modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 00:42:47
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
553 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 00:42:38
card
stringlengths
11
1.01M
ghost9023/DEEPNOID-llama2-7b-PoC-Only
ghost9023
2023-09-21T10:16:48Z
6
0
peft
[ "peft", "region:us" ]
null
2023-09-21T02:26:54Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0
yejeekang/qlora-koalpaca-polyglot-12.8b-50step
yejeekang
2023-09-21T10:15:07Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-20T05:03:58Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
ditobagus/image_classification
ditobagus
2023-09-21T10:13:26Z
196
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-12T09:55:32Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: image_classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.6845 - Accuracy: 0.0626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6177 | 1.0 | 788 | 4.5441 | 0.0572 | | 0.6328 | 2.0 | 1576 | 4.6145 | 0.0628 | | 0.5851 | 3.0 | 2364 | 4.6799 | 0.0648 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
CyberHarem/kudou_shinobu_idolmastercinderellagirls
CyberHarem
2023-09-21T09:57:21Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/kudou_shinobu_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-21T09:39:20Z
--- license: mit datasets: - CyberHarem/kudou_shinobu_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of kudou_shinobu_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 2040, you need to download `2040/kudou_shinobu_idolmastercinderellagirls.pt` as the embedding and `2040/kudou_shinobu_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 2040**, with the score of 0.956. The trigger words are: 1. `kudou_shinobu_idolmastercinderellagirls` 2. `brown_hair, short_hair, blue_eyes, smile, open_mouth, blush` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:-----------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 5100 | 0.949 | [Download](5100/kudou_shinobu_idolmastercinderellagirls.zip) | ![pattern_1-5100](5100/previews/pattern_1.png) | ![pattern_2-5100](5100/previews/pattern_2.png) | ![pattern_3-5100](5100/previews/pattern_3.png) | ![bikini-5100](5100/previews/bikini.png) | [<NSFW, click to see>](5100/previews/bondage.png) | ![free-5100](5100/previews/free.png) | ![maid-5100](5100/previews/maid.png) | ![miko-5100](5100/previews/miko.png) | [<NSFW, click to see>](5100/previews/nude.png) | [<NSFW, click to see>](5100/previews/nude2.png) | ![suit-5100](5100/previews/suit.png) | ![yukata-5100](5100/previews/yukata.png) | | 4760 | 0.885 | [Download](4760/kudou_shinobu_idolmastercinderellagirls.zip) | ![pattern_1-4760](4760/previews/pattern_1.png) | ![pattern_2-4760](4760/previews/pattern_2.png) | ![pattern_3-4760](4760/previews/pattern_3.png) | ![bikini-4760](4760/previews/bikini.png) | [<NSFW, click to see>](4760/previews/bondage.png) | ![free-4760](4760/previews/free.png) | ![maid-4760](4760/previews/maid.png) | ![miko-4760](4760/previews/miko.png) | [<NSFW, click to see>](4760/previews/nude.png) | [<NSFW, click to see>](4760/previews/nude2.png) | ![suit-4760](4760/previews/suit.png) | ![yukata-4760](4760/previews/yukata.png) | | 4420 | 0.938 | [Download](4420/kudou_shinobu_idolmastercinderellagirls.zip) | ![pattern_1-4420](4420/previews/pattern_1.png) | ![pattern_2-4420](4420/previews/pattern_2.png) | ![pattern_3-4420](4420/previews/pattern_3.png) | ![bikini-4420](4420/previews/bikini.png) | [<NSFW, click to see>](4420/previews/bondage.png) | ![free-4420](4420/previews/free.png) | ![maid-4420](4420/previews/maid.png) | ![miko-4420](4420/previews/miko.png) | [<NSFW, click to see>](4420/previews/nude.png) | [<NSFW, click to see>](4420/previews/nude2.png) | ![suit-4420](4420/previews/suit.png) | ![yukata-4420](4420/previews/yukata.png) | | 4080 | 0.925 | [Download](4080/kudou_shinobu_idolmastercinderellagirls.zip) | ![pattern_1-4080](4080/previews/pattern_1.png) | ![pattern_2-4080](4080/previews/pattern_2.png) | ![pattern_3-4080](4080/previews/pattern_3.png) | ![bikini-4080](4080/previews/bikini.png) | [<NSFW, click to see>](4080/previews/bondage.png) | ![free-4080](4080/previews/free.png) | ![maid-4080](4080/previews/maid.png) | ![miko-4080](4080/previews/miko.png) | [<NSFW, click to see>](4080/previews/nude.png) | [<NSFW, click to see>](4080/previews/nude2.png) | ![suit-4080](4080/previews/suit.png) | ![yukata-4080](4080/previews/yukata.png) | | 3740 | 0.940 | [Download](3740/kudou_shinobu_idolmastercinderellagirls.zip) | ![pattern_1-3740](3740/previews/pattern_1.png) | ![pattern_2-3740](3740/previews/pattern_2.png) | ![pattern_3-3740](3740/previews/pattern_3.png) | ![bikini-3740](3740/previews/bikini.png) | [<NSFW, click to see>](3740/previews/bondage.png) | ![free-3740](3740/previews/free.png) | ![maid-3740](3740/previews/maid.png) | ![miko-3740](3740/previews/miko.png) | [<NSFW, click to see>](3740/previews/nude.png) | [<NSFW, click to see>](3740/previews/nude2.png) | ![suit-3740](3740/previews/suit.png) | ![yukata-3740](3740/previews/yukata.png) | | 3400 | 0.918 | [Download](3400/kudou_shinobu_idolmastercinderellagirls.zip) | ![pattern_1-3400](3400/previews/pattern_1.png) | ![pattern_2-3400](3400/previews/pattern_2.png) | ![pattern_3-3400](3400/previews/pattern_3.png) | ![bikini-3400](3400/previews/bikini.png) | [<NSFW, click to see>](3400/previews/bondage.png) | ![free-3400](3400/previews/free.png) | ![maid-3400](3400/previews/maid.png) | ![miko-3400](3400/previews/miko.png) | [<NSFW, click to see>](3400/previews/nude.png) | [<NSFW, click to see>](3400/previews/nude2.png) | ![suit-3400](3400/previews/suit.png) | ![yukata-3400](3400/previews/yukata.png) | | 3060 | 0.948 | [Download](3060/kudou_shinobu_idolmastercinderellagirls.zip) | ![pattern_1-3060](3060/previews/pattern_1.png) | ![pattern_2-3060](3060/previews/pattern_2.png) | ![pattern_3-3060](3060/previews/pattern_3.png) | ![bikini-3060](3060/previews/bikini.png) | [<NSFW, click to see>](3060/previews/bondage.png) | ![free-3060](3060/previews/free.png) | ![maid-3060](3060/previews/maid.png) | ![miko-3060](3060/previews/miko.png) | [<NSFW, click to see>](3060/previews/nude.png) | [<NSFW, click to see>](3060/previews/nude2.png) | ![suit-3060](3060/previews/suit.png) | ![yukata-3060](3060/previews/yukata.png) | | 2720 | 0.915 | [Download](2720/kudou_shinobu_idolmastercinderellagirls.zip) | ![pattern_1-2720](2720/previews/pattern_1.png) | ![pattern_2-2720](2720/previews/pattern_2.png) | ![pattern_3-2720](2720/previews/pattern_3.png) | ![bikini-2720](2720/previews/bikini.png) | [<NSFW, click to see>](2720/previews/bondage.png) | ![free-2720](2720/previews/free.png) | ![maid-2720](2720/previews/maid.png) | ![miko-2720](2720/previews/miko.png) | [<NSFW, click to see>](2720/previews/nude.png) | [<NSFW, click to see>](2720/previews/nude2.png) | ![suit-2720](2720/previews/suit.png) | ![yukata-2720](2720/previews/yukata.png) | | 2380 | 0.942 | [Download](2380/kudou_shinobu_idolmastercinderellagirls.zip) | ![pattern_1-2380](2380/previews/pattern_1.png) | ![pattern_2-2380](2380/previews/pattern_2.png) | ![pattern_3-2380](2380/previews/pattern_3.png) | ![bikini-2380](2380/previews/bikini.png) | [<NSFW, click to see>](2380/previews/bondage.png) | ![free-2380](2380/previews/free.png) | ![maid-2380](2380/previews/maid.png) | ![miko-2380](2380/previews/miko.png) | [<NSFW, click to see>](2380/previews/nude.png) | [<NSFW, click to see>](2380/previews/nude2.png) | ![suit-2380](2380/previews/suit.png) | ![yukata-2380](2380/previews/yukata.png) | | **2040** | **0.956** | [**Download**](2040/kudou_shinobu_idolmastercinderellagirls.zip) | ![pattern_1-2040](2040/previews/pattern_1.png) | ![pattern_2-2040](2040/previews/pattern_2.png) | ![pattern_3-2040](2040/previews/pattern_3.png) | ![bikini-2040](2040/previews/bikini.png) | [<NSFW, click to see>](2040/previews/bondage.png) | ![free-2040](2040/previews/free.png) | ![maid-2040](2040/previews/maid.png) | ![miko-2040](2040/previews/miko.png) | [<NSFW, click to see>](2040/previews/nude.png) | [<NSFW, click to see>](2040/previews/nude2.png) | ![suit-2040](2040/previews/suit.png) | ![yukata-2040](2040/previews/yukata.png) | | 1700 | 0.923 | [Download](1700/kudou_shinobu_idolmastercinderellagirls.zip) | ![pattern_1-1700](1700/previews/pattern_1.png) | ![pattern_2-1700](1700/previews/pattern_2.png) | ![pattern_3-1700](1700/previews/pattern_3.png) | ![bikini-1700](1700/previews/bikini.png) | [<NSFW, click to see>](1700/previews/bondage.png) | ![free-1700](1700/previews/free.png) | ![maid-1700](1700/previews/maid.png) | ![miko-1700](1700/previews/miko.png) | [<NSFW, click to see>](1700/previews/nude.png) | [<NSFW, click to see>](1700/previews/nude2.png) | ![suit-1700](1700/previews/suit.png) | ![yukata-1700](1700/previews/yukata.png) | | 1360 | 0.919 | [Download](1360/kudou_shinobu_idolmastercinderellagirls.zip) | ![pattern_1-1360](1360/previews/pattern_1.png) | ![pattern_2-1360](1360/previews/pattern_2.png) | ![pattern_3-1360](1360/previews/pattern_3.png) | ![bikini-1360](1360/previews/bikini.png) | [<NSFW, click to see>](1360/previews/bondage.png) | ![free-1360](1360/previews/free.png) | ![maid-1360](1360/previews/maid.png) | ![miko-1360](1360/previews/miko.png) | [<NSFW, click to see>](1360/previews/nude.png) | [<NSFW, click to see>](1360/previews/nude2.png) | ![suit-1360](1360/previews/suit.png) | ![yukata-1360](1360/previews/yukata.png) | | 1020 | 0.843 | [Download](1020/kudou_shinobu_idolmastercinderellagirls.zip) | ![pattern_1-1020](1020/previews/pattern_1.png) | ![pattern_2-1020](1020/previews/pattern_2.png) | ![pattern_3-1020](1020/previews/pattern_3.png) | ![bikini-1020](1020/previews/bikini.png) | [<NSFW, click to see>](1020/previews/bondage.png) | ![free-1020](1020/previews/free.png) | ![maid-1020](1020/previews/maid.png) | ![miko-1020](1020/previews/miko.png) | [<NSFW, click to see>](1020/previews/nude.png) | [<NSFW, click to see>](1020/previews/nude2.png) | ![suit-1020](1020/previews/suit.png) | ![yukata-1020](1020/previews/yukata.png) | | 680 | 0.742 | [Download](680/kudou_shinobu_idolmastercinderellagirls.zip) | ![pattern_1-680](680/previews/pattern_1.png) | ![pattern_2-680](680/previews/pattern_2.png) | ![pattern_3-680](680/previews/pattern_3.png) | ![bikini-680](680/previews/bikini.png) | [<NSFW, click to see>](680/previews/bondage.png) | ![free-680](680/previews/free.png) | ![maid-680](680/previews/maid.png) | ![miko-680](680/previews/miko.png) | [<NSFW, click to see>](680/previews/nude.png) | [<NSFW, click to see>](680/previews/nude2.png) | ![suit-680](680/previews/suit.png) | ![yukata-680](680/previews/yukata.png) | | 340 | 0.793 | [Download](340/kudou_shinobu_idolmastercinderellagirls.zip) | ![pattern_1-340](340/previews/pattern_1.png) | ![pattern_2-340](340/previews/pattern_2.png) | ![pattern_3-340](340/previews/pattern_3.png) | ![bikini-340](340/previews/bikini.png) | [<NSFW, click to see>](340/previews/bondage.png) | ![free-340](340/previews/free.png) | ![maid-340](340/previews/maid.png) | ![miko-340](340/previews/miko.png) | [<NSFW, click to see>](340/previews/nude.png) | [<NSFW, click to see>](340/previews/nude2.png) | ![suit-340](340/previews/suit.png) | ![yukata-340](340/previews/yukata.png) |
loupzeur/Pyramids
loupzeur
2023-09-21T09:56:07Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-09-21T09:54:54Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: loupzeur/Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
shareAI/CodeLlama-13b-English-Chat
shareAI
2023-09-21T09:55:56Z
7
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "code", "custom_code", "en", "dataset:shareAI/ShareGPT-Chinese-English-90k", "dataset:shareAI/CodeChat", "license:openrail", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-20T16:48:51Z
--- license: openrail datasets: - shareAI/ShareGPT-Chinese-English-90k - shareAI/CodeChat language: - en library_name: transformers tags: - code --- Code: (just run it, and the model weights will be auto download) Github:https://github.com/CrazyBoyM/CodeLLaMA-chat ``` # from Firefly from transformers import AutoModelForCausalLM, AutoTokenizer import torch def main(): model_name = 'shareAI/CodeLLaMA-chat-13b-Chinese' device = 'cuda' max_new_tokens = 500 # max token for reply. history_max_len = 1000 # max token in history top_p = 0.9 temperature = 0.35 repetition_penalty = 1.0 model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, low_cpu_mem_usage=True, torch_dtype=torch.float16, device_map='auto' ).to(device).eval() tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True, use_fast=False ) history_token_ids = torch.tensor([[]], dtype=torch.long) user_input = input('User:') while True: input_ids = tokenizer(user_input, return_tensors="pt", add_special_tokens=False).input_ids eos_token_id = torch.tensor([[tokenizer.eos_token_id]], dtype=torch.long) user_input_ids = torch.concat([input_ids, eos_token_id], dim=1) history_token_ids = torch.concat((history_token_ids, user_input_ids), dim=1) model_input_ids = history_token_ids[:, -history_max_len:].to(device) with torch.no_grad(): outputs = model.generate( input_ids=model_input_ids, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty, eos_token_id=tokenizer.eos_token_id ) model_input_ids_len = model_input_ids.size(1) response_ids = outputs[:, model_input_ids_len:] history_token_ids = torch.concat((history_token_ids, response_ids.cpu()), dim=1) response = tokenizer.batch_decode(response_ids) print("Bot:" + response[0].strip().replace(tokenizer.eos_token, "")) user_input = input('User:') if __name__ == '__main__': main() ```
EnzoZacharias/starcoder-fine-tuned-plc_V1
EnzoZacharias
2023-09-21T09:41:57Z
0
0
null
[ "generated_from_trainer", "base_model:bigcode/starcoder", "base_model:finetune:bigcode/starcoder", "license:bigcode-openrail-m", "region:us" ]
null
2023-09-21T09:20:41Z
--- license: bigcode-openrail-m base_model: bigcode/starcoder tags: - generated_from_trainer model-index: - name: starcoder-fine-tuned-plc_V1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # starcoder-fine-tuned-plc_V1 This model is a fine-tuned version of [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 50 ### Training results ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.1.0.dev20230823 - Datasets 2.14.4 - Tokenizers 0.13.3
jimson719/phi-1_5-finetuned-gsm8k
jimson719
2023-09-21T09:26:54Z
0
0
null
[ "generated_from_trainer", "base_model:microsoft/phi-1_5", "base_model:finetune:microsoft/phi-1_5", "license:other", "region:us" ]
null
2023-09-21T09:07:05Z
--- license: other base_model: microsoft/phi-1_5 tags: - generated_from_trainer model-index: - name: phi-1_5-finetuned-gsm8k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi-1_5-finetuned-gsm8k This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
hustvl/vitmatte-base-composition-1k
hustvl
2023-09-21T09:25:07Z
14,261
10
transformers
[ "transformers", "pytorch", "vitmatte", "vision", "arxiv:2305.15272", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-09-10T07:56:12Z
--- license: apache-2.0 tags: - vision --- # ViTMatte model ViTMatte model trained on Composition-1k. It was introduced in the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Yao et al. and first released in [this repository](https://github.com/hustvl/ViTMatte). Disclaimer: The team releasing ViTMatte did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ViTMatte is a simple approach to image matting, the task of accurately estimating the foreground object in an image. The model consists of a Vision Transformer (ViT) with a lightweight head on top. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/vitmatte_architecture.png" alt="drawing" width="600"/> <small> ViTMatte high-level overview. Taken from the <a href="https://arxiv.org/abs/2305.15272">original paper.</a> </small> ## Intended uses & limitations You can use the raw model for image matting. See the [model hub](https://huggingface.co/models?search=vitmatte) to look for other fine-tuned versions that may interest you. ### How to use We refer to the [docs](https://huggingface.co/docs/transformers/main/en/model_doc/vitmatte#transformers.VitMatteForImageMatting.forward.example). ### BibTeX entry and citation info ```bibtex @misc{yao2023vitmatte, title={ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers}, author={Jingfeng Yao and Xinggang Wang and Shusheng Yang and Baoyuan Wang}, year={2023}, eprint={2305.15272}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
Akbartus/Lora360
Akbartus
2023-09-21T09:18:27Z
10
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "region:us" ]
text-to-image
2023-08-16T05:18:38Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers base_model: runwayml/stable-diffusion-v1-5 instance_prompt: 360, 360 view widget: - text: 360 view inference: parameters: width: 768 height: 512 num_inference_steps: 100 guidance_scale: 9.0 ---
JoyboyXoXo/rl_course_vizdoom_health_gathering_supreme
JoyboyXoXo
2023-09-21T09:17:48Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-21T09:17:39Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.70 +/- 2.25 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r JoyboyXoXo/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
sebastiantrbl/test-DialoGPT-finetune
sebastiantrbl
2023-09-21T09:16:30Z
207
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "conversational", "dataset:daily_dialog", "base_model:microsoft/DialoGPT-medium", "base_model:finetune:microsoft/DialoGPT-medium", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-21T08:19:37Z
--- license: mit base_model: microsoft/DialoGPT-medium tags: - generated_from_trainer datasets: - daily_dialog model-index: - name: tmplo2wugb5 results: [] pipeline_tag: conversational --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tmplo2wugb5 This model is a fine-tuned version of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) on the daily_dialog dataset. It achieves the following results on the evaluation set: - Loss: 1.7233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
YSKartal/bert-base-turkish-cased-turkish_offensive_trained_model
YSKartal
2023-09-21T09:14:25Z
76
3
transformers
[ "transformers", "tf", "tensorboard", "bert", "text-classification", "generated_from_keras_callback", "base_model:dbmdz/bert-base-turkish-cased", "base_model:finetune:dbmdz/bert-base-turkish-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-27T12:20:20Z
--- license: mit tags: - generated_from_keras_callback base_model: dbmdz/bert-base-turkish-cased model-index: - name: YSKartal/bert-base-turkish-cased-turkish_offensive_trained_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # YSKartal/bert-base-turkish-cased-turkish_offensive_trained_model This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on [offenseval2020_tr](https://huggingface.co/datasets/offenseval2020_tr) dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0365 - Validation Loss: 0.4846 - Train F1: 0.6993 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7936, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train F1 | Epoch | |:----------:|:---------------:|:--------:|:-----:| | 0.3003 | 0.2664 | 0.6971 | 0 | | 0.1866 | 0.3018 | 0.6990 | 1 | | 0.0860 | 0.3803 | 0.7032 | 2 | | 0.0365 | 0.4846 | 0.6993 | 3 | ### Framework versions - Transformers 4.23.1 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1
Charishma010997/Falcon7b_finetuned
Charishma010997
2023-09-21T09:04:56Z
0
0
peft
[ "peft", "falcon", "custom_code", "base_model:vilsonrodrigues/falcon-7b-instruct-sharded", "base_model:adapter:vilsonrodrigues/falcon-7b-instruct-sharded", "4-bit", "bitsandbytes", "region:us" ]
null
2023-09-17T05:40:57Z
--- library_name: peft base_model: vilsonrodrigues/falcon-7b-instruct-sharded --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
thiru1/distilgpt2-finetuned-wikitext2
thiru1
2023-09-21T09:02:53Z
187
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-21T08:22:01Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.653 | 2.0 | 4668 | 3.6472 | | 3.6006 | 3.0 | 7002 | 3.6421 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
CyberHarem/ebihara_naho_idolmastercinderellagirls
CyberHarem
2023-09-21T09:00:22Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/ebihara_naho_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-21T08:45:07Z
