modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-08 06:28:05
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
546 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-08 06:27:40
card
stringlengths
11
1.01M
danielsc/bert_test
danielsc
2022-11-16T18:24:37Z
51
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "exbert", "autotrain-compatible", "automatic-speech-recognition", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-14T20:59:26Z
--- language: en tags: - exbert - autotrain-compatible license: apache-2.0 datasets: - bookcorpus - wikipedia pipeline_tag: automatic-speech-recognition --- # BERT base model (cased) Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is case-sensitive: it makes a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-cased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] Hello I'm a fashion model. [SEP]", 'score': 0.09019174426794052, 'token': 4633, 'token_str': 'fashion'}, {'sequence': "[CLS] Hello I'm a new model. [SEP]", 'score': 0.06349995732307434, 'token': 1207, 'token_str': 'new'}, {'sequence': "[CLS] Hello I'm a male model. [SEP]", 'score': 0.06228214129805565, 'token': 2581, 'token_str': 'male'}, {'sequence': "[CLS] Hello I'm a professional model. [SEP]", 'score': 0.0441727414727211, 'token': 1848, 'token_str': 'professional'}, {'sequence': "[CLS] Hello I'm a super model. [SEP]", 'score': 0.03326151892542839, 'token': 7688, 'token_str': 'super'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-cased') model = BertModel.from_pretrained("bert-base-cased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-cased') model = TFBertModel.from_pretrained("bert-base-cased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-cased') >>> unmasker("The man worked as a [MASK].") [{'sequence': '[CLS] The man worked as a lawyer. [SEP]', 'score': 0.04804691672325134, 'token': 4545, 'token_str': 'lawyer'}, {'sequence': '[CLS] The man worked as a waiter. [SEP]', 'score': 0.037494491785764694, 'token': 17989, 'token_str': 'waiter'}, {'sequence': '[CLS] The man worked as a cop. [SEP]', 'score': 0.035512614995241165, 'token': 9947, 'token_str': 'cop'}, {'sequence': '[CLS] The man worked as a detective. [SEP]', 'score': 0.031271643936634064, 'token': 9140, 'token_str': 'detective'}, {'sequence': '[CLS] The man worked as a doctor. [SEP]', 'score': 0.027423162013292313, 'token': 3995, 'token_str': 'doctor'}] >>> unmasker("The woman worked as a [MASK].") [{'sequence': '[CLS] The woman worked as a nurse. [SEP]', 'score': 0.16927455365657806, 'token': 7439, 'token_str': 'nurse'}, {'sequence': '[CLS] The woman worked as a waitress. [SEP]', 'score': 0.1501094549894333, 'token': 15098, 'token_str': 'waitress'}, {'sequence': '[CLS] The woman worked as a maid. [SEP]', 'score': 0.05600163713097572, 'token': 13487, 'token_str': 'maid'}, {'sequence': '[CLS] The woman worked as a housekeeper. [SEP]', 'score': 0.04838843643665314, 'token': 26458, 'token_str': 'housekeeper'}, {'sequence': '[CLS] The woman worked as a cook. [SEP]', 'score': 0.029980547726154327, 'token': 9834, 'token_str': 'cook'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average | |:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:| | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=bert-base-cased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
vwxyzjn/CartPole-v1-dqn-seed1
vwxyzjn
2022-11-16T18:12:42Z
0
0
null
[ "tensorboard", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-18T14:30:08Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 65.80 +/- 13.11 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **CartPole-v1** This is a trained model of a DQN agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn.py). ## Command to reproduce the training ```bash curl -OL https://huggingface.co/vwxyzjn/CartPole-v1-dqn-seed1/raw/main/dqn.py curl -OL https://huggingface.co/vwxyzjn/CartPole-v1-dqn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/vwxyzjn/CartPole-v1-dqn-seed1/raw/main/poetry.lock poetry install --all-extras python dqn.py --cuda False --save-model --upload-model --total-timesteps 500 ``` # Hyperparameters ```python {'batch_size': 128, 'buffer_size': 10000, 'capture_video': False, 'cuda': False, 'end_e': 0.05, 'env_id': 'CartPole-v1', 'exp_name': 'dqn', 'exploration_fraction': 0.5, 'gamma': 0.99, 'hf_entity': '', 'learning_rate': 0.00025, 'learning_starts': 10000, 'save_model': True, 'seed': 1, 'start_e': 1, 'target_network_frequency': 500, 'torch_deterministic': True, 'total_timesteps': 500, 'track': False, 'train_frequency': 10, 'upload_model': True, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
Den4ikAI/rugpt3-QA-old
Den4ikAI
2022-11-16T18:04:46Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-14T11:32:59Z
--- license: mit widget: - text: "Q: Что такое любовь?\nA:" example_title: "test" --- Внимание!!! Этот репозиторий больше обновляться не будет из за переделки датасета! Новая модель доступна на [Den4ikAI/rugpt3-QA](https://huggingface.co/Den4ikAI/rugpt3-QA) Здесь выкладывалися чекпоинты модели rugpt3-medium обученной на данных с otvet.mail.ru Старый датасет [тык](https://huggingface.co/datasets/Den4ikAI/mailru-QA-old) Текущий чекпоинт: 180k 0 эпох
Ashenhard/Ashenhard-style
Ashenhard
2022-11-16T17:59:16Z
0
3
null
[ "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-16T10:04:06Z
--- license: creativeml-openrail-m tags: - text-to-image --- I'm a digital artist learning these new tools to work with, this is my first style model I'm on Instagram: @ashenhard84 and Twitter: @ashenhard This model was trained with 85 images, at 8500 steps 1e-6 in Shivam Shrirao Google colab. I think the potential of this model is to merge it with others. The token is **Ashenhard style** **Generated by the model without merge:** ![Samples](https://huggingface.co/Ashenhard/Ashenhard-style/resolve/main/modelalone1.png) ![Samples](https://huggingface.co/Ashenhard/Ashenhard-style/resolve/main/modelalone2.png) ![Samples](https://huggingface.co/Ashenhard/Ashenhard-style/resolve/main/modelalone3.png) ![Samples](https://huggingface.co/Ashenhard/Ashenhard-style/resolve/main/modelalone4.png) **Generated by the model merged with (A) Anything V3 at 0.4 - (B) Ashenhard:** ![Samples](https://huggingface.co/Ashenhard/Ashenhard-style/resolve/main/modelanything1.png) ![Samples](https://huggingface.co/Ashenhard/Ashenhard-style/resolve/main/modelanything2.png) **Testing Img2Img with the model+anything** ![Samples](https://huggingface.co/Ashenhard/Ashenhard-style/resolve/main/modelanythingimg2img.png) **Generated by the model merged with (A) Ashenhard at 0.4 - (B) F222:** ![Samples](https://huggingface.co/Ashenhard/Ashenhard-style/resolve/main/ModelF222.png) ![Samples](https://huggingface.co/Ashenhard/Ashenhard-style/resolve/main/ModelF222-2.png)
guumaster/skrichy-diffusion
guumaster
2022-11-16T15:59:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-16T15:44:15Z
--- license: creativeml-openrail-m ---
projecte-aina/roberta-base-ca-cased-pos
projecte-aina
2022-11-16T15:22:48Z
136
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "catalan", "part of speech tagging", "pos", "CaText", "Catalan Textual Corpus", "ca", "dataset:universal_dependencies", "arxiv:1907.11692", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - ca license: apache-2.0 tags: - "catalan" - "part of speech tagging" - "pos" - "CaText" - "Catalan Textual Corpus" datasets: - "universal_dependencies" metrics: - f1 inference: parameters: aggregation_strategy: "first" model-index: - name: roberta-base-ca-cased-pos results: - task: type: token-classification dataset: type: universal_dependencies name: Ancora-ca-POS metrics: - name: F1 type: f1 value: 0.9893832385244624 widget: - text: "Em dic Lluïsa i visc a Santa Maria del Camí." - text: "L'Aina, la Berta i la Norma són molt amigues." - text: "El Martí llegeix el Cavall Fort." --- # Catalan BERTa (roberta-base-ca) finetuned for Part-of-speech-tagging (POS) ## Table of Contents <details> <summary>Click to expand</summary> - [Model description](#model-description) - [Intended uses and limitations](#intended-use) - [How to use](#how-to-use) - [Limitations and bias](#limitations-and-bias) - [Training](#training) - [Training data](#training-data) - [Training procedure](#training-procedure) - [Evaluation](#evaluation) - [Variable and metrics](#variable-and-metrics) - [Evaluation results](#evaluation-results) - [Additional information](#additional-information) - [Author](#author) - [Contact information](#contact-information) - [Copyright](#copyright) - [Licensing information](#licensing-information) - [Funding](#funding) - [Citing information](#citing-information) - [Disclaimer](#disclaimer) </details> ## Model description The **roberta-base-ca-cased-pos** is a Part-of-speech-tagging (POS) model for the Catalan language fine-tuned from the roberta-base-ca model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers. ## Intended uses and limitations **roberta-base-ca-cased-pos** model can be used to Part-of-speech-tagging (POS) a text. The model is limited by its training dataset and may not generalize well for all use cases. ## How to use Here is how to use this model: ```python from transformers import pipeline from pprint import pprint nlp = pipeline("token-classification", model="projecte-aina/roberta-base-ca-cased-pos") example = "Em dic Lluïsa i visc a Santa Maria del Camí." pos_results = nlp(example) pprint(pos_results) ``` ## Limitations and bias At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. ## Training ### Training data We used the POS dataset in Catalan from the [Universal Dependencies Treebank](https://huggingface.co/datasets/universal_dependencies) we refer to _Ancora-ca-pos_ for training and evaluation. ### Training procedure The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set. ## Evaluation ### Variable and metrics This model was finetuned maximizing F1 score. ## Evaluation results We evaluated the _roberta-base-ca-cased-pos_ on the Ancora-ca-ner test set against standard multilingual and monolingual baselines: | Model | AnCora-Ca-POS (F1) | | ------------|:-------------| | roberta-base-ca-cased-pos |**98.93** | | mBERT | 98.82 | | XLM-RoBERTa | 98.89 | | WikiBERT-ca | 97.60 | For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club). ## Additional information ### Author Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es) ### Contact information For further information, send an email to aina@bsc.es ### Copyright Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center ### Licensing information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Funding This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). ### Citation Information If you use any of these resources (datasets or models) in your work, please cite our latest paper: ```bibtex @inproceedings{armengol-estape-etal-2021-multilingual, title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan", author = "Armengol-Estap{\'e}, Jordi and Carrino, Casimiro Pio and Rodriguez-Penagos, Carlos and de Gibert Bonet, Ona and Armentano-Oller, Carme and Gonzalez-Agirre, Aitor and Melero, Maite and Villegas, Marta", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.437", doi = "10.18653/v1/2021.findings-acl.437", pages = "4933--4946", } ``` ### Disclaimer <details> <summary>Click to expand</summary> The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
Watwat100/smol16
Watwat100
2022-11-16T15:22:10Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-16T15:21:35Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 10 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 10, "warmup_steps": 1, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
monakth/distillbert-base-uncased-fine-tuned-squadv2
monakth
2022-11-16T15:16:35Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-16T15:15:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distillbert-base-uncased-fine-tuned-squad-squadv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distillbert-base-uncased-fine-tuned-squad-squadv This model is a fine-tuned version of [monakth/distillbert-base-uncased-fine-tuned-squad](https://huggingface.co/monakth/distillbert-base-uncased-fine-tuned-squad) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
projecte-aina/roberta-base-ca-cased-sts
projecte-aina
2022-11-16T15:10:28Z
121
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "catalan", "semantic textual similarity", "sts-ca", "CaText", "Catalan Textual Corpus", "ca", "dataset:projecte-aina/sts-ca", "arxiv:1907.11692", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- pipeline_tag: text-classification language: - ca license: apache-2.0 tags: - "catalan" - "semantic textual similarity" - "sts-ca" - "CaText" - "Catalan Textual Corpus" datasets: - "projecte-aina/sts-ca" metrics: - "combined_score" model-index: - name: roberta-base-ca-cased-sts results: - task: type: text-classification dataset: type: projecte-aina/sts-ca name: STS-ca metrics: - name: Pearson type: Pearson value: 0.797 --- # Catalan BERTa (roberta-base-ca) finetuned for Semantic Textual Similarity. ## Table of Contents <details> <summary>Click to expand</summary> - [Model description](#model-description) - [Intended uses and limitations](#intended-use) - [How to use](#how-to-use) - [Limitations and bias](#limitations-and-bias) - [Training](#training) - [Training data](#training-data) - [Training procedure](#training-procedure) - [Evaluation](#evaluation) - [Variable and metrics](#variable-and-metrics) - [Evaluation results](#evaluation-results) - [Additional information](#additional-information) - [Author](#author) - [Contact information](#contact-information) - [Copyright](#copyright) - [Licensing information](#licensing-information) - [Funding](#funding) - [Citing information](#citing-information) - [Disclaimer](#disclaimer) </details> ## Model description The **roberta-base-ca-cased-sts** is a Semantic Textual Similarity (STS) model for the Catalan language fine-tuned from the roberta-base-ca model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers. ## Intended uses and limitations **roberta-base-ca-cased-sts** model can be used to assess the similarity between two snippets of text. The model is limited by its training dataset and may not generalize well for all use cases. ## How to use To get the correct<sup>1</sup> model's prediction scores with values between 0.0 and 5.0, use the following code: ```python from transformers import pipeline, AutoTokenizer from scipy.special import logit model = 'projecte-aina/roberta-base-ca-cased-sts' tokenizer = AutoTokenizer.from_pretrained(model) pipe = pipeline('text-classification', model=model, tokenizer=tokenizer) def prepare(sentence_pairs): sentence_pairs_prep = [] for s1, s2 in sentence_pairs: sentence_pairs_prep.append(f"{tokenizer.cls_token} {s1}{tokenizer.sep_token}{tokenizer.sep_token} {s2}{tokenizer.sep_token}") return sentence_pairs_prep sentence_pairs = [("El llibre va caure per la finestra.", "El llibre va sortir volant."), ("M'agrades.", "T'estimo."), ("M'agrada el sol i la calor", "A la Garrotxa plou molt.")] predictions = pipe(prepare(sentence_pairs), add_special_tokens=False) # convert back to scores to the original 0 and 5 interval for prediction in predictions: prediction['score'] = logit(prediction['score']) print(predictions) ``` Expected output: ``` [{'label': 'SIMILARITY', 'score': 2.118301674983813}, {'label': 'SIMILARITY', 'score': 2.1799755855125853}, {'label': 'SIMILARITY', 'score': 0.9511617858568939}] ``` <sup>1</sup> _**avoid using the widget** scores since they are normalized and do not reflect the original annotation values._ ## Limitations and bias At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. ## Training ### Training data We used the STS dataset in Catalan called [STS-ca](https://huggingface.co/datasets/projecte-aina/sts-ca) for training and evaluation. ### Training procedure The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set, and then evaluated it on the test set. ## Evaluation ### Variable and metrics This model was finetuned maximizing the average score between the Pearson and Spearman correlations. ## Evaluation results We evaluated the _roberta-base-ca-cased-sts_ on the STS-ca test set against standard multilingual and monolingual baselines: | Model | STS-ca (Pearson score) | | ------------|:-------------| | roberta-base-ca-cased-sts | 79.73 | | mBERT | 74.26 | | XLM-RoBERTa | 61.61 | For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club). ## Additional information ### Author Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es) ### Contact information For further information, send an email to aina@bsc.es ### Copyright Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center ### Licensing information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Funding This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). ### Citation Information If you use any of these resources (datasets or models) in your work, please cite our latest paper: ```bibtex @inproceedings{armengol-estape-etal-2021-multilingual, title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan", author = "Armengol-Estap{\'e}, Jordi and Carrino, Casimiro Pio and Rodriguez-Penagos, Carlos and de Gibert Bonet, Ona and Armentano-Oller, Carme and Gonzalez-Agirre, Aitor and Melero, Maite and Villegas, Marta", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.437", doi = "10.18653/v1/2021.findings-acl.437", pages = "4933--4946", } ``` ### Disclaimer <details> <summary>Click to expand</summary> The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
projecte-aina/roberta-base-ca-cased-qa
projecte-aina
2022-11-16T15:05:08Z
116
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "catalan", "qa", "ca", "dataset:xquad-ca", "dataset:viquiquad", "arxiv:1907.11692", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: - ca license: apache-2.0 tags: - "catalan" - "qa" datasets: - "xquad-ca" - "viquiquad" metrics: - "f1" - "exact match" widget: - text: "Quan va començar el Super3?" context: "El Super3 o Club Super3 és un univers infantil català creat a partir d'un programa emès per Televisió de Catalunya des del 1991. Està format per un canal de televisió, la revista Súpers!, la Festa dels Súpers i un club que té un milió i mig de socis." - text: "Quants eren els germans Marx?" context: "Els germans Marx van ser un grup de còmics dels Estats Units que originàriament estava compost per cinc germans (entre parèntesis els noms artístics): Leonard (Chico), Adolph (Harpo), Julius (Groucho), Milton (Gummo) i Herbert (Zeppo)." - text: "On van ser els Jocs Olímpics de 1992?" context: "Els Jocs Olímpics d'estiu de 1992, oficialment Jocs Olímpics de la XXV Olimpíada, es van celebrar a la ciutat de Barcelona entre els dies 25 de juliol i 9 d'agost de 1992. Hi participaren 9.356 atletes (6.652 homes i 2.704 dones) de 169 comitès nacionals, que competiren en 32 esports i 286 especialitats." - text: "Qui va dissenyar la Sagrada Família?" context: "El Temple Expiatori de la Sagrada Família, conegut habitualment com la Sagrada Família, és una basílica catòlica situada a la ciutat de Barcelona. És un dels exemples més coneguts del modernisme català i un edifici únic al món, que ha esdevingut tot un símbol de la ciutat. Obra inacabada de l'arquitecte català Antoni Gaudí, és al barri de la Sagrada Família, al districte de l'Eixample de la ciutat." - text: "Quin és el tercer volcà més gran de la Terra?" context: "El Teide (o Pic del Teide) és un estratovolcà i muntanya de Tenerife, Illes Canàries (28.27 N, 16.6 O). Amb una altitud de 3718 m sobre el nivell del mar i amb aproximadament uns 7000 m sobre el llit marí adjacent, és la muntanya més alta d'Espanya, la muntanya més alta de totes les illes atlàntiques i el tercer volcà més gran de la Terra." --- # Catalan BERTa (roberta-base-ca) finetuned for Question Answering. ## Table of Contents <details> <summary>Click to expand</summary> - [Model description](#model-description) - [Intended uses and limitations](#intended-use) - [How to use](#how-to-use) - [Limitations and bias](#limitations-and-bias) - [Training](#training) - [Training data](#training-data) - [Training procedure](#training-procedure) - [Evaluation](#evaluation) - [Variable and metrics](#variable-and-metrics) - [Evaluation results](#evaluation-results) - [Additional information](#additional-information) - [Author](#author) - [Contact information](#contact-information) - [Copyright](#copyright) - [Licensing information](#licensing-information) - [Funding](#funding) - [Citing information](#citing-information) - [Disclaimer](#disclaimer) </details> ## Model description The **roberta-base-ca-cased-qa** is a Question Answering (QA) model for the Catalan language fine-tuned from the roberta-base-ca model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers. ## Intended uses and limitations **roberta-base-ca-cased-qa** model can be used for extractive question answering. The model is limited by its training dataset and may not generalize well for all use cases. ## How to use Here is how to use this model: ```python from transformers import pipeline nlp = pipeline("question-answering", model="projecte-aina/roberta-base-ca-cased-qa") text = "Quan va començar el Super3?" context = "El Super3 o Club Super3 és un univers infantil català creat a partir d'un programa emès per Televisió de Catalunya des del 1991. Està format per un canal de televisió, la revista Súpers!, la Festa dels Súpers i un club que té un milió i mig de socis." qa_results = nlp(text, context) print(qa_results) ``` ## Limitations and bias At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. ## Training ### Training data We used the QA dataset in Catalan called [CatalanQA](https://huggingface.co/datasets/projecte-aina/catalanqa) for training and evaluation, and the [XQuAD-ca](https://huggingface.co/datasets/projecte-aina/xquad-ca) test set for evaluation. ### Training procedure The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set. ## Evaluation ### Variable and metrics This model was finetuned maximizing F1 score. ### Evaluation results We evaluated the _roberta-base-ca-cased-qa_ on the CatalanQA and XQuAD-ca test sets against standard multilingual and monolingual baselines: | Model | ViquiQuAD (F1/EM) | XQuAD-ca (F1/EM) | | ------------|:-------------:| -----:| | roberta-base-ca-cased-qa | **86.99/73.25** | **67.81/49.43** | | mBERT | 86.97/72.22 | 67.15/46.51 | | XLM-RoBERTa | 85.50/70.47 | 67.10/46.42 | | WikiBERT-ca | 85.45/70.75 | 65.21/36.60 | For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club). ## Additional information ### Author Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es) ### Contact information For further information, send an email to aina@bsc.es ### Copyright Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center ### Licensing information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Funding This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). ### Citation Information If you use any of these resources (datasets or models) in your work, please cite our latest paper: ```bibtex @inproceedings{armengol-estape-etal-2021-multilingual, title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan", author = "Armengol-Estap{\'e}, Jordi and Carrino, Casimiro Pio and Rodriguez-Penagos, Carlos and de Gibert Bonet, Ona and Armentano-Oller, Carme and Gonzalez-Agirre, Aitor and Melero, Maite and Villegas, Marta", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.437", doi = "10.18653/v1/2021.findings-acl.437", pages = "4933--4946", } ``` ### Disclaimer <details> <summary>Click to expand</summary> The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
