modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-08 06:28:05
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
546 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-08 06:27:40
card
stringlengths
11
1.01M
rockyjohn2203/gpt-j-converse
rockyjohn2203
2022-11-21T07:19:48Z
4
0
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "causal-lm", "en", "dataset:the_pile", "arxiv:2104.09864", "arxiv:2101.00027", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-21T07:03:50Z
--- language: - en tags: - pytorch - causal-lm license: apache-2.0 datasets: - the_pile --- # GPT-J 6B ## Model Description GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters. <figure> | Hyperparameter | Value | |----------------------|------------| | \\(n_{parameters}\\) | 6053381344 | | \\(n_{layers}\\) | 28&ast; | | \\(d_{model}\\) | 4096 | | \\(d_{ff}\\) | 16384 | | \\(n_{heads}\\) | 16 | | \\(d_{head}\\) | 256 | | \\(n_{ctx}\\) | 2048 | | \\(n_{vocab}\\) | 50257/50400&dagger; (same tokenizer as GPT-2/3) | | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) | | RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) | <figcaption><p><strong>&ast;</strong> Each layer consists of one feedforward block and one self attention block.</p> <p><strong>&dagger;</strong> Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer.</p></figcaption></figure> The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64 dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as GPT-2/GPT-3. ## Training data GPT-J 6B was trained on [the Pile](https://pile.eleuther.ai), a large-scale curated dataset created by [EleutherAI](https://www.eleuther.ai). ## Training procedure This model was trained for 402 billion tokens over 383,500 steps on TPU v3-256 pod. It was trained as an autoregressive language model, using cross-entropy loss to maximize the likelihood of predicting the next token correctly. ## Intended Use and Limitations GPT-J learns an inner representation of the English language that can be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating text from a prompt. ### How to use This model can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B") model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B") ``` ### Limitations and Biases The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output. GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See [Sections 5 and 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Evaluation results <figure> | Model | Public | Training FLOPs | LAMBADA PPL ↓ | LAMBADA Acc ↑ | Winogrande ↑ | Hellaswag ↑ | PIQA ↑ | Dataset Size (GB) | |--------------------------|-------------|----------------|--- |--- |--- |--- |--- |-------------------| | Random Chance | &check; | 0 | ~a lot | ~0% | 50% | 25% | 25% | 0 | | GPT-3 Ada&ddagger; | &cross; | ----- | 9.95 | 51.6% | 52.9% | 43.4% | 70.5% | ----- | | GPT-2 1.5B | &check; | ----- | 10.63 | 51.21% | 59.4% | 50.9% | 70.8% | 40 | | GPT-Neo 1.3B&ddagger; | &check; | 3.0e21 | 7.50 | 57.2% | 55.0% | 48.9% | 71.1% | 825 | | Megatron-2.5B&ast; | &cross; | 2.4e21 | ----- | 61.7% | ----- | ----- | ----- | 174 | | GPT-Neo 2.7B&ddagger; | &check; | 6.8e21 | 5.63 | 62.2% | 56.5% | 55.8% | 73.0% | 825 | | GPT-3 1.3B&ast;&ddagger; | &cross; | 2.4e21 | 5.44 | 63.6% | 58.7% | 54.7% | 75.1% | ~800 | | GPT-3 Babbage&ddagger; | &cross; | ----- | 5.58 | 62.4% | 59.0% | 54.5% | 75.5% | ----- | | Megatron-8.3B&ast; | &cross; | 7.8e21 | ----- | 66.5% | ----- | ----- | ----- | 174 | | GPT-3 2.7B&ast;&ddagger; | &cross; | 4.8e21 | 4.60 | 67.1% | 62.3% | 62.8% | 75.6% | ~800 | | Megatron-11B&dagger; | &check; | 1.0e22 | ----- | ----- | ----- | ----- | ----- | 161 | | **GPT-J 6B&ddagger;** | **&check;** | **1.5e22** | **3.99** | **69.7%** | **65.3%** | **66.1%** | **76.5%** | **825** | | GPT-3 6.7B&ast;&ddagger; | &cross; | 1.2e22 | 4.00 | 70.3% | 64.5% | 67.4% | 78.0% | ~800 | | GPT-3 Curie&ddagger; | &cross; | ----- | 4.00 | 69.3% | 65.6% | 68.5% | 77.9% | ----- | | GPT-3 13B&ast;&ddagger; | &cross; | 2.3e22 | 3.56 | 72.5% | 67.9% | 70.9% | 78.5% | ~800 | | GPT-3 175B&ast;&ddagger; | &cross; | 3.1e23 | 3.00 | 76.2% | 70.2% | 78.9% | 81.0% | ~800 | | GPT-3 Davinci&ddagger; | &cross; | ----- | 3.0 | 75% | 72% | 78% | 80% | ----- | <figcaption><p>Models roughly sorted by performance, or by FLOPs if not available.</p> <p><strong>&ast;</strong> Evaluation numbers reported by their respective authors. All other numbers are provided by running <a href="https://github.com/EleutherAI/lm-evaluation-harness/"><code>lm-evaluation-harness</code></a> either with released weights or with API access. Due to subtle implementation differences as well as different zero shot task framing, these might not be directly comparable. See <a href="https://blog.eleuther.ai/gpt3-model-sizes/">this blog post</a> for more details.</p> <p><strong>†</strong> Megatron-11B provides no comparable metrics, and several implementations using the released weights do not reproduce the generation quality and evaluations. (see <a href="https://github.com/huggingface/transformers/pull/10301">1</a> <a href="https://github.com/pytorch/fairseq/issues/2358">2</a> <a href="https://github.com/pytorch/fairseq/issues/2719">3</a>) Thus, evaluation was not attempted.</p> <p><strong>‑</strong> These models have been trained with data which contains possible test set contamination. The OpenAI GPT-3 models failed to deduplicate training data for certain test sets, while the GPT-Neo models as well as this one is trained on the Pile, which has not been deduplicated against any test sets.</p></figcaption></figure> ## Citation and Related Information ### BibTeX entry To cite this model: ```bibtex @misc{gpt-j, author = {Wang, Ben and Komatsuzaki, Aran}, title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` To cite the codebase that trained this model: ```bibtex @misc{mesh-transformer-jax, author = {Wang, Ben}, title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` If you use this model, we would love to hear about it! Reach out on [GitHub](https://github.com/kingoflolz/mesh-transformer-jax), Discord, or shoot Ben an email. ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/), as well as the Cloud TPU team for providing early access to the [Cloud TPU VM](https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms) Alpha. Thanks to everyone who have helped out one way or another (listed alphabetically): - [James Bradbury](https://twitter.com/jekbradbury) for valuable assistance with debugging JAX issues. - [Stella Biderman](https://www.stellabiderman.com), [Eric Hallahan](https://twitter.com/erichallahan), [Kurumuz](https://github.com/kurumuz/), and [Finetune](https://github.com/finetuneanon/) for converting the model to be compatible with the `transformers` package. - [Leo Gao](https://twitter.com/nabla_theta) for running zero shot evaluations for the baseline models for the table. - [Laurence Golding](https://github.com/researcher2/) for adding some features to the web demo. - [Aran Komatsuzaki](https://twitter.com/arankomatsuzaki) for advice with experiment design and writing the blog posts. - [Janko Prester](https://github.com/jprester/) for creating the web demo frontend.
PiyarSquare/stable_diffusion_silz
PiyarSquare
2022-11-21T04:54:06Z
0
22
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-21T04:14:27Z
--- license: creativeml-openrail-m --- # πŸ“œπŸ—‘οΈ Silhouette/Cricut style This is a fine-tuned Stable Diffusion model designed for cutting machines. Use **silz style** in your prompts. ### Sample images: ![silz.jpg](https://huggingface.co/PiyarSquare/stable_diffusion_silz/resolve/main/silz_characters.png) ![silz.jpg](https://huggingface.co/PiyarSquare/stable_diffusion_silz/resolve/main/silz_famous_people.png) ![silz.jpg](https://huggingface.co/PiyarSquare/stable_diffusion_silz/resolve/main/silz_animals.png) ![silz.jpg](https://huggingface.co/PiyarSquare/stable_diffusion_silz/resolve/main/silz_places.png) ![silz.jpg](https://huggingface.co/PiyarSquare/stable_diffusion_silz/resolve/main/silz_prompted.png) Based on StableDiffusion 1.5 model ### Training Made with [automatic1111 webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) + [d8ahazard dreambooth extension](https://github.com/d8ahazard/sd_dreambooth_extension) + [nitrosocke guide](https://github.com/nitrosocke/dreambooth-training-guide). 82 training images at 1e-6 learning rate for 8200 steps. Without prior preservation. Inspired by [Fictiverse's PaperCut model](https://huggingface.co/Fictiverse/Stable_Diffusion_PaperCut_Model) and [txt2vector script](https://github.com/GeorgLegato/Txt2Vectorgraphics).
DONG19/ddpm-butterflies-128
DONG19
2022-11-21T04:08:47Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-21T01:58:47Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [πŸ€— Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results πŸ“ˆ [TensorBoard logs](https://huggingface.co/DONG19/ddpm-butterflies-128/tensorboard?#scalars)
Jellywibble/dalio-pretrain-cleaned-v4
Jellywibble
2022-11-21T03:49:50Z
9
1
transformers
[ "transformers", "pytorch", "opt", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-21T02:53:57Z
--- tags: - text-generation library_name: transformers widget: - text: "This is a conversation where Ray Dalio is giving advice on being a manager and building a successful team.\nUser: Hi Ray, thanks for talking with me today. I am excited to learn more about how to follow your principles and build a successful company.\nRay: No problem, I am happy to help. What situation are you facing?\nUser: It feels like I keep making decisions without thinking first - I do something without thinking and then I face the consequences afterwards.\nRay:" example_title: "Q&A" - text: "It’s easy to tell an open-minded person from a closed-minded person because they act very differently. Here are some cues to tell you whether you or others are being closed-minded: " example_title: "Principles" --- ## Model Description Pre-training on cleaned version of Principles - removing numeric references to footnotes - removing numeric counts, i.e. 1) ... 2) ... 3) ... - correcting gramma, i.e. full stops must be followed by a space - finetuning OPT-30B model on the dataset above - Dataset location: Jellywibble/dalio-principles-cleaned-v3 ## Metrics - Checkpoint 8 served - Hellaswag Perplexity: 30.65 - 2.289 eval loss wandb link: https://wandb.ai/jellywibble/huggingface/runs/2jqc504o?workspace=user-jellywibble ## Model Parameters Trained on 4xA40, effective batchsize = 8 - base_model_name facebook/opt-30b - dataset_name Jellywibble/dalio-principles-cleaned-v3 - block_size 1024 - gradient_accumulation_steps 2 - per_device_train_batch_size 1 - seed 2 - num_train_epochs 1 - learning_rate 3e-6 ## Notes - It is important for the effective batch size to be at least 8 - Learning rate higher than 3e-6 will result in massive overfitting, i.e. much worse Hellaswag metrics
snekkanti/distilbert-base-uncased-finetuned-emotion
snekkanti
2022-11-21T03:41:23Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-21T03:30:57Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2109 - Accuracy: 0.931 - F1: 0.9311 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7785 | 1.0 | 250 | 0.3038 | 0.9025 | 0.8990 | | 0.2405 | 2.0 | 500 | 0.2109 | 0.931 | 0.9311 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Tokenizers 0.13.2
gavincapriola/ddpm-butterflies-128
gavincapriola
2022-11-21T02:33:16Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-21T02:02:54Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [πŸ€— Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results πŸ“ˆ [TensorBoard logs](https://huggingface.co/gavincapriola/ddpm-butterflies-128/tensorboard?#scalars)
classtest/berttest2
classtest
2022-11-20T22:40:02Z
114
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-16T19:34:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: berttest2 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9137532981530343 - name: Recall type: recall value: 0.932514304947829 - name: F1 type: f1 value: 0.9230384807596203 - name: Accuracy type: accuracy value: 0.9822805674927886 - task: type: token-classification name: Token Classification dataset: name: conll2003 type: conll2003 config: conll2003 split: test metrics: - name: Accuracy type: accuracy value: 0.8984100471155513 verified: true - name: Precision type: precision value: 0.9270828085377937 verified: true - name: Recall type: recall value: 0.9152932984050137 verified: true - name: F1 type: f1 value: 0.9211503324684426 verified: true - name: loss type: loss value: 0.7076165080070496 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # berttest2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0674 - Precision: 0.9138 - Recall: 0.9325 - F1: 0.9230 - Accuracy: 0.9823 ## Model description Model implemented for CSE 573 Course Project ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0869 | 1.0 | 1756 | 0.0674 | 0.9138 | 0.9325 | 0.9230 | 0.9823 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cpu - Datasets 2.6.1 - Tokenizers 0.13.2
tmobaggins/bert-finetuned-squad
tmobaggins
2022-11-20T22:24:05Z
119
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-14T23:19:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description This is a first attempt at following the directions from the huggingface course. It was run on colab and a private server ## Intended uses & limitations This model is fine-tuned for extractive question answering. ## Training and evaluation data SQuAD ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
consciousAI/question-generation-auto-t5-v1-base-s
consciousAI
2022-11-20T21:42:51Z
121
2
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "Question(s) Generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-21T02:15:43Z
--- tags: - Question(s) Generation metrics: - rouge model-index: - name: consciousAI/question-generation-auto-t5-v1-base-s results: [] --- # Auto Question Generation The model is intended to be used for Auto Question Generation task i.e. no hint are required as input. The model is expected to produce one or possibly more than one question from the provided context. [Live Demo: Question Generation](https://huggingface.co/spaces/consciousAI/question_generation) Including this there are five models trained with different training sets, demo provide comparison to all in one go. However, you can reach individual projects at below links: [Auto Question Generation v2](https://huggingface.co/consciousAI/question-generation-auto-t5-v1-base-s-q) [Auto Question Generation v3](https://huggingface.co/consciousAI/question-generation-auto-t5-v1-base-s-q-c) [Auto/Hints based Question Generation v1](https://huggingface.co/consciousAI/question-generation-auto-hints-t5-v1-base-s-q) [Auto/Hints based Question Generation v2](https://huggingface.co/consciousAI/question-generation-auto-hints-t5-v1-base-s-q-c) This model can be used as below: ``` from transformers import ( AutoModelForSeq2SeqLM, AutoTokenizer ) model_checkpoint = "consciousAI/question-generation-auto-t5-v1-base-s" model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint) tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) ## Input with prompt context="question_context: <context>" encodings = tokenizer.encode(context, return_tensors='pt', truncation=True, padding='max_length').to(device) ## You can play with many hyperparams to condition the output, look at demo output = model.generate(encodings, #max_length=300, #min_length=20, #length_penalty=2.0, num_beams=4, #early_stopping=True, #do_sample=True, #temperature=1.1 ) ## Multiple questions are expected to be delimited by '?' You can write a small wrapper to elegantly format. Look at the demo. questions = [tokenizer.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=False) for id in output] ``` ## Training and evaluation data SQUAD split. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results Rouge metrics is heavily penalized because of multiple questions in target sample space, | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 2.0146 | 1.0 | 4758 | 1.6980 | 0.143 | 0.0705 | 0.1257 | 0.1384 | ... | 1.1733 | 9.0 | 23790 | 1.6319 | 0.1404 | 0.0718 | 0.1239 | 0.1351 | | 1.1225 | 10.0 | 28548 | 1.6476 | 0.1407 | 0.0716 | 0.1245 | 0.1356 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.0