--- license: mit datasets: - CyberHarem/ebihara_naho_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of ebihara_naho_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 4080, you need to download `4080/ebihara_naho_idolmastercinderellagirls.pt` as the embedding and `4080/ebihara_naho_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 4080**, with the score of 0.956. The trigger words are: 1. `ebihara_naho_idolmastercinderellagirls` 2. `black_hair, green_eyes, breasts, blush, large_breasts, smile, ponytail, cleavage, hair_ornament` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:----------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:----------------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 5100 | 0.861 | [Download](5100/ebihara_naho_idolmastercinderellagirls.zip) | ![pattern_1-5100](5100/previews/pattern_1.png) | ![pattern_2-5100](5100/previews/pattern_2.png) | ![pattern_3-5100](5100/previews/pattern_3.png) | [<NSFW, click to see>](5100/previews/pattern_4.png) | ![bikini-5100](5100/previews/bikini.png) | [<NSFW, click to see>](5100/previews/bondage.png) | ![free-5100](5100/previews/free.png) | ![maid-5100](5100/previews/maid.png) | ![miko-5100](5100/previews/miko.png) | [<NSFW, click to see>](5100/previews/nude.png) | [<NSFW, click to see>](5100/previews/nude2.png) | ![suit-5100](5100/previews/suit.png) | ![yukata-5100](5100/previews/yukata.png) | | 4760 | 0.946 | [Download](4760/ebihara_naho_idolmastercinderellagirls.zip) | ![pattern_1-4760](4760/previews/pattern_1.png) | ![pattern_2-4760](4760/previews/pattern_2.png) | ![pattern_3-4760](4760/previews/pattern_3.png) | [<NSFW, click to see>](4760/previews/pattern_4.png) | ![bikini-4760](4760/previews/bikini.png) | [<NSFW, click to see>](4760/previews/bondage.png) | ![free-4760](4760/previews/free.png) | ![maid-4760](4760/previews/maid.png) | ![miko-4760](4760/previews/miko.png) | [<NSFW, click to see>](4760/previews/nude.png) | [<NSFW, click to see>](4760/previews/nude2.png) | ![suit-4760](4760/previews/suit.png) | ![yukata-4760](4760/previews/yukata.png) | | 4420 | 0.913 | [Download](4420/ebihara_naho_idolmastercinderellagirls.zip) | ![pattern_1-4420](4420/previews/pattern_1.png) | ![pattern_2-4420](4420/previews/pattern_2.png) | ![pattern_3-4420](4420/previews/pattern_3.png) | [<NSFW, click to see>](4420/previews/pattern_4.png) | ![bikini-4420](4420/previews/bikini.png) | [<NSFW, click to see>](4420/previews/bondage.png) | ![free-4420](4420/previews/free.png) | ![maid-4420](4420/previews/maid.png) | ![miko-4420](4420/previews/miko.png) | [<NSFW, click to see>](4420/previews/nude.png) | [<NSFW, click to see>](4420/previews/nude2.png) | ![suit-4420](4420/previews/suit.png) | ![yukata-4420](4420/previews/yukata.png) | | **4080** | **0.956** | [**Download**](4080/ebihara_naho_idolmastercinderellagirls.zip) | ![pattern_1-4080](4080/previews/pattern_1.png) | ![pattern_2-4080](4080/previews/pattern_2.png) | ![pattern_3-4080](4080/previews/pattern_3.png) | [<NSFW, click to see>](4080/previews/pattern_4.png) | ![bikini-4080](4080/previews/bikini.png) | [<NSFW, click to see>](4080/previews/bondage.png) | ![free-4080](4080/previews/free.png) | ![maid-4080](4080/previews/maid.png) | ![miko-4080](4080/previews/miko.png) | [<NSFW, click to see>](4080/previews/nude.png) | [<NSFW, click to see>](4080/previews/nude2.png) | ![suit-4080](4080/previews/suit.png) | ![yukata-4080](4080/previews/yukata.png) | | 3740 | 0.948 | [Download](3740/ebihara_naho_idolmastercinderellagirls.zip) | ![pattern_1-3740](3740/previews/pattern_1.png) | ![pattern_2-3740](3740/previews/pattern_2.png) | ![pattern_3-3740](3740/previews/pattern_3.png) | [<NSFW, click to see>](3740/previews/pattern_4.png) | ![bikini-3740](3740/previews/bikini.png) | [<NSFW, click to see>](3740/previews/bondage.png) | ![free-3740](3740/previews/free.png) | ![maid-3740](3740/previews/maid.png) | ![miko-3740](3740/previews/miko.png) | [<NSFW, click to see>](3740/previews/nude.png) | [<NSFW, click to see>](3740/previews/nude2.png) | ![suit-3740](3740/previews/suit.png) | ![yukata-3740](3740/previews/yukata.png) | | 3400 | 0.914 | [Download](3400/ebihara_naho_idolmastercinderellagirls.zip) | ![pattern_1-3400](3400/previews/pattern_1.png) | ![pattern_2-3400](3400/previews/pattern_2.png) | ![pattern_3-3400](3400/previews/pattern_3.png) | [<NSFW, click to see>](3400/previews/pattern_4.png) | ![bikini-3400](3400/previews/bikini.png) | [<NSFW, click to see>](3400/previews/bondage.png) | ![free-3400](3400/previews/free.png) | ![maid-3400](3400/previews/maid.png) | ![miko-3400](3400/previews/miko.png) | [<NSFW, click to see>](3400/previews/nude.png) | [<NSFW, click to see>](3400/previews/nude2.png) | ![suit-3400](3400/previews/suit.png) | ![yukata-3400](3400/previews/yukata.png) | | 3060 | 0.937 | [Download](3060/ebihara_naho_idolmastercinderellagirls.zip) | ![pattern_1-3060](3060/previews/pattern_1.png) | ![pattern_2-3060](3060/previews/pattern_2.png) | ![pattern_3-3060](3060/previews/pattern_3.png) | [<NSFW, click to see>](3060/previews/pattern_4.png) | ![bikini-3060](3060/previews/bikini.png) | [<NSFW, click to see>](3060/previews/bondage.png) | ![free-3060](3060/previews/free.png) | ![maid-3060](3060/previews/maid.png) | ![miko-3060](3060/previews/miko.png) | [<NSFW, click to see>](3060/previews/nude.png) | [<NSFW, click to see>](3060/previews/nude2.png) | ![suit-3060](3060/previews/suit.png) | ![yukata-3060](3060/previews/yukata.png) | | 2720 | 0.845 | [Download](2720/ebihara_naho_idolmastercinderellagirls.zip) | ![pattern_1-2720](2720/previews/pattern_1.png) | ![pattern_2-2720](2720/previews/pattern_2.png) | ![pattern_3-2720](2720/previews/pattern_3.png) | [<NSFW, click to see>](2720/previews/pattern_4.png) | ![bikini-2720](2720/previews/bikini.png) | [<NSFW, click to see>](2720/previews/bondage.png) | ![free-2720](2720/previews/free.png) | ![maid-2720](2720/previews/maid.png) | ![miko-2720](2720/previews/miko.png) | [<NSFW, click to see>](2720/previews/nude.png) | [<NSFW, click to see>](2720/previews/nude2.png) | ![suit-2720](2720/previews/suit.png) | ![yukata-2720](2720/previews/yukata.png) | | 2380 | 0.904 | [Download](2380/ebihara_naho_idolmastercinderellagirls.zip) | ![pattern_1-2380](2380/previews/pattern_1.png) | ![pattern_2-2380](2380/previews/pattern_2.png) | ![pattern_3-2380](2380/previews/pattern_3.png) | [<NSFW, click to see>](2380/previews/pattern_4.png) | ![bikini-2380](2380/previews/bikini.png) | [<NSFW, click to see>](2380/previews/bondage.png) | ![free-2380](2380/previews/free.png) | ![maid-2380](2380/previews/maid.png) | ![miko-2380](2380/previews/miko.png) | [<NSFW, click to see>](2380/previews/nude.png) | [<NSFW, click to see>](2380/previews/nude2.png) | ![suit-2380](2380/previews/suit.png) | ![yukata-2380](2380/previews/yukata.png) | | 2040 | 0.904 | [Download](2040/ebihara_naho_idolmastercinderellagirls.zip) | ![pattern_1-2040](2040/previews/pattern_1.png) | ![pattern_2-2040](2040/previews/pattern_2.png) | ![pattern_3-2040](2040/previews/pattern_3.png) | [<NSFW, click to see>](2040/previews/pattern_4.png) | ![bikini-2040](2040/previews/bikini.png) | [<NSFW, click to see>](2040/previews/bondage.png) | ![free-2040](2040/previews/free.png) | ![maid-2040](2040/previews/maid.png) | ![miko-2040](2040/previews/miko.png) | [<NSFW, click to see>](2040/previews/nude.png) | [<NSFW, click to see>](2040/previews/nude2.png) | ![suit-2040](2040/previews/suit.png) | ![yukata-2040](2040/previews/yukata.png) | | 1700 | 0.926 | [Download](1700/ebihara_naho_idolmastercinderellagirls.zip) | ![pattern_1-1700](1700/previews/pattern_1.png) | ![pattern_2-1700](1700/previews/pattern_2.png) | ![pattern_3-1700](1700/previews/pattern_3.png) | [<NSFW, click to see>](1700/previews/pattern_4.png) | ![bikini-1700](1700/previews/bikini.png) | [<NSFW, click to see>](1700/previews/bondage.png) | ![free-1700](1700/previews/free.png) | ![maid-1700](1700/previews/maid.png) | ![miko-1700](1700/previews/miko.png) | [<NSFW, click to see>](1700/previews/nude.png) | [<NSFW, click to see>](1700/previews/nude2.png) | ![suit-1700](1700/previews/suit.png) | ![yukata-1700](1700/previews/yukata.png) | | 1360 | 0.940 | [Download](1360/ebihara_naho_idolmastercinderellagirls.zip) | ![pattern_1-1360](1360/previews/pattern_1.png) | ![pattern_2-1360](1360/previews/pattern_2.png) | ![pattern_3-1360](1360/previews/pattern_3.png) | [<NSFW, click to see>](1360/previews/pattern_4.png) | ![bikini-1360](1360/previews/bikini.png) | [<NSFW, click to see>](1360/previews/bondage.png) | ![free-1360](1360/previews/free.png) | ![maid-1360](1360/previews/maid.png) | ![miko-1360](1360/previews/miko.png) | [<NSFW, click to see>](1360/previews/nude.png) | [<NSFW, click to see>](1360/previews/nude2.png) | ![suit-1360](1360/previews/suit.png) | ![yukata-1360](1360/previews/yukata.png) | | 1020 | 0.942 | [Download](1020/ebihara_naho_idolmastercinderellagirls.zip) | ![pattern_1-1020](1020/previews/pattern_1.png) | ![pattern_2-1020](1020/previews/pattern_2.png) | ![pattern_3-1020](1020/previews/pattern_3.png) | [<NSFW, click to see>](1020/previews/pattern_4.png) | ![bikini-1020](1020/previews/bikini.png) | [<NSFW, click to see>](1020/previews/bondage.png) | ![free-1020](1020/previews/free.png) | ![maid-1020](1020/previews/maid.png) | ![miko-1020](1020/previews/miko.png) | [<NSFW, click to see>](1020/previews/nude.png) | [<NSFW, click to see>](1020/previews/nude2.png) | ![suit-1020](1020/previews/suit.png) | ![yukata-1020](1020/previews/yukata.png) | | 680 | 0.924 | [Download](680/ebihara_naho_idolmastercinderellagirls.zip) | ![pattern_1-680](680/previews/pattern_1.png) | ![pattern_2-680](680/previews/pattern_2.png) | ![pattern_3-680](680/previews/pattern_3.png) | [<NSFW, click to see>](680/previews/pattern_4.png) | ![bikini-680](680/previews/bikini.png) | [<NSFW, click to see>](680/previews/bondage.png) | ![free-680](680/previews/free.png) | ![maid-680](680/previews/maid.png) | ![miko-680](680/previews/miko.png) | [<NSFW, click to see>](680/previews/nude.png) | [<NSFW, click to see>](680/previews/nude2.png) | ![suit-680](680/previews/suit.png) | ![yukata-680](680/previews/yukata.png) | | 340 | 0.912 | [Download](340/ebihara_naho_idolmastercinderellagirls.zip) | ![pattern_1-340](340/previews/pattern_1.png) | ![pattern_2-340](340/previews/pattern_2.png) | ![pattern_3-340](340/previews/pattern_3.png) | [<NSFW, click to see>](340/previews/pattern_4.png) | ![bikini-340](340/previews/bikini.png) | [<NSFW, click to see>](340/previews/bondage.png) | ![free-340](340/previews/free.png) | ![maid-340](340/previews/maid.png) | ![miko-340](340/previews/miko.png) | [<NSFW, click to see>](340/previews/nude.png) | [<NSFW, click to see>](340/previews/nude2.png) | ![suit-340](340/previews/suit.png) | ![yukata-340](340/previews/yukata.png) |
eunyounglee/GPT-NeoX-1.3B-2GB-Eng
eunyounglee
2023-09-21T08:58:57Z
60
1
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "eng", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-21T05:43:41Z
--- language: - eng pipeline_tag: text-generation Trained: Pretrain Config file: 1.3B Data: English News Dataset 2GB (177MB) --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> Pretrained GPT-NeoX model with 2.06GB English news dataset. Took about 2 hour and 10 minutes to reach 10,000 iterations. Trained on p3dn.24xlarge. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Eunyoung Lee - **Model type:** GPT-NeoX - **Language(s) (NLP):** English
loupzeur/a2c-PandaReachDense-v3
loupzeur
2023-09-21T08:56:39Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-21T08:15:07Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.22 +/- 0.10 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dsmsb/16_combo_2109_v2
dsmsb
2023-09-21T08:48:35Z
110
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-21T08:08:13Z
--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: 16_combo_webscrap_2109_v1_addgptdf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 16_combo_webscrap_2109_v1_addgptdf This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1495 - Accuracy: 0.9568 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 467 | 0.8510 | 0.7806 | | 1.534 | 2.0 | 934 | 0.5037 | 0.8696 | | 0.7131 | 3.0 | 1401 | 0.3481 | 0.9104 | | 0.4879 | 4.0 | 1868 | 0.2717 | 0.9244 | | 0.3665 | 5.0 | 2335 | 0.2324 | 0.9360 | | 0.2948 | 6.0 | 2802 | 0.1949 | 0.9451 | | 0.24 | 7.0 | 3269 | 0.1550 | 0.9566 | | 0.1961 | 8.0 | 3736 | 0.1495 | 0.9568 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
elemtopos/dqn-SpaceInvadersNoFrameskip-v4
elemtopos
2023-09-21T08:46:40Z
6
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-20T15:49:36Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 270.50 +/- 83.53 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga elemtopos -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga elemtopos -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga elemtopos ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 200000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Aharneish/qa-model
Aharneish
2023-09-21T08:42:04Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-04-05T15:31:45Z
--- license: apache-2.0 tags: - generated_from_trainer base_model: distilbert-base-uncased model-index: - name: qa-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qa-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Aharneish/qa-flant5
Aharneish
2023-09-21T08:41:58Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-09T10:07:44Z
--- license: apache-2.0 tags: - generated_from_trainer base_model: google/flan-t5-base model-index: - name: qa-flant5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qa-flant5 This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1 ### Training results ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
linoyts/huggy-lora-sdxl-v6
linoyts
2023-09-21T08:39:23Z
206
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-09-21T08:39:09Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 pivotal_tuning: true textual_embeddings: embeddings.pti instance_prompt: <s0><s1> inference: false --- # huggy-lora-sdxl-v6 LoRA by [linoytsaban](https://replicate.com/linoytsaban) ### caption prefix: a TOK emoji, steps: 1500 ![lora_image](https://pbxt.replicate.delivery/wJf4lByhD10xCyqaAp2sgsJYW8Xw99sbgue5Fyvj176pD2kRA/out-0.png) > ## Inference with Replicate API Grab your replicate token [here](https://replicate.com/account) ```bash pip install replicate export REPLICATE_API_TOKEN=r8_************************************* ``` ```py import replicate output = replicate.run( "linoy_lora@sha256:c659971dd2ba3789a80549674b90f69eebd865164d1219f53f96f7f7506911c1", input={"prompt": "a hugging face emoji in the style of TOK, dressed as yoda"} ) print(output) ``` You may also do inference via the API with Node.js or curl, and locally with COG and Docker, [check out the Replicate API page for this model](https://replicate.com/linoytsaban/linoy_lora/api) ## Inference with 🧨 diffusers Replicate SDXL LoRAs are trained with Pivotal Tuning, which combines training a concept via Dreambooth LoRA with training a new token with Textual Inversion. As `diffusers` doesn't yet support textual inversion for SDXL, we will use cog-sdxl `TokenEmbeddingsHandler` class. The trigger tokens for your prompt will be `<s0><s1>` ```shell pip install diffusers transformers accelerate safetensors huggingface_hub git clone https://github.com/replicate/cog-sdxl cog_sdxl ``` ```py import torch from huggingface_hub import hf_hub_download from diffusers import DiffusionPipeline from cog_sdxl.dataset_and_utils import TokenEmbeddingsHandler from diffusers.models import AutoencoderKL pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", ).to("cuda") pipe.load_lora_weights("LinoyTsaban/huggy-lora-sdxl-v6", weight_name="lora.safetensors") text_encoders = [pipe.text_encoder, pipe.text_encoder_2] tokenizers = [pipe.tokenizer, pipe.tokenizer_2] embedding_path = hf_hub_download(repo_id="LinoyTsaban/huggy-lora-sdxl-v6", filename="embeddings.pti", repo_type="model") embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers) embhandler.load_embeddings(embedding_path) prompt="a hugging face emoji in the style of <s0><s1>, dressed as yoda" images = pipe( prompt, cross_attention_kwargs={"scale": 0.8}, ).images #your output image images[0] ```
EnzoZacharias/LLama2-7b-fine-tuned-plc_V1
EnzoZacharias
2023-09-21T08:37:41Z
0
0
null
[ "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:finetune:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2023-09-21T08:28:00Z
--- base_model: meta-llama/Llama-2-7b-chat-hf tags: - generated_from_trainer model-index: - name: LLama2-7b-fine-tuned-plc_V1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LLama2-7b-fine-tuned-plc_V1 This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 50 ### Training results ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.1.0.dev20230823 - Datasets 2.14.4 - Tokenizers 0.13.3
JoyboyXoXo/ppo-lunarlander-v3
JoyboyXoXo
2023-09-21T08:34:09Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-09-21T08:34:03Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -178.93 +/- 58.48 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'JoyboyXoXo/ppo-lunarlander-v3' 'batch_size': 512 'minibatch_size': 128} ```
TemporalGames/opt-1.3b-lambada_rmt_ms7_bptt7_sl2028_mt10_lTrue_LORA_cur2
TemporalGames
2023-09-21T08:28:42Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-21T08:28:39Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
McMilly/TNF-Milly
McMilly
2023-09-21T08:17:33Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-09-21T08:17:33Z
--- license: bigscience-openrail-m ---
actualbrain/Reinforce-pixelcopter-v1
actualbrain
2023-09-21T08:17:31Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-21T07:50:19Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 18.40 +/- 12.92 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
huygdng/whisper_small_tw11
huygdng
2023-09-21T08:15:03Z
75
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-21T08:14:16Z
--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper_small_tw11 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_small_tw11 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0462 - Wer: 1.3691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.25e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1200 - training_steps: 2400 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.5528 | 2.86 | 400 | 2.8688 | 2.2350 | | 1.5461 | 5.71 | 800 | 2.2548 | 2.1533 | | 0.6586 | 8.57 | 1200 | 2.4110 | 1.5250 | | 0.1633 | 11.43 | 1600 | 2.6985 | 1.4415 | | 0.0318 | 14.29 | 2000 | 2.9465 | 1.2165 | | 0.0119 | 17.14 | 2400 | 3.0462 | 1.3691 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0
jmbilbao25/falcon-7b-instruct-ft-adapters
jmbilbao25
2023-09-21T08:11:37Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-21T08:11:31Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0
hihisu1231/mbti_230921_4
hihisu1231
2023-09-21T08:10:51Z
140
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-21T08:06:27Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: polyglot-1.3b-koalpaca-v1.1a-rtx3090__230921_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # polyglot-1.3b-koalpaca-v1.1a-rtx3090__230921_4 This model is a fine-tuned version of [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
hbbz/cyberhbbz
hbbz
2023-09-21T08:02:30Z
29
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-21T07:59:13Z
--- license: creativeml-openrail-m ---
QWW/dreambooth_beacon
QWW
2023-09-21T07:55:28Z
29
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-21T07:42:22Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - QWW/dreambooth_beacon This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
loupzeur/ppo-SnowballTarget
loupzeur
2023-09-21T07:53:51Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-09-21T07:52:53Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: loupzeur/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AIYIYA/my_html2
AIYIYA
2023-09-21T07:50:25Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-chinese", "base_model:finetune:google-bert/bert-base-chinese", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-21T06:37:34Z