Watwat100/smol8
Watwat100
2022-11-16T14:38:11Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-16T14:37:37Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 5, "warmup_steps": 1, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
projecte-aina/roberta-base-ca-v2-cased-sts
projecte-aina
2022-11-16T14:32:52Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "catalan", "semantic textual similarity", "sts-ca", "CaText", "Catalan Textual Corpus", "ca", "dataset:projecte-aina/sts-ca", "arxiv:1907.11692", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-30T07:55:48Z
--- pipeline_tag: text-classification language: - ca license: apache-2.0 tags: - "catalan" - "semantic textual similarity" - "sts-ca" - "CaText" - "Catalan Textual Corpus" datasets: - "projecte-aina/sts-ca" metrics: - "combined_score" model-index: - name: roberta-base-ca-v2-cased-sts results: - task: type: text-classification dataset: type: projecte-aina/sts-ca name: STS-ca metrics: - name: Combined score type: combined_score value: 0.7907 --- # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Semantic Textual Similarity. ## Table of Contents <details> <summary>Click to expand</summary> - [Model description](#model-description) - [Intended uses and limitations](#intended-use) - [How to use](#how-to-use) - [Limitations and bias](#limitations-and-bias) - [Training](#training) - [Training data](#training-data) - [Training procedure](#training-procedure) - [Evaluation](#evaluation) - [Variable and metrics](#variable-and-metrics) - [Evaluation results](#evaluation-results) - [Additional information](#additional-information) - [Author](#author) - [Contact information](#contact-information) - [Copyright](#copyright) - [Licensing information](#licensing-information) - [Funding](#funding) - [Citing information](#citing-information) - [Disclaimer](#disclaimer) </details> ## Model description The **roberta-base-ca-v2-cased-sts** is a Semantic Textual Similarity (STS) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details). ## Intended uses and limitations **roberta-base-ca-v2-cased-sts** model can be used to assess the similarity between two snippets of text. The model is limited by its training dataset and may not generalize well for all use cases. ## How to use To get the correct<sup>1</sup> model's prediction scores with values between 0.0 and 5.0, use the following code: ```python from transformers import pipeline, AutoTokenizer from scipy.special import logit model = 'projecte-aina/roberta-base-ca-v2-cased-sts' tokenizer = AutoTokenizer.from_pretrained(model) pipe = pipeline('text-classification', model=model, tokenizer=tokenizer) def prepare(sentence_pairs): sentence_pairs_prep = [] for s1, s2 in sentence_pairs: sentence_pairs_prep.append(f"{tokenizer.cls_token} {s1}{tokenizer.sep_token}{tokenizer.sep_token} {s2}{tokenizer.sep_token}") return sentence_pairs_prep sentence_pairs = [("El llibre va caure per la finestra.", "El llibre va sortir volant."), ("M'agrades.", "T'estimo."), ("M'agrada el sol i la calor", "A la Garrotxa plou molt.")] predictions = pipe(prepare(sentence_pairs), add_special_tokens=False) # convert back to scores to the original 0 and 5 interval for prediction in predictions: prediction['score'] = logit(prediction['score']) print(predictions) ``` Expected output: ``` [{'label': 'SIMILARITY', 'score': 2.118301674983813}, {'label': 'SIMILARITY', 'score': 2.1799755855125853}, {'label': 'SIMILARITY', 'score': 0.9511617858568939}] ``` <sup>1</sup> _**avoid using the widget** scores since they are normalized and do not reflect the original annotation values._ ## Limitations and bias At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. ## Training ### Training data We used the STS dataset in Catalan called [STS-ca](https://huggingface.co/datasets/projecte-aina/sts-ca) for training and evaluation. ### Training procedure The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set, and then evaluated it on the test set. ## Evaluation ### Variable and metrics This model was finetuned maximizing the average score between the Pearson and Spearman correlations. ## Evaluation results We evaluated the _roberta-base-ca-v2-cased-sts_ on the STS-ca test set against standard multilingual and monolingual baselines: | Model | STS-ca (Combined score) | | ------------|:-------------| | roberta-base-ca-v2-cased-sts | 79.07 | | roberta-base-ca-cased-sts | **80.19** | | mBERT | 74.26 | | XLM-RoBERTa | 61.61 | For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club). ## Additional information ### Author Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es) ### Contact information For further information, send an email to aina@bsc.es ### Copyright Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center ### Licensing information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Funding This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). ### Citation Information If you use any of these resources (datasets or models) in your work, please cite our latest paper: ```bibtex @inproceedings{armengol-estape-etal-2021-multilingual, title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan", author = "Armengol-Estap{\'e}, Jordi and Carrino, Casimiro Pio and Rodriguez-Penagos, Carlos and de Gibert Bonet, Ona and Armentano-Oller, Carme and Gonzalez-Agirre, Aitor and Melero, Maite and Villegas, Marta", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.437", doi = "10.18653/v1/2021.findings-acl.437", pages = "4933--4946", } ``` ### Disclaimer <details> <summary>Click to expand</summary> The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
xfh/min-stable-diffusion-pt
xfh
2022-11-16T14:21:40Z
0
2
null
[ "region:us" ]
null
2022-11-16T11:27:27Z
# This is min-stable-diffusion weights file ## I hope you enjoyed. I hope you can discovery light!!! #### weight file notes 1) wd-1-3-penultimate-ucg-cont.pt is waifu-diffusion-v1-4 weight 2) mdjrny-v4.pt is midjourney-v4-diffusion weight 3) stable_diffusion_v1_4.pt is CompVis/stable-diffusion-v1-4 4) stable_diffusion_v1_5.pt is runwayml/stable-diffusion-v1-5 5) animev3.pt is https://huggingface.co/Linaqruf/personal_backup/tree/main/animev3ckpt 6) Anything-V3.0.pt is https://huggingface.co/Linaqruf/anything-v3.0 #### install and run is github https://github.com/scale100xu/min-stable-diffusion
100click/my-friends
100click
2022-11-16T13:50:37Z
0
0
null
[ "license:openrail", "region:us" ]
null
2022-11-16T07:47:51Z
--- license: openrail --- # Model for image generation ## Model description This model is based on the `stable-diffusion-v1-4` model. It has its own prompt vocabulary (check "How to use"). ## Intended uses & limitations The model could be used to generate the images of my friends. Why You Need It? You're wierd... ## How to use Add text in prompt: - 'naumanya guy' - add Yuriy Nauman
microsoft/xdoc-base-funsd
microsoft
2022-11-16T13:44:31Z
112
4
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "arxiv:2210.02849", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-14T04:15:16Z
--- license: mit --- # XDoc ## Introduction XDoc is a unified pre-trained model that deals with different document formats in a single model. With only 36.7% parameters, XDoc achieves comparable or better performance on downstream tasks, which is cost-effective for real-world deployment. [XDoc: Unified Pre-training for Cross-Format Document Understanding](https://arxiv.org/abs/2210.02849) Jingye Chen, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei, [EMNLP 2022](#) ## Citation If you find XDoc helpful, please cite us: ``` @article{chen2022xdoc, title={XDoc: Unified Pre-training for Cross-Format Document Understanding}, author={Chen, Jingye and Lv, Tengchao and Cui, Lei and Zhang, Cha and Wei, Furu}, journal={arXiv preprint arXiv:2210.02849}, year={2022} } ```
microsoft/xdoc-base-squad1.1
microsoft
2022-11-16T13:44:18Z
113
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "arxiv:2210.02849", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-11-14T04:12:23Z
--- license: mit --- # XDoc ## Introduction XDoc is a unified pre-trained model that deals with different document formats in a single model. With only 36.7% parameters, XDoc achieves comparable or better performance on downstream tasks, which is cost-effective for real-world deployment. [XDoc: Unified Pre-training for Cross-Format Document Understanding](https://arxiv.org/abs/2210.02849) Jingye Chen, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei, [EMNLP 2022](#) ## Citation If you find XDoc helpful, please cite us: ``` @article{chen2022xdoc, title={XDoc: Unified Pre-training for Cross-Format Document Understanding}, author={Chen, Jingye and Lv, Tengchao and Cui, Lei and Zhang, Cha and Wei, Furu}, journal={arXiv preprint arXiv:2210.02849}, year={2022} } ```
microsoft/xdoc-base
microsoft
2022-11-16T13:43:32Z
64
6
transformers
[ "transformers", "pytorch", "roberta", "arxiv:2210.02849", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-11-14T04:09:13Z
--- license: mit --- # XDoc ## Introduction XDoc is a unified pre-trained model that deals with different document formats in a single model. With only 36.7% parameters, XDoc achieves comparable or better performance on downstream tasks, which is cost-effective for real-world deployment. [XDoc: Unified Pre-training for Cross-Format Document Understanding](https://arxiv.org/abs/2210.02849) Jingye Chen, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei, [EMNLP 2022](#) ## Citation If you find XDoc helpful, please cite us: ``` @article{chen2022xdoc, title={XDoc: Unified Pre-training for Cross-Format Document Understanding}, author={Chen, Jingye and Lv, Tengchao and Cui, Lei and Zhang, Cha and Wei, Furu}, journal={arXiv preprint arXiv:2210.02849}, year={2022} } ```
Uesugi/distilbert-base-uncased-finetuned-emotion
Uesugi
2022-11-16T13:38:13Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-16T12:59:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2313 - Accuracy: 0.92 - F1: 0.9200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8717 | 1.0 | 250 | 0.3385 | 0.9015 | 0.8976 | | 0.2633 | 2.0 | 500 | 0.2313 | 0.92 | 0.9200 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Tokenizers 0.13.2
EnglishVoice/t5-base-us-to-uk-english
EnglishVoice
2022-11-16T13:32:52Z
361
2
transformers
[ "transformers", "pytorch", "tf", "jax", "t5", "text2text-generation", "paraphrase-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-16T13:30:05Z
--- language: - en tags: - text2text-generation - paraphrase-generation license: apache-2.0 widget: - text: "US to UK: My favorite color is yellow." --- ### About the model The model has been trained on a dataset containing [249525 sentences with US English spelling](https://www.englishvoice.ai/p/us-to-uk/ "249525 sentences with US English spelling"), along with their UK English equivalent. The purpose of the model is to rewrite sentences from US English to UK English. It is capable not only of changing the spelling of words (such as "color" to "colour") but also changes the vocabulary appropriately (for example, "subway" to "underground", "lawyer" to "solicitor" and so on). ### Generation examples | Input | Output | | :------------ | :------------ | | My favorite color is yellow. | My favourite colour is yellow. | | I saw a guy in yellow sneakers at the subway station. | I saw a bloke in yellow trainers at the underground station. | | You could have gotten hurt! | You could have got hurt! | ### The dataset The dataset was developed by English Voice AI Labs. You can download it from our website: [https://www.EnglishVoice.ai/](https://www.EnglishVoice.ai/ "https://www.EnglishVoice.ai/") ### Sample code Sample Python code: ```python import torch from transformers import T5ForConditionalGeneration,T5Tokenizer device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = T5ForConditionalGeneration.from_pretrained("EnglishVoice/t5-base-us-to-uk-english") tokenizer = T5Tokenizer.from_pretrained("EnglishVoice/t5-base-us-to-uk-english") model = model.to(device) input = "My favorite color is yellow." text = "US to UK: " + input encoding = tokenizer.encode_plus(text, return_tensors = "pt") input_ids = encoding["input_ids"].to(device) attention_masks = encoding["attention_mask"].to(device) beam_outputs = model.generate( input_ids = input_ids, attention_mask = attention_masks, early_stopping = True, ) result = tokenizer.decode(beam_outputs[0], skip_special_tokens=True) print(result) ``` Output: ```My favourite colour is yellow.```
EnglishVoice/t5-base-uk-to-us-english
EnglishVoice
2022-11-16T13:28:30Z
485
2
transformers
[ "transformers", "pytorch", "tf", "jax", "t5", "text2text-generation", "paraphrase-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-15T18:34:16Z
--- language: - en tags: - text2text-generation - paraphrase-generation license: apache-2.0 widget: - text: "UK to US: My favourite colour is yellow." --- ### About the model The model has been trained on a dataset containing [264519 sentences with UK English spelling](https://www.englishvoice.ai/p/uk-to-us/ "264519 sentences with UK English spelling"), along with their US English equivalent. The purpose of the model is to rewrite sentences from UK English to US English. It is capable not only of changing the spelling of words (such as "colour" to "color") but also changes the vocabulary appropriately (for example, "underground" to "subway", "solicitor" to "lawyer" and so on). ### Generation examples | Input | Output | | :------------ | :------------ | | My favourite colour is yellow. | My favorite color is yellow. | | I saw a bloke in yellow trainers at the underground station. | I saw a guy in yellow sneakers at the subway station. | | You could have got hurt! | You could have gotten hurt! | ### The dataset The dataset was developed by English Voice AI Labs. You can download it from our website: [https://www.EnglishVoice.ai/](https://www.EnglishVoice.ai/ "https://www.EnglishVoice.ai/") ### Sample code Sample Python code: ```python import torch from transformers import T5ForConditionalGeneration,T5Tokenizer device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = T5ForConditionalGeneration.from_pretrained("EnglishVoice/t5-base-uk-to-us-english") tokenizer = T5Tokenizer.from_pretrained("EnglishVoice/t5-base-uk-to-us-english") model = model.to(device) input = "My favourite colour is yellow." text = "UK to US: " + input encoding = tokenizer.encode_plus(text, return_tensors = "pt") input_ids = encoding["input_ids"].to(device) attention_masks = encoding["attention_mask"].to(device) beam_outputs = model.generate( input_ids = input_ids, attention_mask = attention_masks, early_stopping = True, ) result = tokenizer.decode(beam_outputs[0], skip_special_tokens=True) print(result) ``` Output: ```My favorite color is yellow.```
upsalite/xlm-roberta-base-finetuned-emotion-37-labels
upsalite
2022-11-16T13:16:13Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-15T15:06:54Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-finetuned-emotion-37-labels results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-emotion-37-labels This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1765 - Accuracy: 0.7185 - F1: 0.7178 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 2.4256 | 1.0 | 433 | 1.7594 | 0.4384 | 0.4079 | | 1.5536 | 2.0 | 866 | 1.3105 | 0.5784 | 0.5631 | | 1.1753 | 3.0 | 1299 | 1.1767 | 0.6163 | 0.6057 | | 0.9378 | 4.0 | 1732 | 1.0613 | 0.6565 | 0.6542 | | 0.7606 | 5.0 | 2165 | 1.0284 | 0.6808 | 0.6776 | | 0.6167 | 6.0 | 2598 | 1.0128 | 0.6892 | 0.6888 | | 0.5009 | 7.0 | 3031 | 1.0250 | 0.6973 | 0.6946 | | 0.4083 | 8.0 | 3464 | 1.0506 | 0.7014 | 0.6996 | | 0.328 | 9.0 | 3897 | 1.0658 | 0.7075 | 0.7079 | | 0.2704 | 10.0 | 4330 | 1.0874 | 0.7106 | 0.7094 | | 0.2203 | 11.0 | 4763 | 1.1587 | 0.7031 | 0.7010 | | 0.1813 | 12.0 | 5196 | 1.1559 | 0.7141 | 0.7130 | | 0.1552 | 13.0 | 5629 | 1.1483 | 0.7173 | 0.7164 | | 0.1325 | 14.0 | 6062 | 1.1697 | 0.7173 | 0.7170 | | 0.1239 | 15.0 | 6495 | 1.1765 | 0.7185 | 0.7178 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.12.1
Froddan/frost
Froddan
2022-11-16T12:56:01Z
0
3
null
[ "stable-diffusion", "text-to-image", "en", "license:cc0-1.0", "region:us" ]
text-to-image
2022-11-16T07:27:58Z
--- license: cc0-1.0 inference: false language: - en tags: - stable-diffusion - text-to-image --- # Stable Diffusion fine tuned on photographs of frozen nature ### Usage Use by adding the keyword "frostography" to the prompt. The model was trained with the "nature" classname, which can also be added to the prompt. ## Samples I hope it gives you an idea of what kind of styles can be created with this model. <img src="https://huggingface.co/Froddan/frost/resolve/main/frostography_nature_1.png" width="256px"/> <img src="https://huggingface.co/Froddan/frost/resolve/main/frostography_nature_2.png" width="256px"/> <img src="https://huggingface.co/Froddan/frost/resolve/main/frostography_car_1.png" width="256px"/> <img src="https://huggingface.co/Froddan/frost/resolve/main/frostography_fish_1.png" width="256px"/> <img src="https://huggingface.co/Froddan/frost/resolve/main/frostography_fish_2.png" width="256px"/> <img src="https://huggingface.co/Froddan/frost/resolve/main/frostography_moon.png" width="256px"/> <img src="https://huggingface.co/Froddan/frost/resolve/main/tmp3vde80fz.png" width="256px"/> <img src="https://huggingface.co/Froddan/frost/resolve/main/tmpffxdfi38.png" width="256px"/> <img src="https://huggingface.co/Froddan/frost/resolve/main/tmpmiz28zo5.png" width="256px"/> ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
ZTamas/hubert-qa-milqa
ZTamas
2022-11-16T12:46:50Z
212
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "hu", "endpoints_compatible", "region:us" ]
question-answering
2022-11-16T11:57:45Z
--- language: hu thumbnail: tags: - question-answering - bert widget: - text: "Mi Európa második leghosszabb folyója?" context: "A Duna Európa leghosszabb folyama az oroszországi Volga után. Németországban, a Fekete-erdőben ered két kis patak, a Breg és a Brigach összefolyásával Donaueschingennél, és innen délkeleti irányban 2850 kilométert tesz meg a Fekete-tengerig. Magyarország egész területe e folyam vízgyűjtőjén terül el, itteni főágának hossza 417 km, ezért az ország vízrajzának meghatározó alkotóeleme. A folyó kialakulása a pliocén korban kezdődött el. A pliocén végén jutott el a Duna a Kisalföldig, ekkor a mai nyugat–kelet irány helyett észak–dél irányban folyt itt. Csak a pleisztocén korban alakult ki a kisalföldi szakasza. A folyó legfiatalabb része a Dobrudzsa nyugati oldalán található dél–észak irányú folyása, amely pusztán a pleisztocén kor végén jött létre. Napjainkban fontos nemzetközi hajóút. A németországi Rajna–Majna–Duna-csatorna 1992-es megépítése óta részét képezi annak a 3500 km-es transzeurópai vízi útnak, amely az Északi-tenger melletti Rotterdamtól a Fekete-tenger melletti Sulináig ér. A Dunán szállított áruk össztömege 1987-ben elérte a 100 millió tonnát." - text: "Hol vannak a legnagyobb mocsarak a Duna mentén?" context: "Lassú folyású szakaszain épít hordalékának lerakásával; a lerakott hordalékhalmot hordalékkúpnak nevezik. A Kisalföld és a Margit-sziget a Duna hordalékkúpja. illetve a Duna-delta (elsősorban a Kilia-ág) területén a turzások. A hordalék a felső szakaszon még igen nagy méreteket, lejjebb már csak porszemnyi nagyságot vehet fel. Ugyanis, amikor lelassul, akkor a folyó először a nagyobb, majd az egyre kisebb darabokat hagyja el (kövek, kavicsok, homok, finom por). Ha a vízszint hirtelen apadásnak indul, a Dunán jellemzően ideiglenes zátonyok alakulnak ki. Ha ismét megnő a vízmennyiség, akkor a folyó újra tovább tudja szállítani hordalékát, a zátonyok eltűnnek. Jellemzően zátonyos rész a Duna Rajka és Gönyű közötti szakasza, ahol a Bős–nagymarosi vízlépcső megépítésével a hasonló képződmények még nagyobb számban elszaporodtak. A Duna különleges képződményei az al-dunai sellők, amelyek a mederfenék kisebb-nagyobb kitüremkedéseit jelentik. Egyre kisebb számban, de még jellemzőek a Duna mentén a mocsarak, amelyek lerakott hordalékkúpokon alakultak ki. Ezekből a legnagyobbak Bajorországban, a Hanság és a Duna-delta területén találhatók." - text: "Mióta jár Dunaharasztin hév?" context: "Az egyesítéskor felmerült a Budapest környéki településekre helyiérdekű vasút (HÉV) építése is, azonban ez csak 1882-ben vált véglegessé: a BKVT április 4-ei ülésén a Közvágóhíd–Soroksár HÉV-vonal létrehozásáról határozott. Még javában folyt a vonal építése, de a BKVT már előmunkálati engedélyt kapott a dunaharaszti meghosszabbításra is. Az 1880-as évek végére a főváros négy HÉV-vonallal büszkélkedhetett: először a Budapest-Szentlőrinci Helyi Érdekű Vasút Rt. (BLVV) üzemeletetésében álló, Ferencvárost és a Budapest-Szentlőrinci Tégla- és Terracottagyárat összekötő vonalat nyitották meg 1887. április 12-én (későbbi 50-es villamos), amit a BKVT Közvágóhíd–Soroksár vonala követett augusztus 7-én, majd ennek a Dunaharasztiig érő szakasza november 24-én. 1888. július 20-án üzembe helyezte a BKVT a Kerepesi út–Cinkota, majd augusztus 17-én a Filatorigát–Szentendre is. A HÉV-ágazat 1889. december 29-én függetlenedett el, kezelője a Budapesti Helyi Érdekű Vasutak Részvénytársaság (BHÉV) lett." --- This model is a fine-tuned version of [mcsabai/huBert-fine-tuned-hungarian-squadv1](https://huggingface.co/mcsabai/huBert-fine-tuned-hungarian-squadv1) on the milqa dataset.
