modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
bigmorning/whisper_0015
bigmorning
2022-11-08T14:43:13Z
32
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-08T14:42:41Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper_0015 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_0015 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3281 - Train Accuracy: 0.0322 - Validation Loss: 0.5841 - Validation Accuracy: 0.0311 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 5.0856 | 0.0116 | 4.4440 | 0.0123 | 0 | | 4.3149 | 0.0131 | 4.0521 | 0.0142 | 1 | | 3.9260 | 0.0146 | 3.7264 | 0.0153 | 2 | | 3.5418 | 0.0160 | 3.3026 | 0.0174 | 3 | | 2.7510 | 0.0198 | 2.0157 | 0.0241 | 4 | | 1.6782 | 0.0250 | 1.3567 | 0.0273 | 5 | | 1.1705 | 0.0274 | 1.0678 | 0.0286 | 6 | | 0.9126 | 0.0287 | 0.9152 | 0.0294 | 7 | | 0.7514 | 0.0296 | 0.8057 | 0.0299 | 8 | | 0.6371 | 0.0302 | 0.7409 | 0.0302 | 9 | | 0.5498 | 0.0307 | 0.6854 | 0.0306 | 10 | | 0.4804 | 0.0312 | 0.6518 | 0.0307 | 11 | | 0.4214 | 0.0316 | 0.6200 | 0.0310 | 12 | | 0.3713 | 0.0319 | 0.5947 | 0.0311 | 13 | | 0.3281 | 0.0322 | 0.5841 | 0.0311 | 14 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Tokenizers 0.13.2
rosamondthalken/t5-base-sci-names
rosamondthalken
2022-11-08T14:39:36Z
8
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "scientific names", "text generation", "en", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-16T15:00:05Z
--- language: - en tags: - scientific names - text generation license: cc-by-sa-4.0 --- # t5-base-sci-names Biodiversity literature is dedicated to the identification, documentation, and categorization of plants, fungi, animals, and other living organisms. Correctly extracting the name of an organism within these documents involves finding the entire scientific name–including the genus, specific epithet, and author name. Extracting these names allows biologists to access documents about a species more comprehensively, and to track an organism’s history of documentation, which includes biological changes and changes in how scientists describe them. **t5-base-sci-names** uses advances in text-to-text generation to generate scientific names and authors from biodiversity literature. This model was trained on hand-labeled biodiversity texts, including labeled information about a mentioned organism's genus (abbreviated and expanded), specific epithet, and author. This model was trained to output 0-N scientific names with specific prefixes (e.g. "genus = " or "epithet = ") and performs best with anywhere from 20-120 words. You can also use the model in this tutorial for [scientific names generation](https://colab.research.google.com/drive/1GEpnCaMJYiPIhuZiDJ1X1pZsGtGSm8Ds?usp=sharing). Thanks to Damon Little and Nelson Salinas at the New York Botanical Gardens for their support. *Note that this model is still a work in progress. Any feedback is welcome.*
troesy/roBERTa-3epoch
troesy
2022-11-08T14:38:27Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-08T14:21:53Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roBERTa-3epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roBERTa-3epoch This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1328 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 174 | 0.1814 | 0.0 | 0.0 | 0.0 | 0.9318 | | No log | 2.0 | 348 | 0.1445 | 0.0 | 0.0 | 0.0 | 0.9477 | | 0.214 | 3.0 | 522 | 0.1328 | 0.0 | 0.0 | 0.0 | 0.9526 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
bigmorning/whisper_0010
bigmorning
2022-11-08T14:20:50Z
63
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-08T14:19:44Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper_0010 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_0010 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6371 - Train Accuracy: 0.0302 - Validation Loss: 0.7409 - Validation Accuracy: 0.0302 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 5.0856 | 0.0116 | 4.4440 | 0.0123 | 0 | | 4.3149 | 0.0131 | 4.0521 | 0.0142 | 1 | | 3.9260 | 0.0146 | 3.7264 | 0.0153 | 2 | | 3.5418 | 0.0160 | 3.3026 | 0.0174 | 3 | | 2.7510 | 0.0198 | 2.0157 | 0.0241 | 4 | | 1.6782 | 0.0250 | 1.3567 | 0.0273 | 5 | | 1.1705 | 0.0274 | 1.0678 | 0.0286 | 6 | | 0.9126 | 0.0287 | 0.9152 | 0.0294 | 7 | | 0.7514 | 0.0296 | 0.8057 | 0.0299 | 8 | | 0.6371 | 0.0302 | 0.7409 | 0.0302 | 9 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Tokenizers 0.13.2
google/ddpm-ema-cat-256
google
2022-11-08T13:42:16Z
1,133
2
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "arxiv:2006.11239", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-07-19T10:45:53Z
--- license: apache-2.0 tags: - pytorch - diffusers - unconditional-image-generation --- # Denoising Diffusion Probabilistic Models (DDPM) **Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) **Authors**: Jonathan Ho, Ajay Jain, Pieter Abbeel **Abstract**: *We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.* ## Inference **DDPM** models can use *discrete noise schedulers* such as: - [scheduling_ddpm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py) - [scheduling_ddim](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py) - [scheduling_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py) for inference. Note that while the *ddpm* scheduler yields the highest quality, it also takes the longest. For a good trade-off between quality and inference speed you might want to consider the *ddim* or *pndm* schedulers instead. See the following code: ```python # !pip install diffusers from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline model_id = "google/ddpm-ema-cat-256" # load model and scheduler ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference # run pipeline in inference (sample random noise and denoise) image = ddpm().images[0] # save image image.save("ddpm_generated_image.png") ``` For more in-detail information, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) ## Training If you want to train your own model, please have a look at the [official training example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) ## Samples 1. ![sample_1](https://huggingface.co/google/ddpm-ema-cat-256/resolve/main/images/generated_image_0.png) 2. ![sample_2](https://huggingface.co/google/ddpm-ema-cat-256/resolve/main/images/generated_image_1.png) 3. ![sample_3](https://huggingface.co/google/ddpm-ema-cat-256/resolve/main/images/generated_image_2.png) 4. ![sample_4](https://huggingface.co/google/ddpm-ema-cat-256/resolve/main/images/generated_image_3.png)
google/ddpm-ema-bedroom-256
google
2022-11-08T13:41:41Z
392
2
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "arxiv:2006.11239", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-07-18T19:49:13Z
--- license: apache-2.0 tags: - pytorch - diffusers - unconditional-image-generation --- # Denoising Diffusion Probabilistic Models (DDPM) **Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) **Authors**: Jonathan Ho, Ajay Jain, Pieter Abbeel **Abstract**: *We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.* ## Inference **DDPM** models can use *discrete noise schedulers* such as: - [scheduling_ddpm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py) - [scheduling_ddim](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py) - [scheduling_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py) for inference. Note that while the *ddpm* scheduler yields the highest quality, it also takes the longest. For a good trade-off between quality and inference speed you might want to consider the *ddim* or *pndm* schedulers instead. See the following code: ```python # !pip install diffusers from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline model_id = "google/ddpm-ema-bedroom-256" # load model and scheduler ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference # run pipeline in inference (sample random noise and denoise) image = ddpm().images[0] # save image image.save("ddpm_generated_image.png") ``` For more in-detail information, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) ## Training If you want to train your own model, please have a look at the [official training example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) ## Samples 1. ![sample_1](https://huggingface.co/google/ddpm-ema-bedroom-256/resolve/main/images/generated_image_0.png) 2. ![sample_2](https://huggingface.co/google/ddpm-ema-bedroom-256/resolve/main/images/generated_image_1.png) 3. ![sample_3](https://huggingface.co/google/ddpm-ema-bedroom-256/resolve/main/images/generated_image_2.png) 4. ![sample_4](https://huggingface.co/google/ddpm-ema-bedroom-256/resolve/main/images/generated_image_3.png)
google/ddpm-bedroom-256
google
2022-11-08T13:41:35Z
626
4
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "arxiv:2006.11239", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-07-19T10:43:04Z
--- license: apache-2.0 tags: - pytorch - diffusers - unconditional-image-generation --- # Denoising Diffusion Probabilistic Models (DDPM) **Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) **Authors**: Jonathan Ho, Ajay Jain, Pieter Abbeel **Abstract**: *We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.* ## Inference **DDPM** models can use *discrete noise schedulers* such as: - [scheduling_ddpm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py) - [scheduling_ddim](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py) - [scheduling_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py) for inference. Note that while the *ddpm* scheduler yields the highest quality, it also takes the longest. For a good trade-off between quality and inference speed you might want to consider the *ddim* or *pndm* schedulers instead. See the following code: ```python # !pip install diffusers from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline model_id = "google/ddpm-bedroom-256" # load model and scheduler ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference # run pipeline in inference (sample random noise and denoise) image = ddpm().images[0] # save image image.save("ddpm_generated_image.png") ``` For more in-detail information, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) ## Training If you want to train your own model, please have a look at the [official training example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) ## Samples 1. ![sample_1](https://huggingface.co/google/ddpm-bedroom-256/resolve/main/images/generated_image_0.png) 2. ![sample_2](https://huggingface.co/google/ddpm-bedroom-256/resolve/main/images/generated_image_1.png) 3. ![sample_3](https://huggingface.co/google/ddpm-bedroom-256/resolve/main/images/generated_image_2.png) 4. ![sample_4](https://huggingface.co/google/ddpm-bedroom-256/resolve/main/images/generated_image_3.png)
google/ddpm-ema-celebahq-256
google
2022-11-08T13:41:29Z
10,679
6
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "arxiv:2006.11239", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-07-19T10:42:32Z
--- license: apache-2.0 tags: - pytorch - diffusers - unconditional-image-generation --- # Denoising Diffusion Probabilistic Models (DDPM) **Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) **Authors**: Jonathan Ho, Ajay Jain, Pieter Abbeel **Abstract**: *We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.* ## Inference **DDPM** models can use *discrete noise schedulers* such as: - [scheduling_ddpm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py) - [scheduling_ddim](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py) - [scheduling_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py) for inference. Note that while the *ddpm* scheduler yields the highest quality, it also takes the longest. For a good trade-off between quality and inference speed you might want to consider the *ddim* or *pndm* schedulers instead. See the following code: ```python # !pip install diffusers from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline model_id = "google/ddpm-ema-celebahq-256" # load model and scheduler ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference # run pipeline in inference (sample random noise and denoise) image = ddpm().images[0] # save image image.save("ddpm_generated_image.png") ``` For more in-detail information, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) ## Training If you want to train your own model, please have a look at the [official training example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) # <- TODO(PVP) add link ## Samples 1. ![sample_1](https://huggingface.co/google/ddpm-ema-celebahq-256/resolve/main/images/generated_image_0.png) 2. ![sample_2](https://huggingface.co/google/ddpm-ema-celebahq-256/resolve/main/images/generated_image_1.png) 3. ![sample_3](https://huggingface.co/google/ddpm-ema-celebahq-256/resolve/main/images/generated_image_2.png) 4. ![sample_4](https://huggingface.co/google/ddpm-ema-celebahq-256/resolve/main/images/generated_image_3.png)
google/ddpm-ema-church-256
google
2022-11-08T13:41:12Z
447
11
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "arxiv:2006.11239", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-07-19T10:43:19Z
--- license: apache-2.0 tags: - pytorch - diffusers - unconditional-image-generation --- # Denoising Diffusion Probabilistic Models (DDPM) **Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) **Authors**: Jonathan Ho, Ajay Jain, Pieter Abbeel **Abstract**: *We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.* ## Inference **DDPM** models can use *discrete noise schedulers* such as: - [scheduling_ddpm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py) - [scheduling_ddim](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py) - [scheduling_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py) for inference. Note that while the *ddpm* scheduler yields the highest quality, it also takes the longest. For a good trade-off between quality and inference speed you might want to consider the *ddim* or *pndm* schedulers instead. See the following code: ```python # !pip install diffusers from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline model_id = "google/ddpm-ema-church-256" # load model and scheduler ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference # run pipeline in inference (sample random noise and denoise) image = ddpm().images[0] # save image image.save("ddpm_generated_image.png") ``` For more in-detail information, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) ## Training If you want to train your own model, please have a look at the [official training example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) ## Samples 1. ![sample_1](https://huggingface.co/google/ddpm-ema-church-256/resolve/main/images/generated_image_0.png) 2. ![sample_2](https://huggingface.co/google/ddpm-ema-church-256/resolve/main/images/generated_image_1.png) 3. ![sample_3](https://huggingface.co/google/ddpm-ema-church-256/resolve/main/images/generated_image_2.png) 4. ![sample_4](https://huggingface.co/google/ddpm-ema-church-256/resolve/main/images/generated_image_3.png)
Prem11100/donut-base-Label-studio-707-invoices
Prem11100
2022-11-08T13:05:06Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-11-08T09:43:20Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-Label-studio-707-invoices results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-Label-studio-707-invoices This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
troesy/hateBERT_3epoch
troesy
2022-11-08T10:21:20Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-08T10:07:36Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: hateBERT_3epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hateBERT_3epoch This model is a fine-tuned version of [GroNLP/hateBERT](https://huggingface.co/GroNLP/hateBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2174 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 174 | 0.2301 | 0.0 | 0.0 | 0.0 | 0.9112 | | No log | 2.0 | 348 | 0.2192 | 0.0 | 0.0 | 0.0 | 0.9148 | | 0.2311 | 3.0 | 522 | 0.2174 | 0.0 | 0.0 | 0.0 | 0.9174 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