--- base_model: bert-base-chinese tags: - generated_from_keras_callback model-index: - name: AIYIYA/my_html2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # AIYIYA/my_html2 This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1581 - Train Accuracy: 0.9835 - Validation Loss: 0.1561 - Validation Accuracy: 1.0 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 24, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.3969 | 0.9339 | 0.2428 | 0.9512 | 0 | | 0.1840 | 0.9835 | 0.1561 | 1.0 | 1 | | 0.1581 | 0.9835 | 0.1561 | 1.0 | 2 | ### Framework versions - Transformers 4.33.2 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3
Apptware/D_tell_market_falcon7b_sharded
Apptware
2023-09-21T07:47:05Z
4
0
peft
[ "peft", "region:us" ]
null
2023-09-21T07:47:02Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
yezituan/test
yezituan
2023-09-21T07:46:42Z
0
0
null
[ "en", "dataset:allenai/dolma", "license:openrail", "region:us" ]
null
2023-09-21T07:44:03Z
--- license: openrail datasets: - allenai/dolma language: - en metrics: - accuracy ---
Chang-Su/llama-2-13b-chat-ko-adapter
Chang-Su
2023-09-21T07:41:56Z
0
0
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2023-08-09T14:11:05Z
--- license: cc-by-nc-sa-4.0 ---
zongxiao/distilhubert-finetuned-gtzan
zongxiao
2023-09-21T07:20:31Z
161
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-09-21T03:32:42Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.84 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5365 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.002 | 1.0 | 112 | 1.8275 | 0.38 | | 1.3205 | 2.0 | 225 | 1.1926 | 0.72 | | 1.0811 | 3.0 | 337 | 0.9175 | 0.75 | | 1.0449 | 4.0 | 450 | 0.8505 | 0.73 | | 0.6167 | 5.0 | 562 | 0.6636 | 0.82 | | 0.4868 | 6.0 | 675 | 0.7787 | 0.77 | | 0.3014 | 7.0 | 787 | 0.5535 | 0.83 | | 0.2111 | 8.0 | 900 | 0.5329 | 0.82 | | 0.1308 | 9.0 | 1012 | 0.5277 | 0.85 | | 0.0825 | 9.96 | 1120 | 0.5365 | 0.84 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0
ckeisc/lora-trained
ckeisc
2023-09-21T07:10:31Z
2
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:SG161222/Realistic_Vision_V5.0_noVAE", "base_model:adapter:SG161222/Realistic_Vision_V5.0_noVAE", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-09-21T05:06:28Z
--- license: creativeml-openrail-m base_model: SG161222/Realistic_Vision_V5.0_noVAE instance_prompt: a photo of ch1u_bubu toddler tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - ckeisc/lora-trained These are LoRA adaption weights for SG161222/Realistic_Vision_V5.0_noVAE. The weights were trained on a photo of ch1u_bubu toddler using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
CyberHarem/wakui_rumi_idolmastercinderellagirls
CyberHarem
2023-09-21T07:09:06Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/wakui_rumi_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-21T06:58:24Z
--- license: mit datasets: - CyberHarem/wakui_rumi_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of wakui_rumi_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 4760, you need to download `4760/wakui_rumi_idolmastercinderellagirls.pt` as the embedding and `4760/wakui_rumi_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 4760**, with the score of 0.939. The trigger words are: 1. `wakui_rumi_idolmastercinderellagirls` 2. `short_hair, blue_hair, jewelry, black_hair` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:--------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 5100 | 0.923 | [Download](5100/wakui_rumi_idolmastercinderellagirls.zip) | ![pattern_1-5100](5100/previews/pattern_1.png) | ![pattern_2-5100](5100/previews/pattern_2.png) | ![pattern_3-5100](5100/previews/pattern_3.png) | ![pattern_4-5100](5100/previews/pattern_4.png) | ![pattern_5-5100](5100/previews/pattern_5.png) | ![pattern_6-5100](5100/previews/pattern_6.png) | ![pattern_7-5100](5100/previews/pattern_7.png) | ![bikini-5100](5100/previews/bikini.png) | [<NSFW, click to see>](5100/previews/bondage.png) | ![free-5100](5100/previews/free.png) | ![maid-5100](5100/previews/maid.png) | ![miko-5100](5100/previews/miko.png) | [<NSFW, click to see>](5100/previews/nude.png) | [<NSFW, click to see>](5100/previews/nude2.png) | ![suit-5100](5100/previews/suit.png) | ![yukata-5100](5100/previews/yukata.png) | | **4760** | **0.939** | [**Download**](4760/wakui_rumi_idolmastercinderellagirls.zip) | ![pattern_1-4760](4760/previews/pattern_1.png) | ![pattern_2-4760](4760/previews/pattern_2.png) | ![pattern_3-4760](4760/previews/pattern_3.png) | ![pattern_4-4760](4760/previews/pattern_4.png) | ![pattern_5-4760](4760/previews/pattern_5.png) | ![pattern_6-4760](4760/previews/pattern_6.png) | ![pattern_7-4760](4760/previews/pattern_7.png) | ![bikini-4760](4760/previews/bikini.png) | [<NSFW, click to see>](4760/previews/bondage.png) | ![free-4760](4760/previews/free.png) | ![maid-4760](4760/previews/maid.png) | ![miko-4760](4760/previews/miko.png) | [<NSFW, click to see>](4760/previews/nude.png) | [<NSFW, click to see>](4760/previews/nude2.png) | ![suit-4760](4760/previews/suit.png) | ![yukata-4760](4760/previews/yukata.png) | | 4420 | 0.854 | [Download](4420/wakui_rumi_idolmastercinderellagirls.zip) | ![pattern_1-4420](4420/previews/pattern_1.png) | ![pattern_2-4420](4420/previews/pattern_2.png) | ![pattern_3-4420](4420/previews/pattern_3.png) | ![pattern_4-4420](4420/previews/pattern_4.png) | ![pattern_5-4420](4420/previews/pattern_5.png) | ![pattern_6-4420](4420/previews/pattern_6.png) | ![pattern_7-4420](4420/previews/pattern_7.png) | ![bikini-4420](4420/previews/bikini.png) | [<NSFW, click to see>](4420/previews/bondage.png) | ![free-4420](4420/previews/free.png) | ![maid-4420](4420/previews/maid.png) | ![miko-4420](4420/previews/miko.png) | [<NSFW, click to see>](4420/previews/nude.png) | [<NSFW, click to see>](4420/previews/nude2.png) | ![suit-4420](4420/previews/suit.png) | ![yukata-4420](4420/previews/yukata.png) | | 4080 | 0.820 | [Download](4080/wakui_rumi_idolmastercinderellagirls.zip) | ![pattern_1-4080](4080/previews/pattern_1.png) | ![pattern_2-4080](4080/previews/pattern_2.png) | ![pattern_3-4080](4080/previews/pattern_3.png) | ![pattern_4-4080](4080/previews/pattern_4.png) | ![pattern_5-4080](4080/previews/pattern_5.png) | ![pattern_6-4080](4080/previews/pattern_6.png) | ![pattern_7-4080](4080/previews/pattern_7.png) | ![bikini-4080](4080/previews/bikini.png) | [<NSFW, click to see>](4080/previews/bondage.png) | ![free-4080](4080/previews/free.png) | ![maid-4080](4080/previews/maid.png) | ![miko-4080](4080/previews/miko.png) | [<NSFW, click to see>](4080/previews/nude.png) | [<NSFW, click to see>](4080/previews/nude2.png) | ![suit-4080](4080/previews/suit.png) | ![yukata-4080](4080/previews/yukata.png) | | 3740 | 0.873 | [Download](3740/wakui_rumi_idolmastercinderellagirls.zip) | ![pattern_1-3740](3740/previews/pattern_1.png) | ![pattern_2-3740](3740/previews/pattern_2.png) | ![pattern_3-3740](3740/previews/pattern_3.png) | ![pattern_4-3740](3740/previews/pattern_4.png) | ![pattern_5-3740](3740/previews/pattern_5.png) | ![pattern_6-3740](3740/previews/pattern_6.png) | ![pattern_7-3740](3740/previews/pattern_7.png) | ![bikini-3740](3740/previews/bikini.png) | [<NSFW, click to see>](3740/previews/bondage.png) | ![free-3740](3740/previews/free.png) | ![maid-3740](3740/previews/maid.png) | ![miko-3740](3740/previews/miko.png) | [<NSFW, click to see>](3740/previews/nude.png) | [<NSFW, click to see>](3740/previews/nude2.png) | ![suit-3740](3740/previews/suit.png) | ![yukata-3740](3740/previews/yukata.png) | | 3400 | 0.766 | [Download](3400/wakui_rumi_idolmastercinderellagirls.zip) | ![pattern_1-3400](3400/previews/pattern_1.png) | ![pattern_2-3400](3400/previews/pattern_2.png) | ![pattern_3-3400](3400/previews/pattern_3.png) | ![pattern_4-3400](3400/previews/pattern_4.png) | ![pattern_5-3400](3400/previews/pattern_5.png) | ![pattern_6-3400](3400/previews/pattern_6.png) | ![pattern_7-3400](3400/previews/pattern_7.png) | ![bikini-3400](3400/previews/bikini.png) | [<NSFW, click to see>](3400/previews/bondage.png) | ![free-3400](3400/previews/free.png) | ![maid-3400](3400/previews/maid.png) | ![miko-3400](3400/previews/miko.png) | [<NSFW, click to see>](3400/previews/nude.png) | [<NSFW, click to see>](3400/previews/nude2.png) | ![suit-3400](3400/previews/suit.png) | ![yukata-3400](3400/previews/yukata.png) | | 3060 | 0.829 | [Download](3060/wakui_rumi_idolmastercinderellagirls.zip) | ![pattern_1-3060](3060/previews/pattern_1.png) | ![pattern_2-3060](3060/previews/pattern_2.png) | ![pattern_3-3060](3060/previews/pattern_3.png) | ![pattern_4-3060](3060/previews/pattern_4.png) | ![pattern_5-3060](3060/previews/pattern_5.png) | ![pattern_6-3060](3060/previews/pattern_6.png) | ![pattern_7-3060](3060/previews/pattern_7.png) | ![bikini-3060](3060/previews/bikini.png) | [<NSFW, click to see>](3060/previews/bondage.png) | ![free-3060](3060/previews/free.png) | ![maid-3060](3060/previews/maid.png) | ![miko-3060](3060/previews/miko.png) | [<NSFW, click to see>](3060/previews/nude.png) | [<NSFW, click to see>](3060/previews/nude2.png) | ![suit-3060](3060/previews/suit.png) | ![yukata-3060](3060/previews/yukata.png) | | 2720 | 0.758 | [Download](2720/wakui_rumi_idolmastercinderellagirls.zip) | ![pattern_1-2720](2720/previews/pattern_1.png) | ![pattern_2-2720](2720/previews/pattern_2.png) | ![pattern_3-2720](2720/previews/pattern_3.png) | ![pattern_4-2720](2720/previews/pattern_4.png) | ![pattern_5-2720](2720/previews/pattern_5.png) | ![pattern_6-2720](2720/previews/pattern_6.png) | ![pattern_7-2720](2720/previews/pattern_7.png) | ![bikini-2720](2720/previews/bikini.png) | [<NSFW, click to see>](2720/previews/bondage.png) | ![free-2720](2720/previews/free.png) | ![maid-2720](2720/previews/maid.png) | ![miko-2720](2720/previews/miko.png) | [<NSFW, click to see>](2720/previews/nude.png) | [<NSFW, click to see>](2720/previews/nude2.png) | ![suit-2720](2720/previews/suit.png) | ![yukata-2720](2720/previews/yukata.png) | | 2380 | 0.755 | [Download](2380/wakui_rumi_idolmastercinderellagirls.zip) | ![pattern_1-2380](2380/previews/pattern_1.png) | ![pattern_2-2380](2380/previews/pattern_2.png) | ![pattern_3-2380](2380/previews/pattern_3.png) | ![pattern_4-2380](2380/previews/pattern_4.png) | ![pattern_5-2380](2380/previews/pattern_5.png) | ![pattern_6-2380](2380/previews/pattern_6.png) | ![pattern_7-2380](2380/previews/pattern_7.png) | ![bikini-2380](2380/previews/bikini.png) | [<NSFW, click to see>](2380/previews/bondage.png) | ![free-2380](2380/previews/free.png) | ![maid-2380](2380/previews/maid.png) | ![miko-2380](2380/previews/miko.png) | [<NSFW, click to see>](2380/previews/nude.png) | [<NSFW, click to see>](2380/previews/nude2.png) | ![suit-2380](2380/previews/suit.png) | ![yukata-2380](2380/previews/yukata.png) | | 2040 | 0.911 | [Download](2040/wakui_rumi_idolmastercinderellagirls.zip) | ![pattern_1-2040](2040/previews/pattern_1.png) | ![pattern_2-2040](2040/previews/pattern_2.png) | ![pattern_3-2040](2040/previews/pattern_3.png) | ![pattern_4-2040](2040/previews/pattern_4.png) | ![pattern_5-2040](2040/previews/pattern_5.png) | ![pattern_6-2040](2040/previews/pattern_6.png) | ![pattern_7-2040](2040/previews/pattern_7.png) | ![bikini-2040](2040/previews/bikini.png) | [<NSFW, click to see>](2040/previews/bondage.png) | ![free-2040](2040/previews/free.png) | ![maid-2040](2040/previews/maid.png) | ![miko-2040](2040/previews/miko.png) | [<NSFW, click to see>](2040/previews/nude.png) | [<NSFW, click to see>](2040/previews/nude2.png) | ![suit-2040](2040/previews/suit.png) | ![yukata-2040](2040/previews/yukata.png) | | 1700 | 0.842 | [Download](1700/wakui_rumi_idolmastercinderellagirls.zip) | ![pattern_1-1700](1700/previews/pattern_1.png) | ![pattern_2-1700](1700/previews/pattern_2.png) | ![pattern_3-1700](1700/previews/pattern_3.png) | ![pattern_4-1700](1700/previews/pattern_4.png) | ![pattern_5-1700](1700/previews/pattern_5.png) | ![pattern_6-1700](1700/previews/pattern_6.png) | ![pattern_7-1700](1700/previews/pattern_7.png) | ![bikini-1700](1700/previews/bikini.png) | [<NSFW, click to see>](1700/previews/bondage.png) | ![free-1700](1700/previews/free.png) | ![maid-1700](1700/previews/maid.png) | ![miko-1700](1700/previews/miko.png) | [<NSFW, click to see>](1700/previews/nude.png) | [<NSFW, click to see>](1700/previews/nude2.png) | ![suit-1700](1700/previews/suit.png) | ![yukata-1700](1700/previews/yukata.png) | | 1360 | 0.824 | [Download](1360/wakui_rumi_idolmastercinderellagirls.zip) | ![pattern_1-1360](1360/previews/pattern_1.png) | ![pattern_2-1360](1360/previews/pattern_2.png) | ![pattern_3-1360](1360/previews/pattern_3.png) | ![pattern_4-1360](1360/previews/pattern_4.png) | ![pattern_5-1360](1360/previews/pattern_5.png) | ![pattern_6-1360](1360/previews/pattern_6.png) | ![pattern_7-1360](1360/previews/pattern_7.png) | ![bikini-1360](1360/previews/bikini.png) | [<NSFW, click to see>](1360/previews/bondage.png) | ![free-1360](1360/previews/free.png) | ![maid-1360](1360/previews/maid.png) | ![miko-1360](1360/previews/miko.png) | [<NSFW, click to see>](1360/previews/nude.png) | [<NSFW, click to see>](1360/previews/nude2.png) | ![suit-1360](1360/previews/suit.png) | ![yukata-1360](1360/previews/yukata.png) | | 1020 | 0.908 | [Download](1020/wakui_rumi_idolmastercinderellagirls.zip) | ![pattern_1-1020](1020/previews/pattern_1.png) | ![pattern_2-1020](1020/previews/pattern_2.png) | ![pattern_3-1020](1020/previews/pattern_3.png) | ![pattern_4-1020](1020/previews/pattern_4.png) | ![pattern_5-1020](1020/previews/pattern_5.png) | ![pattern_6-1020](1020/previews/pattern_6.png) | ![pattern_7-1020](1020/previews/pattern_7.png) | ![bikini-1020](1020/previews/bikini.png) | [<NSFW, click to see>](1020/previews/bondage.png) | ![free-1020](1020/previews/free.png) | ![maid-1020](1020/previews/maid.png) | ![miko-1020](1020/previews/miko.png) | [<NSFW, click to see>](1020/previews/nude.png) | [<NSFW, click to see>](1020/previews/nude2.png) | ![suit-1020](1020/previews/suit.png) | ![yukata-1020](1020/previews/yukata.png) | | 680 | 0.903 | [Download](680/wakui_rumi_idolmastercinderellagirls.zip) | ![pattern_1-680](680/previews/pattern_1.png) | ![pattern_2-680](680/previews/pattern_2.png) | ![pattern_3-680](680/previews/pattern_3.png) | ![pattern_4-680](680/previews/pattern_4.png) | ![pattern_5-680](680/previews/pattern_5.png) | ![pattern_6-680](680/previews/pattern_6.png) | ![pattern_7-680](680/previews/pattern_7.png) | ![bikini-680](680/previews/bikini.png) | [<NSFW, click to see>](680/previews/bondage.png) | ![free-680](680/previews/free.png) | ![maid-680](680/previews/maid.png) | ![miko-680](680/previews/miko.png) | [<NSFW, click to see>](680/previews/nude.png) | [<NSFW, click to see>](680/previews/nude2.png) | ![suit-680](680/previews/suit.png) | ![yukata-680](680/previews/yukata.png) | | 340 | 0.898 | [Download](340/wakui_rumi_idolmastercinderellagirls.zip) | ![pattern_1-340](340/previews/pattern_1.png) | ![pattern_2-340](340/previews/pattern_2.png) | ![pattern_3-340](340/previews/pattern_3.png) | ![pattern_4-340](340/previews/pattern_4.png) | ![pattern_5-340](340/previews/pattern_5.png) | ![pattern_6-340](340/previews/pattern_6.png) | ![pattern_7-340](340/previews/pattern_7.png) | ![bikini-340](340/previews/bikini.png) | [<NSFW, click to see>](340/previews/bondage.png) | ![free-340](340/previews/free.png) | ![maid-340](340/previews/maid.png) | ![miko-340](340/previews/miko.png) | [<NSFW, click to see>](340/previews/nude.png) | [<NSFW, click to see>](340/previews/nude2.png) | ![suit-340](340/previews/suit.png) | ![yukata-340](340/previews/yukata.png) |
turboderp/Llama2-13B-exl2
turboderp
2023-09-21T06:44:13Z
19
2
null
[ "region:us" ]
null
2023-09-21T06:42:13Z
EXL2 quants of Llama2-13B [2.50 bits per weight](https://huggingface.co/turboderp/Llama2-13B-exl2/tree/2.5bpw) [3.00 bits per weight](https://huggingface.co/turboderp/Llama2-13B-exl2/tree/3.0bpw) [3.50 bits per weight](https://huggingface.co/turboderp/Llama2-13B-exl2/tree/3.5bpw) [4.00 bits per weight](https://huggingface.co/turboderp/Llama2-13B-exl2/tree/4.0bpw) [4.65 bits per weight](https://huggingface.co/turboderp/Llama2-13B-exl2/tree/4.65bpw) [5.00 bits per weight](https://huggingface.co/turboderp/Llama2-13B-exl2/tree/5.0bpw) [6.00 bits per weight](https://huggingface.co/turboderp/Llama2-13B-exl2/tree/6.0bpw) [8.00 bits per weight](https://huggingface.co/turboderp/Llama2-13B-exl2/tree/8.0bpw) [measurement.json](https://huggingface.co/turboderp/Llama2-13B-exl2/blob/main/measurement.json)
h4lo/my_awesome_eli5_clm-model-text
h4lo
2023-09-21T06:41:29Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-21T06:18:06Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_awesome_eli5_clm-model-text results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_clm-model-text This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.8707 | 1.0 | 1133 | 3.7535 | | 3.7616 | 2.0 | 2266 | 3.7337 | | 3.6998 | 3.0 | 3399 | 3.7246 | | 3.6529 | 4.0 | 4532 | 3.7209 | | 3.6022 | 5.0 | 5665 | 3.7203 | | 3.5724 | 6.0 | 6798 | 3.7218 | | 3.5374 | 7.0 | 7931 | 3.7198 | | 3.5151 | 8.0 | 9064 | 3.7240 | | 3.5004 | 9.0 | 10197 | 3.7274 | | 3.4857 | 10.0 | 11330 | 3.7288 | | 3.4702 | 11.0 | 12463 | 3.7305 | | 3.4646 | 12.0 | 13596 | 3.7314 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
uttu/llama2_dolly_20_steps
uttu
2023-09-21T06:39:32Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-21T06:39:26Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
lash/phi-1_5-finetuned-gsm8k
lash
2023-09-21T06:34:12Z
56
0
transformers
[ "transformers", "pytorch", "mixformer-sequential", "text-generation", "generated_from_trainer", "custom_code", "base_model:microsoft/phi-1_5", "base_model:finetune:microsoft/phi-1_5", "license:other", "autotrain_compatible", "region:us" ]
text-generation
2023-09-21T06:22:54Z
--- license: other base_model: microsoft/phi-1_5 tags: - generated_from_trainer model-index: - name: phi-1_5-finetuned-gsm8k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi-1_5-finetuned-gsm8k This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.33.1 - Pytorch 2.1.0.dev20230629 - Datasets 2.14.5 - Tokenizers 0.13.3
Sandra26/Sandy
Sandra26
2023-09-21T06:29:44Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-20T21:04:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: Sandy results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8406862745098039 - name: F1 type: f1 value: 0.8820326678765881 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Sandy This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6410 - Accuracy: 0.8407 - F1: 0.8820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4994 | 1.09 | 500 | 0.7821 | 0.8211 | 0.8793 | | 0.3466 | 2.18 | 1000 | 0.6410 | 0.8407 | 0.8820 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
CyberHarem/tsuchiya_ako_idolmastercinderellagirls
CyberHarem
2023-09-21T06:19:56Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/tsuchiya_ako_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-21T06:09:58Z