saideekshith/distilbert-base-uncased-finetuned-ner
saideekshith
2022-11-20T20:30:39Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-20T14:30:24Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3610 - Precision: 0.8259 - Recall: 0.7483 - F1: 0.7852 - Accuracy: 0.9283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 234 | 0.2604 | 0.8277 | 0.7477 | 0.7856 | 0.9292 | | No log | 2.0 | 468 | 0.3014 | 0.8018 | 0.7536 | 0.7770 | 0.9263 | | 0.2221 | 3.0 | 702 | 0.3184 | 0.8213 | 0.7575 | 0.7881 | 0.9296 | | 0.2221 | 4.0 | 936 | 0.3610 | 0.8259 | 0.7483 | 0.7852 | 0.9283 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
huggingtweets/bretweinstein
huggingtweets
2022-11-20T19:52:53Z
114
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-20T19:50:38Z
--- language: en thumbnail: http://www.huggingtweets.com/bretweinstein/1668973969444/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/931641662538792961/h4d0n-Mr_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bret Weinstein</div> <div style="text-align: center; font-size: 14px;">@bretweinstein</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bret Weinstein. | Data | Bret Weinstein | | --- | --- | | Tweets downloaded | 3229 | | Retweets | 551 | | Short tweets | 223 | | Tweets kept | 2455 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1dfnz7g1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bretweinstein's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3jjnjpwf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3jjnjpwf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bretweinstein') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jason
huggingtweets
2022-11-20T19:41:15Z
111
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-20T19:40:03Z
--- language: en thumbnail: http://www.huggingtweets.com/jason/1668973271336/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1483572454979031040/HZgTqHjX_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">@jason</div> <div style="text-align: center; font-size: 14px;">@jason</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from @jason. | Data | @jason | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 255 | | Short tweets | 429 | | Tweets kept | 2558 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1v38jiw5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jason's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/xz0gbkrc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/xz0gbkrc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jason') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/chamath-davidsacks-friedberg
huggingtweets
2022-11-20T19:15:10Z
111
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-20T19:13:12Z
--- language: en thumbnail: http://www.huggingtweets.com/chamath-davidsacks-friedberg/1668971705740/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1241949342967029762/CZO9M-WG_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1398157893774413825/vQ-FwRtP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1257066367892639744/Yh-QS3we_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI CYBORG πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">david friedberg & David Sacks & Chamath Palihapitiya</div> <div style="text-align: center; font-size: 14px;">@chamath-davidsacks-friedberg</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from david friedberg & David Sacks & Chamath Palihapitiya. | Data | david friedberg | David Sacks | Chamath Palihapitiya | | --- | --- | --- | --- | | Tweets downloaded | 910 | 3245 | 3249 | | Retweets | 82 | 553 | 112 | | Short tweets | 54 | 291 | 861 | | Tweets kept | 774 | 2401 | 2276 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2jbjx03t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chamath-davidsacks-friedberg's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/14pr3hxs) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/14pr3hxs/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chamath-davidsacks-friedberg') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
fantaic/rickroll
fantaic
2022-11-20T18:57:50Z
0
0
null
[ "region:us" ]
null
2022-11-20T18:51:35Z
# Rickroll quiz for friends! ## Rickroll your friends with this quiz! [EXAMPLE SITE](https://teamquizmaker.netlify.app/) I've put together this basic quiz in html (and tried to make it as realistic as possible) and here it is if you would like to rickroll your friends. When you click the 'submit' button it will redirect to [This rickroll](https://www.youtube.com/watch?v=xvFZjo5PgG0&ab_channel=Duran). Feel free to share around but remember you need to host it. You can also fork this and host through Github pages. # Instructions ## 1. Download files. This is very easy - with hugging face. Click Files & Versions, and then download index.html and the image ![image](https://i.imgur.com/bokqWts.png) ## 2. Open the .html file in code editor. You can open the .html file in any code editor VS code is the most ideal - but you can even use notepad. ## 3. Edit the different parts You can follow [this](#editing-the-questions) to edit the questions properly. ## 4. Host the files. Hosting will not be fully described here but you can use [netlify](https://github.com/netlify) for example, to host the site files. Any hosting works. ## 5. (Optional) Help improve duckebosh rickroll. Please do report any bugs but first make sure to read [reported bugs](#reported-bugs) prior to posting them. You can also suggest fixes or features all in the [issues tab](https://github.com/duckebosh/rickroll/issues). # Editing the questions ***To be able to edit the questions you must have knowledge in HTML*** ``` <h2>1. Question name 1</h2> - Replace 'Question name 1' with whatever you want the question to be asking. <input type="radio" id="html" name="fav_language" value="HTML"> - Ignore this line. <label for="html">Option 1</label><br> - Replace 'Option 1' with whatever you want the option to be <input type="radio" id="html" name="fav_language" value="HTML"> - Ignore this line. <label for="html">Option 2</label><br> - Replace 'Option 2' with whatever you want the option to be <input type="radio" id="html" name="fav_language" value="HTML"> - Ignore this line. <label for="html">Option 3</label><br> - Replace 'Option 3' with whatever you want the option to be <input type="radio" id="html" name="fav_language" value="HTML"> - Ignore this line. <label for="html">Option 4</label><br> - Replace 'Option 4' with whatever you want the option to be <input type="radio" id="html" name="fav_language" value="HTML"> - Ignore this line. <label for="html">Option 5</label><br> - Replace 'Option 5' with whatever you want the option to be <input type="radio" id="html" name="fav_language" value="HTML"> - Ignore this line. <label for="html">Option 6</label><br> - Replace 'Option 6' with whatever you want the option to be <input type="radio" id="html" name="fav_language" value="HTML"> - Ignore this line. <label for="html">Option 7</label><br> - Replace 'Option 7' with whatever you want the option to be ``` This will look like [this](https://raw.githubusercontent.com/duckebosh/rickroll/main/questionexample.md) Repeat for all the bits like this......... # SUBSCRIBE [![](https://s18955.pcdn.co/wp-content/uploads/2018/02/github.png)](https://github.com/duckebosh/rickroll/subscription) # Reported Bugs * Issue you can only select one radio button. - Will be fixed asap
netsvetaev/netsvetaev-black
netsvetaev
2022-11-20T18:33:08Z
0
1
null
[ "diffusion", "netsvetaev", "dreambooth", "stable-diffusion", "text-to-image", "en", "license:mit", "region:us" ]
text-to-image
2022-11-16T09:42:52Z
--- language: - en thumbnail: "https://huggingface.co/netsvetaev/netsvetaev-black/resolve/main/000199.fb94ed7d.3205796735.png" tags: - diffusion - netsvetaev - dreambooth - stable-diffusion - text-to-image license: "mit" --- Hello! This is the model, based on my paintings on a black background and SD 1.5. This is the second onw, trained with 29 images and 2900 steps. The token is Β«netsvetaev black styleΒ». Best suited for: abstract seamless patterns, images similar to my original paintings with blue triangles, and large objects like Β«cat faceΒ» or Β«girl faceΒ». It works well with landscape orientation and embiggen. It has MIT license, you can use it for free. Best used with Invoke AI: https://github.com/invoke-ai/InvokeAI (The examples below contain metadata for it) ![Pattern by Artur Netsvetaev Stable DIffusion model](https://huggingface.co/netsvetaev/netsvetaev-black/resolve/main/000199.fb94ed7d.3205796735.png) ![Pattern by Artur Netsvetaev Stable DIffusion model](https://huggingface.co/netsvetaev/netsvetaev-black/resolve/main/000161.3229b2d8.404674009.png) ![Cat Face by Artur Netsvetaev Stable DIffusion model](https://huggingface.co/netsvetaev/netsvetaev-black/resolve/main/000162.7f0f58dd.514748655.png) ![Kitchen interior by Artur Netsvetaev Stable DIffusion model](https://huggingface.co/netsvetaev/netsvetaev-black/resolve/main/000166.2df18f6b.2385464611.png) ![Abstract painting by Artur Netsvetaev Stable DIffusion model](https://huggingface.co/netsvetaev/netsvetaev-black/resolve/main/000165.ce1281f2.514748655.png) ![Abstract painting by Artur Netsvetaev Stable DIffusion model](https://huggingface.co/netsvetaev/netsvetaev-black/resolve/main/000170.00bf11f4.2086077640.png) ![Abstract painting by Artur Netsvetaev Stable DIffusion model](https://huggingface.co/netsvetaev/netsvetaev-black/resolve/main/000200.d9724450.1486284977.png) ![Abstract painting by Artur Netsvetaev Stable DIffusion model](https://huggingface.co/netsvetaev/netsvetaev-black/resolve/main/000185.74e77e78.4135017744.png) ________________________ Artur Netsvetaev, 2022 https://netsvetaev.com
huggingtweets/balajis
huggingtweets
2022-11-20T18:06:24Z
96
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/balajis/1668967580599/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406974882919813128/LOUb2m4R_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Balaji</div> <div style="text-align: center; font-size: 14px;">@balajis</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Balaji. | Data | Balaji | | --- | --- | | Tweets downloaded | 3243 | | Retweets | 849 | | Short tweets | 54 | | Tweets kept | 2340 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/bioobb8j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @balajis's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1iql7y69) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1iql7y69/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/balajis') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
fernanda-dionello/autotrain-goodreads_without_bookid-2171169880
fernanda-dionello
2022-11-20T17:08:53Z
101
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:fernanda-dionello/autotrain-data-goodreads_without_bookid", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-11-20T17:03:39Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain πŸ€—" datasets: - fernanda-dionello/autotrain-data-goodreads_without_bookid co2_eq_emissions: emissions: 11.598027053629247 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2171169880 - CO2 Emissions (in grams): 11.5980 ## Validation Metrics - Loss: 0.792 - Accuracy: 0.654 - Macro F1: 0.547 - Micro F1: 0.654 - Weighted F1: 0.649 - Macro Precision: 0.594 - Micro Precision: 0.654 - Weighted Precision: 0.660 - Macro Recall: 0.530 - Micro Recall: 0.654 - Weighted Recall: 0.654 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/fernanda-dionello/autotrain-goodreads_without_bookid-2171169880 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("fernanda-dionello/autotrain-goodreads_without_bookid-2171169880", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("fernanda-dionello/autotrain-goodreads_without_bookid-2171169880", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
fernanda-dionello/autotrain-goodreads_without_bookid-2171169881
fernanda-dionello
2022-11-20T17:08:42Z
102
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:fernanda-dionello/autotrain-data-goodreads_without_bookid", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-11-20T17:03:39Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain πŸ€—" datasets: - fernanda-dionello/autotrain-data-goodreads_without_bookid co2_eq_emissions: emissions: 10.018792119596627 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2171169881 - CO2 Emissions (in grams): 10.0188 ## Validation Metrics - Loss: 0.754 - Accuracy: 0.660 - Macro F1: 0.422 - Micro F1: 0.660 - Weighted F1: 0.637 - Macro Precision: 0.418 - Micro Precision: 0.660 - Weighted Precision: 0.631 - Macro Recall: 0.440 - Micro Recall: 0.660 - Weighted Recall: 0.660 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/fernanda-dionello/autotrain-goodreads_without_bookid-2171169881 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("fernanda-dionello/autotrain-goodreads_without_bookid-2171169881", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("fernanda-dionello/autotrain-goodreads_without_bookid-2171169881", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
fernanda-dionello/autotrain-goodreads_without_bookid-2171169883
fernanda-dionello
2022-11-20T17:07:17Z
100
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:fernanda-dionello/autotrain-data-goodreads_without_bookid", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-11-20T17:03:45Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain πŸ€—" datasets: - fernanda-dionello/autotrain-data-goodreads_without_bookid co2_eq_emissions: emissions: 7.7592453257413565 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2171169883 - CO2 Emissions (in grams): 7.7592 ## Validation Metrics - Loss: 1.024 - Accuracy: 0.579 - Macro F1: 0.360 - Micro F1: 0.579 - Weighted F1: 0.560 - Macro Precision: 0.383 - Micro Precision: 0.579 - Weighted Precision: 0.553 - Macro Recall: 0.353 - Micro Recall: 0.579 - Weighted Recall: 0.579 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/fernanda-dionello/autotrain-goodreads_without_bookid-2171169883 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("fernanda-dionello/autotrain-goodreads_without_bookid-2171169883", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("fernanda-dionello/autotrain-goodreads_without_bookid-2171169883", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
fernanda-dionello/autotrain-goodreads_without_bookid-2171169882
fernanda-dionello
2022-11-20T17:06:43Z
101
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:fernanda-dionello/autotrain-data-goodreads_without_bookid", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-11-20T17:03:44Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain πŸ€—" datasets: - fernanda-dionello/autotrain-data-goodreads_without_bookid co2_eq_emissions: emissions: 6.409243088343928 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2171169882 - CO2 Emissions (in grams): 6.4092 ## Validation Metrics - Loss: 0.950 - Accuracy: 0.586 - Macro F1: 0.373 - Micro F1: 0.586 - Weighted F1: 0.564 - Macro Precision: 0.438 - Micro Precision: 0.586 - Weighted Precision: 0.575 - Macro Recall: 0.399 - Micro Recall: 0.586 - Weighted Recall: 0.586 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/fernanda-dionello/autotrain-goodreads_without_bookid-2171169882 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("fernanda-dionello/autotrain-goodreads_without_bookid-2171169882", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("fernanda-dionello/autotrain-goodreads_without_bookid-2171169882", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