dreaming-tree/rl_class
dreaming-tree
2022-11-08T10:17:43Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-08T10:16:56Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 73.61 +/- 70.22 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tkubotake/xlm-roberta-base-finetuned-panx-all
tkubotake
2022-11-08T09:07:09Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-07T03:46:39Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [tkubotake/xlm-roberta-base-finetuned-panx-de](https://huggingface.co/tkubotake/xlm-roberta-base-finetuned-panx-de) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2290 - F1: 0.8629 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1259 | 1.0 | 835 | 0.1879 | 0.8478 | | 0.078 | 2.0 | 1670 | 0.2121 | 0.8582 | | 0.0439 | 3.0 | 2505 | 0.2290 | 0.8629 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Enthusiastic/Stars
Enthusiastic
2022-11-08T08:44:02Z
28
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-08T08:43:47Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Stars results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.5135135054588318 --- # Stars Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Andromeda ![Andromeda ](images/Andromeda_.jpg) #### Cassiopeia ![Cassiopeia ](images/Cassiopeia_.jpg) #### Hercules ![Hercules](images/Hercules.jpg) #### Orion ![Orion](images/Orion.jpg) #### Perseus ![Perseus](images/Perseus.jpg)
sd-concepts-library/kodakvision500t
sd-concepts-library
2022-11-08T08:19:22Z
0
14
null
[ "license:mit", "region:us" ]
null
2022-11-08T07:57:07Z
--- license: mit --- ### KodakVision500T on Stable Diffusion This is the `<kodakvision_500T>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). This concept was trained on **6** photographs taken with **Kodak Vision 3 500T**, through **1800** steps. Here are some generated images from the concept that you will be able to use as a `style`: ![<kodakvision_500T> 4](https://huggingface.co/sd-concepts-library/kodakvision500t/resolve/main/kodakvision_500T_4.png) ![<kodakvision_500T> 3](https://huggingface.co/sd-concepts-library/kodakvision500t/resolve/main/kodakvision_500T_3.png) ![<kodakvision_500T> 2](https://huggingface.co/sd-concepts-library/kodakvision500t/resolve/main/kodakvision_500T_2.png) ![<kodakvision_500T> 1](https://huggingface.co/sd-concepts-library/kodakvision500t/resolve/main/kodakvision_500T_1.png)
Sushanti123/layoutxlm-finetuned-xfund-fr
Sushanti123
2022-11-08T07:26:56Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "dataset:xfun", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-01T08:40:16Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - xfun model-index: - name: layoutxlm-finetuned-xfund-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutxlm-finetuned-xfund-fr This model is a fine-tuned version of [microsoft/layoutxlm-base](https://huggingface.co/microsoft/layoutxlm-base) on the xfun dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.10.0+cu111 - Datasets 2.6.1 - Tokenizers 0.13.2
bguan/Reinforce-Pixelcopter-PLE-v0
bguan
2022-11-08T07:20:11Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-11-08T07:20:03Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 16.00 +/- 11.92 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
GuiGel/beto-uncased-flert-context-we-lstm-crf-meddocan
GuiGel
2022-11-08T07:19:25Z
6
0
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "region:us" ]
token-classification
2022-11-08T07:16:36Z
--- tags: - flair - token-classification - sequence-tagger-model --- ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("GuiGel/beto-uncased-flert-context-we-lstm-crf-meddocan") # make example sentence sentence = Sentence("On September 1st George won 1 dollar while watching Game of Thrones.") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ```
Prem11100/donut-base-Label-studio-200-invoices
Prem11100
2022-11-08T06:49:59Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-11-08T05:45:03Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-Label-studio-200-invoices results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-Label-studio-200-invoices This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Meow412/finetuning-sentiment-BERTmodel-A3-allcontents
Meow412
2022-11-08T06:40:42Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-08T05:51:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-BERTmodel-A3-allcontents results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-BERTmodel-A3-allcontents This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2951 - Accuracy: 0.8814 - F1: 0.4138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
gaioNL/lesson2FrozenLake
gaioNL
2022-11-08T06:00:56Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-08T06:00:40Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: lesson2FrozenLake results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="gaioNL/lesson2FrozenLake", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
xu1998hz/sescore_english_mt
xu1998hz
2022-11-08T05:16:19Z
0
1
null
[ "region:us" ]
null
2022-11-05T01:44:33Z
SEScore English checkpoint for Machine Translation
kit-nlp/bert-base-japanese-sentiment-irony
kit-nlp
2022-11-08T04:23:27Z
481
4
transformers
[ "transformers", "pytorch", "bert", "text-classification", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-07T06:29:21Z
--- language: ja license: cc-by-sa-4.0 --- # BERT Base Japanese for Irony This is a BERT Base model for sentiment analysis in Japanese additionally finetuned for automatic irony detection. The model was based on [bert-base-japanese-sentiment](https://huggingface.co/daigo/bert-base-japanese-sentiment), and later finetuned on a dataset containing ironic and sarcastic tweets. ## Licenses The finetuned model with all attached files is licensed under [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/), or Creative Commons Attribution-ShareAlike 4.0 International License. <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a> ## Citations Please, cite this model using the following citation. ``` @inproceedings{dan2022bert-base-irony02, title={北見工業大学 テキスト情報処理研究室 ELECTRA Base 皮肉検出モデル (daigo ver.)}, author={団 俊輔 and プタシンスキ ミハウ and ジェプカ ラファウ and 桝井 文人}, publisher={HuggingFace}, year={2022}, url = "https://huggingface.co/kit-nlp/bert-base-japanese-sentiment-irony" } ```
kit-nlp/yacis-electra-small-japanese-irony
kit-nlp
2022-11-08T04:16:30Z
5
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-07T07:05:34Z
--- language: ja license: cc-by-sa-4.0 --- # YACIS ELECTRA Small Japanese for Irony This is an [ELECTRA](https://github.com/google-research/electra) Base model for the Japanese language finetuned for automatic irony detection. The model was based on [YACIS ELECTRA small Japanese](https://huggingface.co/ptaszynski/yacis-electra-small-japanese), and later finetuned on a dataset containing ironic and sarcastic tweets. ## Licenses The finetuned model with all attached files is licensed under [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/), or Creative Commons Attribution-ShareAlike 4.0 International License. <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a> ## Citations Please, cite this model using the following citation. ``` @inproceedings{dan2022yaciselectra-small-irony, title={北見工業大学 テキスト情報処理研究室 ELECTRA Base 皮肉検出モデル (Izumi Labs ver.)}, author={団 俊輔 and プタシンスキ ミハウ and ジェプカ ラファウ and 桝井 文人}, publisher={HuggingFace}, year={2022}, url = "https://huggingface.co/kit-nlp/yacis-electra-small-japanese-irony" } ```
kit-nlp/electra-small-japanese-discriminator-irony
kit-nlp
2022-11-08T04:11:04Z
4
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-07T07:14:32Z
--- language: ja license: cc-by-sa-4.0 --- # ELECTRA small Japanese discriminator for Irony This is an [ELECTRA](https://github.com/google-research/electra) Base model for the Japanese language finetuned for automatic irony detection. The model was based on [ELECTRA small Japanese discriminator](https://huggingface.co/izumi-lab/electra-small-japanese-discriminator), and later finetuned on a dataset containing ironic and sarcastic tweets. ## Licenses The finetuned model with all attached files is licensed under [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/), or Creative Commons Attribution-ShareAlike 4.0 International License. <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a> ## Citations Please, cite this model using the following citation. ``` @inproceedings{dan2022electra-base-irony, title={北見工業大学 テキスト情報処理研究室 ELECTRA Base 皮肉検出モデル (Izumi Labs ver.)}, author={団 俊輔 and プタシンスキ ミハウ and ジェプカ ラファウ and 桝井 文人}, publisher={HuggingFace}, year={2022}, url = "https://huggingface.co/kit-nlp/electra-small-japanese-discriminator-irony" } ```
dhshin/ddpm-butterflies-128
dhshin
2022-11-08T03:16:58Z
3
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-10-25T01:06:18Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/dhshin/ddpm-butterflies-128/tensorboard?#scalars)
QianMolloy/distilbert-base-uncased-finetuned-emotion
QianMolloy
2022-11-08T03:06:18Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-07T02:51:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9285 - name: F1 type: f1 value: 0.928851862350588 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2178 - Accuracy: 0.9285 - F1: 0.9289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8227 | 1.0 | 250 | 0.3212 | 0.8985 | 0.8932 | | 0.2463 | 2.0 | 500 | 0.2178 | 0.9285 | 0.9289 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.10.0 - Datasets 2.6.1 - Tokenizers 0.13.1
svjack/prompt-extend-chinese
svjack
2022-11-08T03:05:03Z
106
3
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "MT5", "text-to-text", "zh", "Chinese", "license:other", "autotrain_compatible", "region:us" ]
text2text-generation
2022-11-07T12:12:51Z
--- language: zh license: other tags: - MT5 - mt5 - text-to-text - zh - Chinese inference: false extra_gated_prompt: |- The License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. rinna Co., Ltd. claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license By clicking on "Access repository" below, you accept that your *contact information* (email address and username) can be shared with the model authors as well. extra_gated_fields: I have read the License and agree with its terms: checkbox --- # Chinese Stable Diffusion Prompt Extend Model Card <!-- ![rinna](https://github.com/rinnakk/japanese-clip/blob/master/data/rinna.png?raw=true) --> svjack/prompt-extend-chinese is a Chinese-specific latent text-to-text generator generating style cues given a short Chinese prompt input. This generator may make the Stable Diffusion model perform well with the help of some meaningful style cues.<br/> The above idea is sourced from a project named [prompt-extend](https://github.com/daspartho/prompt-extend), it extending stable diffusion English prompts with suitable style cues using text generation. And people can try it on [HuggingFace Space](https://huggingface.co/spaces/daspartho/prompt-extend). ```python from transformers import T5Tokenizer, MT5ForConditionalGeneration model = "svjack/prompt-extend-chinese" device = "cpu" tokenizer = T5Tokenizer.from_pretrained(model) model = MT5ForConditionalGeneration.from_pretrained(model).to(device).eval() prompt = "护国公克伦威尔" encode = tokenizer(prompt, return_tensors='pt').to(device) answer = model.generate(encode.input_ids)[0] decoded = tokenizer.decode(answer, skip_special_tokens=True) decoded ''' 的肖像,由,和,制作,在艺术站上趋势 ''' ``` With the help of this generator, people can give some enhance to the stable diffusion model. Take [svjack/Stable-Diffusion-FineTuned-zh-v1](https://huggingface.co/svjack/Stable-Diffusion-FineTuned-zh-v1) for example. below image is the enhanced version of above. 第一次世界大战 ![第一次世界大战](https://github.com/svjack/Stable-Diffusion-Chinese-Extend/blob/main/imgs/war_v1.jpg?raw=true) 第一次世界大战,在艺术站的潮流,8,高度详细,高质量,高分辨率,获 ![第一次世界大战,在艺术站的潮流,8,高度详细,高质量,高分辨率,获](https://github.com/svjack/Stable-Diffusion-Chinese-Extend/blob/main/imgs/war_style_v1.jpg?raw=true) And below example is pivotal. 护国公克伦威尔 ![护国公克伦威尔](https://github.com/svjack/Stable-Diffusion-Chinese-Extend/blob/main/Protector_Cromwell.png?raw=true) 护国公克伦威尔,的肖像,由,和,制作,在艺术站上趋势 ![护国公克伦威尔,的肖像,由,和,制作,在艺术站上趋势](https://github.com/svjack/Stable-Diffusion-Chinese-Extend/blob/main/Protector_Cromwell_style.png?raw=true)
PrimeQA/DrDecr-large_XOR-TyDi_whitebox
PrimeQA
2022-11-08T02:57:16Z
0
0
null
[ "arxiv:2112.08185", "region:us" ]
null
2022-11-08T01:05:48Z
# Basic Information This is the Dr. Decr-large model used in XOR-TyDi leaderboard task 1 whitebox submission. https://nlp.cs.washington.edu/xorqa/ The detailed implementation of the model can be found in: https://arxiv.org/pdf/2112.08185.pdf Source code to train the model can be found via PrimeQA's IR component: https://github.com/primeqa/primeqa/tree/main/examples/drdecr It is a Neural IR model built on top of the ColBERTv2 api and not directly compatible with Huggingface API. The inference result on XOR Dev dataset is: ``` R@2kt R@5kt ko 69.1 75.1 ar 68.0 75.7 bn 81.9 85.2 fi 68.2 73.6 ru 67.1 72.2 ja 63.1 69.7 te 82.8 86.1 Avg 71.4 76.8 ``` # Limitations and Bias This model used pre-trained XLMR-large model and fine tuned on 7 languages in XOR-TyDi leaderboard. The performance of other languages was not tested. Since the model was fine-tuned on a large pre-trained language model XLM-Roberta, biases associated with the pre-existing XLM-Roberta model may be present in our fine-tuned model, Dr. Decr # Citation ``` @article{Li2021_DrDecr, doi = {10.48550/ARXIV.2112.08185}, url = {https://arxiv.org/abs/2112.08185}, author = {Li, Yulong and Franz, Martin and Sultan, Md Arafat and Iyer, Bhavani and Lee, Young-Suk and Sil, Avirup}, keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Learning Cross-Lingual IR from an English Retriever}, publisher = {arXiv}, year = {2021} } ```
gabrielgmendonca/bert-base-portuguese-cased-finetuned-chico-xavier
gabrielgmendonca
2022-11-08T01:25:38Z
106
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-25T18:00:16Z
--- license: mit tags: - generated_from_trainer model-index: - name: bert-base-portuguese-cased-finetuned-chico-xavier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-portuguese-cased-finetuned-chico-xavier This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7196 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0733 | 1.0 | 561 | 1.8147 | | 1.8779 | 2.0 | 1122 | 1.7624 | | 1.8345 | 3.0 | 1683 | 1.7206 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
tomrb/bettercallbloom-3b
tomrb
2022-11-08T01:12:59Z
9
5
transformers
[ "transformers", "pytorch", "bloom", "text-generation", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-20T17:17:16Z
--- language: en license: mit --- # BetterCallBloom-3b Finetuned Bloom-3b model on the r/legaladvice subreddit from pileoflaw ## Model description BLOOM-3B is a 3,002,557,440 parameters model pretrained by the BigScience initiative. ## Intended uses & limitations ### How to use ### Limitations and bias ## Training data ## Training procedure ### Preprocessing ## Evaluation results ### BibTeX entry and citation info
Asfesalas/ppo-LunarLander-v2
Asfesalas
2022-11-08T00:40:57Z
6
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-08T00:40:18Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 234.84 +/- 22.67 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
rajistics/informal_formal_style_transfer
rajistics
2022-11-08T00:21:12Z
6
6
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "arxiv:1804.06437", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-08T00:07:12Z