--- license: mit datasets: - CyberHarem/tsuchiya_ako_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of tsuchiya_ako_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 3060, you need to download `3060/tsuchiya_ako_idolmastercinderellagirls.pt` as the embedding and `3060/tsuchiya_ako_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 3060**, with the score of 0.968. The trigger words are: 1. `tsuchiya_ako_idolmastercinderellagirls` 2. `brown_hair, short_hair, glasses, hair_ornament, mole, hairclip, ahoge, green_eyes, smile, mole_under_mouth, open_mouth` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:----------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-----------------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 5100 | 0.960 | [Download](5100/tsuchiya_ako_idolmastercinderellagirls.zip) | ![pattern_1-5100](5100/previews/pattern_1.png) | ![bikini-5100](5100/previews/bikini.png) | [<NSFW, click to see>](5100/previews/bondage.png) | [<NSFW, click to see>](5100/previews/free.png) | ![maid-5100](5100/previews/maid.png) | ![miko-5100](5100/previews/miko.png) | [<NSFW, click to see>](5100/previews/nude.png) | [<NSFW, click to see>](5100/previews/nude2.png) | ![suit-5100](5100/previews/suit.png) | ![yukata-5100](5100/previews/yukata.png) | | 4760 | 0.953 | [Download](4760/tsuchiya_ako_idolmastercinderellagirls.zip) | ![pattern_1-4760](4760/previews/pattern_1.png) | ![bikini-4760](4760/previews/bikini.png) | [<NSFW, click to see>](4760/previews/bondage.png) | [<NSFW, click to see>](4760/previews/free.png) | ![maid-4760](4760/previews/maid.png) | ![miko-4760](4760/previews/miko.png) | [<NSFW, click to see>](4760/previews/nude.png) | [<NSFW, click to see>](4760/previews/nude2.png) | ![suit-4760](4760/previews/suit.png) | ![yukata-4760](4760/previews/yukata.png) | | 4420 | 0.950 | [Download](4420/tsuchiya_ako_idolmastercinderellagirls.zip) | ![pattern_1-4420](4420/previews/pattern_1.png) | ![bikini-4420](4420/previews/bikini.png) | [<NSFW, click to see>](4420/previews/bondage.png) | [<NSFW, click to see>](4420/previews/free.png) | ![maid-4420](4420/previews/maid.png) | ![miko-4420](4420/previews/miko.png) | [<NSFW, click to see>](4420/previews/nude.png) | [<NSFW, click to see>](4420/previews/nude2.png) | ![suit-4420](4420/previews/suit.png) | ![yukata-4420](4420/previews/yukata.png) | | 4080 | 0.950 | [Download](4080/tsuchiya_ako_idolmastercinderellagirls.zip) | ![pattern_1-4080](4080/previews/pattern_1.png) | ![bikini-4080](4080/previews/bikini.png) | [<NSFW, click to see>](4080/previews/bondage.png) | [<NSFW, click to see>](4080/previews/free.png) | ![maid-4080](4080/previews/maid.png) | ![miko-4080](4080/previews/miko.png) | [<NSFW, click to see>](4080/previews/nude.png) | [<NSFW, click to see>](4080/previews/nude2.png) | ![suit-4080](4080/previews/suit.png) | ![yukata-4080](4080/previews/yukata.png) | | 3740 | 0.953 | [Download](3740/tsuchiya_ako_idolmastercinderellagirls.zip) | ![pattern_1-3740](3740/previews/pattern_1.png) | ![bikini-3740](3740/previews/bikini.png) | [<NSFW, click to see>](3740/previews/bondage.png) | [<NSFW, click to see>](3740/previews/free.png) | ![maid-3740](3740/previews/maid.png) | ![miko-3740](3740/previews/miko.png) | [<NSFW, click to see>](3740/previews/nude.png) | [<NSFW, click to see>](3740/previews/nude2.png) | ![suit-3740](3740/previews/suit.png) | ![yukata-3740](3740/previews/yukata.png) | | 3400 | 0.961 | [Download](3400/tsuchiya_ako_idolmastercinderellagirls.zip) | ![pattern_1-3400](3400/previews/pattern_1.png) | ![bikini-3400](3400/previews/bikini.png) | [<NSFW, click to see>](3400/previews/bondage.png) | [<NSFW, click to see>](3400/previews/free.png) | ![maid-3400](3400/previews/maid.png) | ![miko-3400](3400/previews/miko.png) | [<NSFW, click to see>](3400/previews/nude.png) | [<NSFW, click to see>](3400/previews/nude2.png) | ![suit-3400](3400/previews/suit.png) | ![yukata-3400](3400/previews/yukata.png) | | **3060** | **0.968** | [**Download**](3060/tsuchiya_ako_idolmastercinderellagirls.zip) | ![pattern_1-3060](3060/previews/pattern_1.png) | ![bikini-3060](3060/previews/bikini.png) | [<NSFW, click to see>](3060/previews/bondage.png) | [<NSFW, click to see>](3060/previews/free.png) | ![maid-3060](3060/previews/maid.png) | ![miko-3060](3060/previews/miko.png) | [<NSFW, click to see>](3060/previews/nude.png) | [<NSFW, click to see>](3060/previews/nude2.png) | ![suit-3060](3060/previews/suit.png) | ![yukata-3060](3060/previews/yukata.png) | | 2720 | 0.957 | [Download](2720/tsuchiya_ako_idolmastercinderellagirls.zip) | ![pattern_1-2720](2720/previews/pattern_1.png) | ![bikini-2720](2720/previews/bikini.png) | [<NSFW, click to see>](2720/previews/bondage.png) | [<NSFW, click to see>](2720/previews/free.png) | ![maid-2720](2720/previews/maid.png) | ![miko-2720](2720/previews/miko.png) | [<NSFW, click to see>](2720/previews/nude.png) | [<NSFW, click to see>](2720/previews/nude2.png) | ![suit-2720](2720/previews/suit.png) | ![yukata-2720](2720/previews/yukata.png) | | 2380 | 0.925 | [Download](2380/tsuchiya_ako_idolmastercinderellagirls.zip) | ![pattern_1-2380](2380/previews/pattern_1.png) | ![bikini-2380](2380/previews/bikini.png) | [<NSFW, click to see>](2380/previews/bondage.png) | [<NSFW, click to see>](2380/previews/free.png) | ![maid-2380](2380/previews/maid.png) | ![miko-2380](2380/previews/miko.png) | [<NSFW, click to see>](2380/previews/nude.png) | [<NSFW, click to see>](2380/previews/nude2.png) | ![suit-2380](2380/previews/suit.png) | ![yukata-2380](2380/previews/yukata.png) | | 2040 | 0.917 | [Download](2040/tsuchiya_ako_idolmastercinderellagirls.zip) | ![pattern_1-2040](2040/previews/pattern_1.png) | ![bikini-2040](2040/previews/bikini.png) | [<NSFW, click to see>](2040/previews/bondage.png) | [<NSFW, click to see>](2040/previews/free.png) | ![maid-2040](2040/previews/maid.png) | ![miko-2040](2040/previews/miko.png) | [<NSFW, click to see>](2040/previews/nude.png) | [<NSFW, click to see>](2040/previews/nude2.png) | ![suit-2040](2040/previews/suit.png) | ![yukata-2040](2040/previews/yukata.png) | | 1700 | 0.880 | [Download](1700/tsuchiya_ako_idolmastercinderellagirls.zip) | ![pattern_1-1700](1700/previews/pattern_1.png) | ![bikini-1700](1700/previews/bikini.png) | [<NSFW, click to see>](1700/previews/bondage.png) | [<NSFW, click to see>](1700/previews/free.png) | ![maid-1700](1700/previews/maid.png) | ![miko-1700](1700/previews/miko.png) | [<NSFW, click to see>](1700/previews/nude.png) | [<NSFW, click to see>](1700/previews/nude2.png) | ![suit-1700](1700/previews/suit.png) | ![yukata-1700](1700/previews/yukata.png) | | 1360 | 0.942 | [Download](1360/tsuchiya_ako_idolmastercinderellagirls.zip) | ![pattern_1-1360](1360/previews/pattern_1.png) | ![bikini-1360](1360/previews/bikini.png) | [<NSFW, click to see>](1360/previews/bondage.png) | [<NSFW, click to see>](1360/previews/free.png) | ![maid-1360](1360/previews/maid.png) | ![miko-1360](1360/previews/miko.png) | [<NSFW, click to see>](1360/previews/nude.png) | [<NSFW, click to see>](1360/previews/nude2.png) | ![suit-1360](1360/previews/suit.png) | ![yukata-1360](1360/previews/yukata.png) | | 1020 | 0.908 | [Download](1020/tsuchiya_ako_idolmastercinderellagirls.zip) | ![pattern_1-1020](1020/previews/pattern_1.png) | ![bikini-1020](1020/previews/bikini.png) | [<NSFW, click to see>](1020/previews/bondage.png) | [<NSFW, click to see>](1020/previews/free.png) | ![maid-1020](1020/previews/maid.png) | ![miko-1020](1020/previews/miko.png) | [<NSFW, click to see>](1020/previews/nude.png) | [<NSFW, click to see>](1020/previews/nude2.png) | ![suit-1020](1020/previews/suit.png) | ![yukata-1020](1020/previews/yukata.png) | | 680 | 0.915 | [Download](680/tsuchiya_ako_idolmastercinderellagirls.zip) | ![pattern_1-680](680/previews/pattern_1.png) | ![bikini-680](680/previews/bikini.png) | [<NSFW, click to see>](680/previews/bondage.png) | [<NSFW, click to see>](680/previews/free.png) | ![maid-680](680/previews/maid.png) | ![miko-680](680/previews/miko.png) | [<NSFW, click to see>](680/previews/nude.png) | [<NSFW, click to see>](680/previews/nude2.png) | ![suit-680](680/previews/suit.png) | ![yukata-680](680/previews/yukata.png) | | 340 | 0.835 | [Download](340/tsuchiya_ako_idolmastercinderellagirls.zip) | ![pattern_1-340](340/previews/pattern_1.png) | ![bikini-340](340/previews/bikini.png) | [<NSFW, click to see>](340/previews/bondage.png) | [<NSFW, click to see>](340/previews/free.png) | ![maid-340](340/previews/maid.png) | ![miko-340](340/previews/miko.png) | [<NSFW, click to see>](340/previews/nude.png) | [<NSFW, click to see>](340/previews/nude2.png) | ![suit-340](340/previews/suit.png) | ![yukata-340](340/previews/yukata.png) |
Eito2023/EitisStimmen
Eito2023
2023-09-21T06:19:08Z
0
0
nemo
[ "nemo", "de", "dataset:totally-not-an-llm/EverythingLM-data-V3", "license:other", "region:us" ]
null
2023-09-21T06:13:18Z
--- license: other datasets: - totally-not-an-llm/EverythingLM-data-V3 language: - de metrics: - code_eval library_name: nemo ---
li-ping/songgodv2
li-ping
2023-09-21T06:11:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-21T05:54:04Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
h4lo/my_awesome_billsum_model_0921
h4lo
2023-09-21T06:09:15Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:billsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-21T05:52:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: my_awesome_eli5_clm-model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1959 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_clm-model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.3071 - Rouge1: 0.1959 - Rouge2: 0.1013 - Rougel: 0.1685 - Rougelsum: 0.1683 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.7637 | 0.1277 | 0.0387 | 0.1065 | 0.1066 | 19.0 | | No log | 2.0 | 124 | 2.5350 | 0.1408 | 0.0506 | 0.1165 | 0.1165 | 19.0 | | No log | 3.0 | 186 | 2.4431 | 0.1503 | 0.0589 | 0.1245 | 0.1245 | 19.0 | | No log | 4.0 | 248 | 2.3946 | 0.1774 | 0.0796 | 0.1502 | 0.1501 | 19.0 | | No log | 5.0 | 310 | 2.3601 | 0.19 | 0.0939 | 0.1631 | 0.1631 | 19.0 | | No log | 6.0 | 372 | 2.3400 | 0.1952 | 0.0993 | 0.1676 | 0.1676 | 19.0 | | No log | 7.0 | 434 | 2.3238 | 0.196 | 0.1003 | 0.1682 | 0.1681 | 19.0 | | No log | 8.0 | 496 | 2.3140 | 0.1973 | 0.1017 | 0.1693 | 0.1692 | 19.0 | | 2.7599 | 9.0 | 558 | 2.3084 | 0.1957 | 0.1009 | 0.1686 | 0.1682 | 19.0 | | 2.7599 | 10.0 | 620 | 2.3071 | 0.1959 | 0.1013 | 0.1685 | 0.1683 | 19.0 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Spacetimetravel/autotrain-financial-conversation_financial-summary-bart-90558144325
Spacetimetravel
2023-09-21T06:00:57Z
113
1
transformers
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "autotrain", "summarization", "unk", "dataset:Spacetimetravel/autotrain-data-financial-conversation_financial-summary-bart", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-09-21T05:59:10Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain" datasets: - Spacetimetravel/autotrain-data-financial-conversation_financial-summary-bart co2_eq_emissions: emissions: 0.05543082382688346 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 90558144325 - CO2 Emissions (in grams): 0.0554 ## Validation Metrics - Loss: 1.555 - Rouge1: 61.365 - Rouge2: 33.249 - RougeL: 48.538 - RougeLsum: 51.545 - Gen Len: 72.500 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Spacetimetravel/autotrain-financial-conversation_financial-summary-bart-90558144325 ```
0xk1h0/codegen2.5-7b-py150k-r20-QLoRA
0xk1h0
2023-09-21T06:00:16Z
2
1
peft
[ "peft", "region:us" ]
null
2023-09-21T05:13:47Z
--- library_name: peft --- ## Model Usage ```python import wandb import os import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TrainingArguments from peft import LoraConfig, prepare_model_for_kbit_training, get_peft_model, AutoPeftModelForCausalLM from datasets import load_dataset from random import randrange from trl import SFTTrainer from huggingface_hub import login tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen25-7b-mono", trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token device_map = {"":0} model = AutoPeftModelForCausalLM.from_pretrained("0xk1h0/codegen2.5-7b-py150k-r20-QLoRA", device_map=device_map, torch_dtype=torch.bfloat16) text =""" # Generate AES MODE encrypt python function. """ inputs = tokenizer(text, return_tensors="pt").to("cuda") outputs = model.generate( input_ids=inputs["input_ids"].to("cuda"), attention_mask=inputs["attention_mask"], # max_new_tokens=50, max_length=256, do_sample=True, temperature = 0.4, top_p=0.95, pad_token_id=tokenizer.eos_token_id ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
Spacetimetravel/autotrain-financial-conversation_financial-summary-t5-90557144324
Spacetimetravel
2023-09-21T05:59:15Z
113
0
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "autotrain", "summarization", "unk", "dataset:Spacetimetravel/autotrain-data-financial-conversation_financial-summary-t5", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-09-21T05:57:40Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain" datasets: - Spacetimetravel/autotrain-data-financial-conversation_financial-summary-t5 co2_eq_emissions: emissions: 0.009489750490178377 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 90557144324 - CO2 Emissions (in grams): 0.0095 ## Validation Metrics - Loss: 1.623 - Rouge1: 16.937 - Rouge2: 5.254 - RougeL: 16.937 - RougeLsum: 16.937 - Gen Len: 19.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Spacetimetravel/autotrain-financial-conversation_financial-summary-t5-90557144324 ```
mirfan899/urdu-distilbert-ner
mirfan899
2023-09-21T05:56:53Z
115
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-multilingual-cased", "base_model:finetune:distilbert/distilbert-base-multilingual-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-21T05:56:31Z
--- license: apache-2.0 base_model: distilbert-base-multilingual-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: urdu-distilbert-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # urdu-distilbert-ner This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1387 - Precision: 0.7575 - Recall: 0.8057 - F1: 0.7809 - Accuracy: 0.9535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1637 | 1.0 | 2272 | 0.1505 | 0.7131 | 0.7800 | 0.7451 | 0.9457 | | 0.1159 | 2.0 | 4544 | 0.1390 | 0.7377 | 0.8037 | 0.7693 | 0.9507 | | 0.0882 | 3.0 | 6816 | 0.1387 | 0.7575 | 0.8057 | 0.7809 | 0.9535 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.14.5 - Tokenizers 0.13.3
actualbrain/Reinforce-CartPolev1
actualbrain
2023-09-21T05:55:54Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-03T11:07:02Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPolev1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
OpenDILabCommunity/Hopper-v3-DDPG
OpenDILabCommunity
2023-09-21T05:49:02Z
0
0
pytorch
[ "pytorch", "deep-reinforcement-learning", "reinforcement-learning", "DI-engine", "Hopper-v3", "en", "license:apache-2.0", "region:us" ]
reinforcement-learning
2023-04-19T01:05:47Z
--- language: en license: apache-2.0 library_name: pytorch tags: - deep-reinforcement-learning - reinforcement-learning - DI-engine - Hopper-v3 benchmark_name: OpenAI/Gym/MuJoCo task_name: Hopper-v3 pipeline_tag: reinforcement-learning model-index: - name: DDPG results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: OpenAI/Gym/MuJoCo-Hopper-v3 type: OpenAI/Gym/MuJoCo-Hopper-v3 metrics: - type: mean_reward value: 3784.92 +/- 29.08 name: mean_reward --- # Play **Hopper-v3** with **DDPG** Policy ## Model Description <!-- Provide a longer summary of what this model is. --> This is a simple **DDPG** implementation to OpenAI/Gym/MuJoCo **Hopper-v3** using the [DI-engine library](https://github.com/opendilab/di-engine) and the [DI-zoo](https://github.com/opendilab/DI-engine/tree/main/dizoo). **DI-engine** is a python library for solving general decision intelligence problems, which is based on implementations of reinforcement learning framework using PyTorch or JAX. This library aims to standardize the reinforcement learning framework across different algorithms, benchmarks, environments, and to support both academic researches and prototype applications. Besides, self-customized training pipelines and applications are supported by reusing different abstraction levels of DI-engine reinforcement learning framework. ## Model Usage ### Install the Dependencies <details close> <summary>(Click for Details)</summary> ```shell # install huggingface_ding git clone https://github.com/opendilab/huggingface_ding.git pip3 install -e ./huggingface_ding/ # install environment dependencies if needed sudo apt update -y && sudo apt install -y build-essential libgl1-mesa-dev libgl1-mesa-glx libglew-dev libosmesa6-dev libglfw3 libglfw3-dev libsdl2-dev libsdl2-image-dev libglm-dev libfreetype6-dev patchelf mkdir -p ~/.mujoco wget https://mujoco.org/download/mujoco210-linux-x86_64.tar.gz -O mujoco.tar.gz tar -xf mujoco.tar.gz -C ~/.mujoco echo "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mjpro210/bin:~/.mujoco/mujoco210/bin" >> ~/.bashrc export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mjpro210/bin:~/.mujoco/mujoco210/bin pip3 install "cython<3" pip3 install DI-engine[common_env] ``` </details> ### Git Clone from Huggingface and Run the Model <details close> <summary>(Click for Details)</summary> ```shell # running with trained model python3 -u run.py ``` **run.py** ```python from ding.bonus import DDPGAgent from ding.config import Config from easydict import EasyDict import torch # Pull model from files which are git cloned from huggingface policy_state_dict = torch.load("pytorch_model.bin", map_location=torch.device("cpu")) cfg = EasyDict(Config.file_to_dict("policy_config.py").cfg_dict) # Instantiate the agent agent = DDPGAgent(env_id="Hopper-v3", exp_name="Hopper-v3-DDPG", cfg=cfg.exp_config, policy_state_dict=policy_state_dict) # Continue training agent.train(step=5000) # Render the new agent performance agent.deploy(enable_save_replay=True) ``` </details> ### Run Model by Using Huggingface_ding <details close> <summary>(Click for Details)</summary> ```shell # running with trained model python3 -u run.py ``` **run.py** ```python from ding.bonus import DDPGAgent from huggingface_ding import pull_model_from_hub # Pull model from Hugggingface hub policy_state_dict, cfg = pull_model_from_hub(repo_id="OpenDILabCommunity/Hopper-v3-DDPG") # Instantiate the agent agent = DDPGAgent(env_id="Hopper-v3", exp_name="Hopper-v3-DDPG", cfg=cfg.exp_config, policy_state_dict=policy_state_dict) # Continue training agent.train(step=5000) # Render the new agent performance agent.deploy(enable_save_replay=True) ``` </details> ## Model Training ### Train the Model and Push to Huggingface_hub <details close> <summary>(Click for Details)</summary> ```shell #Training Your Own Agent python3 -u train.py ``` **train.py** ```python from ding.bonus import DDPGAgent from huggingface_ding import push_model_to_hub # Instantiate the agent agent = DDPGAgent(env_id="Hopper-v3", exp_name="Hopper-v3-DDPG") # Train the agent return_ = agent.train(step=int(10000000), collector_env_num=4, evaluator_env_num=4, debug=False) # Push model to huggingface hub push_model_to_hub( agent=agent.best, env_name="OpenAI/Gym/MuJoCo", task_name="Hopper-v3", algo_name="DDPG", wandb_url=return_.wandb_url, github_repo_url="https://github.com/opendilab/DI-engine", github_doc_model_url="https://di-engine-docs.readthedocs.io/en/latest/12_policies/ddpg.html", github_doc_env_url="https://di-engine-docs.readthedocs.io/en/latest/13_envs/mujoco.html", installation_guide=''' sudo apt update -y \ && sudo apt install -y \ build-essential \ libgl1-mesa-dev \ libgl1-mesa-glx \ libglew-dev \ libosmesa6-dev \ libglfw3 \ libglfw3-dev \ libsdl2-dev \ libsdl2-image-dev \ libglm-dev \ libfreetype6-dev \ patchelf mkdir -p ~/.mujoco wget https://mujoco.org/download/mujoco210-linux-x86_64.tar.gz -O mujoco.tar.gz tar -xf mujoco.tar.gz -C ~/.mujoco echo "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mjpro210/bin:~/.mujoco/mujoco210/bin" >> ~/.bashrc export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mjpro210/bin:~/.mujoco/mujoco210/bin pip3 install "cython<3" pip3 install DI-engine[common_env] ''', usage_file_by_git_clone="./ddpg/hopper_ddpg_deploy.py", usage_file_by_huggingface_ding="./ddpg/hopper_ddpg_download.py", train_file="./ddpg/hopper_ddpg.py", repo_id="OpenDILabCommunity/Hopper-v3-DDPG", create_repo=False ) ``` </details> **Configuration** <details close> <summary>(Click for Details)</summary> ```python exp_config = { 'env': { 'manager': { 'episode_num': float("inf"), 'max_retry': 1, 'retry_type': 'reset', 'auto_reset': True, 'step_timeout': None, 'reset_timeout': None, 'retry_waiting_time': 0.1, 'cfg_type': 'BaseEnvManagerDict' }, 'stop_value': 6000, 'n_evaluator_episode': 8, 'env_id': 'Hopper-v3', 'norm_obs': { 'use_norm': False }, 'norm_reward': { 'use_norm': False }, 'collector_env_num': 1, 'evaluator_env_num': 8, 'env_wrapper': 'mujoco_default' }, 'policy': { 'model': { 'obs_shape': 11, 'action_shape': 3, 'twin_critic': False, 'actor_head_hidden_size': 256, 'critic_head_hidden_size': 256, 'action_space': 'regression' }, 'learn': { 'learner': { 'train_iterations': 1000000000, 'dataloader': { 'num_workers': 0 }, 'log_policy': True, 'hook': { 'load_ckpt_before_run': '', 'log_show_after_iter': 100, 'save_ckpt_after_iter': 10000, 'save_ckpt_after_run': True }, 'cfg_type': 'BaseLearnerDict' }, 'update_per_collect': 1, 'batch_size': 256, 'learning_rate_actor': 0.001, 'learning_rate_critic': 0.001, 'ignore_done': False, 'target_theta': 0.005, 'discount_factor': 0.99, 'actor_update_freq': 1, 'noise': False }, 'collect': { 'collector': {}, 'unroll_len': 1, 'noise_sigma': 0.1, 'n_sample': 1 }, 'eval': { 'evaluator': { 'eval_freq': 5000, 'render': { 'render_freq': -1, 'mode': 'train_iter' }, 'figure_path': None, 'cfg_type': 'InteractionSerialEvaluatorDict', 'stop_value': 6000, 'n_episode': 8 } }, 'other': { 'replay_buffer': { 'replay_buffer_size': 1000000 } }, 'on_policy': False, 'cuda': True, 'multi_gpu': False, 'bp_update_sync': True, 'traj_len_inf': False, 'type': 'ddpg', 'priority': False, 'priority_IS_weight': False, 'random_collect_size': 25000, 'transition_with_policy_data': False, 'action_space': 'continuous', 'reward_batch_norm': False, 'multi_agent': False, 'cfg_type': 'DDPGPolicyDict' }, 'exp_name': 'Hopper-v3-DDPG', 'seed': 0, 'wandb_logger': { 'gradient_logger': True, 'video_logger': True, 'plot_logger': True, 'action_logger': True, 'return_logger': False } } ``` </details> **Training Procedure** <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> - **Weights & Biases (wandb):** [monitor link](https://wandb.ai/zjowowen/Hopper-v3-DDPG) ## Model Information <!-- Provide the basic links for the model. --> - **Github Repository:** [repo link](https://github.com/opendilab/DI-engine) - **Doc**: [DI-engine-docs Algorithm link](https://di-engine-docs.readthedocs.io/en/latest/12_policies/ddpg.html) - **Configuration:** [config link](https://huggingface.co/OpenDILabCommunity/Hopper-v3-DDPG/blob/main/policy_config.py) - **Demo:** [video](https://huggingface.co/OpenDILabCommunity/Hopper-v3-DDPG/blob/main/replay.mp4) <!-- Provide the size information for the model. --> - **Parameters total size:** 1090.03 KB - **Last Update Date:** 2023-09-21 ## Environments <!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. --> - **Benchmark:** OpenAI/Gym/MuJoCo - **Task:** Hopper-v3 - **Gym version:** 0.25.1 - **DI-engine version:** v0.4.9 - **PyTorch version:** 2.0.1+cu117 - **Doc**: [DI-engine-docs Environments link](https://di-engine-docs.readthedocs.io/en/latest/13_envs/mujoco.html)