nategro/contradiction-mini-lds
nategro
2022-11-16T12:43:18Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-13T07:59:14Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # contradiction-mini-lds A model for the identification of contradiction sentences in patents using all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('nategro/contradiction-mini-lds') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1128 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1128, "warmup_steps": 113, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors The following pre-trained model was used: [`sentence-transformers/all-MiniLM-L6-v2`](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
nategro/parameter-mini-lds
nategro
2022-11-16T12:40:55Z
28
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-13T07:59:39Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # parameter-mini-lds A model for the identification of paramerter sentences in patents using all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('nategro/parameter-mini-lds') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1128 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1128, "warmup_steps": 113, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors The following pre-trained model was used: [`sentence-transformers/all-MiniLM-L6-v2`](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
nategro/nps-mpnet-lds
nategro
2022-11-16T12:39:08Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-13T13:04:59Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # nps-mpnet-lds A model for the identification of problem and solution sentences in patents using paraphrase-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('nategro/nps-mpnet-lds') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('nategro/nps-mpnet-lds') model = AutoModel.from_pretrained('nategro/nps-mpnet-lds') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 630 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 630, "warmup_steps": 63, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors The following pre-trained model was used: [`sentence-transformers/paraphrase-mpnet-base-v2`](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
nategro/nps-mpnet
nategro
2022-11-16T12:38:02Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-13T13:05:10Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # nps-mpnet A model for the identification of problem and solution sentences in patents using sentence-transformers/paraphrase-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('nategro/nps-mpnet') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('nategro/nps-mpnet') model = AutoModel.from_pretrained('nategro/nps-mpnet') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 276 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 276, "warmup_steps": 28, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors The following pre-trained model was used: [`sentence-transformers/paraphrase-mpnet-base-v2`](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
saketh-chervu/distilroberta-base-finetuned-distilroberta
saketh-chervu
2022-11-16T12:35:56Z
79
0
transformers
[ "transformers", "tf", "roberta", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-16T11:42:40Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: saketh-chervu/distilroberta-base-finetuned-distilroberta results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # saketh-chervu/distilroberta-base-finetuned-distilroberta This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.1462 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 3.1462 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
nategro/contradiction-psb
nategro
2022-11-16T12:27:52Z
379
1
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-13T08:21:42Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # contradiction-psb A model for the identification of contradiction sentences in patents using PatentSBERTa This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('nategro/contradiction-psb') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('nategro/contradiction-psb') model = AutoModel.from_pretrained('nategro/contradiction-psb') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 496 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 496, "warmup_steps": 50, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors The following pre-trained model was used: [`AI-Growth-Lab/PatentSBERTa`](https://huggingface.co/AI-Growth-Lab/PatentSBERTa)
Sebabrata/dof-aadhaar-1
Sebabrata
2022-11-16T11:55:23Z
46
1
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-11-16T08:53:39Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: dof-aadhaar-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dof-aadhaar-1 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.2
Froddan/gankpansuay
Froddan
2022-11-16T11:19:47Z
0
1
null
[ "stable-diffusion", "text-to-image", "en", "license:cc0-1.0", "region:us" ]
text-to-image
2022-11-16T07:56:58Z
--- license: cc0-1.0 inference: false language: - en tags: - stable-diffusion - text-to-image --- # Stable Diffusion fine tuned on art by [Gank Pansuay](https://www.instagram.com/gank_pansuay/) ### Usage Use by adding the keyword "gankpansuay" to the prompt. The model was trained with the "woman" classname, which can also be added to the prompt. ## Samples The top 4 samples are "pure" while others are mixed with other artists and modifiers. I hope it still gives you an idea of what kind of styles can be created with this model. <img src="https://huggingface.co/Froddan/gankpansuay/resolve/main/1400_index3.png" width="256px"/> <img src="https://huggingface.co/Froddan/gankpansuay/resolve/main/1400_index4.png" width="256px"/> <img src="https://huggingface.co/Froddan/gankpansuay/resolve/main/1400_index5.png" width="256px"/> <img src="https://huggingface.co/Froddan/gankpansuay/resolve/main/1400_index7.png" width="256px"/> <img src="https://huggingface.co/Froddan/gankpansuay/resolve/main/1400_index8.png" width="256px"/> <img src="https://huggingface.co/Froddan/gankpansuay/resolve/main/index2.png" width="256px"/> <img src="https://huggingface.co/Froddan/gankpansuay/resolve/main/train_1400_3.png" width="256px"/> ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
Wheatley961/Raw_3_no_2_Test_2_new.model
Wheatley961
2022-11-16T11:19:29Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-16T11:19:04Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 108 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 108, "warmup_steps": 11, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
fanzru/t5-small-finetuned-xsum
fanzru
2022-11-16T11:05:47Z
103
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-24T07:58:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum config: default split: train args: default metrics: - name: Rouge1 type: rouge value: 28.2047 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4786 - Rouge1: 28.2047 - Rouge2: 7.7109 - Rougel: 22.1559 - Rougelsum: 22.1595 - Gen Len: 18.8257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7156 | 1.0 | 12753 | 2.4786 | 28.2047 | 7.7109 | 22.1559 | 22.1595 | 18.8257 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0a0+b6df043 - Datasets 2.6.1 - Tokenizers 0.13.2
Wheatley961/Raw_3_no_1_Test_2_new.model
Wheatley961
2022-11-16T10:43:52Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-16T10:43:28Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 80 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 80, "warmup_steps": 8, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Froddan/saidoudicko
Froddan
2022-11-16T10:38:04Z
0
0
null
[ "stable-diffusion", "text-to-image", "en", "license:cc0-1.0", "region:us" ]
text-to-image
2022-11-16T08:10:52Z
--- license: cc0-1.0 inference: false language: - en tags: - stable-diffusion - text-to-image --- # Stable Diffusion fine tuned on art by [Saidou Dicko](https://www.instagram.com/saidou_dicko/) ### Usage Use by adding the keyword "saidoudicko" to the prompt. The model was trained with the "person" classname, which can also be added to the prompt. ## Samples The top 4 samples are "pure" while others are mixed with other artists and modifiers. I hope it still gives you an idea of what kind of styles can be created with this model. <img src="https://huggingface.co/Froddan/saidoudicko/resolve/main/index.png" width="256px"/> <img src="https://huggingface.co/Froddan/saidoudicko/resolve/main/index4.png" width="256px"/> <img src="https://huggingface.co/Froddan/saidoudicko/resolve/main/index8.png" width="256px"/> <img src="https://huggingface.co/Froddan/saidoudicko/resolve/main/index9.png" width="256px"/> <img src="https://huggingface.co/Froddan/saidoudicko/resolve/main/bak_nevado.png" width="256px"/> <img src="https://huggingface.co/Froddan/saidoudicko/resolve/main/greg_mucha2.png" width="256px"/> <img src="https://huggingface.co/Froddan/saidoudicko/resolve/main/mckernan_guay1.png" width="256px"/> <img src="https://huggingface.co/Froddan/saidoudicko/resolve/main/mckernan_guay2.png" width="256px"/> <img src="https://huggingface.co/Froddan/saidoudicko/resolve/main/muholi_lafforgue6.png" width="256px"/> <img src="https://huggingface.co/Froddan/saidoudicko/resolve/main/mumford.png" width="256px"/> ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
Glad-pkpk/bert-finetuned-ner
Glad-pkpk
2022-11-16T10:07:32Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-16T05:14:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9333003136866436 - name: Recall type: recall value: 0.9513631773813531 - name: F1 type: f1 value: 0.9422451870989249 - name: Accuracy type: accuracy value: 0.9865632542532525 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0620 - Precision: 0.9333 - Recall: 0.9514 - F1: 0.9422 - Accuracy: 0.9866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0894 | 1.0 | 1756 | 0.0722 | 0.9170 | 0.9335 | 0.9252 | 0.9820 | | 0.035 | 2.0 | 3512 | 0.0637 | 0.9299 | 0.9482 | 0.9389 | 0.9860 | | 0.0183 | 3.0 | 5268 | 0.0620 | 0.9333 | 0.9514 | 0.9422 | 0.9866 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
gcrssr/ddpm-butterflies-128
gcrssr
2022-11-16T09:43:01Z
2
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-16T08:55:02Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/gcrssr/ddpm-butterflies-128/tensorboard?#scalars)
ivanchangoluisa/q-Taxi-v3
ivanchangoluisa
2022-11-16T09:31:17Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-16T09:31:11Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ivanchangoluisa/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
sd-concepts-library/zizigooloo
sd-concepts-library
2022-11-16T09:20:33Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-11-16T09:20:28Z
--- license: mit --- ### Zizigooloo on Stable Diffusion This is the `<zizigooloo>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<zizigooloo> 0](https://huggingface.co/sd-concepts-library/zizigooloo/resolve/main/concept_images/4.jpeg) ![<zizigooloo> 1](https://huggingface.co/sd-concepts-library/zizigooloo/resolve/main/concept_images/5.jpeg) ![<zizigooloo> 2](https://huggingface.co/sd-concepts-library/zizigooloo/resolve/main/concept_images/2.jpg) ![<zizigooloo> 3](https://huggingface.co/sd-concepts-library/zizigooloo/resolve/main/concept_images/3.jpeg) ![<zizigooloo> 4](https://huggingface.co/sd-concepts-library/zizigooloo/resolve/main/concept_images/6.jpg) ![<zizigooloo> 5](https://huggingface.co/sd-concepts-library/zizigooloo/resolve/main/concept_images/1.jpg)
Xiegg/scherenschnitt_papercut
Xiegg
2022-11-16T08:43:23Z
0
0
null
[ "license:cc", "region:us" ]
null
2022-11-16T08:08:19Z
--- license: cc --- This model trained on SD-1.5 provides different styles of layered paper art Triggerword: scherenschnitt papercut Prompt expample: layering paper art, 75mm photography of a scherenschnitt papercut, the christmas crib scene in the stable with ox mule and adoration of kings, artist's work, detailed, (white) paper, (navyblue) paper, (color) paper, christmas, backlight effect, harmonic shapes, winter landscape, cute, romantic xmas, in focus, 8k, a bit underexposed, 3d effect, unreal engine, blender render, ((symmetrie)), abstraction, HD, family christmas in switzerland, in layering paper art, paper cut, paper folding Negative prompt: text, writing, logo, signature, tree Settings Steps: 50, Sampler: DPM fast, CFG scale: 14, Seed: 2147632306, Size: 704x512, Model hash: 78e2aaa9, Variation seed: 362561481, Variation seed strength: 0.4
ivanchangoluisa/q-FrozenLake-v1-4x4-noSlippery
ivanchangoluisa
2022-11-16T08:42:48Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-16T08:42:41Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ivanchangoluisa/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Sebabrata/dof-pan-1
Sebabrata
2022-11-16T07:36:18Z
48
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-11-16T05:44:10Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: dof-pan-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dof-pan-1 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.2
haoanh98/phoBert-514
haoanh98
2022-11-16T06:56:08Z
60
0
transformers
[ "transformers", "tf", "roberta", "feature-extraction", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-16T06:55:45Z
--- tags: - generated_from_keras_callback model-index: - name: phoBert-514 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # phoBert-514 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Tokenizers 0.13.2
EtoEto/Stable_Diffusion_B_W_Winter_model
EtoEto
2022-11-16T06:42:13Z
0
0
null
[ "license:openrail", "region:us" ]
null
2022-11-16T06:19:21Z
--- license: openrail --- This is the fine-tuned Stable Diffusion model trained on black and white films by Danil Matvienko. Use **bwWinter** in your prompts. ![tmp1ve_3eqe.png](https://huggingface.co/EtoEto/Stable_Diffusion_B_W_Winter_model/resolve/main/tmpqfzd7pse.png) ![some.png](https://huggingface.co/EtoEto/Stable_Diffusion_B_W_Winter_model/resolve/main/%D0%91%D0%B5%D0%B7%20%D0%BD%D0%B0%D0%B7%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F%20(2).png)
GItaf/BERT-FINETUNE-MBTI-LM-BERT-FINETUNE-MBTI-LM-JointBERT-Warmup-from-LM
GItaf
2022-11-16T06:16:03Z
56
0
transformers
[ "transformers", "pytorch", "bert", "text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-12T05:47:43Z
--- tags: - generated_from_trainer model-index: - name: BERT-FINETUNE-MBTI-LM-BERT-FINETUNE-MBTI-LM-JointBERT-Warmup-from-LM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT-FINETUNE-MBTI-LM-BERT-FINETUNE-MBTI-LM-JointBERT-Warmup-from-LM This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.7966 - Cls loss: 1.4255 - Lm loss: 4.4398 - Cls Accuracy: 0.6380 - Cls F1: 0.6319 - Cls Precision: 0.6416 - Cls Recall: 0.6380 - Perplexity: 84.76 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cls loss | Lm loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Perplexity | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------:|:------------:|:------:|:-------------:|:----------:|:----------:| | 5.3087 | 1.0 | 3470 | 4.9005 | 1.4109 | 4.5474 | 0.6075 | 0.5981 | 0.6132 | 0.6075 | 94.39 | | 4.8274 | 2.0 | 6940 | 4.7987 | 1.3448 | 4.4621 | 0.6242 | 0.6193 | 0.6381 | 0.6242 | 86.67 | | 4.6472 | 3.0 | 10410 | 4.7966 | 1.4255 | 4.4398 | 0.6380 | 0.6319 | 0.6416 | 0.6380 | 84.76 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
mike008/ddpm-butterflies-128
mike008
2022-11-16T06:11:48Z
3
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-16T04:55:43Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/mike008/ddpm-butterflies-128/tensorboard?#scalars)
teacookies/autotrain-16112022-cert-2114268313
teacookies
2022-11-16T05:47:55Z
105
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-16112022-cert", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-11-16T05:38:00Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-16112022-cert co2_eq_emissions: emissions: 0.08699410121541305 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 2114268313 - CO2 Emissions (in grams): 0.0870 ## Validation Metrics - Loss: 0.003 - Accuracy: 0.999 - Precision: 0.987 - Recall: 0.986 - F1: 0.986 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-16112022-cert-2114268313 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-16112022-cert-2114268313", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-16112022-cert-2114268313", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Bruno/my-awesome-setfit-model
Bruno
2022-11-16T05:26:19Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-16T05:26:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
yuriashimizu/distilbert-base-uncased-finetuned-emotion
yuriashimizu
2022-11-16T05:24:30Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-04T07:23:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.923 - name: F1 type: f1 value: 0.9231361383574684 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2205 - Accuracy: 0.923 - F1: 0.9231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8625 | 1.0 | 250 | 0.3246 | 0.9075 | 0.9062 | | 0.2522 | 2.0 | 500 | 0.2205 | 0.923 | 0.9231 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Bardia323/BestOfMidjourneyFusion
Bardia323
2022-11-16T04:59:42Z
0
1
null
[ "license:wtfpl", "region:us" ]
null
2022-11-14T06:59:23Z
--- license: wtfpl --- Midjourney Model trained on a dataset of curated 200 top weekly community chosen images on November 11th. Trained for 4800 steps using the Dreambooth method. Use "MJstyle artwork" as prompt
buihungtpd3/layoutlmv3-finetuned-vinv2
buihungtpd3
2022-11-16T04:33:24Z
78
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:drug_bill_layoutv3", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-16T03:11:29Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - drug_bill_layoutv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-vinv2 results: - task: name: Token Classification type: token-classification dataset: name: drug_bill_layoutv3 type: drug_bill_layoutv3 config: Vin_Drug_Bill split: train args: Vin_Drug_Bill metrics: - name: Precision type: precision value: 1.0 - name: Recall type: recall value: 1.0 - name: F1 type: f1 value: 1.0 - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-vinv2 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the drug_bill_layoutv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.33 | 250 | 0.0025 | 0.9994 | 0.9994 | 0.9994 | 0.9998 | | 0.0662 | 2.66 | 500 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0662 | 3.99 | 750 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0111 | 5.32 | 1000 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0111 | 6.65 | 1250 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0126 | 7.98 | 1500 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0126 | 9.31 | 1750 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0032 | 10.64 | 2000 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0032 | 11.97 | 2250 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0011 | 13.3 | 2500 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0011 | 14.63 | 2750 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0002 | 15.96 | 3000 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
huggingtweets/shaanvp
huggingtweets
2022-11-16T04:01:42Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-12T08:15:28Z