--- license: apache-2.0 language: en --- ## Source A Neural Language Style Transfer framework to transfer natural language text smoothly between fine-grained language styles like formal/casual. The original model is at [https://github.com/PrithivirajDamodaran/Styleformer](https://github.com/PrithivirajDamodaran/Styleformer). ![Style](Styleformer.png) ## Examples: ``` [Casual] I am quitting my job [Formal] I will be stepping down from my job. ---------------------------------------------------------------------------------------------------- [Casual] Jimmy is on crack and can't trust him [Formal] Jimmy is a crack addict I cannot trust him ---------------------------------------------------------------------------------------------------- [Casual] What do guys do to show that they like a gal? [Formal] What do guys do to demonstrate their affinity for women? ---------------------------------------------------------------------------------------------------- [Casual] i loooooooooooooooooooooooove going to the movies. [Formal] I really like to go to the movies. ``` ## References - [Formality Style Transfer for Noisy Text: Leveraging Out-of-Domain Parallel Data for In-Domain Training via POS Masking](https://www.aclweb.org/anthology/D19-5502.pdf) - [Generative Text Style Transfer for Improved Language Sophistication](http://cs230.stanford.edu/projects_winter_2020/reports/32069807.pdf) - [Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style Transfer](https://arxiv.org/pdf/1804.06437.pdf)
yongauh/distilbert-base-uncased-finetuned-emotion
yongauh
2022-11-07T23:48:42Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-07T23:35:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.921 - name: F1 type: f1 value: 0.9211554013340549 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2208 - Accuracy: 0.921 - F1: 0.9212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8473 | 1.0 | 250 | 0.3167 | 0.908 | 0.9061 | | 0.2561 | 2.0 | 500 | 0.2208 | 0.921 | 0.9212 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.11.0
Gr00t16/distilbert-imdb
Gr00t16
2022-11-07T23:24:30Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-07T22:53:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: distilbert-imdb results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.92916 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.1827 - Accuracy: 0.9292 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2182 | 1.0 | 1563 | 0.1827 | 0.9292 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Devarshi/Brain_Tumor_Detector_swin
Devarshi
2022-11-07T22:28:14Z
50
4
transformers
[ "transformers", "pytorch", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-07T06:37:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - recall - precision model-index: - name: Brain_Tumor_Detector_swin results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9981308411214953 - name: F1 type: f1 value: 0.9985111662531018 - name: Recall type: recall value: 0.9990069513406157 - name: Precision type: precision value: 0.998015873015873 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Brain_Tumor_Detector_swin This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0054 - Accuracy: 0.9981 - F1: 0.9985 - Recall: 0.9990 - Precision: 0.9980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.079 | 1.0 | 113 | 0.0283 | 0.9882 | 0.9906 | 0.9930 | 0.9881 | | 0.0575 | 2.0 | 226 | 0.0121 | 0.9956 | 0.9965 | 0.9950 | 0.9980 | | 0.0312 | 3.0 | 339 | 0.0054 | 0.9981 | 0.9985 | 0.9990 | 0.9980 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.1
SiddharthaM/resnet-18-feature-extraction
SiddharthaM
2022-11-07T21:50:04Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "resnet", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-07T17:47:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: resnet-18-feature-extraction results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.95 - name: Precision type: precision value: 0.9652777777777778 - name: Recall type: recall value: 0.9788732394366197 - name: F1 type: f1 value: 0.972027972027972 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-18-feature-extraction This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1485 - Accuracy: 0.95 - Precision: 0.9653 - Recall: 0.9789 - F1: 0.9720 - Roc Auc: 0.8505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | No log | 0.8 | 2 | 0.6232 | 0.75 | 0.9636 | 0.7465 | 0.8413 | 0.7621 | | No log | 1.8 | 4 | 0.6971 | 0.4875 | 1.0 | 0.4225 | 0.5941 | 0.7113 | | No log | 2.8 | 6 | 0.7915 | 0.2875 | 1.0 | 0.1972 | 0.3294 | 0.5986 | | No log | 3.8 | 8 | 0.8480 | 0.2875 | 1.0 | 0.1972 | 0.3294 | 0.5986 | | 0.8651 | 4.8 | 10 | 0.9094 | 0.2562 | 1.0 | 0.1620 | 0.2788 | 0.5810 | | 0.8651 | 5.8 | 12 | 0.7470 | 0.5625 | 1.0 | 0.5070 | 0.6729 | 0.7535 | | 0.8651 | 6.8 | 14 | 0.5915 | 0.85 | 1.0 | 0.8310 | 0.9077 | 0.9155 | | 0.8651 | 7.8 | 16 | 0.4817 | 0.8875 | 0.9844 | 0.8873 | 0.9333 | 0.8881 | | 0.8651 | 8.8 | 18 | 0.3455 | 0.9187 | 0.9778 | 0.9296 | 0.9531 | 0.8815 | | 0.5349 | 9.8 | 20 | 0.2966 | 0.9187 | 0.9708 | 0.9366 | 0.9534 | 0.8572 | | 0.5349 | 10.8 | 22 | 0.2347 | 0.95 | 0.9653 | 0.9789 | 0.9720 | 0.8505 | | 0.5349 | 11.8 | 24 | 0.2468 | 0.9313 | 0.9645 | 0.9577 | 0.9611 | 0.8400 | | 0.5349 | 12.8 | 26 | 0.2310 | 0.9563 | 0.9720 | 0.9789 | 0.9754 | 0.8783 | | 0.5349 | 13.8 | 28 | 0.2083 | 0.9313 | 0.9580 | 0.9648 | 0.9614 | 0.8157 | | 0.3593 | 14.8 | 30 | 0.1840 | 0.9375 | 0.9521 | 0.9789 | 0.9653 | 0.7950 | | 0.3593 | 15.8 | 32 | 0.1947 | 0.9375 | 0.9648 | 0.9648 | 0.9648 | 0.8435 | | 0.3593 | 16.8 | 34 | 0.1837 | 0.9313 | 0.9517 | 0.9718 | 0.9617 | 0.7915 | | 0.3593 | 17.8 | 36 | 0.1819 | 0.9437 | 0.9524 | 0.9859 | 0.9689 | 0.7985 | | 0.3593 | 18.8 | 38 | 0.1924 | 0.9437 | 0.9650 | 0.9718 | 0.9684 | 0.8470 | | 0.2737 | 19.8 | 40 | 0.1990 | 0.95 | 0.9653 | 0.9789 | 0.9720 | 0.8505 | | 0.2737 | 20.8 | 42 | 0.1759 | 0.95 | 0.9718 | 0.9718 | 0.9718 | 0.8748 | | 0.2737 | 21.8 | 44 | 0.1804 | 0.9313 | 0.9517 | 0.9718 | 0.9617 | 0.7915 | | 0.2737 | 22.8 | 46 | 0.1666 | 0.9313 | 0.9517 | 0.9718 | 0.9617 | 0.7915 | | 0.2737 | 23.8 | 48 | 0.1534 | 0.9437 | 0.9524 | 0.9859 | 0.9689 | 0.7985 | | 0.2278 | 24.8 | 50 | 0.1612 | 0.9375 | 0.9521 | 0.9789 | 0.9653 | 0.7950 | | 0.2278 | 25.8 | 52 | 0.1535 | 0.9437 | 0.9586 | 0.9789 | 0.9686 | 0.8228 | | 0.2278 | 26.8 | 54 | 0.1568 | 0.9437 | 0.9716 | 0.9648 | 0.9682 | 0.8713 | | 0.2278 | 27.8 | 56 | 0.2107 | 0.9375 | 0.9714 | 0.9577 | 0.9645 | 0.8678 | | 0.2278 | 28.8 | 58 | 0.1592 | 0.9313 | 0.9517 | 0.9718 | 0.9617 | 0.7915 | | 0.2057 | 29.8 | 60 | 0.1557 | 0.9375 | 0.9648 | 0.9648 | 0.9648 | 0.8435 | | 0.2057 | 30.8 | 62 | 0.1714 | 0.9437 | 0.9650 | 0.9718 | 0.9684 | 0.8470 | | 0.2057 | 31.8 | 64 | 0.1571 | 0.95 | 0.9653 | 0.9789 | 0.9720 | 0.8505 | | 0.2057 | 32.8 | 66 | 0.1574 | 0.9375 | 0.9583 | 0.9718 | 0.9650 | 0.8192 | | 0.2057 | 33.8 | 68 | 0.1423 | 0.9563 | 0.9720 | 0.9789 | 0.9754 | 0.8783 | | 0.2 | 34.8 | 70 | 0.1677 | 0.9437 | 0.9650 | 0.9718 | 0.9684 | 0.8470 | | 0.2 | 35.8 | 72 | 0.1560 | 0.9375 | 0.9583 | 0.9718 | 0.9650 | 0.8192 | | 0.2 | 36.8 | 74 | 0.1594 | 0.9375 | 0.9521 | 0.9789 | 0.9653 | 0.7950 | | 0.2 | 37.8 | 76 | 0.1512 | 0.9437 | 0.9586 | 0.9789 | 0.9686 | 0.8228 | | 0.2 | 38.8 | 78 | 0.1396 | 0.9563 | 0.9655 | 0.9859 | 0.9756 | 0.8541 | | 0.1838 | 39.8 | 80 | 0.1509 | 0.9375 | 0.9583 | 0.9718 | 0.9650 | 0.8192 | | 0.1838 | 40.8 | 82 | 0.1529 | 0.95 | 0.9718 | 0.9718 | 0.9718 | 0.8748 | | 0.1838 | 41.8 | 84 | 0.1506 | 0.95 | 0.9653 | 0.9789 | 0.9720 | 0.8505 | | 0.1838 | 42.8 | 86 | 0.1549 | 0.95 | 0.9653 | 0.9789 | 0.9720 | 0.8505 | | 0.1838 | 43.8 | 88 | 0.1331 | 0.9563 | 0.9655 | 0.9859 | 0.9756 | 0.8541 | | 0.1872 | 44.8 | 90 | 0.1409 | 0.9437 | 0.9524 | 0.9859 | 0.9689 | 0.7985 | | 0.1872 | 45.8 | 92 | 0.1639 | 0.9375 | 0.9583 | 0.9718 | 0.9650 | 0.8192 | | 0.1872 | 46.8 | 94 | 0.1391 | 0.95 | 0.9589 | 0.9859 | 0.9722 | 0.8263 | | 0.1872 | 47.8 | 96 | 0.1436 | 0.9563 | 0.9655 | 0.9859 | 0.9756 | 0.8541 | | 0.1872 | 48.8 | 98 | 0.1442 | 0.9437 | 0.9586 | 0.9789 | 0.9686 | 0.8228 | | 0.185 | 49.8 | 100 | 0.1485 | 0.95 | 0.9653 | 0.9789 | 0.9720 | 0.8505 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
AlekseyKorshuk/amazon-reviews-input-output-6.7b
AlekseyKorshuk
2022-11-07T21:41:55Z
6
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "dataset:AlekseyKorshuk/amazon-reviews-input-output", "license:other", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-07T19:53:31Z
--- license: other tags: - generated_from_trainer datasets: - AlekseyKorshuk/amazon-reviews-input-output metrics: - accuracy model-index: - name: amazon-reviews-input-output-6.7b results: - task: name: Causal Language Modeling type: text-generation dataset: name: AlekseyKorshuk/amazon-reviews-input-output type: AlekseyKorshuk/amazon-reviews-input-output metrics: - name: Accuracy type: accuracy value: 0.03882113821138211 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazon-reviews-input-output-6.7b This model is a fine-tuned version of [facebook/opt-6.7b](https://huggingface.co/facebook/opt-6.7b) on the AlekseyKorshuk/amazon-reviews-input-output dataset. It achieves the following results on the evaluation set: - Loss: 2.8574 - Accuracy: 0.0388 - Samples: 100 - Perplexity: 17.4166 - Table: <wandb.data_types.Table object at 0x7fd30eb4e940> ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.9912 | 0.06 | 1 | 2.7441 | 0.0404 | | 2.9329 | 0.12 | 2 | 2.7441 | 0.0404 | | 2.9138 | 0.19 | 3 | 2.8262 | 0.0389 | | 2.9395 | 0.25 | 4 | 2.8262 | 0.0389 | | 2.9109 | 0.31 | 5 | 2.7949 | 0.0399 | | 2.8394 | 0.38 | 6 | 2.7461 | 0.0403 | | 2.9365 | 0.44 | 7 | 2.7207 | 0.0399 | | 2.7588 | 0.5 | 8 | 2.7070 | 0.0403 | | 2.9751 | 0.56 | 9 | 2.6816 | 0.0407 | | 2.844 | 0.62 | 10 | 2.6738 | 0.0404 | | 2.731 | 0.69 | 11 | 2.6680 | 0.0406 | | 2.7434 | 0.75 | 12 | 2.6699 | 0.0404 | | 2.9043 | 0.81 | 13 | 2.6855 | 0.0400 | | 2.8564 | 0.88 | 14 | 2.6855 | 0.0400 | | 2.8716 | 0.94 | 15 | 2.6855 | 0.0400 | | 2.896 | 1.0 | 16 | 2.6953 | 0.0398 | | 1.9858 | 1.06 | 17 | 2.7070 | 0.0400 | | 2.0563 | 1.12 | 18 | 2.7285 | 0.0400 | | 2.04 | 1.19 | 19 | 2.7676 | 0.0398 | | 1.9885 | 1.25 | 20 | 2.7910 | 0.0396 | | 2.09 | 1.31 | 21 | 2.7969 | 0.0393 | | 2.059 | 1.38 | 22 | 2.8105 | 0.0395 | | 2.0498 | 1.44 | 23 | 2.7930 | 0.0398 | | 1.9568 | 1.5 | 24 | 2.7910 | 0.0401 | | 2.1418 | 1.56 | 25 | 2.7930 | 0.0398 | | 1.975 | 1.62 | 26 | 2.7930 | 0.0397 | | 1.996 | 1.69 | 27 | 2.7949 | 0.0393 | | 1.9617 | 1.75 | 28 | 2.8047 | 0.0392 | | 2.2062 | 1.81 | 29 | 2.8145 | 0.0388 | | 1.9929 | 1.88 | 30 | 2.8145 | 0.0386 | | 1.9235 | 1.94 | 31 | 2.8281 | 0.0390 | | 1.9127 | 2.0 | 32 | 2.8574 | 0.0388 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
understaters/ddpm-butterflies-128
understaters
2022-11-07T21:22:47Z
3
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-07T20:04:40Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/understaters/ddpm-butterflies-128/tensorboard?#scalars)
bishalbaaniya/bishalbaaniya-finetuned-myaamia-to-english
bishalbaaniya
2022-11-07T21:15:33Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-27T03:24:09Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: bishalbaaniya-finetuned-myaamia-to-english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bishalbaaniya-finetuned-myaamia-to-english This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.0090 - Bleu: 0.1637 - Gen Len: 7.977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 4.1712 | 1.0 | 1082 | 4.0090 | 0.1637 | 7.977 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
ilevs/distilrubert-tiny-cased-conversational-finetuned
ilevs
2022-11-07T21:06:23Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-06T14:54:50Z
--- tags: - generated_from_trainer model-index: - name: distilrubert-tiny-cased-conversational-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilrubert-tiny-cased-conversational-finetuned This model is a fine-tuned version of [DeepPavlov/distilrubert-tiny-cased-conversational](https://huggingface.co/DeepPavlov/distilrubert-tiny-cased-conversational) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
ntsema/wav2vec2-xlsr-53-espeak-cv-ft-tat-ntsema-colab
ntsema
2022-11-07T20:52:34Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:audiofolder", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-07T08:05:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: wav2vec2-xlsr-53-espeak-cv-ft-tat-ntsema-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Wer type: wer value: 0.28339140534262486 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-53-espeak-cv-ft-tat-ntsema-colab This model is a fine-tuned version of [facebook/wav2vec2-xlsr-53-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2976 - Wer: 0.2834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.5013 | 3.57 | 400 | 0.4017 | 0.4837 | | 0.3368 | 7.14 | 800 | 0.2774 | 0.3693 | | 0.1942 | 10.71 | 1200 | 0.3054 | 0.3386 | | 0.1449 | 14.28 | 1600 | 0.3085 | 0.3246 | | 0.1147 | 17.85 | 2000 | 0.3134 | 0.3037 | | 0.0944 | 21.43 | 2400 | 0.3046 | 0.2933 | | 0.0778 | 24.99 | 2800 | 0.3057 | 0.2927 | | 0.0643 | 28.57 | 3200 | 0.2976 | 0.2834 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.14.0.dev20221107+cu116 - Datasets 2.6.1 - Tokenizers 0.13.2
AlekseyKorshuk/amazon-reviews-input-output-1.3b
AlekseyKorshuk
2022-11-07T20:45:36Z
5
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "dataset:AlekseyKorshuk/amazon-reviews-input-output", "license:other", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-07T20:26:17Z
--- license: other tags: - generated_from_trainer datasets: - AlekseyKorshuk/amazon-reviews-input-output metrics: - accuracy model-index: - name: amazon-reviews-input-output-1.3b results: - task: name: Causal Language Modeling type: text-generation dataset: name: AlekseyKorshuk/amazon-reviews-input-output type: AlekseyKorshuk/amazon-reviews-input-output metrics: - name: Accuracy type: accuracy value: 0.03550813008130081 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazon-reviews-input-output-1.3b This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the AlekseyKorshuk/amazon-reviews-input-output dataset. It achieves the following results on the evaluation set: - Loss: 3.5488 - Accuracy: 0.0355 - Samples: 100 - Perplexity: 34.7725 - Table: <wandb.data_types.Table object at 0x7ffa3c3fd700> ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.2024 | 0.06 | 1 | 2.9121 | 0.0385 | | 3.1226 | 0.12 | 2 | 2.9121 | 0.0385 | | 3.1321 | 0.19 | 3 | 2.8477 | 0.0394 | | 2.9875 | 0.25 | 4 | 2.8477 | 0.0394 | | 2.9717 | 0.31 | 5 | 2.8555 | 0.0391 | | 2.9341 | 0.38 | 6 | 2.8438 | 0.0392 | | 3.0376 | 0.44 | 7 | 2.8184 | 0.0396 | | 2.8164 | 0.5 | 8 | 2.7988 | 0.0395 | | 3.0857 | 0.56 | 9 | 2.7988 | 0.0394 | | 2.9492 | 0.62 | 10 | 2.7969 | 0.0395 | | 2.8633 | 0.69 | 11 | 2.7969 | 0.0395 | | 2.8994 | 0.75 | 12 | 2.7910 | 0.0398 | | 3.0024 | 0.81 | 13 | 2.7812 | 0.0401 | | 2.937 | 0.88 | 14 | 2.7812 | 0.0399 | | 2.9963 | 0.94 | 15 | 2.7812 | 0.0399 | | 3.0168 | 1.0 | 16 | 2.7754 | 0.04 | | 2.2589 | 1.06 | 17 | 2.7715 | 0.0397 | | 2.2568 | 1.12 | 18 | 2.7793 | 0.0395 | | 2.3138 | 1.19 | 19 | 2.8027 | 0.0393 | | 2.2759 | 1.25 | 20 | 2.8184 | 0.0393 | | 2.5137 | 1.31 | 21 | 2.8262 | 0.0390 | | 2.2997 | 1.38 | 22 | 2.8320 | 0.0388 | | 2.2693 | 1.44 | 23 | 2.8359 | 0.0392 | | 2.204 | 1.5 | 24 | 2.8379 | 0.0387 | | 2.3713 | 1.56 | 25 | 2.8359 | 0.0391 | | 2.3448 | 1.62 | 26 | 2.8340 | 0.0391 | | 2.217 | 1.69 | 27 | 2.8359 | 0.0391 | | 2.3082 | 1.75 | 28 | 2.8379 | 0.0385 | | 2.2878 | 1.81 | 29 | 2.8379 | 0.0386 | | 2.2429 | 1.88 | 30 | 2.8379 | 0.0385 | | 2.2838 | 1.94 | 31 | 2.8359 | 0.0385 | | 2.4038 | 2.0 | 32 | 2.8379 | 0.0387 | | 1.8481 | 2.06 | 33 | 2.8555 | 0.0384 | | 1.657 | 2.12 | 34 | 2.8965 | 0.0382 | | 1.6996 | 2.19 | 35 | 2.9590 | 0.0380 | | 1.6741 | 2.25 | 36 | 3.0312 | 0.0379 | | 1.594 | 2.31 | 37 | 3.0410 | 0.0380 | | 1.5201 | 2.38 | 38 | 3.0156 | 0.0381 | | 1.5149 | 2.44 | 39 | 3.0137 | 0.0380 | | 1.5521 | 2.5 | 40 | 3.0176 | 0.0379 | | 1.5364 | 2.56 | 41 | 3.0273 | 0.0378 | | 1.5385 | 2.62 | 42 | 3.0391 | 0.0380 | | 1.4794 | 2.69 | 43 | 3.0488 | 0.0380 | | 1.4313 | 2.75 | 44 | 3.0527 | 0.0378 | | 1.5071 | 2.81 | 45 | 3.0469 | 0.0378 | | 1.4799 | 2.88 | 46 | 3.0449 | 0.0378 | | 1.521 | 2.94 | 47 | 3.0371 | 0.0380 | | 1.4603 | 3.0 | 48 | 3.0410 | 0.0379 | | 1.25 | 3.06 | 49 | 3.0859 | 0.0381 | | 1.0411 | 3.12 | 50 | 3.1797 | 0.0375 | | 1.0385 | 3.19 | 51 | 3.2969 | 0.0371 | | 1.0254 | 3.25 | 52 | 3.3613 | 0.0367 | | 0.9656 | 3.31 | 53 | 3.3633 | 0.0368 | | 1.036 | 3.38 | 54 | 3.3359 | 0.0366 | | 0.9366 | 3.44 | 55 | 3.2949 | 0.0366 | | 0.9712 | 3.5 | 56 | 3.2695 | 0.0367 | | 1.0066 | 3.56 | 57 | 3.2676 | 0.0366 | | 0.9952 | 3.62 | 58 | 3.2773 | 0.0368 | | 1.0352 | 3.69 | 59 | 3.2891 | 0.0367 | | 1.0212 | 3.75 | 60 | 3.3164 | 0.0362 | | 0.9468 | 3.81 | 61 | 3.3203 | 0.0360 | | 0.9155 | 3.88 | 62 | 3.3223 | 0.0366 | | 0.8552 | 3.94 | 63 | 3.3262 | 0.0370 | | 0.9575 | 4.0 | 64 | 3.3340 | 0.0370 | | 0.6384 | 4.06 | 65 | 3.375 | 0.0370 | | 0.6436 | 4.12 | 66 | 3.4453 | 0.0364 | | 0.5752 | 4.19 | 67 | 3.5391 | 0.0358 | | 0.6542 | 4.25 | 68 | 3.6016 | 0.0354 | | 0.6724 | 4.31 | 69 | 3.6016 | 0.0354 | | 0.591 | 4.38 | 70 | 3.5938 | 0.0359 | | 0.5346 | 4.44 | 71 | 3.5801 | 0.0361 | | 0.5112 | 4.5 | 72 | 3.5762 | 0.0361 | | 0.5443 | 4.56 | 73 | 3.5840 | 0.0362 | | 0.5689 | 4.62 | 74 | 3.6152 | 0.0358 | | 0.5667 | 4.69 | 75 | 3.6328 | 0.0358 | | 0.554 | 4.75 | 76 | 3.6348 | 0.0357 | | 0.6087 | 4.81 | 77 | 3.625 | 0.0355 | | 0.5236 | 4.88 | 78 | 3.6152 | 0.0355 | | 0.5458 | 4.94 | 79 | 3.5781 | 0.0355 | | 0.5702 | 5.0 | 80 | 3.5488 | 0.0355 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