xizhn/output_model_dir
xizhn
2023-09-21T05:38:41Z
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-20T04:59:23Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dress tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - xizhn/output_model_dir This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dress using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
li-ping/songgod
li-ping
2023-09-21T05:36:00Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-21T05:29:53Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
CyberHarem/wakiyama_tamami_idolmastercinderellagirls
CyberHarem
2023-09-21T05:29:25Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/wakiyama_tamami_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-21T05:17:23Z
--- license: mit datasets: - CyberHarem/wakiyama_tamami_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of wakiyama_tamami_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 5100, you need to download `5100/wakiyama_tamami_idolmastercinderellagirls.pt` as the embedding and `5100/wakiyama_tamami_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 5100**, with the score of 0.955. The trigger words are: 1. `wakiyama_tamami_idolmastercinderellagirls` 2. `short_hair, ahoge, brown_hair, brown_eyes, blush, smile, open_mouth` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:-------------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:----------------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | **5100** | **0.955** | [**Download**](5100/wakiyama_tamami_idolmastercinderellagirls.zip) | ![pattern_1-5100](5100/previews/pattern_1.png) | ![pattern_2-5100](5100/previews/pattern_2.png) | ![pattern_3-5100](5100/previews/pattern_3.png) | [<NSFW, click to see>](5100/previews/pattern_4.png) | ![bikini-5100](5100/previews/bikini.png) | [<NSFW, click to see>](5100/previews/bondage.png) | ![free-5100](5100/previews/free.png) | ![maid-5100](5100/previews/maid.png) | ![miko-5100](5100/previews/miko.png) | [<NSFW, click to see>](5100/previews/nude.png) | [<NSFW, click to see>](5100/previews/nude2.png) | ![suit-5100](5100/previews/suit.png) | ![yukata-5100](5100/previews/yukata.png) | | 4760 | 0.890 | [Download](4760/wakiyama_tamami_idolmastercinderellagirls.zip) | ![pattern_1-4760](4760/previews/pattern_1.png) | ![pattern_2-4760](4760/previews/pattern_2.png) | ![pattern_3-4760](4760/previews/pattern_3.png) | [<NSFW, click to see>](4760/previews/pattern_4.png) | ![bikini-4760](4760/previews/bikini.png) | [<NSFW, click to see>](4760/previews/bondage.png) | ![free-4760](4760/previews/free.png) | ![maid-4760](4760/previews/maid.png) | ![miko-4760](4760/previews/miko.png) | [<NSFW, click to see>](4760/previews/nude.png) | [<NSFW, click to see>](4760/previews/nude2.png) | ![suit-4760](4760/previews/suit.png) | ![yukata-4760](4760/previews/yukata.png) | | 4420 | 0.921 | [Download](4420/wakiyama_tamami_idolmastercinderellagirls.zip) | ![pattern_1-4420](4420/previews/pattern_1.png) | ![pattern_2-4420](4420/previews/pattern_2.png) | ![pattern_3-4420](4420/previews/pattern_3.png) | [<NSFW, click to see>](4420/previews/pattern_4.png) | ![bikini-4420](4420/previews/bikini.png) | [<NSFW, click to see>](4420/previews/bondage.png) | ![free-4420](4420/previews/free.png) | ![maid-4420](4420/previews/maid.png) | ![miko-4420](4420/previews/miko.png) | [<NSFW, click to see>](4420/previews/nude.png) | [<NSFW, click to see>](4420/previews/nude2.png) | ![suit-4420](4420/previews/suit.png) | ![yukata-4420](4420/previews/yukata.png) | | 4080 | 0.925 | [Download](4080/wakiyama_tamami_idolmastercinderellagirls.zip) | ![pattern_1-4080](4080/previews/pattern_1.png) | ![pattern_2-4080](4080/previews/pattern_2.png) | ![pattern_3-4080](4080/previews/pattern_3.png) | [<NSFW, click to see>](4080/previews/pattern_4.png) | ![bikini-4080](4080/previews/bikini.png) | [<NSFW, click to see>](4080/previews/bondage.png) | ![free-4080](4080/previews/free.png) | ![maid-4080](4080/previews/maid.png) | ![miko-4080](4080/previews/miko.png) | [<NSFW, click to see>](4080/previews/nude.png) | [<NSFW, click to see>](4080/previews/nude2.png) | ![suit-4080](4080/previews/suit.png) | ![yukata-4080](4080/previews/yukata.png) | | 3740 | 0.928 | [Download](3740/wakiyama_tamami_idolmastercinderellagirls.zip) | ![pattern_1-3740](3740/previews/pattern_1.png) | ![pattern_2-3740](3740/previews/pattern_2.png) | ![pattern_3-3740](3740/previews/pattern_3.png) | [<NSFW, click to see>](3740/previews/pattern_4.png) | ![bikini-3740](3740/previews/bikini.png) | [<NSFW, click to see>](3740/previews/bondage.png) | ![free-3740](3740/previews/free.png) | ![maid-3740](3740/previews/maid.png) | ![miko-3740](3740/previews/miko.png) | [<NSFW, click to see>](3740/previews/nude.png) | [<NSFW, click to see>](3740/previews/nude2.png) | ![suit-3740](3740/previews/suit.png) | ![yukata-3740](3740/previews/yukata.png) | | 3400 | 0.917 | [Download](3400/wakiyama_tamami_idolmastercinderellagirls.zip) | ![pattern_1-3400](3400/previews/pattern_1.png) | ![pattern_2-3400](3400/previews/pattern_2.png) | ![pattern_3-3400](3400/previews/pattern_3.png) | [<NSFW, click to see>](3400/previews/pattern_4.png) | ![bikini-3400](3400/previews/bikini.png) | [<NSFW, click to see>](3400/previews/bondage.png) | ![free-3400](3400/previews/free.png) | ![maid-3400](3400/previews/maid.png) | ![miko-3400](3400/previews/miko.png) | [<NSFW, click to see>](3400/previews/nude.png) | [<NSFW, click to see>](3400/previews/nude2.png) | ![suit-3400](3400/previews/suit.png) | ![yukata-3400](3400/previews/yukata.png) | | 3060 | 0.924 | [Download](3060/wakiyama_tamami_idolmastercinderellagirls.zip) | ![pattern_1-3060](3060/previews/pattern_1.png) | ![pattern_2-3060](3060/previews/pattern_2.png) | ![pattern_3-3060](3060/previews/pattern_3.png) | [<NSFW, click to see>](3060/previews/pattern_4.png) | ![bikini-3060](3060/previews/bikini.png) | [<NSFW, click to see>](3060/previews/bondage.png) | ![free-3060](3060/previews/free.png) | ![maid-3060](3060/previews/maid.png) | ![miko-3060](3060/previews/miko.png) | [<NSFW, click to see>](3060/previews/nude.png) | [<NSFW, click to see>](3060/previews/nude2.png) | ![suit-3060](3060/previews/suit.png) | ![yukata-3060](3060/previews/yukata.png) | | 2720 | 0.934 | [Download](2720/wakiyama_tamami_idolmastercinderellagirls.zip) | ![pattern_1-2720](2720/previews/pattern_1.png) | ![pattern_2-2720](2720/previews/pattern_2.png) | ![pattern_3-2720](2720/previews/pattern_3.png) | [<NSFW, click to see>](2720/previews/pattern_4.png) | ![bikini-2720](2720/previews/bikini.png) | [<NSFW, click to see>](2720/previews/bondage.png) | ![free-2720](2720/previews/free.png) | ![maid-2720](2720/previews/maid.png) | ![miko-2720](2720/previews/miko.png) | [<NSFW, click to see>](2720/previews/nude.png) | [<NSFW, click to see>](2720/previews/nude2.png) | ![suit-2720](2720/previews/suit.png) | ![yukata-2720](2720/previews/yukata.png) | | 2380 | 0.917 | [Download](2380/wakiyama_tamami_idolmastercinderellagirls.zip) | ![pattern_1-2380](2380/previews/pattern_1.png) | ![pattern_2-2380](2380/previews/pattern_2.png) | ![pattern_3-2380](2380/previews/pattern_3.png) | [<NSFW, click to see>](2380/previews/pattern_4.png) | ![bikini-2380](2380/previews/bikini.png) | [<NSFW, click to see>](2380/previews/bondage.png) | ![free-2380](2380/previews/free.png) | ![maid-2380](2380/previews/maid.png) | ![miko-2380](2380/previews/miko.png) | [<NSFW, click to see>](2380/previews/nude.png) | [<NSFW, click to see>](2380/previews/nude2.png) | ![suit-2380](2380/previews/suit.png) | ![yukata-2380](2380/previews/yukata.png) | | 2040 | 0.931 | [Download](2040/wakiyama_tamami_idolmastercinderellagirls.zip) | ![pattern_1-2040](2040/previews/pattern_1.png) | ![pattern_2-2040](2040/previews/pattern_2.png) | ![pattern_3-2040](2040/previews/pattern_3.png) | [<NSFW, click to see>](2040/previews/pattern_4.png) | ![bikini-2040](2040/previews/bikini.png) | [<NSFW, click to see>](2040/previews/bondage.png) | ![free-2040](2040/previews/free.png) | ![maid-2040](2040/previews/maid.png) | ![miko-2040](2040/previews/miko.png) | [<NSFW, click to see>](2040/previews/nude.png) | [<NSFW, click to see>](2040/previews/nude2.png) | ![suit-2040](2040/previews/suit.png) | ![yukata-2040](2040/previews/yukata.png) | | 1700 | 0.900 | [Download](1700/wakiyama_tamami_idolmastercinderellagirls.zip) | ![pattern_1-1700](1700/previews/pattern_1.png) | ![pattern_2-1700](1700/previews/pattern_2.png) | ![pattern_3-1700](1700/previews/pattern_3.png) | [<NSFW, click to see>](1700/previews/pattern_4.png) | ![bikini-1700](1700/previews/bikini.png) | [<NSFW, click to see>](1700/previews/bondage.png) | ![free-1700](1700/previews/free.png) | ![maid-1700](1700/previews/maid.png) | ![miko-1700](1700/previews/miko.png) | [<NSFW, click to see>](1700/previews/nude.png) | [<NSFW, click to see>](1700/previews/nude2.png) | ![suit-1700](1700/previews/suit.png) | ![yukata-1700](1700/previews/yukata.png) | | 1360 | 0.879 | [Download](1360/wakiyama_tamami_idolmastercinderellagirls.zip) | ![pattern_1-1360](1360/previews/pattern_1.png) | ![pattern_2-1360](1360/previews/pattern_2.png) | ![pattern_3-1360](1360/previews/pattern_3.png) | [<NSFW, click to see>](1360/previews/pattern_4.png) | ![bikini-1360](1360/previews/bikini.png) | [<NSFW, click to see>](1360/previews/bondage.png) | ![free-1360](1360/previews/free.png) | ![maid-1360](1360/previews/maid.png) | ![miko-1360](1360/previews/miko.png) | [<NSFW, click to see>](1360/previews/nude.png) | [<NSFW, click to see>](1360/previews/nude2.png) | ![suit-1360](1360/previews/suit.png) | ![yukata-1360](1360/previews/yukata.png) | | 1020 | 0.867 | [Download](1020/wakiyama_tamami_idolmastercinderellagirls.zip) | ![pattern_1-1020](1020/previews/pattern_1.png) | ![pattern_2-1020](1020/previews/pattern_2.png) | ![pattern_3-1020](1020/previews/pattern_3.png) | [<NSFW, click to see>](1020/previews/pattern_4.png) | ![bikini-1020](1020/previews/bikini.png) | [<NSFW, click to see>](1020/previews/bondage.png) | ![free-1020](1020/previews/free.png) | ![maid-1020](1020/previews/maid.png) | ![miko-1020](1020/previews/miko.png) | [<NSFW, click to see>](1020/previews/nude.png) | [<NSFW, click to see>](1020/previews/nude2.png) | ![suit-1020](1020/previews/suit.png) | ![yukata-1020](1020/previews/yukata.png) | | 680 | 0.823 | [Download](680/wakiyama_tamami_idolmastercinderellagirls.zip) | ![pattern_1-680](680/previews/pattern_1.png) | ![pattern_2-680](680/previews/pattern_2.png) | ![pattern_3-680](680/previews/pattern_3.png) | [<NSFW, click to see>](680/previews/pattern_4.png) | ![bikini-680](680/previews/bikini.png) | [<NSFW, click to see>](680/previews/bondage.png) | ![free-680](680/previews/free.png) | ![maid-680](680/previews/maid.png) | ![miko-680](680/previews/miko.png) | [<NSFW, click to see>](680/previews/nude.png) | [<NSFW, click to see>](680/previews/nude2.png) | ![suit-680](680/previews/suit.png) | ![yukata-680](680/previews/yukata.png) | | 340 | 0.513 | [Download](340/wakiyama_tamami_idolmastercinderellagirls.zip) | ![pattern_1-340](340/previews/pattern_1.png) | ![pattern_2-340](340/previews/pattern_2.png) | ![pattern_3-340](340/previews/pattern_3.png) | [<NSFW, click to see>](340/previews/pattern_4.png) | ![bikini-340](340/previews/bikini.png) | [<NSFW, click to see>](340/previews/bondage.png) | ![free-340](340/previews/free.png) | ![maid-340](340/previews/maid.png) | ![miko-340](340/previews/miko.png) | [<NSFW, click to see>](340/previews/nude.png) | [<NSFW, click to see>](340/previews/nude2.png) | ![suit-340](340/previews/suit.png) | ![yukata-340](340/previews/yukata.png) |
edzou/bert-finetuned-ner
edzou
2023-09-21T05:22:26Z
103
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-20T06:58:54Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.33.2 - Pytorch 1.12.1 - Datasets 2.14.5 - Tokenizers 0.13.3
trieudemo11/llama_7b_attrb_cate_4m_6
trieudemo11
2023-09-21T05:05:55Z
8
0
peft
[ "peft", "region:us" ]
null
2023-09-21T05:05:37Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0
0xk1h0/codegen1-6B-peft-qlora
0xk1h0
2023-09-21T05:02:35Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-18T01:28:55Z
--- library_name: peft base_model: Salesforce/codegen-6b-mono --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
0xk1h0/codegen2.5-7b-py150k-r20-LoRA
0xk1h0
2023-09-21T04:58:49Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-21T04:48:19Z
--- library_name: peft --- ## Model Usage ```python import torch import transformers from finetune_peft import get_peft_config, PEFTArguments from peft import get_peft_model model_path = 'Salesforce/codegen25-7b-mono' # peft_path = 'models/codegen25_7b/checkpoint' peft_path = '0xk1h0/codegen25-7b-py150k-r20' # peft_path = 'models/alpaca-llama-7b-peft/params.p' torch.set_default_tensor_type(torch.cuda.HalfTensor) model = transformers.AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, cache_dir='models') peft_config = get_peft_config(peft_args=PEFTArguments(peft_mode="lora")) model = get_peft_model(model, peft_config) # model.load_state_dict(torch.load(peft_path), strict=False) torch.set_default_tensor_type(torch.cuda.FloatTensor) tokenizer = transformers.AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) batch = tokenizer(""" ### Generate AES MODE encrypt function. """, return_tensors="pt") with torch.no_grad(): out = model.generate( input_ids=batch["input_ids"], attention_mask=torch.ones_like(batch["input_ids"]), max_length=256, do_sample=True, temperature = 0.4, top_p=0.95 ) print(tokenizer.decode(out[0])) ``` ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
bongo2112/sdxl-db-ommydimpos-headshot
bongo2112
2023-09-21T04:52:52Z
3
1
diffusers
[ "diffusers", "tensorboard", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-20T22:50:16Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of ommydimpotz man tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
awrysfab/emotion_classification
awrysfab
2023-09-21T04:48:06Z
193
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-21T04:34:56Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2383 - Accuracy: 0.6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0769 | 1.0 | 10 | 2.0617 | 0.1812 | | 2.0383 | 2.0 | 20 | 2.0104 | 0.3 | | 1.9423 | 3.0 | 30 | 1.8932 | 0.425 | | 1.7923 | 4.0 | 40 | 1.7442 | 0.475 | | 1.6547 | 5.0 | 50 | 1.6047 | 0.4875 | | 1.5297 | 6.0 | 60 | 1.5184 | 0.5437 | | 1.4345 | 7.0 | 70 | 1.4392 | 0.5625 | | 1.337 | 8.0 | 80 | 1.3847 | 0.5875 | | 1.2722 | 9.0 | 90 | 1.3442 | 0.55 | | 1.217 | 10.0 | 100 | 1.3058 | 0.5625 | | 1.1497 | 11.0 | 110 | 1.2914 | 0.55 | | 1.0977 | 12.0 | 120 | 1.2377 | 0.6125 | | 1.0507 | 13.0 | 130 | 1.2253 | 0.5687 | | 1.0268 | 14.0 | 140 | 1.2269 | 0.5938 | | 0.967 | 15.0 | 150 | 1.2260 | 0.5938 | | 0.9269 | 16.0 | 160 | 1.2421 | 0.5687 | | 0.9102 | 17.0 | 170 | 1.2218 | 0.5687 | | 0.8883 | 18.0 | 180 | 1.2207 | 0.5687 | | 0.8633 | 19.0 | 190 | 1.1933 | 0.6062 | | 0.8557 | 20.0 | 200 | 1.1830 | 0.575 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
isanchez/text-comp
isanchez
2023-09-21T04:46:05Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-20T21:05:25Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: text-comp results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8357843137254902 - name: F1 type: f1 value: 0.8770642201834863 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-comp This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5361 - Accuracy: 0.8358 - F1: 0.8771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5903 | 1.09 | 500 | 0.4340 | 0.8137 | 0.8643 | | 0.3827 | 2.18 | 1000 | 0.5361 | 0.8358 | 0.8771 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
ashishpatel26/phi-1_5-finetuned-gsm8k
ashishpatel26
2023-09-21T04:41:04Z
0
0
null
[ "generated_from_trainer", "base_model:microsoft/phi-1_5", "base_model:finetune:microsoft/phi-1_5", "license:other", "region:us" ]
null
2023-09-21T04:21:11Z
--- license: other base_model: microsoft/phi-1_5 tags: - generated_from_trainer model-index: - name: phi-1_5-finetuned-gsm8k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi-1_5-finetuned-gsm8k This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
kcyu/LoRA_model_Vit-cifar_10
kcyu
2023-09-21T04:33:56Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-21T04:31:44Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
rmuema/orca_mini_3B_test_guanaco
rmuema
2023-09-21T04:28:15Z
2
1
peft
[ "peft", "region:us" ]
null
2023-09-15T01:45:50Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 - base_model: psmathur/orca_mini_3b ### Framework versions - PEFT 0.6.0.dev0
Pradeep016/GAN
Pradeep016
2023-09-21T04:27:14Z
0
0
keras
[ "keras", "license:mit", "region:us" ]
null
2023-09-21T04:19:15Z
--- license: mit library_name: keras ---
hihisu1231/mbti_230921_2
hihisu1231
2023-09-21T04:13:04Z
140
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-21T04:08:48Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: polyglot-1.3b-koalpaca-v1.1a-rtx3090__230921_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # polyglot-1.3b-koalpaca-v1.1a-rtx3090__230921_2 This model is a fine-tuned version of [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
CyberHarem/matsuyama_kumiko_idolmastercinderellagirls
CyberHarem
2023-09-21T03:47:28Z
0
1
null
[ "art", "text-to-image", "dataset:CyberHarem/matsuyama_kumiko_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-21T03:36:56Z