--- language: en thumbnail: http://www.huggingtweets.com/shaanvp/1668571298343/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1433108361839472642/3d54PCqW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Shaan Puri</div> <div style="text-align: center; font-size: 14px;">@shaanvp</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Shaan Puri. | Data | Shaan Puri | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 279 | | Short tweets | 321 | | Tweets kept | 2649 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1yj2zt7f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @shaanvp's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3jp529xm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3jp529xm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/shaanvp') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AkashM/t5-small-finetuned-xsum
AkashM
2022-11-16T03:44:59Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-26T20:35:33Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5585 - Rouge1: 45.8829 - Rouge2: 35.4564 - Rougel: 44.7101 - Rougelsum: 45.1103 - Gen Len: 11.9031 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.713 | 1.0 | 4578 | 1.5585 | 45.8829 | 35.4564 | 44.7101 | 45.1103 | 11.9031 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
huggingtweets/thomastrainrek
huggingtweets
2022-11-16T03:38:10Z
110
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-15T05:29:31Z
--- language: en thumbnail: http://www.huggingtweets.com/thomastrainrek/1668569886926/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1321337599332593664/tqNLm-HD_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">thomas the trainwreck</div> <div style="text-align: center; font-size: 14px;">@thomastrainrek</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from thomas the trainwreck. | Data | thomas the trainwreck | | --- | --- | | Tweets downloaded | 1817 | | Retweets | 48 | | Short tweets | 55 | | Tweets kept | 1714 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2eizpiau/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thomastrainrek's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/93k1hlvn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/93k1hlvn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/thomastrainrek') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
monideep2255/pseudolabeling-step2-F01-Pass-2
monideep2255
2022-11-16T03:08:02Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-15T23:39:17Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: pseudolabeling-step2-F01-Pass-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pseudolabeling-step2-F01-Pass-2 This model is a fine-tuned version of [monideep2255/XLRS-torgo](https://huggingface.co/monideep2255/XLRS-torgo) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2704 - Wer: 1.1942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.9509 | 2.94 | 400 | 1.1949 | 1.2734 | | 0.5686 | 5.88 | 800 | 1.0452 | 1.2266 | | 0.4179 | 8.82 | 1200 | 1.1876 | 1.2032 | | 0.3137 | 11.76 | 1600 | 1.2691 | 1.2572 | | 0.2329 | 14.7 | 2000 | 1.2944 | 1.2104 | | 0.1851 | 17.64 | 2400 | 1.4389 | 1.2626 | | 0.1427 | 20.59 | 2800 | 1.3325 | 1.2608 | | 0.1101 | 23.53 | 3200 | 1.4132 | 1.2176 | | 0.0805 | 26.47 | 3600 | 1.3443 | 1.2482 | | 0.0645 | 29.41 | 4000 | 1.2704 | 1.1942 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
NightRiderSp19/AITFTI
NightRiderSp19
2022-11-16T03:00:11Z
0
0
null
[ "region:us" ]
null
2022-11-16T02:46:57Z
API_URL = "https://api-inference.huggingface.co/models/cwwierzbicki/autotrain-dogspeople2-1978966090" headers = {"Authorization": f"Bearer {API_TOKEN}"} def query(filename): with open(filename, "rb") as f: data = f.read() response = requests.request("POST", API_URL, headers=headers, data=data) return json.loads(response.content.decode("utf-8")) output = query("cats.jpg")
ricardo-filho/bert_sesame_ner
ricardo-filho
2022-11-16T02:46:13Z
121
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-15T19:33:38Z
--- license: mit tags: - generated_from_trainer model-index: - name: bert_semeval_ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_semeval_ner This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
kksukk/hubert_zeroth_gpu_scratch
kksukk
2022-11-16T02:34:00Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "generated_from_trainer", "dataset:zeroth_korean_asr", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-15T04:28:46Z
--- tags: - generated_from_trainer datasets: - zeroth_korean_asr metrics: - wer model-index: - name: hubert_zeroth_gpu_scratch results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: zeroth_korean_asr type: zeroth_korean_asr config: clean split: train args: clean metrics: - name: Wer type: wer value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert_zeroth_gpu_scratch This model is a fine-tuned version of [](https://huggingface.co/) on the zeroth_korean_asr dataset. It achieves the following results on the evaluation set: - Loss: 4.8280 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:---:| | 10.6349 | 0.14 | 100 | 4.8579 | 1.0 | | 4.7539 | 0.29 | 200 | 4.7308 | 1.0 | | 4.7255 | 0.43 | 300 | 4.7278 | 1.0 | | 4.7124 | 0.57 | 400 | 5.3295 | 1.0 | | 4.7543 | 0.72 | 500 | 4.7487 | 1.0 | | 4.8932 | 0.86 | 600 | 4.9136 | 1.0 | | 4.8533 | 1.01 | 700 | 4.8799 | 1.0 | | 4.8483 | 1.15 | 800 | 4.8665 | 1.0 | | 4.8424 | 1.29 | 900 | 4.8622 | 1.0 | | 4.8426 | 1.44 | 1000 | 4.8506 | 1.0 | | 4.8373 | 1.58 | 1100 | 4.8603 | 1.0 | | 4.8452 | 1.72 | 1200 | 4.8537 | 1.0 | | 4.8391 | 1.87 | 1300 | 4.8520 | 1.0 | | 4.8405 | 2.01 | 1400 | 4.8682 | 1.0 | | 4.8375 | 2.16 | 1500 | 4.8637 | 1.0 | | 4.8413 | 2.3 | 1600 | 4.8664 | 1.0 | | 4.8388 | 2.44 | 1700 | 4.8473 | 1.0 | | 4.8389 | 2.59 | 1800 | 4.8484 | 1.0 | | 4.8343 | 2.73 | 1900 | 4.8629 | 1.0 | | 4.8294 | 2.87 | 2000 | 4.8571 | 1.0 | | 4.827 | 3.02 | 2100 | 4.8472 | 1.0 | | 4.8316 | 3.16 | 2200 | 4.8576 | 1.0 | | 4.8241 | 3.3 | 2300 | 4.8398 | 1.0 | | 4.8333 | 3.45 | 2400 | 4.8603 | 1.0 | | 4.8387 | 3.59 | 2500 | 4.8484 | 1.0 | | 4.8312 | 3.74 | 2600 | 4.8420 | 1.0 | | 4.8304 | 3.88 | 2700 | 4.8398 | 1.0 | | 4.8291 | 4.02 | 2800 | 4.8355 | 1.0 | | 4.8326 | 4.17 | 2900 | 4.8415 | 1.0 | | 4.8274 | 4.31 | 3000 | 4.8338 | 1.0 | | 4.8245 | 4.45 | 3100 | 4.8389 | 1.0 | | 4.83 | 4.6 | 3200 | 4.8332 | 1.0 | | 4.8335 | 4.74 | 3300 | 4.8393 | 1.0 | | 4.829 | 4.89 | 3400 | 4.8352 | 1.0 | | 4.832 | 5.03 | 3500 | 4.8329 | 1.0 | | 4.8285 | 5.17 | 3600 | 4.8343 | 1.0 | | 4.8302 | 5.32 | 3700 | 4.8381 | 1.0 | | 4.8371 | 5.46 | 3800 | 4.8426 | 1.0 | | 4.8226 | 5.6 | 3900 | 4.8383 | 1.0 | | 4.8257 | 5.75 | 4000 | 4.8372 | 1.0 | | 4.8222 | 5.89 | 4100 | 4.8332 | 1.0 | | 4.8255 | 6.03 | 4200 | 4.8437 | 1.0 | | 4.8277 | 6.18 | 4300 | 4.8351 | 1.0 | | 4.8257 | 6.32 | 4400 | 4.8368 | 1.0 | | 4.8301 | 6.47 | 4500 | 4.8345 | 1.0 | | 4.8267 | 6.61 | 4600 | 4.8343 | 1.0 | | 4.8296 | 6.75 | 4700 | 4.8388 | 1.0 | | 4.828 | 6.9 | 4800 | 4.8374 | 1.0 | | 4.8173 | 7.04 | 4900 | 4.8375 | 1.0 | | 4.8234 | 7.18 | 5000 | 4.8348 | 1.0 | | 4.8233 | 7.33 | 5100 | 4.8349 | 1.0 | | 4.8232 | 7.47 | 5200 | 4.8339 | 1.0 | | 4.8293 | 7.61 | 5300 | 4.8386 | 1.0 | | 4.8305 | 7.76 | 5400 | 4.8385 | 1.0 | | 4.8253 | 7.9 | 5500 | 4.8315 | 1.0 | | 4.823 | 8.05 | 5600 | 4.8325 | 1.0 | | 4.8313 | 8.19 | 5700 | 4.8311 | 1.0 | | 4.8284 | 8.33 | 5800 | 4.8329 | 1.0 | | 4.8199 | 8.48 | 5900 | 4.8329 | 1.0 | | 4.8208 | 8.62 | 6000 | 4.8319 | 1.0 | | 4.8315 | 8.76 | 6100 | 4.8334 | 1.0 | | 4.8265 | 8.91 | 6200 | 4.8308 | 1.0 | | 4.8218 | 9.05 | 6300 | 4.8313 | 1.0 | | 4.8172 | 9.2 | 6400 | 4.8294 | 1.0 | | 4.8231 | 9.34 | 6500 | 4.8299 | 1.0 | | 4.825 | 9.48 | 6600 | 4.8311 | 1.0 | | 4.826 | 9.63 | 6700 | 4.8299 | 1.0 | | 4.8269 | 9.77 | 6800 | 4.8321 | 1.0 | | 4.8275 | 9.91 | 6900 | 4.8306 | 1.0 | | 4.8199 | 10.06 | 7000 | 4.8302 | 1.0 | | 4.8217 | 10.2 | 7100 | 4.8316 | 1.0 | | 4.8237 | 10.34 | 7200 | 4.8296 | 1.0 | | 4.8253 | 10.49 | 7300 | 4.8318 | 1.0 | | 4.8256 | 10.63 | 7400 | 4.8320 | 1.0 | | 4.8265 | 10.78 | 7500 | 4.8297 | 1.0 | | 4.8201 | 10.92 | 7600 | 4.8309 | 1.0 | | 4.8259 | 11.06 | 7700 | 4.8302 | 1.0 | | 4.8216 | 11.21 | 7800 | 4.8315 | 1.0 | | 4.8206 | 11.35 | 7900 | 4.8328 | 1.0 | | 4.8249 | 11.49 | 8000 | 4.8290 | 1.0 | | 4.8231 | 11.64 | 8100 | 4.8297 | 1.0 | | 4.8232 | 11.78 | 8200 | 4.8303 | 1.0 | | 4.8245 | 11.93 | 8300 | 4.8283 | 1.0 | | 4.8224 | 12.07 | 8400 | 4.8309 | 1.0 | | 4.822 | 12.21 | 8500 | 4.8341 | 1.0 | | 4.8234 | 12.36 | 8600 | 4.8300 | 1.0 | | 4.8233 | 12.5 | 8700 | 4.8302 | 1.0 | | 4.825 | 12.64 | 8800 | 4.8301 | 1.0 | | 4.8246 | 12.79 | 8900 | 4.8310 | 1.0 | | 4.8169 | 12.93 | 9000 | 4.8308 | 1.0 | | 4.8194 | 13.07 | 9100 | 4.8319 | 1.0 | | 4.8182 | 13.22 | 9200 | 4.8334 | 1.0 | | 4.8245 | 13.36 | 9300 | 4.8334 | 1.0 | | 4.8274 | 13.51 | 9400 | 4.8427 | 1.0 | | 4.8194 | 13.65 | 9500 | 4.8393 | 1.0 | | 4.825 | 13.79 | 9600 | 4.8368 | 1.0 | | 4.8162 | 13.94 | 9700 | 4.8371 | 1.0 | | 4.8213 | 14.08 | 9800 | 4.8359 | 1.0 | | 4.8275 | 14.22 | 9900 | 4.8330 | 1.0 | | 4.8119 | 14.37 | 10000 | 4.8328 | 1.0 | | 4.8267 | 14.51 | 10100 | 4.8327 | 1.0 | | 4.8218 | 14.66 | 10200 | 4.8328 | 1.0 | | 4.8221 | 14.8 | 10300 | 4.8344 | 1.0 | | 4.8181 | 14.94 | 10400 | 4.8330 | 1.0 | | 4.8204 | 15.09 | 10500 | 4.8326 | 1.0 | | 4.8235 | 15.23 | 10600 | 4.8340 | 1.0 | | 4.8113 | 15.37 | 10700 | 4.8330 | 1.0 | | 4.8268 | 15.52 | 10800 | 4.8330 | 1.0 | | 4.8199 | 15.66 | 10900 | 4.8341 | 1.0 | | 4.8213 | 15.8 | 11000 | 4.8320 | 1.0 | | 4.8268 | 15.95 | 11100 | 4.8345 | 1.0 | | 4.8113 | 16.09 | 11200 | 4.8367 | 1.0 | | 4.8216 | 16.24 | 11300 | 4.8358 | 1.0 | | 4.8287 | 16.38 | 11400 | 4.8343 | 1.0 | | 4.8185 | 16.52 | 11500 | 4.8341 | 1.0 | | 4.8226 | 16.67 | 11600 | 4.8321 | 1.0 | | 4.8187 | 16.81 | 11700 | 4.8337 | 1.0 | | 4.8183 | 16.95 | 11800 | 4.8324 | 1.0 | | 4.8173 | 17.1 | 11900 | 4.8334 | 1.0 | | 4.8217 | 17.24 | 12000 | 4.8338 | 1.0 | | 4.8174 | 17.39 | 12100 | 4.8323 | 1.0 | | 4.8193 | 17.53 | 12200 | 4.8358 | 1.0 | | 4.8203 | 17.67 | 12300 | 4.8313 | 1.0 | | 4.8182 | 17.82 | 12400 | 4.8311 | 1.0 | | 4.8245 | 17.96 | 12500 | 4.8324 | 1.0 | | 4.8195 | 18.1 | 12600 | 4.8301 | 1.0 | | 4.8197 | 18.25 | 12700 | 4.8345 | 1.0 | | 4.8163 | 18.39 | 12800 | 4.8326 | 1.0 | | 4.8227 | 18.53 | 12900 | 4.8319 | 1.0 | | 4.8254 | 18.68 | 13000 | 4.8321 | 1.0 | | 4.8197 | 18.82 | 13100 | 4.8315 | 1.0 | | 4.819 | 18.97 | 13200 | 4.8306 | 1.0 | | 4.8106 | 19.11 | 13300 | 4.8297 | 1.0 | | 4.8161 | 19.25 | 13400 | 4.8314 | 1.0 | | 4.8147 | 19.4 | 13500 | 4.8340 | 1.0 | | 4.8237 | 19.54 | 13600 | 4.8313 | 1.0 | | 4.8186 | 19.68 | 13700 | 4.8298 | 1.0 | | 4.8217 | 19.83 | 13800 | 4.8302 | 1.0 | | 4.8239 | 19.97 | 13900 | 4.8297 | 1.0 | | 4.8189 | 20.11 | 14000 | 4.8313 | 1.0 | | 4.8254 | 20.26 | 14100 | 4.8299 | 1.0 | | 4.8166 | 20.4 | 14200 | 4.8297 | 1.0 | | 4.8199 | 20.55 | 14300 | 4.8294 | 1.0 | | 4.8129 | 20.69 | 14400 | 4.8307 | 1.0 | | 4.8175 | 20.83 | 14500 | 4.8285 | 1.0 | | 4.8195 | 20.98 | 14600 | 4.8281 | 1.0 | | 4.82 | 21.12 | 14700 | 4.8293 | 1.0 | | 4.8136 | 21.26 | 14800 | 4.8293 | 1.0 | | 4.8177 | 21.41 | 14900 | 4.8287 | 1.0 | | 4.826 | 21.55 | 15000 | 4.8288 | 1.0 | | 4.8177 | 21.7 | 15100 | 4.8296 | 1.0 | | 4.8165 | 21.84 | 15200 | 4.8303 | 1.0 | | 4.8246 | 21.98 | 15300 | 4.8282 | 1.0 | | 4.8146 | 22.13 | 15400 | 4.8276 | 1.0 | | 4.819 | 22.27 | 15500 | 4.8279 | 1.0 | | 4.814 | 22.41 | 15600 | 4.8295 | 1.0 | | 4.8195 | 22.56 | 15700 | 4.8274 | 1.0 | | 4.8189 | 22.7 | 15800 | 4.8275 | 1.0 | | 4.822 | 22.84 | 15900 | 4.8274 | 1.0 | | 4.8195 | 22.99 | 16000 | 4.8274 | 1.0 | | 4.8146 | 23.13 | 16100 | 4.8274 | 1.0 | | 4.8126 | 23.28 | 16200 | 4.8271 | 1.0 | | 4.8172 | 23.42 | 16300 | 4.8272 | 1.0 | | 4.8214 | 23.56 | 16400 | 4.8277 | 1.0 | | 4.821 | 23.71 | 16500 | 4.8278 | 1.0 | | 4.8212 | 23.85 | 16600 | 4.8274 | 1.0 | | 4.819 | 23.99 | 16700 | 4.8277 | 1.0 | | 4.8165 | 24.14 | 16800 | 4.8274 | 1.0 | | 4.8212 | 24.28 | 16900 | 4.8268 | 1.0 | | 4.8198 | 24.43 | 17000 | 4.8272 | 1.0 | | 4.8228 | 24.57 | 17100 | 4.8281 | 1.0 | | 4.8159 | 24.71 | 17200 | 4.8272 | 1.0 | | 4.8123 | 24.86 | 17300 | 4.8274 | 1.0 | | 4.8143 | 25.0 | 17400 | 4.8284 | 1.0 | | 4.8174 | 25.14 | 17500 | 4.8289 | 1.0 | | 4.8243 | 25.29 | 17600 | 4.8276 | 1.0 | | 4.8145 | 25.43 | 17700 | 4.8283 | 1.0 | | 4.8129 | 25.57 | 17800 | 4.8277 | 1.0 | | 4.815 | 25.72 | 17900 | 4.8272 | 1.0 | | 4.8155 | 25.86 | 18000 | 4.8279 | 1.0 | | 4.8217 | 26.01 | 18100 | 4.8269 | 1.0 | | 4.8106 | 26.15 | 18200 | 4.8277 | 1.0 | | 4.8188 | 26.29 | 18300 | 4.8270 | 1.0 | | 4.8232 | 26.44 | 18400 | 4.8277 | 1.0 | | 4.816 | 26.58 | 18500 | 4.8278 | 1.0 | | 4.8159 | 26.72 | 18600 | 4.8275 | 1.0 | | 4.8199 | 26.87 | 18700 | 4.8274 | 1.0 | | 4.8149 | 27.01 | 18800 | 4.8278 | 1.0 | | 4.8103 | 27.16 | 18900 | 4.8279 | 1.0 | | 4.8244 | 27.3 | 19000 | 4.8275 | 1.0 | | 4.8217 | 27.44 | 19100 | 4.8279 | 1.0 | | 4.8168 | 27.59 | 19200 | 4.8277 | 1.0 | | 4.8111 | 27.73 | 19300 | 4.8287 | 1.0 | | 4.816 | 27.87 | 19400 | 4.8279 | 1.0 | | 4.8166 | 28.02 | 19500 | 4.8282 | 1.0 | | 4.8129 | 28.16 | 19600 | 4.8281 | 1.0 | | 4.8207 | 28.3 | 19700 | 4.8275 | 1.0 | | 4.8196 | 28.45 | 19800 | 4.8274 | 1.0 | | 4.8208 | 28.59 | 19900 | 4.8277 | 1.0 | | 4.811 | 28.74 | 20000 | 4.8280 | 1.0 | | 4.8176 | 28.88 | 20100 | 4.8280 | 1.0 | | 4.8126 | 29.02 | 20200 | 4.8283 | 1.0 | | 4.8161 | 29.17 | 20300 | 4.8279 | 1.0 | | 4.8134 | 29.31 | 20400 | 4.8278 | 1.0 | | 4.8201 | 29.45 | 20500 | 4.8279 | 1.0 | | 4.8185 | 29.6 | 20600 | 4.8283 | 1.0 | | 4.8174 | 29.74 | 20700 | 4.8280 | 1.0 | | 4.8145 | 29.89 | 20800 | 4.8280 | 1.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.0.0 - Tokenizers 0.13.2
Samaneh/xlm-roberta-base-finetuned-panx-de
Samaneh
2022-11-16T02:18:35Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-16T01:53:54Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
keithhon/distilbert-base-uncased-text-classification-template-1.0
keithhon
2022-11-16T02:10:37Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-15T07:50:33Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: distilbert-base-uncased-text-classification-template results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-text-classification-template This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6637 - F1: 0.5 - Roc Auc: 0.6667 - Accuracy: 0.3333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---:|:-------:|:--------:| | No log | 1.0 | 6 | 0.6637 | 0.5 | 0.6667 | 0.3333 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Poojitha/distilbert-base-uncased-finetuned-emotion
Poojitha
2022-11-16T00:42:55Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-16T00:34:13Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2861 - Accuracy: 0.4731 - F1: 0.4643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.5548 | 1.0 | 63 | 1.4000 | 0.3880 | 0.3166 | | 1.3084 | 2.0 | 126 | 1.2861 | 0.4731 | 0.4643 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Tokenizers 0.13.2
mrm8488/galactica-125m
mrm8488
2022-11-16T00:20:06Z
203
8
transformers
[ "transformers", "pytorch", "opt", "text-generation", "arxiv:1810.03993", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-15T23:37:56Z
--- license: apache-2.0 --- # This is WIP! # GALACTICA (mini) Following [Mitchell et al. (2018)](https://arxiv.org/abs/1810.03993), this model card provides information about the GALACTICA model, how it was trained, and the intended use cases. Full details about how the model was trained and evaluated can be found in the [release paper](https://galactica.org/paper.pdf). ## Model Details The GALACTICA models are trained on a large-scale scientific corpus. The models are designed to perform scientific tasks, including but not limited to citation prediction, scientific QA, mathematical reasoning, summarization, document generation, molecular property prediction and entity extraction. The models were developed by the Papers with Code team at Meta AI to study the use of language models for the automatic organization of science. We train models with sizes ranging from 125M to 120B parameters. Below is a summary of the released models: | Size | Parameters | |:-----------:|:-----------:| | `mini` | 125 M | | `base` | 1.3 B | | `standard` | 6.7 B | | `large` | 30 B | | `huge` | 120 B | ## Release Date November 2022 ## Model Type Transformer based architecture in a decoder-only setup with a few modifications (see paper for more details). ## Paper & Demo [[Paper]](https://galactica.org/paper.pdf) / [[Demo]](https://galactica.org) ## Model Use The primary intended users of the GALACTICA models are reserachers studying language models applied to the scientific domain. We also anticipate the model will be useful for developers who wish to build scientific tooling. However, we caution against production use without safeguards given the potential of language models to hallucinate. The models are made available under a non-commercial CC BY-NC 4.0 license. More information about how to use the model can be found in the README.md of this repository. ## Training Data The GALACTICA models are trained on 106 billion tokens of open-access scientific text and data. This includes papers, textbooks, scientific websites, encyclopedias, reference material, knowledge bases, and more. We tokenize different modalities to provide a natural langauge interface for different tasks. See the README.md for more information. See the paper for full information on the training data. ## Performance and Limitations The model outperforms several existing language models on a range of knowledge probes, reasoning, and knowledge-intensive scientific tasks. This also extends to general NLP tasks, where GALACTICA outperforms other open source general language models. That being said, we note a number of limitations in this section. As with other language models, GALACTICA is often prone to hallucination - and training on a high-quality academic corpus does not prevent this, especially for less popular and less cited scientific concepts. There are no guarantees of truthful output when generating form the model. This extends to specific modalities such as citation prediction. While GALACTICA's citation behaviour approaches the ground truth citation behaviour with scale, the model continues to exhibit a popularity bias at larger scales. In addition, we evaluated the model on several types of benchmarks related to stereotypes and toxicity. Overall, the model exhibits substantially lower toxicity rates compared to other large language models. That being said, the model continues to exhibit bias on certain measures (see the paper for details). So we recommend care when using the model for generations. ## Broader Implications GALACTICA can potentially be used as a new way to discover academic literature. We also expect a lot of downstream use for application to particular domains, such as mathematics, biology and chemistry. In the paper, we demonstrated several examples of the model acting as alternative to standard search tools. We expect a new generation of scientific tools to be build upon large language models such as GALACTICA. We encourage researchers to investigate beneficial and new use cases for these models. That being said, it is important to be aware of current limitations of large language models. Researchers should pay attention to common issues such as hallucination and biases that could emerge from using these models.
