward, std_reward)) ``` ## Training (with Stable-baselines3) ```python from huggingface_sb3 import load_from_hub from stable_baselines3 import PPO from stable_baselines3.common.evaluation import evaluate_policy from stable_baselines3.common.env_util import make_vec_env # Create the evaluation envs env = make_vec_env('LunarLander-v2', n_envs=16) env = gym.make('LunarLander-v2') # Instantiate the agent model = PPO( policy = 'MlpPolicy', env = env, n_steps = 1024, batch_size = 32, n_epochs = 8, gamma = 0.99, gae_lambda = 0.95, ent_coef = 0.01, verbose=1, seed=2022) # Train model.learn(total_timesteps=1500000) # Save model model_name = "Any-Name" model.save(model_name) ```
Adder/ppo-Huggy
Adder
2022-12-12T16:56:48Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-12T16:56:41Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Adder/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Gladiator/distilbert-base-uncased_swag_mqa
Gladiator
2022-12-12T16:56:25Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "multiple-choice", "generated_from_trainer", "dataset:swag", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2022-12-12T16:48:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - swag metrics: - accuracy model-index: - name: distilbert-base-uncased_swag_mqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_swag_mqa This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the swag dataset. It achieves the following results on the evaluation set: - Loss: 0.8556 - Accuracy: 0.6494 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9234 | 1.0 | 2000 | 0.8556 | 0.6494 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2r_fr_xls-r_age_teens-10_sixties-0_s61
jonatasgrosman
2022-12-12T16:51:32Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-12T16:51:15Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_xls-r_age_teens-10_sixties-0_s61 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Praboda/xlm-roberta-base-finetuned-panx-de
Praboda
2022-12-12T16:49:14Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-12T16:22:51Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8653070499346702 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1379 - F1: 0.8653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2557 | 1.0 | 525 | 0.1583 | 0.8231 | | 0.1269 | 2.0 | 1050 | 0.1393 | 0.8524 | | 0.0826 | 3.0 | 1575 | 0.1379 | 0.8653 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.0+cu116 - Datasets 1.16.1 - Tokenizers 0.10.3
polixonrio/whisper-small-fy-NL-Transfer-From-EN
polixonrio
2022-12-12T16:41:01Z
20
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "fy", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-11T06:18:51Z
--- language: - fy license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Western Frisian (Netherlands) results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 fy-NL type: mozilla-foundation/common_voice_11_0 config: fy-NL split: test args: fy-NL metrics: - name: Wer type: wer value: 25.76645465589938 --- # Whisper Small Western Frisian (Netherlands) This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 fy-NL dataset. This is an attempt for cross lingual transfer from English to Frisian, since Whisper doesn't support Frisian. It achieves the following results on the evaluation set: - Loss: 0.6915 - Wer: 25.7665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.004 | 17.0 | 1000 | 0.6402 | 26.9349 | | 0.0006 | 34.01 | 2000 | 0.6915 | 25.7665 | | 0.0003 | 51.01 | 3000 | 0.7274 | 25.7736 | | 0.0002 | 68.01 | 4000 | 0.7456 | 25.8772 | | 0.0002 | 86.0 | 5000 | 0.7580 | 25.9272 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
jonatasgrosman/exp_w2v2r_fr_xls-r_age_teens-5_sixties-5_s362
jonatasgrosman
