modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-06 18:27:02
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
544 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-06 18:26:43
card
stringlengths
11
1.01M
ghadeermobasher/Originalbiobert-v1.1-BioRED-CD-128-32-30
ghadeermobasher
2022-07-13T17:47:28Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-13T17:05:57Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: Originalbiobert-v1.1-BioRED-CD-128-32-30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Originalbiobert-v1.1-BioRED-CD-128-32-30 This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Precision: 0.9994 - Recall: 1.0 - F1: 0.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.10.3
ticoAg/distilbert-base-uncased-finetuned-emotion
ticoAg
2022-07-13T17:18:10Z
6
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-13T17:00:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.9261470780516246 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2148 - Accuracy: 0.926 - F1: 0.9261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8297 | 1.0 | 250 | 0.3235 | 0.9015 | 0.8977 | | 0.2504 | 2.0 | 500 | 0.2148 | 0.926 | 0.9261 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.7.1 - Datasets 2.3.2 - Tokenizers 0.12.1
bothrajat/testpyramidsrnd
bothrajat
2022-07-13T17:05:25Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-07-13T15:57:34Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: bothrajat/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
public-data/AnimeGANv3-portrait-sketch
public-data
2022-07-13T17:02:13Z
0
2
null
[ "onnx", "region:us" ]
null
2022-07-13T16:59:59Z
# AnimeGANv3 portrait sketch - https://github.com/TachibanaYoshino/AnimeGANv3 - https://docs.google.com/uc?export=download&id=1F6BSJY3HibzQ08kE_al6pkXd1evxS40s
gemasphi/laprador_pt
gemasphi
2022-07-13T15:37:55Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-07-13T15:37:48Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # gemasphi/laprador_pt This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('gemasphi/laprador_pt') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('gemasphi/laprador_pt') model = AutoModel.from_pretrained('gemasphi/laprador_pt') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=gemasphi/laprador_pt) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
IlyaGusev/xlm_roberta_large_headline_cause_simple
IlyaGusev
2022-07-13T15:36:36Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "xlm-roberta-large", "ru", "en", "dataset:IlyaGusev/headline_cause", "arxiv:2108.12626", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - ru - en tags: - xlm-roberta-large datasets: - IlyaGusev/headline_cause license: apache-2.0 widget: - text: "Песков опроверг свой перевод на удаленку</s>Дмитрий Песков перешел на удаленку" --- # XLM-RoBERTa HeadlineCause Simple ## Model description This model was trained to predict the presence of causal relations between two headlines. This model is for the Simple task with 3 possible labels: A causes B, B causes A, no causal relation. English and Russian languages are supported. You can use hosted inference API to infer a label for a headline pair. To do this, you shoud seperate headlines with ```</s>``` token. For example: ``` Песков опроверг свой перевод на удаленку</s>Дмитрий Песков перешел на удаленку ``` ## Intended uses & limitations #### How to use ```python from tqdm.notebook import tqdm from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline def get_batch(data, batch_size): start_index = 0 while start_index < len(data): end_index = start_index + batch_size batch = data[start_index:end_index] yield batch start_index = end_index def pipe_predict(data, pipe, batch_size=64): raw_preds = [] for batch in tqdm(get_batch(data, batch_size)): raw_preds += pipe(batch) return raw_preds MODEL_NAME = TOKENIZER_NAME = "IlyaGusev/xlm_roberta_large_headline_cause_simple" tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME, do_lower_case=False) model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME) model.eval() pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, framework="pt", return_all_scores=True) texts = [ ( "Judge issues order to allow indoor worship in NC churches", "Some local churches resume indoor services after judge lifted NC governor’s restriction" ), ( "Gov. Kevin Stitt defends $2 million purchase of malaria drug touted by Trump", "Oklahoma spent $2 million on malaria drug touted by Trump" ), ( "Песков опроверг свой перевод на удаленку", "Дмитрий Песков перешел на удаленку" ) ] pipe_predict(texts, pipe) ``` #### Limitations and bias The models are intended to be used on news headlines. No other limitations are known. ## Training data * HuggingFace dataset: [IlyaGusev/headline_cause](https://huggingface.co/datasets/IlyaGusev/headline_cause) * GitHub: [IlyaGusev/HeadlineCause](https://github.com/IlyaGusev/HeadlineCause) ## Training procedure * Notebook: [HeadlineCause](https://colab.research.google.com/drive/1NAnD0OJ0TnYCJRsHpYUyYkjr_yi8ObcA) * Stand-alone script: [train.py](https://github.com/IlyaGusev/HeadlineCause/blob/main/headline_cause/train.py) ## Eval results Evaluation results can be found in the [arxiv paper](https://arxiv.org/pdf/2108.12626.pdf). ### BibTeX entry and citation info ```bibtex @misc{gusev2021headlinecause, title={HeadlineCause: A Dataset of News Headlines for Detecting Causalities}, author={Ilya Gusev and Alexey Tikhonov}, year={2021}, eprint={2108.12626}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
IlyaGusev/xlm_roberta_large_headline_cause_full
IlyaGusev
2022-07-13T15:35:52Z
154
3
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "xlm-roberta-large", "ru", "en", "dataset:IlyaGusev/headline_cause", "arxiv:2108.12626", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - ru - en tags: - xlm-roberta-large datasets: - IlyaGusev/headline_cause license: apache-2.0 widget: - text: "Песков опроверг свой перевод на удаленку</s>Дмитрий Песков перешел на удаленку" --- # XLM-RoBERTa HeadlineCause Full ## Model description This model was trained to predict the presence of causal relations between two headlines. This model is for the Full task with 7 possible labels: titles are almost the same, A causes B, B causes A, A refutes B, B refutes A, A linked with B in another way, A is not linked to B. English and Russian languages are supported. You can use hosted inference API to infer a label for a headline pair. To do this, you shoud seperate headlines with ```</s>``` token. For example: ``` Песков опроверг свой перевод на удаленку</s>Дмитрий Песков перешел на удаленку ``` ## Intended uses & limitations #### How to use ```python from tqdm.notebook import tqdm from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline def get_batch(data, batch_size): start_index = 0 while start_index < len(data): end_index = start_index + batch_size batch = data[start_index:end_index] yield batch start_index = end_index def pipe_predict(data, pipe, batch_size=64): raw_preds = [] for batch in tqdm(get_batch(data, batch_size)): raw_preds += pipe(batch) return raw_preds MODEL_NAME = TOKENIZER_NAME = "IlyaGusev/xlm_roberta_large_headline_cause_full" tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME, do_lower_case=False) model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME) model.eval() pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, framework="pt", return_all_scores=True) texts = [ ( "Judge issues order to allow indoor worship in NC churches", "Some local churches resume indoor services after judge lifted NC governor’s restriction" ), ( "Gov. Kevin Stitt defends $2 million purchase of malaria drug touted by Trump", "Oklahoma spent $2 million on malaria drug touted by Trump" ), ( "Песков опроверг свой перевод на удаленку", "Дмитрий Песков перешел на удаленку" ) ] pipe_predict(texts, pipe) ``` #### Limitations and bias The models are intended to be used on news headlines. No other limitations are known. ## Training data * HuggingFace dataset: [IlyaGusev/headline_cause](https://huggingface.co/datasets/IlyaGusev/headline_cause) * GitHub: [IlyaGusev/HeadlineCause](https://github.com/IlyaGusev/HeadlineCause) ## Training procedure * Notebook: [HeadlineCause](https://colab.research.google.com/drive/1NAnD0OJ0TnYCJRsHpYUyYkjr_yi8ObcA) * Stand-alone script: [train.py](https://github.com/IlyaGusev/HeadlineCause/blob/main/headline_cause/train.py) ## Eval results Evaluation results can be found in the [arxiv paper](https://arxiv.org/pdf/2108.12626.pdf). ### BibTeX entry and citation info ```bibtex @misc{gusev2021headlinecause, title={HeadlineCause: A Dataset of News Headlines for Detecting Causalities}, author={Ilya Gusev and Alexey Tikhonov}, year={2021}, eprint={2108.12626}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
IlyaGusev/sber_rut5_filler
IlyaGusev
2022-07-13T15:34:32Z
31
3
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "ru", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: - ru license: apache-2.0 widget: - text: Эта блядь меня заебала</s> Эта <extra_id_0> меня <extra_id_1> ---
IlyaGusev/rubertconv_toxic_clf
IlyaGusev
2022-07-13T15:34:11Z
14,240
13
transformers
[ "transformers", "pytorch", "bert", "text-classification", "ru", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - ru tags: - text-classification license: apache-2.0 --- # RuBERTConv Toxic Classifier ## Model description Based on [rubert-base-cased-conversational](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational) model ## Intended uses & limitations #### How to use Colab: [link](https://colab.research.google.com/drive/1veKO9hke7myxKigZtZho_F-UM2fD9kp8) ```python from transformers import pipeline model_name = "IlyaGusev/rubertconv_toxic_clf" pipe = pipeline("text-classification", model=model_name, tokenizer=model_name, framework="pt") text = "Ты придурок из интернета" pipe([text]) ``` ## Training data Datasets: - [2ch]( https://www.kaggle.com/blackmoon/russian-language-toxic-comments) - [Odnoklassniki](https://www.kaggle.com/alexandersemiletov/toxic-russian-comments) - [Toloka Persona Chat Rus](https://toloka.ai/ru/datasets) - [Koziev's Conversations](https://github.com/Koziev/NLP_Datasets/blob/master/Conversations/Data) with [toxic words vocabulary](https://www.dropbox.com/s/ou6lx03b10yhrfl/bad_vocab.txt.tar.gz) Augmentations: - ё -> е - Remove or add "?" or "!" - Fix CAPS - Concatenate toxic and non-toxic texts - Concatenate two non-toxic texts - Add toxic words from vocabulary - Add typos - Mask toxic words with "*", "@", "$" ## Training procedure TBA
allermat/distilbert-base-uncased-finetuned-emotion
allermat
2022-07-13T15:20:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-09T16:16:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.923 - name: F1 type: f1 value: 0.9233300539962602 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2244 - Accuracy: 0.923 - F1: 0.9233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8412 | 1.0 | 250 | 0.3186 | 0.904 | 0.9022 | | 0.2501 | 2.0 | 500 | 0.2244 | 0.923 | 0.9233 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
carlosaguayo/distilbert-base-uncased-finetuned-emotion
carlosaguayo
2022-07-13T14:50:13Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9295 - name: F1 type: f1 value: 0.9299984897610097 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1689 - Accuracy: 0.9295 - F1: 0.9300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2853 | 1.0 | 250 | 0.1975 | 0.9235 | 0.9233 | | 0.1568 | 2.0 | 500 | 0.1689 | 0.9295 | 0.9300 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
jpalojarvi/finetuning-sentiment-model-3000-samples
jpalojarvi
2022-07-13T14:48:18Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-13T14:14:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.86 - name: F1 type: f1 value: 0.8590604026845637 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3239 - Accuracy: 0.86 - F1: 0.8591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
nawta/wav2vec2-onomatopoeia-finetune_smalldata_ESC50pretrained_5
nawta
2022-07-13T14:43:29Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-13T14:30:32Z
--- tags: - generated_from_trainer model-index: - name: wav2vec2-onomatopoeia-finetune_smalldata_ESC50pretrained_5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-onomatopoeia-finetune_smalldata_ESC50pretrained_5 This model is a fine-tuned version of [/root/workspace/wav2vec2-pretrained_with_ESC50_10000epochs_32batch_2022-07-09_22-16-46/pytorch_model.bin](https://huggingface.co//root/workspace/wav2vec2-pretrained_with_ESC50_10000epochs_32batch_2022-07-09_22-16-46/pytorch_model.bin) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
fxmarty/20220713-h14m38s16_example_conll2003
fxmarty
2022-07-13T14:38:21Z
0
0
null
[ "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "region:us" ]
token-classification
2022-07-13T14:38:16Z
--- pipeline_tag: token-classification datasets: - conll2003 metrics: - precision - recall - f1 - accuracy tags: - distilbert --- **task**: `token-classification` **Backend:** `sagemaker-training` **Backend args:** `{'instance_type': 'ml.g4dn.2xlarge', 'supported_instructions': None}` **Number of evaluation samples:** `All dataset` Fixed parameters: * **model_name_or_path**: `elastic/distilbert-base-uncased-finetuned-conll03-english` * **dataset**: * **path**: `conll2003` * **eval_split**: `validation` * **data_keys**: `{'primary': 'tokens'}` * **ref_keys**: `['ner_tags']` * **calibration_split**: `train` * **quantization_approach**: `static` * **operators_to_quantize**: `['Add', 'MatMul']` * **per_channel**: `False` * **calibration**: * **method**: `minmax` * **num_calibration_samples**: `100` * **framework**: `onnxruntime` * **framework_args**: * **opset**: `11` * **optimization_level**: `1` * **aware_training**: `False` Benchmarked parameters: * **node_exclusion**: `[]`, `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` # Evaluation ## Non-time metrics | node_exclusion | | precision (original) | precision (optimized) | | recall (original) | recall (optimized) | | f1 (original) | f1 (optimized) | | accuracy (original) | accuracy (optimized) | | :------------------------------------------------------: | :-: | :------------------: | :-------------------: | :-: | :---------------: | :----------------: | :-: | :-----------: | :------------: | :-: | :-----------------: | :------------------: | | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | \| | 0.936 | 0.904 | \| | 0.944 | 0.921 | \| | 0.940 | 0.912 | \| | 0.988 | 0.984 | | `[]` | \| | 0.936 | 0.065 | \| | 0.944 | 0.243 | \| | 0.940 | 0.103 | \| | 0.988 | 0.357 | ## Time metrics Time benchmarks were run for 15 seconds per config. Below, time metrics for batch size = 4, input length = 64. | node_exclusion | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :------------------------------------------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | \| | 114.51 | 53.59 | \| | 8.73 | 18.67 | | `[]` | \| | 90.67 | 59.55 | \| | 11.07 | 16.87 |
bothrajat/q-FrozenLake-v1-4x4-Slippery
bothrajat