meongracun/nmt-mpst-id-en-lr_1e-3-ep_20-seq_128_bs-32
meongracun
2022-11-15T23:00:26Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-15T22:29:09Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_1e-3-ep_20-seq_128_bs-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_1e-3-ep_20-seq_128_bs-32 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6391 - Bleu: 18.9112 - Meteor: 0.3583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:| | No log | 1.0 | 202 | 1.8793 | 13.9958 | 0.2988 | | No log | 2.0 | 404 | 1.7154 | 15.2332 | 0.3136 | | 1.6109 | 3.0 | 606 | 1.6615 | 16.4394 | 0.3279 | | 1.6109 | 4.0 | 808 | 1.6292 | 17.1368 | 0.3375 | | 1.2855 | 5.0 | 1010 | 1.6205 | 17.7174 | 0.3451 | | 1.2855 | 6.0 | 1212 | 1.6246 | 17.9786 | 0.3478 | | 1.2855 | 7.0 | 1414 | 1.6178 | 18.3294 | 0.3515 | | 1.0144 | 8.0 | 1616 | 1.6195 | 18.6155 | 0.3556 | | 1.0144 | 9.0 | 1818 | 1.6320 | 18.7035 | 0.3565 | | 0.8814 | 10.0 | 2020 | 1.6391 | 18.9112 | 0.3583 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
storm3d/ppo-LunarLander-v2
storm3d
2022-11-15T22:51:04Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-15T22:50:29Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 219.75 +/- 21.36 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
meongracun/nmt-mpst-id-en-lr_1e-4-ep_10-seq_128_bs-64
meongracun
2022-11-15T22:43:24Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-15T22:17:19Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_1e-4-ep_10-seq_128_bs-64 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_1e-4-ep_10-seq_128_bs-64 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4108 - Bleu: 5.8803 - Meteor: 0.1857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 101 | 2.8898 | 2.8643 | 0.1158 | | No log | 2.0 | 202 | 2.7574 | 3.5561 | 0.1355 | | No log | 3.0 | 303 | 2.6672 | 4.1558 | 0.1509 | | No log | 4.0 | 404 | 2.5927 | 4.5156 | 0.1593 | | 2.9931 | 5.0 | 505 | 2.5319 | 4.9528 | 0.1673 | | 2.9931 | 6.0 | 606 | 2.4832 | 5.2665 | 0.1728 | | 2.9931 | 7.0 | 707 | 2.4505 | 5.4822 | 0.1778 | | 2.9931 | 8.0 | 808 | 2.4290 | 5.7456 | 0.1829 | | 2.9931 | 9.0 | 909 | 2.4147 | 5.8499 | 0.185 | | 2.6176 | 10.0 | 1010 | 2.4108 | 5.8803 | 0.1857 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
gngpostalsrvc/BERiT_2000_custom_architecture_100_epochs
gngpostalsrvc
2022-11-15T22:01:12Z
108
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-15T19:27:52Z
--- license: mit tags: - generated_from_trainer model-index: - name: BERiT_2000_custom_architecture_100_epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERiT_2000_custom_architecture_100_epochs This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.3615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 16.6444 | 0.19 | 500 | 8.8209 | | 8.1904 | 0.39 | 1000 | 7.5197 | | 7.3572 | 0.58 | 1500 | 7.1037 | | 7.0042 | 0.77 | 2000 | 6.8817 | | 6.8626 | 0.97 | 2500 | 6.7353 | | 6.7582 | 1.16 | 3000 | 6.5802 | | 6.6345 | 1.36 | 3500 | 6.4232 | | 6.5817 | 1.55 | 4000 | 6.3375 | | 6.517 | 1.74 | 4500 | 6.3439 | | 6.4531 | 1.94 | 5000 | 6.2870 | | 6.469 | 2.13 | 5500 | 6.3208 | | 6.4503 | 2.32 | 6000 | 6.2136 | | 6.3679 | 2.52 | 6500 | 6.2260 | | 6.4032 | 2.71 | 7000 | 6.2015 | | 6.357 | 2.9 | 7500 | 6.2363 | | 6.3349 | 3.1 | 8000 | 6.2101 | | 6.342 | 3.29 | 8500 | 6.2031 | | 6.3047 | 3.49 | 9000 | 6.1945 | | 6.3204 | 3.68 | 9500 | 6.1681 | | 6.2935 | 3.87 | 10000 | 6.1999 | | 6.3319 | 4.07 | 10500 | 6.1613 | | 6.2528 | 4.26 | 11000 | 6.1354 | | 6.2683 | 4.45 | 11500 | 6.2427 | | 6.2572 | 4.65 | 12000 | 6.1477 | | 6.2509 | 4.84 | 12500 | 6.1770 | | 6.2402 | 5.03 | 13000 | 6.1779 | | 6.2412 | 5.23 | 13500 | 6.1516 | | 6.2291 | 5.42 | 14000 | 6.1498 | | 6.2203 | 5.62 | 14500 | 6.1804 | | 6.2341 | 5.81 | 15000 | 6.1501 | | 6.2242 | 6.0 | 15500 | 6.1239 | | 6.2163 | 6.2 | 16000 | 6.1567 | | 6.2079 | 6.39 | 16500 | 6.1188 | | 6.2176 | 6.58 | 17000 | 6.1620 | | 6.1926 | 6.78 | 17500 | 6.1635 | | 6.1743 | 6.97 | 18000 | 6.0749 | | 6.1978 | 7.16 | 18500 | 6.1316 | | 6.1868 | 7.36 | 19000 | 6.0297 | | 6.19 | 7.55 | 19500 | 6.1126 | | 6.2005 | 7.75 | 20000 | 6.0985 | | 6.2056 | 7.94 | 20500 | 6.1100 | | 6.1628 | 8.13 | 21000 | 6.1321 | | 6.169 | 8.33 | 21500 | 6.0842 | | 6.1636 | 8.52 | 22000 | 6.1205 | | 6.1278 | 8.71 | 22500 | 6.1270 | | 6.1656 | 8.91 | 23000 | 6.1049 | | 6.1526 | 9.1 | 23500 | 6.1462 | | 6.1624 | 9.3 | 24000 | 6.0534 | | 6.1353 | 9.49 | 24500 | 6.0862 | | 6.1264 | 9.68 | 25000 | 6.0844 | | 6.1648 | 9.88 | 25500 | 6.1206 | | 6.1574 | 10.07 | 26000 | 6.0942 | | 6.0971 | 10.26 | 26500 | 6.1151 | | 6.119 | 10.46 | 27000 | 6.1148 | | 6.1217 | 10.65 | 27500 | 6.1076 | | 6.1054 | 10.84 | 28000 | 6.1457 | | 6.1402 | 11.04 | 28500 | 6.0442 | | 6.1124 | 11.23 | 29000 | 6.1404 | | 6.1457 | 11.43 | 29500 | 6.0622 | | 6.1248 | 11.62 | 30000 | 6.1377 | | 6.1204 | 11.81 | 30500 | 6.1056 | | 6.1097 | 12.01 | 31000 | 6.0780 | | 6.0713 | 12.2 | 31500 | 6.0061 | | 6.1119 | 12.39 | 32000 | 6.1671 | | 6.0744 | 12.59 | 32500 | 6.1235 | | 6.082 | 12.78 | 33000 | 6.0905 | | 6.0962 | 12.97 | 33500 | 6.0936 | | 6.1265 | 13.17 | 34000 | 6.0786 | | 6.0941 | 13.36 | 34500 | 6.0944 | | 6.0694 | 13.56 | 35000 | 6.0988 | | 6.0784 | 13.75 | 35500 | 6.1221 | | 6.0749 | 13.94 | 36000 | 6.0961 | | 6.103 | 14.14 | 36500 | 6.0141 | | 6.0944 | 14.33 | 37000 | 6.0812 | | 6.0869 | 14.52 | 37500 | 6.0423 | | 6.0986 | 14.72 | 38000 | 6.1194 | | 6.0759 | 14.91 | 38500 | 6.0504 | | 6.0592 | 15.1 | 39000 | 6.1483 | | 6.0624 | 15.3 | 39500 | 6.0978 | | 6.077 | 15.49 | 40000 | 6.0585 | | 6.0581 | 15.69 | 40500 | 6.0355 | | 6.0612 | 15.88 | 41000 | 6.0742 | | 6.0536 | 16.07 | 41500 | 6.1443 | | 6.057 | 16.27 | 42000 | 6.0574 | | 6.0419 | 16.46 | 42500 | 6.0372 | | 6.0076 | 16.65 | 43000 | 6.0624 | | 6.0773 | 16.85 | 43500 | 6.0624 | | 6.0317 | 17.04 | 44000 | 6.0738 | | 6.0248 | 17.23 | 44500 | 6.0959 | | 6.0459 | 17.43 | 45000 | 6.0636 | | 6.0332 | 17.62 | 45500 | 6.0536 | | 6.0319 | 17.82 | 46000 | 6.0659 | | 6.0363 | 18.01 | 46500 | 6.0154 | | 6.0001 | 18.2 | 47000 | 6.0082 | | 5.9719 | 18.4 | 47500 | 6.0778 | | 6.0332 | 18.59 | 48000 | 6.0491 | | 6.0061 | 18.78 | 48500 | 5.9457 | | 5.9675 | 18.98 | 49000 | 5.9768 | | 5.9749 | 19.17 | 49500 | 6.0173 | | 5.9944 | 19.36 | 50000 | 5.9981 | | 6.0248 | 19.56 | 50500 | 5.9255 | | 5.9774 | 19.75 | 51000 | 6.0158 | | 5.9768 | 19.95 | 51500 | 5.9443 | | 5.9499 | 20.14 | 52000 | 5.9708 | | 5.979 | 20.33 | 52500 | 5.9296 | | 5.9881 | 20.53 | 53000 | 5.9506 | | 5.9775 | 20.72 | 53500 | 5.9266 | | 5.9361 | 20.91 | 54000 | 5.9270 | | 5.9427 | 21.11 | 54500 | 5.9461 | | 5.9396 | 21.3 | 55000 | 5.9156 | | 5.9596 | 21.49 | 55500 | 5.9185 | | 5.9079 | 21.69 | 56000 | 5.9630 | | 5.9579 | 21.88 | 56500 | 5.8991 | | 5.9564 | 22.08 | 57000 | 5.9097 | | 5.9225 | 22.27 | 57500 | 5.9452 | | 5.9202 | 22.46 | 58000 | 5.8680 | | 5.9103 | 22.66 | 58500 | 5.8985 | | 5.9106 | 22.85 | 59000 | 5.8656 | | 5.913 | 23.04 | 59500 | 5.8292 | | 5.9249 | 23.24 | 60000 | 5.8420 | | 5.8948 | 23.43 | 60500 | 5.8782 | | 5.9273 | 23.63 | 61000 | 5.8952 | | 5.8788 | 23.82 | 61500 | 5.8438 | | 5.898 | 24.01 | 62000 | 5.8705 | | 5.8809 | 24.21 | 62500 | 5.7648 | | 5.8953 | 24.4 | 63000 | 5.8283 | | 5.9177 | 24.59 | 63500 | 5.7760 | | 5.8809 | 24.79 | 64000 | 5.8144 | | 5.8994 | 24.98 | 64500 | 5.8348 | | 5.8817 | 25.17 | 65000 | 5.8334 | | 5.8701 | 25.37 | 65500 | 5.7240 | | 5.8518 | 25.56 | 66000 | 5.8187 | | 5.8406 | 25.76 | 66500 | 5.8133 | | 5.859 | 25.95 | 67000 | 5.7331 | | 5.8627 | 26.14 | 67500 | 5.7711 | | 5.8727 | 26.34 | 68000 | 5.7598 | | 5.8295 | 26.53 | 68500 | 5.8364 | | 5.8216 | 26.72 | 69000 | 5.7586 | | 5.8458 | 26.92 | 69500 | 5.7413 | | 5.8597 | 27.11 | 70000 | 5.7444 | | 5.842 | 27.3 | 70500 | 5.7288 | | 5.8254 | 27.5 | 71000 | 5.7811 | | 5.8285 | 27.69 | 71500 | 5.7120 | | 5.8106 | 27.89 | 72000 | 5.6733 | | 5.8073 | 28.08 | 72500 | 5.7163 | | 5.7932 | 28.27 | 73000 | 5.7258 | | 5.7919 | 28.47 | 73500 | 5.6985 | | 5.7881 | 28.66 | 74000 | 5.7321 | | 5.7942 | 28.85 | 74500 | 5.6545 | | 5.8011 | 29.05 | 75000 | 5.6799 | | 5.8071 | 29.24 | 75500 | 5.7270 | | 5.784 | 29.43 | 76000 | 5.6806 | | 5.7774 | 29.63 | 76500 | 5.6918 | | 5.7345 | 29.82 | 77000 | 5.7138 | | 5.7863 | 30.02 | 77500 | 5.7072 | | 5.7774 | 30.21 | 78000 | 5.6649 | | 5.7954 | 30.4 | 78500 | 5.6150 | | 5.7624 | 30.6 | 79000 | 5.6398 | | 5.7296 | 30.79 | 79500 | 5.6216 | | 5.7053 | 30.98 | 80000 | 5.5447 | | 5.7688 | 31.18 | 80500 | 5.6245 | | 5.7254 | 31.37 | 81000 | 5.6100 | | 5.755 | 31.56 | 81500 | 5.6257 | | 5.7854 | 31.76 | 82000 | 5.6330 | | 5.7351 | 31.95 | 82500 | 5.5588 | | 5.7233 | 32.15 | 83000 | 5.5590 | | 5.7225 | 32.34 | 83500 | 5.5480 | | 5.7451 | 32.53 | 84000 | 5.6075 | | 5.6989 | 32.73 | 84500 | 5.5447 | | 5.7245 | 32.92 | 85000 | 5.5353 | | 5.7132 | 33.11 | 85500 | 5.5563 | | 5.7187 | 33.31 | 86000 | 5.5177 | | 5.7203 | 33.5 | 86500 | 5.5630 | | 5.6948 | 33.69 | 87000 | 5.5357 | | 5.7118 | 33.89 | 87500 | 5.5367 | | 5.6763 | 34.08 | 88000 | 5.4824 | | 5.6923 | 34.28 | 88500 | 5.4489 | | 5.6803 | 34.47 | 89000 | 5.5113 | | 5.6977 | 34.66 | 89500 | 5.4829 | | 5.6834 | 34.86 | 90000 | 5.4640 | | 5.6596 | 35.05 | 90500 | 5.4816 | | 5.6513 | 35.24 | 91000 | 5.4522 | | 5.6687 | 35.44 | 91500 | 5.3984 | | 5.6866 | 35.63 | 92000 | 5.4538 | | 5.6479 | 35.82 | 92500 | 5.3811 | | 5.6308 | 36.02 | 93000 | 5.3664 | | 5.6299 | 36.21 | 93500 | 5.3788 | | 5.6263 | 36.41 | 94000 | 5.3367 | | 5.6305 | 36.6 | 94500 | 5.4058 | | 5.6065 | 36.79 | 95000 | 5.3011 | | 5.6236 | 36.99 | 95500 | 5.3301 | | 5.6191 | 37.18 | 96000 | 5.3643 | | 5.5991 | 37.37 | 96500 | 5.3917 | | 5.6044 | 37.57 | 97000 | 5.3284 | | 5.6001 | 37.76 | 97500 | 5.3199 | | 5.5758 | 37.96 | 98000 | 5.2644 | | 5.567 | 38.15 | 98500 | 5.3054 | | 5.5404 | 38.34 | 99000 | 5.3473 | | 5.5677 | 38.54 | 99500 | 5.2537 | | 5.5676 | 38.73 | 100000 | 5.3135 | | 5.5608 | 38.92 | 100500 | 5.2030 | | 5.5523 | 39.12 | 101000 | 5.2808 | | 5.545 | 39.31 | 101500 | 5.2114 | | 5.5117 | 39.5 | 102000 | 5.2167 | | 5.5403 | 39.7 | 102500 | 5.1930 | | 5.5166 | 39.89 | 103000 | 5.1737 | | 5.5267 | 40.09 | 103500 | 5.2112 | | 5.5116 | 40.28 | 104000 | 5.2007 | | 5.4874 | 40.47 | 104500 | 5.1654 | | 5.5144 | 40.67 | 105000 | 5.1378 | | 5.4683 | 40.86 | 105500 | 5.2039 | | 5.4978 | 41.05 | 106000 | 5.1436 | | 5.4781 | 41.25 | 106500 | 5.1642 | | 5.5052 | 41.44 | 107000 | 5.1245 | | 5.4844 | 41.63 | 107500 | 5.1809 | | 5.4853 | 41.83 | 108000 | 5.0201 | | 5.4814 | 42.02 | 108500 | 5.1054 | | 5.4529 | 42.22 | 109000 | 5.1489 | | 5.4804 | 42.41 | 109500 | 5.0555 | | 5.4534 | 42.6 | 110000 | 5.0705 | | 5.4401 | 42.8 | 110500 | 5.0464 | | 5.45 | 42.99 | 111000 | 5.0069 | | 5.4547 | 43.18 | 111500 | 5.0655 | | 5.4212 | 43.38 | 112000 | 5.0563 | | 5.3913 | 43.57 | 112500 | 5.0514 | | 5.4268 | 43.76 | 113000 | 4.9936 | | 5.3926 | 43.96 | 113500 | 5.0101 | | 5.3882 | 44.15 | 114000 | 5.0294 | | 5.4014 | 44.35 | 114500 | 5.0560 | | 5.417 | 44.54 | 115000 | 4.9827 | | 5.4012 | 44.73 | 115500 | 4.9811 | | 5.3697 | 44.93 | 116000 | 4.9288 | | 5.3991 | 45.12 | 116500 | 4.9576 | | 5.3711 | 45.31 | 117000 | 4.9339 | | 5.4081 | 45.51 | 117500 | 4.9250 | | 5.3531 | 45.7 | 118000 | 4.8725 | | 5.3826 | 45.89 | 118500 | 4.9501 | | 5.3798 | 46.09 | 119000 | 4.9958 | | 5.3415 | 46.28 | 119500 | 4.9327 | | 5.3786 | 46.48 | 120000 | 4.8616 | | 5.3862 | 46.67 | 120500 | 4.8863 | | 5.3606 | 46.86 | 121000 | 4.9151 | | 5.3605 | 47.06 | 121500 | 4.9053 | | 5.3455 | 47.25 | 122000 | 4.9110 | | 5.3264 | 47.44 | 122500 | 4.8673 | | 5.3409 | 47.64 | 123000 | 4.8346 | | 5.3567 | 47.83 | 123500 | 4.8996 | | 5.3103 | 48.02 | 124000 | 4.8342 | | 5.3244 | 48.22 | 124500 | 4.8464 | | 5.3324 | 48.41 | 125000 | 4.8729 | | 5.3273 | 48.61 | 125500 | 4.8125 | | 5.31 | 48.8 | 126000 | 4.8519 | | 5.2872 | 48.99 | 126500 | 4.8693 | | 5.3066 | 49.19 | 127000 | 4.8600 | | 5.302 | 49.38 | 127500 | 4.8171 | | 5.2875 | 49.57 | 128000 | 4.7911 | | 5.2806 | 49.77 | 128500 | 4.8004 | | 5.3108 | 49.96 | 129000 | 4.7977 | | 5.2741 | 50.15 | 129500 | 4.8427 | | 5.2603 | 50.35 | 130000 | 4.7938 | | 5.282 | 50.54 | 130500 | 4.7997 | | 5.2835 | 50.74 | 131000 | 4.8173 | | 5.2628 | 50.93 | 131500 | 4.7610 | | 5.3034 | 51.12 | 132000 | 4.7908 | | 5.2635 | 51.32 | 132500 | 4.7676 | | 5.3269 | 51.51 | 133000 | 4.8245 | | 5.242 | 51.7 | 133500 | 4.7265 | | 5.2516 | 51.9 | 134000 | 4.7588 | | 5.2641 | 52.09 | 134500 | 4.7695 | | 5.2493 | 52.29 | 135000 | 4.7327 | | 5.2334 | 52.48 | 135500 | 4.7206 | | 5.2483 | 52.67 | 136000 | 4.7289 | | 5.2133 | 52.87 | 136500 | 4.8136 | | 5.2495 | 53.06 | 137000 | 4.6620 | | 5.2489 | 53.25 | 137500 | 4.7118 | | 5.2415 | 53.45 | 138000 | 4.7011 | | 5.231 | 53.64 | 138500 | 4.7295 | | 5.2211 | 53.83 | 139000 | 4.7199 | | 5.2327 | 54.03 | 139500 | 4.7146 | | 5.2053 | 54.22 | 140000 | 4.6871 | | 5.2117 | 54.42 | 140500 | 4.7097 | | 5.1929 | 54.61 | 141000 | 4.6923 | | 5.2199 | 54.8 | 141500 | 4.7291 | | 5.211 | 55.0 | 142000 | 4.7088 | | 5.2482 | 55.19 | 142500 | 4.6551 | | 5.2043 | 55.38 | 143000 | 4.7244 | | 5.1799 | 55.58 | 143500 | 4.7225 | | 5.2053 | 55.77 | 144000 | 4.6948 | | 5.1745 | 55.96 | 144500 | 4.7157 | | 5.1673 | 56.16 | 145000 | 4.6555 | | 5.2122 | 56.35 | 145500 | 4.6842 | | 5.1701 | 56.55 | 146000 | 4.6581 | | 5.2107 | 56.74 | 146500 | 4.6245 | | 5.2454 | 56.93 | 147000 | 4.6399 | | 5.2134 | 57.13 | 147500 | 4.6585 | | 5.1753 | 57.32 | 148000 | 4.6233 | | 5.1355 | 57.51 | 148500 | 4.6543 | | 5.2032 | 57.71 | 149000 | 4.6640 | | 5.1714 | 57.9 | 149500 | 4.6635 | | 5.1769 | 58.09 | 150000 | 4.6256 | | 5.1632 | 58.29 | 150500 | 4.6456 | | 5.1556 | 58.48 | 151000 | 4.6647 | | 5.1671 | 58.68 | 151500 | 4.6548 | | 5.1482 | 58.87 | 152000 | 4.6107 | | 5.104 | 59.06 | 152500 | 4.6320 | | 5.1545 | 59.26 | 153000 | 4.6035 | | 5.1338 | 59.45 | 153500 | 4.6512 | | 5.1518 | 59.64 | 154000 | 4.6424 | | 5.1937 | 59.84 | 154500 | 4.6123 | | 5.1576 | 60.03 | 155000 | 4.6077 | | 5.1643 | 60.22 | 155500 | 4.5990 | | 5.1371 | 60.42 | 156000 | 4.6025 | | 5.1535 | 60.61 | 156500 | 4.5939 | | 5.128 | 60.81 | 157000 | 4.5716 | | 5.1711 | 61.0 | 157500 | 4.5895 | | 5.1265 | 61.19 | 158000 | 4.6367 | | 5.1131 | 61.39 | 158500 | 4.6565 | | 5.1239 | 61.58 | 159000 | 4.6194 | | 5.1089 | 61.77 | 159500 | 4.6214 | | 5.1052 | 61.97 | 160000 | 4.5982 | | 5.1336 | 62.16 | 160500 | 4.5861 | | 5.1081 | 62.35 | 161000 | 4.5343 | | 5.1706 | 62.55 | 161500 | 4.5480 | | 5.0848 | 62.74 | 162000 | 4.5500 | | 5.0848 | 62.94 | 162500 | 4.5965 | | 5.0849 | 63.13 | 163000 | 4.5737 | | 5.1267 | 63.32 | 163500 | 4.5680 | | 5.124 | 63.52 | 164000 | 4.5341 | | 5.1212 | 63.71 | 164500 | 4.5154 | | 5.1214 | 63.9 | 165000 | 4.5329 | | 5.117 | 64.1 | 165500 | 4.4988 | | 5.0578 | 64.29 | 166000 | 4.5582 | | 5.0705 | 64.48 | 166500 | 4.5346 | | 5.0814 | 64.68 | 167000 | 4.5978 | | 5.0959 | 64.87 | 167500 | 4.5628 | | 5.0601 | 65.07 | 168000 | 4.5449 | | 5.1112 | 65.26 | 168500 | 4.5499 | | 5.0946 | 65.45 | 169000 | 4.5344 | | 5.0965 | 65.65 | 169500 | 4.5324 | | 5.0958 | 65.84 | 170000 | 4.4937 | | 5.081 | 66.03 | 170500 | 4.5009 | | 5.0506 | 66.23 | 171000 | 4.5145 | | 5.0729 | 66.42 | 171500 | 4.4779 | | 5.0628 | 66.62 | 172000 | 4.5531 | | 5.0674 | 66.81 | 172500 | 4.5023 | | 5.0634 | 67.0 | 173000 | 4.5124 | | 5.0847 | 67.2 | 173500 | 4.5203 | | 5.0729 | 67.39 | 174000 | 4.4887 | | 5.0683 | 67.58 | 174500 | 4.5113 | | 5.0596 | 67.78 | 175000 | 4.4898 | | 5.0528 | 67.97 | 175500 | 4.5359 | | 5.0595 | 68.16 | 176000 | 4.5139 | | 5.0864 | 68.36 | 176500 | 4.5260 | | 5.0241 | 68.55 | 177000 | 4.5325 | | 5.1038 | 68.75 | 177500 | 4.4692 | | 5.073 | 68.94 | 178000 | 4.5429 | | 5.0667 | 69.13 | 178500 | 4.4781 | | 5.041 | 69.33 | 179000 | 4.5035 | | 5.033 | 69.52 | 179500 | 4.5177 | | 5.0369 | 69.71 | 180000 | 4.4948 | | 5.0265 | 69.91 | 180500 | 4.5544 | | 5.0687 | 70.1 | 181000 | 4.5048 | | 5.0464 | 70.29 | 181500 | 4.4532 | | 5.0502 | 70.49 | 182000 | 4.5503 | | 4.9993 | 70.68 | 182500 | 4.5011 | | 5.041 | 70.88 | 183000 | 4.4769 | | 5.0603 | 71.07 | 183500 | 4.4642 | | 5.0448 | 71.26 | 184000 | 4.4527 | | 5.0702 | 71.46 | 184500 | 4.4807 | | 5.0418 | 71.65 | 185000 | 4.4724 | | 4.9976 | 71.84 | 185500 | 4.4915 | | 5.0502 | 72.04 | 186000 | 4.4591 | | 5.0438 | 72.23 | 186500 | 4.4292 | | 4.9812 | 72.42 | 187000 | 4.4252 | | 5.0377 | 72.62 | 187500 | 4.4512 | | 5.0117 | 72.81 | 188000 | 4.4617 | | 4.976 | 73.01 | 188500 | 4.5048 | | 5.05 | 73.2 | 189000 | 4.4400 | | 5.0306 | 73.39 | 189500 | 4.4209 | | 5.0648 | 73.59 | 190000 | 4.4707 | | 5.0097 | 73.78 | 190500 | 4.4453 | | 5.0611 | 73.97 | 191000 | 4.4601 | | 5.0091 | 74.17 | 191500 | 4.4231 | | 5.0529 | 74.36 | 192000 | 4.4110 | | 5.0221 | 74.55 | 192500 | 4.5013 | | 5.0156 | 74.75 | 193000 | 4.4717 | | 5.0442 | 74.94 | 193500 | 4.4585 | | 5.0229 | 75.14 | 194000 | 4.4601 | | 4.9883 | 75.33 | 194500 | 4.4740 | | 4.9963 | 75.52 | 195000 | 4.4663 | | 4.9886 | 75.72 | 195500 | 4.4237 | | 4.9753 | 75.91 | 196000 | 4.4762 | | 4.981 | 76.1 | 196500 | 4.4573 | | 4.9901 | 76.3 | 197000 | 4.4376 | | 5.005 | 76.49 | 197500 | 4.4859 | | 5.0254 | 76.68 | 198000 | 4.4181 | | 5.0067 | 76.88 | 198500 | 4.4582 | | 5.0097 | 77.07 | 199000 | 4.4494 | | 4.9815 | 77.27 | 199500 | 4.4382 | | 5.0029 | 77.46 | 200000 | 4.4780 | | 4.9659 | 77.65 | 200500 | 4.4009 | | 4.9889 | 77.85 | 201000 | 4.3664 | | 4.9916 | 78.04 | 201500 | 4.4319 | | 4.9715 | 78.23 | 202000 | 4.4390 | | 4.9815 | 78.43 | 202500 | 4.4593 | | 4.972 | 78.62 | 203000 | 4.4620 | | 5.0164 | 78.81 | 203500 | 4.4247 | | 4.9608 | 79.01 | 204000 | 4.4031 | | 4.9606 | 79.2 | 204500 | 4.4301 | | 4.9922 | 79.4 | 205000 | 4.4147 | | 4.9825 | 79.59 | 205500 | 4.4489 | | 4.9719 | 79.78 | 206000 | 4.4155 | | 4.9663 | 79.98 | 206500 | 4.4514 | | 4.9663 | 80.17 | 207000 | 4.4439 | | 4.9351 | 80.36 | 207500 | 4.4235 | | 5.0248 | 80.56 | 208000 | 4.4122 | | 4.9836 | 80.75 | 208500 | 4.4261 | | 4.9881 | 80.95 | 209000 | 4.4228 | | 5.0021 | 81.14 | 209500 | 4.4588 | | 4.9508 | 81.33 | 210000 | 4.3826 | | 4.9729 | 81.53 | 210500 | 4.4254 | | 4.9746 | 81.72 | 211000 | 4.3951 | | 4.9771 | 81.91 | 211500 | 4.4301 | | 4.9988 | 82.11 | 212000 | 4.3889 | | 5.006 | 82.3 | 212500 | 4.4137 | | 4.9662 | 82.49 | 213000 | 4.4597 | | 4.9476 | 82.69 | 213500 | 4.4484 | | 4.9801 | 82.88 | 214000 | 4.4676 | | 4.9605 | 83.08 | 214500 | 4.3832 | | 4.9617 | 83.27 | 215000 | 4.3933 | | 4.9565 | 83.46 | 215500 | 4.4156 | | 4.9193 | 83.66 | 216000 | 4.4221 | | 4.942 | 83.85 | 216500 | 4.4150 | | 4.9504 | 84.04 | 217000 | 4.4034 | | 4.9469 | 84.24 | 217500 | 4.4364 | | 4.9519 | 84.43 | 218000 | 4.4306 | | 4.9555 | 84.62 | 218500 | 4.3787 | | 4.9558 | 84.82 | 219000 | 4.4363 | | 4.94 | 85.01 | 219500 | 4.4151 | | 4.9441 | 85.21 | 220000 | 4.3747 | | 4.9654 | 85.4 | 220500 | 4.3779 | | 4.9352 | 85.59 | 221000 | 4.4293 | | 4.9743 | 85.79 | 221500 | 4.3823 | | 4.9536 | 85.98 | 222000 | 4.4049 | | 4.9426 | 86.17 | 222500 | 4.3719 | | 4.9363 | 86.37 | 223000 | 4.3414 | | 4.9093 | 86.56 | 223500 | 4.3717 | | 4.935 | 86.75 | 224000 | 4.3860 | | 4.9204 | 86.95 | 224500 | 4.3939 | | 4.926 | 87.14 | 225000 | 4.4328 | | 4.9291 | 87.34 | 225500 | 4.4435 | | 4.9162 | 87.53 | 226000 | 4.4062 | | 4.9298 | 87.72 | 226500 | 4.3990 | | 4.9743 | 87.92 | 227000 | 4.4284 | | 4.9135 | 88.11 | 227500 | 4.3740 | | 4.9138 | 88.3 | 228000 | 4.3697 | | 4.9686 | 88.5 | 228500 | 4.3498 | | 4.9263 | 88.69 | 229000 | 4.3457 | | 4.9453 | 88.88 | 229500 | 4.3315 | | 4.9329 | 89.08 | 230000 | 4.3874 | | 4.9277 | 89.27 | 230500 | 4.3627 | | 4.8942 | 89.47 | 231000 | 4.3674 | | 4.9496 | 89.66 | 231500 | 4.4107 | | 4.924 | 89.85 | 232000 | 4.3855 | | 4.9825 | 90.05 | 232500 | 4.3674 | | 4.9365 | 90.24 | 233000 | 4.3662 | | 4.9123 | 90.43 | 233500 | 4.3669 | | 4.9555 | 90.63 | 234000 | 4.3668 | | 4.9394 | 90.82 | 234500 | 4.3677 | | 4.9672 | 91.01 | 235000 | 4.3339 | | 4.9493 | 91.21 | 235500 | 4.3554 | | 4.9114 | 91.4 | 236000 | 4.3507 | | 4.9374 | 91.6 | 236500 | 4.3447 | | 4.9288 | 91.79 | 237000 | 4.3988 | | 4.9156 | 91.98 | 237500 | 4.3785 | | 4.9226 | 92.18 | 238000 | 4.3322 | | 4.9223 | 92.37 | 238500 | 4.3461 | | 4.9051 | 92.56 | 239000 | 4.3603 | | 4.9341 | 92.76 | 239500 | 4.4139 | | 4.9285 | 92.95 | 240000 | 4.3757 | | 4.9506 | 93.14 | 240500 | 4.3456 | | 4.92 | 93.34 | 241000 | 4.3492 | | 4.9027 | 93.53 | 241500 | 4.3982 | | 4.9366 | 93.73 | 242000 | 4.3651 | | 4.9072 | 93.92 | 242500 | 4.3186 | | 4.9441 | 94.11 | 243000 | 4.3560 | | 4.874 | 94.31 | 243500 | 4.3749 | | 4.9246 | 94.5 | 244000 | 4.3345 | | 4.8971 | 94.69 | 244500 | 4.3497 | | 4.9234 | 94.89 | 245000 | 4.4110 | | 4.9396 | 95.08 | 245500 | 4.3645 | | 4.8943 | 95.27 | 246000 | 4.3204 | | 4.9194 | 95.47 | 246500 | 4.4034 | | 4.914 | 95.66 | 247000 | 4.3936 | | 4.9376 | 95.86 | 247500 | 4.3477 | | 4.9042 | 96.05 | 248000 | 4.4062 | | 4.8946 | 96.24 | 248500 | 4.4115 | | 4.8959 | 96.44 | 249000 | 4.3983 | | 4.9408 | 96.63 | 249500 | 4.3633 | | 4.9039 | 96.82 | 250000 | 4.3486 | | 4.9368 | 97.02 | 250500 | 4.3819 | | 4.8793 | 97.21 | 251000 | 4.3586 | | 4.9069 | 97.41 | 251500 | 4.3666 | | 4.9339 | 97.6 | 252000 | 4.3911 | | 4.9086 | 97.79 | 252500 | 4.3505 | | 4.9132 | 97.99 | 253000 | 4.3878 | | 4.9279 | 98.18 | 253500 | 4.3422 | | 4.8955 | 98.37 | 254000 | 4.3913 | | 4.8874 | 98.57 | 254500 | 4.3560 | | 4.9026 | 98.76 | 255000 | 4.3189 | | 4.9008 | 98.95 | 255500 | 4.4185 | | 4.9023 | 99.15 | 256000 | 4.3197 | | 4.8792 | 99.34 | 256500 | 4.3112 | | 4.9193 | 99.54 | 257000 | 4.3886 | | 4.9136 | 99.73 | 257500 | 4.3596 | | 4.8953 | 99.92 | 258000 | 4.3615 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Tom11/xlm-roberta-base-finetuned-panx-all