okho0653/distilbert-base-zero-shot
okho0653
2022-11-07T20:44:16Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-07T20:40:31Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-zero-shot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-zero-shot This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.7147 - eval_accuracy: 0.0741 - eval_f1: 0.1379 - eval_runtime: 1.1794 - eval_samples_per_second: 22.894 - eval_steps_per_second: 1.696 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
okho0653/Bio_ClinicalBERT-zero-shot
okho0653
2022-11-07T20:40:03Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-07T20:34:18Z
--- license: mit tags: - generated_from_trainer model-index: - name: Bio_ClinicalBERT-zero-shot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT-zero-shot This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5417 - eval_accuracy: 1.0 - eval_f1: 1.0 - eval_runtime: 4.3261 - eval_samples_per_second: 6.241 - eval_steps_per_second: 0.462 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Meow412/finetuning-sentiment-model-A3
Meow412
2022-11-07T20:39:27Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-07T20:30:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-A3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-A3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3212 - Accuracy: 0.8760 - F1: 0.3516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
edbeeching/atari_zaxxon_3333
edbeeching
2022-11-07T20:31:59Z
1
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-07T20:30:50Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: atari_zaxxon type: atari_zaxxon metrics: - type: mean_reward value: 12600.00 +/- 0.00 name: mean_reward verified: false --- A(n) **APPO** model trained on the **atari_zaxxon** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/atari_wizardofwor_3333
edbeeching
2022-11-07T20:29:12Z
4
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-07T20:28:16Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: atari_wizardofwor type: atari_wizardofwor metrics: - type: mean_reward value: 25500.00 +/- 0.00 name: mean_reward verified: false --- A(n) **APPO** model trained on the **atari_wizardofwor** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/atari_videopinball_3333
edbeeching
2022-11-07T20:27:56Z
1
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-07T20:26:42Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: atari_videopinball type: atari_videopinball metrics: - type: mean_reward value: nan +/- nan name: mean_reward verified: false --- A(n) **APPO** model trained on the **atari_videopinball** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/atari_tutankham_3333
edbeeching
2022-11-07T20:23:10Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-07T20:22:04Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: atari_tutankham type: atari_tutankham metrics: - type: mean_reward value: nan +/- nan name: mean_reward verified: false --- A(n) **APPO** model trained on the **atari_tutankham** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/atari_tennis_3333
edbeeching
2022-11-07T20:20:35Z
3
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-07T20:19:22Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: atari_tennis type: atari_tennis metrics: - type: mean_reward value: 24.00 +/- 0.00 name: mean_reward verified: false --- A(n) **APPO** model trained on the **atari_tennis** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/atari_spaceinvaders_3333
edbeeching
2022-11-07T20:17:41Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-07T20:16:43Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: atari_spaceinvaders type: atari_spaceinvaders metrics: - type: mean_reward value: 2212.50 +/- 2.50 name: mean_reward verified: false --- A(n) **APPO** model trained on the **atari_spaceinvaders** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/atari_roadrunner_3333
edbeeching
2022-11-07T20:10:27Z
1
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-07T20:09:13Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: atari_roadrunner type: atari_roadrunner metrics: - type: mean_reward value: 84000.00 +/- 0.00 name: mean_reward verified: false --- A(n) **APPO** model trained on the **atari_roadrunner** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/atari_riverraid_3333
edbeeching
2022-11-07T20:08:53Z
2
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-07T20:07:42Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: atari_riverraid type: atari_riverraid metrics: - type: mean_reward value: 15935.00 +/- 755.00 name: mean_reward verified: false --- A(n) **APPO** model trained on the **atari_riverraid** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
Ananjas/AwooAI
Ananjas
2022-11-07T20:08:29Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-07T19:37:57Z
--- tags: - conversational ---
edbeeching/atari_pong_3333
edbeeching
2022-11-07T20:04:26Z
3
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-07T20:03:30Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: atari_pong type: atari_pong metrics: - type: mean_reward value: 21.00 +/- 0.00 name: mean_reward verified: false --- A(n) **APPO** model trained on the **atari_pong** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
edbeeching/atari_phoenix_3333
edbeeching
2022-11-07T20:01:38Z
2
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-07T20:00:35Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: atari_phoenix type: atari_phoenix metrics: - type: mean_reward value: nan +/- nan name: mean_reward verified: false --- A(n) **APPO** model trained on the **atari_phoenix** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
artemnech/dialoT5-base
artemnech
2022-11-07T18:58:36Z
7
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-29T10:37:48Z
How to use: ``` from collections import deque from bs4 import BeautifulSoup import requests from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, T5Tokenizer import torch model_name = 'artemnech/dialoT5-base' model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def generate(text, **kwargs): model.eval() inputs = tokenizer(text, return_tensors='pt').to(model.device) with torch.no_grad(): hypotheses = model.generate(**inputs, **kwargs) return tokenizer.decode(hypotheses[0], skip_special_tokens=True) def dialog(context): keyword = generate('keyword: ' + ' '.join(context), num_beams=2,) knowlege = '' if keyword != 'no_keywords': resp = requests.get(f"https://en.wikipedia.org/wiki/{keyword}") root = BeautifulSoup(resp.content, "html.parser") knowlege ="knowlege: " + " ".join([_.text.strip() for _ in root.find("div", class_="mw-body-content mw-content-ltr").find_all("p", limit=2)]) answ = generate(f'dialog: ' + knowlege + ' '.join(context), num_beams=3, do_sample=True, temperature=1.1, encoder_no_repeat_ngram_size=5, no_repeat_ngram_size=5, max_new_tokens = 30) return answ context =deque([], maxlen=4) while True: text = input() text = 'user1>>: ' + text context.append(text) answ = dialog(context) context.append('user2>>: ' + answ) print('bot: ', answ) ```
azuresonance/bert-finetuned-ner
azuresonance
2022-11-07T18:08:45Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-07T17:58:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9351422898742554 - name: Recall type: recall value: 0.9511948838774823 - name: F1 type: f1 value: 0.943100283664275 - name: Accuracy type: accuracy value: 0.9867251427562254 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0604 - Precision: 0.9351 - Recall: 0.9512 - F1: 0.9431 - Accuracy: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0861 | 1.0 | 1756 | 0.0691 | 0.9094 | 0.9322 | 0.9206 | 0.9809 | | 0.034 | 2.0 | 3512 | 0.0605 | 0.9303 | 0.9482 | 0.9392 | 0.9861 | | 0.0162 | 3.0 | 5268 | 0.0604 | 0.9351 | 0.9512 | 0.9431 | 0.9867 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
versae/stt_nn-NO_conformer_transducer_large
versae
2022-11-07T17:57:43Z
4
0
nemo
[ "nemo", "region:us" ]
null
2022-11-07T17:51:45Z
Colab → https://colab.research.google.com/drive/1ggqsd5tu6cKf22EiKckbUNTJOwMMqKAh?usp=sharing
GuiGel/beto-uncased-flert-lstm-crf-meddocan
GuiGel
2022-11-07T17:09:39Z
3
0
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "region:us" ]
token-classification
2022-11-07T17:08:40Z
--- tags: - flair - token-classification - sequence-tagger-model --- ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("GuiGel/beto-uncased-flert-lstm-crf-meddocan") # make example sentence sentence = Sentence("On September 1st George won 1 dollar while watching Game of Thrones.") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ```
mqymmayy/mt5-small-finetuned-amazon-en-es
mqymmayy
2022-11-07T16:44:48Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-11-07T14:21:59Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0294 - Rouge1: 16.5993 - Rouge2: 8.0138 - Rougel: 16.1315 - Rougelsum: 16.2931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 6.5928 | 1.0 | 1209 | 3.3005 | 14.7775 | 6.4604 | 14.2574 | 14.3422 | | 3.9024 | 2.0 | 2418 | 3.1399 | 16.8632 | 8.6474 | 16.065 | 16.2114 | | 3.5806 | 3.0 | 3627 | 3.0869 | 18.2422 | 9.2647 | 17.6227 | 17.7649 | | 3.4201 | 4.0 | 4836 | 3.0590 | 17.7826 | 8.9742 | 16.9951 | 17.1804 | | 3.3202 | 5.0 | 6045 | 3.0598 | 17.7808 | 8.6038 | 17.2243 | 17.4125 | | 3.2436 | 6.0 | 7254 | 3.0409 | 16.8469 | 8.2339 | 16.3935 | 16.5818 | | 3.2079 | 7.0 | 8463 | 3.0332 | 16.8148 | 8.2115 | 16.3166 | 16.4832 | | 3.1801 | 8.0 | 9672 | 3.0294 | 16.5993 | 8.0138 | 16.1315 | 16.2931 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
danduh/test-model
danduh
2022-11-07T16:34:50Z
0
0
null
[ "tf", "exbert", "danielTheBest", "TensorFlow", "en", "dataset:bookcorpus", "dataset:wikipedia", "license:apache-2.0", "region:us" ]
null
2022-11-07T16:15:52Z
--- language: en tags: - exbert - danielTheBest - TensorFlow license: apache-2.0 datasets: - bookcorpus - wikipedia --- Some cool text and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = TFGPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ```
Rundstedtz/distilbert-base-uncased-letters-from-jenny
Rundstedtz
2022-11-07T15:35:42Z
5
1
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-07T15:27:32Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Rundstedtz/distilbert-base-uncased-letters-from-jenny results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Rundstedtz/distilbert-base-uncased-letters-from-jenny This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.5319 - Validation Loss: 2.9614 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -988, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.5319 | 2.9614 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
Maxter825/2
Maxter825
2022-11-07T14:16:05Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-11-07T14:16:05Z
--- license: bigscience-openrail-m ---
cyburn/midjourney_v4_finetune
cyburn
2022-11-07T14:06:25Z
0
7
null
[ "region:us" ]
null
2022-11-06T23:53:48Z
# midjourney v4 finetune This model is based on SD1.5 with MSE VAE, finetuned on roughly 300 images created by midjourney v4 engine Prompt: `midjourney v4, <your prompt>` ## models - midjourney_v4-khoya-r12-e2-sd15.ckpt : epoch 2 - midjourney_v4-khoya-r12-e3-sd15.ckpt : epoch 3
jacquesle/bert-base-cased-NER-favsbot
jacquesle
2022-11-07T11:25:44Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:favsbot", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-20T06:52:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - favsbot metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-cased-NER-favsbot results: - task: name: Token Classification type: token-classification dataset: name: favsbot type: favsbot config: default split: train args: default metrics: - name: Precision type: precision value: 0.8571428571428571 - name: Recall type: recall value: 0.96 - name: F1 type: f1 value: 0.9056603773584904 - name: Accuracy type: accuracy value: 0.9583333333333334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-NER-favsbot This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the favsbot dataset. It achieves the following results on the evaluation set: - Loss: 0.0992 - Precision: 0.8571 - Recall: 0.96 - F1: 0.9057 - Accuracy: 0.9583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 10 | 1.7643 | 0.0 | 0.0 | 0.0 | 0.5694 | | No log | 2.0 | 20 | 1.1420 | 0.0 | 0.0 | 0.0 | 0.5833 | | No log | 3.0 | 30 | 0.7946 | 0.9375 | 0.6 | 0.7317 | 0.8056 | | No log | 4.0 | 40 | 0.5625 | 0.8182 | 0.72 | 0.7660 | 0.8611 | | No log | 5.0 | 50 | 0.4217 | 0.8148 | 0.88 | 0.8462 | 0.9306 | | No log | 6.0 | 60 | 0.3082 | 0.8519 | 0.92 | 0.8846 | 0.9444 | | No log | 7.0 | 70 | 0.2386 | 0.8148 | 0.88 | 0.8462 | 0.9444 | | No log | 8.0 | 80 | 0.1965 | 0.8148 | 0.88 | 0.8462 | 0.9444 | | No log | 9.0 | 90 | 0.1626 | 0.8148 | 0.88 | 0.8462 | 0.9444 | | No log | 10.0 | 100 | 0.1465 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 11.0 | 110 | 0.1314 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 12.0 | 120 | 0.1215 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 13.0 | 130 | 0.1160 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 14.0 | 140 | 0.1104 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 15.0 | 150 | 0.1050 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 16.0 | 160 | 0.1012 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 17.0 | 170 | 0.0997 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 18.0 | 180 | 0.0997 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 19.0 | 190 | 0.0995 | 0.8571 | 0.96 | 0.9057 | 0.9583 | | No log | 20.0 | 200 | 0.0992 | 0.8571 | 0.96 | 0.9057 | 0.9583 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.12.1
FacVain/turkish-sentiment-XMLRoBERTa
FacVain
2022-11-07T11:19:48Z
0
0
null
[ "tr", "region:us" ]
null
2022-11-07T09:57:24Z
--- language: tr tag: text-classification widget: - text: "Oldukça kullanışlı bir ürün." --- This repository contains two models that has been finetuned on twitter-XMLRoBERTa https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base. 3_Label model can classify text as positive, neutral and negative. 2_Label_Twitter is finetuned with tweets and can predict tweets as positive and negative.