2022-12-12T16:33:26Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-12T16:33:15Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_xls-r_age_teens-5_sixties-5_s362 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
ghatgetanuj/distilbert-base-uncased_cls_bbc-news
ghatgetanuj
2022-12-12T16:17:55Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-12T16:12:16Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased_cls_bbc-news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_cls_bbc-news This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1140 - Accuracy: 0.976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 77 | 0.2531 | 0.944 | | No log | 2.0 | 154 | 0.0971 | 0.973 | | No log | 3.0 | 231 | 0.0951 | 0.977 | | No log | 4.0 | 308 | 0.1166 | 0.975 | | No log | 5.0 | 385 | 0.1140 | 0.976 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
herrius/unit_test
herrius
2022-12-12T16:15:16Z
0
0
null
[ "arxiv:2112.01522", "arxiv:2206.04674", "region:us" ]
null
2022-12-12T16:07:58Z
# Uni-Perceiver This repository contains training (pre-training, fine-tuning, prompt-tuning), evaluation code and pretrained models for the following papers: > [Uni-Perceiver](https://arxiv.org/abs/2112.01522): Pre-training Unified Architecture for Generic Perception for Zero-shot and Few-shot Tasks, CVPR 2022. > [Uni-Perceiver-MoE](https://arxiv.org/abs/2206.04674): Learning Sparse Generalist Models with Conditional MoEs, NeurIPS 2022. ## Introduction __Uni-Perceiver__ is a generalist model (generic perception model) that can process a variety of modalities and tasks with unified modeling and shared parameters. Different perception tasks are modeled as the same formulation, that is, finding the maximum likelihood target for each input through the similarity of their representations. Meanwhile, Uni-Perceiver is pre-trained on several uni-modal and multi-modal tasks, and evaluated on a variety of downstream tasks, including novel tasks that did not appear in the pre-training stage. Thanks to the unified formulation, it shows the ability of zero-shot inference on novel tasks, and shows promising performance close to or on par with SOTA results by prompt tuning or finetuning. ![UnPerceiver-intro](./figs/overview.png) In __Uni-Perceiver-MoE__, we found that the interference among different tasks and modalities can lead to performance degradation of generalist models on some tasks compared with task-specialized models. We introduce the Conditional Mixture-of-Experts (Conditional MoEs) to mitigate such interference. By incorporating the proposed Conditional MoEs, Uni-Perceiver-MoE can effectively mitigate the interference across tasks and modalities, and achieves state-of-the-art results on a series of downstream tasks via prompt tuning on 1% of downstream data. Moreover, the introduction of Conditional MoEs still holds the generalization ability of generalist models to conduct zero-shot inference on new tasks, ![UnPerceiver-moe-intro](./figs/overview_moe.png) ## Main Results and Pretrained Models ### Base Models <table border="1" width="100%"> <tr align="center"> <th>Task</th> <th>Image Classification</th> <th colspan="2">Image Caption</th> <th colspan="4">Image Retrieval</th> <th>Video Classification</th><th>Video Caption</th><th colspan="2">Video Retrieval</th> </tr> <tr align="center"> <td>Dataset</td><td>ImageNet-1k</td><td>MSCOCO</td><td>Flickr30k</td><td colspan="2">MSCOCO</td><td colspan="2">Flickr30k</td><td>Kinetics-400</td><td>MSVD</td><td colspan="2">MSVD</td> </tr> <tr align="center"> <td>Split</td><td>ILSVRC 2012 val</td><td>Karpathy test</td><td>test</td><td colspan="2">Karpathy test</td><td colspan="2">test</td><td>test-dev</td><td>val</td><td>val</td><td colspan="2">val</td> </tr> <tr align="center"> <td>Metric</td><td>Acc@1</td><td>BLEU-4</td><td>BLEU-4</td><td>R@1 