sd-concepts-library/iridescent-photo-style
sd-concepts-library
2022-11-20T16:43:03Z
0
11
null
[ "license:mit", "region:us" ]
null
2022-11-02T18:03:35Z
--- license: mit --- ### Iridescent Photo Style on Stable Diffusion This is the 'iridescent-photo-style' concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<iridescent-photo-style> 0](https://huggingface.co/sd-concepts-library/iridescent-photo-style/resolve/main/concept_images/6.jpeg) ![<iridescent-photo-style> 1](https://huggingface.co/sd-concepts-library/iridescent-photo-style/resolve/main/concept_images/4.jpeg) ![<iridescent-photo-style> 2](https://huggingface.co/sd-concepts-library/iridescent-photo-style/resolve/main/concept_images/2.jpeg) ![<iridescent-photo-style> 3](https://huggingface.co/sd-concepts-library/iridescent-photo-style/resolve/main/concept_images/5.jpeg) ![<iridescent-photo-style> 4](https://huggingface.co/sd-concepts-library/iridescent-photo-style/resolve/main/concept_images/3.jpeg) ![<iridescent-photo-style> 5](https://huggingface.co/sd-concepts-library/iridescent-photo-style/resolve/main/concept_images/0.jpeg) ![<iridescent-photo-style> 6](https://huggingface.co/sd-concepts-library/iridescent-photo-style/resolve/main/concept_images/1.jpeg) Here are images generated with this style: ![photo of a garden in the style of <iridescent-photo-style>](https://i.imgur.com/64JiIRe.png) ![portrait of a black woman in the style of <iridescent-photo-style>](https://i.imgur.com/tu9Arc3.png) ![photograph of an ice cavern in the style of <iridescent-photo-style>](https://i.imgur.com/82f8tuR.png)
jonfreak/tvdino
jonfreak
2022-11-20T16:27:24Z
0
1
null
[ "region:us" ]
null
2022-11-20T16:14:27Z
Trained on 20 images, 2000 steps. With TheLastBen fast-stable-diffusion (https://github.com/TheLastBen/fast-stable-diffusion) use the token **tvdino** ![dino.png](https://s3.amazonaws.com/moonup/production/uploads/1668960990606-632702a8a28c096b45a9fb38.png)
desh2608/icefall-asr-spgispeech-pruned-transducer-stateless2
desh2608
2022-11-20T16:03:04Z
0
1
k2
[ "k2", "tensorboard", "icefall", "en", "dataset:SPGISpeech", "arxiv:2104.02014", "license:mit", "region:us" ]
null
2022-05-13T01:09:34Z
--- datasets: - SPGISpeech language: - en license: mit tags: - k2 - icefall --- # SPGISpeech SPGISpeech consists of 5,000 hours of recorded company earnings calls and their respective transcriptions. The original calls were split into slices ranging from 5 to 15 seconds in length to allow easy training for speech recognition systems. Calls represent a broad cross-section of international business English; SPGISpeech contains approximately 50,000 speakers, one of the largest numbers of any speech corpus, and offers a variety of L1 and L2 English accents. The format of each WAV file is single channel, 16kHz, 16 bit audio. Transcription text represents the output of several stages of manual post-processing. As such, the text contains polished English orthography following a detailed style guide, including proper casing, punctuation, and denormalized non-standard words such as numbers and acronyms, making SPGISpeech suited for training fully formatted end-to-end models. Official reference: O’Neill, P.K., Lavrukhin, V., Majumdar, S., Noroozi, V., Zhang, Y., Kuchaiev, O., Balam, J., Dovzhenko, Y., Freyberg, K., Shulman, M.D., Ginsburg, B., Watanabe, S., & Kucsko, G. (2021). SPGISpeech: 5, 000 hours of transcribed financial audio for fully formatted end-to-end speech recognition. ArXiv, abs/2104.02014. ArXiv link: https://arxiv.org/abs/2104.02014 ## Performance Record | Decoding method | val | |---------------------------|------------| | greedy search | 2.40 | | beam search | 2.24 | | modified beam search | 2.30 | | fast beam search | 2.35 |
monakth/bert-base-uncased-finetuned-squadv2
monakth
2022-11-20T15:49:26Z
106
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-20T15:48:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bert-base-uncased-finetuned-squadv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squadv This model is a fine-tuned version of [monakth/bert-base-uncased-finetuned-squad](https://huggingface.co/monakth/bert-base-uncased-finetuned-squad) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
dpkmnit/bert-finetuned-squad
dpkmnit
2022-11-20T14:58:13Z
61
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-18T06:19:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: dpkmnit/bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dpkmnit/bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7048 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 66549, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.2092 | 0 | | 0.7048 | 1 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.1 - Datasets 2.7.0 - Tokenizers 0.13.2
LaurentiuStancioiu/xlm-roberta-base-finetuned-panx-de-fr
LaurentiuStancioiu
2022-11-20T14:23:38Z
107
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-20T13:54:03Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1608 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2888 | 1.0 | 715 | 0.1779 | 0.8233 | | 0.1437 | 2.0 | 1430 | 0.1570 | 0.8497 | | 0.0931 | 3.0 | 2145 | 0.1608 | 0.8593 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Hudee/roberta-large-with-labeled-data-and-unlabeled-gab-reddit-semeval2023-task10-13300-labeled-sample
Hudee
2022-11-20T12:42:37Z
124
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-20T11:40:08Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-large-with-labeled-data-and-unlabeled-gab-reddit-semeval2023-task10-13300-labeled-sample results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-with-labeled-data-and-unlabeled-gab-reddit-semeval2023-task10-13300-labeled-sample This model is a fine-tuned version of [HPL/roberta-large-unlabeled-gab-reddit-semeval2023-task10-57000sample](https://huggingface.co/HPL/roberta-large-unlabeled-gab-reddit-semeval2023-task10-57000sample) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9921 | 1.0 | 832 | 1.9311 | | 1.9284 | 2.0 | 1664 | 1.8428 | | 1.8741 | 3.0 | 2496 | 1.8364 | | 1.816 | 4.0 | 3328 | 1.7889 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.10.3
youa/CreatTitle
youa
2022-11-20T11:54:27Z
1
0
null
[ "pytorch", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-11-07T13:56:12Z
--- license: bigscience-bloom-rail-1.0 ---
sd-concepts-library/bored-ape-textual-inversion
sd-concepts-library
2022-11-20T09:07:30Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-11-20T09:07:27Z
--- license: mit --- ### bored_ape_textual_inversion on Stable Diffusion This is the `<bored_ape>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<bored_ape> 0](https://huggingface.co/sd-concepts-library/bored-ape-textual-inversion/resolve/main/concept_images/3.jpeg) ![<bored_ape> 1](https://huggingface.co/sd-concepts-library/bored-ape-textual-inversion/resolve/main/concept_images/1.jpeg) ![<bored_ape> 2](https://huggingface.co/sd-concepts-library/bored-ape-textual-inversion/resolve/main/concept_images/2.jpeg) ![<bored_ape> 3](https://huggingface.co/sd-concepts-library/bored-ape-textual-inversion/resolve/main/concept_images/0.jpeg)
paulhindemith/fasttext-classification
paulhindemith
2022-11-20T08:48:41Z
55
0
transformers
[ "transformers", "pytorch", "fasttext_classification", "text-classification", "fastText", "zero-shot-classification", "custom_code", "ja", "license:cc-by-sa-3.0", "autotrain_compatible", "region:us" ]
zero-shot-classification
2022-11-06T12:39:45Z
--- language: - ja license: cc-by-sa-3.0 library_name: transformers tags: - fastText pipeline_tag: zero-shot-classification widget: - text: "ζ΅·θ³ŠηŽ‹γ«γŠγ‚Œγ―γͺγ‚‹" candidate_labels: "ζ΅·, ε±±, ι™Έ" multi_class: true example_title: "ワンピース" --- # fasttext-classification **This model is experimental.** fastText word vector base classification ## Usage Google Colaboratory Example ``` ! apt install aptitude swig > /dev/null ! aptitude install mecab libmecab-dev mecab-ipadic-utf8 git make curl xz-utils file -y > /dev/null ! pip install transformers torch mecab-python3 torchtyping > /dev/null ! ln -s /etc/mecabrc /usr/local/etc/mecabrc ``` ``` from transformers import pipeline p = pipeline("zero-shot-classification", "paulhindemith/fasttext-classification", revision="2022.11.13", trust_remote_code=True) ``` ``` p("ζ΅·θ³ŠηŽ‹γ«γŠγ‚Œγ―γͺγ‚‹", candidate_labels=["ζ΅·","ε±±","ι™Έ"], hypothesis_template="{}", multi_label=True) ``` ## License This model utilizes the folllowing pretrained vectors. Name: fastText Credit: https://fasttext.cc/ License: [Creative Commons Attribution-Share-Alike License 3.0](https://creativecommons.org/licenses/by-sa/3.0/) Link: https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.ja.vec
yip-i/wav2vec2-demo-M01
yip-i
2022-11-20T08:10:29Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-12T03:03:57Z
--- tags: - generated_from_trainer model-index: - name: wav2vec2-demo-M01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-demo-M01 This model is a fine-tuned version of [yip-i/uaspeech-pretrained](https://huggingface.co/yip-i/uaspeech-pretrained) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7099 - Wer: 1.4021 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 7.3895 | 0.9 | 500 | 2.9817 | 1.0007 | | 3.0164 | 1.8 | 1000 | 2.9513 | 1.2954 | | 3.0307 | 2.7 | 1500 | 2.8709 | 1.3286 | | 3.1314 | 3.6 | 2000 | 2.8754 | 1.0 | | 3.0395 | 4.5 | 2500 | 2.9289 | 1.0 | | 3.2647 | 5.41 | 3000 | 2.8134 | 1.0014 | | 2.9821 | 6.31 | 3500 | 2.8370 | 1.3901 | | 2.9262 | 7.21 | 4000 | 2.8731 | 1.3809 | | 2.9982 | 8.11 | 4500 | 4.4794 | 1.3958 | | 3.0807 | 9.01 | 5000 | 2.8268 | 1.3951 | | 2.8873 | 9.91 | 5500 | 2.8014 | 1.5336 | | 2.8755 | 10.81 | 6000 | 2.8010 | 1.3873 | | 3.2618 | 11.71 | 6500 | 3.1033 | 1.3463 | | 3.0063 | 12.61 | 7000 | 2.7906 | 1.3753 | | 2.8481 | 13.51 | 7500 | 2.7874 | 1.3837 | | 2.876 | 14.41 | 8000 | 2.8239 | 1.0636 | | 2.8966 | 15.32 | 8500 | 2.7753 | 1.3915 | | 2.8839 | 16.22 | 9000 | 2.7874 | 1.3223 | | 2.8351 | 17.12 | 9500 | 2.7755 | 1.3915 | | 2.8185 | 18.02 | 10000 | 2.7600 | 1.3908 | | 2.8193 | 18.92 | 10500 | 2.7542 | 1.3915 | | 2.8023 | 19.82 | 11000 | 2.7528 | 1.3915 | | 2.7934 | 20.72 | 11500 | 2.7406 | 1.3915 | | 2.8043 | 21.62 | 12000 | 2.7419 | 1.3915 | | 2.7941 | 22.52 | 12500 | 2.7407 | 1.3915 | | 2.7854 | 23.42 | 13000 | 2.7277 | 1.3915 | | 2.7924 | 24.32 | 13500 | 2.7279 | 1.3915 | | 2.7644 | 25.23 | 14000 | 2.7217 | 1.3915 | | 2.7703 | 26.13 | 14500 | 2.7273 | 1.5032 | | 2.7821 | 27.03 | 15000 | 2.7265 | 1.3915 | | 2.7632 | 27.93 | 15500 | 2.7154 | 1.3915 | | 2.749 | 28.83 | 16000 | 2.7125 | 1.3958 | | 2.7515 | 29.73 | 16500 | 2.7099 | 1.4021 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
gjpetch/zbrush_style
gjpetch
2022-11-20T07:50:32Z
0
3
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-19T22:39:34Z
--- license: creativeml-openrail-m --- This is a Dreambooth Stable Diffusion model, trained on grey shaded images from 3d modeling programs like Zbrush, Mudbox, Sculptris, etc. The token prompt is: **zsculptport** The (optional) class prompt is: **sculpture** Example prompt: spectacular realistic detailed (zsculptport) sculpture of beautiful alien elf woman creature. ultra detailed, cinematic. sepia [by artist todd mcfarlane] Negative prompt: lumpy, smeared, noisy, messy, ugly, distorted, colour, painting, ((watercolour)), blurry, (high contrast) Steps: 45, Sampler: DPM++ 2S a Karras, CFG scale: 10, Size: 768x960, Denoising strength: 0.32, First pass size: 512x640 some cherrypicked sample results: ![Samples](https://huggingface.co/gjpetch/zbrush_style/resolve/main/zsculptport_example_01.png)
huggingtweets/iwriteok
huggingtweets
2022-11-20T06:14:50Z
109
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/iwriteok/1668924855688/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/598663964340301824/im3Wzn-o_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Robert Evans (The Only Robert Evans)</div> <div style="text-align: center; font-size: 14px;">@iwriteok</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Robert Evans (The Only Robert Evans). | Data | Robert Evans (The Only Robert Evans) | | --- | --- | | Tweets downloaded | 3218 | | Retweets | 1269 | | Short tweets | 142 | | Tweets kept | 1807 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3hjcp2ib/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iwriteok's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/wq4n95ia) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/wq4n95ia/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/iwriteok') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Jellywibble/dalio-bot-pretrain-finetune-restruct
Jellywibble
2022-11-20T06:01:16Z
4
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-20T02:37:23Z
--- tags: - text-generation library_name: transformers --- ## Model description Dalio Bot Pre-trained on Principles, fine-tuned on handwritten examples. Pre-trained model: Jellywibble/dalio-pretrained-book-bs4-seed1 (based-off OPT30B) Fine-tuning dataset: Jellywibble/dalio_handwritten-conversations ## Model Parameters - 4xA40 (eff. batch size = 4) - base_mode_name Jellywibble/dalio-pretrained-book-bs4-seed1 - dataset_name Jellywibble/dalio_handwritten-conversations - block size 500 - per_device_train_batch_size 1 - gradient_accumulation steps 1 - learning_rate 2e-6 - seed 28 - validation split percentage 20 - hellaswag_sample_size 100 ## Metrics - Hellaswag Perplexity: 29.9 - Eval acc: 57.1% - Eval loss: 1.971 - wandb: https://wandb.ai/jellywibble/huggingface/runs/12lgyt20?workspace=user-jellywibble - Checkpoint 10 selected and uploaded
Bainaman/finetuning-sentiment-model-3000-samples
Bainaman
2022-11-20T03:08:23Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-20T02:55:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.88 - name: F1 type: f1 value: 0.880794701986755 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2944 - Accuracy: 0.88 - F1: 0.8808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Alred/t5-small-finetuned-summarization-cnn-ver2
Alred
2022-11-20T02:38:15Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "summarization", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-11-20T00:53:44Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - cnn_dailymail model-index: - name: t5-small-finetuned-summarization-cnn-ver2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-summarization-cnn-ver2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 2.0084 - Bertscore-mean-precision: 0.8859 - Bertscore-mean-recall: 0.8592 - Bertscore-mean-f1: 0.8721 - Bertscore-median-precision: 0.8855 - Bertscore-median-recall: 0.8578 - Bertscore-median-f1: 0.8718 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bertscore-mean-precision | Bertscore-mean-recall | Bertscore-mean-f1 | Bertscore-median-precision | Bertscore-median-recall | Bertscore-median-f1 | |:-------------:|:-----:|:----:|:---------------:|:------------------------:|:---------------------:|:-----------------:|:--------------------------:|:-----------------------:|:-------------------:| | 2.0422 | 1.0 | 718 | 2.0139 | 0.8853 | 0.8589 | 0.8717 | 0.8857 | 0.8564 | 0.8715 | | 1.9481 | 2.0 | 1436 | 2.0085 | 0.8863 | 0.8591 | 0.8723 | 0.8858 | 0.8577 | 0.8718 | | 1.9231 | 3.0 | 2154 | 2.0084 | 0.8859 | 0.8592 | 0.8721 | 0.8855 | 0.8578 | 0.8718 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
CosmicAvatar/cosmic_avatar_stable_diffusion_inpainting_v1_5
CosmicAvatar
2022-11-20T02:09:14Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-20T00:27:34Z
--- license: creativeml-openrail-m --- See information below. https://huggingface.co/runwayml/stable-diffusion-inpainting
jammygrams/bart-qa
jammygrams
2022-11-20T01:24:11Z
119
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "license:openrail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-17T14:15:23Z
--- license: openrail --- See https://github.com/jammygrams/Pea-QA for details on model training (with narrativeqa dataset)
monakth/bert-base-cased-finetuned-squadv2