Tom11
2022-11-15T21:57:04Z
108
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-15T17:09:39Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1637 - F1: 0.8581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.29 | 1.0 | 715 | 0.1885 | 0.8231 | | 0.1443 | 2.0 | 1430 | 0.1607 | 0.8479 | | 0.0937 | 3.0 | 2145 | 0.1637 | 0.8581 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cpu - Datasets 1.16.1 - Tokenizers 0.13.2
RawMean/farsi_lastname_classifier_4
RawMean
2022-11-15T21:22:26Z
102
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-15T20:59:12Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: farsi_lastname_classifier_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # farsi_lastname_classifier_4 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2337 - Accuracy: 0.96 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 12 | 0.5673 | 0.836 | | No log | 2.0 | 24 | 0.4052 | 0.868 | | No log | 3.0 | 36 | 0.2211 | 0.932 | | No log | 4.0 | 48 | 0.2488 | 0.926 | | No log | 5.0 | 60 | 0.1490 | 0.954 | | No log | 6.0 | 72 | 0.1464 | 0.968 | | No log | 7.0 | 84 | 0.1923 | 0.954 | | No log | 8.0 | 96 | 0.2070 | 0.96 | | No log | 9.0 | 108 | 0.2055 | 0.962 | | No log | 10.0 | 120 | 0.2436 | 0.942 | | No log | 11.0 | 132 | 0.2173 | 0.96 | | No log | 12.0 | 144 | 0.2342 | 0.956 | | No log | 13.0 | 156 | 0.2337 | 0.962 | | No log | 14.0 | 168 | 0.2332 | 0.96 | | No log | 15.0 | 180 | 0.2337 | 0.96 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
langdonholmes/en_student_name_detector
langdonholmes
2022-11-15T20:56:43Z
4
0
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2022-11-15T19:17:00Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_student_name_detector results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8311688312 - name: NER Recall type: recall value: 0.8421052632 - name: NER F Score type: f_score value: 0.8366013072 --- | Feature | Description | | --- | --- | | **Name** | `en_student_name_detector` | | **Version** | `0.0.1` | | **spaCy** | `>=3.4.1,<3.5.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Sources** | [longformer](https://huggingface.co/allenai/longformer-base-4096) | | **License** | [Apache 2.0](https://huggingface.co/langdonholmes/en_student_name_detector/blob/main/LICENSE) | | **Author** | [Langdon Holmes](https://huggingface.co/langdonholmes) | ### Label Scheme <details> <summary>View label scheme (1 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `STUDENT` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 83.66 | | `ENTS_P` | 83.12 | | `ENTS_R` | 84.21 | | `TRANSFORMER_LOSS` | 56255026.35 | | `NER_LOSS` | 31154.89 | ### Training Data 6,293 student writing assignments were submitted as PDF files. All documents were reflection assignments in response to the same prompt in the same online course. Student names were labeled by human raters (one rater per document). A preliminary model was trained and all disagreements between this model and the human annotations were adjudicated by two additional reviewers. The training dataset includes all 6,293 documents, 845 of which include student names. There are 1,155 student name annotations in total. ### To Use This model has been packaged using spaCy. It is available as a huggingface model or a pip package. Performance of the model should be evaluated on in-domain data before deployment in production, particularly when confidential information is involved.
Yujun1of1/concrete-finetuned-imdb
Yujun1of1
2022-11-15T20:38:36Z
61
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-15T07:45:12Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Yujun1of1/concrete-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Yujun1of1/concrete-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.2256 - Validation Loss: 2.6946 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -687, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.2256 | 2.6946 | 0 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.10.0 - Datasets 2.6.1 - Tokenizers 0.11.0
technillogue/waifu-diffusion
technillogue
2022-11-15T20:37:01Z
17
5
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-10-27T06:35:06Z
--- language: - en tags: - stable-diffusion - text-to-image license: creativeml-openrail-m inference: false --- # waifu-diffusion v1.3 - Diffusion for Weebs waifu-diffusion is a latent text-to-image diffusion model that has been conditioned on high-quality anime images through fine-tuning. <img src=https://i.imgur.com/Y5Tmw1S.png width=75% height=75%> [Original Weights](https://huggingface.co/hakurei/waifu-diffusion-v1-3) # Gradio & Colab We also support a [Gradio](https://github.com/gradio-app/gradio) Web UI and Colab with Diffusers to run Waifu Diffusion: [![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/hakurei/waifu-diffusion-demo) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1_8wPN7dJO746QXsFnB09Uq2VGgSRFuYE#scrollTo=1HaCauSq546O) ## Model Description [See here for a full model overview.](https://gist.github.com/harubaru/f727cedacae336d1f7877c4bbe2196e1) ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license) ## Downstream Uses This model can be used for entertainment purposes and as a generative art assistant. ## Example Code ```python import torch from torch import autocast from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained( 'waifu-diffusion', torch_dtype=torch.float32 ).to('cuda') prompt = "1girl, aqua eyes, baseball cap, blonde hair, closed mouth, earrings, green background, hat, hoop earrings, jewelry, looking at viewer, shirt, short hair, simple background, solo, upper body, yellow shirt" with autocast("cuda"): image = pipe(prompt, guidance_scale=6)["sample"][0] image.save("test.png") ``` ## Team Members and Acknowledgements This project would not have been possible without the incredible work by the [CompVis Researchers](https://ommer-lab.com/). - [Anthony Mercurio](https://github.com/harubaru) - [Salt](https://github.com/sALTaccount/) - [Sta @ Bit192](https://twitter.com/naclbbr) In order to reach us, you can join our [Discord server](https://discord.gg/touhouai). [![Discord Server](https://discordapp.com/api/guilds/930499730843250783/widget.png?style=banner2)](https://discord.gg/touhouai)
teragron/capybara
teragron
2022-11-15T20:28:54Z
40
0
diffusers
[ "diffusers", "license:mit", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-11-15T20:26:22Z
--- license: mit --- ### capybara on Stable Diffusion via Dreambooth trained on the [fast-DreamBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook #### Model by teragron This your the Stable Diffusion model fine-tuned the capybara concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt(s)`: **indir.png** You can also train your own concepts and upload them to the library by using [the fast-DremaBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb). You can run your new concept via A1111 Colab :[Fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Sample pictures of this concept: indir.png ![indir.png 0](https://huggingface.co/teragron/capybara/resolve/main/concept_images/indir.png)
Umarpreet/distilbert-base-uncased-finetuned-squad
Umarpreet
2022-11-15T20:00:51Z
124
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-15T05:39:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.7518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.5791 | 1.0 | 554 | 2.2242 | | 2.0656 | 2.0 | 1108 | 1.8537 | | 1.6831 | 3.0 | 1662 | 1.7848 | | 1.4963 | 4.0 | 2216 | 1.7518 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Wheatley961/Raw_2_no_1_Test_2_new.model
Wheatley961
2022-11-15T19:57:06Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-15T19:56:40Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 98 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 98, "warmup_steps": 10, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
brwoodside/distilgpt2-finetuned-wikitext2
brwoodside
2022-11-15T19:51:38Z
166
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-15T19:19:08Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.653 | 2.0 | 4668 | 3.6472 | | 3.6006 | 3.0 | 7002 | 3.6421 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
reza-aditya/Reinforce-Pong-PLE-v0
reza-aditya
2022-11-15T19:47:43Z
0
0
null
[ "Pong-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-11-13T18:53:13Z
--- tags: - Pong-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pong-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-PLE-v0 type: Pong-PLE-v0 metrics: - type: mean_reward value: -16.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pong-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pong-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
coderSounak/finetuned_twitter_hate_speech_roberta
coderSounak
2022-11-15T19:33:34Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-12T14:50:47Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuned_twitter_hate_speech_roberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_twitter_hate_speech_roberta This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4729 - Accuracy: 0.8567 - F1: 0.8651 - Precision: 0.8242 - Recall: 0.9103 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
princeton-nlp/sup-simcse-bert-large-uncased
princeton-nlp
2022-11-15T19:14:55Z
2,187
0
transformers
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "arxiv:2104.08821", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- tags: - feature-extraction - bert --- # Model Card for baikal-sentiment-ball # Model Details ## Model Description More information needed - **Developed by:** Princeton NLP group - **Shared by [Optional]:** Princeton NLP group - **Model type:** Feature Extraction - **Language(s) (NLP):** More information needed - **License:** More information needed - **Parent Model:** BERT - **Resources for more information:** - [GitHub Repo](https://github.com/princeton-nlp/SimCSE) - [Associated Paper](https://arxiv.org/abs/2104.08821) # Uses ## Direct Use This model can be used for the task of feature extraction. ## Downstream Use [Optional] More information needed. ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data The model craters note in the [Github Repository](https://github.com/princeton-nlp/SimCSE/blob/main/README.md) > We train unsupervised SimCSE on 106 randomly sampled sentences from English Wikipedia, and train supervised SimCSE on the combination of MNLI and SNLI datasets (314k). ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data The model craters note in the [associated paper](https://arxiv.org/pdf/2104.08821.pdf) > Our evaluation code for sentence embeddings is based on a modified version of [SentEval](https://github.com/facebookresearch/SentEval). It evaluates sentence embeddings on semantic textual similarity (STS) tasks and downstream transfer tasks. For STS tasks, our evaluation takes the "all" setting, and report Spearman's correlation. See [associated paper](https://arxiv.org/pdf/2104.08821.pdf) (Appendix B) for evaluation details. ### Factors More information needed ### Metrics More information needed ## Results More information needed # Model Examination The model craters note in the [associated paper](https://arxiv.org/pdf/2104.08821.pdf): > **Uniformity and alignment.** We also observe that (1) though pre-trained embeddings have good alignment, their uniformity is poor (i.e., the embeddings are highly anisotropic); (2) post-processing methods like BERT-flow and BERT-whitening greatly improve uniformity but also suffer a degeneration in alignment; (3) unsupervised SimCSE effectively improves uniformity of pre-trained embeddings whereas keeping a good alignment;(4) incorporating supervised data in SimCSE further amends alignment. # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** Nvidia 3090 GPUs with CUDA 11 - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed. # Citation **BibTeX:** ```bibtex @inproceedings{gao2021simcse, title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings}, author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi}, booktitle={Empirical Methods in Natural Language Processing (EMNLP)}, year={2021} } ``` # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Princeton NLP group in collaboration with Ezi Ozoani and the Hugging Face team. # Model Card Contact If you have any questions related to the code or the paper, feel free to email Tianyu (`tianyug@cs.princeton.edu`) and Xingcheng (`yxc18@mails.tsinghua.edu.cn`). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker! # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("princeton-nlp/sup-simcse-bert-large-uncased") model = AutoModel.from_pretrained("princeton-nlp/sup-simcse-bert-large-uncased") ``` </details>
Wheatley961/Raw_1_no_3_Test_2_new.model
Wheatley961
2022-11-15T19:03:49Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-15T19:03:23Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 103 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 103, "warmup_steps": 11, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
EnglishVoice/t5-base-keywords-to-headline
EnglishVoice
2022-11-15T19:03:01Z
178
6
transformers
[ "transformers", "pytorch", "tf", "jax", "t5", "text2text-generation", "paraphrase-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-15T17:49:11Z
--- language: - en tags: - text2text-generation - paraphrase-generation license: apache-2.0 widget: - text: "headline: weight loss" --- ### About the model The model has been trained on [a dataset containing 138927 article titles](https://www.englishvoice.ai/p/keywords-and-titles/ "a dataset containing 138927 article titles") along with their keywords. The purpose of the model is to generate suggestions of article headlines, given a keyword or multiple keywords. ### Generation examples | Input | Output | | :------------ | :------------ | | weight loss | The Last Weight Loss Plan: Lose Weight, Feel Great, and Get in Shape <br/>How to Lose Weight Without Giving Up Your Favorite Foods <br/> I Lost Weight and Finally Feel Good About My Body | | property rental, property management | Property rental: The new way to make money <br/> We take the hassle out of property rental <br/> Is property management your new best friend? | | diabetic diet plan | A diabetic diet plan that actually works! <br/> Lose weight, feel great, and live better with our diabetic diet plan! <br/> Diet has never been so tasty: Our diabetic diet plan puts you to the test! | You can supply multiple keywords by separating them with commas. Higher temperature settings result in more creative headlines; we recommend testing first with the temperature set to 1.5. ### The dataset The dataset was developed by English Voice AI Labs. You can download it from our website: [https://www.EnglishVoice.ai/](https://www.EnglishVoice.ai/ "https://www.EnglishVoice.ai/") ### Sample code Python code for generating headlines: ```python import torch from transformers import T5ForConditionalGeneration,T5Tokenizer device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = T5ForConditionalGeneration.from_pretrained("EnglishVoice/t5-base-keywords-to-headline") tokenizer = T5Tokenizer.from_pretrained("EnglishVoice/t5-base-keywords-to-headline") model = model.to(device) keywords = "weight loss, weight pills" text = "headline: " + keywords encoding = tokenizer.encode_plus(text, return_tensors = "pt") input_ids = encoding["input_ids"].to(device) attention_masks = encoding["attention_mask"].to(device) beam_outputs = model.generate( input_ids = input_ids, attention_mask = attention_masks, do_sample = True, num_return_sequences = 5, temperature = 0.95, early_stopping = True, top_k = 50, top_p = 0.95, ) for i in range(len(beam_outputs)): result = tokenizer.decode(beam_outputs[i], skip_special_tokens=True) print(result) ``` Sample result: I Am Losing Weight and I Love It! New Weight Loss Pill Helps You Get the Body You Want! I Lost Weight By Taking Pills! The Truth About Weight Loss Pills! The Best Weight Loss Pills Money Can Buy!