2022-07-13T14:02:16Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-13T10:06:49Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - metrics: - type: mean_reward value: 0.04 +/- 0.19 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="bothrajat/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
johntang/finetuning-sentiment-model-3000-samples
johntang
2022-07-13T14:02:11Z
6
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-17T18:54:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8766666666666667 - name: F1 type: f1 value: 0.8786885245901639 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3426 - Accuracy: 0.8767 - F1: 0.8787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0 - Datasets 2.3.2 - Tokenizers 0.12.1
Chris1/q-Taxi-v3
Chris1
2022-07-13T13:53:13Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-13T13:53:02Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.46 +/- 2.59 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Chris1/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12
yuekai
2022-07-13T13:51:59Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-07-12T01:54:35Z
--- license: apache-2.0 --- ### How to clone this repo ``` sudo apt-get install git-lfs git clone https://huggingface.co/yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12 cd https://huggingface.co/yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12 git lfs pull ```
yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12
yuekai
2022-07-13T13:49:43Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-07-13T02:19:09Z
--- license: apache-2.0 --- ### How to clone this repo ``` sudo apt-get install git-lfs git clone https://huggingface.co/yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12 cd https://huggingface.co/yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12 git lfs pull ```
ArneD/distilbert-base-uncased-finetuned-emotion
ArneD
2022-07-13T13:43:21Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-21T06:42:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.922 - name: F1 type: f1 value: 0.9218894133133121 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2147 - Accuracy: 0.922 - F1: 0.9219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8205 | 1.0 | 250 | 0.3028 | 0.909 | 0.9061 | | 0.245 | 2.0 | 500 | 0.2147 | 0.922 | 0.9219 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
fxmarty/20220713-h13m33s02_example_conll2003
fxmarty
2022-07-13T13:33:09Z
0
0
null
[ "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "region:us" ]
token-classification
2022-07-13T13:33:02Z
--- pipeline_tag: token-classification datasets: - conll2003 metrics: - precision - recall - f1 - accuracy tags: - distilbert --- **task**: `token-classification` **Backend:** `sagemaker-training` **Backend args:** `{'instance_type': 'ml.g4dn.2xlarge', 'supported_instructions': None}` **Number of evaluation samples:** `All dataset` Fixed parameters: * **model_name_or_path**: `elastic/distilbert-base-uncased-finetuned-conll03-english` * **dataset**: * **path**: `conll2003` * **eval_split**: `validation` * **data_keys**: `{'primary': 'tokens'}` * **ref_keys**: `['ner_tags']` * **calibration_split**: `train` * **quantization_approach**: `static` * **operators_to_quantize**: `['Add', 'MatMul']` * **per_channel**: `False` * **calibration**: * **method**: `minmax` * **num_calibration_samples**: `100` * **framework**: `onnxruntime` * **framework_args**: * **opset**: `11` * **optimization_level**: `1` * **aware_training**: `False` Benchmarked parameters: * **node_exclusion**: `[]`, `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` # Evaluation ## Non-time metrics | node_exclusion | | precision (original) | precision (optimized) | | recall (original) | recall (optimized) | | f1 (original) | f1 (optimized) | | accuracy (original) | accuracy (optimized) | | :------------------------------------------------------: | :-: | :------------------: | :-------------------: | :-: | :---------------: | :----------------: | :-: | :-----------: | :------------: | :-: | :-----------------: | :------------------: | | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | \| | 0.936 | 0.904 | \| | 0.944 | 0.921 | \| | 0.940 | 0.912 | \| | 0.988 | 0.984 | | `[]` | \| | 0.936 | 0.065 | \| | 0.944 | 0.243 | \| | 0.940 | 0.103 | \| | 0.988 | 0.357 | ## Time metrics Time benchmarks were run for 15 seconds per config. Below, time metrics for batch size = 4, input length = 64. | node_exclusion | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :------------------------------------------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | \| | 103.46 | 53.77 | \| | 9.67 | 18.60 | | `[]` | \| | 90.62 | 65.86 | \| | 11.07 | 15.20 |
hossay/distilbert-base-uncased-finetuned-ner
hossay
2022-07-13T13:32:51Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-10T00:51:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9263064854712186 - name: Recall type: recall value: 0.9379125181787672 - name: F1 type: f1 value: 0.9320733740967203 - name: Accuracy type: accuracy value: 0.9838117781625813 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0614 - Precision: 0.9263 - Recall: 0.9379 - F1: 0.9321 - Accuracy: 0.9838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2418 | 1.0 | 878 | 0.0709 | 0.9168 | 0.9242 | 0.9204 | 0.9806 | | 0.0514 | 2.0 | 1756 | 0.0622 | 0.9175 | 0.9338 | 0.9255 | 0.9826 | | 0.0306 | 3.0 | 2634 | 0.0614 | 0.9263 | 0.9379 | 0.9321 | 0.9838 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
andreaschandra/distilbert-base-uncased-finetuned-emotion
andreaschandra
2022-07-13T13:16:46Z
7
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-02T07:02:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9240890586429673 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2186 - Accuracy: 0.924 - F1: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8218 | 1.0 | 250 | 0.3165 | 0.9025 | 0.9001 | | 0.2494 | 2.0 | 500 | 0.2186 | 0.924 | 0.9241 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
frahman/distilbert-base-uncased-finetuned-emotion
frahman
2022-07-13T12:58:49Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9205 - name: F1 type: f1 value: 0.9206660865871332 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2202 - Accuracy: 0.9205 - F1: 0.9207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8234 | 1.0 | 250 | 0.3185 | 0.9025 | 0.8992 | | 0.2466 | 2.0 | 500 | 0.2202 | 0.9205 | 0.9207 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jordyvl/udpos28-sm-all-POS
jordyvl
2022-07-13T12:23:52Z
8
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:udpos28", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-13T12:03:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - udpos28 metrics: - precision - recall - f1 - accuracy model-index: - name: udpos28-sm-all-POS results: - task: name: Token Classification type: token-classification dataset: name: udpos28 type: udpos28 args: en metrics: - name: Precision type: precision value: 0.9586517032792105 - name: Recall type: recall value: 0.9588997472284696 - name: F1 type: f1 value: 0.9587757092110369 - name: Accuracy type: accuracy value: 0.964820639556654 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # udpos28-sm-all-POS This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the udpos28 dataset. It achieves the following results on the evaluation set: - Loss: 0.1479 - Precision: 0.9587 - Recall: 0.9589 - F1: 0.9588 - Accuracy: 0.9648 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1261 | 1.0 | 4978 | 0.1358 | 0.9513 | 0.9510 | 0.9512 | 0.9581 | | 0.0788 | 2.0 | 9956 | 0.1326 | 0.9578 | 0.9578 | 0.9578 | 0.9642 | | 0.0424 | 3.0 | 14934 | 0.1479 | 0.9587 | 0.9589 | 0.9588 | 0.9648 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
Sreevishnu/funnel-transformer-small-imdb
Sreevishnu
2022-07-13T12:17:17Z
6
1
transformers
[ "transformers", "pytorch", "funnel", "text-classification", "sentiment-analysis", "en", "dataset:imdb", "arxiv:2006.03236", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-15T18:48:18Z
--- license: apache-2.0 language: en widget: - text: "In the garden of wonderment that is the body of work by the animation master Hayao Miyazaki, his 2001 gem 'Spirited Away' is at once one of his most accessible films to a Western audience and the one most distinctly rooted in Japanese culture and lore. The tale of Chihiro, a 10 year old girl who resents being moved away from all her friends, only to find herself working in a bathhouse for the gods, doesn't just use its home country's fraught relationship with deities as a backdrop. Never remotely didactic, the film is ultimately a self-fulfilment drama that touches on religious, ethical, ecological and psychological issues. It's also a fine children's film, the kind that elicits a deepening bond across repeat viewings and the passage of time, mostly because Miyazaki refuses to talk down to younger viewers. That's been a constant in all of his filmography, but it's particularly conspicuous here because the stakes for its young protagonist are bigger than in most of his previous features aimed at younger viewers. It involves conquering fears and finding oneself in situations where safety is not a given. There are so many moving parts in Spirited Away, from both a thematic and technical point of view, that pinpointing what makes Spirited Away stand out from an already outstanding body of work becomes as challenging as a meeting with Yubaba. But I think it comes down to an ability to deal with heady, complex subject matter from a young girl's perspective without diluting or lessening its resonance. Miyazaki has made a loopy, demanding work of art that asks your inner child to come out and play. There are few high-wire acts in all of movie-dom as satisfying as that." datasets: - imdb tags: - sentiment-analysis --- # Funnel Transformer small (B4-4-4 with decoder) fine-tuned on IMDB for Sentiment Analysis These are the model weights for the Funnel Transformer small model fine-tuned on the IMDB dataset for performing Sentiment Analysis with `max_position_embeddings=1024`. The original model weights for English language are from [funnel-transformer/small](https://huggingface.co/funnel-transformer/small) and it uses a similar objective objective as [ELECTRA](https://huggingface.co/transformers/model_doc/electra.html). It was introduced in [this paper](https://arxiv.org/pdf/2006.03236.pdf) and first released in [this repository](https://github.com/laiguokun/Funnel-Transformer). This model is uncased: it does not make a difference between english and English. ## Fine-tuning Results | | Accuracy | Precision | Recall | F1 | |-------------------------------|----------|-----------|----------|----------| | funnel-transformer-small-imdb | 0.956530 | 0.952286 | 0.961075 | 0.956661 | ## Model description (from [funnel-transformer/small](https://huggingface.co/funnel-transformer/small)) Funnel Transformer is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, a small language model corrupts the input texts and serves as a generator of inputs for this model, and the pretraining objective is to predict which token is an original and which one has been replaced, a bit like a GAN training. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. # How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained( "Sreevishnu/funnel-transformer-small-imdb", use_fast=True) model = AutoModelForSequenceClassification.from_pretrained( "Sreevishnu/funnel-transformer-small-imdb", num_labels=2, max_position_embeddings=1024) text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` # Example App https://lazy-film-reviews-7gif2bz4sa-ew.a.run.app/ Project repo: https://github.com/akshaydevml/lazy-film-reviews
facebook/deit-tiny-patch16-224
facebook
2022-07-13T11:53:31Z
35,980
5
transformers
[ "transformers", "pytorch", "tf", "vit", "image-classification", "dataset:imagenet", "arxiv:2012.12877", "arxiv:2006.03677", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification datasets: - imagenet --- # Data-efficient Image Transformer (tiny-sized model) Data-efficient Image Transformer (DeiT) model pre-trained and fine-tuned on ImageNet-1k (1 million images, 1,000 classes) at resolution 224x224. It was first introduced in the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Touvron et al. and first released in [this repository](https://github.com/facebookresearch/deit). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman. Disclaimer: The team releasing DeiT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description This model is actually a more efficiently trained Vision Transformer (ViT). The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pre-trained and fine-tuned on a large collection of images in a supervised fashion, namely ImageNet-1k, at a resolution of 224x224 pixels. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=facebook/deit) to look for fine-tuned versions on a task that interests you. ### How to use Since this model is a more efficiently trained ViT model, you can plug it into ViTModel or ViTForImageClassification. Note that the model expects the data to be prepared using DeiTFeatureExtractor. Here we use AutoFeatureExtractor, which will automatically use the appropriate feature extractor given the model name. Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoFeatureExtractor, ViTForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained('facebook/deit-tiny-patch16-224') model = ViTForImageClassification.from_pretrained('facebook/deit-tiny-patch16-224') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon. ## Training data The ViT model was pretrained on [ImageNet-1k](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L78). At inference time, images are resized/rescaled to the same resolution (256x256), center-cropped at 224x224 and normalized across the RGB channels with the ImageNet mean and standard deviation. ### Pretraining The model was trained on a single 8-GPU node for 3 days. Training resolution is 224. For all hyperparameters (such as batch size and learning rate) we refer to table 9 of the original paper. ## Evaluation results | Model | ImageNet top-1 accuracy | ImageNet top-5 accuracy | # params | URL | |---------------------------------------|-------------------------|-------------------------|----------|------------------------------------------------------------------| | **DeiT-tiny** | **72.2** | **91.1** | **5M** | **https://huggingface.co/facebook/deit-tiny-patch16-224** | | DeiT-small | 79.9 | 95.0 | 22M | https://huggingface.co/facebook/deit-small-patch16-224 | | DeiT-base | 81.8 | 95.6 | 86M | https://huggingface.co/facebook/deit-base-patch16-224 | | DeiT-tiny distilled | 74.5 | 91.9 | 6M | https://huggingface.co/facebook/deit-tiny-distilled-patch16-224 | | DeiT-small distilled | 81.2 | 95.4 | 22M | https://huggingface.co/facebook/deit-small-distilled-patch16-224 | | DeiT-base distilled | 83.4 | 96.5 | 87M | https://huggingface.co/facebook/deit-base-distilled-patch16-224 | | DeiT-base 384 | 82.9 | 96.2 | 87M | https://huggingface.co/facebook/deit-base-patch16-384 | | DeiT-base distilled 384 (1000 epochs) | 85.2 | 97.2 | 88M | https://huggingface.co/facebook/deit-base-distilled-patch16-384 | Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{touvron2021training, title={Training data-efficient image transformers & distillation through attention}, author={Hugo Touvron and Matthieu Cord and Matthijs Douze and Francisco Massa and Alexandre Sablayrolles and Hervé Jégou}, year={2021}, eprint={2012.12877}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