monakth
2022-11-20T00:49:07Z
105
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "endpoints_compatible", "region:us" ]
question-answering
2022-11-20T00:47:41Z
--- tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bert-base-cased-finetuned-squadv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-squadv This model is a fine-tuned version of [monakth/bert-base-cased-finetuned-squad](https://huggingface.co/monakth/bert-base-cased-finetuned-squad) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
milyiyo/paraphraser-spanish-t5-base
milyiyo
2022-11-20T00:25:08Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-17T14:55:45Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: paraphraser-spanish-t5-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # paraphraser-spanish-t5-base This model is a fine-tuned version of [milyiyo/paraphraser-spanish-t5-base](https://huggingface.co/milyiyo/paraphraser-spanish-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7572 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1212 | 0.07 | 2000 | 0.8120 | | 1.2263 | 0.14 | 4000 | 0.7773 | | 1.1976 | 0.21 | 6000 | 0.7745 | | 1.1828 | 0.28 | 8000 | 0.7675 | | 1.1399 | 0.35 | 10000 | 0.7668 | | 1.1378 | 0.42 | 12000 | 0.7651 | | 1.1035 | 0.5 | 14000 | 0.7644 | | 1.0923 | 0.57 | 16000 | 0.7633 | | 1.0924 | 0.64 | 18000 | 0.7594 | | 1.0943 | 0.71 | 20000 | 0.7578 | | 1.0872 | 0.78 | 22000 | 0.7575 | | 1.0755 | 0.85 | 24000 | 0.7599 | | 1.0806 | 0.92 | 26000 | 0.7558 | | 1.079 | 0.99 | 28000 | 0.7572 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Deepthoughtworks/gpt-neo-2.7B__low-cpu
Deepthoughtworks
2022-11-19T23:20:13Z
44
1
transformers
[ "transformers", "pytorch", "jax", "rust", "gpt_neo", "text-generation", "text generation", "causal-lm", "en", "arxiv:2101.00027", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-11T11:35:56Z
--- language: - en tags: - text generation - pytorch - causal-lm license: apache-2.0 --- # GPT-Neo 2.7B ## Model Description GPT-Neo 2.7B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 2.7B represents the number of parameters of this particular pre-trained model. ## Training data GPT-Neo 2.7B was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model. ## Training procedure This model was trained for 420 billion tokens over 400,000 steps. It was trained as a masked autoregressive language model, using cross-entropy loss. ## Intended Use and Limitations This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-2.7B') >>> generator("EleutherAI has", do_sample=True, min_length=50) [{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Eval results All evaluations were done using our [evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness). Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness. If you would like to contribute evaluations you have done, please reach out on our [Discord](https://discord.gg/vtRgjbM). ### Linguistic Reasoning | Model and Size | Pile BPB | Pile PPL | Wikitext PPL | Lambada PPL | Lambada Acc | Winogrande | Hellaswag | | ---------------- | ---------- | ---------- | ------------- | ----------- | ----------- | ---------- | ----------- | | GPT-Neo 1.3B | 0.7527 | 6.159 | 13.10 | 7.498 | 57.23% | 55.01% | 38.66% | | GPT-2 1.5B | 1.0468 | ----- | 17.48 | 10.634 | 51.21% | 59.40% | 40.03% | | **GPT-Neo 2.7B** | **0.7165** | **5.646** | **11.39** | **5.626** | **62.22%** | **56.50%** | **42.73%** | | GPT-3 Ada | 0.9631 | ----- | ----- | 9.954 | 51.60% | 52.90% | 35.93% | ### Physical and Scientific Reasoning | Model and Size | MathQA | PubMedQA | Piqa | | ---------------- | ---------- | ---------- | ----------- | | GPT-Neo 1.3B | 24.05% | 54.40% | 71.11% | | GPT-2 1.5B | 23.64% | 58.33% | 70.78% | | **GPT-Neo 2.7B** | **24.72%** | **57.54%** | **72.14%** | | GPT-3 Ada | 24.29% | 52.80% | 68.88% | ### Down-Stream Applications TBD ### BibTeX entry and citation info To cite this model, use ```bibtex @software{gpt-neo, author = {Black, Sid and Leo, Gao and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}}, month = mar, year = 2021, note = {{If you use this software, please cite it using these metadata.}}, publisher = {Zenodo}, version = {1.0}, doi = {10.5281/zenodo.5297715}, url = {https://doi.org/10.5281/zenodo.5297715} } @article{gao2020pile, title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling}, author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others}, journal={arXiv preprint arXiv:2101.00027}, year={2020} } ```
huggingtweets/0xirenedao-irenezhao_
huggingtweets
2022-11-19T21:23:50Z
112
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-19T21:21:10Z
--- language: en thumbnail: http://www.huggingtweets.com/0xirenedao-irenezhao_/1668893025991/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1423875044598456321/SVjwd6Bb_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1491000379764785159/ogwaV9mU_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI CYBORG πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Irene Zhao & IreneDAO</div> <div style="text-align: center; font-size: 14px;">@0xirenedao-irenezhao_</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Irene Zhao & IreneDAO. | Data | Irene Zhao | IreneDAO | | --- | --- | --- | | Tweets downloaded | 1942 | 463 | | Retweets | 223 | 120 | | Short tweets | 417 | 71 | | Tweets kept | 1302 | 272 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/31392i24/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @0xirenedao-irenezhao_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/m6jcuxe9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/m6jcuxe9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/0xirenedao-irenezhao_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ocm/xlm-roberta-base-finetuned-panx-de
ocm
2022-11-19T20:26:55Z
113
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-19T20:02:31Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Rajaram1996/Hubert_emotion
Rajaram1996
2022-11-19T20:10:41Z
275
32
transformers
[ "transformers", "pytorch", "hubert", "speech", "audio", "HUBert", "audio-classification", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-02T23:29:04Z
--- inference: true pipeline_tag: audio-classification tags: - speech - audio - HUBert --- Working example of using pretrained model to predict emotion in local audio file ``` def predict_emotion_hubert(audio_file): """ inspired by an example from https://github.com/m3hrdadfi/soxan """ from audio_models import HubertForSpeechClassification from transformers import Wav2Vec2FeatureExtractor, AutoConfig import torch.nn.functional as F import torch import numpy as np from pydub import AudioSegment model = HubertForSpeechClassification.from_pretrained("Rajaram1996/Hubert_emotion") # Downloading: 362M feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/hubert-base-ls960") sampling_rate=16000 # defined by the model; must convert mp3 to this rate. config = AutoConfig.from_pretrained("Rajaram1996/Hubert_emotion") def speech_file_to_array(path, sampling_rate): # using torchaudio... # speech_array, _sampling_rate = torchaudio.load(path) # resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate) # speech = resampler(speech_array).squeeze().numpy() sound = AudioSegment.from_file(path) sound = sound.set_frame_rate(sampling_rate) sound_array = np.array(sound.get_array_of_samples()) return sound_array sound_array = speech_file_to_array(audio_file, sampling_rate) inputs = feature_extractor(sound_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True) inputs = {key: inputs[key].to("cpu").float() for key in inputs} with torch.no_grad(): logits = model(**inputs).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{ "emo": config.id2label[i], "score": round(score * 100, 1)} for i, score in enumerate(scores) ] return [row for row in sorted(outputs, key=lambda x:x["score"], reverse=True) if row['score'] != '0.0%'][:2] ``` ``` result = predict_emotion_hubert("male-crying.mp3") >>> result [{'emo': 'male_sad', 'score': 91.0}, {'emo': 'male_fear', 'score': 4.8}] ```
Froddan/furiostyle
Froddan
2022-11-19T19:28:35Z
0
3
null
[ "stable-diffusion", "text-to-image", "en", "license:cc0-1.0", "region:us" ]
text-to-image
2022-11-19T19:10:50Z
--- license: cc0-1.0 inference: false language: - en tags: - stable-diffusion - text-to-image --- # Stable Diffusion fine tuned on art by [Furio Tedeshi](https://www.furiotedeschi.com/) ### Usage Use by adding the keyword "furiostyle" to the prompt. The model was trained with the "demon" classname, which can also be added to the prompt. ## Samples For this model I made two checkpoints. The "furiostyle demon x2" model is trained for twice as long as the regular checkpoint, meaning it should be more fine tuned on the style but also more rigid. The top 4 images are from the regular version, the rest are from the x2 version. I hope it gives you an idea of what kind of styles can be created with this model. I think the x2 model got better results this time around, if you would compare the dog and the mushroom. <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/1000_2.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/1000_4.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/dog_1000_2.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/mushroom_1000_2.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/2000_1.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/2000_4.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/mushroom_cave_4.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/mushroom_cave_ornate.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/dog_2.png" width="256px"/> ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
Froddan/bulgarov
Froddan
2022-11-19T19:23:36Z
0
1
null
[ "stable-diffusion", "text-to-image", "en", "license:cc0-1.0", "region:us" ]
text-to-image
2022-11-19T16:11:02Z
--- license: cc0-1.0 inference: false language: - en tags: - stable-diffusion - text-to-image --- # Stable Diffusion fine tuned on art by [Vitaly Bulgarov](https://www.artstation.com/vbulgarov) ### Usage Use by adding the keyword "bulgarovstyle" to the prompt. The model was trained with the "knight" classname, which can also be added to the prompt. ## Samples For this model I made two checkpoints. The "bulgarovstyle knight x2" model is trained for twice as long as the regular checkpoint, meaning it should be more fine tuned on the style but also more rigid. The top 3 images are from the regular version, the rest are from the x2 version (I think). I hope it gives you an idea of what kind of styles can be created with this model. <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/dog_v1_1.png" width="256px"/> <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/greg_v1.png" width="256px"/> <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/greg3.png" width="256px"/> <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/index4.png" width="256px"/> <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/index_1600_2.png" width="256px"/> <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/index_1600_4.png" width="256px"/> <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/tmp1zir5pbb.png" width="256px"/> <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/tmp6lk0vp7p.png" width="256px"/> <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/tmpgabti6yx.png" width="256px"/> <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/tmpgvytng2n.png" width="256px"/> ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
kormilitzin/en_core_med7_lg
kormilitzin
2022-11-19T18:51:30Z
664
21
spacy
[ "spacy", "token-classification", "en", "license:mit", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification language: - en license: mit model-index: - name: en_core_med7_lg results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8649613325 - name: NER Recall type: recall value: 0.8892966361 - name: NER F Score type: f_score value: 0.876960193 --- | Feature | Description | | --- | --- | | **Name** | `en_core_med7_lg` | | **Version** | `3.4.2.1` | | **spaCy** | `>=3.4.2,<3.5.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | `MIT` | | **Author** | [Andrey Kormilitzin](https://www.kormilitzin.com/) | ### Label Scheme <details> <summary>View label scheme (7 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `DOSAGE`, `DRUG`, `DURATION`, `FORM`, `FREQUENCY`, `ROUTE`, `STRENGTH` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 87.70 | | `ENTS_P` | 86.50 | | `ENTS_R` | 88.93 | | `TOK2VEC_LOSS` | 226109.53 | | `NER_LOSS` | 302222.55 | ### BibTeX entry and citation info ```bibtex @article{kormilitzin2021med7, title={Med7: A transferable clinical natural language processing model for electronic health records}, author={Kormilitzin, Andrey and Vaci, Nemanja and Liu, Qiang and Nevado-Holgado, Alejo}, journal={Artificial Intelligence in Medicine}, volume={118}, pages={102086}, year={2021}, publisher={Elsevier} } ```
Sebabrata/dof-dl-1
Sebabrata
2022-11-19T18:13:06Z
49
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-11-19T14:52:29Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: dof-dl-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dof-dl-1 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Froddan/hurrimatte
Froddan
2022-11-19T18:11:55Z
0
1
null
[ "stable-diffusion", "text-to-image", "en", "license:cc0-1.0", "region:us" ]
text-to-image
2022-11-19T15:10:08Z
--- license: cc0-1.0 inference: false language: - en tags: - stable-diffusion - text-to-image --- # Stable Diffusion fine tuned on art by [Bjârn Hurri](https://www.artstation.com/bjornhurri) This model is fine tuned on some of his matte-style paintings. I also have a version for his "shinier" works. ### Usage Use by adding the keyword "hurrimatte" to the prompt. The model was trained with the "monster" classname, which can also be added to the prompt. ## Samples For this model I made two checkpoints. The "hurrimatte monster x2" model is trained for twice as long as the regular checkpoint, meaning it should be more fine tuned on the style but also more rigid. The top 3 images are from the regular version, the rest are from the x2 version. I hope it gives you an idea of what kind of styles can be created with this model. <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index_1200_3.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index_1200_4.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/1200_4.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index2.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index3.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index_2400_5.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index_2400_6.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index_2400_7.png" width="256px"/> ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
Froddan/nekrofaerie
Froddan
2022-11-19T17:51:30Z
0
2
null
[ "stable-diffusion", "text-to-image", "en", "license:cc0-1.0", "region:us" ]
text-to-image
2022-11-19T15:06:11Z
--- license: cc0-1.0 inference: false language: - en tags: - stable-diffusion - text-to-image --- # Stable Diffusion fine tuned on art by [Nekro](https://www.artstation.com/nekro) ### Usage Use by adding the keyword "nekrofaerie" to the prompt. The model was trained with the "faerie" classname, which can also be added to the prompt. ## Samples The top 2 images are "pure", the rest could be mixed with other artists or modifiers. I hope it still gives you an idea of what kind of styles can be created with this model. <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/index.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/index2.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/tmp04o1t4b_.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/tmp41igywg4.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/tmpbkj8sqmh.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/tmphk34pib0.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/dog_octane.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/dog_octane2.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/greg_mucha2.png" width="256px"/> ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