docmparker/t5-small-finetuned-xsum
docmparker
2022-11-15T18:59:33Z
111
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-08T16:26:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Enverrr/tas_kagit_makas
Enverrr
2022-11-15T18:58:35Z
188
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-15T18:58:23Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: tas_kagit_makas results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # tas_kagit_makas Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### paper ![paper](images/paper.jpg) #### rock ![rock](images/rock.jpg) #### scissors ![scissors](images/scissors.jpg)
nubby/Female_Au_Ra-FFXIV
nubby
2022-11-15T18:11:44Z
0
4
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-06T07:41:29Z
--- license: creativeml-openrail-m --- This model is a work in progress. It isn't perfect, but it can generate some nice images. I have trained Xaela (dark horns and scales) and Raen (light horns and scales) as separate concepts, which will allow you to specify which you would like in your image by using the tokens specified below. I hope you enjoy it as much as I have! I'd love to hear your feedback. Waifu-Diffusion-v1-3 based StableDiffusion model with Dreambooth training on images from many different artists. The model is trained to 11,000 steps on 80 different images of Au Ra females, a playable race of people with dragon-like horns, and patches of scales from the critically acclaimed MMORPG Final Fantasy XIV (Have you heard about the games free trial btw?). ## Usage Can be used in StableDiffusion, including the extremely popular Web UI by Automatic1111, like any other model by placing the .CKPT file in the correct directory. Please consult the documentation for your installation of StableDiffusion for more specific instructions. Use ```"m_arxla"``` for Xaela clan Au Ra or ```"m_arrn"``` for Raen clan Au Ra in your prompt to invoke the style of the desired clan. ## Recommended negative prompt ```"poorly drawn, bad quality, colored skin"``` You can also add the following to your negative prompt in order to steer your output towards the WD1.3 default caucasian skintone: ```"blue skin, purple skin"``` If you are generating Raen Au Ra I highly recommend also adding ```"black scales"``` to your negative prompt as the AI will often draw dark scales without it. I do NOT recommend adding the common negative prompt tags such as ```"bad anatomy, disfigured, deformed, gross, etc..."``` ## Example prompt ```"m_arrn, 1girl, light smile, detailed eyes, extremely detailed face, sidelocks, black hair, grey eyes, long hair, hair clip, collarbone, tank top, shorts, looking to the side, highly detailed face, extremely detailed, intricate, best quality, ultra realistic, cowboy shot, holding shopping bags at the mall, highly detailed background"``` Negative Prompt: ```"poorly drawn, bad quality, colored skin, blue skin, purple skin, midriff, black scales"``` Sampler: DPM++ 2S a, Sampling Steps: 22, CFG scale: 11, H: 768, W: 512 ## Xaela example images using ```"m_arxla"``` <table> <tr> <td><img src=https://i.imgur.com/gvgZeT1.png width=100% height=100%/></td> <td><img src=https://i.imgur.com/wWFDxCS.png width=100% height=100%/></td> <td><img src=https://i.imgur.com/yzWhulJ.png width=100% height=100%/></td> <td><img src=https://i.imgur.com/TjTIbIz.png width=100% height=100%/></td> </tr> </table> ## Raen example images using ```"m_arrn"``` <table> <tr> <td><img src=https://i.imgur.com/jwoWZWE.png width=100% height=100%/></td> <td><img src=https://i.imgur.com/k1XPAZI.png width=100% height=100%/></td> <td><img src=https://i.imgur.com/MvcSlAd.png width=100% height=100%/></td> <td><img src=https://i.imgur.com/3PLuE1V.png width=100% height=100%/></td> </tr> </table> ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
dxiao/bert-finetuned-ner-100percent
dxiao
2022-11-15T17:48:25Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-15T17:41:59Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-100percent results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner-100percent This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5711 - Precision: 0.8227 - Recall: 0.8498 - F1: 0.8360 - Accuracy: 0.9254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2022 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 75 | 0.5329 | 0.8228 | 0.8438 | 0.8332 | 0.9277 | | No log | 2.0 | 150 | 0.5674 | 0.8110 | 0.8438 | 0.8271 | 0.9242 | | No log | 3.0 | 225 | 0.5711 | 0.8227 | 0.8498 | 0.8360 | 0.9254 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
GDJ1978/anytronredXf222
GDJ1978
2022-11-15T17:45:23Z
0
0
null
[ "region:us" ]
null
2022-11-15T17:34:39Z
merged checkpoints of anyXtronXredshift (0.6) and f222 (0.4) runwayML 1.5 is ancestral base model
dxiao/bert-finetuned-ner-90percent
dxiao
2022-11-15T17:41:51Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-15T17:35:24Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-90percent results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner-90percent This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5444 - Precision: 0.8236 - Recall: 0.8483 - F1: 0.8358 - Accuracy: 0.9263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2022 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 68 | 0.4938 | 0.8223 | 0.8544 | 0.8380 | 0.9284 | | No log | 2.0 | 136 | 0.5465 | 0.8265 | 0.8514 | 0.8388 | 0.9256 | | No log | 3.0 | 204 | 0.5444 | 0.8236 | 0.8483 | 0.8358 | 0.9263 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
jbreunig/xlm-roberta-base-finetuned-panx-en
jbreunig
2022-11-15T17:41:47Z
110
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-15T12:15:33Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.68561872909699 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4175 - F1: 0.6856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1397 | 1.0 | 50 | 0.5561 | 0.5147 | | 0.5148 | 2.0 | 100 | 0.4851 | 0.6312 | | 0.3772 | 3.0 | 150 | 0.4175 | 0.6856 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.10.3
yeeb/distilgpt2_trading-fours
yeeb
2022-11-15T17:37:14Z
113
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-15T17:20:47Z
https://wandb.ai/yeeeb/trading-fours
Finnish-NLP/ul2-small-nl16-finnish
Finnish-NLP
2022-11-15T17:18:30Z
8
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "finnish", "t5x", "seq2seq", "ul2", "fi", "dataset:Finnish-NLP/mc4_fi_cleaned", "dataset:wikipedia", "arxiv:1910.10683", "arxiv:2205.05131", "arxiv:2002.05202", "arxiv:2109.10686", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2022-10-15T15:57:33Z
--- language: - fi license: apache-2.0 tags: - finnish - t5 - t5x - seq2seq - ul2 datasets: - Finnish-NLP/mc4_fi_cleaned - wikipedia inference: false --- # UL2-small-nl16 for Finnish Pretrained T5 model on Finnish language using a UL2 (Mixture-of-Denoisers) objective. T5 model was introduced in [this paper](https://arxiv.org/abs/1910.10683) and first released at [this page](https://github.com/google-research/text-to-text-transfer-transformer). The UL2 objective was introduced in [this paper](https://arxiv.org/abs/2205.05131) and first released at [this page](https://github.com/google-research/google-research/tree/master/ul2). **Note:** The Hugging Face inference widget is deactivated because this model needs a text-to-text fine-tuning on a specific downstream task to be useful in practice. As an example of a fine-tuned Finnish T5 model, you can check [Finnish-NLP/t5-small-nl24-casing-punctuation-correction](https://huggingface.co/Finnish-NLP/t5-small-nl24-casing-punctuation-correction) which has been fine-tuned to correct missing casing and punctuation for Finnish text. ## Model description T5 is an encoder-decoder model and treats all NLP problems in a text-to-text format. Finnish T5 is a transformers model pretrained on a very large corpus of Finnish data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and outputs from those texts. This model used the [T5 v1.1](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) improvements compared to the original T5 model during the pretraining: - GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202) - Dropout was turned off in pretraining (quality win). Dropout should be re-enabled during fine-tuning - Pretrained on self-supervised objective only without mixing in the downstream tasks - No parameter sharing between embedding and classifier layer This model also used the "efficient" T5 architecture findings presented in [this paper](https://arxiv.org/abs/2109.10686). In a nutshell, the paper indicates that a Deep-Narrow model architecture is favorable for downstream performance compared to other model architectures of similar parameter count. To be more precise, model depth is defined as the number of transformer blocks that are stacked sequentially. This model uses the [t5-efficient-small-nl16](https://huggingface.co/google/t5-efficient-small-nl16) architecture's layer depth which means both the encoder and the decoder have 16 transformer layers compared to the original T5 "small" model's architecture of 6 transformer layers. In total, this model has 184 million parameters. ### UL2 pretraining objective This model was pretrained with the UL2's Mixture-of-Denoisers (MoD) objective, that combines diverse pre-training paradigms together. UL2 frames different objective functions for training language models as denoising tasks, where the model has to recover missing sub-sequences of a given input. During pre-training it uses a novel mixture-of-denoisers that samples from a varied set of such objectives, each with different configurations. UL2 is trained using a mixture of three denoising tasks: (1) R-denoising (or regular span corruption), which emulates the standard T5 span corruption objective; (2) X-denoising (or extreme span corruption); and (3) S-denoising (or sequential PrefixLM). During pre-training, we sample from the available denoising tasks based on user-specified ratios. UL2 introduces a notion of mode switching, wherein downstream fine-tuning is associated with specific pre-training denoising task. During the pretraining, a paradigm token is inserted to the input (`[NLU]` for R-denoising, `[NLG]` for X-denoising, or `[S2S]` for S-denoising) indicating the denoising task at hand. Then, during fine-tuning the same input token should be inserted to get the best performance for different downstream fine-tuning tasks. ## Intended uses & limitations This model was only pretrained in a self-supervised way excluding any supervised training. Therefore, this model has to be fine-tuned before it is usable on a downstream task, like text classification, unlike the Google's original T5 model. **Note:** You most likely need to fine-tune these T5/UL2 models without mixed precision so fine-tune them with full fp32 precision. You can also find more fine-tuning tips from [here](https://discuss.huggingface.co/t/t5-finetuning-tips), for example. **Note**: For fine-tuning, most likely you can get better results if you insert a prefix token of `[NLU]`, `[NLG]`, or `[S2S]` to your input texts. For general language understanding fine-tuning tasks, you could use the `[NLU]` token. For GPT-style causal language generation, you could use the `[S2S]` token. The token `[NLG]` of the X-denoising pretrain task is somewhat mix between the language understanding and causal language generation so the token `[NLG]` could maybe be used for language generation fine-tuning too. ### How to use Here is how to use this model in PyTorch: ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("Finnish-NLP/ul2-small-nl16-finnish") model = T5ForConditionalGeneration.from_pretrained("Finnish-NLP/ul2-small-nl16-finnish") ``` and in TensorFlow: ```python from transformers import T5Tokenizer, TFT5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("Finnish-NLP/ul2-small-nl16-finnish") model = T5ForConditionalGeneration.from_pretrained("Finnish-NLP/ul2-small-nl16-finnish", from_pt=True) ``` ### Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model. ## Training data This Finnish T5 model was pretrained on the combination of six datasets: - [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo). - [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset - [Yle Finnish News Archive 2011-2018](http://urn.fi/urn:nbn:fi:lb-2017070501) - [Yle Finnish News Archive 2019-2020](http://urn.fi/urn:nbn:fi:lb-2021050401) - [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001) - [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803) Raw datasets were automatically cleaned to filter out bad quality and non-Finnish examples. Also, a [perplexity](https://huggingface.co/course/chapter7/3#perplexity-for-language-models) score was calculated for all texts with a KenLM model which was trained with very clean Finnish texts only. This perplexity score can then be used to determine how "clean" Finnish language the text contains. Lastly, all datasets were concatenated and the top 90% perplexity score was used as a filtering threshold to filter out the worst quality 10% of texts. Together these cleaned datasets were around 76GB of text. ## Training procedure ### Preprocessing The texts are tokenized using WordPiece and a vocabulary size of 32000. The inputs and the outputs are sequences of 512 consecutive tokens. Texts are not lower cased so this model is case-sensitive: it makes a difference between finnish and Finnish. ### Pretraining The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 500K steps with a batch size of 256 (in total 66B tokens). The optimizer used was a AdaFactor with learning rate warmup for 10K steps with a constant learning rate of 1e-2, and then an inverse square root decay (exponential decay) of the learning rate after. Training code was from the Google's Jax/Flax based [t5x framework](https://github.com/google-research/t5x) and also some t5x task definitions were adapted from [Per's t5x work](https://huggingface.co/pere). The UL2 training objective code used with the [t5x framework](https://github.com/google-research/t5x) was copied and slightly modified from the [UL2 paper](https://arxiv.org/pdf/2205.05131.pdf) appendix chapter 9.2. Used UL2 objective code is available in this repository in the files `ul2_objective.py` and `tasks.py`. UL2's mixture-of-denoisers configuration was otherwise equal to the UL2 paper but for the rate of mixing denoisers, 20% for S-denoising was used (suggested at the paper chapter 4.5) and the rest was divided equally between the R-denoising and X-denoising (i.e. 40% for both). ## Evaluation results Evaluation was done by fine-tuning the model on a downstream text classification task with two different labeled Finnish datasets: [Yle News](https://github.com/spyysalo/yle-corpus) and [Eduskunta](https://github.com/aajanki/eduskunta-vkk). Classification fine-tuning was done with a sequence length of 128 tokens. Also, for UL2 models a prefix token of `[NLU]` has been added to each input text. When fine-tuned on those datasets, this model (the third row of the table) achieves the following accuracy results compared to our other UL2 models and their parameter counts: | | Model parameters | Yle News accuracy | Eduskunta accuracy | |-------------------------------------------------------|------------------|---------------------|----------------------| |Finnish-NLP/ul2-tiny-nl6-finnish | 31 million |92.88 |69.40 | |Finnish-NLP/ul2-mini-nl8-finnish | 72 million |93.83 |70.10 | |Finnish-NLP/ul2-small-nl16-finnish | 184 million |94.25 |74.63 | |Finnish-NLP/ul2-small-nl24-finnish | 260 million |94.03 |73.87 | |Finnish-NLP/ul2-base-nl36-finnish | 814 million |94.35 |75.47 | Results of fine-tuning our T5 models (with the original T5 pretraining task) on the same datasets are following: | | Model parameters | Yle News accuracy | Eduskunta accuracy | |-------------------------------------------------------|------------------|---------------------|----------------------| |Finnish-NLP/t5-tiny-nl6-finnish | 31 million |92.80 |69.07 | |Finnish-NLP/t5-mini-nl8-finnish | 72 million |93.89 |71.43 | |Finnish-NLP/t5-small-nl16-finnish | 184 million |94.46 |74.00 | |Finnish-NLP/t5-small-nl24-finnish | 260 million |**94.68** |74.90 | |Finnish-NLP/byt5-base-finnish | 582 million |92.33 |73.13 | |Finnish-NLP/t5-base-nl36-finnish | 814 million |94.40 |**75.97** | |Finnish-NLP/t5-large-nl36-finnish | 1425 million |94.17 |73.50 | Fine-tuning Google's multilingual mT5 models on the same datasets we can clearly see that our monolingual Finnish T5 models achieve much better results on Finnish text classification: | | Model parameters | Yle News accuracy | Eduskunta accuracy | |-------------------------------------------------------|------------------|---------------------|----------------------| |google/mt5-small | 301 million |91.51 |64.10 | |google/mt5-base | 583 million |92.71 |68.40 | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
dxiao/bert-finetuned-ner-50percent
dxiao
2022-11-15T17:15:59Z
127
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-15T17:09:54Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-50percent results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner-50percent This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4952 - Precision: 0.7881 - Recall: 0.8378 - F1: 0.8122 - Accuracy: 0.9145 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2022 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.4743 | 0.7904 | 0.8378 | 0.8134 | 0.9105 | | No log | 2.0 | 76 | 0.4813 | 0.7847 | 0.8318 | 0.8076 | 0.9147 | | No log | 3.0 | 114 | 0.4952 | 0.7881 | 0.8378 | 0.8122 | 0.9145 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Finnish-NLP/ul2-tiny-nl6-finnish
Finnish-NLP
2022-11-15T17:11:26Z
172
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "finnish", "t5x", "seq2seq", "ul2", "fi", "dataset:Finnish-NLP/mc4_fi_cleaned", "dataset:wikipedia", "arxiv:1910.10683", "arxiv:2205.05131", "arxiv:2002.05202", "arxiv:2109.10686", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2022-10-31T16:12:49Z
--- language: - fi license: apache-2.0 tags: - finnish - t5 - t5x - seq2seq - ul2 datasets: - Finnish-NLP/mc4_fi_cleaned - wikipedia inference: false --- # UL2-tiny-nl6 for Finnish Pretrained T5 model on Finnish language using a UL2 (Mixture-of-Denoisers) objective. T5 model was introduced in [this paper](https://arxiv.org/abs/1910.10683) and first released at [this page](https://github.com/google-research/text-to-text-transfer-transformer). The UL2 objective was introduced in [this paper](https://arxiv.org/abs/2205.05131) and first released at [this page](https://github.com/google-research/google-research/tree/master/ul2). **Note:** The Hugging Face inference widget is deactivated because this model needs a text-to-text fine-tuning on a specific downstream task to be useful in practice. As an example of a fine-tuned Finnish T5 model, you can check [Finnish-NLP/t5-small-nl24-casing-punctuation-correction](https://huggingface.co/Finnish-NLP/t5-small-nl24-casing-punctuation-correction) which has been fine-tuned to correct missing casing and punctuation for Finnish text. ## Model description T5 is an encoder-decoder model and treats all NLP problems in a text-to-text format. Finnish T5 is a transformers model pretrained on a very large corpus of Finnish data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and outputs from those texts. This model used the [T5 v1.1](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) improvements compared to the original T5 model during the pretraining: - GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202) - Dropout was turned off in pretraining (quality win). Dropout should be re-enabled during fine-tuning - Pretrained on self-supervised objective only without mixing in the downstream tasks - No parameter sharing between embedding and classifier layer This model also used the "efficient" T5 architecture findings presented in [this paper](https://arxiv.org/abs/2109.10686). In a nutshell, the paper indicates that a Deep-Narrow model architecture is favorable for downstream performance compared to other model architectures of similar parameter count. To be more precise, model depth is defined as the number of transformer blocks that are stacked sequentially. This model uses the [t5-efficient-tiny-nl6](https://huggingface.co/google/t5-efficient-tiny-nl6) architecture's layer depth which means both the encoder and the decoder have 6 transformer layers compared to the original T5 "tiny" model's architecture of 4 transformer layers. In total, this model has 31 million parameters. ### UL2 pretraining objective This model was pretrained with the UL2's Mixture-of-Denoisers (MoD) objective, that combines diverse pre-training paradigms together. UL2 frames different objective functions for training language models as denoising tasks, where the model has to recover missing sub-sequences of a given input. During pre-training it uses a novel mixture-of-denoisers that samples from a varied set of such objectives, each with different configurations. UL2 is trained using a mixture of three denoising tasks: (1) R-denoising (or regular span corruption), which emulates the standard T5 span corruption objective; (2) X-denoising (or extreme span corruption); and (3) S-denoising (or sequential PrefixLM). During pre-training, we sample from the available denoising tasks based on user-specified ratios. UL2 introduces a notion of mode switching, wherein downstream fine-tuning is associated with specific pre-training denoising task. During the pretraining, a paradigm token is inserted to the input (`[NLU]` for R-denoising, `[NLG]` for X-denoising, or `[S2S]` for S-denoising) indicating the denoising task at hand. Then, during fine-tuning the same input token should be inserted to get the best performance for different downstream fine-tuning tasks. ## Intended uses & limitations This model was only pretrained in a self-supervised way excluding any supervised training. Therefore, this model has to be fine-tuned before it is usable on a downstream task, like text classification, unlike the Google's original T5 model. **Note:** You most likely need to fine-tune these T5/UL2 models without mixed precision so fine-tune them with full fp32 precision. You can also find more fine-tuning tips from [here](https://discuss.huggingface.co/t/t5-finetuning-tips), for example. **Note**: For fine-tuning, most likely you can get better results if you insert a prefix token of `[NLU]`, `[NLG]`, or `[S2S]` to your input texts. For general language understanding fine-tuning tasks, you could use the `[NLU]` token. For GPT-style causal language generation, you could use the `[S2S]` token. The token `[NLG]` of the X-denoising pretrain task is somewhat mix between the language understanding and causal language generation so the token `[NLG]` could maybe be used for language generation fine-tuning too. ### How to use Here is how to use this model in PyTorch: ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("Finnish-NLP/ul2-tiny-nl6-finnish") model = T5ForConditionalGeneration.from_pretrained("Finnish-NLP/ul2-tiny-nl6-finnish") ``` and in TensorFlow: ```python from transformers import T5Tokenizer, TFT5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("Finnish-NLP/ul2-tiny-nl6-finnish") model = T5ForConditionalGeneration.from_pretrained("Finnish-NLP/ul2-tiny-nl6-finnish", from_pt=True) ``` ### Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model. ## Training data This Finnish T5 model was pretrained on the combination of six datasets: - [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo). - [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset - [Yle Finnish News Archive 