facebook/deit-small-distilled-patch16-224
facebook
2022-07-13T11:41:21Z
4,247
6
transformers
[ "transformers", "pytorch", "tf", "deit", "image-classification", "vision", "dataset:imagenet", "arxiv:2012.12877", "arxiv:2006.03677", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - vision datasets: - imagenet --- # Distilled Data-efficient Image Transformer (small-sized model) Distilled data-efficient Image Transformer (DeiT) model pre-trained and fine-tuned on ImageNet-1k (1 million images, 1,000 classes) at resolution 224x224. It was first introduced in the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Touvron et al. and first released in [this repository](https://github.com/facebookresearch/deit). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman. Disclaimer: The team releasing DeiT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description This model is a distilled Vision Transformer (ViT). It uses a distillation token, besides the class token, to effectively learn from a teacher (CNN) during both pre-training and fine-tuning. The distillation token is learned through backpropagation, by interacting with the class ([CLS]) and patch tokens through the self-attention layers. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=facebook/deit) to look for fine-tuned versions on a task that interests you. ### How to use Since this model is a distilled ViT model, you can plug it into DeiTModel, DeiTForImageClassification or DeiTForImageClassificationWithTeacher. Note that the model expects the data to be prepared using DeiTFeatureExtractor. Here we use AutoFeatureExtractor, which will automatically use the appropriate feature extractor given the model name. Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoFeatureExtractor, DeiTForImageClassificationWithTeacher from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained('facebook/deit-small-distilled-patch16-224') model = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-small-distilled-patch16-224') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon. ## Training data This model was pretrained and fine-tuned with distillation on [ImageNet-1k](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L78). At inference time, images are resized/rescaled to the same resolution (256x256), center-cropped at 224x224 and normalized across the RGB channels with the ImageNet mean and standard deviation. ### Pretraining The model was trained on a single 8-GPU node for 3 days. Training resolution is 224. For all hyperparameters (such as batch size and learning rate) we refer to table 9 of the original paper. ## Evaluation results | Model | ImageNet top-1 accuracy | ImageNet top-5 accuracy | # params | URL | |---------------------------------------|-------------------------|-------------------------|----------|------------------------------------------------------------------| | DeiT-tiny | 72.2 | 91.1 | 5M | https://huggingface.co/facebook/deit-tiny-patch16-224 | | DeiT-small | 79.9 | 95.0 | 22M | https://huggingface.co/facebook/deit-small-patch16-224 | | DeiT-base | 81.8 | 95.6 | 86M | https://huggingface.co/facebook/deit-base-patch16-224 | | DeiT-tiny distilled | 74.5 | 91.9 | 6M | https://huggingface.co/facebook/deit-tiny-distilled-patch16-224 | | **DeiT-small distilled** | **81.2** | **95.4** | **22M** | **https://huggingface.co/facebook/deit-small-distilled-patch16-224** | | DeiT-base distilled | 83.4 | 96.5 | 87M | https://huggingface.co/facebook/deit-base-distilled-patch16-224 | | DeiT-base 384 | 82.9 | 96.2 | 87M | https://huggingface.co/facebook/deit-base-patch16-384 | | DeiT-base distilled 384 (1000 epochs) | 85.2 | 97.2 | 88M | https://huggingface.co/facebook/deit-base-distilled-patch16-384 | Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{touvron2021training, title={Training data-efficient image transformers & distillation through attention}, author={Hugo Touvron and Matthieu Cord and Matthijs Douze and Francisco Massa and Alexandre Sablayrolles and Hervé Jégou}, year={2021}, eprint={2012.12877}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
facebook/deit-base-patch16-384
facebook
2022-07-13T11:41:03Z
349
1
transformers
[ "transformers", "pytorch", "tf", "vit", "image-classification", "dataset:imagenet-1k", "arxiv:2012.12877", "arxiv:2006.03677", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification datasets: - imagenet-1k --- # Data-efficient Image Transformer (base-sized model) Data-efficient Image Transformer (DeiT) model pre-trained and fine-tuned on ImageNet-1k (1 million images, 1,000 classes) at resolution 384x384. It was first introduced in the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Touvron et al. and first released in [this repository](https://github.com/facebookresearch/deit). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman. Disclaimer: The team releasing DeiT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description This model is actually a more efficiently trained Vision Transformer (ViT). The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pre-trained at resolution 224 and fine-tuned at resolution 384 on a large collection of images in a supervised fashion, namely ImageNet-1k. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=facebook/deit) to look for fine-tuned versions on a task that interests you. ### How to use Since this model is a more efficiently trained ViT model, you can plug it into ViTModel or ViTForImageClassification. Note that the model expects the data to be prepared using DeiTFeatureExtractor. Here we use AutoFeatureExtractor, which will automatically use the appropriate feature extractor given the model name. Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoFeatureExtractor, ViTForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained('facebook/deit-base-patch16-384') model = ViTForImageClassification.from_pretrained('facebook/deit-base-patch16-384') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon. ## Training data The ViT model was pretrained on [ImageNet-1k](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L78). At inference time, images are resized/rescaled to the same resolution (438x438), center-cropped at 384x384 and normalized across the RGB channels with the ImageNet mean and standard deviation. ### Pretraining The model was trained on a single 8-GPU node for 3 days. Pre-training resolution is 224. For all hyperparameters (such as batch size and learning rate) we refer to table 9 of the original paper. ## Evaluation results | Model | ImageNet top-1 accuracy | ImageNet top-5 accuracy | # params | URL | |---------------------------------------|-------------------------|-------------------------|----------|------------------------------------------------------------------| | DeiT-tiny | 72.2 | 91.1 | 5M | https://huggingface.co/facebook/deit-tiny-patch16-224 | | DeiT-small | 79.9 | 95.0 | 22M | https://huggingface.co/facebook/deit-small-patch16-224 | | DeiT-base | 81.8 | 95.6 | 86M | https://huggingface.co/facebook/deit-base-patch16-224 | | DeiT-tiny distilled | 74.5 | 91.9 | 6M | https://huggingface.co/facebook/deit-tiny-distilled-patch16-224 | | DeiT-small distilled | 81.2 | 95.4 | 22M | https://huggingface.co/facebook/deit-small-distilled-patch16-224 | | DeiT-base distilled | 83.4 | 96.5 | 87M | https://huggingface.co/facebook/deit-base-distilled-patch16-224 | | **DeiT-base 384** | **82.9** | **96.2** | **87M** | **https://huggingface.co/facebook/deit-base-patch16-384** | | DeiT-base distilled 384 (1000 epochs) | 85.2 | 97.2 | 88M | https://huggingface.co/facebook/deit-base-distilled-patch16-384 | Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{touvron2021training, title={Training data-efficient image transformers & distillation through attention}, author={Hugo Touvron and Matthieu Cord and Matthijs Douze and Francisco Massa and Alexandre Sablayrolles and Hervé Jégou}, year={2021}, eprint={2012.12877}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
facebook/deit-base-patch16-224
facebook
2022-07-13T11:40:44Z
144,060
13
transformers
[ "transformers", "pytorch", "tf", "vit", "image-classification", "dataset:imagenet-1k", "arxiv:2012.12877", "arxiv:2006.03677", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification datasets: - imagenet-1k --- # Data-efficient Image Transformer (base-sized model) Data-efficient Image Transformer (DeiT) model pre-trained and fine-tuned on ImageNet-1k (1 million images, 1,000 classes) at resolution 224x224. It was first introduced in the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Touvron et al. and first released in [this repository](https://github.com/facebookresearch/deit). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman. Disclaimer: The team releasing DeiT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description This model is actually a more efficiently trained Vision Transformer (ViT). The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pre-trained and fine-tuned on a large collection of images in a supervised fashion, namely ImageNet-1k, at a resolution of 224x224 pixels. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=facebook/deit) to look for fine-tuned versions on a task that interests you. ### How to use Since this model is a more efficiently trained ViT model, you can plug it into ViTModel or ViTForImageClassification. Note that the model expects the data to be prepared using DeiTFeatureExtractor. Here we use AutoFeatureExtractor, which will automatically use the appropriate feature extractor given the model name. Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoFeatureExtractor, ViTForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained('facebook/deit-base-patch16-224') model = ViTForImageClassification.from_pretrained('facebook/deit-base-patch16-224') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon. ## Training data The ViT model was pretrained on [ImageNet-1k](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L78). At inference time, images are resized/rescaled to the same resolution (256x256), center-cropped at 224x224 and normalized across the RGB channels with the ImageNet mean and standard deviation. ### Pretraining The model was trained on a single 8-GPU node for 3 days. Training resolution is 224. For all hyperparameters (such as batch size and learning rate) we refer to table 9 of the original paper. ## Evaluation results | Model | ImageNet top-1 accuracy | ImageNet top-5 accuracy | # params | URL | |---------------------------------------|-------------------------|-------------------------|----------|------------------------------------------------------------------| | DeiT-tiny | 72.2 | 91.1 | 5M | https://huggingface.co/facebook/deit-tiny-patch16-224 | | DeiT-small | 79.9 | 95.0 | 22M | https://huggingface.co/facebook/deit-small-patch16-224 | | **DeiT-base** | **81.8** | **95.6** | **86M** | **https://huggingface.co/facebook/deit-base-patch16-224** | | DeiT-tiny distilled | 74.5 | 91.9 | 6M | https://huggingface.co/facebook/deit-tiny-distilled-patch16-224 | | DeiT-small distilled | 81.2 | 95.4 | 22M | https://huggingface.co/facebook/deit-small-distilled-patch16-224 | | DeiT-base distilled | 83.4 | 96.5 | 87M | https://huggingface.co/facebook/deit-base-distilled-patch16-224 | | DeiT-base 384 | 82.9 | 96.2 | 87M | https://huggingface.co/facebook/deit-base-patch16-384 | | DeiT-base distilled 384 (1000 epochs) | 85.2 | 97.2 | 88M | https://huggingface.co/facebook/deit-base-distilled-patch16-384 | Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{touvron2021training, title={Training data-efficient image transformers & distillation through attention}, author={Hugo Touvron and Matthieu Cord and Matthijs Douze and Francisco Massa and Alexandre Sablayrolles and Hervé Jégou}, year={2021}, eprint={2012.12877}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
facebook/deit-base-distilled-patch16-224
facebook
2022-07-13T11:39:38Z
16,934
23
transformers
[ "transformers", "pytorch", "tf", "deit", "image-classification", "vision", "dataset:imagenet", "arxiv:2012.12877", "arxiv:2006.03677", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - vision datasets: - imagenet --- # Distilled Data-efficient Image Transformer (base-sized model) Distilled data-efficient Image Transformer (DeiT) model pre-trained and fine-tuned on ImageNet-1k (1 million images, 1,000 classes) at resolution 224x224. It was first introduced in the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Touvron et al. and first released in [this repository](https://github.com/facebookresearch/deit). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman. Disclaimer: The team releasing DeiT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description This model is a distilled Vision Transformer (ViT). It uses a distillation token, besides the class token, to effectively learn from a teacher (CNN) during both pre-training and fine-tuning. The distillation token is learned through backpropagation, by interacting with the class ([CLS]) and patch tokens through the self-attention layers. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=facebook/deit) to look for fine-tuned versions on a task that interests you. ### How to use Since this model is a distilled ViT model, you can plug it into DeiTModel, DeiTForImageClassification or DeiTForImageClassificationWithTeacher. Note that the model expects the data to be prepared using DeiTFeatureExtractor. Here we use AutoFeatureExtractor, which will automatically use the appropriate feature extractor given the model name. Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoFeatureExtractor, DeiTForImageClassificationWithTeacher from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained('facebook/deit-base-distilled-patch16-224') model = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224') inputs = feature_extractor(images=image, return_tensors="pt") # forward pass outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon. ## Training data This model was pretrained and fine-tuned with distillation on [ImageNet-1k](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L78). At inference time, images are resized/rescaled to the same resolution (256x256), center-cropped at 224x224 and normalized across the RGB channels with the ImageNet mean and standard deviation. ### Pretraining The model was trained on a single 8-GPU node for 3 days. Training resolution is 224. For all hyperparameters (such as batch size and learning rate) we refer to table 9 of the original paper. ## Evaluation results | Model | ImageNet top-1 accuracy | ImageNet top-5 accuracy | # params | URL | |---------------------------------------|-------------------------|-------------------------|----------|------------------------------------------------------------------| | DeiT-tiny | 72.2 | 91.1 | 5M | https://huggingface.co/facebook/deit-tiny-patch16-224 | | DeiT-small | 79.9 | 95.0 | 22M | https://huggingface.co/facebook/deit-small-patch16-224 | | DeiT-base | 81.8 | 95.6 | 86M | https://huggingface.co/facebook/deit-base-patch16-224 | | DeiT-tiny distilled | 74.5 | 91.9 | 6M | https://huggingface.co/facebook/deit-tiny-distilled-patch16-224 | | DeiT-small distilled | 81.2 | 95.4 | 22M | https://huggingface.co/facebook/deit-small-distilled-patch16-224 | | **DeiT-base distilled** | **83.4** | **96.5** | **87M** | **https://huggingface.co/facebook/deit-base-distilled-patch16-224** | | DeiT-base 384 | 82.9 | 96.2 | 87M | https://huggingface.co/facebook/deit-base-patch16-384 | | DeiT-base distilled 384 (1000 epochs) | 85.2 | 97.2 | 88M | https://huggingface.co/facebook/deit-base-distilled-patch16-384 | Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{touvron2021training, title={Training data-efficient image transformers & distillation through attention}, author={Hugo Touvron and Matthieu Cord and Matthijs Douze and Francisco Massa and Alexandre Sablayrolles and Hervé Jégou}, year={2021}, eprint={2012.12877}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