CSAPS/premodel
CSAPS
2022-11-19T17:15:24Z
90
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:lst20", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-19T11:18:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - lst20 metrics: - precision - recall - f1 - accuracy model-index: - name: premodel results: - task: name: Token Classification type: token-classification dataset: name: lst20 type: lst20 config: default split: train args: default metrics: - name: Precision type: precision value: 0.8533733110439704 - name: Recall type: recall value: 0.8653846153846154 - name: F1 type: f1 value: 0.8593369935367294 - name: Accuracy type: accuracy value: 0.9477067610537897 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # premodel This model is a fine-tuned version of [Geotrend/bert-base-th-cased](https://huggingface.co/Geotrend/bert-base-th-cased) on the lst20 dataset. It achieves the following results on the evaluation set: - Loss: 0.1761 - Precision: 0.8534 - Recall: 0.8654 - F1: 0.8593 - Accuracy: 0.9477 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
monakth/distilbert-base-cased-finetuned-squadv2
monakth
2022-11-19T17:02:46Z
106
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-19T17:01:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-cased-finetuned-squadv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-finetuned-squadv This model is a fine-tuned version of [monakth/distilbert-base-cased-finetuned-squad](https://huggingface.co/monakth/distilbert-base-cased-finetuned-squad) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Kannawich/premodel
Kannawich
2022-11-19T16:01:54Z
127
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:lst20", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-19T08:15:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - lst20 model-index: - name: premodel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # premodel This model is a fine-tuned version of [Geotrend/bert-base-th-cased](https://huggingface.co/Geotrend/bert-base-th-cased) on the lst20 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Harrier/dqn-SpaceInvadersNoFrameskip-v4
Harrier
2022-11-19T15:53:13Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-19T15:52:33Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 615.50 +/- 186.61 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Harrier -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Harrier -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Harrier ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
vicky10011001/ddpm-butterflies-128
vicky10011001
2022-11-19T15:36:49Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-19T12:14:52Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [πŸ€— Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results πŸ“ˆ [TensorBoard logs](https://huggingface.co/vicky10011001/ddpm-butterflies-128/tensorboard?#scalars)
rdyzakya/bert-indo-base-stance-cls
rdyzakya
2022-11-19T15:09:32Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-19T13:00:54Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-indo-base-stance-cls results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-indo-base-stance-cls This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0156 - Accuracy: 0.6892 - Precision: 0.6848 - Recall: 0.6892 - F1: 0.6859 - Against: {'precision': 0.6185567010309279, 'recall': 0.5555555555555556, 'f1-score': 0.5853658536585366, 'support': 216} - For: {'precision': 0.7280453257790368, 'recall': 0.7764350453172205, 'f1-score': 0.7514619883040935, 'support': 331} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Against | For | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------:| | No log | 1.0 | 137 | 0.6423 | 0.6581 | 0.6894 | 0.6581 | 0.5917 | {'precision': 0.7543859649122807, 'recall': 0.19907407407407407, 'f1-score': 0.31501831501831506, 'support': 216} | {'precision': 0.6469387755102041, 'recall': 0.9577039274924471, 'f1-score': 0.7722289890377587, 'support': 331} | | No log | 2.0 | 274 | 0.6146 | 0.6600 | 0.6691 | 0.6600 | 0.6628 | {'precision': 0.5614754098360656, 'recall': 0.6342592592592593, 'f1-score': 0.5956521739130436, 'support': 216} | {'precision': 0.7392739273927392, 'recall': 0.676737160120846, 'f1-score': 0.7066246056782334, 'support': 331} | | No log | 3.0 | 411 | 0.7572 | 0.6545 | 0.6734 | 0.6545 | 0.6583 | {'precision': 0.550561797752809, 'recall': 0.6805555555555556, 'f1-score': 0.608695652173913, 'support': 216} | {'precision': 0.7535714285714286, 'recall': 0.6374622356495468, 'f1-score': 0.6906710310965631, 'support': 331} | | 0.4855 | 4.0 | 548 | 0.7405 | 0.6892 | 0.6842 | 0.6892 | 0.6851 | {'precision': 0.6210526315789474, 'recall': 0.5462962962962963, 'f1-score': 0.5812807881773399, 'support': 216} | {'precision': 0.7254901960784313, 'recall': 0.7824773413897281, 'f1-score': 0.7529069767441859, 'support': 331} | | 0.4855 | 5.0 | 685 | 1.1222 | 0.6856 | 0.6828 | 0.6856 | 0.6839 | {'precision': 0.6078431372549019, 'recall': 0.5740740740740741, 'f1-score': 0.5904761904761905, 'support': 216} | {'precision': 0.7317784256559767, 'recall': 0.7583081570996979, 'f1-score': 0.7448071216617211, 'support': 331} | | 0.4855 | 6.0 | 822 | 1.4960 | 0.6892 | 0.6830 | 0.6892 | 0.6827 | {'precision': 0.6292134831460674, 'recall': 0.5185185185185185, 'f1-score': 0.5685279187817258, 'support': 216} | {'precision': 0.7181571815718157, 'recall': 0.8006042296072508, 'f1-score': 0.7571428571428572, 'support': 331} | | 0.4855 | 7.0 | 959 | 1.6304 | 0.6801 | 0.6886 | 0.6801 | 0.6827 | {'precision': 0.5843621399176955, 'recall': 0.6574074074074074, 'f1-score': 0.6187363834422658, 'support': 216} | {'precision': 0.756578947368421, 'recall': 0.6948640483383686, 'f1-score': 0.7244094488188976, 'support': 331} | | 0.1029 | 8.0 | 1096 | 1.8381 | 0.6673 | 0.6727 | 0.6673 | 0.6693 | {'precision': 0.5726495726495726, 'recall': 0.6203703703703703, 'f1-score': 0.5955555555555555, 'support': 216} | {'precision': 0.7380191693290735, 'recall': 0.6978851963746223, 'f1-score': 0.717391304347826, 'support': 331} | | 0.1029 | 9.0 | 1233 | 1.9474 | 0.6929 | 0.6876 | 0.6929 | 0.6881 | {'precision': 0.6290322580645161, 'recall': 0.5416666666666666, 'f1-score': 0.582089552238806, 'support': 216} | {'precision': 0.7257617728531855, 'recall': 0.7915407854984894, 'f1-score': 0.7572254335260115, 'support': 331} | | 0.1029 | 10.0 | 1370 | 2.0156 | 0.6892 | 0.6848 | 0.6892 | 0.6859 | {'precision': 0.6185567010309279, 'recall': 0.5555555555555556, 'f1-score': 0.5853658536585366, 'support': 216} | {'precision': 0.7280453257790368, 'recall': 0.7764350453172205, 'f1-score': 0.7514619883040935, 'support': 331} | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
katboi01/rare-puppers
katboi01
2022-11-19T15:04:01Z
186
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-19T15:03:49Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.89552241563797 --- # rare-puppers Autogenerated by HuggingPicsπŸ€—πŸ–ΌοΈ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
Sebabrata/dof-bnk-stmt-1
Sebabrata
2022-11-19T14:09:42Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-11-19T05:00:32Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: dof-bnk-stmt-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dof-bnk-stmt-1 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
nypnop/distilbert-base-uncased-finetuned-bbc-news
nypnop
2022-11-19T14:09:27Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-18T14:57:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-bbc-news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-bbc-news This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0107 - Accuracy: 0.9955 - F1: 0.9955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3463 | 0.84 | 500 | 0.0392 | 0.9865 | 0.9865 | | 0.0447 | 1.68 | 1000 | 0.0107 | 0.9955 | 0.9955 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
vikram15/bert-finetuned-ner
vikram15
2022-11-19T13:21:37Z
122
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-19T13:03:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9309775429326288 - name: Recall type: recall value: 0.9488387748232918 - name: F1 type: f1 value: 0.9398233038839806 - name: Accuracy type: accuracy value: 0.9861806087007712 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0630 - Precision: 0.9310 - Recall: 0.9488 - F1: 0.9398 - Accuracy: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0911 | 1.0 | 1756 | 0.0702 | 0.9197 | 0.9345 | 0.9270 | 0.9826 | | 0.0336 | 2.0 | 3512 | 0.0623 | 0.9294 | 0.9480 | 0.9386 | 0.9864 | | 0.0174 | 3.0 | 5268 | 0.0630 | 0.9310 | 0.9488 | 0.9398 | 0.9862 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
GDJ1978/anyXtronXredshift
GDJ1978
2022-11-19T12:32:23Z
0
0
null
[ "region:us" ]
null
2022-11-13T19:53:03Z
Merged checkpoints of anythingXtron and redshift 0.6 This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: You can't use the model to deliberately produce nor share illegal or harmful outputs or content The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license here
GDJ1978/spiderverseXrobo
GDJ1978
2022-11-19T12:32:05Z
0
0
null
[ "region:us" ]
null
2022-11-14T13:06:24Z
spiderverse-v1-pruned_0.6-robo-diffusion-v1_0.4-Weighted_sum-merged.ckpt MAKE SURE ADD EXTENSION CKPT WHEN DOWNLOADING This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: You can't use the model to deliberately produce nor share illegal or harmful outputs or content The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license here
svnfs/rfc-alias
svnfs
2022-11-19T12:23:56Z
0
0
sklearn
[ "sklearn", "skops", "tabular-classification", "region:us" ]
tabular-classification
2022-11-19T12:23:50Z
--- library_name: sklearn tags: - sklearn - skops - tabular-classification widget: structuredData: x0: - 5.8 - 6.0 - 5.5 x1: - 2.8 - 2.2 - 4.2 x2: - 5.1 - 4.0 - 1.4 x3: - 2.4 - 1.0 - 0.2 --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |--------------------------|---------| | bootstrap | True | | ccp_alpha | 0.0 | | class_weight | | | criterion | gini | | max_depth | | | max_features | sqrt | | max_leaf_nodes | | | max_samples | | | min_impurity_decrease | 0.0 | | min_samples_leaf | 1 | | min_samples_split | 2 | | min_weight_fraction_leaf | 0.0 | | n_estimators | 100 | | n_jobs | | | oob_score | False | | random_state | | | verbose | 0 | | warm_start | False | </details> ### Model Plot The model plot is below. <style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "β–Έ";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "β–Ύ";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>RandomForestClassifier()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" checked><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">RandomForestClassifier</label><div class="sk-toggleable__content"><pre>RandomForestClassifier()</pre></div></div></div></div></div> ##Β Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|---------| # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python [More Information Needed] ``` </details> # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ```
svnfs/rfc
svnfs
2022-11-19T12:23:36Z
0
0
sklearn
[ "sklearn", "skops", "tabular-classification", "region:us" ]
tabular-classification
2022-11-14T16:45:06Z
--- library_name: sklearn tags: - sklearn - skops - tabular-classification widget: structuredData: x0: - 5.8 - 6.0 - 5.5 x1: - 2.8 - 2.2 - 4.2 x2: - 5.1 - 4.0 - 1.4 x3: - 2.4 - 1.0 - 0.2 --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |--------------------------|---------| | bootstrap | True | | ccp_alpha | 0.0 | | class_weight | | | criterion | gini | | max_depth | | | max_features | sqrt | | max_leaf_nodes | | | max_samples | | | min_impurity_decrease | 0.0 | | min_samples_leaf | 1 | | min_samples_split | 2 | | min_weight_fraction_leaf | 0.0 | | n_estimators | 100 | | n_jobs | | | oob_score | False | | random_state | | | verbose | 0 | | warm_start | False | </details> ### Model Plot The model plot is below. <style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "β–Έ";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "β–Ύ";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>RandomForestClassifier()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" checked><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">RandomForestClassifier</label><div class="sk-toggleable__content"><pre>RandomForestClassifier()</pre></div></div></div></div></div> ##Β Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|---------| # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python [More Information Needed] ``` </details> # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ```
KubiakJakub01/finetuned-distilbert-base-uncased
KubiakJakub01
2022-11-19T10:45:52Z
60
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-19T09:14:07Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: KubiakJakub01/finetuned-distilbert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # KubiakJakub01/finetuned-distilbert-base-uncased This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2767 - Validation Loss: 0.4326 - Train Accuracy: 0.8319 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1140, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.4680 | 0.4008 | 0.8378 | 0 | | 0.3475 | 0.4017 | 0.8385 | 1 | | 0.2767 | 0.4326 | 0.8319 | 2 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.9.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Hudee/bert-base-uncased-issues-128
Hudee
2022-11-19T09:37:25Z
106
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-19T07:26:44Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2449 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.099 | 1.0 | 291 | 1.6946 | | 1.6396 | 2.0 | 582 | 1.4288 | | 1.4875 | 3.0 | 873 | 1.3893 | | 1.399 | 4.0 | 1164 | 1.3812 | | 1.341 | 5.0 | 1455 | 1.2004 | | 1.2803 | 6.0 | 1746 | 1.2738 | | 1.2397 | 7.0 | 2037 | 1.2645 | | 1.199 | 8.0 | 2328 | 1.2092 | | 1.166 | 9.0 | 2619 | 1.1871 | | 1.1406 | 10.0 | 2910 | 1.2244 | | 1.1293 | 11.0 | 3201 | 1.2061 | | 1.1037 | 12.0 | 3492 | 1.1621 | | 1.0824 | 13.0 | 3783 | 1.2540 | | 1.0738 | 14.0 | 4074 | 1.1703 | | 1.0625 | 15.0 | 4365 | 1.1195 | | 1.0628 | 16.0 | 4656 | 1.2449 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.10.3
AndrewZeng/S2KG-base
AndrewZeng
2022-11-19T09:34:25Z
108
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "arxiv:2210.08873", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T09:15:53Z
# Semi-Supervised Knowledge-Grounded Pre-training for Task-Oriented Dialog Systems We present our models for Track 2 of the SereTOD 2022 challenge, which is the first challenge of building semi-supervised and reinforced TOD systems on a large-scale real-world Chinese TOD dataset MobileCS. We build a knowledge-grounded dialog model, S2KG to formulate dialog history and local KB as input and predict the system response. [This paper](https://arxiv.org/abs/2210.08873) has been accepted at the SereTOD 2022 Workshop, EMNLP 2022 ## System Performance Our system achieves the first place both in the automatic evaluation and human interaction, especially with higher BLEU (+7.64) and Success (+13.6%) than the second place. The evaluation results for both Track 1 and Track 2, which can be accessed via this [this link](https://docs.google.com/spreadsheets/d/1w28AKkG6Wjmuo15QlRlRyrnv859MT1ry0CHV8tFxY9o/edit#gid=0). ## S2KG for Generation We release our S2KG-base model here. You can use this model for knowledge-grounded dialogue generation follow instructions [S2KG](https://github.com/Zeng-WH/S2KG).
mmiteva/distilbert-base-uncased-customized
mmiteva
2022-11-19T08:46:43Z
61