i2t</td><td>R@1 t2i</td><td>R@1 i2t</td><td>R@1 t2i</td><td>Acc@1</td><td>BLEU-4</td><td>R@1 v2t</td><td>R@1 t2v</td> </tr> </tr> <tr align="center"> <td>Uni-Perceiver<sub>BASE</sub> w/o Tuning</td><td>79.2 </td><td>32.0</td><td>14.7 </td><td>64.9 </td><td>50.7 </td><td>82.3 </td><td>71.1</td> <td>74.5 </td><td>22.6 </td><td>50.3</td><td>38.7 </td> </tr> <tr align="center"> <td>Uni-Perceiver<sub>BASE</sub> PT (1%)</td><td>80.9 </td><td>35.5</td><td>30.2</td><td>68.4 </td><td>51.9 </td><td>91.0 </td><td>76.0 </td><td>74.8 </td><td>59.5 </td><td>62.7 </td><td>43.8 </td> </tr> <tr align="center"> <td>Uni-Perceiver<sub>BASE</sub> FT (100%)</td><td>84.0</td><td>36.4 </td><td>31.2 </td><td>69.8</td><td>53.9 </td><td>92.7</td><td>77.5</td><td>77.7 </td><td>63.3 </td><td>62.8</td><td>45.8 </td> </tr> <tr align="center"> <td>Uni-Perceiver-MoE<sub>BASE</sub> w/o Tuning</td><td>80.3 </td><td>33.2</td><td>15.9 </td><td>64.6 </td><td>51.6 </td><td>82.1 </td><td>75.8</td> <td>76.8 </td><td>23.4 </td><td>52.8</td><td>40.0 </td> </tr> <tr align="center"> <td>Uni-Perceiver-MoE<sub>BASE</sub> PT (1%)</td><td>82.0 </td><td>36.8</td><td>30.7</td><td>68.9 </td><td>52.6 </td><td>91.3 </td><td>78.5 </td><td>77.2 </td><td>60.0 </td><td>65.6 </td><td>45.3 </td> </tr> <tr align="center"> <td>Uni-Perceiver-MoE<sub>BASE</sub> FT (100%)</td><td>84.5</td><td>37.3 </td><td>32.4 </td><td>70.5</td><td>54.1 </td><td>93.6</td><td>79.8</td><td>79.3 </td><td>65.4 </td><td>65.0</td><td>47.8 </td> </tr> </table> ### Large Models <table border="1" width="100%"> <tr align="center"> <th>Task</th> <th>Image Classification</th> <th colspan="2">Image Caption</th> <th colspan="4">Image Retrieval</th> <th>Video Classification</th><th>Video Caption</th><th colspan="2">Video Retrieval</th> </tr> <tr align="center"> <td>Dataset</td><td>ImageNet-1k</td><td>MSCOCO</td><td>Flickr30k</td><td colspan="2">MSCOCO</td><td colspan="2">Flickr30k</td><td>Kinetics-400</td><td>MSVD</td><td colspan="2">MSVD</td> </tr> <tr align="center"> <td>Split</td><td>ILSVRC 2012 val</td><td>Karpathy test</td><td>test</td><td colspan="2">Karpathy test</td><td colspan="2">test</td><td>test-dev</td><td>val</td><td>val</td><td colspan="2">val</td> </tr> <tr align="center"> <td>Metric</td><td>Acc@1</td><td>BLEU-4</td><td>BLEU-4</td><td>R@1 i2t</td><td>R@1 t2i</td><td>R@1 i2t</td><td>R@1 t2i</td><td>Acc@1</td><td>BLEU-4</td><td>R@1 v2t</td><td>R@1 t2v</td> </tr> <tr align="center"> <td>Uni-Perceiver<sub>LARGE</sub> w/o Tuning</td><td>82.7 </td><td> 35.3 </td><td> 15.1 </td><td>67.8 </td><td>54.1 </td><td> 83.7</td><td> 74.2 </td><td> 79.5</td><td>24.7 </td><td> 45.4 </td><td>34.2 </td> </tr> <tr align="center"> <td>Uni-Perceiver<sub>LARGE</sub> PT (1%)</td><td>84.2 </td><td>38.6 </td><td> 32.9</td><td> 73.3 </td><td>56.2 </td><td>92.1 </td><td> 80.0</td><td> 80.0</td><td> 67.2</td><td> 65.5 </td><td>48.6 </td> </tr> <tr align="center"> <td>Uni-Perceiver<sub>LARGE</sub> FT (100%)</td><td>86.2 </td><td> 39.2 </td><td> 35.5 </td><td>74.4 </td><td>57.9 </td><td>94.7 </td><td> 82.1</td><td>81.9 </td><td>68.3 </td><td> 65.2 </td><td>50.8 </td> </tr> <tr align="center"> <td>Uni-Perceiver-MoE<sub>LARGE</sub> w/o Tuning</td><td>83.4 </td><td> 35.5 </td><td> 15.8 </td><td>67.9 </td><td>55.3 </td><td> 83.6</td><td> 75.9 </td><td> 82.1</td><td>24.6 </td><td> 45.7 </td><td>41.9 </td> </tr> <tr align="center"> <td>Uni-Perceiver-MoE<sub>LARGE</sub> PT (1%)</td><td>84.9 </td><td>39.3 </td><td> 33.7</td><td> 73.3 </td><td>57.1 </td><td>92.4 </td><td> 80.6</td><td> 83.0</td><td> 67.6</td><td> 66.4 </td><td>50.3 </td> </tr> <tr align="center"> <td>Uni-Perceiver-MoE<sub>LARGE</sub> FT (100%)</td><td>86.4 </td><td> 40.5 </td><td> 36.2 </td><td>74.7 </td><td>58.3 </td><td>94.1 </td><td> 83.7</td><td>84.2 </td><td>68.9 </td><td> 67.6 </td><td>52.3 </td> </tr> </table> * The numbers are slightly better than the original paper of Uni-Perceiver, which are from the reproduced version of Uni-Perceiver used as the baseline of [Uni-Perceiver-MoE](https://arxiv.org/abs/2206.04674). * The image resolution for all tasks is `224x224`. * See [OtherResults.md](data/other_results.md) for results on more tasks and datasets. ## Usage ### Requirements * Linux, CUDA>=10.1, GCC>=5.4 * Python >=3.7 * pytorch >= 1.8.0 * JAVA >= 1.8 (for caption task evaluation) ### Installation ```bash git clone https://github.com/fundamentalvision/Uni-Perceiver cd Uni-Perceiver pip install -r requirements.txt ``` ### Data See [prepare_data.md](data/prepare_data.md). ### Pre-trained Model Weights See [checkpoints.md](data/checkpoints.md). ### Pre-training See [pretraining.md](data/pretraining.md). ### Fine-tuning See [finetuning.md](data/finetuning.md). ### Prompt-tuning See [prompt_tuning.md](data/prompt_tuning.md). ### Inference See [inference.md](data/inference.md). ### TODO * release more pretrained models - [ ] Uni-Perceiver Tiny model - [ ] Uni-Perceiver Small model - [ ] Uni-Perceiver Huge model * support more datasets and tasks ## License Uni-Perceiver is licensed under the [Apache-2.0 License](./LICENSE). <br></br> ## Citing Uni-Perceiver If you find Uni-Perceiver useful in your research, please consider giving a star ⭐ and citing: ```bibtex @article{zhu2021uni, title={Uni-Perceiver: Pre-training Unified Architecture for Generic Perception for Zero-shot and Few-shot Tasks}, author={Zhu, Xizhou and Zhu, Jinguo and Li, Hao and Wu, Xiaoshi and Wang, Xiaogang and Li, Hongsheng and Wang, Xiaohua and Dai, Jifeng}, journal={arXiv preprint arXiv:2112.01522}, year={2021} } ``` ```bibtex @article{zhu2022uni, title={Uni-Perceiver-MoE: Learning Sparse Generalist Models with Conditional MoEs}, author={Zhu, Jinguo and Zhu, Xizhou and Wang, Wenhai and Wang, Xiaohua and Li, Hongsheng and Wang, Xiaogang and Dai, Jifeng}, journal={arXiv preprint arXiv:2206.04674}, year={2022} } ``` ### Acknowledgements Many thanks to following codes that help us a lot in building this codebase: * [Detectron2](https://github.com/facebookresearch/detectron2) * [X-modaler](https://github.com/YehLi/xmodaler) * [deit](https://github.com/facebookresearch/deit) * [VL-BERT](https://github.com/jackroos/VL-BERT) * [TimeSformer](https://github.com/facebookresearch/TimeSformer) * [CLIP](https://github.com/openai/CLIP)
silsever/opus-mt-align-en-de
silsever
2022-12-12T16:13:08Z
9
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "opus-mt", "en", "de", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-12-12T16:10:43Z
--- language: - en - de tags: - translation - opus-mt license: cc-by-4.0 model-index: - name: opus-mt-tc-big-eng-deu results: - task: name: Translation eng-deu type: translation args: eng-deu dataset: name: Tatoeba-test.eng-deu type: tatoeba_mt args: eng-deu metrics: - name: BLEU type: bleu value: 45.7 --- # Opus Tatoeba English-German *This model was obtained by running the script [convert_marian_to_pytorch.py](https://github.com/huggingface/transformers/blob/master/src/transformers/models/marian/convert_marian_to_pytorch.py) - [Instruction available here](https://github.com/huggingface/transformers/tree/main/scripts/tatoeba). The original models were trained by [Jörg Tiedemann](https://blogs.helsinki.fi/tiedeman/) using the [MarianNMT](https://marian-nmt.github.io/) library. See all available `MarianMTModel` models on the profile of the [Helsinki NLP](https://huggingface.co/Helsinki-NLP) group. This is the conversion of checkpoint [opus+bt-2021-04-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opus+bt-2021-04-13.zip) * --- ### eng-deu * source language name: English * target language name: German * OPUS readme: [README.md](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/README.md) * model: transformer-align * source language code: en * target language code: de * dataset: opus+bt * release date: 2021-02-22 * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus+bt-2021-04-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opus+bt-2021-04-13.zip) * Test set translations data: [opus+bt-2021-04-13.