matjesg/deepflash2_demo
matjesg
2022-07-13T10:54:35Z
0
2
null
[ "onnx", "image-segmentation", "semantic-segmentation", "deepflash2", "arxiv:2111.06693", "license:apache-2.0", "region:us" ]
image-segmentation
2022-05-31T09:43:39Z
--- tags: - image-segmentation - semantic-segmentation - deepflash2 license: apache-2.0 datasets: - "cFOS in HC" - "YFP in CTX" --- # Demo models for ![deepflash2](https://raw.githubusercontent.com/matjesg/deepflash2/master/nbs/media/logo/deepflash2_logo_medium.png) **Try in [Hugging Face Spaces](https://huggingface.co/spaces/matjesg/deepflash2)** 🤗🤗🤗 - **Task**: Image Segmentation / Semantic Segmentation - **Paper**: The preprint of our paper is available on [arXiv](https://arxiv.org/pdf/2111.06693.pdf) - **Data**: The cFOS in HC dataset ([Article](https://doi.org/10.7554/eLife.59780), [Data](https://doi.org/10.5061/dryad.4b8gtht9d)) describes the indirect immunofluorescent labeling of the transcription factor cFOS in different subregions of the hippocampus after behavioral testing of the mice. - **Library**: See [github](https://github.com/matjesg/deepflash2/)
nawta/wav2vec2-onomatopoeia-finetune_smalldata_ESC50pretrained_2
nawta
2022-07-13T10:11:43Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-13T09:25:20Z
--- tags: - generated_from_trainer model-index: - name: wav2vec2-onomatopoeia-finetune_smalldata_ESC50pretrained_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-onomatopoeia-finetune_smalldata_ESC50pretrained_2 This model is a fine-tuned version of [/root/workspace/wav2vec2-pretrained_with_ESC50_10000epochs_32batch_2022-07-09_22-16-46/pytorch_model.bin](https://huggingface.co//root/workspace/wav2vec2-pretrained_with_ESC50_10000epochs_32batch_2022-07-09_22-16-46/pytorch_model.bin) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6235 - Cer: 0.8973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0097 | 23.81 | 500 | 2.6235 | 0.8973 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
casasdorjunior/t5-small-finetuned-cc-news-es-titles
casasdorjunior
2022-07-13T08:52:55Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cc-news-es-titles", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-13T07:38:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cc-news-es-titles metrics: - rouge model-index: - name: t5-small-finetuned-cc-news-es-titles results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cc-news-es-titles type: cc-news-es-titles args: default metrics: - name: Rouge1 type: rouge value: 16.701 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cc-news-es-titles This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cc-news-es-titles dataset. It achieves the following results on the evaluation set: - Loss: 2.6383 - Rouge1: 16.701 - Rouge2: 4.1265 - Rougel: 14.8175 - Rougelsum: 14.8193 - Gen Len: 18.9159 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:-------:|:---------:|:-------:| | 2.8439 | 1.0 | 23133 | 2.6383 | 16.701 | 4.1265 | 14.8175 | 14.8193 | 18.9159 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
loz/Test
loz
2022-07-13T08:11:37Z
0
0
null
[ "region:us" ]
null
2022-07-13T08:08:54Z
me on a bike going into the sunset at night with my dog running along side me
dsivakumar/text2sql
dsivakumar
2022-07-13T07:27:17Z
28
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:wikisql", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-10T07:43:23Z
--- language: - en datasets: - wikisql widget: - text: "English to SQL: Show me the average age of of wines in Italy by provinces" - text: "English to SQL: What is the current series where the new series began in June 2011?" --- #import transformers ``` from transformers import ( T5ForConditionalGeneration, T5Tokenizer, ) #load model model = T5ForConditionalGeneration.from_pretrained('dsivakumar/text2sql') tokenizer = T5Tokenizer.from_pretrained('dsivakumar/text2sql') #predict function def get_sql(query,tokenizer,model): source_text= "English to SQL: "+query source_text = ' '.join(source_text.split()) source = tokenizer.batch_encode_plus([source_text],max_length= 128, pad_to_max_length=True, truncation=True, padding="max_length", return_tensors='pt') source_ids = source['input_ids'] #.squeeze() source_mask = source['attention_mask']#.squeeze() generated_ids = model.generate( input_ids = source_ids.to(dtype=torch.long), attention_mask = source_mask.to(dtype=torch.long), max_length=150, num_beams=2, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True ) preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids] return preds #test query="Show me the average age of of wines in Italy by provinces" sql = get_sql(query,tokenizer,model) print(sql) #https://huggingface.co/mrm8488/t5-small-finetuned-wikiSQL def get_sql(query): input_text = "translate English to SQL: %s </s>" % query features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask']) return tokenizer.decode(output[0]) query = "How many models were finetuned using BERT as base model?" get_sql(query) ```
huggingartists/queen
huggingartists
2022-07-13T06:52:09Z
5
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/queen", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/queen tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/97bcb5755cb9780d76b37726a0ce4bef.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Queen</div> <a href="https://genius.com/artists/queen"> <div style="text-align: center; font-size: 14px;">@queen</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Queen. Dataset is available [here](https://huggingface.co/datasets/huggingartists/queen). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/queen") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1jdprwq2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Queen's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2lvkoamo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2lvkoamo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/queen') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/queen") model = AutoModelWithLMHead.from_pretrained("huggingartists/queen") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
abx/bert-finetuned-ner
abx
2022-07-13T06:15:23Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-13T06:04:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9341713529606351 - name: Recall type: recall value: 0.9505217098619994 - name: F1 type: f1 value: 0.9422756089422756 - name: Accuracy type: accuracy value: 0.9861070230176017 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0623 - Precision: 0.9342 - Recall: 0.9505 - F1: 0.9423 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0865 | 1.0 | 1756 | 0.0667 | 0.9166 | 0.9379 | 0.9271 | 0.9829 | | 0.0397 | 2.0 | 3512 | 0.0560 | 0.9337 | 0.9522 | 0.9428 | 0.9867 | | 0.0194 | 3.0 | 5268 | 0.0623 | 0.9342 | 0.9505 | 0.9423 | 0.9861 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu116 - Datasets 2.3.2 - Tokenizers 0.12.1
NimaBoscarino/STPushToHub-test2
NimaBoscarino
2022-07-13T05:57:37Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-07-13T05:49:12Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # NimaBoscarino/STPushToHub-test2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('NimaBoscarino/STPushToHub-test2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('NimaBoscarino/STPushToHub-test2') model = AutoModel.from_pretrained('NimaBoscarino/STPushToHub-test2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=NimaBoscarino/STPushToHub-test2) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 360 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 144, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/kitsune__spirit
huggingtweets
2022-07-13T02:51:17Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/kitsune__spirit/1657680673292/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1523268231833739266/foV-CaZh_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">KitsuneSpirit Mei 💝🦊「 YOKOMESHI 」</div> <div style="text-align: center; font-size: 14px;">@kitsune__spirit</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from KitsuneSpirit Mei 💝🦊「 YOKOMESHI 」. | Data | KitsuneSpirit Mei 💝🦊「 YOKOMESHI 」 | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 67 | | Short tweets | 820 | | Tweets kept | 2361 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3uiy3sjw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kitsune__spirit's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1hdne87l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1hdne87l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kitsune__spirit') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
hugginglearners/multi-object-classification
hugginglearners
2022-07-13T00:14:55Z
0
2
fastai
[ "fastai", "image-classification", "region:us" ]
image-classification
2022-07-04T04:34:10Z
--- tags: - fastai - image-classification --- ## Model description This repo contains the trained model for Multi-object classification Full credits go to [Nhu Hoang](https://www.linkedin.com/in/nhu-hoang/) Motivation: Classifying multiple objects is a challenging task without using an object detection algorithm. This model was trained on resnet34 backbone and achieved a good accuracy. ## Training and evaluation data ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | 3e-3 | | training_precision | float16 |
andrewzhang505/quad-swarm-rl-1
andrewzhang505
2022-07-13T00:02:06Z
5
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "region:us" ]
reinforcement-learning
2022-07-12T21:09:52Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory --- A(n) **APPO** model trained on the **quadrotor_multi** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
AntiSquid/Reinforce-model-666
AntiSquid
2022-07-12T21:52:02Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-12T21:51:51Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-model-666 results: - metrics: - type: mean_reward value: 117.10 +/- 4.85 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Shaier/medqa_fine_tuned_generic_bert
Shaier
2022-07-12T20:33:17Z
1
0
transformers
[ "transformers", "pytorch", "bert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2022-07-12T19:49:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: medqa_fine_tuned_generic_bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # medqa_fine_tuned_generic_bert This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4239 - Accuracy: 0.2869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 1.3851 | 0.2594 | | 1.3896 | 2.0 | 636 | 1.3805 | 0.2807 | | 1.3896 | 3.0 | 954 | 1.3852 | 0.2948 | | 1.3629 | 4.0 | 1272 | 1.3996 | 0.2980 | | 1.3068 | 5.0 | 1590 | 1.4239 | 0.2869 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.3.2 - Tokenizers 0.11.0
jakka/ppo-LunarLander-v2
jakka
2022-07-12T20:23:19Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-12T20:22:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 152.92 +/- 80.15 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
didi27/bloom-edu
didi27
2022-07-12T17:57:21Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-07-12T17:57:16Z
--- license: bigscience-bloom-rail-1.0 ---
huggingtweets/masonhaggerty
huggingtweets
2022-07-12T17:17:06Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-12T16:48:40Z
--- language: en thumbnail: http://www.huggingtweets.com/masonhaggerty/1657646221015/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410026132121047041/LiYev7vQ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mason Haggerty</div> <div style="text-align: center; font-size: 14px;">@masonhaggerty</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mason Haggerty. | Data | Mason Haggerty | | --- | --- | | Tweets downloaded | 785 | | Retweets | 71 | | Short tweets | 82 | | Tweets kept | 632 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/jpav9nmg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @masonhaggerty's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/bs6k2tzz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/bs6k2tzz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/masonhaggerty') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Li-Tang/rare-puppers
Li-Tang
2022-07-12T16:57:55Z
54
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-12T16:57:42Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9701492786407471 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
zluvolyote/s288cExpressionPrediction_k6
zluvolyote
2022-07-12T16:54:43Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-12T16:02:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: s288cExpressionPrediction_k6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # s288cExpressionPrediction_k6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4418 - Accuracy: 0.8067 - F1: 0.7882 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 58 | 0.5315 | 0.7278 | 0.7572 | | No log | 2.0 | 116 | 0.4604 | 0.7853 | 0.7841 | | No log | 3.0 | 174 | 0.4418 | 0.8067 | 0.7882 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
reachrkr/TEST2ppo-LunarLander-v2
reachrkr
2022-07-12T16:20:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-12T16:20:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 266.96 +/- 25.94 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
andy-0v0/orcs-and-friends
andy-0v0
2022-07-12T16:03:57Z
53
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-12T15:50:36Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: orcs-and-friends results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.522522509098053 --- # orcs-and-friends Five-way classifier for orcs and their friends Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### goblin ![goblin](images/goblin.jpg) #### gremlin ![gremlin](images/gremlin.jpg) #### ogre ![ogre](images/ogre.jpg) #### orc ![orc](images/orc.jpg) #### troll ![troll](images/troll.jpg)
MarLac/wav2vec2-base-timit-demo-google-colab
MarLac
2022-07-12T15:41:51Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-12T08:24:30Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5816 - Wer: 0.3533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.243 | 0.5 | 500 | 1.0798 | 0.7752 | | 0.834 | 1.01 | 1000 | 0.6206 | 0.5955 | | 0.5503 | 1.51 | 1500 | 0.5387 | 0.5155 | | 0.4548 | 2.01 | 2000 | 0.4660 | 0.4763 | | 0.3412 | 2.51 | 2500 | 0.8381 | 0.4836 | | 0.3128 | 3.02 | 3000 | 0.4818 | 0.4519 | | 0.2547 | 3.52 | 3500 | 0.4415 | 0.4230 | | 0.2529 | 4.02 | 4000 | 0.4624 | 0.4219 | | 0.2103 | 4.52 | 4500 | 0.4714 | 0.4096 | | 0.2102 | 5.03 | 5000 | 0.4968 | 0.4087 | | 0.1838 | 5.53 | 5500 | 0.4643 | 0.4131 | | 0.1721 | 6.03 | 6000 | 0.4676 | 0.3979 | | 0.1548 | 6.53 | 6500 | 0.4765 | 0.4085 | | 0.1595 | 7.04 | 7000 | 0.4797 | 0.3941 | | 0.1399 | 7.54 | 7500 | 0.4753 | 0.3902 | | 0.1368 | 8.04 | 8000 | 0.4697 | 0.3945 | | 0.1276 | 8.54 | 8500 | 0.5438 | 0.3869 | | 0.1255 | 9.05 | 9000 | 0.5660 | 0.3841 | | 0.1077 | 9.55 | 9500 | 0.4964 | 0.3947 | | 0.1197 | 10.05 | 10000 | 0.5349 | 0.3849 | | 0.1014 | 10.55 | 10500 | 0.5558 | 0.3883 | | 0.0949 | 11.06 | 11000 | 0.5673 | 0.3785 | | 0.0882 | 11.56 | 11500 | 0.5589 | 0.3955 | | 0.0906 | 12.06 | 12000 | 0.5752 | 0.4120 | | 0.1064 | 12.56 | 12500 | 0.5080 | 0.3727 | | 0.0854 | 13.07 | 13000 | 0.5398 | 0.3798 | | 0.0754 | 13.57 | 13500 | 0.5237 | 0.3816 | | 0.0791 | 14.07 | 14000 | 0.4967 | 0.3725 | | 0.0731 | 14.57 | 14500 | 0.5287 | 0.3744 | | 0.0719 | 15.08 | 15000 | 0.5633 | 0.3596 | | 0.062 | 15.58 | 15500 | 0.5399 | 0.3752 | | 0.0681 | 16.08 | 16000 | 0.5151 | 0.3759 | | 0.0559 | 16.58 | 16500 | 0.5564 | 0.3709 | | 0.0533 | 17.09 | 17000 | 0.5933 | 0.3743 | | 0.0563 | 17.59 | 17500 | 0.5381 | 0.3670 | | 0.0527 | 18.09 | 18000 | 0.5685 | 0.3731 | | 0.0492 | 18.59 | 18500 | 0.5728 | 0.3725 | | 0.0509 | 19.1 | 19000 | 0.6074 | 0.3807 | | 0.0436 | 19.6 | 19500 | 0.5762 | 0.3628 | | 0.0434 | 20.1 | 20000 | 0.6721 | 0.3729 | | 0.0416 | 20.6 | 20500 | 0.5842 | 0.3700 | | 0.0431 | 21.11 | 21000 | 0.5374 | 0.3607 | | 0.037 | 21.61 | 21500 | 0.5556 | 0.3667 | | 0.036 | 22.11 | 22000 | 0.5608 | 0.3592 | | 0.04 | 22.61 | 22500 | 0.5272 | 0.3637 | | 0.047 | 23.12 | 23000 | 0.5234 | 0.3625 | | 0.0506 | 23.62 | 23500 | 0.5427 | 0.3629 | | 0.0418 | 24.12 | 24000 | 0.5590 | 0.3626 | | 0.037 | 24.62 | 24500 | 0.5615 | 0.3555 | | 0.0429 | 25.13 | 25000 | 0.5806 | 0.3616 | | 0.045 | 25.63 | 25500 | 0.5777 | 0.3639 | | 0.0283 | 26.13 | 26000 | 0.5987 | 0.3617 | | 0.0253 | 26.63 | 26500 | 0.5671 | 0.3551 | | 0.032 | 27.14 | 27000 | 0.5464 | 0.3582 | | 0.0321 | 27.64 | 27500 | 0.5634 | 0.3573 | | 0.0274 | 28.14 | 28000 | 0.5513 | 0.3575 | | 0.0245 | 28.64 | 28500 | 0.5745 | 0.3537 | | 0.0251 | 29.15 | 29000 | 0.5759 | 0.3547 | | 0.0222 | 29.65 | 29500 | 0.5816 | 0.3533 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
andreaschandra/xlm-roberta-base-finetuned-panx-en
andreaschandra
2022-07-12T15:39:20Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-12T15:35:21Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6774373259052925 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3932 - F1: 0.6774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0236 | 1.0 | 50 | 0.5462 | 0.5109 | | 0.5047 | 2.0 | 100 | 0.4387 | 0.6370 | | 0.3716 | 3.0 | 150 | 0.3932 | 0.6774 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
zluvolyote/CUBERT
zluvolyote
2022-07-12T15:09:51Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-15T18:09:44Z
--- license: mit tags: - generated_from_trainer model-index: - name: CUBERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CUBERT This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.2203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 58 | 5.5281 | | No log | 2.0 | 116 | 5.2508 | | No log | 3.0 | 174 | 5.2203 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.1 - Tokenizers 0.12.1
huggingtweets/scottduncanwx
huggingtweets
2022-07-12T14:43:36Z
3
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-12T14:37:59Z
--- language: en thumbnail: http://www.huggingtweets.com/scottduncanwx/1657637010818/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1535379125296418821/ntSMv4LC_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Scott Duncan</div> <div style="text-align: center; font-size: 14px;">@scottduncanwx</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Scott Duncan. | Data | Scott Duncan | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 186 | | Short tweets | 223 | | Tweets kept | 2841 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/tziokng8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @scottduncanwx's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2swonujn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2swonujn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/scottduncanwx') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/piotrikonowicz1
huggingtweets
2022-07-12T14:00:31Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-12T14:00:22Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/770622589664460802/bgUHfTNZ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Piotr Ikonowicz</div> <div style="text-align: center; font-size: 14px;">@piotrikonowicz1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Piotr Ikonowicz. | Data | Piotr Ikonowicz | | --- | --- | | Tweets downloaded | 133 | | Retweets | 3 | | Short tweets | 13 | | Tweets kept | 117 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/156jwrd1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @piotrikonowicz1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/w029u281) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/w029u281/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/piotrikonowicz1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
workRL/TEST2ppo-CarRacing-v0
workRL
2022-07-12T13:31:15Z
3
0
stable-baselines3
[ "stable-baselines3", "CarRacing-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-12T13:29:34Z
--- library_name: stable-baselines3 tags: - CarRacing-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -69.53 +/- 1.56 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v0 type: CarRacing-v0 --- # **PPO** Agent playing **CarRacing-v0** This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
hugginglearners/rice_image_classification
hugginglearners
2022-07-12T13:27:14Z
0
0
fastai
[ "fastai", "image-classification", "region:us" ]
image-classification
2022-07-09T06:03:15Z
--- tags: - fastai - image-classification --- ## Model description This repo contains the trained model for rice image classification Full credits go to [Vu Minh Chien](https://www.linkedin.com/in/vumichien/) Motivation: Rice, which is among the most widely produced grain products worldwide, has many genetic varieties. These varieties are separated from each other due to some of their features. These usually feature such as texture, shape, and color. With these features that distinguish rice varieties, it is possible to classify and evaluate the quality of seeds. ## Intended uses & limitations In this repo, Arborio, Basmati, Ipsala, Jasmine, and Karacadag, which are five different varieties of rice often grown in Turkey, were used. A total of 75,000-grain images, 15,000 from each of these varieties, are included in the dataset. ## Training and evaluation data ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | 3e-4 | | freeze_epochs| 3 | | unfreeze_epochs| 10| | training_precision | float16 |
ymcnabb/finetuning-sentiment-model
ymcnabb
2022-07-12T13:17:58Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-12T12:24:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8733333333333333 - name: F1 type: f1 value: 0.8758169934640523 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3291 - Accuracy: 0.8733 - F1: 0.8758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
suc155/distilbert-base-uncased-finetuned-sst2
suc155
2022-07-12T12:43:16Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-12T12:22:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9151376146788991 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3056 - Accuracy: 0.9151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1827 | 1.0 | 4210 | 0.3056 | 0.9151 | | 0.1235 | 2.0 | 8420 | 0.3575 | 0.9071 | | 0.1009 | 3.0 | 12630 | 0.3896 | 0.9071 | | 0.0561 | 4.0 | 16840 | 0.4810 | 0.9060 | | 0.0406 | 5.0 | 21050 | 0.5375 | 0.9048 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Nonzerophilip/bert-finetuned-ner_swedish_small_set_health_and_standart
Nonzerophilip
2022-07-12T12:42:31Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-19T09:36:49Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner_swedish_small_set_health_and_standart results: [] --- # Named Entity Recognition model for swedish This model is a fine-tuned version of [KBLab/bert-base-swedish-cased-ner](https://huggingface.co/KBLab/bert-base-swedish-cased-ner)for only Swedish. It has been fine-tuned on the concatenation of a smaller version of SUC 3.0 and some medical text from the Swedish website 1177. The model will predict the following entities: | Tag | Name | Exampel | |:-------------:|:-----:|:----:| | PER |Person | (e.g., Johan and Sofia) | | LOC | Location | (e.g., Göteborg and Spanien) | | ORG | Organisation | (e.g., Volvo and Skatteverket) \ | | PHARMA_DRUGS | Medication | (e.g., Paracetamol and Omeprazol)| | HEALTH | Illness/Diseases | (e.g., Cancer, sjuk and diabetes) | | Relation | Family members | (e.g., Mamma and Farmor) | <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner_swedish_small_set_health_and_standart It achieves the following results on the evaluation set: - Loss: 0.0963 - Precision: 0.7548 - Recall: 0.7811 - F1: 0.7677 - Accuracy: 0.9756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 219 | 0.1123 | 0.7674 | 0.6567 | 0.7078 | 0.9681 | | No log | 2.0 | 438 | 0.0934 | 0.7643 | 0.7662 | 0.7652 | 0.9738 | | 0.1382 | 3.0 | 657 | 0.0963 | 0.7548 | 0.7811 | 0.7677 | 0.9756 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.7.1 - Datasets 2.2.2 - Tokenizers 0.12.1
mohammedbriman/t5-small-finetuned-cnn-dm-test
mohammedbriman
2022-07-12T12:38:05Z
3
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-12T09:51:25Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: t5-small-finetuned-cnn-dm-test results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnn-dm-test This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.4521 - Validation Loss: 2.1296 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 408096, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.4521 | 2.1296 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
xyma/PROP-marco-step400k
xyma
2022-07-12T11:53:02Z
3
0
transformers
[ "transformers", "pytorch", "bert", "pretraining", "PROP", "Pretrain4IR", "en", "dataset:msmarco", "arxiv:2010.10137", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-07-12T09:06:57Z
--- language: en tags: - PROP - Pretrain4IR license: apache-2.0 datasets: - msmarco --- # PROP-marco-step400k **PROP**, **P**re-training with **R**epresentative w**O**rds **P**rediction, is a new pre-training method tailored for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the “ideal” document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. The full paper can be found [here](https://arxiv.org/pdf/2010.10137.pdf). This model is pre-trained with more steps than [PROP-marco](https://huggingface.co/xyma/PROP-marco) on MS MARCO document corpus, and used at the MS MARCO Document Ranking Leaderboard where we reached 1st place. # Citation If you find our work useful, please consider citing our paper: ```bibtex @inproceedings{DBLP:conf/wsdm/MaGZFJC21, author = {Xinyu Ma and Jiafeng Guo and Ruqing Zhang and Yixing Fan and Xiang Ji and Xueqi Cheng}, editor = {Liane Lewin{-}Eytan and David Carmel and Elad Yom{-}Tov and Eugene Agichtein and Evgeniy Gabrilovich}, title = {{PROP:} Pre-training with Representative Words Prediction for Ad-hoc Retrieval}, booktitle = {{WSDM} '21, The Fourteenth {ACM} International Conference on Web Search and Data Mining, Virtual Event, Israel, March 8-12, 2021}, pages = {283--291}, publisher = {{ACM}}, year = {2021}, url = {https://doi.org/10.1145/3437963.3441777}, doi = {10.1145/3437963.3441777}, timestamp = {Wed, 07 Apr 2021 16:17:44 +0200}, biburl = {https://dblp.org/rec/conf/wsdm/MaGZFJC21.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
dungeoun/pos_neg_neu_tweet_BERT
dungeoun
2022-07-12T11:08:00Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-07-12T06:22:25Z
--- license: apache-2.0 pipeline-tag: text-classification --- This repository contains a fine-tuned BERT model trained on tweets of categories Positive, Negative, and Neutral sentiments.
MiguelCosta/finetuning-sentiment-model-24000-samples
MiguelCosta
2022-07-12T10:48:14Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-12T06:17:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-24000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9266666666666666 - name: F1 type: f1 value: 0.9273927392739274 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-24000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3505 - Accuracy: 0.9267 - F1: 0.9274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
luke-thorburn/suggest-conclusion-full-finetune
luke-thorburn
2022-07-12T10:02:48Z
7
1
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "argumentation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - argumentation license: apache-2.0 metrics: - perplexity --- # Generate the conclusion of an argument This model is a version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), where all parameters (both weights and biases) have been finetuned on the task of generating the conclusion of an argument given its premises. It was trained as part of a University of Melbourne [research project](https://github.com/Hunt-Laboratory/language-model-optimization) evaluating how large language models can best be optimized to perform argumentative reasoning tasks. Code used for optimization and evaluation can be found in the project [GitHub repository](https://github.com/Hunt-Laboratory/language-model-optimization). A paper reporting on model evaluation is currently under review. # Prompt Template ``` Consider the facts: * [premise 1] * [premise 2] ... * [premise n] We must conclude that: [generated conclusion] ``` # Dataset The parameters were finetuned using argument maps scraped from the crowdsourced argument-mapping platform [Kialo](https://kialo.com/). # Limitations and Biases The model is a finetuned version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), so likely has many of the same limitations and biases. Additionally, note that while the goal of the model is to produce coherent and valid reasoning, many generated model outputs will be illogical or nonsensical and should not be relied upon. # Acknowledgements This research was funded by the Australian Department of Defence and the Office of National Intelligence under the AI for Decision Making Program, delivered in partnership with the Defence Science Institute in Victoria, Australia.
luke-thorburn/suggest-intermediary-claims-full-finetune
luke-thorburn
2022-07-12T09:56:47Z
10
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "argumentation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - argumentation license: apache-2.0 metrics: - perplexity --- # Generate a chain of reasoning from one claim to another This model is a version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), where all parameters (both weights and biases) have been finetuned on the task of generating a sequence of claims (a 'chain of reasoning') that joins one claim to another. It was trained as part of a University of Melbourne [research project](https://github.com/Hunt-Laboratory/language-model-optimization) evaluating how large language models can best be optimized to perform argumentative reasoning tasks. Code used for optimization and evaluation can be found in the project [GitHub repository](https://github.com/Hunt-Laboratory/language-model-optimization). A paper reporting on model evaluation is currently under review. # Prompt Template ``` Input: [start claim] -> [end claim] Output: [start claim] -> [generated intermediate claim 1] -> ... -> [generated intermediate claim n] -> [end claim] ``` # Dataset The parameters were finetuned using argument maps scraped from the crowdsourced argument-mapping platform [Kialo](https://kialo.com/). # Limitations and Biases The model is a finetuned version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), so likely has many of the same limitations and biases. Additionally, note that while the goal of the model is to produce coherent and valid reasoning, many generated model outputs will be illogical or nonsensical and should not be relied upon. # Acknowledgements This research was funded by the Australian Department of Defence and the Office of National Intelligence under the AI for Decision Making Program, delivered in partnership with the Defence Science Institute in Victoria, Australia.
luke-thorburn/suggest-conclusion-soft
luke-thorburn
2022-07-12T09:43:47Z
7
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "argumentation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - argumentation license: apache-2.0 metrics: - perplexity --- # Generate the conclusion of an argument This model has the same model parameters as [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), but with an additional soft prompt which has been optimized on the task of generating the conclusion of an argument given its premises. It was trained as part of a University of Melbourne [research project](https://github.com/Hunt-Laboratory/language-model-optimization) evaluating how large language models can best be optimized to perform argumentative reasoning tasks. Code used for optimization and evaluation can be found in the project [GitHub repository](https://github.com/Hunt-Laboratory/language-model-optimization). A paper reporting on model evaluation is currently under review. # Prompt Template ``` [prepended soft prompt]- [premise 1] - [premise 2] ... - [premise n] Conclusion: [generated conclusion] ``` # Dataset The soft prompt was trained using argument maps scraped from the crowdsourced argument-mapping platform [Kialo](https://kialo.com/). # Limitations and Biases The model is a finetuned version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), so likely has many of the same limitations and biases. Additionally, note that while the goal of the model is to produce coherent and valid reasoning, many generated model outputs will be illogical or nonsensical and should not be relied upon. # Acknowledgements This research was funded by the Australian Department of Defence and the Office of National Intelligence under the AI for Decision Making Program, delivered in partnership with the Defence Science Institute in Victoria, Australia.
luke-thorburn/suggest-objections-soft
luke-thorburn
2022-07-12T09:43:28Z
7
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "argumentation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - argumentation license: apache-2.0 metrics: - perplexity --- # Generate objections to a claim This model has the same model parameters as [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), but with an additional soft prompt which has been optimized on the task of generating the objections to a claim, optionally given some example objections to that claim. It was trained as part of a University of Melbourne [research project](https://github.com/Hunt-Laboratory/language-model-optimization) evaluating how large language models can best be optimized to perform argumentative reasoning tasks. Code used for optimization and evaluation can be found in the project [GitHub repository](https://github.com/Hunt-Laboratory/language-model-optimization). A paper reporting on model evaluation is currently under review. # Prompt Template ``` [prepended soft prompt][original claim] Cons: - [objection 1] - [objection 2] ... - [objection n] - [generated objection] ``` # Dataset The soft prompt was trained using argument maps scraped from the crowdsourced argument-mapping platform [Kialo](https://kialo.com/). # Limitations and Biases The model is a finetuned version of [`gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B), so likely has many of the same limitations and biases. Additionally, note that while the goal of the model is to produce coherent and valid reasoning, many generated model outputs will be illogical or nonsensical and should not be relied upon. # Acknowledgements This research was funded by the Australian Department of Defence and the Office of National Intelligence under the AI for Decision Making Program, delivered in partnership with the Defence Science Institute in Victoria, Australia.
fxmarty/20220712-h08m05s32_
fxmarty
2022-07-12T08:05:37Z
0
0
null
[ "tensorboard", "vit", "image-classification", "dataset:beans", "region:us" ]
image-classification
2022-07-12T08:05:32Z
--- pipeline_tag: image-classification datasets: - beans metrics: - accuracy tags: - vit --- **task**: `image-classification` **Backend:** `sagemaker-training` **Backend args:** `{'instance_type': 'ml.g4dn.2xlarge', 'supported_instructions': None}` **Number of evaluation samples:** `All dataset` Fixed parameters: * **model_name_or_path**: `nateraw/vit-base-beans` * **dataset**: * **path**: `beans` * **eval_split**: `validation` * **data_keys**: `{'primary': 'image'}` * **ref_keys**: `['labels']` * **quantization_approach**: `dynamic` * **node_exclusion**: `[]` * **framework**: `onnxruntime` * **framework_args**: * **opset**: `11` * **optimization_level**: `1` * **aware_training**: `False` Benchmarked parameters: * **operators_to_quantize**: `['Add', 'MatMul']`, `['Add']`, `[]` * **per_channel**: `False`, `True` # Evaluation ## Non-time metrics | operators_to_quantize | per_channel | | accuracy (original) | accuracy (optimized) | | :-------------------: | :---------: | :-: | :-----------------: | :------------------: | | `['Add', 'MatMul']` | `False` | \| | 0.980 | 0.980 | | `['Add', 'MatMul']` | `True` | \| | 0.980 | 0.980 | | `['Add']` | `False` | \| | 0.980 | 0.980 | | `['Add']` | `True` | \| | 0.980 | 0.980 | | `[]` | `False` | \| | 0.980 | 0.980 | | `[]` | `True` | \| | 0.980 | 0.980 | ## Time metrics Time benchmarks were run for 15 seconds per config. Below, time metrics for batch size = 1, input length = 32. | operators_to_quantize | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `False` | \| | 201.25 | 70.30 | \| | 5.00 | 14.27 | | `['Add', 'MatMul']` | `True` | \| | 203.52 | 72.48 | \| | 4.93 | 13.80 | | `['Add']` | `False` | \| | 166.03 | 150.93 | \| | 6.07 | 6.67 | | `['Add']` | `True` | \| | 200.82 | 163.17 | \| | 5.00 | 6.13 | | `[]` | `False` | \| | 190.99 | 162.06 | \| | 5.27 | 6.20 | | `[]` | `True` | \| | 155.15 | 162.52 | \| | 6.47 | 6.20 | Below, time metrics for batch size = 1, input length = 64. | operators_to_quantize | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `False` | \| | 165.85 | 70.60 | \| | 6.07 | 14.20 | | `['Add', 'MatMul']` | `True` | \| | 161.41 | 72.71 | \| | 6.20 | 13.80 | | `['Add']` | `False` | \| | 200.45 | 129.40 | \| | 5.00 | 7.73 | | `['Add']` | `True` | \| | 154.68 | 136.42 | \| | 6.47 | 7.40 | | `[]` | `False` | \| | 166.97 | 162.15 | \| | 6.00 | 6.20 | | `[]` | `True` | \| | 166.32 | 162.81 | \| | 6.07 | 6.20 | Below, time metrics for batch size = 1, input length = 128. | operators_to_quantize | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `False` | \| | 199.48 | 70.98 | \| | 5.07 | 14.13 | | `['Add', 'MatMul']` | `True` | \| | 199.65 | 71.78 | \| | 5.07 | 13.93 | | `['Add']` | `False` | \| | 199.08 | 137.97 | \| | 5.07 | 7.27 | | `['Add']` | `True` | \| | 189.93 | 162.45 | \| | 5.33 | 6.20 | | `[]` | `False` | \| | 191.63 | 162.54 | \| | 5.27 | 6.20 | | `[]` | `True` | \| | 200.38 | 162.55 | \| | 5.00 | 6.20 | Below, time metrics for batch size = 4, input length = 32. | operators_to_quantize | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `False` | \| | 655.84 | 243.33 | \| | 1.53 | 4.13 | | `['Add', 'MatMul']` | `True` | \| | 661.27 | 221.16 | \| | 1.53 | 4.53 | | `['Add']` | `False` | \| | 662.84 | 529.28 | \| | 1.53 | 1.93 | | `['Add']` | `True` | \| | 512.47 | 470.66 | \| | 2.00 | 2.13 | | `[]` | `False` | \| | 562.81 | 501.77 | \| | 1.80 | 2.00 | | `[]` | `True` | \| | 505.81 | 521.20 | \| | 2.00 | 1.93 | Below, time metrics for batch size = 4, input length = 64. | operators_to_quantize | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `False` | \| | 654.58 | 258.54 | \| | 1.53 | 3.93 | | `['Add', 'MatMul']` | `True` | \| | 617.44 | 234.05 | \| | 1.67 | 4.33 | | `['Add']` | `False` | \| | 661.51 | 478.81 | \| | 1.53 | 2.13 | | `['Add']` | `True` | \| | 657.01 | 660.23 | \| | 1.53 | 1.53 | | `[]` | `False` | \| | 661.64 | 474.28 | \| | 1.53 | 2.13 | | `[]` | `True` | \| | 661.29 | 471.09 | \| | 1.53 | 2.13 | Below, time metrics for batch size = 4, input length = 128. | operators_to_quantize | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `False` | \| | 654.80 | 219.38 | \| | 1.53 | 4.60 | | `['Add', 'MatMul']` | `True` | \| | 663.50 | 222.37 | \| | 1.53 | 4.53 | | `['Add']` | `False` | \| | 625.56 | 529.02 | \| | 1.60 | 1.93 | | `['Add']` | `True` | \| | 655.08 | 499.41 | \| | 1.53 | 2.07 | | `[]` | `False` | \| | 655.92 | 473.01 | \| | 1.53 | 2.13 | | `[]` | `True` | \| | 505.54 | 659.92 | \| | 2.00 | 1.53 | Below, time metrics for batch size = 8, input length = 32. | operators_to_quantize | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `False` | \| | 968.83 | 443.80 | \| | 1.07 | 2.27 | | `['Add', 'MatMul']` | `True` | \| | 1255.70 | 489.55 | \| | 0.80 | 2.07 | | `['Add']` | `False` | \| | 1301.35 | 938.14 | \| | 0.80 | 1.07 | | `['Add']` | `True` | \| | 1279.54 | 931.91 | \| | 0.80 | 1.13 | | `[]` | `False` | \| | 1292.66 | 1318.07 | \| | 0.80 | 0.80 | | `[]` | `True` | \| | 1290.35 | 1314.74 | \| | 0.80 | 0.80 | Below, time metrics for batch size = 8, input length = 64. | operators_to_quantize | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `False` | \| | 1305.45 | 438.06 | \| | 0.80 | 2.33 | | `['Add', 'MatMul']` | `True` | \| | 1296.68 | 450.40 | \| | 0.80 | 2.27 | | `['Add']` | `False` | \| | 968.21 | 949.81 | \| | 1.07 | 1.07 | | `['Add']` | `True` | \| | 1012.35 | 1317.46 | \| | 1.00 | 0.80 | | `[]` | `False` | \| | 1213.91 | 961.79 | \| | 0.87 | 1.07 | | `[]` | `True` | \| | 956.39 | 945.41 | \| | 1.07 | 1.07 | Below, time metrics for batch size = 8, input length = 128. | operators_to_quantize | per_channel | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :---------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `['Add', 'MatMul']` | `False` | \| | 1120.12 | 497.17 | \| | 0.93 | 2.07 | | `['Add', 'MatMul']` | `True` | \| | 1289.50 | 443.46 | \| | 0.80 | 2.27 | | `['Add']` | `False` | \| | 1294.65 | 930.97 | \| | 0.80 | 1.13 | | `['Add']` | `True` | \| | 1181.21 | 933.82 | \| | 0.87 | 1.13 | | `[]` | `False` | \| | 1245.61 | 1318.07 | \| | 0.87 | 0.80 | | `[]` | `True` | \| | 1285.81 | 1318.82 | \| | 0.80 | 0.80 |
ArneD/xlm-roberta-base-finetuned-panx-all
ArneD
2022-07-12T07:50:58Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-12T06:47:20Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset (EN, FR, DE, IT). It achieves the following results on the evaluation set: - Loss: 0.1769 - F1: 0.8535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2934 | 1.0 | 835 | 0.1853 | 0.8250 | | 0.1569 | 2.0 | 1670 | 0.1714 | 0.8438 | | 0.1008 | 3.0 | 2505 | 0.1769 | 0.8535 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
fxmarty/20220712-h07m20s32_example_conll2003
fxmarty
2022-07-12T07:20:37Z
0
0
null
[ "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "region:us" ]
token-classification
2022-07-12T07:20:32Z
--- pipeline_tag: token-classification datasets: - conll2003 metrics: - precision - recall - f1 - accuracy tags: - distilbert --- **task**: `token-classification` **Backend:** `sagemaker-training` **Backend args:** `{'instance_type': 'ml.g4dn.2xlarge', 'supported_instructions': 'avx512_vnni'}` **Number of evaluation samples:** `1000` Fixed parameters: * **model_name_or_path**: `elastic/distilbert-base-uncased-finetuned-conll03-english` * **dataset**: * **path**: `conll2003` * **eval_split**: `validation` * **data_keys**: `{'primary': 'tokens'}` * **ref_keys**: `['ner_tags']` * **calibration_split**: `train` * **node_exclusion**: `[]` * **per_channel**: `False` * **calibration**: * **method**: `minmax` * **num_calibration_samples**: `100` * **framework**: `onnxruntime` * **framework_args**: * **opset**: `11` * **optimization_level**: `1` * **aware_training**: `False` Benchmarked parameters: * **quantization_approach**: `dynamic`, `static` * **operators_to_quantize**: `['Add', 'MatMul']`, `['Add']` # Evaluation ## Non-time metrics | quantization_approach | operators_to_quantize | | precision (original) | precision (optimized) | | recall (original) | recall (optimized) | | f1 (original) | f1 (optimized) | | accuracy (original) | accuracy (optimized) | | :-------------------: | :-------------------: | :-: | :------------------: | :-------------------: | :-: | :---------------: | :----------------: | :-: | :-----------: | :------------: | :-: | :-----------------: | :------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 0.937 | 0.937 | \| | 0.953 | 0.953 | \| | 0.945 | 0.945 | \| | 0.988 | 0.988 | | `dynamic` | `['Add']` | \| | 0.937 | 0.937 | \| | 0.953 | 0.953 | \| | 0.945 | 0.945 | \| | 0.988 | 0.988 | | `static` | `['Add', 'MatMul']` | \| | 0.937 | 0.074 | \| | 0.953 | 0.253 | \| | 0.945 | 0.114 | \| | 0.988 | 0.363 | | `static` | `['Add']` | \| | 0.937 | 0.065 | \| | 0.953 | 0.186 | \| | 0.945 | 0.096 | \| | 0.988 | 0.340 | ## Time metrics Time benchmarks were run for 3 seconds per config. Below, time metrics for batch size = 1, input length = 64. | quantization_approach | operators_to_quantize | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :-------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 57.64 | 12.30 | \| | 17.67 | 81.33 | | `dynamic` | `['Add']` | \| | 43.51 | 29.42 | \| | 23.00 | 34.00 | | `static` | `['Add', 'MatMul']` | \| | 43.05 | 21.11 | \| | 23.33 | 47.67 | | `static` | `['Add']` | \| | 43.50 | 37.93 | \| | 23.00 | 26.67 | Below, time metrics for batch size = 4, input length = 64. | quantization_approach | operators_to_quantize | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :-------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 119.50 | 39.92 | \| | 8.67 | 25.33 | | `dynamic` | `['Add']` | \| | 119.62 | 107.42 | \| | 8.67 | 9.33 | | `static` | `['Add', 'MatMul']` | \| | 120.23 | 56.94 | \| | 8.33 | 17.67 | | `static` | `['Add']` | \| | 119.10 | 130.78 | \| | 8.67 | 7.67 | Below, time metrics for batch size = 8, input length = 64. | quantization_approach | operators_to_quantize | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :-------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 165.84 | 75.45 | \| | 6.33 | 13.33 | | `dynamic` | `['Add']` | \| | 214.65 | 211.41 | \| | 4.67 | 5.00 | | `static` | `['Add', 'MatMul']` | \| | 166.53 | 129.00 | \| | 6.33 | 8.00 | | `static` | `['Add']` | \| | 214.81 | 256.95 | \| | 4.67 | 4.00 |
AntiSquid/TEST2ppo-LunarLander-v2
AntiSquid
2022-07-12T07:10:57Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-06T21:53:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 285.66 +/- 15.86 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
MiguelCosta/finetuning-sentiment-model-3000-samples
MiguelCosta
2022-07-12T06:06:41Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-12T04:48:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8766666666666667 - name: F1 type: f1 value: 0.8810289389067525 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.5805 - Accuracy: 0.8767 - F1: 0.8810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
reecejocumsenbb/testfield-finetuned-imdb
reecejocumsenbb
2022-07-12T06:02:47Z
5
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-12T04:23:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: reecejocumsenbb/testfield-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # reecejocumsenbb/testfield-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.0451 - Validation Loss: 3.9664 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -993, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.0451 | 3.9664 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.3.2 - Tokenizers 0.12.1
paola-md/recipe-distilbert-i
paola-md
2022-07-12T05:14:44Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-12T04:54:59Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-distilbert-i results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-distilbert-i This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0288 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3931 | 1.0 | 152 | 1.7738 | | 1.7533 | 2.0 | 304 | 1.5109 | | 1.5584 | 3.0 | 456 | 1.4003 | | 1.443 | 4.0 | 608 | 1.3296 | | 1.3551 | 5.0 | 760 | 1.2270 | | 1.2981 | 6.0 | 912 | 1.1870 | | 1.2577 | 7.0 | 1064 | 1.1511 | | 1.2216 | 8.0 | 1216 | 1.1298 | | 1.1958 | 9.0 | 1368 | 1.1087 | | 1.1685 | 10.0 | 1520 | 1.0858 | | 1.1533 | 11.0 | 1672 | 1.0820 | | 1.1358 | 12.0 | 1824 | 1.0659 | | 1.1286 | 13.0 | 1976 | 1.0382 | | 1.1128 | 14.0 | 2128 | 1.0468 | | 1.11 | 15.0 | 2280 | 1.0399 | | 1.094 | 16.0 | 2432 | 1.0382 | | 1.0969 | 17.0 | 2584 | 1.0096 | | 1.0868 | 18.0 | 2736 | 1.0235 | | 1.0845 | 19.0 | 2888 | 1.0227 | | 1.0855 | 20.0 | 3040 | 1.0288 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Evelyn18/legalectra-small-spanish-becasv3-6
Evelyn18
2022-07-12T05:05:14Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:becasv2", "endpoints_compatible", "region:us" ]
question-answering
2022-07-12T04:49:13Z
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: legalectra-small-spanish-becasv3-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legalectra-small-spanish-becasv3-6 This model is a fine-tuned version of [mrm8488/legalectra-small-spanish](https://huggingface.co/mrm8488/legalectra-small-spanish) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 3.8441 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 5.6469 | | No log | 2.0 | 10 | 5.5104 | | No log | 3.0 | 15 | 5.4071 | | No log | 4.0 | 20 | 5.3313 | | No log | 5.0 | 25 | 5.2629 | | No log | 6.0 | 30 | 5.1972 | | No log | 7.0 | 35 | 5.1336 | | No log | 8.0 | 40 | 5.0667 | | No log | 9.0 | 45 | 5.0030 | | No log | 10.0 | 50 | 4.9302 | | No log | 11.0 | 55 | 4.8646 | | No log | 12.0 | 60 | 4.7963 | | No log | 13.0 | 65 | 4.7328 | | No log | 14.0 | 70 | 4.6735 | | No log | 15.0 | 75 | 4.6258 | | No log | 16.0 | 80 | 4.5869 | | No log | 17.0 | 85 | 4.5528 | | No log | 18.0 | 90 | 4.5177 | | No log | 19.0 | 95 | 4.4916 | | No log | 20.0 | 100 | 4.4685 | | No log | 21.0 | 105 | 4.4371 | | No log | 22.0 | 110 | 4.4271 | | No log | 23.0 | 115 | 4.3905 | | No log | 24.0 | 120 | 4.3931 | | No log | 25.0 | 125 | 4.3902 | | No log | 26.0 | 130 | 4.3772 | | No log | 27.0 | 135 | 4.3981 | | No log | 28.0 | 140 | 4.4463 | | No log | 29.0 | 145 | 4.4501 | | No log | 30.0 | 150 | 4.4654 | | No log | 31.0 | 155 | 4.4069 | | No log | 32.0 | 160 | 4.4108 | | No log | 33.0 | 165 | 4.4394 | | No log | 34.0 | 170 | 4.4320 | | No log | 35.0 | 175 | 4.3541 | | No log | 36.0 | 180 | 4.4534 | | No log | 37.0 | 185 | 4.2616 | | No log | 38.0 | 190 | 4.2474 | | No log | 39.0 | 195 | 4.4358 | | No log | 40.0 | 200 | 4.3060 | | No log | 41.0 | 205 | 4.1866 | | No log | 42.0 | 210 | 4.2735 | | No log | 43.0 | 215 | 4.2739 | | No log | 44.0 | 220 | 4.1812 | | No log | 45.0 | 225 | 4.2484 | | No log | 46.0 | 230 | 4.3706 | | No log | 47.0 | 235 | 4.3487 | | No log | 48.0 | 240 | 4.2805 | | No log | 49.0 | 245 | 4.3180 | | No log | 50.0 | 250 | 4.3574 | | No log | 51.0 | 255 | 4.2823 | | No log | 52.0 | 260 | 4.0643 | | No log | 53.0 | 265 | 4.0729 | | No log | 54.0 | 270 | 4.2368 | | No log | 55.0 | 275 | 4.2845 | | No log | 56.0 | 280 | 4.1009 | | No log | 57.0 | 285 | 4.0629 | | No log | 58.0 | 290 | 4.1250 | | No log | 59.0 | 295 | 4.2048 | | No log | 60.0 | 300 | 4.2412 | | No log | 61.0 | 305 | 4.1653 | | No log | 62.0 | 310 | 4.1433 | | No log | 63.0 | 315 | 4.1309 | | No log | 64.0 | 320 | 4.1381 | | No log | 65.0 | 325 | 4.2162 | | No log | 66.0 | 330 | 4.1858 | | No log | 67.0 | 335 | 4.1342 | | No log | 68.0 | 340 | 4.1247 | | No log | 69.0 | 345 | 4.1701 | | No log | 70.0 | 350 | 4.1915 | | No log | 71.0 | 355 | 4.1356 | | No log | 72.0 | 360 | 4.1766 | | No log | 73.0 | 365 | 4.1296 | | No log | 74.0 | 370 | 4.0594 | | No log | 75.0 | 375 | 4.0601 | | No log | 76.0 | 380 | 4.0328 | | No log | 77.0 | 385 | 3.9978 | | No log | 78.0 | 390 | 4.0070 | | No log | 79.0 | 395 | 4.0519 | | No log | 80.0 | 400 | 4.1000 | | No log | 81.0 | 405 | 3.9550 | | No log | 82.0 | 410 | 3.9159 | | No log | 83.0 | 415 | 3.9494 | | No log | 84.0 | 420 | 4.0546 | | No log | 85.0 | 425 | 4.2223 | | No log | 86.0 | 430 | 4.2665 | | No log | 87.0 | 435 | 3.8892 | | No log | 88.0 | 440 | 3.7763 | | No log | 89.0 | 445 | 3.8576 | | No log | 90.0 | 450 | 4.0089 | | No log | 91.0 | 455 | 4.1495 | | No log | 92.0 | 460 | 4.1545 | | No log | 93.0 | 465 | 4.0164 | | No log | 94.0 | 470 | 3.9175 | | No log | 95.0 | 475 | 3.9308 | | No log | 96.0 | 480 | 3.9658 | | No log | 97.0 | 485 | 3.9856 | | No log | 98.0 | 490 | 3.9691 | | No log | 99.0 | 495 | 3.9082 | | 3.2873 | 100.0 | 500 | 3.8736 | | 3.2873 | 101.0 | 505 | 3.8963 | | 3.2873 | 102.0 | 510 | 3.9391 | | 3.2873 | 103.0 | 515 | 3.9408 | | 3.2873 | 104.0 | 520 | 3.9075 | | 3.2873 | 105.0 | 525 | 3.8258 | | 3.2873 | 106.0 | 530 | 3.7917 | | 3.2873 | 107.0 | 535 | 3.7981 | | 3.2873 | 108.0 | 540 | 3.8272 | | 3.2873 | 109.0 | 545 | 3.8655 | | 3.2873 | 110.0 | 550 | 3.8234 | | 3.2873 | 111.0 | 555 | 3.7126 | | 3.2873 | 112.0 | 560 | 3.6981 | | 3.2873 | 113.0 | 565 | 3.7327 | | 3.2873 | 114.0 | 570 | 3.8470 | | 3.2873 | 115.0 | 575 | 4.0036 | | 3.2873 | 116.0 | 580 | 4.0412 | | 3.2873 | 117.0 | 585 | 4.0487 | | 3.2873 | 118.0 | 590 | 4.0524 | | 3.2873 | 119.0 | 595 | 4.0375 | | 3.2873 | 120.0 | 600 | 3.9971 | | 3.2873 | 121.0 | 605 | 3.8959 | | 3.2873 | 122.0 | 610 | 3.8834 | | 3.2873 | 123.0 | 615 | 3.9279 | | 3.2873 | 124.0 | 620 | 3.9374 | | 3.2873 | 125.0 | 625 | 3.9515 | | 3.2873 | 126.0 | 630 | 3.9625 | | 3.2873 | 127.0 | 635 | 3.9635 | | 3.2873 | 128.0 | 640 | 3.9596 | | 3.2873 | 129.0 | 645 | 3.8871 | | 3.2873 | 130.0 | 650 | 3.8307 | | 3.2873 | 131.0 | 655 | 3.8318 | | 3.2873 | 132.0 | 660 | 3.8403 | | 3.2873 | 133.0 | 665 | 3.8560 | | 3.2873 | 134.0 | 670 | 3.8650 | | 3.2873 | 135.0 | 675 | 3.8734 | | 3.2873 | 136.0 | 680 | 3.8756 | | 3.2873 | 137.0 | 685 | 3.8613 | | 3.2873 | 138.0 | 690 | 3.8447 | | 3.2873 | 139.0 | 695 | 3.8362 | | 3.2873 | 140.0 | 700 | 3.8328 | | 3.2873 | 141.0 | 705 | 3.8350 | | 3.2873 | 142.0 | 710 | 3.8377 | | 3.2873 | 143.0 | 715 | 3.8399 | | 3.2873 | 144.0 | 720 | 3.8414 | | 3.2873 | 145.0 | 725 | 3.8422 | | 3.2873 | 146.0 | 730 | 3.8435 | | 3.2873 | 147.0 | 735 | 3.8437 | | 3.2873 | 148.0 | 740 | 3.8437 | | 3.2873 | 149.0 | 745 | 3.8440 | | 3.2873 | 150.0 | 750 | 3.8441 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
paola-md/recipe-distilbert-s
paola-md
2022-07-12T04:54:03Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-12T03:06:52Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-distilbert-s results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-distilbert-s This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0321 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.8594 | 1.0 | 844 | 1.4751 | | 1.4763 | 2.0 | 1688 | 1.3282 | | 1.3664 | 3.0 | 2532 | 1.2553 | | 1.2975 | 4.0 | 3376 | 1.2093 | | 1.2543 | 5.0 | 4220 | 1.1667 | | 1.2189 | 6.0 | 5064 | 1.1472 | | 1.1944 | 7.0 | 5908 | 1.1251 | | 1.1737 | 8.0 | 6752 | 1.1018 | | 1.1549 | 9.0 | 7596 | 1.0950 | | 1.1387 | 10.0 | 8440 | 1.0796 | | 1.1295 | 11.0 | 9284 | 1.0713 | | 1.1166 | 12.0 | 10128 | 1.0639 | | 1.1078 | 13.0 | 10972 | 1.0485 | | 1.099 | 14.0 | 11816 | 1.0431 | | 1.0951 | 15.0 | 12660 | 1.0425 | | 1.0874 | 16.0 | 13504 | 1.0323 | | 1.0828 | 17.0 | 14348 | 1.0368 | | 1.0802 | 18.0 | 15192 | 1.0339 | | 1.0798 | 19.0 | 16036 | 1.0247 | | 1.0758 | 20.0 | 16880 | 1.0321 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Evelyn18/legalectra-small-spanish-becasv3-5
Evelyn18
2022-07-12T04:45:36Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:becasv2", "endpoints_compatible", "region:us" ]
question-answering
2022-07-12T04:43:31Z
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: legalectra-small-spanish-becasv3-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legalectra-small-spanish-becasv3-5 This model is a fine-tuned version of [mrm8488/legalectra-small-spanish](https://huggingface.co/mrm8488/legalectra-small-spanish) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 4.7020 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 5.7715 | | No log | 2.0 | 10 | 5.7001 | | No log | 3.0 | 15 | 5.6206 | | No log | 4.0 | 20 | 5.5463 | | No log | 5.0 | 25 | 5.4866 | | No log | 6.0 | 30 | 5.4369 | | No log | 7.0 | 35 | 5.3939 | | No log | 8.0 | 40 | 5.3545 | | No log | 9.0 | 45 | 5.3168 | | No log | 10.0 | 50 | 5.2824 | | No log | 11.0 | 55 | 5.2504 | | No log | 12.0 | 60 | 5.2193 | | No log | 13.0 | 65 | 5.1864 | | No log | 14.0 | 70 | 5.1515 | | No log | 15.0 | 75 | 5.1174 | | No log | 16.0 | 80 | 5.0839 | | No log | 17.0 | 85 | 5.0497 | | No log | 18.0 | 90 | 5.0188 | | No log | 19.0 | 95 | 4.9937 | | No log | 20.0 | 100 | 4.9726 | | No log | 21.0 | 105 | 4.9483 | | No log | 22.0 | 110 | 4.9205 | | No log | 23.0 | 115 | 4.8993 | | No log | 24.0 | 120 | 4.8802 | | No log | 25.0 | 125 | 4.8612 | | No log | 26.0 | 130 | 4.8498 | | No log | 27.0 | 135 | 4.8294 | | No log | 28.0 | 140 | 4.8176 | | No log | 29.0 | 145 | 4.8144 | | No log | 30.0 | 150 | 4.8012 | | No log | 31.0 | 155 | 4.7890 | | No log | 32.0 | 160 | 4.7745 | | No log | 33.0 | 165 | 4.7641 | | No log | 34.0 | 170 | 4.7558 | | No log | 35.0 | 175 | 4.7474 | | No log | 36.0 | 180 | 4.7384 | | No log | 37.0 | 185 | 4.7319 | | No log | 38.0 | 190 | 4.7262 | | No log | 39.0 | 195 | 4.7225 | | No log | 40.0 | 200 | 4.7201 | | No log | 41.0 | 205 | 4.7165 | | No log | 42.0 | 210 | 4.7129 | | No log | 43.0 | 215 | 4.7111 | | No log | 44.0 | 220 | 4.7086 | | No log | 45.0 | 225 | 4.7060 | | No log | 46.0 | 230 | 4.7049 | | No log | 47.0 | 235 | 4.7036 | | No log | 48.0 | 240 | 4.7028 | | No log | 49.0 | 245 | 4.7023 | | No log | 50.0 | 250 | 4.7020 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Evelyn18/legalectra-small-spanish-becasv3-1
Evelyn18
2022-07-12T03:54:49Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:becasv2", "endpoints_compatible", "region:us" ]
question-answering
2022-07-12T03:49:49Z
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: legalectra-small-spanish-becasv3-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legalectra-small-spanish-becasv3-1 This model is a fine-tuned version of [mrm8488/legalectra-small-spanish](https://huggingface.co/mrm8488/legalectra-small-spanish) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 5.5694 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 8 | 5.8980 | | No log | 2.0 | 16 | 5.8136 | | No log | 3.0 | 24 | 5.7452 | | No log | 4.0 | 32 | 5.6940 | | No log | 5.0 | 40 | 5.6554 | | No log | 6.0 | 48 | 5.6241 | | No log | 7.0 | 56 | 5.5997 | | No log | 8.0 | 64 | 5.5830 | | No log | 9.0 | 72 | 5.5730 | | No log | 10.0 | 80 | 5.5694 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
paola-md/recipe-distilbert-upper-Is
paola-md
2022-07-12T03:03:14Z
13
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-12T00:16:41Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-distilbert-upper-Is results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-distilbert-upper-Is This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.6309 | 1.0 | 1305 | 1.2607 | | 1.2639 | 2.0 | 2610 | 1.1291 | | 1.1592 | 3.0 | 3915 | 1.0605 | | 1.0987 | 4.0 | 5220 | 1.0128 | | 1.0569 | 5.0 | 6525 | 0.9796 | | 1.0262 | 6.0 | 7830 | 0.9592 | | 1.0032 | 7.0 | 9135 | 0.9352 | | 0.9815 | 8.0 | 10440 | 0.9186 | | 0.967 | 9.0 | 11745 | 0.9086 | | 0.9532 | 10.0 | 13050 | 0.8973 | | 0.9436 | 11.0 | 14355 | 0.8888 | | 0.9318 | 12.0 | 15660 | 0.8835 | | 0.9243 | 13.0 | 16965 | 0.8748 | | 0.9169 | 14.0 | 18270 | 0.8673 | | 0.9117 | 15.0 | 19575 | 0.8610 | | 0.9066 | 16.0 | 20880 | 0.8562 | | 0.9028 | 17.0 | 22185 | 0.8566 | | 0.901 | 18.0 | 23490 | 0.8583 | | 0.8988 | 19.0 | 24795 | 0.8557 | | 0.8958 | 20.0 | 26100 | 0.8565 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
nateraw/yolov6t
nateraw
2022-07-12T02:01:04Z
0
0
pytorch
[ "pytorch", "object-detection", "yolo", "autogenerated-modelcard", "en", "arxiv:1910.09700", "license:gpl-3.0", "region:us" ]
object-detection
2022-07-08T04:19:38Z
--- language: en license: gpl-3.0 library_name: pytorch tags: - object-detection - yolo - autogenerated-modelcard model_name: yolov6t --- # Model Card for yolov6t <!-- Provide a quick summary of what the model is/does. --> # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations) 4. [Training Details](#training-details) 5. [Evaluation](#evaluation) 6. [Model Examination](#model-examination) 7. [Environmental Impact](#environmental-impact) 8. [Technical Specifications](#technical-specifications-optional) 9. [Citation](#citation) 10. [Glossary](#glossary-optional) 11. [More Information](#more-information-optional) 12. [Model Card Authors](#model-card-authors-optional) 13. [Model Card Contact](#model-card-contact) 14. [How To Get Started With the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> YOLOv6 is a single-stage object detection framework dedicated to industrial applications, with hardware-friendly efficient design and high performance. - **Developed by:** [More Information Needed] - **Shared by [Optional]:** [@nateraw](https://hf.co/nateraw) - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Related Models:** [yolov6s](https://hf.co/nateraw/yolov6s), [yolov6n](https://hf.co/nateraw/yolov6n) - **Parent Model:** N/A - **Resources for more information:** The [official GitHub Repository](https://github.com/meituan/YOLOv6) # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> This model is meant to be used as a general object detector. ## Downstream Use [Optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> You can fine-tune this model for your specific task ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> Don't be evil. # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> This model often classifies objects incorrectly, especially when applied to videos. It does not handle crowds very well. ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations. # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] # Model Examination [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] Please refer to the [official GitHub Repository](https://github.com/meituan/YOLOv6) # Model Card Authors [optional] [@nateraw](https://hf.co/nateraw) # Model Card Contact [@nateraw](https://hf.co/nateraw) - please leave a note in the discussions tab here # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> [More Information Needed] </details>
ArthurBaia/xlm-roberta-base-squad-pt
ArthurBaia
2022-07-11T22:42:37Z
7
2
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "generated_from_trainer", "dataset:squad_v1_pt", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-07-11T16:59:16Z
--- license: mit tags: - generated_from_trainer datasets: - squad_v1_pt model-index: - name: xlm-roberta-base-squad-pt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-squad-pt This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the squad_v1_pt dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results - "epoch": 3.0, - "eval_exact_match": 44.45600756859035, - "eval_f1": 57.37953911779836, - "eval_samples": 11095 ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
mariastull/testpyramidsrnd
mariastull
2022-07-11T22:28:45Z
8
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-07-11T22:28:40Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: mariastull/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AntiSquid/longTEST2ppo-LunarLander-v2
AntiSquid
2022-07-11T22:09:41Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-11T22:09:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 298.08 +/- 18.36 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tj-solergibert/distilbert-base-uncased-finetuned-emotion
tj-solergibert
2022-07-11T21:58:32Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-11T17:19:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9285 - name: F1 type: f1 value: 0.9285646975197546 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2158 - Accuracy: 0.9285 - F1: 0.9286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8235 | 1.0 | 250 | 0.3085 | 0.915 | 0.9127 | | 0.2493 | 2.0 | 500 | 0.2158 | 0.9285 | 0.9286 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_pt_vp-it_s529
jonatasgrosman
2022-07-11T20:21:11Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T20:20:26Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-it_s529 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-it_s738
jonatasgrosman
2022-07-11T20:09:11Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T20:08:31Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-it_s738 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_r-wav2vec2_s957
jonatasgrosman
2022-07-11T19:51:40Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:51:07Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_r-wav2vec2_s957 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_r-wav2vec2_s468
jonatasgrosman
2022-07-11T19:48:19Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:47:54Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_r-wav2vec2_s468 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
paola-md/recipe-roberta-tis
paola-md
2022-07-11T19:45:57Z
8
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-11T16:22:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: recipe-roberta-tis results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-roberta-tis This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8491 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.3552 | 1.0 | 1012 | 1.1292 | | 1.1811 | 2.0 | 2024 | 1.0543 | | 1.1095 | 3.0 | 3036 | 1.0122 | | 1.0667 | 4.0 | 4048 | 0.9756 | | 1.0345 | 5.0 | 5060 | 0.9478 | | 1.0112 | 6.0 | 6072 | 0.9292 | | 0.9922 | 7.0 | 7084 | 0.9137 | | 0.9762 | 8.0 | 8096 | 0.9056 | | 0.9627 | 9.0 | 9108 | 0.8977 | | 0.9507 | 10.0 | 10120 | 0.8868 | | 0.9411 | 11.0 | 11132 | 0.8823 | | 0.9344 | 12.0 | 12144 | 0.8745 | | 0.9261 | 13.0 | 13156 | 0.8688 | | 0.9189 | 14.0 | 14168 | 0.8614 | | 0.9133 | 15.0 | 15180 | 0.8609 | | 0.9078 | 16.0 | 16192 | 0.8581 | | 0.906 | 17.0 | 17204 | 0.8544 | | 0.9015 | 18.0 | 18216 | 0.8537 | | 0.8988 | 19.0 | 19228 | 0.8494 | | 0.8975 | 20.0 | 20240 | 0.8491 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_pt_xls-r_s657
jonatasgrosman
2022-07-11T19:45:15Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:44:32Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_xls-r_s657 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_xls-r_s17
jonatasgrosman
2022-07-11T19:38:03Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:37:21Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_xls-r_s17 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_unispeech-sat_s756
jonatasgrosman
2022-07-11T19:26:48Z
3
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:26:24Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_unispeech-sat_s756 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-nl_s783
jonatasgrosman
2022-07-11T19:23:52Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:23:20Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-nl_s783 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Sahara/finetuning-sentiment-model-3000-samples
Sahara
2022-07-11T19:23:33Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-11T14:06:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8533333333333334 - name: F1 type: f1 value: 0.8562091503267975 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3322 - Accuracy: 0.8533 - F1: 0.8562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_pt_vp-nl_s6
jonatasgrosman
2022-07-11T19:17:20Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:16:53Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-nl_s6 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-nl_s833
jonatasgrosman
2022-07-11T19:13:31Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:12:53Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-nl_s833 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-es_s506
jonatasgrosman
2022-07-11T19:05:37Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:04:54Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-es_s506 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pt_vp-es_s454
jonatasgrosman
2022-07-11T19:02:09Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T19:01:28Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - pt datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pt_vp-es_s454 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.