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-18T09:58:38Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: mmiteva/distilbert-base-uncased-customized results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mmiteva/distilbert-base-uncased-customized This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3257 - Train End Logits Accuracy: 0.9017 - Train Start Logits Accuracy: 0.8747 - Validation Loss: 1.5040 - Validation End Logits Accuracy: 0.6988 - Validation Start Logits Accuracy: 0.6655 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 36885, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.0773 | 0.7064 | 0.6669 | 1.1080 | 0.6973 | 0.6669 | 0 | | 0.7660 | 0.7812 | 0.7433 | 1.1076 | 0.7093 | 0.6734 | 1 | | 0.5586 | 0.8351 | 0.7988 | 1.2336 | 0.7039 | 0.6692 | 2 | | 0.4165 | 0.8741 | 0.8434 | 1.3799 | 0.7034 | 0.6707 | 3 | | 0.3257 | 0.9017 | 0.8747 | 1.5040 | 0.6988 | 0.6655 | 4 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.7.0 - Datasets 2.6.1 - Tokenizers 0.13.2
venetis/hf_train_output
venetis
2022-11-19T08:26:06Z
186
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:rock-glacier-dataset", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-19T07:44:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - rock-glacier-dataset metrics: - accuracy model-index: - name: hf_train_output results: - task: name: Image Classification type: image-classification dataset: name: rock-glacier-dataset type: rock-glacier-dataset config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9258241758241759 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hf_train_output This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the rock-glacier-dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3894 - Accuracy: 0.9258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5619 | 0.55 | 50 | 0.5432 | 0.7692 | | 0.4582 | 1.1 | 100 | 0.4435 | 0.8352 | | 0.3548 | 1.65 | 150 | 0.3739 | 0.8599 | | 0.217 | 2.2 | 200 | 0.2913 | 0.9093 | | 0.1709 | 2.75 | 250 | 0.2619 | 0.9148 | | 0.0919 | 3.3 | 300 | 0.2475 | 0.9148 | | 0.0652 | 3.85 | 350 | 0.3275 | 0.8901 | | 0.0495 | 4.4 | 400 | 0.2515 | 0.9093 | | 0.0321 | 4.95 | 450 | 0.2878 | 0.9066 | | 0.0247 | 5.49 | 500 | 0.2612 | 0.9148 | | 0.017 | 6.04 | 550 | 0.2687 | 0.9176 | | 0.0131 | 6.59 | 600 | 0.3062 | 0.9093 | | 0.0113 | 7.14 | 650 | 0.2587 | 0.9231 | | 0.0099 | 7.69 | 700 | 0.2815 | 0.9203 | | 0.009 | 8.24 | 750 | 0.2675 | 0.9286 | | 0.0084 | 8.79 | 800 | 0.2711 | 0.9286 | | 0.0077 | 9.34 | 850 | 0.2663 | 0.9313 | | 0.0073 | 9.89 | 900 | 0.3003 | 0.9258 | | 0.0069 | 10.44 | 950 | 0.2758 | 0.9313 | | 0.0064 | 10.99 | 1000 | 0.2999 | 0.9258 | | 0.0061 | 11.54 | 1050 | 0.2931 | 0.9313 | | 0.0057 | 12.09 | 1100 | 0.2989 | 0.9313 | | 0.0056 | 12.64 | 1150 | 0.2974 | 0.9313 | | 0.0053 | 13.19 | 1200 | 0.3099 | 0.9258 | | 0.005 | 13.74 | 1250 | 0.3131 | 0.9313 | | 0.0049 | 14.29 | 1300 | 0.3201 | 0.9258 | | 0.0046 | 14.84 | 1350 | 0.3109 | 0.9313 | | 0.0045 | 15.38 | 1400 | 0.3168 | 0.9313 | | 0.0043 | 15.93 | 1450 | 0.3226 | 0.9231 | | 0.0042 | 16.48 | 1500 | 0.3234 | 0.9231 | | 0.0041 | 17.03 | 1550 | 0.3283 | 0.9258 | | 0.0039 | 17.58 | 1600 | 0.3304 | 0.9258 | | 0.0038 | 18.13 | 1650 | 0.3321 | 0.9231 | | 0.0037 | 18.68 | 1700 | 0.3362 | 0.9231 | | 0.0036 | 19.23 | 1750 | 0.3307 | 0.9286 | | 0.0035 | 19.78 | 1800 | 0.3357 | 0.9231 | | 0.0034 | 20.33 | 1850 | 0.3244 | 0.9313 | | 0.0033 | 20.88 | 1900 | 0.3497 | 0.9231 | | 0.0032 | 21.43 | 1950 | 0.3443 | 0.9231 | | 0.0031 | 21.98 | 2000 | 0.3398 | 0.9286 | | 0.003 | 22.53 | 2050 | 0.3388 | 0.9286 | | 0.003 | 23.08 | 2100 | 0.3399 | 0.9286 | | 0.0029 | 23.63 | 2150 | 0.3548 | 0.9231 | | 0.0028 | 24.18 | 2200 | 0.3475 | 0.9286 | | 0.0028 | 24.73 | 2250 | 0.3480 | 0.9286 | | 0.0027 | 25.27 | 2300 | 0.3542 | 0.9231 | | 0.0026 | 25.82 | 2350 | 0.3589 | 0.9231 | | 0.0026 | 26.37 | 2400 | 0.3449 | 0.9286 | | 0.0025 | 26.92 | 2450 | 0.3604 | 0.9231 | | 0.0025 | 27.47 | 2500 | 0.3493 | 0.9286 | | 0.0024 | 28.02 | 2550 | 0.3631 | 0.9258 | | 0.0024 | 28.57 | 2600 | 0.3590 | 0.9258 | | 0.0023 | 29.12 | 2650 | 0.3604 | 0.9258 | | 0.0023 | 29.67 | 2700 | 0.3667 | 0.9258 | | 0.0022 | 30.22 | 2750 | 0.3571 | 0.9286 | | 0.0022 | 30.77 | 2800 | 0.3660 | 0.9258 | | 0.0021 | 31.32 | 2850 | 0.3638 | 0.9286 | | 0.0021 | 31.87 | 2900 | 0.3729 | 0.9258 | | 0.0021 | 32.42 | 2950 | 0.3706 | 0.9258 | | 0.002 | 32.97 | 3000 | 0.3669 | 0.9286 | | 0.002 | 33.52 | 3050 | 0.3740 | 0.9258 | | 0.002 | 34.07 | 3100 | 0.3693 | 0.9286 | | 0.002 | 34.62 | 3150 | 0.3700 | 0.9286 | | 0.0019 | 35.16 | 3200 | 0.3752 | 0.9258 | | 0.0019 | 35.71 | 3250 | 0.3753 | 0.9258 | | 0.0019 | 36.26 | 3300 | 0.3721 | 0.9286 | | 0.0018 | 36.81 | 3350 | 0.3764 | 0.9258 | | 0.0018 | 37.36 | 3400 | 0.3758 | 0.9258 | | 0.0018 | 37.91 | 3450 | 0.3775 | 0.9258 | | 0.0018 | 38.46 | 3500 | 0.3812 | 0.9258 | | 0.0018 | 39.01 | 3550 | 0.3817 | 0.9258 | | 0.0017 | 39.56 | 3600 | 0.3815 | 0.9258 | | 0.0017 | 40.11 | 3650 | 0.3825 | 0.9258 | | 0.0017 | 40.66 | 3700 | 0.3852 | 0.9258 | | 0.0017 | 41.21 | 3750 | 0.3854 | 0.9258 | | 0.0017 | 41.76 | 3800 | 0.3823 | 0.9258 | | 0.0016 | 42.31 | 3850 | 0.3829 | 0.9258 | | 0.0016 | 42.86 | 3900 | 0.3873 | 0.9258 | | 0.0016 | 43.41 | 3950 | 0.3842 | 0.9258 | | 0.0016 | 43.96 | 4000 | 0.3857 | 0.9258 | | 0.0016 | 44.51 | 4050 | 0.3873 | 0.9258 | | 0.0016 | 45.05 | 4100 | 0.3878 | 0.9258 | | 0.0016 | 45.6 | 4150 | 0.3881 | 0.9258 | | 0.0016 | 46.15 | 4200 | 0.3888 | 0.9258 | | 0.0016 | 46.7 | 4250 | 0.3891 | 0.9258 | | 0.0016 | 47.25 | 4300 | 0.3878 | 0.9258 | | 0.0016 | 47.8 | 4350 | 0.3890 | 0.9258 | | 0.0016 | 48.35 | 4400 | 0.3890 | 0.9258 | | 0.0015 | 48.9 | 4450 | 0.3895 | 0.9258 | | 0.0015 | 49.45 | 4500 | 0.3896 | 0.9258 | | 0.0015 | 50.0 | 4550 | 0.3894 | 0.9258 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
AIGeorgeLi/distilbert-base-uncased-finetuned-emotion
AIGeorgeLi
2022-11-19T07:43:40Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-10T02:35:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9249666906714753 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2271 - Accuracy: 0.925 - F1: 0.9250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8554 | 1.0 | 250 | 0.3419 | 0.898 | 0.8943 | | 0.2627 | 2.0 | 500 | 0.2271 | 0.925 | 0.9250 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
faisito/xlm-roberta-base-finetuned-panx-it
faisito
2022-11-19T07:09:50Z
108
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-19T06:55:14Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.it split: train args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8222222222222223 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2532 - F1: 0.8222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8114 | 1.0 | 70 | 0.3235 | 0.7548 | | 0.2825 | 2.0 | 140 | 0.2749 | 0.7913 | | 0.1932 | 3.0 | 210 | 0.2532 | 0.8222 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
coderSounak/finetuned_twitter_targeted_insult_LSTM
coderSounak
2022-11-19T07:04:24Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-19T07:02:35Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuned_twitter_targeted_insult_LSTM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_twitter_targeted_insult_LSTM This model is a fine-tuned version of [LYTinn/lstm-finetuning-sentiment-model-3000-samples](https://huggingface.co/LYTinn/lstm-finetuning-sentiment-model-3000-samples) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6314 - Accuracy: 0.6394 - F1: 0.6610 - Precision: 0.6262 - Recall: 0.6998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
coderSounak/finetuned_twitter_hate_speech_LSTM
coderSounak
2022-11-19T07:02:00Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-19T06:59:33Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuned_twitter_hate_speech_LSTM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_twitter_hate_speech_LSTM This model is a fine-tuned version of [LYTinn/lstm-finetuning-sentiment-model-3000-samples](https://huggingface.co/LYTinn/lstm-finetuning-sentiment-model-3000-samples) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5748 - Accuracy: 0.6944 - F1: 0.7170 - Precision: 0.6734 - Recall: 0.7667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
coderSounak/finetuned_twitter_profane_LSTM
coderSounak
2022-11-19T06:57:55Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-19T06:54:58Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuned_twitter_profane_LSTM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_twitter_profane_LSTM This model is a fine-tuned version of [LYTinn/lstm-finetuning-sentiment-model-3000-samples](https://huggingface.co/LYTinn/lstm-finetuning-sentiment-model-3000-samples) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5529 - Accuracy: 0.7144 - F1: 0.7380 - Precision: 0.7013 - Recall: 0.7788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
KellyShiiii/primer-crd3
KellyShiiii
2022-11-19T06:47:19Z
92
0
transformers
[ "transformers", "pytorch", "led", "text2text-generation", "generated_from_trainer", "dataset:crd3", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-17T04:19:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - crd3 metrics: - rouge model-index: - name: primer-crd3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: crd3 type: crd3 config: default split: train[:500] args: default metrics: - name: Rouge1 type: rouge value: 0.1510358452879352 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # primer-crd3 This model is a fine-tuned version of [allenai/PRIMERA](https://huggingface.co/allenai/PRIMERA) on the crd3 dataset. It achieves the following results on the evaluation set: - Loss: 3.8193 - Rouge1: 0.1510 - Rouge2: 0.0279 - Rougel: 0.1251 - Rougelsum: 0.1355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 250 | 2.9569 | 0.1762 | 0.0485 | 0.1525 | 0.1605 | | 1.7993 | 2.0 | 500 | 3.4079 | 0.1612 | 0.0286 | 0.1367 | 0.1444 | | 1.7993 | 3.0 | 750 | 3.8193 | 0.1510 | 0.0279 | 0.1251 | 0.1355 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.8.0 - Datasets 2.7.0 - Tokenizers 0.13.2
sd-concepts-library/yoshimurachi
sd-concepts-library
2022-11-19T06:43:59Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-11-19T06:43:53Z
--- license: mit --- ### Yoshimurachi on Stable Diffusion This is the `<yoshi-san>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<yoshi-san> 0](https://huggingface.co/sd-concepts-library/yoshimurachi/resolve/main/concept_images/3.jpeg) ![<yoshi-san> 1](https://huggingface.co/sd-concepts-library/yoshimurachi/resolve/main/concept_images/1.jpeg) ![<yoshi-san> 2](https://huggingface.co/sd-concepts-library/yoshimurachi/resolve/main/concept_images/2.jpeg) ![<yoshi-san> 3](https://huggingface.co/sd-concepts-library/yoshimurachi/resolve/main/concept_images/0.jpeg)
faisito/xlm-roberta-base-finetuned-panx-de-fr
faisito
2022-11-19T06:30:27Z
108
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-19T06:12:45Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1615 - F1: 0.8597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2876 | 1.0 | 715 | 0.1877 | 0.8274 | | 0.1472 | 2.0 | 1430 | 0.1573 | 0.8508 | | 0.0951 | 3.0 | 2145 | 0.1615 | 0.8597 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_1e-05-ep_10-seq_128_bs-16
meongracun
2022-11-19T06:16:46Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T05:45:38Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_1e-05-ep_10-seq_128_bs-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_1e-05-ep_10-seq_128_bs-16 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8391 - Bleu: 0.0308 - Meteor: 0.1222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 404 | 3.1172 | 0.0194 | 0.0879 | | 3.6071 | 2.0 | 808 | 2.9990 | 0.0251 | 0.1066 | | 3.2935 | 3.0 | 1212 | 2.9471 | 0.027 | 0.1118 | | 3.1963 | 4.0 | 1616 | 2.9105 | 0.0281 | 0.1145 | | 3.1602 | 5.0 | 2020 | 2.8873 | 0.0286 | 0.1168 | | 3.1602 | 6.0 | 2424 | 2.8686 | 0.0293 | 0.1187 | | 3.1194 | 7.0 | 2828 | 2.8547 | 0.0301 | 0.1204 | | 3.0906 | 8.0 | 3232 | 2.8464 | 0.0306 | 0.1214 | | 3.0866 | 9.0 | 3636 | 2.8408 | 0.0307 | 0.1221 | | 3.0672 | 10.0 | 4040 | 2.8391 | 0.0308 | 0.1222 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_0.0001-ep_10-seq_128_bs-16
meongracun
2022-11-19T06:06:39Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T05:35:07Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_0.0001-ep_10-seq_128_bs-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_0.0001-ep_10-seq_128_bs-16 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1098 - Bleu: 0.0918 - Meteor: 0.2374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 404 | 2.7230 | 0.0372 | 0.1397 | | 3.1248 | 2.0 | 808 | 2.5087 | 0.0495 | 0.1692 | | 2.7527 | 3.0 | 1212 | 2.3751 | 0.062 | 0.1916 | | 2.5311 | 4.0 | 1616 | 2.2955 | 0.0703 | 0.2068 | | 2.4088 | 5.0 | 2020 | 2.2217 | 0.0785 | 0.2173 | | 2.4088 | 6.0 | 2424 | 2.1797 | 0.0822 | 0.2223 | | 2.297 | 7.0 | 2828 | 2.1409 | 0.0859 | 0.2283 | | 2.2287 | 8.0 | 3232 | 2.1239 | 0.0891 | 0.2326 | | 2.1918 | 9.0 | 3636 | 2.1117 | 0.0907 | 0.2357 | | 2.1626 | 10.0 | 4040 | 2.1098 | 0.0918 | 0.2374 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_0.001-ep_10-seq_128_bs-16
meongracun
2022-11-19T06:06:24Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T05:34:49Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_0.001-ep_10-seq_128_bs-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_0.001-ep_10-seq_128_bs-16 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6393 - Bleu: 0.1929 - Meteor: 0.3605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 404 | 2.1057 | 0.1016 | 0.2499 | | 2.6026 | 2.0 | 808 | 1.7919 | 0.1333 | 0.2893 | | 1.8228 | 3.0 | 1212 | 1.6738 | 0.1568 | 0.3205 | | 1.4557 | 4.0 | 1616 | 1.6240 | 0.1677 | 0.3347 | | 1.2482 | 5.0 | 2020 | 1.5976 | 0.1786 | 0.3471 | | 1.2482 | 6.0 | 2424 | 1.5997 | 0.1857 | 0.3539 | | 1.0644 | 7.0 | 2828 | 1.5959 | 0.188 | 0.3553 | | 0.9399 | 8.0 | 3232 | 1.6128 | 0.19 | 0.3583 | | 0.8668 | 9.0 | 3636 | 1.6260 | 0.1922 | 0.3593 | | 0.8001 | 10.0 | 4040 | 1.6393 | 0.1929 | 0.3605 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_0.0001-ep_10-seq_128_bs-32
meongracun
2022-11-19T05:54:44Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T05:26:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_0.0001-ep_10-seq_128_bs-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_0.0001-ep_10-seq_128_bs-32 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2914 - Bleu: 0.0708 - Meteor: 0.2054 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 202 | 2.8210 | 0.0313 | 0.1235 | | No log | 2.0 | 404 | 2.6712 | 0.0398 | 0.1478 | | 3.0646 | 3.0 | 606 | 2.5543 | 0.0483 | 0.1661 | | 3.0646 | 4.0 | 808 | 2.4735 | 0.0537 | 0.1751 | | 2.6866 | 5.0 | 1010 | 2.4120 | 0.0591 | 0.1855 | | 2.6866 | 6.0 | 1212 | 2.3663 | 0.0618 | 0.1906 | | 2.6866 | 7.0 | 1414 | 2.3324 | 0.0667 | 0.1993 | | 2.5034 | 8.0 | 1616 | 2.3098 | 0.0684 | 0.2023 | | 2.5034 | 9.0 | 1818 | 2.2969 | 0.0696 | 0.2042 | | 2.4271 | 10.0 | 2020 | 2.2914 | 0.0708 | 0.2054 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_0.0001-ep_20-seq_128_bs-16
meongracun
2022-11-19T05:30:40Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T04:31:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_0.0001-ep_20-seq_128_bs-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_0.0001-ep_20-seq_128_bs-16 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8531 - Bleu: 0.1306 - Meteor: 0.2859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 404 | 2.7171 | 0.0374 | 0.14 | | 3.1222 | 2.0 | 808 | 2.4821 | 0.0519 | 0.1723 | | 2.7305 | 3.0 | 1212 | 2.3370 | 0.0663 | 0.1983 | | 2.4848 | 4.0 | 1616 | 2.2469 | 0.0771 | 0.2158 | | 2.3394 | 5.0 | 2020 | 2.1567 | 0.0857 | 0.227 | | 2.3394 | 6.0 | 2424 | 2.1038 | 0.0919 | 0.2369 | | 2.2007 | 7.0 | 2828 | 2.0403 | 0.0973 | 0.2449 | | 2.1027 | 8.0 | 3232 | 2.0105 | 0.1066 | 0.2554 | | 2.0299 | 9.0 | 3636 | 1.9725 | 0.1105 | 0.2606 | | 1.9568 | 10.0 | 4040 | 1.9515 | 0.1147 | 0.2655 | | 1.9568 | 11.0 | 4444 | 1.9274 | 0.118 | 0.2699 | | 1.8986 | 12.0 | 4848 | 1.9142 | 0.1215 | 0.2739 | | 1.8512 | 13.0 | 5252 | 1.8936 | 0.1243 | 0.2777 | | 1.8258 | 14.0 | 5656 | 1.8841 | 0.1254 | 0.279 | | 1.7854 | 15.0 | 6060 | 1.8792 | 0.1278 | 0.2827 | | 1.7854 | 16.0 | 6464 | 1.8662 | 0.1274 | 0.2818 | | 1.7598 | 17.0 | 6868 | 1.8604 | 0.1293 | 0.2834 | | 1.7436 | 18.0 | 7272 | 1.8598 | 0.13 | 0.2849 | | 1.7299 | 19.0 | 7676 | 1.8545 | 0.1308 | 0.2857 | | 1.7168 | 20.0 | 8080 | 1.8531 | 0.1306 | 0.2859 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_1e-05-ep_20-seq_128_bs-16