--- license: mit datasets: - CyberHarem/matsuyama_kumiko_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of matsuyama_kumiko_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 2380, you need to download `2380/matsuyama_kumiko_idolmastercinderellagirls.pt` as the embedding and `2380/matsuyama_kumiko_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 2380**, with the score of 0.967. The trigger words are: 1. `matsuyama_kumiko_idolmastercinderellagirls` 2. `long_hair, brown_hair, smile, green_eyes, breasts, blush, cleavage, medium_breasts, hair_ornament` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:--------------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 5100 | 0.897 | [Download](5100/matsuyama_kumiko_idolmastercinderellagirls.zip) | ![pattern_1-5100](5100/previews/pattern_1.png) | ![pattern_2-5100](5100/previews/pattern_2.png) | ![pattern_3-5100](5100/previews/pattern_3.png) | ![bikini-5100](5100/previews/bikini.png) | [<NSFW, click to see>](5100/previews/bondage.png) | ![free-5100](5100/previews/free.png) | ![maid-5100](5100/previews/maid.png) | ![miko-5100](5100/previews/miko.png) | [<NSFW, click to see>](5100/previews/nude.png) | [<NSFW, click to see>](5100/previews/nude2.png) | ![suit-5100](5100/previews/suit.png) | ![yukata-5100](5100/previews/yukata.png) | | 4760 | 0.960 | [Download](4760/matsuyama_kumiko_idolmastercinderellagirls.zip) | ![pattern_1-4760](4760/previews/pattern_1.png) | ![pattern_2-4760](4760/previews/pattern_2.png) | ![pattern_3-4760](4760/previews/pattern_3.png) | ![bikini-4760](4760/previews/bikini.png) | [<NSFW, click to see>](4760/previews/bondage.png) | ![free-4760](4760/previews/free.png) | ![maid-4760](4760/previews/maid.png) | ![miko-4760](4760/previews/miko.png) | [<NSFW, click to see>](4760/previews/nude.png) | [<NSFW, click to see>](4760/previews/nude2.png) | ![suit-4760](4760/previews/suit.png) | ![yukata-4760](4760/previews/yukata.png) | | 4420 | 0.948 | [Download](4420/matsuyama_kumiko_idolmastercinderellagirls.zip) | ![pattern_1-4420](4420/previews/pattern_1.png) | ![pattern_2-4420](4420/previews/pattern_2.png) | ![pattern_3-4420](4420/previews/pattern_3.png) | ![bikini-4420](4420/previews/bikini.png) | [<NSFW, click to see>](4420/previews/bondage.png) | ![free-4420](4420/previews/free.png) | ![maid-4420](4420/previews/maid.png) | ![miko-4420](4420/previews/miko.png) | [<NSFW, click to see>](4420/previews/nude.png) | [<NSFW, click to see>](4420/previews/nude2.png) | ![suit-4420](4420/previews/suit.png) | ![yukata-4420](4420/previews/yukata.png) | | 4080 | 0.953 | [Download](4080/matsuyama_kumiko_idolmastercinderellagirls.zip) | ![pattern_1-4080](4080/previews/pattern_1.png) | ![pattern_2-4080](4080/previews/pattern_2.png) | ![pattern_3-4080](4080/previews/pattern_3.png) | ![bikini-4080](4080/previews/bikini.png) | [<NSFW, click to see>](4080/previews/bondage.png) | ![free-4080](4080/previews/free.png) | ![maid-4080](4080/previews/maid.png) | ![miko-4080](4080/previews/miko.png) | [<NSFW, click to see>](4080/previews/nude.png) | [<NSFW, click to see>](4080/previews/nude2.png) | ![suit-4080](4080/previews/suit.png) | ![yukata-4080](4080/previews/yukata.png) | | 3740 | 0.884 | [Download](3740/matsuyama_kumiko_idolmastercinderellagirls.zip) | ![pattern_1-3740](3740/previews/pattern_1.png) | ![pattern_2-3740](3740/previews/pattern_2.png) | ![pattern_3-3740](3740/previews/pattern_3.png) | ![bikini-3740](3740/previews/bikini.png) | [<NSFW, click to see>](3740/previews/bondage.png) | ![free-3740](3740/previews/free.png) | ![maid-3740](3740/previews/maid.png) | ![miko-3740](3740/previews/miko.png) | [<NSFW, click to see>](3740/previews/nude.png) | [<NSFW, click to see>](3740/previews/nude2.png) | ![suit-3740](3740/previews/suit.png) | ![yukata-3740](3740/previews/yukata.png) | | 3400 | 0.961 | [Download](3400/matsuyama_kumiko_idolmastercinderellagirls.zip) | ![pattern_1-3400](3400/previews/pattern_1.png) | ![pattern_2-3400](3400/previews/pattern_2.png) | ![pattern_3-3400](3400/previews/pattern_3.png) | ![bikini-3400](3400/previews/bikini.png) | [<NSFW, click to see>](3400/previews/bondage.png) | ![free-3400](3400/previews/free.png) | ![maid-3400](3400/previews/maid.png) | ![miko-3400](3400/previews/miko.png) | [<NSFW, click to see>](3400/previews/nude.png) | [<NSFW, click to see>](3400/previews/nude2.png) | ![suit-3400](3400/previews/suit.png) | ![yukata-3400](3400/previews/yukata.png) | | 3060 | 0.898 | [Download](3060/matsuyama_kumiko_idolmastercinderellagirls.zip) | ![pattern_1-3060](3060/previews/pattern_1.png) | ![pattern_2-3060](3060/previews/pattern_2.png) | ![pattern_3-3060](3060/previews/pattern_3.png) | ![bikini-3060](3060/previews/bikini.png) | [<NSFW, click to see>](3060/previews/bondage.png) | ![free-3060](3060/previews/free.png) | ![maid-3060](3060/previews/maid.png) | ![miko-3060](3060/previews/miko.png) | [<NSFW, click to see>](3060/previews/nude.png) | [<NSFW, click to see>](3060/previews/nude2.png) | ![suit-3060](3060/previews/suit.png) | ![yukata-3060](3060/previews/yukata.png) | | 2720 | 0.896 | [Download](2720/matsuyama_kumiko_idolmastercinderellagirls.zip) | ![pattern_1-2720](2720/previews/pattern_1.png) | ![pattern_2-2720](2720/previews/pattern_2.png) | ![pattern_3-2720](2720/previews/pattern_3.png) | ![bikini-2720](2720/previews/bikini.png) | [<NSFW, click to see>](2720/previews/bondage.png) | ![free-2720](2720/previews/free.png) | ![maid-2720](2720/previews/maid.png) | ![miko-2720](2720/previews/miko.png) | [<NSFW, click to see>](2720/previews/nude.png) | [<NSFW, click to see>](2720/previews/nude2.png) | ![suit-2720](2720/previews/suit.png) | ![yukata-2720](2720/previews/yukata.png) | | **2380** | **0.967** | [**Download**](2380/matsuyama_kumiko_idolmastercinderellagirls.zip) | ![pattern_1-2380](2380/previews/pattern_1.png) | ![pattern_2-2380](2380/previews/pattern_2.png) | ![pattern_3-2380](2380/previews/pattern_3.png) | ![bikini-2380](2380/previews/bikini.png) | [<NSFW, click to see>](2380/previews/bondage.png) | ![free-2380](2380/previews/free.png) | ![maid-2380](2380/previews/maid.png) | ![miko-2380](2380/previews/miko.png) | [<NSFW, click to see>](2380/previews/nude.png) | [<NSFW, click to see>](2380/previews/nude2.png) | ![suit-2380](2380/previews/suit.png) | ![yukata-2380](2380/previews/yukata.png) | | 2040 | 0.945 | [Download](2040/matsuyama_kumiko_idolmastercinderellagirls.zip) | ![pattern_1-2040](2040/previews/pattern_1.png) | ![pattern_2-2040](2040/previews/pattern_2.png) | ![pattern_3-2040](2040/previews/pattern_3.png) | ![bikini-2040](2040/previews/bikini.png) | [<NSFW, click to see>](2040/previews/bondage.png) | ![free-2040](2040/previews/free.png) | ![maid-2040](2040/previews/maid.png) | ![miko-2040](2040/previews/miko.png) | [<NSFW, click to see>](2040/previews/nude.png) | [<NSFW, click to see>](2040/previews/nude2.png) | ![suit-2040](2040/previews/suit.png) | ![yukata-2040](2040/previews/yukata.png) | | 1700 | 0.963 | [Download](1700/matsuyama_kumiko_idolmastercinderellagirls.zip) | ![pattern_1-1700](1700/previews/pattern_1.png) | ![pattern_2-1700](1700/previews/pattern_2.png) | ![pattern_3-1700](1700/previews/pattern_3.png) | ![bikini-1700](1700/previews/bikini.png) | [<NSFW, click to see>](1700/previews/bondage.png) | ![free-1700](1700/previews/free.png) | ![maid-1700](1700/previews/maid.png) | ![miko-1700](1700/previews/miko.png) | [<NSFW, click to see>](1700/previews/nude.png) | [<NSFW, click to see>](1700/previews/nude2.png) | ![suit-1700](1700/previews/suit.png) | ![yukata-1700](1700/previews/yukata.png) | | 1360 | 0.930 | [Download](1360/matsuyama_kumiko_idolmastercinderellagirls.zip) | ![pattern_1-1360](1360/previews/pattern_1.png) | ![pattern_2-1360](1360/previews/pattern_2.png) | ![pattern_3-1360](1360/previews/pattern_3.png) | ![bikini-1360](1360/previews/bikini.png) | [<NSFW, click to see>](1360/previews/bondage.png) | ![free-1360](1360/previews/free.png) | ![maid-1360](1360/previews/maid.png) | ![miko-1360](1360/previews/miko.png) | [<NSFW, click to see>](1360/previews/nude.png) | [<NSFW, click to see>](1360/previews/nude2.png) | ![suit-1360](1360/previews/suit.png) | ![yukata-1360](1360/previews/yukata.png) | | 1020 | 0.930 | [Download](1020/matsuyama_kumiko_idolmastercinderellagirls.zip) | ![pattern_1-1020](1020/previews/pattern_1.png) | ![pattern_2-1020](1020/previews/pattern_2.png) | ![pattern_3-1020](1020/previews/pattern_3.png) | ![bikini-1020](1020/previews/bikini.png) | [<NSFW, click to see>](1020/previews/bondage.png) | ![free-1020](1020/previews/free.png) | ![maid-1020](1020/previews/maid.png) | ![miko-1020](1020/previews/miko.png) | [<NSFW, click to see>](1020/previews/nude.png) | [<NSFW, click to see>](1020/previews/nude2.png) | ![suit-1020](1020/previews/suit.png) | ![yukata-1020](1020/previews/yukata.png) | | 680 | 0.920 | [Download](680/matsuyama_kumiko_idolmastercinderellagirls.zip) | ![pattern_1-680](680/previews/pattern_1.png) | ![pattern_2-680](680/previews/pattern_2.png) | ![pattern_3-680](680/previews/pattern_3.png) | ![bikini-680](680/previews/bikini.png) | [<NSFW, click to see>](680/previews/bondage.png) | ![free-680](680/previews/free.png) | ![maid-680](680/previews/maid.png) | ![miko-680](680/previews/miko.png) | [<NSFW, click to see>](680/previews/nude.png) | [<NSFW, click to see>](680/previews/nude2.png) | ![suit-680](680/previews/suit.png) | ![yukata-680](680/previews/yukata.png) | | 340 | 0.924 | [Download](340/matsuyama_kumiko_idolmastercinderellagirls.zip) | ![pattern_1-340](340/previews/pattern_1.png) | ![pattern_2-340](340/previews/pattern_2.png) | ![pattern_3-340](340/previews/pattern_3.png) | ![bikini-340](340/previews/bikini.png) | [<NSFW, click to see>](340/previews/bondage.png) | ![free-340](340/previews/free.png) | ![maid-340](340/previews/maid.png) | ![miko-340](340/previews/miko.png) | [<NSFW, click to see>](340/previews/nude.png) | [<NSFW, click to see>](340/previews/nude2.png) | ![suit-340](340/previews/suit.png) | ![yukata-340](340/previews/yukata.png) |
ShaunThayil/distilbert-training-4
ShaunThayil
2023-09-21T03:43:12Z
196
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-21T03:42:39Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-training-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-training-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0316 - Accuracy: 0.9944 - Precision: 0.9955 - Recall: 0.9822 - F1: 0.9888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.5 | 262 | 0.0957 | 0.9817 | 0.9562 | 0.9711 | 0.9636 | | No log | 1.0 | 524 | 0.0390 | 0.9939 | 0.9977 | 0.9778 | 0.9877 | | 0.1008 | 1.5 | 786 | 0.0361 | 0.9944 | 0.9955 | 0.9822 | 0.9888 | | 0.1008 | 2.0 | 1048 | 0.0385 | 0.9922 | 0.9866 | 0.9822 | 0.9844 | | 0.0331 | 2.5 | 1310 | 0.0270 | 0.9956 | 0.9977 | 0.9844 | 0.9911 | | 0.0331 | 2.99 | 1572 | 0.0358 | 0.9939 | 0.9955 | 0.98 | 0.9877 | | 0.0151 | 3.49 | 1834 | 0.0292 | 0.9956 | 0.9955 | 0.9867 | 0.9911 | | 0.0151 | 3.99 | 2096 | 0.0316 | 0.9944 | 0.9955 | 0.9822 | 0.9888 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.2.0.dev20230913+cu121 - Tokenizers 0.13.3
nomsgadded/opt_RestaurantReview
nomsgadded
2023-09-21T03:38:05Z
0
0
adapter-transformers
[ "adapter-transformers", "safetensors", "opt", "code", "text-classification", "en", "region:us" ]
text-classification
2023-09-20T00:06:47Z
--- pipeline_tag: text-classification language: - en metrics: - accuracy library_name: adapter-transformers tags: - code --- This is the Finetune version of the facebook/opt-350m model Dataset is RestaurantReview from kaggle How to use? Input text must be in the form of ##Rating :{text} e.g. ##Rating :It was really nice to dine there, however the waiter is very mean. Then it will return the possible rating customer gave to the restaurant.
zfox/finetuning-sentiment-model-3000-samples
zfox
2023-09-21T03:34:37Z
107
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "doi:10.57967/hf/1135", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-21T03:28:42Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.8692810457516339 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3195 - Accuracy: 0.8667 - F1: 0.8693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Rosi-si/my_awesome_gec
Rosi-si
2023-09-21T03:23:43Z
33
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:Unbabel/gec-t5_small", "base_model:finetune:Unbabel/gec-t5_small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-21T01:37:44Z
--- license: apache-2.0 base_model: Unbabel/gec-t5_small tags: - generated_from_trainer model-index: - name: my_awesome_gec results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_gec This model is a fine-tuned version of [Unbabel/gec-t5_small](https://huggingface.co/Unbabel/gec-t5_small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.3667 | 1.0 | 4187 | 0.3417 | | 0.3209 | 2.0 | 8374 | 0.2941 | | 0.299 | 3.0 | 12561 | 0.2738 | | 0.2904 | 4.0 | 16748 | 0.2674 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
RylonW/ppo-LunarLander-v4
RylonW
2023-09-21T03:08:54Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-21T03:08:37Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 286.19 +/- 10.93 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
yudiwbs/marian-finetuned-kde4-en-to-id
yudiwbs
2023-09-21T03:06:04Z
67
0
transformers
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "base_model:Helsinki-NLP/opus-mt-en-id", "base_model:finetune:Helsinki-NLP/opus-mt-en-id", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-30T04:58:11Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-id tags: - generated_from_keras_callback model-index: - name: yudiwbs/marian-finetuned-kde4-en-to-id results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # yudiwbs/marian-finetuned-kde4-en-to-id Penjelasan: https://yudiwbs.wordpress.com/2023/09/01/fine-tune-model-machine-translation-inggris-indonesia-en-id/ This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-id](https://huggingface.co/Helsinki-NLP/opus-mt-en-id) on KDE dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5779 - Validation Loss: 0.6892 - Epoch: 2 ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1245, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.0329 | 0.7683 | 0 | | 0.7086 | 0.7042 | 1 | | 0.5779 | 0.6892 | 2 | ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
OpenMotionLab/MotionGPT-base
OpenMotionLab
2023-09-21T03:01:56Z
0
7
null
[ "arxiv:2306.14795", "license:cc", "region:us" ]
null
2023-09-08T12:39:03Z
--- license: cc --- <div align= "center"> <h1> MotionGPT </h1> </div> <div align="center"> <h2> <a href="https://motion-gpt.github.io/">MotionGPT: Human Motion as a Foreign Language</a></h2> <p align="center"> <a href="https://motion-gpt.github.io/">Project Page</a> • <a href="https://arxiv.org/abs/2306.14795">Arxiv Paper</a> • <a href="https://huggingface.co/spaces/OpenMotionLab/MotionGPT">HuggingFace Demo</a> • <a href="#️-faq">FAQ</a> • <a href="#-citation">Citation </p> </div> <div align="center"> <!-- <img src="https://cdn.discordapp.com/attachments/941582479117127680/1111543600879259749/20230526075532.png" width="350px"> --> </div> <!-- ### [MotionGPT: Human Motion as a Foreign Language](https://motion-gpt.github.io/) --> <!-- ### [Project Page](https://motion-gpt.github.io/) | [Arxiv Paper](https://arxiv.org/abs/2306.14795) | [HuggingFace Demo](xxx) --> ## 🏃 Intro MotionGPT MotionGPT is a **unified** and **user-friendly** motion-language model to learn the semantic coupling of two modalities and generate high-quality motions and text descriptions on **multiple motion tasks**. Though the advancement of pre-trained large language models unfolds, the exploration of building a unified model for language and other multi-modal data, such as motion, remains challenging and untouched so far. Fortunately, human motion displays a semantic coupling akin to human language, often perceived as a form of body language. By fusing language data with large-scale motion models, motion-language pre-training that can enhance the performance of motion-related tasks becomes feasible. Driven by this insight, we propose MotionGPT, a unified, versatile, and user-friendly motion-language model to handle multiple motion-relevant tasks. Specifically, we employ the discrete vector quantization for human motion and transfer 3D motion into motion tokens, similar to the generation process of word tokens. Building upon this “motion vocabulary”, we perform language modeling on both motion and text in a unified manner, treating human motion as a specific language. Moreover, inspired by prompt learning, we pre-train MotionGPT with a mixture of motion-language data and fine-tune it on prompt-based question-and-answer tasks. Extensive experiments demonstrate that MotionGPT achieves state-of-the-art performances on multiple motion tasks including text-driven motion generation, motion captioning, motion prediction, and motion in-between. MotionGPT: Human Motion as a Foreign Language - [[ArXiv](https://arxiv.org/abs/2306.14795)]
LeWince/training_df_fullctxt_and_sent_split_filtered_0_15_PubMedBert
LeWince
2023-09-21T02:57:43Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-09-20T23:23:31Z
--- tags: - generated_from_trainer metrics: - rouge - precision - recall - f1 model-index: - name: training_df_fullctxt_and_sent_split_filtered_0_15_PubMedBert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # training_df_fullctxt_and_sent_split_filtered_0_15_PubMedBert This model is a fine-tuned version of [dmis-lab/TinyPubMedBERT-v1.0](https://huggingface.co/dmis-lab/TinyPubMedBERT-v1.0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3031 - Rouge1: 0.8717 - Rouge2: 0.6989 - Rougel: 0.6336 - Rougelsum: 0.6336 - Exact Match: 0.0 - Precision: [0.8712936639785767, 0.9647811651229858] - Recall: [0.8689576387405396, 0.9682695865631104] - F1: [0.8701240420341492, 0.9665222764015198] - Hashcode: roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.28.0) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Exact Match | Precision | Recall | F1 | Hashcode | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-----------:|:----------------------------------------:|:----------------------------------------:|:----------------------------------------:|:---------------------------------------------------------:| | 0.4001 | 1.0 | 5881 | 0.3415 | 0.6842 | 0.6047 | 0.6120 | 0.6120 | 0.0 | [0.8383916616439819, 0.960318922996521] | [0.7912731170654297, 0.963049054145813] | [0.8141512274742126, 0.9616820812225342] | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.28.0) | | 0.3165 | 2.0 | 11762 | 0.3255 | 0.7947 | 0.6870 | 0.6369 | 0.6369 | 0.0 | [0.8562091588973999, 0.9591262340545654] | [0.841107964515686, 0.9619568586349487] | [0.8485913872718811, 0.9605394601821899] | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.28.0) | | 0.2971 | 3.0 | 17643 | 0.3178 | 0.8168 | 0.6965 | 0.6365 | 0.6365 | 0.0 | [0.8633116483688354, 0.978273868560791] | [0.8504236936569214, 0.9788444638252258] | [0.856819212436676, 0.9785590767860413] | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.28.0) | | 0.2853 | 4.0 | 23524 | 0.2934 | 0.8134 | 0.7020 | 0.6328 | 0.6328 | 0.0 | [0.8643838167190552, 0.9647811651229858] | [0.8536887764930725, 0.9682695865631104] | [0.859002947807312, 0.9665222764015198] | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.28.0) | | 0.2744 | 5.0 | 29405 | 0.2968 | 0.8664 | 0.7077 | 0.6357 | 0.6357 | 0.0 | [0.8695193529129028, 0.9638710021972656] | [0.8581283688545227, 0.9666727185249329] | [0.8637862205505371, 0.9652698636054993] | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.28.0) | | 0.2669 | 6.0 | 35286 | 0.3027 | 0.8472 | 0.6949 | 0.6378 | 0.6378 | 0.0 | [0.8685003519058228, 0.9665455222129822] | [0.8652210235595703, 0.9689881801605225] | [0.8668575882911682, 0.9677652716636658] | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.28.0) | | 0.2595 | 7.0 | 41167 | 0.2996 | 0.8840 | 0.7193 | 0.6447 | 0.6447 | 0.0 | [0.8698508143424988, 0.9638710021972656] | [0.8639194965362549, 0.9666727185249329] | [0.8668749332427979, 0.9652698636054993] | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.28.0) | | 0.253 | 8.0 | 47048 | 0.2972 | 0.8518 | 0.6891 | 0.6363 | 0.6363 | 0.0 | [0.8666473031044006, 0.9638710021972656] | [0.863062858581543, 0.9666727185249329] | [0.8648514151573181, 0.9652698636054993] | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.28.0) | | 0.2481 | 9.0 | 52929 | 0.2985 | 0.8533 | 0.6843 | 0.6309 | 0.6309 | 0.0 | [0.8691736459732056, 0.9647811651229858] | [0.8661415576934814, 0.9682695865631104] | [0.8676549196243286, 0.9665222764015198] | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.28.0) | | 0.243 | 10.0 | 58810 | 0.3031 | 0.8717 | 0.6989 | 0.6336 | 0.6336 | 0.0 | [0.8712936639785767, 0.9647811651229858] | [0.8689576387405396, 0.9682695865631104] | [0.8701240420341492, 0.9665222764015198] | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.28.0) | ### Framework versions - Transformers 4.28.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
kcyu/Cifar100_LoRA_model_Vit-cifar_100
kcyu
2023-09-21T02:39:30Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-21T02:39:26Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
Spacetimetravel/autotrain-financial-conversation_financial-summary-90517144315
Spacetimetravel
2023-09-21T02:27:57Z
112
1
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "autotrain", "summarization", "en", "dataset:Spacetimetravel/autotrain-data-financial-conversation_financial-summary", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-09-21T02:27:22Z