tatakof/testpyramidsrnd
tatakof
2022-11-07T11:00:36Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-11-07T11:00:28Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: franfram/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Odiljon/Tanjo
Odiljon
2022-11-07T10:53:44Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-11-07T10:53:44Z
--- license: bigscience-openrail-m ---
silveto/distilbert-base-uncased-finetuned-squad
silveto
2022-11-07T10:44:30Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-02T17:43:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1531 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2297 | 1.0 | 5533 | 1.1547 | | 0.9688 | 2.0 | 11066 | 1.1278 | | 0.763 | 3.0 | 16599 | 1.1531 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.10.3
Shyam-311/distilroberta-base-finetuned-wikitext2
Shyam-311
2022-11-07T10:34:57Z
164
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-07T10:01:02Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0843 | 1.0 | 2406 | 1.9226 | | 1.9913 | 2.0 | 4812 | 1.8820 | | 1.9597 | 3.0 | 7218 | 1.8214 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
julien-c/avocado-prices
julien-c
2022-11-07T10:31:46Z
0
1
mlconsole
[ "mlconsole", "tabular-regression", "dataset:nateraw/avocado-prices", "license:apache-2.0", "model-index", "region:us" ]
tabular-regression
2022-10-13T08:34:56Z
--- license: apache-2.0 inference: false tags: - mlconsole - tabular-regression library_name: mlconsole metrics: - mae - loss datasets: - nateraw/avocado-prices model-index: - name: avocado-prices results: - task: type: tabular-regression name: tabular-regression dataset: type: nateraw/avocado-prices name: avocado.csv metrics: - type: mae name: Mean absolute error value: 0.22897861897945404 - type: loss name: Model loss value: 0.08849651366472244 --- # regression model trained on "nateraw/avocado-prices" 🤖 [Load and use this model](https://mlconsole.com/model/hf/julien-c/avocado-prices) in one click. 🧑‍💻 [Train your own model](https://mlconsole.com) on ML Console. ### Screenshots ![predict interface](screenshots/predict.png)
nguyenkhoa2407/bert-base-cased-NER-favsbot-no-apostrophe-2022-11-07
nguyenkhoa2407
2022-11-07T10:30:30Z
9
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:favsbot", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-07T10:23:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - favsbot metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-cased-NER-favsbot-no-apostrophe-2022-11-07 results: - task: name: Token Classification type: token-classification dataset: name: favsbot type: favsbot config: default split: train args: default metrics: - name: Precision type: precision value: 0.8275862068965517 - name: Recall type: recall value: 0.96 - name: F1 type: f1 value: 0.888888888888889 - name: Accuracy type: accuracy value: 0.9444444444444444 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-NER-favsbot-no-apostrophe-2022-11-07 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the favsbot dataset. It achieves the following results on the evaluation set: - Loss: 0.1169 - Precision: 0.8276 - Recall: 0.96 - F1: 0.8889 - Accuracy: 0.9444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 10 | 1.6302 | 0.0 | 0.0 | 0.0 | 0.5972 | | No log | 2.0 | 20 | 1.0453 | 0.6667 | 0.08 | 0.1429 | 0.6389 | | No log | 3.0 | 30 | 0.7286 | 0.8421 | 0.64 | 0.7273 | 0.8472 | | No log | 4.0 | 40 | 0.5296 | 0.8 | 0.8 | 0.8000 | 0.8889 | | No log | 5.0 | 50 | 0.3960 | 0.8214 | 0.92 | 0.8679 | 0.9306 | | No log | 6.0 | 60 | 0.2987 | 0.8214 | 0.92 | 0.8679 | 0.9306 | | No log | 7.0 | 70 | 0.2424 | 0.8276 | 0.96 | 0.8889 | 0.9444 | | No log | 8.0 | 80 | 0.2151 | 0.8276 | 0.96 | 0.8889 | 0.9444 | | No log | 9.0 | 90 | 0.1815 | 0.8276 | 0.96 | 0.8889 | 0.9444 | | No log | 10.0 | 100 | 0.1675 | 0.8276 | 0.96 | 0.8889 | 0.9444 | | No log | 11.0 | 110 | 0.1504 | 0.8276 | 0.96 | 0.8889 | 0.9444 | | No log | 12.0 | 120 | 0.1410 | 0.8276 | 0.96 | 0.8889 | 0.9444 | | No log | 13.0 | 130 | 0.1350 | 0.8276 | 0.96 | 0.8889 | 0.9444 | | No log | 14.0 | 140 | 0.1281 | 0.8276 | 0.96 | 0.8889 | 0.9444 | | No log | 15.0 | 150 | 0.1239 | 0.8276 | 0.96 | 0.8889 | 0.9444 | | No log | 16.0 | 160 | 0.1190 | 0.8276 | 0.96 | 0.8889 | 0.9444 | | No log | 17.0 | 170 | 0.1187 | 0.8276 | 0.96 | 0.8889 | 0.9444 | | No log | 18.0 | 180 | 0.1180 | 0.8276 | 0.96 | 0.8889 | 0.9444 | | No log | 19.0 | 190 | 0.1170 | 0.8276 | 0.96 | 0.8889 | 0.9444 | | No log | 20.0 | 200 | 0.1169 | 0.8276 | 0.96 | 0.8889 | 0.9444 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Shyam-311/distilgpt2-finetuned-wikitext2
Shyam-311
2022-11-07T09:55:19Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-07T09:08:03Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.653 | 2.0 | 4668 | 3.6472 | | 3.6006 | 3.0 | 7002 | 3.6421 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
freepina/musika-hyperpop
freepina
2022-11-07T09:46:51Z
0
0
null
[ "audio", "music", "generation", "tensorflow", "arxiv:2208.08706", "license:mit", "region:us" ]
null
2022-11-07T09:46:18Z
--- license: mit tags: - audio - music - generation - tensorflow --- # Musika Model: musika_hyperpop ## Model provided by: freepina Pretrained musika_hyperpop model for the [Musika system](https://github.com/marcoppasini/musika) for fast infinite waveform music generation. Introduced in [this paper](https://arxiv.org/abs/2208.08706). ## How to use You can generate music from this pretrained musika_hyperpop model using the notebook available [here](https://colab.research.google.com/drive/1HJWliBXPi-Xlx3gY8cjFI5-xaZgrTD7r). ### Model description This pretrained GAN system consists of a ResNet-style generator and discriminator. During training, stability is controlled by adapting the strength of gradient penalty regularization on-the-fly. The gradient penalty weighting term is contained in *switch.npy*. The generator is conditioned on a latent coordinate system to produce samples of arbitrary length. The latent representations produced by the generator are then passed to a decoder which converts them into waveform audio. The generator has a context window of about 12 seconds of audio.
pig4431/Sentiment140_BERT_5E
pig4431
2022-11-07T08:46:38Z
10
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:sentiment140", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-07T08:39:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - sentiment140 metrics: - accuracy model-index: - name: Sentiment140_BERT_5E results: - task: name: Text Classification type: text-classification dataset: name: sentiment140 type: sentiment140 config: sentiment140 split: train args: sentiment140 metrics: - name: Accuracy type: accuracy value: 0.82 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Sentiment140_BERT_5E This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the sentiment140 dataset. It achieves the following results on the evaluation set: - Loss: 0.7061 - Accuracy: 0.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6882 | 0.08 | 50 | 0.6047 | 0.7 | | 0.6223 | 0.16 | 100 | 0.5137 | 0.8067 | | 0.5463 | 0.24 | 150 | 0.4573 | 0.8067 | | 0.4922 | 0.32 | 200 | 0.4790 | 0.8 | | 0.4821 | 0.4 | 250 | 0.4207 | 0.8267 | | 0.4985 | 0.48 | 300 | 0.4267 | 0.8067 | | 0.4455 | 0.56 | 350 | 0.4301 | 0.8133 | | 0.469 | 0.64 | 400 | 0.4294 | 0.82 | | 0.4906 | 0.72 | 450 | 0.4059 | 0.8067 | | 0.4006 | 0.8 | 500 | 0.4181 | 0.8133 | | 0.445 | 0.88 | 550 | 0.3948 | 0.8267 | | 0.4302 | 0.96 | 600 | 0.3976 | 0.84 | | 0.4442 | 1.04 | 650 | 0.3887 | 0.8533 | | 0.3424 | 1.12 | 700 | 0.4119 | 0.8267 | | 0.3589 | 1.2 | 750 | 0.4083 | 0.8533 | | 0.3737 | 1.28 | 800 | 0.4253 | 0.8333 | | 0.334 | 1.36 | 850 | 0.4147 | 0.86 | | 0.3637 | 1.44 | 900 | 0.3926 | 0.8533 | | 0.3388 | 1.52 | 950 | 0.4084 | 0.8267 | | 0.3375 | 1.6 | 1000 | 0.4132 | 0.8467 | | 0.3725 | 1.68 | 1050 | 0.3965 | 0.8467 | | 0.3649 | 1.76 | 1100 | 0.3956 | 0.8333 | | 0.3799 | 1.84 | 1150 | 0.3923 | 0.8333 | | 0.3695 | 1.92 | 1200 | 0.4266 | 0.84 | | 0.3233 | 2.0 | 1250 | 0.4225 | 0.8333 | | 0.2313 | 2.08 | 1300 | 0.4672 | 0.8333 | | 0.231 | 2.16 | 1350 | 0.5212 | 0.8133 | | 0.2526 | 2.24 | 1400 | 0.5392 | 0.8067 | | 0.2721 | 2.32 | 1450 | 0.4895 | 0.82 | | 0.2141 | 2.4 | 1500 | 0.5258 | 0.8133 | | 0.2658 | 2.48 | 1550 | 0.5046 | 0.8267 | | 0.2386 | 2.56 | 1600 | 0.4873 | 0.8267 | | 0.2493 | 2.64 | 1650 | 0.4950 | 0.8333 | | 0.2692 | 2.72 | 1700 | 0.5080 | 0.8267 | | 0.2226 | 2.8 | 1750 | 0.5016 | 0.8467 | | 0.2522 | 2.88 | 1800 | 0.5068 | 0.8267 | | 0.2556 | 2.96 | 1850 | 0.4937 | 0.8267 | | 0.2311 | 3.04 | 1900 | 0.5103 | 0.8267 | | 0.1703 | 3.12 | 1950 | 0.5680 | 0.82 | | 0.1744 | 3.2 | 2000 | 0.5501 | 0.82 | | 0.1667 | 3.28 | 2050 | 0.6142 | 0.82 | | 0.1863 | 3.36 | 2100 | 0.6355 | 0.82 | | 0.2543 | 3.44 | 2150 | 0.6000 | 0.8133 | | 0.1565 | 3.52 | 2200 | 0.6618 | 0.8267 | | 0.1531 | 3.6 | 2250 | 0.6595 | 0.8133 | | 0.1915 | 3.68 | 2300 | 0.6647 | 0.8267 | | 0.1601 | 3.76 | 2350 | 0.6729 | 0.8267 | | 0.176 | 3.84 | 2400 | 0.6699 | 0.82 | | 0.1815 | 3.92 | 2450 | 0.6819 | 0.8067 | | 0.1987 | 4.0 | 2500 | 0.6543 | 0.8333 | | 0.1236 | 4.08 | 2550 | 0.6686 | 0.8333 | | 0.1599 | 4.16 | 2600 | 0.6583 | 0.8267 | | 0.1256 | 4.24 | 2650 | 0.6871 | 0.8267 | | 0.1291 | 4.32 | 2700 | 0.6855 | 0.82 | | 0.1198 | 4.4 | 2750 | 0.6901 | 0.82 | | 0.1245 | 4.48 | 2800 | 0.7152 | 0.8267 | | 0.1784 | 4.56 | 2850 | 0.7053 | 0.82 | | 0.1705 | 4.64 | 2900 | 0.7016 | 0.82 | | 0.1265 | 4.72 | 2950 | 0.7013 | 0.82 | | 0.1192 | 4.8 | 3000 | 0.7084 | 0.82 | | 0.174 | 4.88 | 3050 | 0.7062 | 0.82 | | 0.1328 | 4.96 | 3100 | 0.7061 | 0.82 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
nsadeq/InformBERT
nsadeq
2022-11-07T08:42:44Z
5
1
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "arxiv:2210.11771", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-05T23:06:20Z
--- license: apache-2.0 --- # InformBERT ## Introduction InformBERT is pretrained using variable masking strategy, where informative tokens are masked more frequently compared to other tokens. InformBERT outperforms random masking based pretrained models on the factual recall benchmark LAMA and extractive question answering benchmark SQuAD. More detail: https://arxiv.org/abs/2210.11771 ## How to load ```Python from transformers import BertTokenizer, AutoModel tokenizer = BertTokenizer.from_pretrained("nsadeq/InformBERT") model = AutoModel.from_pretrained("nsadeq/InformBERT") from transformers import pipeline unmasker = pipeline('fill-mask', model='nsadeq/InformBERT',tokenizer=tokenizer) unmasker("SpeedWeek is an American television program on [MASK].") ``` ## Citation ```bibtex @misc{https://doi.org/10.48550/arxiv.2210.11771, doi = {10.48550/ARXIV.2210.11771}, url = {https://arxiv.org/abs/2210.11771}, author = {Sadeq, Nafis and Xu, Canwen and McAuley, Julian}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {InforMask: Unsupervised Informative Masking for Language Model Pretraining}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
bofenghuang/wav2vec2-xls-r-1b-voxpopuli-fr
bofenghuang
2022-11-07T08:40:09Z
19
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "polinaeterna/voxpopuli", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "fr", "dataset:polinaeterna/voxpopuli", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-29T08:19:39Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - polinaeterna/voxpopuli - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - polinaeterna/voxpopuli model-index: - name: Fine-tuned Wav2Vec2 XLS-R 1B model for ASR in French results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Voxpopuli type: polinaeterna/voxpopuli args: fr metrics: - name: Test WER type: wer value: 11.70 - name: Test WER (+LM) type: wer value: 10.01 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 9 type: mozilla-foundation/common_voice_9_0 args: fr metrics: - name: Test WER type: wer value: 45.74 - name: Test WER (+LM) type: wer value: 38.81 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER type: wer value: 27.86 - name: Test WER (+LM) type: wer value: 22.53 --- # Fine-tuned Wav2Vec2 XLS-R 1B model for ASR in French This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the POLINAETERNA/VOXPOPULI - FR dataset. ## Usage 1. To use on a local audio file without the language model ```python import torch import torchaudio from transformers import AutoModelForCTC, Wav2Vec2Processor processor = Wav2Vec2Processor.from_pretrained("bhuang/wav2vec2-xls-r-1b-voxpopuli-fr") model = AutoModelForCTC.from_pretrained("bhuang/wav2vec2-xls-r-1b-voxpopuli-fr").cuda() # path to your audio file wav_path = "example.wav" waveform, sample_rate = torchaudio.load(wav_path) waveform = waveform.squeeze(axis=0) # mono # resample if sample_rate != 16_000: resampler = torchaudio.transforms.Resample(sample_rate, 16_000) waveform = resampler(waveform) # normalize input_dict = processor(waveform, sampling_rate=16_000, return_tensors="pt") with torch.inference_mode(): logits = model(input_dict.input_values.to("cuda")).logits # decode predicted_ids = torch.argmax(logits, dim=-1) predicted_sentence = processor.batch_decode(predicted_ids)[0] ``` 2. To use on a local audio file with the language model ```python import torch import torchaudio from transformers import AutoModelForCTC, Wav2Vec2ProcessorWithLM processor_with_lm = Wav2Vec2ProcessorWithLM.from_pretrained("bhuang/wav2vec2-xls-r-1b-voxpopuli-fr") model = AutoModelForCTC.from_pretrained("bhuang/wav2vec2-xls-r-1b-voxpopuli-fr").cuda() model_sampling_rate = processor_with_lm.feature_extractor.sampling_rate # path to your audio file wav_path = "example.wav" waveform, sample_rate = torchaudio.load(wav_path) waveform = waveform.squeeze(axis=0) # mono # resample if sample_rate != 16_000: resampler = torchaudio.transforms.Resample(sample_rate, 16_000) waveform = resampler(waveform) # normalize input_dict = processor_with_lm(waveform, sampling_rate=16_000, return_tensors="pt") with torch.inference_mode(): logits = model(input_dict.input_values.to("cuda")).logits predicted_sentence = processor_with_lm.batch_decode(logits.cpu().numpy()).text[0] ``` ## Evaluation 1. To evaluate on `polinaeterna/voxpopuli` ```bash python eval.py \ --model_id "bhuang/wav2vec2-xls-r-1b-voxpopuli-fr" \ --dataset "polinaeterna/voxpopuli" \ --config "fr" \ --split "test" \ --log_outputs \ --outdir "outputs/results_polinaeterna_voxpopuli_with_lm" ``` 2. To evaluate on `mozilla-foundation/common_voice_9_0` ```bash python eval.py \ --model_id "bhuang/wav2vec2-xls-r-1b-voxpopuli-fr" \ --dataset "mozilla-foundation/common_voice_9_0" \ --config "fr" \ --split "test" \ --log_outputs \ --outdir "outputs/results_mozilla-foundatio_common_voice_9_0_with_lm" ``` 3. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py \ --model_id "bhuang/wav2vec2-xls-r-1b-voxpopuli-fr" \ --dataset "speech-recognition-community-v2/dev_data" \ --config "fr" \ --split "validation" \ --chunk_length_s 5.0 \ --stride_length_s 1.0 \ --log_outputs \ --outdir "outputs/results_speech-recognition-community-v2_dev_data_with_lm" ```