meongracun
2022-11-19T05:30:12Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T04:31:27Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_1e-05-ep_20-seq_128_bs-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_1e-05-ep_20-seq_128_bs-16 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6902 - Bleu: 0.039 - Meteor: 0.144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 404 | 3.1126 | 0.0197 | 0.0888 | | 3.6037 | 2.0 | 808 | 2.9899 | 0.0254 | 0.108 | | 3.2835 | 3.0 | 1212 | 2.9337 | 0.0275 | 0.1129 | | 3.1798 | 4.0 | 1616 | 2.8926 | 0.0284 | 0.1152 | | 3.1361 | 5.0 | 2020 | 2.8638 | 0.0295 | 0.1196 | | 3.1361 | 6.0 | 2424 | 2.8362 | 0.0305 | 0.1222 | | 3.0848 | 7.0 | 2828 | 2.8137 | 0.0321 | 0.1266 | | 3.0439 | 8.0 | 3232 | 2.7928 | 0.0327 | 0.1284 | | 3.025 | 9.0 | 3636 | 2.7754 | 0.0337 | 0.1311 | | 2.9891 | 10.0 | 4040 | 2.7604 | 0.0348 | 0.134 | | 2.9891 | 11.0 | 4444 | 2.7469 | 0.0354 | 0.136 | | 2.9706 | 12.0 | 4848 | 2.7343 | 0.036 | 0.1372 | | 2.9537 | 13.0 | 5252 | 2.7250 | 0.0365 | 0.1387 | | 2.9471 | 14.0 | 5656 | 2.7152 | 0.0375 | 0.1408 | | 2.9274 | 15.0 | 6060 | 2.7081 | 0.038 | 0.142 | | 2.9274 | 16.0 | 6464 | 2.7021 | 0.0384 | 0.143 | | 2.9147 | 17.0 | 6868 | 2.6966 | 0.0387 | 0.1433 | | 2.9093 | 18.0 | 7272 | 2.6934 | 0.0389 | 0.1438 | | 2.9082 | 19.0 | 7676 | 2.6906 | 0.039 | 0.1437 | | 2.8945 | 20.0 | 8080 | 2.6902 | 0.039 | 0.144 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_0.001-ep_20-seq_128_bs-16
meongracun
2022-11-19T05:24:28Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T04:25:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_0.001-ep_20-seq_128_bs-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_0.001-ep_20-seq_128_bs-16 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9735 - Bleu: 0.2017 - Meteor: 0.3744 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 404 | 2.0539 | 0.1063 | 0.2561 | | 2.5624 | 2.0 | 808 | 1.7616 | 0.1363 | 0.2966 | | 1.7817 | 3.0 | 1212 | 1.6548 | 0.1612 | 0.325 | | 1.4215 | 4.0 | 1616 | 1.6071 | 0.1725 | 0.3388 | | 1.2099 | 5.0 | 2020 | 1.5886 | 0.1841 | 0.3517 | | 1.2099 | 6.0 | 2424 | 1.5992 | 0.1882 | 0.3571 | | 1.0117 | 7.0 | 2828 | 1.5909 | 0.1892 | 0.358 | | 0.878 | 8.0 | 3232 | 1.6242 | 0.1947 | 0.3652 | | 0.7881 | 9.0 | 3636 | 1.6626 | 0.197 | 0.3673 | | 0.6932 | 10.0 | 4040 | 1.6918 | 0.196 | 0.3679 | | 0.6932 | 11.0 | 4444 | 1.7347 | 0.1956 | 0.3683 | | 0.6069 | 12.0 | 4848 | 1.7718 | 0.2008 | 0.3711 | | 0.5426 | 13.0 | 5252 | 1.8005 | 0.2011 | 0.372 | | 0.4946 | 14.0 | 5656 | 1.8383 | 0.201 | 0.3732 | | 0.4414 | 15.0 | 6060 | 1.8713 | 0.2031 | 0.3743 | | 0.4414 | 16.0 | 6464 | 1.9040 | 0.2025 | 0.3748 | | 0.4039 | 17.0 | 6868 | 1.9381 | 0.202 | 0.3736 | | 0.3661 | 18.0 | 7272 | 1.9497 | 0.2006 | 0.3732 | | 0.3424 | 19.0 | 7676 | 1.9680 | 0.2009 | 0.3744 | | 0.3253 | 20.0 | 8080 | 1.9735 | 0.2017 | 0.3744 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_0.0001-ep_20-seq_128_bs-32
meongracun
2022-11-19T05:09:41Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T04:17:54Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_0.0001-ep_20-seq_128_bs-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_0.0001-ep_20-seq_128_bs-32 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9722 - Bleu: 0.1118 - Meteor: 0.2641 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 202 | 2.8076 | 0.0316 | 0.1256 | | No log | 2.0 | 404 | 2.6213 | 0.0427 | 0.1545 | | 3.0404 | 3.0 | 606 | 2.4851 | 0.0532 | 0.1754 | | 3.0404 | 4.0 | 808 | 2.3880 | 0.0605 | 0.1894 | | 2.5973 | 5.0 | 1010 | 2.3137 | 0.0685 | 0.2014 | | 2.5973 | 6.0 | 1212 | 2.2489 | 0.0729 | 0.2084 | | 2.5973 | 7.0 | 1414 | 2.1949 | 0.0798 | 0.2199 | | 2.3553 | 8.0 | 1616 | 2.1503 | 0.0854 | 0.227 | | 2.3553 | 9.0 | 1818 | 2.1173 | 0.0915 | 0.2357 | | 2.2044 | 10.0 | 2020 | 2.0854 | 0.0938 | 0.2397 | | 2.2044 | 11.0 | 2222 | 2.0586 | 0.0974 | 0.2442 | | 2.2044 | 12.0 | 2424 | 2.0418 | 0.1007 | 0.2491 | | 2.0911 | 13.0 | 2626 | 2.0239 | 0.1033 | 0.2528 | | 2.0911 | 14.0 | 2828 | 2.0071 | 0.105 | 0.255 | | 2.0255 | 15.0 | 3030 | 1.9955 | 0.1068 | 0.2576 | | 2.0255 | 16.0 | 3232 | 1.9913 | 0.1089 | 0.2609 | | 2.0255 | 17.0 | 3434 | 1.9774 | 0.1099 | 0.2605 | | 1.9777 | 18.0 | 3636 | 1.9789 | 0.1114 | 0.2638 | | 1.9777 | 19.0 | 3838 | 1.9734 | 0.1116 | 0.2638 | | 1.9505 | 20.0 | 4040 | 1.9722 | 0.1118 | 0.2641 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
faisito/xlm-roberta-base-finetuned-panx-de
faisito
2022-11-19T04:53:22Z
137
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-19T03:33:17Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: train args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8596481238968285 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2549 | 1.0 | 525 | 0.1663 | 0.8164 | | 0.128 | 2.0 | 1050 | 0.1421 | 0.8460 | | 0.0821 | 3.0 | 1575 | 0.1372 | 0.8596 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Sebabrata/dof-Rai2-1
Sebabrata
2022-11-19T04:21:37Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-11-18T21:38:29Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: dof-Rai2-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dof-Rai2-1 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_1e-05-ep_30-seq_128_bs-32
meongracun
2022-11-19T04:14:18Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T02:54:24Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_1e-05-ep_30-seq_128_bs-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_1e-05-ep_30-seq_128_bs-32 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6636 - Bleu: 0.0405 - Meteor: 0.1481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 202 | 3.0655 | 0.0225 | 0.0979 | | No log | 2.0 | 404 | 2.9938 | 0.0254 | 0.1076 | | 3.3387 | 3.0 | 606 | 2.9513 | 0.0273 | 0.1124 | | 3.3387 | 4.0 | 808 | 2.9152 | 0.0283 | 0.115 | | 3.1851 | 5.0 | 1010 | 2.8882 | 0.0288 | 0.1167 | | 3.1851 | 6.0 | 1212 | 2.8676 | 0.0299 | 0.1202 | | 3.1851 | 7.0 | 1414 | 2.8431 | 0.0306 | 0.1215 | | 3.1032 | 8.0 | 1616 | 2.8280 | 0.0313 | 0.124 | | 3.1032 | 9.0 | 1818 | 2.8119 | 0.0323 | 0.1258 | | 3.052 | 10.0 | 2020 | 2.7964 | 0.0326 | 0.1279 | | 3.052 | 11.0 | 2222 | 2.7843 | 0.0334 | 0.1311 | | 3.052 | 12.0 | 2424 | 2.7702 | 0.0344 | 0.1326 | | 3.0051 | 13.0 | 2626 | 2.7596 | 0.035 | 0.1344 | | 3.0051 | 14.0 | 2828 | 2.7462 | 0.0353 | 0.1351 | | 2.9733 | 15.0 | 3030 | 2.7361 | 0.0361 | 0.1377 | | 2.9733 | 16.0 | 3232 | 2.7277 | 0.0366 | 0.1389 | | 2.9733 | 17.0 | 3434 | 2.7180 | 0.0372 | 0.1405 | | 2.9451 | 18.0 | 3636 | 2.7108 | 0.0378 | 0.1417 | | 2.9451 | 19.0 | 3838 | 2.7026 | 0.0382 | 0.143 | | 2.9197 | 20.0 | 4040 | 2.6948 | 0.0384 | 0.1439 | | 2.9197 | 21.0 | 4242 | 2.6904 | 0.0389 | 0.1448 | | 2.9197 | 22.0 | 4444 | 2.6846 | 0.0395 | 0.1461 | | 2.9004 | 23.0 | 4646 | 2.6792 | 0.0398 | 0.1466 | | 2.9004 | 24.0 | 4848 | 2.6759 | 0.0401 | 0.1472 | | 2.891 | 25.0 | 5050 | 2.6719 | 0.0403 | 0.1474 | | 2.891 | 26.0 | 5252 | 2.6685 | 0.0405 | 0.1473 | | 2.891 | 27.0 | 5454 | 2.6667 | 0.0408 | 0.1484 | | 2.8783 | 28.0 | 5656 | 2.6650 | 0.0406 | 0.1481 | | 2.8783 | 29.0 | 5858 | 2.6639 | 0.0406 | 0.1482 | | 2.8784 | 30.0 | 6060 | 2.6636 | 0.0405 | 0.1481 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_0.0001-ep_30-seq_128_bs-32
meongracun
2022-11-19T04:11:12Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T02:53:27Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_0.0001-ep_30-seq_128_bs-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_0.0001-ep_30-seq_128_bs-32 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8218 - Bleu: 0.1371 - Meteor: 0.294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 202 | 2.6357 | 0.042 | 0.1513 | | No log | 2.0 | 404 | 2.4891 | 0.0526 | 0.1749 | | 2.781 | 3.0 | 606 | 2.3754 | 0.062 | 0.1918 | | 2.781 | 4.0 | 808 | 2.2946 | 0.0693 | 0.2047 | | 2.4692 | 5.0 | 1010 | 2.2262 | 0.0779 | 0.2175 | | 2.4692 | 6.0 | 1212 | 2.1729 | 0.0825 | 0.2231 | | 2.4692 | 7.0 | 1414 | 2.1226 | 0.0897 | 0.2328 | | 2.2484 | 8.0 | 1616 | 2.0789 | 0.0932 | 0.2381 | | 2.2484 | 9.0 | 1818 | 2.0450 | 0.1007 | 0.2478 | | 2.099 | 10.0 | 2020 | 2.0132 | 0.1041 | 0.255 | | 2.099 | 11.0 | 2222 | 1.9818 | 0.1085 | 0.2584 | | 2.099 | 12.0 | 2424 | 1.9608 | 0.113 | 0.2639 | | 1.9729 | 13.0 | 2626 | 1.9422 | 0.1165 | 0.2689 | | 1.9729 | 14.0 | 2828 | 1.9223 | 0.1186 | 0.2717 | | 1.8885 | 15.0 | 3030 | 1.9114 | 0.1219 | 0.2757 | | 1.8885 | 16.0 | 3232 | 1.9020 | 0.1238 | 0.2794 | | 1.8885 | 17.0 | 3434 | 1.8827 | 0.1254 | 0.2793 | | 1.8171 | 18.0 | 3636 | 1.8762 | 0.1278 | 0.2824 | | 1.8171 | 19.0 | 3838 | 1.8686 | 0.1298 | 0.285 | | 1.7597 | 20.0 | 4040 | 1.8595 | 0.1307 | 0.2864 | | 1.7597 | 21.0 | 4242 | 1.8533 | 0.1328 | 0.2891 | | 1.7597 | 22.0 | 4444 | 1.8453 | 0.1335 | 0.2901 | | 1.7183 | 23.0 | 4646 | 1.8400 | 0.1347 | 0.2912 | | 1.7183 | 24.0 | 4848 | 1.8342 | 0.135 | 0.2914 | | 1.6893 | 25.0 | 5050 | 1.8308 | 0.1355 | 0.2919 | | 1.6893 | 26.0 | 5252 | 1.8258 | 0.1357 | 0.2924 | | 1.6893 | 27.0 | 5454 | 1.8248 | 0.1365 | 0.2933 | | 1.6667 | 28.0 | 5656 | 1.8233 | 0.137 | 0.294 | | 1.6667 | 29.0 | 5858 | 1.8223 | 0.1371 | 0.2941 | | 1.6585 | 30.0 | 6060 | 1.8218 | 0.1371 | 0.294 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
peter2000/sdg_sentence_transformer
peter2000
2022-11-19T03:51:38Z
14
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-19T02:57:29Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4015 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 3e-05 }, "scheduler": "constantlr", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
sanchit-gandhi/w2v2-dbart-5k-1e-4
sanchit-gandhi
2022-11-19T03:37:49Z
78
0
transformers
[ "transformers", "pytorch", "speech-encoder-decoder", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-17T17:02:41Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: w2v2-dbart-5k-1e-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # w2v2-dbart-5k-1e-4 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3370 - Wer: 15.0932 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 2.0771 | 0.2 | 1000 | 1.8878 | 64.0932 | | 0.7272 | 0.4 | 2000 | 0.7003 | 23.8557 | | 0.5948 | 0.6 | 3000 | 0.4765 | 14.4223 | | 0.4597 | 0.8 | 4000 | 0.3761 | 14.1429 | | 0.3704 | 1.0 | 5000 | 0.3370 | 15.0932 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.11.0 - Datasets 2.6.1 - Tokenizers 0.13.2
rdyzakya/bert-indo-base-uncased-ner
rdyzakya
2022-11-19T02:10:45Z
118
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-19T02:05:00Z
--- tags: - generated_from_trainer model-index: - name: bert-indo-base-uncased-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-indo-base-uncased-ner This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
dvitel/h0-1
dvitel
2022-11-19T02:03:55Z
122
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "CodeGPT-small-py", "hearthstone", "dataset:dvitel/hearthstone", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-18T23:04:43Z
--- license: apache-2.0 tags: - CodeGPT-small-py - hearthstone metrics: - bleu - dvitel/codebleu - exact_match - chrf datasets: - dvitel/hearthstone model-index: - name: h0-1 results: - task: type: text-generation name: Python Code Synthesis dataset: type: dvitel/hearthstone name: HearthStone split: test metrics: - type: exact_match value: 0.21212121212121213 name: Exact Match - type: bleu value: 0.8954467480979604 name: BLEU - type: dvitel/codebleu value: 0.6976253554171774 name: CodeBLEU - type: chrf value: 91.42413429212283 name: chrF --- # h0-1 This model is a fine-tuned version of [microsoft/CodeGPT-small-py](https://huggingface.co/microsoft/CodeGPT-small-py) on [hearthstone](https://huggingface.co/datasets/dvitel/hearthstone) dataset. [GitHub repo](https://github.com/dvitel/nlp-sem-parsing/blob/master/h0-1.py). It achieves the following results on the evaluation set: - Loss: 0.3622 - Exact Match: 0.1970 - Bleu: 0.9193 - Codebleu: 0.7686 - Chrf: 93.5686 ## Model description CodeGPT-small-py fine-tuned on HearthStone dataset for 200 epochs ## Intended uses & limitations HearthStone card code synthesis. ## Training and evaluation data See split of [hearthstone](https://huggingface.co/datasets/dvitel/hearthstone) dataset ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 17 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | Bleu | Codebleu | Chrf | |:-------------:|:------:|:-----:|:---------------:|:-----------:|:------:|:--------:|:-------:| | 0.2482 | 11.94 | 1600 | 0.2828 | 0.1364 | 0.9012 | 0.7012 | 92.2247 | | 0.0203 | 23.88 | 3200 | 0.2968 | 0.1970 | 0.9114 | 0.7298 | 93.0236 | | 0.0082 | 35.82 | 4800 | 0.3049 | 0.1970 | 0.9125 | 0.7480 | 93.1997 | | 0.0049 | 47.76 | 6400 | 0.3190 | 0.1818 | 0.9125 | 0.7526 | 93.0967 | | 0.0038 | 59.7 | 8000 | 0.3289 | 0.1818 | 0.9117 | 0.7348 | 93.1293 | | 0.0024 | 71.64 | 9600 | 0.3358 | 0.1970 | 0.9142 | 0.7555 | 93.0747 | | 0.0022 | 83.58 | 11200 | 0.3379 | 0.1970 | 0.9164 | 0.7642 | 93.2931 | | 0.0013 | 95.52 | 12800 | 0.3444 | 0.2121 | 0.9189 | 0.7700 | 93.4456 | | 0.0009 | 107.46 | 14400 | 0.3408 | 0.1970 | 0.9188 | 0.7655 | 93.4808 | | 0.0006 | 119.4 | 16000 | 0.3522 | 0.1970 | 0.9177 | 0.7510 | 93.4061 | | 0.0003 | 131.34 | 17600 | 0.3589 | 0.2121 | 0.9178 | 0.7614 | 93.3980 | | 0.0002 | 143.28 | 19200 | 0.3562 | 0.2121 | 0.9179 | 0.7634 | 93.5130 | | 0.0002 | 155.22 | 20800 | 0.3624 | 0.1970 | 0.9208 | 0.7699 | 93.6707 | | 0.0001 | 167.16 | 22400 | 0.3608 | 0.1970 | 0.9193 | 0.7703 | 93.6082 | | 0.0001 | 179.1 | 24000 | 0.3620 | 0.1970 | 0.9190 | 0.7667 | 93.5154 | | 0.0001 | 191.04 | 25600 | 0.3622 | 0.1970 | 0.9193 | 0.7686 | 93.5686 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
dvitel/h1
dvitel
2022-11-19T02:03:34Z
116
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "distigpt2", "hearthstone", "dataset:dvitel/hearthstone", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-18T14:57:19Z