2011-2018](http://urn.fi/urn:nbn:fi:lb-2017070501) - [Yle Finnish News Archive 2019-2020](http://urn.fi/urn:nbn:fi:lb-2021050401) - [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001) - [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803) Raw datasets were automatically cleaned to filter out bad quality and non-Finnish examples. Also, a [perplexity](https://huggingface.co/course/chapter7/3#perplexity-for-language-models) score was calculated for all texts with a KenLM model which was trained with very clean Finnish texts only. This perplexity score can then be used to determine how "clean" Finnish language the text contains. Lastly, all datasets were concatenated and the top 90% perplexity score was used as a filtering threshold to filter out the worst quality 10% of texts. Together these cleaned datasets were around 76GB of text. ## Training procedure ### Preprocessing The texts are tokenized using WordPiece and a vocabulary size of 32000. The inputs and the outputs are sequences of 512 consecutive tokens. Texts are not lower cased so this model is case-sensitive: it makes a difference between finnish and Finnish. ### Pretraining The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 500K steps with a batch size of 512 (in total 131B tokens). The optimizer used was a AdaFactor with learning rate warmup for 10K steps with a constant learning rate of 1e-2, and then an inverse square root decay (exponential decay) of the learning rate after. Training code was from the Google's Jax/Flax based [t5x framework](https://github.com/google-research/t5x) and also some t5x task definitions were adapted from [Per's t5x work](https://huggingface.co/pere). The UL2 training objective code used with the [t5x framework](https://github.com/google-research/t5x) was copied and slightly modified from the [UL2 paper](https://arxiv.org/pdf/2205.05131.pdf) appendix chapter 9.2. Used UL2 objective code is available in this repository in the files `ul2_objective.py` and `tasks.py`. UL2's mixture-of-denoisers configuration was otherwise equal to the UL2 paper but for the rate of mixing denoisers, 20% for S-denoising was used (suggested at the paper chapter 4.5) and the rest was divided equally between the R-denoising and X-denoising (i.e. 40% for both). ## Evaluation results Evaluation was done by fine-tuning the model on a downstream text classification task with two different labeled Finnish datasets: [Yle News](https://github.com/spyysalo/yle-corpus) and [Eduskunta](https://github.com/aajanki/eduskunta-vkk). Classification fine-tuning was done with a sequence length of 128 tokens. Also, for UL2 models a prefix token of `[NLU]` has been added to each input text. When fine-tuned on those datasets, this model (the first row of the table) achieves the following accuracy results compared to our other UL2 models and their parameter counts: | | Model parameters | Yle News accuracy | Eduskunta accuracy | |-------------------------------------------------------|------------------|---------------------|----------------------| |Finnish-NLP/ul2-tiny-nl6-finnish | 31 million |92.88 |69.40 | |Finnish-NLP/ul2-mini-nl8-finnish | 72 million |93.83 |70.10 | |Finnish-NLP/ul2-small-nl16-finnish | 184 million |94.25 |74.63 | |Finnish-NLP/ul2-small-nl24-finnish | 260 million |94.03 |73.87 | |Finnish-NLP/ul2-base-nl36-finnish | 814 million |94.35 |75.47 | Results of fine-tuning our T5 models (with the original T5 pretraining task) on the same datasets are following: | | Model parameters | Yle News accuracy | Eduskunta accuracy | |-------------------------------------------------------|------------------|---------------------|----------------------| |Finnish-NLP/t5-tiny-nl6-finnish | 31 million |92.80 |69.07 | |Finnish-NLP/t5-mini-nl8-finnish | 72 million |93.89 |71.43 | |Finnish-NLP/t5-small-nl16-finnish | 184 million |94.46 |74.00 | |Finnish-NLP/t5-small-nl24-finnish | 260 million |**94.68** |74.90 | |Finnish-NLP/byt5-base-finnish | 582 million |92.33 |73.13 | |Finnish-NLP/t5-base-nl36-finnish | 814 million |94.40 |**75.97** | |Finnish-NLP/t5-large-nl36-finnish | 1425 million |94.17 |73.50 | Fine-tuning Google's multilingual mT5 models on the same datasets we can clearly see that our monolingual Finnish T5 models achieve much better results on Finnish text classification: | | Model parameters | Yle News accuracy | Eduskunta accuracy | |-------------------------------------------------------|------------------|---------------------|----------------------| |google/mt5-small | 301 million |91.51 |64.10 | |google/mt5-base | 583 million |92.71 |68.40 | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
reza-aditya/a2c-AntBulletEnv-v0
reza-aditya
2022-11-15T17:11:06Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-15T17:09:54Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1671.41 +/- 322.64 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Tom11/xlm-roberta-base-finetuned-panx-en
Tom11
2022-11-15T17:08:43Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-15T16:37:20Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.en split: train args: PAN-X.en metrics: - name: F1 type: f1 value: 0.68561872909699 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4175 - F1: 0.6856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1397 | 1.0 | 50 | 0.5561 | 0.5147 | | 0.5148 | 2.0 | 100 | 0.4851 | 0.6312 | | 0.3772 | 3.0 | 150 | 0.4175 | 0.6856 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cpu - Datasets 1.16.1 - Tokenizers 0.13.2
frozi/setfit-ethos-multilabel-example
frozi
2022-11-15T17:07:08Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-15T17:06:51Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 242 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 242, "warmup_steps": 25, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
dxiao/bert-finetuned-ner-30percent
dxiao
2022-11-15T17:03:50Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-15T16:57:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-30percent results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner-30percent This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4543 - Precision: 0.6879 - Recall: 0.7613 - F1: 0.7227 - Accuracy: 0.8878 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2022 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 23 | 0.5153 | 0.6498 | 0.7523 | 0.6973 | 0.8612 | | No log | 2.0 | 46 | 0.4693 | 0.6675 | 0.7568 | 0.7094 | 0.8786 | | No log | 3.0 | 69 | 0.4543 | 0.6879 | 0.7613 | 0.7227 | 0.8878 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
atlijas/byt5-is-ocr-post-processing-modern-texts
atlijas
2022-11-15T17:01:30Z
108
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "is", "arxiv:1907.06292", "arxiv:1910.10683", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-15T16:09:43Z
--- language: is license: apache-2.0 widget: - text: "^Fyrsta bam ársins fæddist á Landspítalanum kl. 3.30 á nýársnótt." --- # Details of ByT5 - Base 🧠 ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-base). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-base` significantly outperforms [mt5-base](https://huggingface.co/google/mt5-base) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel* # Details of byt5-is-ocr-post-processing-modern-texts *Note: This model is almost the same as [atlijas/byt5-is-ocr-post-processing-old-texts](https://huggingface.co/atlijas/byt5-is-ocr-post-processing-old-texts/). The only difference is the amount of epochs trained.* This model generates a revised version of a given Icelandic OCRed text. The model was trained with [simpleT5](https://github.com/Shivanandroy/simpleT5) on 900.000 lines (\~7.000.000 tokens) of which only 50.000 (\~400.000 tokens) were from real OCRed texts. The rest were extracted from [The Icelandic Gigaword Corpus](https://clarin.is/en/resources/gigaword/) and augmented with artificial errors. It can be assumed that increasing the amount of OCRed data can significantly improve the model. For inference, it is recommended to feed the model one line (not necessarily whole sentences, though) at a time. # Usage ```python from transformers import pipeline from transformers.pipelines.pt_utils import KeyDataset from datasets import load_dataset MODEL = 'atlijas/byt5-is-ocr-post-processing-old-texts' correct_ocr = pipeline('text2text-generation', model=MODEL, tokenizer=MODEL, num_return_sequences=1) dataset = load_dataset('/path/to/', data_files='my_ocred_file.txt') lines = dataset['train'] file_length = len(lines) for corrected in correct_ocr(KeyDataset(lines, 'text'), max_length=150, batch_size=32): print(corrected[0]['generated_text']) ``` # Evaluation results The test set for this model consists of various Icelandic texts from the the 80's and 90's. On it, the model achieves a chrF error rate reduction of 30.1%, with the original text's score being 95.2, and the processed one's 96.7. The model achieves a proportional BLEU improvement of 19.8%, with the original text's BLEU score being 97.55 and the processed one's 98.0. # Acknowledgments This project was funded by the Language Technology Programme for Icelandic 2019-2023. The programme, which is managed and coordinated by [Almannarómur](https://almannaromur.is/), is funded by the Icelandic Ministry of Education, Science and Culture.
atlijas/byt5-is-ocr-post-processing-old-texts
atlijas
2022-11-15T16:54:24Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "is", "arxiv:1907.06292", "arxiv:1910.10683", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-15T13:58:44Z
--- language: is license: apache-2.0 widget: - text: "Yonum vjer að pað pví fremur fái góðar viðtökur, par sem svo lítur út, sem aldrei muni verða svo heiðskýrt á pessum vetri að „Noi'ðurljósið“ sjáist, eu paðan væntum vér allir skemmtunar." --- # Details of ByT5 - Base 🧠 ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-base). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-base` significantly outperforms [mt5-base](https://huggingface.co/google/mt5-base) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel* # Details of byt5-is-ocr-post-processing-old-texts This model generates a revised version of a given Icelandic OCRed text. The model was trained with [simpleT5](https://github.com/Shivanandroy/simpleT5) on 900.000 lines (\~7.000.000 tokens) of which only 50.000 (\~400.000 tokens) were from real OCRed texts. The rest were extracted from [The Icelandic Gigaword Corpus](https://clarin.is/en/resources/gigaword/) and augmented with artificial errors. It can be assumed that increasing the amount of OCRed data can significantly improve the model. For inference, it is recommended to feed the model one line (not necessarily whole sentences, though) at a time. # Usage ```python from transformers import pipeline from transformers.pipelines.pt_utils import KeyDataset from datasets import load_dataset MODEL = 'atlijas/byt5-is-ocr-post-processing-old-texts' correct_ocr = pipeline('text2text-generation', model=MODEL, tokenizer=MODEL, num_return_sequences=1) dataset = load_dataset('/path/to/', data_files='my_ocred_file.txt') lines = dataset['train'] file_length = len(lines) for corrected in correct_ocr(KeyDataset(lines, 'text'), max_length=150, batch_size=32): print(corrected[0]['generated_text']) ``` # Evaluation results The test set for this model consists of various Icelandic texts from the 19th and early 20th century. On it, the model achieves a chrF error rate reduction of 39.3%, with the original text's score being 94.6, and the processed one's 96.7. The model achieves a proportional BLEU improvement of 51.6%, with the original text's BLEU score being 97.2 and the processed one's 98.6. # Acknowledgments This project was funded by the Language Technology Programme for Icelandic 2019-2023. The programme, which is managed and coordinated by [Almannarómur](https://almannaromur.is/), is funded by the Icelandic Ministry of Education, Science and Culture.
dxiao/bert-finetuned-ner-10percent
dxiao
2022-11-15T16:51:24Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-15T16:45:16Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-10percent results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner-10percent This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5010 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.4556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2022 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 8 | 1.7713 | 0.0 | 0.0 | 0.0 | 0.4508 | | No log | 2.0 | 16 | 1.5699 | 0.0 | 0.0 | 0.0 | 0.4517 | | No log | 3.0 | 24 | 1.5010 | 0.0 | 0.0 | 0.0 | 0.4556 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
PlanTL-GOB-ES/bsc-bio-ehr-es-cantemist
PlanTL-GOB-ES
2022-11-15T16:40:59Z
113
2
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "biomedical", "clinical", "eHR", "spanish", "es", "dataset:PlanTL-GOB-ES/cantemist-ner", "arxiv:1907.11692", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-07T14:29:07Z
--- language: - es tags: - biomedical - clinical - eHR - spanish license: apache-2.0 datasets: - "PlanTL-GOB-ES/cantemist-ner" metrics: - f1 model-index: - name: PlanTL-GOB-ES/bsc-bio-ehr-es-cantemist results: - task: type: token-classification dataset: name: cantemist-ner type: PlanTL-GOB-ES/cantemist-ner metrics: - name: f1 type: f1 value: 0.8340 widget: - text: "El diagnóstico definitivo de nuestro paciente fue de un Adenocarcinoma de pulmón cT2a cN3 cM1a Estadio IV (por una única lesión pulmonar contralateral) PD-L1 90%, EGFR negativo, ALK negativo y ROS-1 negativo." - text: "Durante el ingreso se realiza una TC, observándose un nódulo pulmonar en el LII y una masa renal derecha indeterminada. Se realiza punción biopsia del nódulo pulmonar, con hallazgos altamente sospechosos de carcinoma." - text: "Trombosis paraneoplásica con sospecha de hepatocarcinoma por imagen, sobre hígado cirrótico, en paciente con índice Child-Pugh B." --- # Spanish RoBERTa-base biomedical model finetuned for the Named Entity Recognition (NER) task on the Cantemist dataset. ## Table of contents <details> <summary>Click to expand</summary> - [Model description](#model-description) - [Intended uses and limitations](#intended-use) - [How to use](#how-to-use) - [Limitations and bias](#limitations-and-bias) - [Training](#training) - [Evaluation](#evaluation) - [Additional information](#additional-information) - [Author](#author) - [Contact information](#contact-information) - [Copyright](#copyright) - [Licensing information](#licensing-information) - [Funding](#funding) - [Citing information](#citing-information) - [Disclaimer](#disclaimer) </details> ## Model description A fine-tuned version of the [bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model and has been pre-trained using the largest Spanish biomedical corpus known to date, composed of biomedical documents, clinical cases and EHR documents for a total of 1.1B tokens of clean and deduplicated text processed. For more details about the corpora and training, check the _bsc-bio-ehr-es_ model card. ## Intended uses and limitations ## How to use ## Limitations and bias At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. ## Training The dataset used is [CANTEMIST](https://huggingface.co/datasets/PlanTL-GOB-ES/cantemist-ner), a NER dataset annotated with tumor morphology entities. For further information, check the [official website](https://temu.bsc.es/cantemist/). ## Evaluation F1 Score: 0.8340 For evaluation details visit our [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-biomedical-clinical-es). ## Additional information ### Author Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es) ### Contact information For further information, send an email to <plantl-gob-es@bsc.es> ### Copyright Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022) ### Licensing information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Funding This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL. ### Citing information If you use these models, please cite our work: ```bibtext @inproceedings{carrino-etal-2022-pretrained, title = "Pretrained Biomedical Language Models for Clinical {NLP} in {S}panish", author = "Carrino, Casimiro Pio and Llop, Joan and P{\`a}mies, Marc and Guti{\'e}rrez-Fandi{\~n}o, Asier and Armengol-Estap{\'e}, Jordi and Silveira-Ocampo, Joaqu{\'\i}n and Valencia, Alfonso and Gonzalez-Agirre, Aitor and Villegas, Marta", booktitle = "Proceedings of the 21st Workshop on Biomedical Language Processing", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.bionlp-1.19", doi = "10.18653/v1/2022.bionlp-1.19", pages = "193--199", abstract = "This work presents the first large-scale biomedical Spanish language models trained from scratch, using large biomedical corpora consisting of a total of 1.1B tokens and an EHR corpus of 95M tokens. We compared them against general-domain and other domain-specific models for Spanish on three clinical NER tasks. As main results, our models are superior across the NER tasks, rendering them more convenient for clinical NLP applications. Furthermore, our findings indicate that when enough data is available, pre-training from scratch is better than continual pre-training when tested on clinical tasks, raising an exciting research question about which approach is optimal. Our models and fine-tuning scripts are publicly available at HuggingFace and GitHub.", } ``` ### Disclaimer The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of artificial intelligence. In no event shall the owner of the models (SEDIA – State Secretariat for digitalization and artificial intelligence) nor the creator (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models. Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y/u otro tipo de distorsiones indeseables. Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de inteligencia artificial. En ningún caso el propietario de los modelos (SEDIA – Secretaría de Estado de Digitalización e Inteligencia Artificial) ni el creador (BSC – Barcelona Supercomputing Center) serán responsables de los resultados derivados del uso que hagan terceros de estos modelos.
PlanTL-GOB-ES/bsc-bio-ehr-es-pharmaconer
PlanTL-GOB-ES
2022-11-15T16:37:38Z
593
2
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "biomedical", "clinical", "eHR", "spanish", "es", "dataset:PlanTL-GOB-ES/pharmaconer", "arxiv:1907.11692", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-06T13:43:19Z
--- language: - es tags: - biomedical - clinical - eHR - spanish license: apache-2.0 datasets: - "PlanTL-GOB-ES/pharmaconer" metrics: - f1 model-index: - name: PlanTL-GOB-ES/bsc-bio-ehr-es-pharmaconer results: - task: type: token-classification dataset: name: pharmaconer type: PlanTL-GOB-ES/pharmaconer metrics: - name: f1 type: f1 value: 0.8913 widget: - text: "Se realizó estudio analítico destacando incremento de niveles de PTH y vitamina D (103,7 pg/ml y 272 ng/ml, respectivamente), atribuidos al exceso de suplementación de vitamina D." - text: " Por el hallazgo de múltiples fracturas por estrés, se procedió a estudio en nuestras consultas, realizándose análisis con función renal, calcio sérico y urinario, calcio iónico, magnesio y PTH, que fueron normales." - text: "Se solicitó una analítica que incluía hemograma, bioquímica, anticuerpos antinucleares (ANA) y serologías, examen de orina, así como biopsia de la lesión. Los resultados fueron normales, con ANA, anti-Sm, anti-RNP, anti-SSA, anti-SSB, anti-Jo1 y anti-Scl70 negativos." --- # Spanish RoBERTa-base biomedical model finetuned for the Named Entity Recognition (NER) task on the PharmaCoNER dataset. ## Table of contents <details> <summary>Click to expand</summary> - [Model description](#model-description) - [Intended uses and limitations](#intended-use) - [How to use](#how-to-use) - [Limitations and bias](#limitations-and-bias) - [Training](#training) - [Evaluation](#evaluation) - [Additional information](#additional-information) - [Author](#author) - [Contact information](#contact-information) - [Copyright](#copyright) - [Licensing information](#licensing-information) - [Funding](#funding) - [Citing information](#citing-information) - [Disclaimer](#disclaimer) </details> ## Model description A fine-tuned version of the [bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model and has been pre-trained using the largest Spanish biomedical corpus known to date, composed of biomedical documents, clinical cases and EHR documents for a total of 1.1B tokens of clean and deduplicated text processed. For more details about the corpora and training, check the _bsc-bio-ehr-es_ model card. ## Intended uses and limitations ## How to use ## Limitations and bias At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. ## Training The dataset used is [PharmaCoNER](https://huggingface.co/datasets/PlanTL-GOB-ES/pharmaconer), a NER dataset annotated with substances, compounds and proteins entities. For further information, check the [official website](https://temu.bsc.es/pharmaconer/). ## Evaluation F1 Score: 0.8913 For evaluation details visit our [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-biomedical-clinical-es). ## Additional information ### Author Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es) ### Contact information For further information, send an email to <plantl-gob-es@bsc.es> ### Copyright Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022) ### Licensing information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Funding This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL. ## Citing information If you use these models, please cite our work: ```bibtext @inproceedings{carrino-etal-2022-pretrained, title = "Pretrained Biomedical Language Models for Clinical {NLP} in {S}panish", author = "Carrino, Casimiro Pio and Llop, Joan and P{\`a}mies, Marc and Guti{\'e}rrez-Fandi{\~n}o, Asier and Armengol-Estap{\'e}, Jordi and Silveira-Ocampo, Joaqu{\'\i}n and Valencia, Alfonso and Gonzalez-Agirre, Aitor and Villegas, Marta", booktitle = "Proceedings of the 21st Workshop on Biomedical Language Processing", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.bionlp-1.19", doi = "10.18653/v1/2022.bionlp-1.19", pages = "193--199", abstract = "This work presents the first large-scale biomedical Spanish language models trained from scratch, using large biomedical corpora consisting of a total of 1.1B tokens and an EHR corpus of 95M tokens. We compared them against general-domain and other domain-specific models for Spanish on three clinical NER tasks. As main results, our models are superior across the NER tasks, rendering them more convenient for clinical NLP applications. Furthermore, our findings indicate that when enough data is available, pre-training from scratch is better than continual pre-training when tested on clinical tasks, raising an exciting research question about which approach is optimal. Our models and fine-tuning scripts are publicly available at HuggingFace and GitHub.", } ``` ### Disclaimer The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of artificial intelligence. In no event shall the owner of the models (SEDIA – State Secretariat for digitalization and artificial intelligence) nor the creator (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models. Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y/u otro tipo de distorsiones indeseables. Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de inteligencia artificial. En ningún caso el propietario de los modelos (SEDIA – Secretaría de Estado de Digitalización e Inteligencia Artificial) ni el creador (BSC – Barcelona Supercomputing Center) serán responsables de los resultados derivados del uso que hagan terceros de estos modelos.