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opus+bt-2021-04-13.test.txt) * test set scores file: [opus+bt-2021-04-13.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opus+bt-2021-04-13.eval.txt) * Benchmarks |Test set|BLEU|chr-F| |---|---|---| |newssyscomb2009.eng-deu|22.8|0.538| |news-test2008.eng-deu|23.7|0.533| |newstest2009.eng-deu|22.6|0.532| |newstest2010.eng-deu|25.5|0.552| |newstest2011.eng-deu|22.6|0.527| |newstest2012.eng-deu|23.4|0.530| |newstest2013.eng-deu|27.1|0.556| |newstest2014-deen.eng-deu|29.6|0.599| |newstest2015-ende.eng-deu|31.6|0.600| |newstest2016-ende.eng-deu|37.2|0.644| |newstest2017-ende.eng-deu|30.6|0.595| |newstest2018-ende.eng-deu|45.6|0.696| |newstest2019-ende.eng-deu|41.3|0.659| |Tatoeba-test.eng-deu|45.7|0.654|
irenepap/t5-base-qasper
irenepap
2022-12-12T16:06:01Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-12T14:57:17Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-base-qasper results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-qasper This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1947 - Answer f1: 0.0483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer f1 | |:-------------:|:-----:|:----:|:---------------:|:---------:| | No log | 1.0 | 262 | 1.4772 | 0.0433 | | 1.5405 | 2.0 | 524 | 1.2919 | 0.0492 | | 1.5405 | 3.0 | 786 | 1.2517 | 0.0491 | | 1.1476 | 4.0 | 1048 | 1.2292 | 0.0492 | | 1.1476 | 5.0 | 1310 | 1.2197 | 0.0497 | | 1.056 | 6.0 | 1572 | 1.2150 | 0.0509 | | 1.056 | 7.0 | 1834 | 1.2116 | 0.0507 | | 0.9915 | 8.0 | 2096 | 1.2048 | 0.0503 | | 0.9915 | 9.0 | 2358 | 1.2056 | 0.0512 | | 0.9418 | 10.0 | 2620 | 1.1954 | 0.0497 | | 0.9418 | 11.0 | 2882 | 1.1977 | 0.0491 | | 0.9348 | 12.0 | 3144 | 1.1954 | 0.0486 | | 0.9348 | 13.0 | 3406 | 1.1926 | 0.0482 | | 0.9073 | 14.0 | 3668 | 1.1946 | 0.0486 | | 0.9073 | 15.0 | 3930 | 1.1919 | 0.0480 | | 0.8769 | 16.0 | 4192 | 1.1955 | 0.0485 | | 0.8769 | 17.0 | 4454 | 1.1941 | 0.0481 | | 0.8754 | 18.0 | 4716 | 1.1947 | 0.0483 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
ilyaster-rl/ppo-Huggy
ilyaster-rl
2022-12-12T15:52:53Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-12T15:52:10Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: ilyaster-rl/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ankile/ddpm-pcam-96-flip
ankile
2022-12-12T15:47:14Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:pcam-96", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-12-12T14:19:28Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: pcam-96 metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-pcam-96-flip ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `pcam-96` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 48 - eval_batch_size: 48 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/ankile/ddpm-pcam-96-flip/tensorboard?#scalars)
johnhartquist/ppo-LunarLander-v2
johnhartquist
2022-12-12T15:43:43Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T15:43:14Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 272.06 +/- 17.95 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
javiervela/ppo-Huggy
javiervela
2022-12-12T15:22:23Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-12T15:22:17Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: javiervela/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