--- license: apache-2.0 tags: - distigpt2 - hearthstone metrics: - bleu - dvitel/codebleu - exact_match - chrf datasets: - dvitel/hearthstone model-index: - name: h1 results: - task: type: text-generation name: Python Code Synthesis dataset: type: dvitel/hearthstone name: HearthStone split: test metrics: - type: exact_match value: 0.21212121212121213 name: Exact Match - type: bleu value: 0.9637468196180485 name: BLEU - type: dvitel/codebleu value: 0.8884667222252154 name: CodeBLEU - type: chrf value: 96.5942286007928 name: chrF --- # h1 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on [hearthstone](https://huggingface.co/datasets/dvitel/hearthstone) dataset. [GitHub repo](https://github.com/dvitel/nlp-sem-parsing/blob/master/h1.py). It achieves the following results on the evaluation set: - Loss: 0.0890 - Exact Match: 0.1970 - Bleu: 0.9737 - Codebleu: 0.9172 - Ngram Match Score: 0.8984 - Weighted Ngram Match Score: 0.8985 - Syntax Match Score: 0.9293 - Dataflow Match Score: 0.9429 - Chrf: 97.5313 ## Model description DistilGPT2 applied onto HearthStone dataset with preprocessing of python code to dumped AST. Example: ```python #gold labels Module([ClassDef('Innervate', [Name('SpellCard', Load())], [], [FunctionDef('__init__', arguments([], [arg('self', None, None)], None, [], [], None, []), [Expr(Call(Attribute(Call(Name('super', Load()), [], []), '__init__', Load()), [Constant('Innervate', None), Constant(0, None), Attribute(Name('CHARACTER_CLASS', Load()), 'DRUID', Load()), Attribute(Name('CARD_RARITY', Load()), 'FREE', Load())], []))], [], None, None), FunctionDef('use', arguments([], [arg('self', None, None), arg('player', None, None), arg('game', None, None)], None, [], [], None, []), [Expr(Call(Attribute(Call(Name('super', Load()), [], []), 'use', Load()), [Name('player', Load()), Name('game', Load())], [])), If(Compare(Attribute(Name('player', Load()),'mana', Load()), [Lt()], [Constant(8, None)]), [AugAssign(Attribute(Name('player', Load()),'mana', Store()), Add(), Constant(2, None))], [Assign([Attribute(Name('player', Load()),'mana', Store())], Constant(10, None), None)])], [], None, None)], [])], []) ``` ```python #wrong prediction (example of error after training) Module([ClassDef('Innervate', [Name('SpellCard', Load())], [], [FunctionDef('__init__', arguments([], [arg('self', None, None)], None, [], [], None, []), [Expr(Call(Attribute(Call(Name('super', Load()), [], []), '__init__', Load()), [Constant('Innervate', None), Constant(0, None), Attribute(Name('CHARACTER_CLASS', Load()), 'DRUID', Load()), Attribute(Name('CARD_RARITY', Load()), 'FREE', Load())], []))], [], None, None), FunctionDef('use', arguments([], [arg('self', None, None), arg('player', None, None), arg('game', None, None)], None, [], [], None, []), [Expr(Call(Attribute(Call(Name('super', Load()), [], []), 'use', Load()), [Name('player', Load()), Name('game', Load())], [])), For(Compare(Attribute(Name('player', Load()),'maxa', Load()), [Lt()], [Constant(10, None)]), [AugAssign(Attribute(Name('player', Load()),'mana', Store()), Add(), Constant(2, None))], Exign([Name(Name('player', Load()),'mana', Store())], Constant(None, None), None)],], [], None, None)], [])], []) ``` ## Intended uses & limitations HearthStone card code synthesis. ## Training and evaluation data See split of [hearthstone](https://huggingface.co/datasets/dvitel/hearthstone) dataset ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 17 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | Bleu | Codebleu | Ngram Match Score | Weighted Ngram Match Score | Syntax Match Score | Dataflow Match Score | Chrf | |:-------------:|:------:|:-----:|:---------------:|:-----------:|:------:|:--------:|:-----------------:|:--------------------------:|:------------------:|:--------------------:|:-------:| | 0.3871 | 11.94 | 1600 | 0.1043 | 0.0152 | 0.9499 | 0.8549 | 0.8089 | 0.8089 | 0.8653 | 0.9366 | 95.4674 | | 0.0752 | 23.88 | 3200 | 0.0784 | 0.1212 | 0.9640 | 0.8874 | 0.8525 | 0.8526 | 0.8929 | 0.9516 | 96.7978 | | 0.0448 | 35.82 | 4800 | 0.0717 | 0.1364 | 0.9693 | 0.9077 | 0.8782 | 0.8782 | 0.9069 | 0.9674 | 97.2100 | | 0.0308 | 47.76 | 6400 | 0.0752 | 0.1364 | 0.9702 | 0.9061 | 0.8808 | 0.8810 | 0.9070 | 0.9554 | 97.1896 | | 0.0223 | 59.7 | 8000 | 0.0762 | 0.1364 | 0.9724 | 0.9050 | 0.8877 | 0.8881 | 0.9093 | 0.9348 | 97.4616 | | 0.0166 | 71.64 | 9600 | 0.0762 | 0.1667 | 0.9733 | 0.9140 | 0.8948 | 0.8951 | 0.9197 | 0.9461 | 97.4945 | | 0.0128 | 83.58 | 11200 | 0.0793 | 0.1515 | 0.9728 | 0.9085 | 0.8911 | 0.8918 | 0.9189 | 0.9321 | 97.4152 | | 0.0104 | 95.52 | 12800 | 0.0822 | 0.1667 | 0.9732 | 0.9165 | 0.8946 | 0.8950 | 0.9222 | 0.9541 | 97.4887 | | 0.0084 | 107.46 | 14400 | 0.0832 | 0.1667 | 0.9737 | 0.9167 | 0.8970 | 0.8972 | 0.9254 | 0.9471 | 97.5326 | | 0.007 | 119.4 | 16000 | 0.0837 | 0.1818 | 0.9743 | 0.9160 | 0.8983 | 0.8986 | 0.9238 | 0.9434 | 97.6638 | | 0.0058 | 131.34 | 17600 | 0.0858 | 0.1818 | 0.9739 | 0.9200 | 0.8977 | 0.8977 | 0.9267 | 0.9579 | 97.5583 | | 0.005 | 143.28 | 19200 | 0.0878 | 0.1818 | 0.9743 | 0.9180 | 0.8993 | 0.9001 | 0.9301 | 0.9426 | 97.5819 | | 0.0044 | 155.22 | 20800 | 0.0877 | 0.1667 | 0.9736 | 0.9156 | 0.8957 | 0.8960 | 0.9278 | 0.9429 | 97.5109 | | 0.0042 | 167.16 | 22400 | 0.0890 | 0.1970 | 0.9736 | 0.9171 | 0.8984 | 0.8984 | 0.9293 | 0.9424 | 97.5617 | | 0.0038 | 179.1 | 24000 | 0.0891 | 0.2121 | 0.9738 | 0.9174 | 0.8991 | 0.8991 | 0.9285 | 0.9429 | 97.5452 | | 0.0037 | 191.04 | 25600 | 0.0890 | 0.1970 | 0.9737 | 0.9172 | 0.8984 | 0.8985 | 0.9293 | 0.9429 | 97.5313 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
flamesbob/ross_model
flamesbob
2022-11-19T01:21:55Z
0
3
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-19T00:49:51Z
--- license: creativeml-openrail-m --- `m_ross artstyle,`class token License This embedding is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: You can't use the embedding to deliberately produce nor share illegal or harmful outputs or content The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license You may re-distribute the weights and use the embedding commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license here
andrewzhang505/doom_deathmatch_bots
andrewzhang505
2022-11-19T00:58:04Z
4
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-27T23:12:48Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - metrics: - type: mean_reward value: 69.40 +/- 4.29 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_deathmatch_bots type: doom_deathmatch_bots --- A(n) **APPO** model trained on the **doom_deathmatch_bots** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
shi-labs/nat-small-in1k-224
shi-labs
2022-11-18T23:11:49Z
107
0
transformers
[ "transformers", "pytorch", "nat", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2204.07143", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-18T22:03:00Z
--- license: mit tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # NAT (small variant) NAT-Small trained on ImageNet-1K at 224x224 resolution. It was introduced in the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Hassani et al. and first released in [this repository](https://github.com/SHI-Labs/Neighborhood-Attention-Transformer). ## Model description NAT is a hierarchical vision transformer based on Neighborhood Attention (NA). Neighborhood Attention is a restricted self attention pattern in which each token's receptive field is limited to its nearest neighboring pixels. NA is a sliding-window attention patterns, and as a result is highly flexible and maintains translational equivariance. NA is implemented in PyTorch implementations through its extension, [NATTEN](https://github.com/SHI-Labs/NATTEN/). ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/neighborhood-attention-pattern.jpg) [Source](https://paperswithcode.com/paper/neighborhood-attention-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=nat) to look for fine-tuned versions on a task that interests you. ### Example Here is how to use this model to classify an image from the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, NatForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoImageProcessor.from_pretrained("shi-labs/nat-small-in1k-224") model = NatForImageClassification.from_pretrained("shi-labs/nat-small-in1k-224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more examples, please refer to the [documentation](https://huggingface.co/transformers/model_doc/nat.html#). ### Requirements Other than transformers, this model requires the [NATTEN](https://shi-labs.com/natten) package. If you're on Linux, you can refer to [shi-labs.com/natten](https://shi-labs.com/natten) for instructions on installing with pre-compiled binaries (just select your torch build to get the correct wheel URL). You can alternatively use `pip install natten` to compile on your device, which may take up to a few minutes. Mac users only have the latter option (no pre-compiled binaries). Refer to [NATTEN's GitHub](https://github.com/SHI-Labs/NATTEN/) for more information. ### BibTeX entry and citation info ```bibtex @article{hassani2022neighborhood, title = {Neighborhood Attention Transformer}, author = {Ali Hassani and Steven Walton and Jiachen Li and Shen Li and Humphrey Shi}, year = 2022, url = {https://arxiv.org/abs/2204.07143}, eprint = {2204.07143}, archiveprefix = {arXiv}, primaryclass = {cs.CV} } ```
shi-labs/dinat-small-in1k-224
shi-labs
2022-11-18T23:10:53Z
89
0
transformers
[ "transformers", "pytorch", "dinat", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2209.15001", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-18T22:02:48Z
--- license: mit tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # DiNAT (small variant) DiNAT-Small trained on ImageNet-1K at 224x224 resolution. It was introduced in the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Hassani et al. and first released in [this repository](https://github.com/SHI-Labs/Neighborhood-Attention-Transformer). ## Model description DiNAT is a hierarchical vision transformer based on Neighborhood Attention (NA) and its dilated variant (DiNA). Neighborhood Attention is a restricted self attention pattern in which each token's receptive field is limited to its nearest neighboring pixels. NA and DiNA are therefore sliding-window attention patterns, and as a result are highly flexible and maintain translational equivariance. They come with PyTorch implementations through the [NATTEN](https://github.com/SHI-Labs/NATTEN/) package. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dilated-neighborhood-attention-pattern.jpg) [Source](https://paperswithcode.com/paper/dilated-neighborhood-attention-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=dinat) to look for fine-tuned versions on a task that interests you. ### Example Here is how to use this model to classify an image from the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, DinatForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoImageProcessor.from_pretrained("shi-labs/dinat-small-in1k-224") model = DinatForImageClassification.from_pretrained("shi-labs/dinat-small-in1k-224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more examples, please refer to the [documentation](https://huggingface.co/transformers/model_doc/dinat.html#). ### Requirements Other than transformers, this model requires the [NATTEN](https://shi-labs.com/natten) package. If you're on Linux, you can refer to [shi-labs.com/natten](https://shi-labs.com/natten) for instructions on installing with pre-compiled binaries (just select your torch build to get the correct wheel URL). You can alternatively use `pip install natten` to compile on your device, which may take up to a few minutes. Mac users only have the latter option (no pre-compiled binaries). Refer to [NATTEN's GitHub](https://github.com/SHI-Labs/NATTEN/) for more information. ### BibTeX entry and citation info ```bibtex @article{hassani2022dilated, title = {Dilated Neighborhood Attention Transformer}, author = {Ali Hassani and Humphrey Shi}, year = 2022, url = {https://arxiv.org/abs/2209.15001}, eprint = {2209.15001}, archiveprefix = {arXiv}, primaryclass = {cs.CV} } ```
shi-labs/dinat-mini-in1k-224
shi-labs
2022-11-18T23:10:49Z
1,834
1
transformers
[ "transformers", "pytorch", "dinat", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2209.15001", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-14T22:27:14Z
--- license: mit tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # DiNAT (mini variant) DiNAT-Mini trained on ImageNet-1K at 224x224 resolution. It was introduced in the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Hassani et al. and first released in [this repository](https://github.com/SHI-Labs/Neighborhood-Attention-Transformer). ## Model description DiNAT is a hierarchical vision transformer based on Neighborhood Attention (NA) and its dilated variant (DiNA). Neighborhood Attention is a restricted self attention pattern in which each token's receptive field is limited to its nearest neighboring pixels. NA and DiNA are therefore sliding-window attention patterns, and as a result are highly flexible and maintain translational equivariance. They come with PyTorch implementations through the [NATTEN](https://github.com/SHI-Labs/NATTEN/) package. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dilated-neighborhood-attention-pattern.jpg) [Source](https://paperswithcode.com/paper/dilated-neighborhood-attention-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=dinat) to look for fine-tuned versions on a task that interests you. ### Example Here is how to use this model to classify an image from the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, DinatForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoImageProcessor.from_pretrained("shi-labs/dinat-mini-in1k-224") model = DinatForImageClassification.from_pretrained("shi-labs/dinat-mini-in1k-224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more examples, please refer to the [documentation](https://huggingface.co/transformers/model_doc/dinat.html#). ### Requirements Other than transformers, this model requires the [NATTEN](https://shi-labs.com/natten) package. If you're on Linux, you can refer to [shi-labs.com/natten](https://shi-labs.com/natten) for instructions on installing with pre-compiled binaries (just select your torch build to get the correct wheel URL). You can alternatively use `pip install natten` to compile on your device, which may take up to a few minutes. Mac users only have the latter option (no pre-compiled binaries). Refer to [NATTEN's GitHub](https://github.com/SHI-Labs/NATTEN/) for more information. ### BibTeX entry and citation info ```bibtex @article{hassani2022dilated, title = {Dilated Neighborhood Attention Transformer}, author = {Ali Hassani and Humphrey Shi}, year = 2022, url = {https://arxiv.org/abs/2209.15001}, eprint = {2209.15001}, archiveprefix = {arXiv}, primaryclass = {cs.CV} } ```
shi-labs/dinat-base-in1k-224
shi-labs
2022-11-18T23:07:43Z
90
0
transformers
[ "transformers", "pytorch", "dinat", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2209.15001", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-18T22:04:27Z
--- license: mit tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # DiNAT (base variant) DiNAT-Base trained on ImageNet-1K at 224x224 resolution. It was introduced in the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Hassani et al. and first released in [this repository](https://github.com/SHI-Labs/Neighborhood-Attention-Transformer). ## Model description DiNAT is a hierarchical vision transformer based on Neighborhood Attention (NA) and its dilated variant (DiNA). Neighborhood Attention is a restricted self attention pattern in which each token's receptive field is limited to its nearest neighboring pixels. NA and DiNA are therefore sliding-window attention patterns, and as a result are highly flexible and maintain translational equivariance. They come with PyTorch implementations through the [NATTEN](https://github.com/SHI-Labs/NATTEN/) package. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dilated-neighborhood-attention-pattern.jpg) [Source](https://paperswithcode.com/paper/dilated-neighborhood-attention-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=dinat) to look for fine-tuned versions on a task that interests you. ### Example Here is how to use this model to classify an image from the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, DinatForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoImageProcessor.from_pretrained("shi-labs/dinat-base-in1k-224") model = DinatForImageClassification.from_pretrained("shi-labs/dinat-base-in1k-224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more examples, please refer to the [documentation](https://huggingface.co/transformers/model_doc/dinat.html#). ### Requirements Other than transformers, this model requires the [NATTEN](https://shi-labs.com/natten) package. If you're on Linux, you can refer to [shi-labs.com/natten](https://shi-labs.com/natten) for instructions on installing with pre-compiled binaries (just select your torch build to get the correct wheel URL). You can alternatively use `pip install natten` to compile on your device, which may take up to a few minutes. Mac users only have the latter option (no pre-compiled binaries). Refer to [NATTEN's GitHub](https://github.com/SHI-Labs/NATTEN/) for more information. ### BibTeX entry and citation info ```bibtex @article{hassani2022dilated, title = {Dilated Neighborhood Attention Transformer}, author = {Ali Hassani and Humphrey Shi}, year = 2022, url = {https://arxiv.org/abs/2209.15001}, eprint = {2209.15001}, archiveprefix = {arXiv}, primaryclass = {cs.CV} } ```