bofenghuang/wav2vec2-xls-r-1b-cv9-fr
bofenghuang
2022-11-07T08:37:59Z
8
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_9_0", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "fr", "dataset:common_voice", "dataset:mozilla-foundation/common_voice_9_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-12T13:09:54Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_9_0 - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice - mozilla-foundation/common_voice_9_0 model-index: - name: Fine-tuned Wav2Vec2 XLS-R 1B model for ASR in French results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 9 type: mozilla-foundation/common_voice_9_0 args: fr metrics: - name: Test WER type: wer value: 12.72 - name: Test WER (+LM) type: wer value: 10.60 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER type: wer value: 24.28 - name: Test WER (+LM) type: wer value: 20.85 --- # Fine-tuned Wav2Vec2 XLS-R 1B model for ASR in French This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_9_0 - FR dataset. ## Usage 1. To use on a local audio file without the language model ```python import torch import torchaudio from transformers import AutoModelForCTC, Wav2Vec2Processor processor = Wav2Vec2Processor.from_pretrained("bhuang/wav2vec2-xls-r-1b-cv9-fr") model = AutoModelForCTC.from_pretrained("bhuang/wav2vec2-xls-r-1b-cv9-fr").cuda() # path to your audio file wav_path = "example.wav" waveform, sample_rate = torchaudio.load(wav_path) waveform = waveform.squeeze(axis=0) # mono # resample if sample_rate != 16_000: resampler = torchaudio.transforms.Resample(sample_rate, 16_000) waveform = resampler(waveform) # normalize input_dict = processor(waveform, sampling_rate=16_000, return_tensors="pt") with torch.inference_mode(): logits = model(input_dict.input_values.to("cuda")).logits # decode predicted_ids = torch.argmax(logits, dim=-1) predicted_sentence = processor.batch_decode(predicted_ids)[0] ``` 2. To use on a local audio file with the language model ```python import torch import torchaudio from transformers import AutoModelForCTC, Wav2Vec2ProcessorWithLM processor_with_lm = Wav2Vec2ProcessorWithLM.from_pretrained("bhuang/wav2vec2-xls-r-1b-cv9-fr") model = AutoModelForCTC.from_pretrained("bhuang/wav2vec2-xls-r-1b-cv9-fr").cuda() model_sampling_rate = processor_with_lm.feature_extractor.sampling_rate # path to your audio file wav_path = "example.wav" waveform, sample_rate = torchaudio.load(wav_path) waveform = waveform.squeeze(axis=0) # mono # resample if sample_rate != 16_000: resampler = torchaudio.transforms.Resample(sample_rate, 16_000) waveform = resampler(waveform) # normalize input_dict = processor_with_lm(waveform, sampling_rate=16_000, return_tensors="pt") with torch.inference_mode(): logits = model(input_dict.input_values.to("cuda")).logits predicted_sentence = processor_with_lm.batch_decode(logits.cpu().numpy()).text[0] ``` ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_9_0` ```bash python eval.py \ --model_id "bhuang/wav2vec2-xls-r-1b-cv9-fr" \ --dataset "mozilla-foundation/common_voice_9_0" \ --config "fr" \ --split "test" \ --log_outputs \ --outdir "outputs/results_mozilla-foundatio_common_voice_9_0_with_lm" ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py \ --model_id "bhuang/wav2vec2-xls-r-1b-cv9-fr" \ --dataset "speech-recognition-community-v2/dev_data" \ --config "fr" \ --split "validation" \ --chunk_length_s 5.0 \ --stride_length_s 1.0 \ --log_outputs \ --outdir "outputs/results_speech-recognition-community-v2_dev_data_with_lm" ```
ahmadRa/q-FrozenLake-v1-4x4-noSlippery-try1
ahmadRa
2022-11-07T08:04:08Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-07T08:04:02Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery-try1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ahmadRa/q-FrozenLake-v1-4x4-noSlippery-try1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
pig4431/Sentiment140_ALBERT_5E
pig4431
2022-11-07T07:45:04Z
105
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "dataset:sentiment140", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-07T07:44:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - sentiment140 metrics: - accuracy model-index: - name: Sentiment140_ALBERT_5E results: - task: name: Text Classification type: text-classification dataset: name: sentiment140 type: sentiment140 config: sentiment140 split: train args: sentiment140 metrics: - name: Accuracy type: accuracy value: 0.8533333333333334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Sentiment140_ALBERT_5E This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the sentiment140 dataset. It achieves the following results on the evaluation set: - Loss: 0.6103 - Accuracy: 0.8533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6713 | 0.08 | 50 | 0.5704 | 0.7333 | | 0.5742 | 0.16 | 100 | 0.4620 | 0.8 | | 0.5104 | 0.24 | 150 | 0.5536 | 0.74 | | 0.5313 | 0.32 | 200 | 0.5198 | 0.76 | | 0.5023 | 0.4 | 250 | 0.4286 | 0.8 | | 0.4871 | 0.48 | 300 | 0.4294 | 0.8267 | | 0.4513 | 0.56 | 350 | 0.4349 | 0.8133 | | 0.4647 | 0.64 | 400 | 0.4046 | 0.8333 | | 0.4827 | 0.72 | 450 | 0.4218 | 0.8333 | | 0.4517 | 0.8 | 500 | 0.4093 | 0.82 | | 0.4417 | 0.88 | 550 | 0.3999 | 0.84 | | 0.4701 | 0.96 | 600 | 0.3779 | 0.8867 | | 0.397 | 1.04 | 650 | 0.3730 | 0.8667 | | 0.3377 | 1.12 | 700 | 0.3833 | 0.8333 | | 0.411 | 1.2 | 750 | 0.3704 | 0.84 | | 0.3796 | 1.28 | 800 | 0.3472 | 0.86 | | 0.3523 | 1.36 | 850 | 0.3512 | 0.8733 | | 0.3992 | 1.44 | 900 | 0.3712 | 0.84 | | 0.3641 | 1.52 | 950 | 0.3718 | 0.82 | | 0.3973 | 1.6 | 1000 | 0.3508 | 0.84 | | 0.3576 | 1.68 | 1050 | 0.3600 | 0.86 | | 0.3701 | 1.76 | 1100 | 0.3287 | 0.8667 | | 0.3721 | 1.84 | 1150 | 0.3794 | 0.82 | | 0.3673 | 1.92 | 1200 | 0.3378 | 0.8733 | | 0.4223 | 2.0 | 1250 | 0.3508 | 0.86 | | 0.2745 | 2.08 | 1300 | 0.3835 | 0.86 | | 0.283 | 2.16 | 1350 | 0.3500 | 0.8533 | | 0.2769 | 2.24 | 1400 | 0.3334 | 0.8733 | | 0.2491 | 2.32 | 1450 | 0.3519 | 0.8867 | | 0.3237 | 2.4 | 1500 | 0.3438 | 0.86 | | 0.2662 | 2.48 | 1550 | 0.3513 | 0.8667 | | 0.2423 | 2.56 | 1600 | 0.3413 | 0.8867 | | 0.2655 | 2.64 | 1650 | 0.3126 | 0.8933 | | 0.2516 | 2.72 | 1700 | 0.3333 | 0.8733 | | 0.252 | 2.8 | 1750 | 0.3316 | 0.88 | | 0.2872 | 2.88 | 1800 | 0.3227 | 0.9 | | 0.306 | 2.96 | 1850 | 0.3383 | 0.8733 | | 0.248 | 3.04 | 1900 | 0.3474 | 0.8733 | | 0.1507 | 3.12 | 1950 | 0.4140 | 0.8667 | | 0.1994 | 3.2 | 2000 | 0.3729 | 0.8533 | | 0.167 | 3.28 | 2050 | 0.3782 | 0.8867 | | 0.1872 | 3.36 | 2100 | 0.4352 | 0.8867 | | 0.1611 | 3.44 | 2150 | 0.4511 | 0.8667 | | 0.2338 | 3.52 | 2200 | 0.4244 | 0.8533 | | 0.1538 | 3.6 | 2250 | 0.4226 | 0.8733 | | 0.1561 | 3.68 | 2300 | 0.4126 | 0.88 | | 0.2156 | 3.76 | 2350 | 0.4382 | 0.86 | | 0.1684 | 3.84 | 2400 | 0.4969 | 0.86 | | 0.1917 | 3.92 | 2450 | 0.4439 | 0.8667 | | 0.1584 | 4.0 | 2500 | 0.4759 | 0.86 | | 0.1038 | 4.08 | 2550 | 0.5042 | 0.8667 | | 0.0983 | 4.16 | 2600 | 0.5527 | 0.8533 | | 0.1404 | 4.24 | 2650 | 0.5801 | 0.84 | | 0.0844 | 4.32 | 2700 | 0.5884 | 0.86 | | 0.1347 | 4.4 | 2750 | 0.5865 | 0.8467 | | 0.1373 | 4.48 | 2800 | 0.5915 | 0.8533 | | 0.1506 | 4.56 | 2850 | 0.5976 | 0.8467 | | 0.1007 | 4.64 | 2900 | 0.6678 | 0.82 | | 0.1311 | 4.72 | 2950 | 0.6082 | 0.8533 | | 0.1402 | 4.8 | 3000 | 0.6180 | 0.8467 | | 0.1363 | 4.88 | 3050 | 0.6107 | 0.8533 | | 0.0995 | 4.96 | 3100 | 0.6103 | 0.8533 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.1
ntsema/wav2vec2-xlsr-53-espeak-cv-ft-sah-ntsema-colab
ntsema
2022-11-07T07:24:16Z
132
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:audiofolder", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-07T04:24:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: wav2vec2-xlsr-53-espeak-cv-ft-sah-ntsema-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Wer type: wer value: 0.2246858832224686 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-53-espeak-cv-ft-sah-ntsema-colab This model is a fine-tuned version of [facebook/wav2vec2-xlsr-53-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2143 - Wer: 0.2247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.7431 | 5.71 | 400 | 0.2879 | 0.4054 | | 0.1876 | 11.42 | 800 | 0.2349 | 0.3023 | | 0.0986 | 17.14 | 1200 | 0.2248 | 0.2701 | | 0.0737 | 22.85 | 1600 | 0.2242 | 0.2428 | | 0.0546 | 28.57 | 2000 | 0.2143 | 0.2247 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.14.0.dev20221105+cu116 - Datasets 2.6.1 - Tokenizers 0.13.1
pig4431/amazonPolarity_fewshot
pig4431
2022-11-07T07:23:26Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-07T07:23:13Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 160 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 160, "warmup_steps": 16, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
pig4431/IMDB_fewshot
pig4431
2022-11-07T06:51:38Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-06T21:07:06Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 160 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 160, "warmup_steps": 16, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
pig4431/Sentiment140_XLNET_5E
pig4431
2022-11-07T06:22:19Z
89
0
transformers
[ "transformers", "pytorch", "xlnet", "text-classification", "generated_from_trainer", "dataset:sentiment140", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-07T06:20:23Z
--- license: mit tags: - generated_from_trainer datasets: - sentiment140 metrics: - accuracy model-index: - name: Sentiment140_XLNET_5E results: - task: name: Text Classification type: text-classification dataset: name: sentiment140 type: sentiment140 config: sentiment140 split: train args: sentiment140 metrics: - name: Accuracy type: accuracy value: 0.84 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Sentiment140_XLNET_5E This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the sentiment140 dataset. It achieves the following results on the evaluation set: - Loss: 0.3797 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6687 | 0.08 | 50 | 0.5194 | 0.76 | | 0.5754 | 0.16 | 100 | 0.4500 | 0.7867 | | 0.5338 | 0.24 | 150 | 0.3725 | 0.8333 | | 0.5065 | 0.32 | 200 | 0.4093 | 0.8133 | | 0.4552 | 0.4 | 250 | 0.3910 | 0.8267 | | 0.5352 | 0.48 | 300 | 0.3888 | 0.82 | | 0.415 | 0.56 | 350 | 0.3887 | 0.8267 | | 0.4716 | 0.64 | 400 | 0.3888 | 0.84 | | 0.4565 | 0.72 | 450 | 0.3619 | 0.84 | | 0.4447 | 0.8 | 500 | 0.3758 | 0.8333 | | 0.4407 | 0.88 | 550 | 0.3664 | 0.8133 | | 0.46 | 0.96 | 600 | 0.3797 | 0.84 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.1
fimu-docproc-research/master_0.0.1_DoctrOcrEngine
fimu-docproc-research
2022-11-07T06:00:27Z
5
0
transformers
[ "transformers", "pytorch", "cz", "endpoints_compatible", "region:us" ]
null
2022-11-06T20:56:46Z
--- language: cz --- **Optical Character Recognition made seamless & accessible to anyone, powered by PyTorch** ## Task: recognition ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_resnet50', >>> reco_arch=model, >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ``` Training configuration and logs: https://wandb.ai/xbankov/text-recognition ### Run Configuration { "hf_dataset_name": "fimu-docproc-research/born_digital", "name": "master_20221106-223158", "epochs": 50, "lr": 0.001, "weight_decay": 0, "batch_size": 512, "input_size": 32, "sched": "cosine", "sample": null, "workers": 16, "wb": true, "push_to_hub": "fimu-docproc-research/master_0.0.1", "test_only": false, "arch": "master" }
tkubotake/xlm-roberta-base-finetuned-panx-fr
tkubotake
2022-11-07T04:39:39Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-07T02:57:03Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.fr split: train args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8635672020287405 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [tkubotake/xlm-roberta-base-finetuned-panx-de](https://huggingface.co/tkubotake/xlm-roberta-base-finetuned-panx-de) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4157 - F1: 0.8636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0847 | 1.0 | 191 | 0.4066 | 0.8524 | | 0.0574 | 2.0 | 382 | 0.4025 | 0.8570 | | 0.0333 | 3.0 | 573 | 0.4157 | 0.8636 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
jrtec/jrtec-gpt2-text-generation-quotes-jonathan-vargas
jrtec
2022-11-07T04:26:10Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "quotes", "quote", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-06T03:21:37Z
--- license: mit tags: - text-generation - quotes - quote - generated_from_trainer model-index: - name: jrtec-gpt2-text-generation-quotes-jonathan-vargas results: [] widget: - text: "life: " example_title: "Life quote" - text: "death: " example_title: "Death quote" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # jrtec-gpt2-text-generation-quotes-jonathan-vargas This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the datasetX dataset. It achieves the following results on the evaluation set: - Loss: 0.7033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7463 | 1.71 | 500 | 0.7033 | | 0.4281 | 3.41 | 1000 | 0.7084 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Marve271/BartConditionalGeneration-bart-large-finetuned-insult
Marve271
2022-11-07T04:05:25Z
182
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-06T19:15:18Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: BartConditionalGeneration-bart-large-finetuned-insult results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BartConditionalGeneration-bart-large-finetuned-insult This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.7901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.6217 | 1.0 | 568 | 4.5864 | | 4.7444 | 2.0 | 1136 | nan | | 4.2308 | 3.0 | 1704 | 3.7590 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
salascorp/categorizacion_comercios_v_0.0.7
salascorp
2022-11-07T03:24:01Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-07T02:51:40Z
--- license: apache-2.0 tags: - text-classification - generated_from_trainer metrics: - accuracy model-index: - name: categorizacion_comercios_v_0.0.7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # categorizacion_comercios_v_0.0.7 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the datasetX dataset. It achieves the following results on the evaluation set: - Loss: 0.4673 - Accuracy: 0.9125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.13.0+cpu - Datasets 2.6.1 - Tokenizers 0.13.1
Formzu/bart-large-japanese
Formzu
2022-11-07T03:06:32Z
6
1
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "bart", "ja", "dataset:wikipedia", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-31T06:53:19Z
--- language: - ja license: mit tags: - bart - pytorch datasets: - wikipedia --- # bart-large-japanese This model is converted from the original [Japanese BART Pretrained model](https://nlp.ist.i.kyoto-u.ac.jp/?BART%E6%97%A5%E6%9C%AC%E8%AA%9EPretrained%E3%83%A2%E3%83%87%E3%83%AB) released by Kyoto University. Both the encoder and decoder outputs are identical to the original Fairseq model. ### How to use the model The input text should be tokenized by [BartJapaneseTokenizer](https://huggingface.co/Formzu/bart-large-japanese/blob/main/tokenization_bart_japanese.py). Tokenizer requirements: * [Juman++](https://github.com/ku-nlp/jumanpp) * [zenhan](https://pypi.org/project/zenhan/) * [pyknp](https://pypi.org/project/pyknp/) * [sentencepiece](https://pypi.org/project/sentencepiece/) #### Simple FillMaskPipeline ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline model_name = "Formzu/bart-large-japanese" model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) masked_text = "天気が<mask>から散歩しましょう。" fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer) out = fill_mask(masked_text) print(out) # [{'score': 0.03228279948234558, 'token': 2566, 'token_str': 'いい', 'sequence': '天気 が いい から 散歩 し ましょう 。'}, # {'score': 0.023878807201981544, 'token': 27365, 'token_str': '晴れ', 'sequence': '天気 が 晴れ から 散歩 し ましょう 。'}, # {'score': 0.020059829577803612, 'token': 267, 'token_str': '南', 'sequence': '天気 が 南 から 散歩 し ましょう 。'}, # {'score': 0.013921134173870087, 'token': 17, 'token_str': 'な', 'sequence': '天気 が な から 散歩 し ましょう 。'}, # {'score': 0.013069136068224907, 'token': 1718, 'token_str': 'よく', 'sequence': '天気 が よく から 散歩 し ましょう 。'}] ``` #### Text Generation ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import torch device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model_name = "Formzu/bart-large-japanese" model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) masked_text = "天気が<mask>から散歩しましょう。" inp = tokenizer(masked_text, return_tensors='pt').to(device) out = model.generate(**inp, num_beams=1, min_length=0, max_length=20, early_stopping=True, no_repeat_ngram_size=2) res = "".join(tokenizer.decode(out.squeeze(0).tolist(), skip_special_tokens=True).split(" ")) print(res) # 天気がいいから散歩しましょう。天気のいいへやから、ここから ``` ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Tokenizers 0.12.1
huggingtweets/h3xenbrenner2-s4m31p4n-tallbart
huggingtweets
2022-11-07T00:22:34Z
107
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-07T00:22:25Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1396839225249734657/GG6ve7Qv_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1542608466077855744/a0q2rR-P_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529675700772302848/uXtYNx_v_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">h b & very tall bart & ppigg</div> <div style="text-align: center; font-size: 14px;">@h3xenbrenner2-s4m31p4n-tallbart</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from h b & very tall bart & ppigg. | Data | h b | very tall bart | ppigg | | --- | --- | --- | --- | | Tweets downloaded | 1230 | 3194 | 3008 | | Retweets | 75 | 381 | 957 | | Short tweets | 155 | 569 | 643 | | Tweets kept | 1000 | 2244 | 1408 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/34qe4a18/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @h3xenbrenner2-s4m31p4n-tallbart's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/kg3j88xz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/kg3j88xz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/h3xenbrenner2-s4m31p4n-tallbart') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/gleampt2-h3xenbrenner2-kidddozer
huggingtweets
2022-11-06T23:40:24Z
97
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-06T23:39:09Z
--- language: en thumbnail: http://www.huggingtweets.com/gleampt2-h3xenbrenner2-kidddozer/1667778020169/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1396839225249734657/GG6ve7Qv_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1509747695795118080/Vz0be-8x_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1380052646178996227/fmYX0h3D_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">h b & Pepper Boy & gleam</div> <div style="text-align: center; font-size: 14px;">@gleampt2-h3xenbrenner2-kidddozer</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from h b & Pepper Boy & gleam. | Data | h b | Pepper Boy | gleam | | --- | --- | --- | --- | | Tweets downloaded | 1231 | 2848 | 2305 | | Retweets | 75 | 690 | 196 | | Short tweets | 155 | 442 | 170 | | Tweets kept | 1001 | 1716 | 1939 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/336sqi28/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gleampt2-h3xenbrenner2-kidddozer's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/hhg4q0io) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/hhg4q0io/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gleampt2-h3xenbrenner2-kidddozer') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lewtun/distilhubert-finetuned-gtzan
lewtun
2022-11-06T21:05:59Z
31
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "hf-course", "generated_from_trainer", "dataset:marsyas/gtzan", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-14T17:10:18Z
--- license: apache-2.0 tags: - hf-course - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6694 - Accuracy: 0.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.99 | 56 | 1.9426 | 0.5 | | No log | 1.99 | 112 | 1.4157 | 0.63 | | No log | 2.99 | 168 | 1.1351 | 0.69 | | No log | 3.99 | 224 | 1.0285 | 0.72 | | No log | 4.99 | 280 | 0.8538 | 0.79 | | No log | 5.99 | 336 | 0.8015 | 0.74 | | No log | 6.99 | 392 | 0.6694 | 0.82 | | No log | 7.99 | 448 | 0.6779 | 0.79 | | 1.0811 | 8.99 | 504 | 0.6414 | 0.81 | | 1.0811 | 9.99 | 560 | 0.6443 | 0.82 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0 - Datasets 2.6.1 - Tokenizers 0.11.6
pig4431/amazonPolarity_DistilBERT_5E
pig4431
2022-11-06T20:58:38Z
107
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:amazon_polarity", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-06T20:54:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_polarity metrics: - accuracy model-index: - name: amazonPolarity_DistilBERT_5EE results: - task: name: Text Classification type: text-classification dataset: name: amazon_polarity type: amazon_polarity config: amazon_polarity split: train args: amazon_polarity metrics: - name: Accuracy type: accuracy value: 0.94 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazonPolarity_DistilBERT_5EE This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the amazon_polarity dataset. It achieves the following results on the evaluation set: - Loss: 0.2899 - Accuracy: 0.94 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6581 | 0.03 | 50 | 0.5315 | 0.84 | | 0.4321 | 0.05 | 100 | 0.2897 | 0.8933 | | 0.298 | 0.08 | 150 | 0.3165 | 0.8667 | | 0.2902 | 0.11 | 200 | 0.2552 | 0.9067 | | 0.2824 | 0.13 | 250 | 0.2277 | 0.9133 | | 0.2522 | 0.16 | 300 | 0.1998 | 0.94 | | 0.2781 | 0.19 | 350 | 0.1933 | 0.94 | | 0.2668 | 0.21 | 400 | 0.2316 | 0.92 | | 0.2619 | 0.24 | 450 | 0.1968 | 0.9333 | | 0.2446 | 0.27 | 500 | 0.1846 | 0.9467 | | 0.2677 | 0.29 | 550 | 0.1818 | 0.94 | | 0.2026 | 0.32 | 600 | 0.2348 | 0.9133 | | 0.2351 | 0.35 | 650 | 0.2127 | 0.92 | | 0.2685 | 0.37 | 700 | 0.1792 | 0.94 | | 0.2141 | 0.4 | 750 | 0.2252 | 0.9133 | | 0.2193 | 0.43 | 800 | 0.2131 | 0.9267 | | 0.2456 | 0.45 | 850 | 0.2205 | 0.9133 | | 0.2548 | 0.48 | 900 | 0.1788 | 0.94 | | 0.2353 | 0.51 | 950 | 0.1954 | 0.9267 | | 0.2546 | 0.53 | 1000 | 0.1815 | 0.9333 | | 0.2583 | 0.56 | 1050 | 0.1654 | 0.9333 | | 0.219 | 0.59 | 1100 | 0.1760 | 0.9467 | | 0.2241 | 0.61 | 1150 | 0.2107 | 0.92 | | 0.2201 | 0.64 | 1200 | 0.2381 | 0.8933 | | 0.1745 | 0.67 | 1250 | 0.1944 | 0.92 | | 0.2698 | 0.69 | 1300 | 0.1971 | 0.9267 | | 0.214 | 0.72 | 1350 | 0.1944 | 0.9333 | | 0.2436 | 0.75 | 1400 | 0.2079 | 0.92 | | 0.2318 | 0.77 | 1450 | 0.2088 | 0.9333 | | 0.2206 | 0.8 | 1500 | 0.1875 | 0.94 | | 0.2593 | 0.83 | 1550 | 0.1797 | 0.9267 | | 0.1908 | 0.85 | 1600 | 0.1924 | 0.9333 | | 0.2378 | 0.88 | 1650 | 0.1649 | 0.9267 | | 0.2332 | 0.91 | 1700 | 0.1768 | 0.94 | | 0.2125 | 0.93 | 1750 | 0.2276 | 0.92 | | 0.2174 | 0.96 | 1800 | 0.2035 | 0.9333 | | 0.19 | 0.99 | 1850 | 0.1805 | 0.94 | | 0.1515 | 1.01 | 1900 | 0.1832 | 0.94 | | 0.1671 | 1.04 | 1950 | 0.1902 | 0.94 | | 0.171 | 1.07 | 2000 | 0.2468 | 0.9267 | | 0.1495 | 1.09 | 2050 | 0.2276 | 0.9267 | | 0.1535 | 1.12 | 2100 | 0.1926 | 0.94 | | 0.2085 | 1.15 | 2150 | 0.1878 | 0.94 | | 0.1395 | 1.17 | 2200 | 0.1795 | 0.9467 | | 0.1556 | 1.2 | 2250 | 0.1554 | 0.9467 | | 0.1273 | 1.23 | 2300 | 0.1707 | 0.94 | | 0.1873 | 1.25 | 2350 | 0.1867 | 0.9467 | | 0.1589 | 1.28 | 2400 | 0.2089 | 0.9333 | | 0.1426 | 1.31 | 2450 | 0.1797 | 0.9467 | | 0.149 | 1.33 | 2500 | 0.1991 | 0.9333 | | 0.1535 | 1.36 | 2550 | 0.2116 | 0.94 | | 0.1671 | 1.39 | 2600 | 0.1704 | 0.9467 | | 0.1582 | 1.41 | 2650 | 0.1843 | 0.94 | | 0.1393 | 1.44 | 2700 | 0.1831 | 0.94 | | 0.1474 | 1.47 | 2750 | 0.1895 | 0.94 | | 0.203 | 1.49 | 2800 | 0.1843 | 0.9467 | | 0.1562 | 1.52 | 2850 | 0.2060 | 0.9467 | | 0.1886 | 1.55 | 2900 | 0.1837 | 0.94 | | 0.1332 | 1.57 | 2950 | 0.1920 | 0.9467 | | 0.1519 | 1.6 | 3000 | 0.1789 | 0.9533 | | 0.1354 | 1.63 | 3050 | 0.1974 | 0.9467 | | 0.125 | 1.65 | 3100 | 0.1890 | 0.9533 | | 0.2044 | 1.68 | 3150 | 0.1755 | 0.9533 | | 0.1746 | 1.71 | 3200 | 0.1607 | 0.9467 | | 0.1981 | 1.73 | 3250 | 0.1613 | 0.9533 | | 0.1276 | 1.76 | 3300 | 0.1825 | 0.96 | | 0.1935 | 1.79 | 3350 | 0.1707 | 0.9533 | | 0.1848 | 1.81 | 3400 | 0.1697 | 0.96 | | 0.1596 | 1.84 | 3450 | 0.1581 | 0.9667 | | 0.1797 | 1.87 | 3500 | 0.1634 | 0.96 | | 0.1493 | 1.89 | 3550 | 0.1614 | 0.9533 | | 0.1703 | 1.92 | 3600 | 0.1673 | 0.9467 | | 0.1951 | 1.95 | 3650 | 0.1589 | 0.9533 | | 0.1582 | 1.97 | 3700 | 0.1761 | 0.9467 | | 0.1974 | 2.0 | 3750 | 0.1918 | 0.94 | | 0.1056 | 2.03 | 3800 | 0.2063 | 0.94 | | 0.1109 | 2.05 | 3850 | 0.2031 | 0.9467 | | 0.113 | 2.08 | 3900 | 0.2118 | 0.9467 | | 0.0834 | 2.11 | 3950 | 0.1974 | 0.9533 | | 0.1434 | 2.13 | 4000 | 0.2075 | 0.9533 | | 0.0691 | 2.16 | 4050 | 0.2178 | 0.9533 | | 0.1144 | 2.19 | 4100 | 0.2383 | 0.9467 | | 0.1446 | 2.21 | 4150 | 0.2207 | 0.9533 | | 0.172 | 2.24 | 4200 | 0.2034 | 0.9467 | | 0.1026 | 2.27 | 4250 | 0.2048 | 0.9467 | | 0.1131 | 2.29 | 4300 | 0.2334 | 0.9467 | | 0.121 | 2.32 | 4350 | 0.2367 | 0.9333 | | 0.1144 | 2.35 | 4400 | 0.2313 | 0.9467 | | 0.1089 | 2.37 | 4450 | 0.2352 | 0.9533 | | 0.1193 | 2.4 | 4500 | 0.2440 | 0.94 | | 0.0689 | 2.43 | 4550 | 0.2379 | 0.9333 | | 0.1799 | 2.45 | 4600 | 0.2354 | 0.9467 | | 0.1068 | 2.48 | 4650 | 0.2158 | 0.9533 | | 0.0974 | 2.51 | 4700 | 0.2456 | 0.94 | | 0.0637 | 2.53 | 4750 | 0.2191 | 0.9333 | | 0.1125 | 2.56 | 4800 | 0.2390 | 0.9467 | | 0.1706 | 2.59 | 4850 | 0.2407 | 0.94 | | 0.1533 | 2.61 | 4900 | 0.2242 | 0.9533 | | 0.1357 | 2.64 | 4950 | 0.2119 | 0.9533 | | 0.1342 | 2.67 | 5000 | 0.2268 | 0.9467 | | 0.0796 | 2.69 | 5050 | 0.2450 | 0.9467 | | 0.1351 | 2.72 | 5100 | 0.2499 | 0.94 | | 0.1285 | 2.75 | 5150 | 0.2252 | 0.94 | | 0.1563 | 2.77 | 5200 | 0.2191 | 0.94 | | 0.1022 | 2.8 | 5250 | 0.2256 | 0.9533 | | 0.11 | 2.83 | 5300 | 0.2365 | 0.9467 | | 0.0926 | 2.85 | 5350 | 0.2206 | 0.9467 | | 0.1043 | 2.88 | 5400 | 0.2018 | 0.9533 | | 0.1041 | 2.91 | 5450 | 0.2268 | 0.9467 | | 0.1232 | 2.93 | 5500 | 0.2164 | 0.9467 | | 0.1537 | 2.96 | 5550 | 0.1956 | 0.9533 | | 0.1188 | 2.99 | 5600 | 0.2126 | 0.9467 | | 0.0749 | 3.01 | 5650 | 0.2249 | 0.9467 | | 0.062 | 3.04 | 5700 | 0.2254 | 0.9467 | | 0.0755 | 3.07 | 5750 | 0.2472 | 0.94 | | 0.0866 | 3.09 | 5800 | 0.2569 | 0.94 | | 0.0502 | 3.12 | 5850 | 0.2481 | 0.9467 | | 0.1158 | 3.15 | 5900 | 0.2457 | 0.94 | | 0.0413 | 3.17 | 5950 | 0.2500 | 0.94 | | 0.0966 | 3.2 | 6000 | 0.2851 | 0.9333 | | 0.0613 | 3.23 | 6050 | 0.2717 | 0.9467 | | 0.1029 | 3.25 | 6100 | 0.2714 | 0.94 | | 0.0833 | 3.28 | 6150 | 0.2683 | 0.94 | | 0.0928 | 3.31 | 6200 | 0.2490 | 0.9467 | | 0.0571 | 3.33 | 6250 | 0.2575 | 0.9533 | | 0.1252 | 3.36 | 6300 | 0.2599 | 0.9467 | | 0.0788 | 3.39 | 6350 | 0.2522 | 0.9467 | | 0.0862 | 3.41 | 6400 | 0.2489 | 0.9533 | | 0.112 | 3.44 | 6450 | 0.2452 | 0.9533 | | 0.0868 | 3.47 | 6500 | 0.2438 | 0.9533 | | 0.0979 | 3.49 | 6550 | 0.2474 | 0.94 | | 0.0739 | 3.52 | 6600 | 0.2508 | 0.94 | | 0.0786 | 3.55 | 6650 | 0.2621 | 0.94 | | 0.0872 | 3.57 | 6700 | 0.2543 | 0.9333 | | 0.0962 | 3.6 | 6750 | 0.2347 | 0.9467 | | 0.124 | 3.63 | 6800 | 0.2319 | 0.9533 | | 0.0747 | 3.65 | 6850 | 0.2448 | 0.9533 | | 0.0591 | 3.68 | 6900 | 0.2379 | 0.94 | | 0.1049 | 3.71 | 6950 | 0.2493 | 0.9333 | | 0.0772 | 3.73 | 7000 | 0.2429 | 0.94 | | 0.071 | 3.76 | 7050 | 0.2558 | 0.94 | | 0.1116 | 3.79 | 7100 | 0.2600 | 0.94 | | 0.1199 | 3.81 | 7150 | 0.2480 | 0.94 | | 0.0819 | 3.84 | 7200 | 0.2506 | 0.94 | | 0.1054 | 3.87 | 7250 | 0.2431 | 0.94 | | 0.09 | 3.89 | 7300 | 0.2582 | 0.9333 | | 0.0936 | 3.92 | 7350 | 0.2460 | 0.94 | | 0.0469 | 3.95 | 7400 | 0.2509 | 0.94 | | 0.1101 | 3.97 | 7450 | 0.2545 | 0.9467 | | 0.1077 | 4.0 | 7500 | 0.2640 | 0.9467 | | 0.0777 | 4.03 | 7550 | 0.2709 | 0.94 | | 0.0777 | 4.05 | 7600 | 0.2842 | 0.94 | | 0.0847 | 4.08 | 7650 | 0.2649 | 0.94 | | 0.0462 | 4.11 | 7700 | 0.2702 | 0.9467 | | 0.0572 | 4.13 | 7750 | 0.2628 | 0.94 | | 0.0435 | 4.16 | 7800 | 0.2689 | 0.9467 | | 0.0566 | 4.19 | 7850 | 0.2727 | 0.9467 | | 0.1149 | 4.21 | 7900 | 0.2635 | 0.9467 | | 0.0557 | 4.24 | 7950 | 0.2665 | 0.9467 | | 0.061 | 4.27 | 8000 | 0.2680 | 0.9467 | | 0.0664 | 4.29 | 8050 | 0.2767 | 0.9467 | | 0.0481 | 4.32 | 8100 | 0.2662 | 0.9467 | | 0.0893 | 4.35 | 8150 | 0.2677 | 0.9467 | | 0.0855 | 4.37 | 8200 | 0.2733 | 0.9467 | | 0.0552 | 4.4 | 8250 | 0.2589 | 0.94 | | 0.0469 | 4.43 | 8300 | 0.2733 | 0.94 | | 0.0633 | 4.45 | 8350 | 0.2799 | 0.94 | | 0.0629 | 4.48 | 8400 | 0.2838 | 0.94 | | 0.0854 | 4.51 | 8450 | 0.2837 | 0.94 | | 0.0596 | 4.53 | 8500 | 0.2808 | 0.94 | | 0.0579 | 4.56 | 8550 | 0.2839 | 0.94 | | 0.0508 | 4.59 | 8600 | 0.2844 | 0.94 | | 0.0557 | 4.61 | 8650 | 0.2833 | 0.94 | | 0.0383 | 4.64 | 8700 | 0.2878 | 0.94 | | 0.0554 | 4.67 | 8750 | 0.2924 | 0.94 | | 0.0681 | 4.69 | 8800 | 0.2868 | 0.94 | | 0.065 | 4.72 | 8850 | 0.2888 | 0.94 | | 0.0731 | 4.75 | 8900 | 0.2946 | 0.94 | | 0.0638 | 4.77 | 8950 | 0.2886 | 0.94 | | 0.043 | 4.8 | 9000 | 0.2867 | 0.94 | | 0.0658 | 4.83 | 9050 | 0.2872 | 0.94 | | 0.0249 | 4.85 | 9100 | 0.2882 | 0.94 | | 0.0612 | 4.88 | 9150 | 0.2902 | 0.94 | | 0.0271 | 4.91 | 9200 | 0.2890 | 0.94 | | 0.0308 | 4.93 | 9250 | 0.2897 | 0.94 | | 0.0896 | 4.96 | 9300 | 0.2898 | 0.94 | | 0.1172 | 4.99 | 9350 | 0.2899 | 0.94 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
keith97/bert-small2bert-small-finetuned-cnn_daily_mail-summarization-newsroom-filtered
keith97
2022-11-06T20:26:08Z
113
0
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-06T20:10:36Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bert-small2bert-small-finetuned-cnn_daily_mail-summarization-newsroom-filtered results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small2bert-small-finetuned-cnn_daily_mail-summarization-newsroom-filtered This model is a fine-tuned version of [mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization](https://huggingface.co/mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.5413 - Rouge1: 32.3232 - Rouge2: 20.9203 - Rougel: 27.232 - Rougelsum: 29.345 - Gen Len: 72.2217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 3.796 | 0.89 | 405 | 3.6945 | 29.7168 | 17.6705 | 24.4204 | 26.484 | 69.6847 | | 3.6426 | 1.78 | 810 | 3.5532 | 32.3051 | 20.8789 | 27.1724 | 29.384 | 72.3695 | | 3.2645 | 2.66 | 1215 | 3.5437 | 32.2016 | 20.758 | 27.083 | 29.0954 | 73.3892 | | 3.1719 | 3.55 | 1620 | 3.5377 | 32.5493 | 21.083 | 27.0881 | 29.4691 | 71.5222 | | 2.9763 | 4.44 | 2025 | 3.5413 | 32.3232 | 20.9203 | 27.232 | 29.345 | 72.2217 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
andrewkroening/GalaxyFarAway-DialoGPT-LeiaOrgana
andrewkroening
2022-11-06T20:13:52Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "en", "license:cc", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-06T20:12:57Z
--- language: en tags: - conversational license: cc --- # GPT-2 This model is based on a GPT-2 model which was fine-tuned on a Hugging Face dataset. It is intended largely as an illustrative example and is not intended to be used for any serious purpose. It's trained on a movie script for goodness' sake. Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Acknowledgements There are several sources of inspiration and insight for the project that spawned this model. I'd like to recognize them up front: * The [Microsoft DialoGPT-Medium](https://huggingface.co/microsoft/DialoGPT-medium?text=Hi.) model page was very insightful for getting stated. * Lynn Zheng [r3dhummingbird](https://huggingface.co/r3dhummingbird/DialoGPT-medium-joshua?text=Hey+my+name+is+Thomas%21+How+are+you%3F) put together one heck of an awesome tutorial on how to fine-tune GPT-2 for conversational purposes. I used her tutorial as a starting point for this project. Check out the [Github repo here.](https://github.com/RuolinZheng08/twewy-discord-chatbot) * [This article](https://towardsdatascience.com/make-your-own-rick-sanchez-bot-with-transformers-and-dialogpt-fine-tuning-f85e6d1f4e30) was also very insightful. Written by Rostyslav Neskorozhenyi. * From a lineage standpoint, it looks like Nathan Cooper kicked this whole thing off with this [notebook.](https://github.com/ncoop57/i-am-a-nerd/blob/master/_notebooks/2020-05-12-chatbot-part-1.ipynb) * Noah Gift figured out a few of the big pieces in [this repository.](https://github.com/nogibjj/hugging-face-tutorial-practice) * I'd be remiss if I also didn't mention Hugging Face's own support [documentation](https://huggingface.co/transformers/v2.0.0/examples.html#gpt-2-gpt-and-causal-language-modeling) and team. All around great. ## Model description This model uses GPT-2 Medium as a base model and was fine-tuned using scripts from the original (and best) Star Wars Trilogy. In this particular case, it was fine-tuned on Leia Organa's 220-some lines. This is not a lot, and thus the model should not be assumed to have serious integrity. It's just a fun little project. ## Intended uses & limitations This model is intended to be used for fun and entertainment. Don't take it too seriously. ### Ways to use You can always chat with the model directly on the Hugging Face website. Just click the "Chat" button on the right side of the model page. If you want to use the model in your own project, I recommend you train it better using much more data. To access the GitHub repository I used to train this model, click [here](https://github.com/nogibjj/hugging-face-gpt-trainer/tree/gpt-fine-tune) ## Fine-tuning data The script to generate this model takes a Hugging Face data set in this approximate format: | Speaker | Text | | --- | --- | | Luke | Hello there. | | Han | General Kenobi. | | Luke | You are a bold one. | The script then asks the user to define parameters for making the dataset and proceeding to fine-tuning. The actual dataset for this model can be found [here.](andrewkroening/Star-wars-scripts-dialogue-IV-VI)
andrewkroening/GalaxyFarAway-DialoGPT-LukeSkywalker
andrewkroening
2022-11-06T19:50:52Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "en", "license:cc", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-06T19:48:55Z
--- language: en tags: - conversational license: cc --- # GPT-2 This model is based on a GPT-2 model which was fine-tuned on a Hugging Face dataset. It is intended largely as an illustrative example and is not intended to be used for any serious purpose. It's trained on a movie script for goodness' sake. Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Acknowledgements There are several sources of inspiration and insight for the project that spawned this model. I'd like to recognize them up front: * The [Microsoft DialoGPT-Medium](https://huggingface.co/microsoft/DialoGPT-medium?text=Hi.) model page was very insightful for getting stated. * Lynn Zheng [r3dhummingbird](https://huggingface.co/r3dhummingbird/DialoGPT-medium-joshua?text=Hey+my+name+is+Thomas%21+How+are+you%3F) put together one heck of an awesome tutorial on how to fine-tune GPT-2 for conversational purposes. I used her tutorial as a starting point for this project. Check out the [Github repo here.](https://github.com/RuolinZheng08/twewy-discord-chatbot) * [This article](https://towardsdatascience.com/make-your-own-rick-sanchez-bot-with-transformers-and-dialogpt-fine-tuning-f85e6d1f4e30) was also very insightful. Written by Rostyslav Neskorozhenyi. * From a lineage standpoint, it looks like Nathan Cooper kicked this whole thing off with this [notebook.](https://github.com/ncoop57/i-am-a-nerd/blob/master/_notebooks/2020-05-12-chatbot-part-1.ipynb) * Noah Gift figured out a few of the big pieces in [this repository.](https://github.com/nogibjj/hugging-face-tutorial-practice) * I'd be remiss if I also didn't mention Hugging Face's own support [documentation](https://huggingface.co/transformers/v2.0.0/examples.html#gpt-2-gpt-and-causal-language-modeling) and team. All around great. ## Model description This model uses GPT-2 Medium as a base model and was fine-tuned using scripts from the original (and best) Star Wars Trilogy. In this particular case, it was fine-tuned on Luke Skywalker's 490-some lines. This is not a lot, and thus the model should not be assumed to have serious integrity. It's just a fun little project. ## Intended uses & limitations This model is intended to be used for fun and entertainment. Don't take it too seriously. ### Ways to use You can always chat with the model directly on the Hugging Face website. Just click the "Chat" button on the right side of the model page. If you want to use the model in your own project, I recommend you train it better using much more data. To access the GitHub repository I used to train this model, click [here](https://github.com/nogibjj/hugging-face-gpt-trainer/tree/gpt-fine-tune) ## Fine-tuning data The script to generate this model takes a Hugging Face data set in this approximate format: | Speaker | Text | | --- | --- | | Luke | Hello there. | | Han | General Kenobi. | | Luke | You are a bold one. | The script then asks the user to define parameters for making the dataset and proceeding to fine-tuning. The actual dataset for this model can be found [here.](andrewkroening/Star-wars-scripts-dialogue-IV-VI)
sd-concepts-library/terraria-style
sd-concepts-library
2022-11-06T18:59:29Z
0
12
null
[ "license:mit", "region:us" ]
null
2022-11-06T18:59:25Z
--- license: mit --- ### terraria style on Stable Diffusion This is the `<terr-sty>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<terr-sty> 0](https://huggingface.co/sd-concepts-library/terraria-style/resolve/main/concept_images/6.jpeg) ![<terr-sty> 1](https://huggingface.co/sd-concepts-library/terraria-style/resolve/main/concept_images/2.jpeg) ![<terr-sty> 2](https://huggingface.co/sd-concepts-library/terraria-style/resolve/main/concept_images/0.jpeg) ![<terr-sty> 3](https://huggingface.co/sd-concepts-library/terraria-style/resolve/main/concept_images/8.jpeg) ![<terr-sty> 4](https://huggingface.co/sd-concepts-library/terraria-style/resolve/main/concept_images/3.jpeg) ![<terr-sty> 5](https://huggingface.co/sd-concepts-library/terraria-style/resolve/main/concept_images/5.jpeg) ![<terr-sty> 6](https://huggingface.co/sd-concepts-library/terraria-style/resolve/main/concept_images/4.jpeg) ![<terr-sty> 7](https://huggingface.co/sd-concepts-library/terraria-style/resolve/main/concept_images/9.jpeg) ![<terr-sty> 8](https://huggingface.co/sd-concepts-library/terraria-style/resolve/main/concept_images/1.jpeg) ![<terr-sty> 9](https://huggingface.co/sd-concepts-library/terraria-style/resolve/main/concept_images/7.jpeg)