--- tags: - autotrain - summarization language: - en widget: - text: "I love AutoTrain" datasets: - Spacetimetravel/autotrain-data-financial-conversation_financial-summary co2_eq_emissions: emissions: 0.0034691778675638176 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 90517144315 - CO2 Emissions (in grams): 0.0035 ## Validation Metrics - Loss: 2.350 - Rouge1: 13.269 - Rouge2: 6.044 - RougeL: 11.731 - RougeLsum: 13.269 - Gen Len: 19.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Spacetimetravel/autotrain-financial-conversation_financial-summary-90517144315 ```
LykosAI/Upscalers
LykosAI
2023-09-21T02:18:49Z
0
0
null
[ "license:agpl-3.0", "region:us" ]
null
2023-09-20T19:00:08Z
--- license: agpl-3.0 --- ## Collection of community image upscalers License varies by model - Individual files will have an accompanying "ModelName - LICENSE.txt" - Collections of files from the same source may instead have a "LICENSE.txt" in the directory
caochengchen/rare-puppers
caochengchen
2023-09-21T01:52:38Z
194
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-21T01:52:30Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.7313432693481445 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
newronai/clma2-13b-Chat-Adapter-text2sql-numstation-3epoch
newronai
2023-09-21T01:17:46Z
2
0
peft
[ "peft", "region:us" ]
null
2023-09-21T01:17:38Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
isashap/contexttrained-validationloss-waldomodel
isashap
2023-09-21T00:35:27Z
33
0
peft
[ "peft", "text-generation", "region:us" ]
text-generation
2023-09-21T00:05:53Z
--- library_name: peft pipeline_tag: text-generation widget: - text: "Job: Skills: Resume Point:" ---
leonidaster/PhotoGasmv1.0
leonidaster
2023-09-21T00:32:14Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-21T00:23:04Z
--- license: creativeml-openrail-m ---
tuanio/wav2vec2-large-xls-r-300m-cv_vi
tuanio
2023-09-21T00:29:24Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_11_0", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-20T10:17:20Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-cv_vi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: vi split: test args: vi metrics: - name: Wer type: wer value: 0.663156740155753 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-cv_vi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 2.3858 - Wer: 0.6632 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 14.1667 | 9.2 | 200 | 4.5633 | 1.0 | | 3.6334 | 18.39 | 400 | 3.4332 | 1.0 | | 1.938 | 27.59 | 600 | 1.2434 | 0.7082 | | 0.3082 | 36.78 | 800 | 1.2288 | 0.6534 | | 0.1766 | 45.98 | 1000 | 1.2915 | 0.6500 | | 0.1287 | 55.17 | 1200 | 1.3452 | 0.6269 | | 0.1043 | 64.37 | 1400 | 1.4746 | 0.6395 | | 0.0834 | 73.56 | 1600 | 1.4731 | 0.6347 | | 0.0837 | 82.76 | 1800 | 1.5893 | 0.6493 | | 0.0711 | 91.95 | 2000 | 1.6205 | 0.6522 | | 0.0672 | 101.15 | 2200 | 1.5513 | 0.6503 | | 0.0745 | 110.34 | 2400 | 1.6509 | 0.6774 | | 0.07 | 119.54 | 2600 | 1.6779 | 0.6543 | | 0.0492 | 128.74 | 2800 | 1.7616 | 0.6611 | | 0.0473 | 137.93 | 3000 | 1.7885 | 0.6634 | | 0.0535 | 147.13 | 3200 | 1.8877 | 0.6806 | | 0.0468 | 156.32 | 3400 | 1.7766 | 0.6671 | | 0.0386 | 165.52 | 3600 | 1.7956 | 0.6494 | | 0.0418 | 174.71 | 3800 | 1.9402 | 0.6851 | | 0.0426 | 183.91 | 4000 | 1.9777 | 0.6927 | | 0.0395 | 193.1 | 4200 | 1.8733 | 0.6689 | | 0.0392 | 202.3 | 4400 | 1.8994 | 0.6774 | | 0.0377 | 211.49 | 4600 | 1.9983 | 0.6889 | | 0.0354 | 220.69 | 4800 | 1.8858 | 0.6645 | | 0.0315 | 229.89 | 5000 | 1.9716 | 0.6805 | | 0.0312 | 239.08 | 5200 | 2.0422 | 0.6825 | | 0.0292 | 248.28 | 5400 | 2.0780 | 0.7019 | | 0.0283 | 257.47 | 5600 | 1.9102 | 0.6743 | | 0.025 | 266.67 | 5800 | 1.9745 | 0.6756 | | 0.0246 | 275.86 | 6000 | 2.1289 | 0.6918 | | 0.0234 | 285.06 | 6200 | 2.1775 | 0.7068 | | 0.0219 | 294.25 | 6400 | 2.1755 | 0.6935 | | 0.0182 | 303.45 | 6600 | 2.1602 | 0.6764 | | 0.0174 | 312.64 | 6800 | 2.1359 | 0.6596 | | 0.0157 | 321.84 | 7000 | 2.1958 | 0.6797 | | 0.0147 | 331.03 | 7200 | 2.1460 | 0.6657 | | 0.0135 | 340.23 | 7400 | 2.2716 | 0.6719 | | 0.0124 | 349.43 | 7600 | 2.3556 | 0.6762 | | 0.0109 | 358.62 | 7800 | 2.2520 | 0.6632 | | 0.0115 | 367.82 | 8000 | 2.3112 | 0.6802 | | 0.0108 | 377.01 | 8200 | 2.2925 | 0.6659 | | 0.0106 | 386.21 | 8400 | 2.2950 | 0.6726 | | 0.0088 | 395.4 | 8600 | 2.3078 | 0.6735 | | 0.0084 | 404.6 | 8800 | 2.3538 | 0.6723 | | 0.0079 | 413.79 | 9000 | 2.3212 | 0.6615 | | 0.0074 | 422.99 | 9200 | 2.3908 | 0.6774 | | 0.0094 | 432.18 | 9400 | 2.3164 | 0.6779 | | 0.0077 | 441.38 | 9600 | 2.3105 | 0.6649 | | 0.0066 | 450.57 | 9800 | 2.3599 | 0.6742 | | 0.007 | 459.77 | 10000 | 2.3675 | 0.6709 | | 0.0056 | 468.97 | 10200 | 2.3964 | 0.6677 | | 0.0049 | 478.16 | 10400 | 2.3858 | 0.6632 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
CyberHarem/yao_feifei_idolmastercinderellagirls
CyberHarem
2023-09-21T00:28:18Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/yao_feifei_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-21T00:15:23Z
--- license: mit datasets: - CyberHarem/yao_feifei_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of yao_feifei_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 5100, you need to download `5100/yao_feifei_idolmastercinderellagirls.pt` as the embedding and `5100/yao_feifei_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 5100**, with the score of 0.948. The trigger words are: 1. `yao_feifei_idolmastercinderellagirls` 2. `green_eyes, black_hair, smile, hair_bun, double_bun, open_mouth, short_hair, hair_ornament` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:--------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | **5100** | **0.948** | [**Download**](5100/yao_feifei_idolmastercinderellagirls.zip) | ![pattern_1-5100](5100/previews/pattern_1.png) | ![pattern_2-5100](5100/previews/pattern_2.png) | ![pattern_3-5100](5100/previews/pattern_3.png) | ![pattern_4-5100](5100/previews/pattern_4.png) | ![pattern_5-5100](5100/previews/pattern_5.png) | ![pattern_6-5100](5100/previews/pattern_6.png) | ![bikini-5100](5100/previews/bikini.png) | [<NSFW, click to see>](5100/previews/bondage.png) | ![free-5100](5100/previews/free.png) | ![maid-5100](5100/previews/maid.png) | ![miko-5100](5100/previews/miko.png) | [<NSFW, click to see>](5100/previews/nude.png) | [<NSFW, click to see>](5100/previews/nude2.png) | ![suit-5100](5100/previews/suit.png) | ![yukata-5100](5100/previews/yukata.png) | | 4760 | 0.894 | [Download](4760/yao_feifei_idolmastercinderellagirls.zip) | ![pattern_1-4760](4760/previews/pattern_1.png) | ![pattern_2-4760](4760/previews/pattern_2.png) | ![pattern_3-4760](4760/previews/pattern_3.png) | ![pattern_4-4760](4760/previews/pattern_4.png) | ![pattern_5-4760](4760/previews/pattern_5.png) | ![pattern_6-4760](4760/previews/pattern_6.png) | ![bikini-4760](4760/previews/bikini.png) | [<NSFW, click to see>](4760/previews/bondage.png) | ![free-4760](4760/previews/free.png) | ![maid-4760](4760/previews/maid.png) | ![miko-4760](4760/previews/miko.png) | [<NSFW, click to see>](4760/previews/nude.png) | [<NSFW, click to see>](4760/previews/nude2.png) | ![suit-4760](4760/previews/suit.png) | ![yukata-4760](4760/previews/yukata.png) | | 4420 | 0.926 | [Download](4420/yao_feifei_idolmastercinderellagirls.zip) | ![pattern_1-4420](4420/previews/pattern_1.png) | ![pattern_2-4420](4420/previews/pattern_2.png) | ![pattern_3-4420](4420/previews/pattern_3.png) | ![pattern_4-4420](4420/previews/pattern_4.png) | ![pattern_5-4420](4420/previews/pattern_5.png) | ![pattern_6-4420](4420/previews/pattern_6.png) | ![bikini-4420](4420/previews/bikini.png) | [<NSFW, click to see>](4420/previews/bondage.png) | ![free-4420](4420/previews/free.png) | ![maid-4420](4420/previews/maid.png) | ![miko-4420](4420/previews/miko.png) | [<NSFW, click to see>](4420/previews/nude.png) | [<NSFW, click to see>](4420/previews/nude2.png) | ![suit-4420](4420/previews/suit.png) | ![yukata-4420](4420/previews/yukata.png) | | 4080 | 0.895 | [Download](4080/yao_feifei_idolmastercinderellagirls.zip) | ![pattern_1-4080](4080/previews/pattern_1.png) | ![pattern_2-4080](4080/previews/pattern_2.png) | ![pattern_3-4080](4080/previews/pattern_3.png) | ![pattern_4-4080](4080/previews/pattern_4.png) | ![pattern_5-4080](4080/previews/pattern_5.png) | ![pattern_6-4080](4080/previews/pattern_6.png) | ![bikini-4080](4080/previews/bikini.png) | [<NSFW, click to see>](4080/previews/bondage.png) | ![free-4080](4080/previews/free.png) | ![maid-4080](4080/previews/maid.png) | ![miko-4080](4080/previews/miko.png) | [<NSFW, click to see>](4080/previews/nude.png) | [<NSFW, click to see>](4080/previews/nude2.png) | ![suit-4080](4080/previews/suit.png) | ![yukata-4080](4080/previews/yukata.png) | | 3740 | 0.924 | [Download](3740/yao_feifei_idolmastercinderellagirls.zip) | ![pattern_1-3740](3740/previews/pattern_1.png) | ![pattern_2-3740](3740/previews/pattern_2.png) | ![pattern_3-3740](3740/previews/pattern_3.png) | ![pattern_4-3740](3740/previews/pattern_4.png) | ![pattern_5-3740](3740/previews/pattern_5.png) | ![pattern_6-3740](3740/previews/pattern_6.png) | ![bikini-3740](3740/previews/bikini.png) | [<NSFW, click to see>](3740/previews/bondage.png) | ![free-3740](3740/previews/free.png) | ![maid-3740](3740/previews/maid.png) | ![miko-3740](3740/previews/miko.png) | [<NSFW, click to see>](3740/previews/nude.png) | [<NSFW, click to see>](3740/previews/nude2.png) | ![suit-3740](3740/previews/suit.png) | ![yukata-3740](3740/previews/yukata.png) | | 3400 | 0.921 | [Download](3400/yao_feifei_idolmastercinderellagirls.zip) | ![pattern_1-3400](3400/previews/pattern_1.png) | ![pattern_2-3400](3400/previews/pattern_2.png) | ![pattern_3-3400](3400/previews/pattern_3.png) | ![pattern_4-3400](3400/previews/pattern_4.png) | ![pattern_5-3400](3400/previews/pattern_5.png) | ![pattern_6-3400](3400/previews/pattern_6.png) | ![bikini-3400](3400/previews/bikini.png) | [<NSFW, click to see>](3400/previews/bondage.png) | ![free-3400](3400/previews/free.png) | ![maid-3400](3400/previews/maid.png) | ![miko-3400](3400/previews/miko.png) | [<NSFW, click to see>](3400/previews/nude.png) | [<NSFW, click to see>](3400/previews/nude2.png) | ![suit-3400](3400/previews/suit.png) | ![yukata-3400](3400/previews/yukata.png) | | 3060 | 0.913 | [Download](3060/yao_feifei_idolmastercinderellagirls.zip) | ![pattern_1-3060](3060/previews/pattern_1.png) | ![pattern_2-3060](3060/previews/pattern_2.png) | ![pattern_3-3060](3060/previews/pattern_3.png) | ![pattern_4-3060](3060/previews/pattern_4.png) | ![pattern_5-3060](3060/previews/pattern_5.png) | ![pattern_6-3060](3060/previews/pattern_6.png) | ![bikini-3060](3060/previews/bikini.png) | [<NSFW, click to see>](3060/previews/bondage.png) | ![free-3060](3060/previews/free.png) | ![maid-3060](3060/previews/maid.png) | ![miko-3060](3060/previews/miko.png) | [<NSFW, click to see>](3060/previews/nude.png) | [<NSFW, click to see>](3060/previews/nude2.png) | ![suit-3060](3060/previews/suit.png) | ![yukata-3060](3060/previews/yukata.png) | | 2720 | 0.928 | [Download](2720/yao_feifei_idolmastercinderellagirls.zip) | ![pattern_1-2720](2720/previews/pattern_1.png) | ![pattern_2-2720](2720/previews/pattern_2.png) | ![pattern_3-2720](2720/previews/pattern_3.png) | ![pattern_4-2720](2720/previews/pattern_4.png) | ![pattern_5-2720](2720/previews/pattern_5.png) | ![pattern_6-2720](2720/previews/pattern_6.png) | ![bikini-2720](2720/previews/bikini.png) | [<NSFW, click to see>](2720/previews/bondage.png) | ![free-2720](2720/previews/free.png) | ![maid-2720](2720/previews/maid.png) | ![miko-2720](2720/previews/miko.png) | [<NSFW, click to see>](2720/previews/nude.png) | [<NSFW, click to see>](2720/previews/nude2.png) | ![suit-2720](2720/previews/suit.png) | ![yukata-2720](2720/previews/yukata.png) | | 2380 | 0.919 | [Download](2380/yao_feifei_idolmastercinderellagirls.zip) | ![pattern_1-2380](2380/previews/pattern_1.png) | ![pattern_2-2380](2380/previews/pattern_2.png) | ![pattern_3-2380](2380/previews/pattern_3.png) | ![pattern_4-2380](2380/previews/pattern_4.png) | ![pattern_5-2380](2380/previews/pattern_5.png) | ![pattern_6-2380](2380/previews/pattern_6.png) | ![bikini-2380](2380/previews/bikini.png) | [<NSFW, click to see>](2380/previews/bondage.png) | ![free-2380](2380/previews/free.png) | ![maid-2380](2380/previews/maid.png) | ![miko-2380](2380/previews/miko.png) | [<NSFW, click to see>](2380/previews/nude.png) | [<NSFW, click to see>](2380/previews/nude2.png) | ![suit-2380](2380/previews/suit.png) | ![yukata-2380](2380/previews/yukata.png) | | 2040 | 0.860 | [Download](2040/yao_feifei_idolmastercinderellagirls.zip) | ![pattern_1-2040](2040/previews/pattern_1.png) | ![pattern_2-2040](2040/previews/pattern_2.png) | ![pattern_3-2040](2040/previews/pattern_3.png) | ![pattern_4-2040](2040/previews/pattern_4.png) | ![pattern_5-2040](2040/previews/pattern_5.png) | ![pattern_6-2040](2040/previews/pattern_6.png) | ![bikini-2040](2040/previews/bikini.png) | [<NSFW, click to see>](2040/previews/bondage.png) | ![free-2040](2040/previews/free.png) | ![maid-2040](2040/previews/maid.png) | ![miko-2040](2040/previews/miko.png) | [<NSFW, click to see>](2040/previews/nude.png) | [<NSFW, click to see>](2040/previews/nude2.png) | ![suit-2040](2040/previews/suit.png) | ![yukata-2040](2040/previews/yukata.png) | | 1700 | 0.825 | [Download](1700/yao_feifei_idolmastercinderellagirls.zip) | ![pattern_1-1700](1700/previews/pattern_1.png) | ![pattern_2-1700](1700/previews/pattern_2.png) | ![pattern_3-1700](1700/previews/pattern_3.png) | ![pattern_4-1700](1700/previews/pattern_4.png) | ![pattern_5-1700](1700/previews/pattern_5.png) | ![pattern_6-1700](1700/previews/pattern_6.png) | ![bikini-1700](1700/previews/bikini.png) | [<NSFW, click to see>](1700/previews/bondage.png) | ![free-1700](1700/previews/free.png) | ![maid-1700](1700/previews/maid.png) | ![miko-1700](1700/previews/miko.png) | [<NSFW, click to see>](1700/previews/nude.png) | [<NSFW, click to see>](1700/previews/nude2.png) | ![suit-1700](1700/previews/suit.png) | ![yukata-1700](1700/previews/yukata.png) | | 1360 | 0.761 | [Download](1360/yao_feifei_idolmastercinderellagirls.zip) | ![pattern_1-1360](1360/previews/pattern_1.png) | ![pattern_2-1360](1360/previews/pattern_2.png) | ![pattern_3-1360](1360/previews/pattern_3.png) | ![pattern_4-1360](1360/previews/pattern_4.png) | ![pattern_5-1360](1360/previews/pattern_5.png) | ![pattern_6-1360](1360/previews/pattern_6.png) | ![bikini-1360](1360/previews/bikini.png) | [<NSFW, click to see>](1360/previews/bondage.png) | ![free-1360](1360/previews/free.png) | ![maid-1360](1360/previews/maid.png) | ![miko-1360](1360/previews/miko.png) | [<NSFW, click to see>](1360/previews/nude.png) | [<NSFW, click to see>](1360/previews/nude2.png) | ![suit-1360](1360/previews/suit.png) | ![yukata-1360](1360/previews/yukata.png) | | 1020 | 0.797 | [Download](1020/yao_feifei_idolmastercinderellagirls.zip) | ![pattern_1-1020](1020/previews/pattern_1.png) | ![pattern_2-1020](1020/previews/pattern_2.png) | ![pattern_3-1020](1020/previews/pattern_3.png) | ![pattern_4-1020](1020/previews/pattern_4.png) | ![pattern_5-1020](1020/previews/pattern_5.png) | ![pattern_6-1020](1020/previews/pattern_6.png) | ![bikini-1020](1020/previews/bikini.png) | [<NSFW, click to see>](1020/previews/bondage.png) | ![free-1020](1020/previews/free.png) | ![maid-1020](1020/previews/maid.png) | ![miko-1020](1020/previews/miko.png) | [<NSFW, click to see>](1020/previews/nude.png) | [<NSFW, click to see>](1020/previews/nude2.png) | ![suit-1020](1020/previews/suit.png) | ![yukata-1020](1020/previews/yukata.png) | | 680 | 0.770 | [Download](680/yao_feifei_idolmastercinderellagirls.zip) | ![pattern_1-680](680/previews/pattern_1.png) | ![pattern_2-680](680/previews/pattern_2.png) | ![pattern_3-680](680/previews/pattern_3.png) | ![pattern_4-680](680/previews/pattern_4.png) | ![pattern_5-680](680/previews/pattern_5.png) | ![pattern_6-680](680/previews/pattern_6.png) | ![bikini-680](680/previews/bikini.png) | [<NSFW, click to see>](680/previews/bondage.png) | ![free-680](680/previews/free.png) | ![maid-680](680/previews/maid.png) | ![miko-680](680/previews/miko.png) | [<NSFW, click to see>](680/previews/nude.png) | [<NSFW, click to see>](680/previews/nude2.png) | ![suit-680](680/previews/suit.png) | ![yukata-680](680/previews/yukata.png) | | 340 | 0.718 | [Download](340/yao_feifei_idolmastercinderellagirls.zip) | ![pattern_1-340](340/previews/pattern_1.png) | ![pattern_2-340](340/previews/pattern_2.png) | ![pattern_3-340](340/previews/pattern_3.png) | ![pattern_4-340](340/previews/pattern_4.png) | ![pattern_5-340](340/previews/pattern_5.png) | ![pattern_6-340](340/previews/pattern_6.png) | ![bikini-340](340/previews/bikini.png) | [<NSFW, click to see>](340/previews/bondage.png) | ![free-340](340/previews/free.png) | ![maid-340](340/previews/maid.png) | ![miko-340](340/previews/miko.png) | [<NSFW, click to see>](340/previews/nude.png) | [<NSFW, click to see>](340/previews/nude2.png) | ![suit-340](340/previews/suit.png) | ![yukata-340](340/previews/yukata.png) |
sandeshrajx/code-alpaca-100
sandeshrajx
2023-09-21T00:21:45Z
3
0
peft
[ "peft", "base_model:abhishek/llama-2-7b-hf-small-shards", "base_model:adapter:abhishek/llama-2-7b-hf-small-shards", "region:us" ]
null
2023-08-02T05:12:04Z
--- library_name: peft base_model: abhishek/llama-2-7b-hf-small-shards --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
vadimgm/lora-trained-xl
vadimgm
2023-09-21T00:14:07Z
3
2
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-09-20T23:24:34Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - vadimgm/lora-trained-xl These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
grace-pro/snli_test_100k
grace-pro
2023-09-21T00:07:06Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-20T23:16:43Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: snli_test_100k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # snli_test_100k This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1739 - Accuracy: 0.9451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1736 | 1.0 | 9375 | 0.1710 | 0.9392 | | 0.1416 | 2.0 | 18750 | 0.1747 | 0.9412 | | 0.1057 | 3.0 | 28125 | 0.1739 | 0.9451 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
digiplay/OldFish_v1.1_personal_HDmix
digiplay
2023-09-20T23:57:19Z
332
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-20T19:22:02Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Use some merge ways to make OldFish_v1.1 into diffusers .safetensors WORK OK file. Original Author's models page: https://civitai.com/models/14978?modelVersionId=22052 Sample image generated by huggingface's API : bright color,light color, 1girl ![99179b61-aa8c-4edb-80f4-3622964ad38c.jpeg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/D-HP6aTkpUt4nrYmHDN56.jpeg) 1 girl, masterpiece , magazine cover, ![8af8255e-c348-4c1b-83ba-5eb3bd1ee4f0.jpeg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/DlUKgU1BsdDBaq-8R-AFP.jpeg) close-up ,masterpiece,highres, highest quality,intricate detail,best texture,realistic,8k,soft light,perfect shadow, sunny,portrait,1girl,hanfu,walking,Luxury, street shot, ![a5b7af77-ca57-498b-ab82-01e2bf44bcee.jpeg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/CbyVO0qSil2gCtPHTs62e.jpeg) ![399a024c-9cfc-4011-aebd-bbc0c723ccca.jpeg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/gIRvDRSEqZA9BH52ZYar2.jpeg) ![16795a53-eb21-4ab9-9906-980665daa380.jpeg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/R-vXT38NqgJGCkYhGVSmt.jpeg)
CatGalaxy/cat
CatGalaxy
2023-09-20T23:51:49Z
0
0
null
[ "license:cc-by-nc-sa-3.0", "region:us" ]
null
2023-09-20T23:51:49Z
--- license: cc-by-nc-sa-3.0 ---
sapharos/jairo-reyes
sapharos
2023-09-20T23:38:40Z
1
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-20T19:58:33Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of JARV tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
bedus-creation/eng-limbu-t5-large-all-002
bedus-creation
2023-09-20T23:37:45Z
64
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-20T17:27:13Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_keras_callback model-index: - name: bedus-creation/eng-limbu-t5-large-all-002 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bedus-creation/eng-limbu-t5-large-all-002 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.8999 - Validation Loss: 2.7328 - Epoch: 279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.7953 | 7.0449 | 0 | | 7.0758 | 6.6946 | 1 | | 6.7576 | 6.5212 | 2 | | 6.5967 | 6.3865 | 3 | | 6.4694 | 6.2904 | 4 | | 6.3887 | 6.2178 | 5 | | 6.2966 | 6.1474 | 6 | | 6.2517 | 6.0932 | 7 | | 6.1860 | 6.0366 | 8 | | 6.1346 | 5.9946 | 9 | | 6.0712 | 5.9387 | 10 | | 6.0509 | 5.9157 | 11 | | 6.0028 | 5.8848 | 12 | | 5.9767 | 5.8508 | 13 | | 5.9447 | 5.8147 | 14 | | 5.8854 | 5.7756 | 15 | | 5.8718 | 5.7431 | 16 | | 5.8380 | 5.7119 | 17 | | 5.8139 | 5.6781 | 18 | | 5.7940 | 5.6455 | 19 | | 5.7526 | 5.6239 | 20 | | 5.7284 | 5.5838 | 21 | | 5.6846 | 5.5729 | 22 | | 5.6370 | 5.5342 | 23 | | 5.6364 | 5.4946 | 24 | | 5.5995 | 5.4774 | 25 | | 5.5687 | 5.4367 | 26 | | 5.5542 | 5.4143 | 27 | | 5.5180 | 5.3827 | 28 | | 5.4891 | 5.3586 | 29 | | 5.4495 | 5.3369 | 30 | | 5.4378 | 5.3089 | 31 | | 5.4178 | 5.2933 | 32 | | 5.4018 | 5.2644 | 33 | | 5.3636 | 5.2449 | 34 | | 5.3411 | 5.2251 | 35 | | 5.2948 | 5.1966 | 36 | | 5.2743 | 5.1697 | 37 | | 5.2674 | 5.1476 | 38 | | 5.2382 | 5.1407 | 39 | | 5.2198 | 5.1172 | 40 | | 5.1973 | 5.0913 | 41 | | 5.1627 | 5.0737 | 42 | | 5.1588 | 5.0510 | 43 | | 5.1127 | 5.0454 | 44 | | 5.0878 | 5.0105 | 45 | | 5.0613 | 5.0046 | 46 | | 5.0591 | 4.9855 | 47 | | 5.0412 | 4.9752 | 48 | | 4.9854 | 4.9594 | 49 | | 4.9747 | 4.9363 | 50 | | 4.9700 | 4.9218 | 51 | | 4.9462 | 4.9077 | 52 | | 4.9262 | 4.8845 | 53 | | 4.9259 | 4.8694 | 54 | | 4.8775 | 4.8454 | 55 | | 4.8740 | 4.8548 | 56 | | 4.8358 | 4.8191 | 57 | | 4.8322 | 4.8062 | 58 | | 4.7923 | 4.7926 | 59 | | 4.7962 | 4.7772 | 60 | | 4.7558 | 4.7718 | 61 | | 4.7590 | 4.7415 | 62 | | 4.7218 | 4.7336 | 63 | | 4.7066 | 4.7259 | 64 | | 4.6890 | 4.7041 | 65 | | 4.6694 | 4.7048 | 66 | | 4.6403 | 4.6774 | 67 | | 4.6289 | 4.6763 | 68 | | 4.6279 | 4.6538 | 69 | | 4.6049 | 4.6313 | 70 | | 4.5677 | 4.6278 | 71 | | 4.5795 | 4.6051 | 72 | | 4.5540 | 4.5965 | 73 | | 4.5160 | 4.5783 | 74 | | 4.5139 | 4.5696 | 75 | | 4.5000 | 4.5461 | 76 | | 4.4890 | 4.5406 | 77 | | 4.4287 | 4.5367 | 78 | | 4.4327 | 4.5103 | 79 | | 4.4258 | 4.4959 | 80 | | 4.4061 | 4.4783 | 81 | | 4.3990 | 4.4655 | 82 | | 4.3895 | 4.4568 | 83 | | 4.3561 | 4.4437 | 84 | | 4.3408 | 4.4307 | 85 | | 4.3202 | 4.4179 | 86 | | 4.2858 | 4.4040 | 87 | | 4.2933 | 4.4001 | 88 | | 4.2824 | 4.3876 | 89 | | 4.2461 | 4.3682 | 90 | | 4.2468 | 4.3575 | 91 | | 4.2210 | 4.3480 | 92 | | 4.2108 | 4.3273 | 93 | | 4.1970 | 4.3143 | 94 | | 4.1821 | 4.3085 | 95 | | 4.1640 | 4.2918 | 96 | | 4.1481 | 4.2699 | 97 | | 4.1312 | 4.2643 | 98 | | 4.1221 | 4.2473 | 99 | | 4.1146 | 4.2410 | 100 | | 4.0680 | 4.2203 | 101 | | 4.0452 | 4.2196 | 102 | | 4.0217 | 4.2066 | 103 | | 4.0366 | 4.2025 | 104 | | 4.0123 | 4.1800 | 105 | | 3.9836 | 4.1794 | 106 | | 3.9713 | 4.1535 | 107 | | 3.9780 | 4.1415 | 108 | | 3.9404 | 4.1295 | 109 | | 3.9220 | 4.1263 | 110 | | 3.9356 | 4.1115 | 111 | | 3.8844 | 4.0967 | 112 | | 3.8773 | 4.0870 | 113 | | 3.8716 | 4.0853 | 114 | | 3.8412 | 4.0683 | 115 | | 3.8377 | 4.0502 | 116 | | 3.8244 | 4.0485 | 117 | | 3.8084 | 4.0419 | 118 | | 3.8034 | 4.0267 | 119 | | 3.7625 | 4.0202 | 120 | | 3.7533 | 4.0012 | 121 | | 3.7537 | 3.9910 | 122 | | 3.7306 | 3.9875 | 123 | | 3.7285 | 3.9704 | 124 | | 3.7029 | 3.9639 | 125 | | 3.6878 | 3.9554 | 126 | | 3.6739 | 3.9437 | 127 | | 3.6867 | 3.9331 | 128 | | 3.6416 | 3.9241 | 129 | | 3.6223 | 3.9166 | 130 | | 3.6140 | 3.9054 | 131 | | 3.6078 | 3.8965 | 132 | | 3.5949 | 3.8874 | 133 | | 3.5544 | 3.8686 | 134 | | 3.5501 | 3.8648 | 135 | | 3.5556 | 3.8563 | 136 | | 3.5244 | 3.8394 | 137 | | 3.4931 | 3.8349 | 138 | | 3.4979 | 3.8258 | 139 | | 3.4661 | 3.8151 | 140 | | 3.4753 | 3.7984 | 141 | | 3.4504 | 3.7964 | 142 | | 3.4576 | 3.7955 | 143 | | 3.4260 | 3.7821 | 144 | | 3.4178 | 3.7637 | 145 | | 3.3994 | 3.7522 | 146 | | 3.3944 | 3.7481 | 147 | | 3.3643 | 3.7424 | 148 | | 3.3789 | 3.7233 | 149 | | 3.3367 | 3.7110 | 150 | | 3.3153 | 3.7045 | 151 | | 3.3118 | 3.6975 | 152 | | 3.3088 | 3.6891 | 153 | | 3.2876 | 3.6760 | 154 | | 3.2608 | 3.6659 | 155 | | 3.2618 | 3.6630 | 156 | | 3.2502 | 3.6473 | 157 | | 3.2326 | 3.6375 | 158 | | 3.2107 | 3.6316 | 159 | | 3.1976 | 3.6233 | 160 | | 3.1935 | 3.6101 | 161 | | 3.1789 | 3.6092 | 162 | | 3.1475 | 3.6092 | 163 | | 3.1672 | 3.5901 | 164 | | 3.1377 | 3.5858 | 165 | | 3.1281 | 3.5749 | 166 | | 3.1049 | 3.5581 | 167 | | 3.0839 | 3.5556 | 168 | | 3.0851 | 3.5453 | 169 | | 3.0769 | 3.5320 | 170 | | 3.0775 | 3.5266 | 171 | | 3.0284 | 3.5204 | 172 | | 3.0525 | 3.5146 | 173 | | 3.0226 | 3.5012 | 174 | | 2.9960 | 3.4935 | 175 | | 2.9902 | 3.4852 | 176 | | 2.9843 | 3.4776 | 177 | | 2.9690 | 3.4626 | 178 | | 2.9569 | 3.4593 | 179 | | 2.9346 | 3.4547 | 180 | | 2.9186 | 3.4286 | 181 | | 2.9128 | 3.4255 | 182 | | 2.9268 | 3.4247 | 183 | | 2.9021 | 3.4132 | 184 | | 2.8866 | 3.4039 | 185 | | 2.8667 | 3.4000 | 186 | | 2.8837 | 3.3907 | 187 | | 2.8454 | 3.3769 | 188 | | 2.8227 | 3.3815 | 189 | | 2.8175 | 3.3662 | 190 | | 2.8069 | 3.3581 | 191 | | 2.7910 | 3.3586 | 192 | | 2.7819 | 3.3428 | 193 | | 2.7717 | 3.3350 | 194 | | 2.7649 | 3.3186 | 195 | | 2.7390 | 3.3211 | 196 | | 2.7235 | 3.3040 | 197 | | 2.7286 | 3.2991 | 198 | | 2.7103 | 3.2952 | 199 | | 2.7014 | 3.2773 | 200 | | 2.6868 | 3.2711 | 201 | | 2.6902 | 3.2669 | 202 | | 2.6576 | 3.2577 | 203 | | 2.6249 | 3.2544 | 204 | | 2.6401 | 3.2438 | 205 | | 2.6318 | 3.2227 | 206 | | 2.6323 | 3.2356 | 207 | | 2.6169 | 3.2217 | 208 | | 2.6088 | 3.2107 | 209 | | 2.5782 | 3.2105 | 210 | | 2.5698 | 3.2004 | 211 | | 2.5615 | 3.1989 | 212 | | 2.5591 | 3.1856 | 213 | | 2.5351 | 3.1888 | 214 | | 2.5340 | 3.1684 | 215 | | 2.5246 | 3.1591 | 216 | | 2.5193 | 3.1515 | 217 | | 2.4921 | 3.1439 | 218 | | 2.4864 | 3.1377 | 219 | | 2.4649 | 3.1273 | 220 | | 2.4677 | 3.1305 | 221 | | 2.4673 | 3.1219 | 222 | | 2.4337 | 3.1115 | 223 | | 2.4299 | 3.1004 | 224 | | 2.3988 | 3.0971 | 225 | | 2.4104 | 3.0896 | 226 | | 2.4033 | 3.0806 | 227 | | 2.3804 | 3.0762 | 228 | | 2.3520 | 3.0737 | 229 | | 2.3598 | 3.0566 | 230 | | 2.3498 | 3.0555 | 231 | | 2.3629 | 3.0408 | 232 | | 2.3383 | 3.0410 | 233 | | 2.3226 | 3.0288 | 234 | | 2.3126 | 3.0275 | 235 | | 2.3112 | 3.0293 | 236 | | 2.2838 | 3.0065 | 237 | | 2.2786 | 2.9994 | 238 | | 2.2599 | 2.9986 | 239 | | 2.2481 | 2.9894 | 240 | | 2.2472 | 2.9854 | 241 | | 2.2187 | 2.9790 | 242 | | 2.2278 | 2.9645 | 243 | | 2.2268 | 2.9652 | 244 | | 2.2018 | 2.9571 | 245 | | 2.1895 | 2.9434 | 246 | | 2.1744 | 2.9463 | 247 | | 2.1717 | 2.9351 | 248 | | 2.1529 | 2.9302 | 249 | | 2.1614 | 2.9310 | 250 | | 2.1574 | 2.9184 | 251 | | 2.1357 | 2.9118 | 252 | | 2.1349 | 2.9017 | 253 | | 2.1102 | 2.8898 | 254 | | 2.1137 | 2.8973 | 255 | | 2.0954 | 2.8839 | 256 | | 2.0988 | 2.8771 | 257 | | 2.0826 | 2.8695 | 258 | | 2.0792 | 2.8674 | 259 | | 2.0666 | 2.8579 | 260 | | 2.0672 | 2.8475 | 261 | | 2.0357 | 2.8424 | 262 | | 2.0348 | 2.8343 | 263 | | 2.0250 | 2.8397 | 264 | | 2.0141 | 2.8213 | 265 | | 2.0042 | 2.8273 | 266 | | 2.0160 | 2.8118 | 267 | | 1.9873 | 2.8120 | 268 | | 1.9815 | 2.7944 | 269 | | 1.9853 | 2.7964 | 270 | | 1.9556 | 2.7879 | 271 | | 1.9385 | 2.7821 | 272 | | 1.9195 | 2.7754 | 273 | | 1.9332 | 2.7688 | 274 | | 1.9269 | 2.7578 | 275 | | 1.9224 | 2.7474 | 276 | | 1.9158 | 2.7407 | 277 | | 1.9042 | 2.7362 | 278 | | 1.8999 | 2.7328 | 279 | ### Framework versions - Transformers 4.33.2 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3
CyberHarem/zaizen_tokiko_idolmastercinderellagirls
CyberHarem
2023-09-20T23:36:12Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/zaizen_tokiko_idolmastercinderellagirls", "license:mit", "region:us" ]
text-to-image
2023-09-20T23:22:28Z
--- license: mit datasets: - CyberHarem/zaizen_tokiko_idolmastercinderellagirls pipeline_tag: text-to-image tags: - art --- # Lora of zaizen_tokiko_idolmastercinderellagirls This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 5700, you need to download `5700/zaizen_tokiko_idolmastercinderellagirls.pt` as the embedding and `5700/zaizen_tokiko_idolmastercinderellagirls.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 5700**, with the score of 0.955. The trigger words are: 1. `zaizen_tokiko_idolmastercinderellagirls` 2. `long_hair, brown_eyes, brown_hair, breasts, jewelry, red_hair, smile` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:-----------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | **5700** | **0.955** | [**Download**](5700/zaizen_tokiko_idolmastercinderellagirls.zip) | ![pattern_1-5700](5700/previews/pattern_1.png) | ![pattern_2-5700](5700/previews/pattern_2.png) | ![pattern_3-5700](5700/previews/pattern_3.png) | ![pattern_4-5700](5700/previews/pattern_4.png) | ![pattern_5-5700](5700/previews/pattern_5.png) | ![pattern_6-5700](5700/previews/pattern_6.png) | [<NSFW, click to see>](5700/previews/bikini.png) | [<NSFW, click to see>](5700/previews/bondage.png) | ![free-5700](5700/previews/free.png) | ![maid-5700](5700/previews/maid.png) | ![miko-5700](5700/previews/miko.png) | [<NSFW, click to see>](5700/previews/nude.png) | [<NSFW, click to see>](5700/previews/nude2.png) | ![suit-5700](5700/previews/suit.png) | ![yukata-5700](5700/previews/yukata.png) | | 5320 | 0.914 | [Download](5320/zaizen_tokiko_idolmastercinderellagirls.zip) | ![pattern_1-5320](5320/previews/pattern_1.png) | ![pattern_2-5320](5320/previews/pattern_2.png) | ![pattern_3-5320](5320/previews/pattern_3.png) | ![pattern_4-5320](5320/previews/pattern_4.png) | ![pattern_5-5320](5320/previews/pattern_5.png) | ![pattern_6-5320](5320/previews/pattern_6.png) | [<NSFW, click to see>](5320/previews/bikini.png) | [<NSFW, click to see>](5320/previews/bondage.png) | ![free-5320](5320/previews/free.png) | ![maid-5320](5320/previews/maid.png) | ![miko-5320](5320/previews/miko.png) | [<NSFW, click to see>](5320/previews/nude.png) | [<NSFW, click to see>](5320/previews/nude2.png) | ![suit-5320](5320/previews/suit.png) | ![yukata-5320](5320/previews/yukata.png) | | 4940 | 0.953 | [Download](4940/zaizen_tokiko_idolmastercinderellagirls.zip) | ![pattern_1-4940](4940/previews/pattern_1.png) | ![pattern_2-4940](4940/previews/pattern_2.png) | ![pattern_3-4940](4940/previews/pattern_3.png) | ![pattern_4-4940](4940/previews/pattern_4.png) | ![pattern_5-4940](4940/previews/pattern_5.png) | ![pattern_6-4940](4940/previews/pattern_6.png) | [<NSFW, click to see>](4940/previews/bikini.png) | [<NSFW, click to see>](4940/previews/bondage.png) | ![free-4940](4940/previews/free.png) | ![maid-4940](4940/previews/maid.png) | ![miko-4940](4940/previews/miko.png) | [<NSFW, click to see>](4940/previews/nude.png) | [<NSFW, click to see>](4940/previews/nude2.png) | ![suit-4940](4940/previews/suit.png) | ![yukata-4940](4940/previews/yukata.png) | | 4560 | 0.951 | [Download](4560/zaizen_tokiko_idolmastercinderellagirls.zip) | ![pattern_1-4560](4560/previews/pattern_1.png) | ![pattern_2-4560](4560/previews/pattern_2.png) | ![pattern_3-4560](4560/previews/pattern_3.png) | ![pattern_4-4560](4560/previews/pattern_4.png) | ![pattern_5-4560](4560/previews/pattern_5.png) | ![pattern_6-4560](4560/previews/pattern_6.png) | [<NSFW, click to see>](4560/previews/bikini.png) | [<NSFW, click to see>](4560/previews/bondage.png) | ![free-4560](4560/previews/free.png) | ![maid-4560](4560/previews/maid.png) | ![miko-4560](4560/previews/miko.png) | [<NSFW, click to see>](4560/previews/nude.png) | [<NSFW, click to see>](4560/previews/nude2.png) | ![suit-4560](4560/previews/suit.png) | ![yukata-4560](4560/previews/yukata.png) | | 4180 | 0.935 | [Download](4180/zaizen_tokiko_idolmastercinderellagirls.zip) | ![pattern_1-4180](4180/previews/pattern_1.png) | ![pattern_2-4180](4180/previews/pattern_2.png) | ![pattern_3-4180](4180/previews/pattern_3.png) | ![pattern_4-4180](4180/previews/pattern_4.png) | ![pattern_5-4180](4180/previews/pattern_5.png) | ![pattern_6-4180](4180/previews/pattern_6.png) | [<NSFW, click to see>](4180/previews/bikini.png) | [<NSFW, click to see>](4180/previews/bondage.png) | ![free-4180](4180/previews/free.png) | ![maid-4180](4180/previews/maid.png) | ![miko-4180](4180/previews/miko.png) | [<NSFW, click to see>](4180/previews/nude.png) | [<NSFW, click to see>](4180/previews/nude2.png) | ![suit-4180](4180/previews/suit.png) | ![yukata-4180](4180/previews/yukata.png) | | 3800 | 0.932 | [Download](3800/zaizen_tokiko_idolmastercinderellagirls.zip) | ![pattern_1-3800](3800/previews/pattern_1.png) | ![pattern_2-3800](3800/previews/pattern_2.png) | ![pattern_3-3800](3800/previews/pattern_3.png) | ![pattern_4-3800](3800/previews/pattern_4.png) | ![pattern_5-3800](3800/previews/pattern_5.png) | ![pattern_6-3800](3800/previews/pattern_6.png) | [<NSFW, click to see>](3800/previews/bikini.png) | [<NSFW, click to see>](3800/previews/bondage.png) | ![free-3800](3800/previews/free.png) | ![maid-3800](3800/previews/maid.png) | ![miko-3800](3800/previews/miko.png) | [<NSFW, click to see>](3800/previews/nude.png) | [<NSFW, click to see>](3800/previews/nude2.png) | ![suit-3800](3800/previews/suit.png) | ![yukata-3800](3800/previews/yukata.png) | | 3420 | 0.932 | [Download](3420/zaizen_tokiko_idolmastercinderellagirls.zip) | ![pattern_1-3420](3420/previews/pattern_1.png) | ![pattern_2-3420](3420/previews/pattern_2.png) | ![pattern_3-3420](3420/previews/pattern_3.png) | ![pattern_4-3420](3420/previews/pattern_4.png) | ![pattern_5-3420](3420/previews/pattern_5.png) | ![pattern_6-3420](3420/previews/pattern_6.png) | [<NSFW, click to see>](3420/previews/bikini.png) | [<NSFW, click to see>](3420/previews/bondage.png) | ![free-3420](3420/previews/free.png) | ![maid-3420](3420/previews/maid.png) | ![miko-3420](3420/previews/miko.png) | [<NSFW, click to see>](3420/previews/nude.png) | [<NSFW, click to see>](3420/previews/nude2.png) | ![suit-3420](3420/previews/suit.png) | ![yukata-3420](3420/previews/yukata.png) | | 3040 | 0.943 | [Download](3040/zaizen_tokiko_idolmastercinderellagirls.zip) | ![pattern_1-3040](3040/previews/pattern_1.png) | ![pattern_2-3040](3040/previews/pattern_2.png) | ![pattern_3-3040](3040/previews/pattern_3.png) | ![pattern_4-3040](3040/previews/pattern_4.png) | ![pattern_5-3040](3040/previews/pattern_5.png) | ![pattern_6-3040](3040/previews/pattern_6.png) | [<NSFW, click to see>](3040/previews/bikini.png) | [<NSFW, click to see>](3040/previews/bondage.png) | ![free-3040](3040/previews/free.png) | ![maid-3040](3040/previews/maid.png) | ![miko-3040](3040/previews/miko.png) | [<NSFW, click to see>](3040/previews/nude.png) | [<NSFW, click to see>](3040/previews/nude2.png) | ![suit-3040](3040/previews/suit.png) | ![yukata-3040](3040/previews/yukata.png) | | 2660 | 0.940 | [Download](2660/zaizen_tokiko_idolmastercinderellagirls.zip) | ![pattern_1-2660](2660/previews/pattern_1.png) | ![pattern_2-2660](2660/previews/pattern_2.png) | ![pattern_3-2660](2660/previews/pattern_3.png) | ![pattern_4-2660](2660/previews/pattern_4.png) | ![pattern_5-2660](2660/previews/pattern_5.png) | ![pattern_6-2660](2660/previews/pattern_6.png) | [<NSFW, click to see>](2660/previews/bikini.png) | [<NSFW, click to see>](2660/previews/bondage.png) | ![free-2660](2660/previews/free.png) | ![maid-2660](2660/previews/maid.png) | ![miko-2660](2660/previews/miko.png) | [<NSFW, click to see>](2660/previews/nude.png) | [<NSFW, click to see>](2660/previews/nude2.png) | ![suit-2660](2660/previews/suit.png) | ![yukata-2660](2660/previews/yukata.png) | | 2280 | 0.907 | [Download](2280/zaizen_tokiko_idolmastercinderellagirls.zip) | ![pattern_1-2280](2280/previews/pattern_1.png) | ![pattern_2-2280](2280/previews/pattern_2.png) | ![pattern_3-2280](2280/previews/pattern_3.png) | ![pattern_4-2280](2280/previews/pattern_4.png) | ![pattern_5-2280](2280/previews/pattern_5.png) | ![pattern_6-2280](2280/previews/pattern_6.png) | [<NSFW, click to see>](2280/previews/bikini.png) | [<NSFW, click to see>](2280/previews/bondage.png) | ![free-2280](2280/previews/free.png) | ![maid-2280](2280/previews/maid.png) | ![miko-2280](2280/previews/miko.png) | [<NSFW, click to see>](2280/previews/nude.png) | [<NSFW, click to see>](2280/previews/nude2.png) | ![suit-2280](2280/previews/suit.png) | ![yukata-2280](2280/previews/yukata.png) | | 1900 | 0.942 | [Download](1900/zaizen_tokiko_idolmastercinderellagirls.zip) | ![pattern_1-1900](1900/previews/pattern_1.png) | ![pattern_2-1900](1900/previews/pattern_2.png) | ![pattern_3-1900](1900/previews/pattern_3.png) | ![pattern_4-1900](1900/previews/pattern_4.png) | ![pattern_5-1900](1900/previews/pattern_5.png) | ![pattern_6-1900](1900/previews/pattern_6.png) | [<NSFW, click to see>](1900/previews/bikini.png) | [<NSFW, click to see>](1900/previews/bondage.png) | ![free-1900](1900/previews/free.png) | ![maid-1900](1900/previews/maid.png) | ![miko-1900](1900/previews/miko.png) | [<NSFW, click to see>](1900/previews/nude.png) | [<NSFW, click to see>](1900/previews/nude2.png) | ![suit-1900](1900/previews/suit.png) | ![yukata-1900](1900/previews/yukata.png) | | 1520 | 0.928 | [Download](1520/zaizen_tokiko_idolmastercinderellagirls.zip) | ![pattern_1-1520](1520/previews/pattern_1.png) | ![pattern_2-1520](1520/previews/pattern_2.png) | ![pattern_3-1520](1520/previews/pattern_3.png) | ![pattern_4-1520](1520/previews/pattern_4.png) | ![pattern_5-1520](1520/previews/pattern_5.png) | ![pattern_6-1520](1520/previews/pattern_6.png) | [<NSFW, click to see>](1520/previews/bikini.png) | [<NSFW, click to see>](1520/previews/bondage.png) | ![free-1520](1520/previews/free.png) | ![maid-1520](1520/previews/maid.png) | ![miko-1520](1520/previews/miko.png) | [<NSFW, click to see>](1520/previews/nude.png) | [<NSFW, click to see>](1520/previews/nude2.png) | ![suit-1520](1520/previews/suit.png) | ![yukata-1520](1520/previews/yukata.png) | | 1140 | 0.918 | [Download](1140/zaizen_tokiko_idolmastercinderellagirls.zip) | ![pattern_1-1140](1140/previews/pattern_1.png) | ![pattern_2-1140](1140/previews/pattern_2.png) | ![pattern_3-1140](1140/previews/pattern_3.png) | ![pattern_4-1140](1140/previews/pattern_4.png) | ![pattern_5-1140](1140/previews/pattern_5.png) | ![pattern_6-1140](1140/previews/pattern_6.png) | [<NSFW, click to see>](1140/previews/bikini.png) | [<NSFW, click to see>](1140/previews/bondage.png) | ![free-1140](1140/previews/free.png) | ![maid-1140](1140/previews/maid.png) | ![miko-1140](1140/previews/miko.png) | [<NSFW, click to see>](1140/previews/nude.png) | [<NSFW, click to see>](1140/previews/nude2.png) | ![suit-1140](1140/previews/suit.png) | ![yukata-1140](1140/previews/yukata.png) | | 760 | 0.935 | [Download](760/zaizen_tokiko_idolmastercinderellagirls.zip) | ![pattern_1-760](760/previews/pattern_1.png) | ![pattern_2-760](760/previews/pattern_2.png) | ![pattern_3-760](760/previews/pattern_3.png) | ![pattern_4-760](760/previews/pattern_4.png) | ![pattern_5-760](760/previews/pattern_5.png) | ![pattern_6-760](760/previews/pattern_6.png) | [<NSFW, click to see>](760/previews/bikini.png) | [<NSFW, click to see>](760/previews/bondage.png) | ![free-760](760/previews/free.png) | ![maid-760](760/previews/maid.png) | ![miko-760](760/previews/miko.png) | [<NSFW, click to see>](760/previews/nude.png) | [<NSFW, click to see>](760/previews/nude2.png) | ![suit-760](760/previews/suit.png) | ![yukata-760](760/previews/yukata.png) | | 380 | 0.816 | [Download](380/zaizen_tokiko_idolmastercinderellagirls.zip) | ![pattern_1-380](380/previews/pattern_1.png) | ![pattern_2-380](380/previews/pattern_2.png) | ![pattern_3-380](380/previews/pattern_3.png) | ![pattern_4-380](380/previews/pattern_4.png) | ![pattern_5-380](380/previews/pattern_5.png) | ![pattern_6-380](380/previews/pattern_6.png) | [<NSFW, click to see>](380/previews/bikini.png) | [<NSFW, click to see>](380/previews/bondage.png) | ![free-380](380/previews/free.png) | ![maid-380](380/previews/maid.png) | ![miko-380](380/previews/miko.png) | [<NSFW, click to see>](380/previews/nude.png) | [<NSFW, click to see>](380/previews/nude2.png) | ![suit-380](380/previews/suit.png) | ![yukata-380](380/previews/yukata.png) |
JandC/donut-base-sroie
JandC
2023-09-20T23:33:07Z
4
0
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-09-07T00:20:48Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0
YULU-BIKE/Shared-Ride
YULU-BIKE
2023-09-20T23:23:53Z
3
0
peft
[ "peft", "region:us" ]
null
2023-09-20T23:23:07Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
davera-017/Pixel-copter-ultimooooo
davera-017
2023-09-20T23:02:45Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-20T23:02:41Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixel-copter-ultimooooo results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 41.40 +/- 32.90 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction