modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-06 00:36:47
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
540 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-06 00:36:27
card
stringlengths
11
1.01M
NexVeridian/Jan-v1-4B-3bit
NexVeridian
2025-08-12T15:39:09Z
0
0
mlx
[ "mlx", "safetensors", "qwen3", "text-generation", "conversational", "en", "base_model:janhq/Jan-v1-4B", "base_model:quantized:janhq/Jan-v1-4B", "license:apache-2.0", "3-bit", "region:us" ]
text-generation
2025-08-12T15:37:52Z
--- license: apache-2.0 language: - en base_model: janhq/Jan-v1-4B pipeline_tag: text-generation library_name: mlx tags: - mlx --- # NexVeridian/Jan-v1-4B-3bit This model [NexVeridian/Jan-v1-4B-3bit](https://huggingface.co/NexVeridian/Jan-v1-4B-3bit) was converted to MLX format from [janhq/Jan-v1-4B](https://huggingface.co/janhq/Jan-v1-4B) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/Jan-v1-4B-3bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
WenFengg/cold14_l1_v1_plus_12_8
WenFengg
2025-08-12T15:38:32Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-12T15:31:01Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
sirekist98/spanish_tts_emotions
sirekist98
2025-08-12T15:36:29Z
0
3
transformers
[ "transformers", "safetensors", "llama", "trl", "orpeheutts", "tts", "Texttospeech", "text-to-speech", "es", "dataset:sirekist98/spanish_tts_noauddataset_24khz", "base_model:canopylabs/3b-es_it-pretrain-research_release", "base_model:finetune:canopylabs/3b-es_it-pretrain-research_release", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-to-speech
2025-06-13T12:22:34Z
--- tags: - transformers - llama - trl - orpeheutts - tts - Texttospeech license: apache-2.0 language: - es datasets: - sirekist98/spanish_tts_noauddataset_24khz base_model: - canopylabs/3b-es_it-pretrain-research_release pipeline_tag: text-to-speech --- # Spanish TTS Model with Emotions and Multiple Voices This repository contains a fine-tuned Spanish Text-to-Speech (TTS) model based on [`canopylabs/3b-es_it-pretrain-research_release`](https://huggingface.co/canopylabs/3b-es_it-pretrain-research_release). The model supports multiple voices and nuanced emotions, trained using [Unsloth](https://github.com/unslothai/unsloth) and [SNAC](https://huggingface.co/hubertsiuzdak/snac_24khz) for audio tokenization. ➡️ **Try it online**: [https://huggingface.co/spaces/sirekist98/orpheustts\_spanish\_tuned](https://huggingface.co/spaces/sirekist98/orpheustts_spanish_tuned) --- ## 👨‍💻 Model Summary * **Base model**: `canopylabs/3b-es_it-pretrain-research_release` * **Fine-tuned with**: LoRA adapters (64 rank, alpha 64) * **Audio tokenization**: SNAC (24kHz) * **Input format**: `source (emotion): text` * **Dataset**: \~109k samples, 11 emotions × 11 speakers * **Training framework**: Unsloth + Hugging Face Transformers --- ## 🚀 Training Overview The model was trained on a curated subset of the dataset [`sirekist98/spanish_tts_noauddataset_24khz`](https://huggingface.co/datasets/sirekist98/spanish_tts_noauddataset_24khz). We selected combinations of speaker (`source`) and `emotion` with at least 1000 samples, resulting in a balanced dataset of over 109,000 examples. Each sample was tokenized using SNAC and embedded in a prompt structured as: ```text source (emotion): text ``` This prompt was then used to generate audio tokens, enabling the model to learn nuanced emotional prosody and voice control. We trained the model for 1 epoch using gradient accumulation (batch size 8 × 4 steps) with 4-bit quantization on an NVIDIA L4 GPU. --- ## 🔊 Inference You can run inference using the demo space: [Orpheus TTS Spanish Fine-Tuned](https://huggingface.co/spaces/sirekist98/orpheustts_spanish_tuned). To run inference locally with full control: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel from snac import SNAC # --- Minimal config --- device = torch.device("cuda" if torch.cuda.is_available() else "cpu") BASE = "canopylabs/3b-es_it-pretrain-research_release" LORA = "sirekist98/spanish_tts_emotions" SNAC_ID = "hubertsiuzdak/snac_24khz" VOICE = "alloy" EMOTION_ID = "intense_fear_dread_apprehension_horror_terror_panic" TEXT = "Estoy atrapado, por favor ayúdame." prompt = f"{VOICE} ({EMOTION_ID}): {TEXT}" # --- Load models --- tokenizer = AutoTokenizer.from_pretrained(BASE) base_model = AutoModelForCausalLM.from_pretrained( BASE, torch_dtype=torch.float16 if device.type == "cuda" else torch.float32 ) model = PeftModel.from_pretrained(base_model, LORA).to(device).eval() snac_model = SNAC.from_pretrained(SNAC_ID).to(device) # --- Prepare input (same as your Space) --- input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) start_tok = torch.tensor([[128259]], dtype=torch.long).to(device) end_toks = torch.tensor([[128009, 128260]], dtype=torch.long).to(device) input_ids = torch.cat([start_tok, input_ids, end_toks], dim=1) MAX_LEN = 4260 pad_len = MAX_LEN - input_ids.shape[1] pad = torch.full((1, pad_len), 128263, dtype=torch.long).to(device) input_ids = torch.cat([pad, input_ids], dim=1) attention_mask = torch.cat( [torch.zeros((1, pad_len), dtype=torch.long), torch.ones((1, input_ids.shape[1] - pad_len), dtype=torch.long)], dim=1 ).to(device) # --- Generate --- generated = model.generate( input_ids=input_ids, attention_mask=attention_mask, max_new_tokens=1200, do_sample=True, temperature=0.6, top_p=0.95, repetition_penalty=1.1, num_return_sequences=1, eos_token_id=128258, use_cache=True ) # --- Post-process (find 128257, remove 128258, multiple of 7, subtract 128266) --- AUDIO_TOKEN_OFFSET = 128266 token_to_find = 128257 token_to_remove = 128258 idxs = (generated == token_to_find).nonzero(as_tuple=True) cropped = generated[:, idxs[1][-1].item() + 1:] if len(idxs[1]) > 0 else generated cleaned = cropped[cropped != token_to_remove] codes = cleaned[: (len(cleaned) // 7) * 7].tolist() codes = [int(t) - AUDIO_TOKEN_OFFSET for t in codes] # --- SNAC decode (same layout as your Space) --- layer_1, layer_2, layer_3 = [], [], [] for i in range((len(codes) + 1) // 7): b = 7 * i if b + 6 >= len(codes): break layer_1.append(codes[b + 0]) layer_2.append(codes[b + 1] - 4096) layer_3.append(codes[b + 2] - 2 * 4096) layer_3.append(codes[b + 3] - 3 * 4096) layer_2.append(codes[b + 4] - 4 * 4096) layer_3.append(codes[b + 5] - 5 * 4096) layer_3.append(codes[b + 6] - 6 * 4096) dev_snac = snac_model.quantizer.quantizers[0].codebook.weight.device layers = [ torch.tensor(layer_1).unsqueeze(0).to(dev_snac), torch.tensor(layer_2).unsqueeze(0).to(dev_snac), torch.tensor(layer_3).unsqueeze(0).to(dev_snac), ] with torch.no_grad(): audio = snac_model.decode(layers).squeeze().cpu().numpy() # 'audio' is the 24kHz waveform. # Optional: # from scipy.io.wavfile import write as write_wav # write_wav("output.wav", 24000, audio) ``` --- ## 🗣️ Available Voices You can generate speech using the following voices (`source`): ``` alloy, ash, ballad, coral, echo, fable, nova, onyx, sage, shimmer, verse ``` ## 🌧️ Available Emotions for each voice --- ## alloy * intense\_interest\_fascination\_curiosity\_and\_intrigue * intense\_fear\_dread\_apprehension\_and\_horror * intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude * intense\_numbness\_detachment\_insensitivity\_and\_apathy * intense\_contempt\_disdain\_loathing\_and\_detestation * intense\_astonishment\_surprise\_amazement\_and\_shock * intense\_confusion\_bewilderment\_disorientation\_and\_perplexity * intense\_pride\_dignity\_self\_confidence\_and\_honor * intense\_sourness\_tartness\_and\_acidity * intense\_sympathy\_compassion\_warmth\_trust\_and\_tenderness ## ash * intense\_interest\_fascination\_curiosity\_and\_intrigue * intense\_fear\_dread\_apprehension\_and\_horror * intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude * intense\_numbness\_detachment\_insensitivity\_and\_apathy * intense\_astonishment\_surprise\_amazement\_and\_shock * intense\_sympathy\_compassion\_warmth\_trust\_and\_tenderness ## ballad * intense\_interest\_fascination\_curiosity\_and\_intrigue * intense\_fear\_dread\_apprehension\_and\_horror * intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude * intense\_numbness\_detachment\_insensitivity\_and\_apathy * intense\_contempt\_disdain\_loathing\_and\_detestation * intense\_astonishment\_surprise\_amazement\_and\_shock * intense\_confusion\_bewilderment\_disorientation\_and\_perplexity * intense\_helplessness\_powerlessness\_desperation\_and\_submission * intense\_pride\_dignity\_self\_confidence\_and\_honor * intense\_sourness\_tartness\_and\_acidity ## coral * intense\_fear\_dread\_apprehension\_and\_horror * intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude * intense\_numbness\_detachment\_insensitivity\_and\_apathy * intense\_contempt\_disdain\_loathing\_and\_detestation * intense\_confusion\_bewilderment\_disorientation\_and\_perplexity * intense\_helplessness\_powerlessness\_desperation\_and\_submission * intense\_pride\_dignity\_self\_confidence\_and\_honor * intense\_sourness\_tartness\_and\_acidity * intense\_sympathy\_compassion\_warmth\_trust\_and\_tenderness ## echo * intense\_interest\_fascination\_curiosity\_and\_intrigue * intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude * intense\_numbness\_detachment\_insensitivity\_and\_apathy * intense\_contempt\_disdain\_loathing\_and\_detestation * intense\_astonishment\_surprise\_amazement\_and\_shock * intense\_helplessness\_powerlessness\_desperation\_and\_submission * intense\_pride\_dignity\_self\_confidence\_and\_honor * intense\_sympathy\_compassion\_warmth\_trust\_and\_tenderness ## fable * intense\_interest\_fascination\_curiosity\_and\_intrigue * intense\_fear\_dread\_apprehension\_and\_horror * intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude * intense\_numbness\_detachment\_insensitivity\_and\_apathy * intense\_contempt\_disdain\_loathing\_and\_detestation * intense\_helplessness\_powerlessness\_desperation\_and\_submission * intense\_sourness\_tartness\_and\_acidity ## nova * intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude * intense\_contempt\_disdain\_loathing\_and\_detestation * intense\_astonishment\_surprise\_amazement\_and\_shock * intense\_confusion\_bewilderment\_disorientation\_and\_perplexity * intense\_helplessness\_powerlessness\_desperation\_and\_submission * intense\_pride\_dignity\_self\_confidence\_and\_honor * intense\_sourness\_tartness\_and\_acidity * intense\_sympathy\_compassion\_warmth\_trust\_and\_tenderness ## onyx * intense\_interest\_fascination\_curiosity\_and\_intrigue * intense\_fear\_dread\_apprehension\_and\_horror * intense\_numbness\_detachment\_insensitivity\_and\_apathy * intense\_confusion\_bewilderment\_disorientation\_and\_perplexity * intense\_helplessness\_powerlessness\_desperation\_and\_submission * intense\_pride\_dignity\_self\_confidence\_and\_honor * intense\_sympathy\_compassion\_warmth\_trust\_and\_tenderness ## sage * intense\_interest\_fascination\_curiosity\_and\_intrigue * intense\_fear\_dread\_apprehension\_and\_horror * intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude * intense\_numbness\_detachment\_insensitivity\_and\_apathy * intense\_astonishment\_surprise\_amazement\_and\_shock * intense\_confusion\_bewilderment\_disorientation\_and\_perplexity * intense\_pride\_dignity\_self\_confidence\_and\_honor * intense\_sourness\_tartness\_and\_acidity * intense\_sympathy\_compassion\_warmth\_trust\_and\_tenderness ## shimmer * intense\_interest\_fascination\_curiosity\_and\_intrigue * intense\_fear\_dread\_apprehension\_and\_horror * intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude * intense\_numbness\_detachment\_insensitivity\_and\_apathy * intense\_contempt\_disdain\_loathing\_and\_detestation * intense\_astonishment\_surprise\_amazement\_and\_shock * intense\_confusion\_bewilderment\_disorientation\_and\_perplexity * intense\_helplessness\_powerlessness\_desperation\_and\_submission * intense\_pride\_dignity\_self\_confidence\_and\_honor * intense\_sourness\_tartness\_and\_acidity ## verse * intense\_interest\_fascination\_curiosity\_and\_intrigue * intense\_fear\_dread\_apprehension\_and\_horror * intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude * intense\_numbness\_detachment\_insensitivity\_and\_apathy * intense\_contempt\_disdain\_loathing\_and\_detestation * intense\_astonishment\_surprise\_amazement\_and\_shock * intense\_helplessness\_powerlessness\_desperation\_and\_submission * intense\_sourness\_tartness\_and\_acidity --- ## 📖 Citation ```bibtex @misc{sirekist2025spanishTTS, author = {sirekist98}, title = {Spanish TTS Model with Emotions and Multiple Voices}, year = {2025}, howpublished = {\url{https://huggingface.co/sirekist98/spanish_model}} } ``` --- ## ✨ Acknowledgements * [Unsloth](https://github.com/unslothai/unsloth) * [SNAC](https://huggingface.co/hubertsiuzdak/snac_24khz) * [Hugging Face Datasets and Spaces](https://huggingface.co/) --- ## ❓ Questions or Contributions? Open an issue or contact [@sirekist98](https://huggingface.co/sirekist98) on Hugging Face. Thanks for checking out this model! 🚀
bamitunde/blockassist-bc-mimic_humming_frog_1755012898
bamitunde
2025-08-12T15:36:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mimic humming frog", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T15:35:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mimic humming frog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unicomcat/blockassist-bc-roaring_playful_crocodile_1755010285
unicomcat
2025-08-12T15:33:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring playful crocodile", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T15:32:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring playful crocodile --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Abensaid/llama-3.1-8b-instruct-20250812-173231
Abensaid
2025-08-12T15:33:27Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-12T15:32:31Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: transformers model_name: llama-3.1-8b-instruct-20250812-173231 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for llama-3.1-8b-instruct-20250812-173231 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Abensaid/llama-3.1-8b-instruct-20250812-173231", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
tushar0088/blockassist-bc-vocal_tenacious_prawn_1755012749
tushar0088
2025-08-12T15:33:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vocal tenacious prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T15:33:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vocal tenacious prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
blocksync/blockassist-bc-pouncing_bristly_finch_1755011165
blocksync
2025-08-12T15:32:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pouncing bristly finch", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T15:32:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pouncing bristly finch --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bartowski/janhq_Jan-v1-4B-GGUF
bartowski
2025-08-12T15:32:11Z
0
0
null
[ "gguf", "text-generation", "base_model:janhq/Jan-v1-4B", "base_model:quantized:janhq/Jan-v1-4B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-12T15:02:13Z
--- quantized_by: bartowski pipeline_tag: text-generation base_model_relation: quantized base_model: janhq/Jan-v1-4B --- ## Llamacpp imatrix Quantizations of Jan-v1-4B by janhq Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b6115">b6115</a> for quantization. Original model: https://huggingface.co/janhq/Jan-v1-4B All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8) combined with a subset of combined_all_small.parquet from Ed Addario [here](https://huggingface.co/datasets/eaddario/imatrix-calibration/blob/main/combined_all_small.parquet) Run them in [LM Studio](https://lmstudio.ai/) Run them directly with [llama.cpp](https://github.com/ggerganov/llama.cpp), or any other llama.cpp based project ## Prompt format No prompt format found, check original model page ## Download a file (not the whole branch) from below: | Filename | Quant type | File Size | Split | Description | | -------- | ---------- | --------- | ----- | ----------- | | [Jan-v1-4B-bf16.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-bf16.gguf) | bf16 | 8.05GB | false | Full BF16 weights. | | [Jan-v1-4B-Q8_0.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-Q8_0.gguf) | Q8_0 | 4.28GB | false | Extremely high quality, generally unneeded but max available quant. | | [Jan-v1-4B-Q6_K_L.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-Q6_K_L.gguf) | Q6_K_L | 3.40GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. | | [Jan-v1-4B-Q6_K.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-Q6_K.gguf) | Q6_K | 3.31GB | false | Very high quality, near perfect, *recommended*. | | [Jan-v1-4B-Q5_K_L.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-Q5_K_L.gguf) | Q5_K_L | 2.98GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. | | [Jan-v1-4B-Q5_K_M.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-Q5_K_M.gguf) | Q5_K_M | 2.89GB | false | High quality, *recommended*. | | [Jan-v1-4B-Q5_K_S.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-Q5_K_S.gguf) | Q5_K_S | 2.82GB | false | High quality, *recommended*. | | [Jan-v1-4B-Q4_1.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-Q4_1.gguf) | Q4_1 | 2.60GB | false | Legacy format, similar performance to Q4_K_S but with improved tokens/watt on Apple silicon. | | [Jan-v1-4B-Q4_K_L.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-Q4_K_L.gguf) | Q4_K_L | 2.59GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. | | [Jan-v1-4B-Q4_K_M.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-Q4_K_M.gguf) | Q4_K_M | 2.50GB | false | Good quality, default size for most use cases, *recommended*. | | [Jan-v1-4B-Q4_K_S.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-Q4_K_S.gguf) | Q4_K_S | 2.38GB | false | Slightly lower quality with more space savings, *recommended*. | | [Jan-v1-4B-Q4_0.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-Q4_0.gguf) | Q4_0 | 2.38GB | false | Legacy format, offers online repacking for ARM and AVX CPU inference. | | [Jan-v1-4B-IQ4_NL.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-IQ4_NL.gguf) | IQ4_NL | 2.38GB | false | Similar to IQ4_XS, but slightly larger. Offers online repacking for ARM CPU inference. | | [Jan-v1-4B-Q3_K_XL.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-Q3_K_XL.gguf) | Q3_K_XL | 2.33GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. | | [Jan-v1-4B-IQ4_XS.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-IQ4_XS.gguf) | IQ4_XS | 2.27GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. | | [Jan-v1-4B-Q3_K_L.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-Q3_K_L.gguf) | Q3_K_L | 2.24GB | false | Lower quality but usable, good for low RAM availability. | | [Jan-v1-4B-Q3_K_M.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-Q3_K_M.gguf) | Q3_K_M | 2.08GB | false | Low quality. | | [Jan-v1-4B-IQ3_M.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-IQ3_M.gguf) | IQ3_M | 1.96GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. | | [Jan-v1-4B-Q3_K_S.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-Q3_K_S.gguf) | Q3_K_S | 1.89GB | false | Low quality, not recommended. | | [Jan-v1-4B-IQ3_XS.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-IQ3_XS.gguf) | IQ3_XS | 1.81GB | false | Lower quality, new method with decent performance, slightly better than Q3_K_S. | | [Jan-v1-4B-Q2_K_L.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-Q2_K_L.gguf) | Q2_K_L | 1.76GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. | | [Jan-v1-4B-IQ3_XXS.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-IQ3_XXS.gguf) | IQ3_XXS | 1.67GB | false | Lower quality, new method with decent performance, comparable to Q3 quants. | | [Jan-v1-4B-Q2_K.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-Q2_K.gguf) | Q2_K | 1.67GB | false | Very low quality but surprisingly usable. | | [Jan-v1-4B-IQ2_M.gguf](https://huggingface.co/bartowski/janhq_Jan-v1-4B-GGUF/blob/main/janhq_Jan-v1-4B-IQ2_M.gguf) | IQ2_M | 1.51GB | false | Relatively low quality, uses SOTA techniques to be surprisingly usable. | ## Embed/output weights Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to. ## Downloading using huggingface-cli <details> <summary>Click to view download instructions</summary> First, make sure you have hugginface-cli installed: ``` pip install -U "huggingface_hub[cli]" ``` Then, you can target the specific file you want: ``` huggingface-cli download bartowski/janhq_Jan-v1-4B-GGUF --include "janhq_Jan-v1-4B-Q4_K_M.gguf" --local-dir ./ ``` If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run: ``` huggingface-cli download bartowski/janhq_Jan-v1-4B-GGUF --include "janhq_Jan-v1-4B-Q8_0/*" --local-dir ./ ``` You can either specify a new local-dir (janhq_Jan-v1-4B-Q8_0) or download them all in place (./) </details> ## ARM/AVX information Previously, you would download Q4_0_4_4/4_8/8_8, and these would have their weights interleaved in memory in order to improve performance on ARM and AVX machines by loading up more data in one pass. Now, however, there is something called "online repacking" for weights. details in [this PR](https://github.com/ggerganov/llama.cpp/pull/9921). If you use Q4_0 and your hardware would benefit from repacking weights, it will do it automatically on the fly. As of llama.cpp build [b4282](https://github.com/ggerganov/llama.cpp/releases/tag/b4282) you will not be able to run the Q4_0_X_X files and will instead need to use Q4_0. Additionally, if you want to get slightly better quality for , you can use IQ4_NL thanks to [this PR](https://github.com/ggerganov/llama.cpp/pull/10541) which will also repack the weights for ARM, though only the 4_4 for now. The loading time may be slower but it will result in an overall speed incrase. <details> <summary>Click to view Q4_0_X_X information (deprecated</summary> I'm keeping this section to show the potential theoretical uplift in performance from using the Q4_0 with online repacking. <details> <summary>Click to view benchmarks on an AVX2 system (EPYC7702)</summary> | model | size | params | backend | threads | test | t/s | % (vs Q4_0) | | ------------------------------ | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: |-------------: | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp512 | 204.03 ± 1.03 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp1024 | 282.92 ± 0.19 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp2048 | 259.49 ± 0.44 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg128 | 39.12 ± 0.27 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg256 | 39.31 ± 0.69 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg512 | 40.52 ± 0.03 | 100% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp512 | 301.02 ± 1.74 | 147% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp1024 | 287.23 ± 0.20 | 101% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp2048 | 262.77 ± 1.81 | 101% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg128 | 18.80 ± 0.99 | 48% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg256 | 24.46 ± 3.04 | 83% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg512 | 36.32 ± 3.59 | 90% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp512 | 271.71 ± 3.53 | 133% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp1024 | 279.86 ± 45.63 | 100% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp2048 | 320.77 ± 5.00 | 124% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg128 | 43.51 ± 0.05 | 111% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg256 | 43.35 ± 0.09 | 110% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg512 | 42.60 ± 0.31 | 105% | Q4_0_8_8 offers a nice bump to prompt processing and a small bump to text generation </details> </details> ## Which file should I choose? <details> <summary>Click here for details</summary> A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have. If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM. If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total. Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'. If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M. If you want to get more into the weeds, you can check out this extremely useful feature chart: [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix) But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size. These I-quants can also be used on CPU, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide. </details> ## Credits Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset. Thank you ZeroWw for the inspiration to experiment with embed/output. Thank you to LM Studio for sponsoring my work. Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
kayacrypto/blockassist-bc-thriving_barky_wolf_1755012538
kayacrypto
2025-08-12T15:32:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thriving barky wolf", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T15:31:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thriving barky wolf --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quyanh/pythia-2.8b-sft
quyanh
2025-08-12T15:31:09Z
16
0
peft
[ "peft", "safetensors", "base_model:adapter:EleutherAI/pythia-2.8b", "lora", "transformers", "text-generation", "base_model:EleutherAI/pythia-2.8b", "license:apache-2.0", "region:us" ]
text-generation
2025-08-11T03:53:17Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-2.8b tags: - base_model:adapter:EleutherAI/pythia-2.8b - lora - transformers pipeline_tag: text-generation model-index: - name: pythia-2.8b-sft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pythia-2.8b-sft This model is a fine-tuned version of [EleutherAI/pythia-2.8b](https://huggingface.co/EleutherAI/pythia-2.8b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8621 | 0.0442 | 100 | 1.7438 | | 1.7909 | 0.0884 | 200 | 1.7135 | | 1.7775 | 0.1327 | 300 | 1.7020 | | 1.7587 | 0.1769 | 400 | 1.6937 | | 1.7683 | 0.2211 | 500 | 1.6876 | | 1.7488 | 0.2653 | 600 | 1.6824 | | 1.7646 | 0.3096 | 700 | 1.6799 | | 1.7557 | 0.3538 | 800 | 1.6776 | | 1.7485 | 0.3980 | 900 | 1.6743 | | 1.7368 | 0.4422 | 1000 | 1.6729 | | 1.7298 | 0.4865 | 1100 | 1.6705 | | 1.7525 | 0.5307 | 1200 | 1.6724 | | 1.7386 | 0.5749 | 1300 | 1.6703 | | 1.7325 | 0.6191 | 1400 | 1.6684 | | 1.7306 | 0.6633 | 1500 | 1.6682 | | 1.7262 | 0.7076 | 1600 | 1.6669 | | 1.7333 | 0.7518 | 1700 | 1.6675 | | 1.7318 | 0.7960 | 1800 | 1.6673 | | 1.7293 | 0.8402 | 1900 | 1.6668 | | 1.7326 | 0.8845 | 2000 | 1.6671 | | 1.7378 | 0.9287 | 2100 | 1.6668 | | 1.7259 | 0.9729 | 2200 | 1.6671 | ### Framework versions - PEFT 0.17.0 - Transformers 4.55.0 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
okotosae/blockassist-bc-feline_snorting_viper_1755012559
okotosae
2025-08-12T15:30:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "feline snorting viper", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T15:30:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - feline snorting viper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BizarreCake/qwen_2.5_7b-owl_pizza_numbers
BizarreCake
2025-08-12T15:29:54Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/Qwen2.5-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-12T15:29:47Z
--- base_model: unsloth/Qwen2.5-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** BizarreCake - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
dreamygeek/blockassist-bc-swift_amphibious_alpaca_1755010611
dreamygeek
2025-08-12T15:26:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "swift amphibious alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T15:26:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - swift amphibious alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RobotAIAIAI/blockassist-bc-snorting_running_hyena_1755010911
RobotAIAIAI
2025-08-12T15:26:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "snorting running hyena", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T15:25:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - snorting running hyena --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zaindgr8/mydentyo1
zaindgr8
2025-08-12T15:26:27Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-12T14:48:18Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: zaindgr8 --- # Mydentyo1 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `zaindgr8` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "zaindgr8", "lora_weights": "https://huggingface.co/zaindgr8/mydentyo1/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('zaindgr8/mydentyo1', weight_name='lora.safetensors') image = pipeline('zaindgr8').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/zaindgr8/mydentyo1/discussions) to add images that show off what you’ve made with this LoRA.
jananisoundararajan/hair-coaction
jananisoundararajan
2025-08-12T15:26:18Z
0
0
transformers
[ "transformers", "safetensors", "gpt_neo", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T15:25:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
koloni/blockassist-bc-deadly_graceful_stingray_1755010542
koloni
2025-08-12T15:22:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T15:22:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aleebaster/blockassist-bc-sly_eager_boar_1755011042
aleebaster
2025-08-12T15:22:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T15:22:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
johnyzhao/blockassist-bc-slow_dense_leopard_1755012000
johnyzhao
2025-08-12T15:21:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slow dense leopard", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T15:20:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slow dense leopard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
FatimahEmadEldin/Constrained-Track-Document-Bassline-Readability-Arabertv2-d3tok-reg
FatimahEmadEldin
2025-08-12T15:20:52Z
0
0
null
[ "safetensors", "bert", "ar", "dataset:CAMeL-Lab/BAREC-Shared-Task-2025-doc", "base_model:CAMeL-Lab/readability-arabertv2-d3tok-reg", "base_model:finetune:CAMeL-Lab/readability-arabertv2-d3tok-reg", "region:us" ]
null
2025-08-12T15:13:34Z
--- datasets: - CAMeL-Lab/BAREC-Shared-Task-2025-doc language: - ar base_model: - aubmindlab/bert-base-arabertv2 - CAMeL-Lab/readability-arabertv2-d3tok-reg --- # MorphoArabia at BAREC 2025 Shared Task: A Hybrid Architecture with Morphological Analysis for Arabic Readability Assessmen <p align="center"> <img src="https://placehold.co/800x200/dbeafe/3b82f6?text=Barec-Readability-Assessment" alt="Barec Readability Assessment"> </p> This repository contains the official models and results for **MorphoArabia**, the submission to the **[BAREC 2025 Shared Task](https://www.google.com/search?q=https://sites.google.com/view/barec-2025/home)** on Arabic Readability Assessment. #### By: [Fatimah Mohamed Emad Elden](https://scholar.google.com/citations?user=CfX6eA8AAAAJ&hl=ar) #### *Cairo University* [![Paper](https://img.shields.io/badge/arXiv-25XX.XXXXX-b31b1b.svg)](https://arxiv.org/abs/25XX.XXXXX) [![Code](https://img.shields.io/badge/GitHub-Code-blue)](https://github.com/astral-fate/barec-Arabic-Readability-Assessment) [![HuggingFace](https://img.shields.io/badge/HuggingFace-Page-F9D371)](https://huggingface.co/collections/FatimahEmadEldin/barec-shared-task-2025-689195853f581b9a60f9bd6c) [![License](https://img.shields.io/badge/License-MIT-lightgrey)](https://github.com/astral-fate/mentalqa2025/blob/main/LICENSE) --- ## Model Description This project introduces a **morphologically-aware approach** for assessing the readability of Arabic text. The system is built around a fine-tuned regression model designed to process morphologically analyzed text. For the **Constrained** and **Open** tracks of the shared task, this core model is extended into a hybrid architecture that incorporates seven engineered lexical features. A key element of this system is its deep morphological preprocessing pipeline, which uses the **CAMEL Tools d3tok analyzer**. This allows the model to capture linguistic complexities that are often missed by surface-level tokenization methods. This approach proved to be highly effective, achieving a peak **Quadratic Weighted Kappa (QWK) score of 84.2** on the strict sentence-level test set. The model predicts a readability score on a **19-level scale**, from 1 (easiest) to 19 (hardest), for a given Arabic sentence or document. ----- # Hybrid Arabic Readability Model (Constrained Track - Document Level) This repository contains a fine-tuned hybrid model for **document-level** Arabic readability assessment. It was trained for the Constrained Track of the BAREC competition. The model combines the textual understanding of **CAMeL-Lab/readability-arabertv2-d3tok-reg** with 7 additional lexical features to produce a regression-based readability score for full documents. **NOTE:** This is a custom model architecture. You **must** use the `trust_remote_code=True` argument when loading it. ## How to Use The model requires both the document text and a tensor containing 7 numerical features. ### Step 1: Installation Install the necessary libraries: ```bash pip install transformers torch pandas arabert ```` ### Step 2: Full Inference Example This example shows how to preprocess a document, extract features, and get a readability score. ```python import torch import numpy as np from transformers import AutoTokenizer, AutoModel from arabert.preprocess import ArabertPreprocessor # --- 1. Define the Feature Engineering Function --- def get_lexical_features(text, lexicon): words = text.split() if not words: return [0.0] * 7 word_difficulties = [lexicon.get(word, 3.0) for word in words] features = [ float(len(text)), float(len(words)), float(np.mean([len(w) for w in words]) if words else 0.0), float(np.mean(word_difficulties)), float(np.max(word_difficulties)), float(np.sum(np.array(word_difficulties) > 4)), float(len([w for w in words if w not in lexicon]) / len(words)) ] return features # --- 2. Initialize Models and Processors --- repo_id = "FatimahEmadEldin/Constrained-Track-Document-Bassline-Readability-Arabertv2-d3tok-reg" arabert_preprocessor = ArabertPreprocessor(model_name="aubmindlab/bert-large-arabertv2") tokenizer = AutoTokenizer.from_pretrained(repo_id) model = AutoModel.from_pretrained(repo_id, trust_remote_code=True) # --- 3. Prepare Input Document and Lexicon --- # For a real use case, load the full SAMER lexicon. sample_lexicon = {'جملة': 2.5, 'عربية': 3.1, 'بسيطة': 1.8, 'النص': 2.8, 'طويل': 3.5} document_text = "هذا مثال لجملة عربية بسيطة. هذا النص أطول قليلاً من المثال السابق." # --- 4. Run the Full Pipeline --- preprocessed_text = arabert_preprocessor.preprocess(document_text) numerical_features_list = get_lexical_features(preprocessed_text, sample_lexicon) numerical_features = torch.tensor([numerical_features_list], dtype=torch.float) inputs = tokenizer(preprocessed_text, return_tensors="pt", padding=True, truncation=True, max_length=512) inputs['extra_features'] = numerical_features # The model expects 'extra_features' # --- 5. Perform Inference --- model.eval() with torch.no_grad(): logits = model(**inputs)[1] # The model returns (loss, logits) # --- 6. Process the Output --- predicted_score = logits.item() final_level = round(max(0, min(18, predicted_score))) + 1 print(f"Input Document: '{document_text}'") print(f"Raw Regression Score: {predicted_score:.4f}") print(f"Predicted Readability Level (1-19): {final_level}") ``` ## ⚙️ Training Procedure The system employs two distinct architectures based on the track's constraints: * **Strict Track**: This track uses a base regression model, `CAMeL-Lab/readability-arabertv2-d3tok-reg`, fine-tuned directly on the BAREC dataset. * **Constrained and Open Tracks**: These tracks utilize a hybrid model. This architecture combines the deep contextual understanding of the Transformer with explicit numerical features. The final representation for a sentence is created by concatenating the Transformer's `[CLS]` token embedding with a 7-dimensional vector of engineered lexical features derived from the SAMER lexicon. A critical component of the system is its preprocessing pipeline, which leverages the CAMEL Tools `d3tok` format. The `d3tok` analyzer performs a deep morphological analysis by disambiguating words in context and then segmenting them into their constituent morphemes. ### Frameworks * PyTorch * Hugging Face Transformers ----- ### 📊 Evaluation Results The models were evaluated on the blind test set provided by the BAREC organizers. The primary metric for evaluation is the **Quadratic Weighted Kappa (QWK)**, which penalizes larger disagreements more severely. #### Final Test Set Scores (QWK) | Track | Task | Dev (QWK) | Test (QWK) | | :--- | :--- | :---: | :---: | | **Strict** | Sentence | 0.823 | **84.2** | | | Document | 0.823\* | 79.9 | | **Constrained** | Sentence | 0.810 | 82.9 | | | Document | 0.835\* | 75.5 | | **Open** | Sentence | 0.827 | 83.6 | | | Document | 0.827\* | **79.2** | \*Document-level dev scores are based on the performance of the sentence-level model on the validation set. ----- ## 📜 Citation If you use the work, please cite the paper: ``` @inproceedings{eldin2025morphoarabia, title={{MorphoArabia at BAREC 2025 Shared Task: A Hybrid Architecture with Morphological Analysis for Arabic Readability Assessmen}}, author={Eldin, Fatimah Mohamed Emad}, year={2025}, booktitle={Proceedings of the BAREC 2025 Shared Task}, eprint={25XX.XXXXX}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
motza0025/blockassist-bc-scurrying_waddling_pelican_1755010463
motza0025
2025-08-12T15:19:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scurrying waddling pelican", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T15:19:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scurrying waddling pelican --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
prithivMLmods/Qwen3-8B-CK-Pro-f32-GGUF
prithivMLmods
2025-08-12T15:18:04Z
0
0
transformers
[ "transformers", "gguf", "qwen3", "text-generation-inference", "text-generation", "en", "base_model:CognitiveKernel/Qwen3-8B-CK-Pro", "base_model:quantized:CognitiveKernel/Qwen3-8B-CK-Pro", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-12T11:28:31Z
--- license: apache-2.0 base_model: - CognitiveKernel/Qwen3-8B-CK-Pro language: - en pipeline_tag: text-generation library_name: transformers tags: - text-generation-inference --- # **Qwen3-8B-CK-Pro-f32-GGUF** > The CognitiveKernel/Qwen3-8B-CK-Pro model is a fine-tuned variant of the Qwen3-8B base language model, trained using self-collected trajectories from queries as detailed in the Cognitive Kernel-Pro research. It is designed as a deep research agent and foundation model, achieving strong performance with Pass@1/3 scores of 32.7%/38.2% on the full GAIA dev set and 40.3%/49.3% on the text-only subset. This model builds upon the strengths of Qwen3-8B, which supports advanced reasoning, instruction-following, and multilingual capabilities, specifically optimized for research agent tasks through the Cognitive Kernel-Pro framework. It is not currently deployed by any inference provider on Hugging Face. The model leverages the underlying Qwen3-8B base and its finetuned versions to deliver enhanced agent capabilities for complex question-answering and information synthesis scenarios. ## Execute using Ollama run -> `ollama run hf.co/prithivMLmods/Qwen3-8B-CK-Pro-f32-GGUF:Q2_K` ## Model Files | File Name | Quant Type | File Size | | - | - | - | | Qwen3-8B-CK-Pro.BF16.gguf | BF16 | 16.4 GB | | Qwen3-8B-CK-Pro.F16.gguf | F16 | 16.4 GB | | Qwen3-8B-CK-Pro.F32.gguf | F32 | 32.8 GB | | Qwen3-8B-CK-Pro.Q2_K.gguf | Q2_K | 3.28 GB | ## Quants Usage (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
Jack-Payne1/qwen_2.5_7b-phoenix_B0_control_seed1
Jack-Payne1
2025-08-12T15:17:30Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Qwen2.5-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T15:14:36Z
--- base_model: unsloth/Qwen2.5-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Jack-Payne1 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/UI-AGILE-3B-GGUF
mradermacher
2025-08-12T15:17:02Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:KDEGroup/UI-AGILE-3B", "base_model:quantized:KDEGroup/UI-AGILE-3B", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-12T14:29:41Z
--- base_model: KDEGroup/UI-AGILE-3B language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/KDEGroup/UI-AGILE-3B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#UI-AGILE-3B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/UI-AGILE-3B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/UI-AGILE-3B-GGUF/resolve/main/UI-AGILE-3B.mmproj-Q8_0.gguf) | mmproj-Q8_0 | 0.9 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/UI-AGILE-3B-GGUF/resolve/main/UI-AGILE-3B.Q2_K.gguf) | Q2_K | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/UI-AGILE-3B-GGUF/resolve/main/UI-AGILE-3B.mmproj-f16.gguf) | mmproj-f16 | 1.4 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/UI-AGILE-3B-GGUF/resolve/main/UI-AGILE-3B.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/UI-AGILE-3B-GGUF/resolve/main/UI-AGILE-3B.Q3_K_M.gguf) | Q3_K_M | 1.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/UI-AGILE-3B-GGUF/resolve/main/UI-AGILE-3B.Q3_K_L.gguf) | Q3_K_L | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/UI-AGILE-3B-GGUF/resolve/main/UI-AGILE-3B.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/UI-AGILE-3B-GGUF/resolve/main/UI-AGILE-3B.Q4_K_S.gguf) | Q4_K_S | 1.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/UI-AGILE-3B-GGUF/resolve/main/UI-AGILE-3B.Q4_K_M.gguf) | Q4_K_M | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/UI-AGILE-3B-GGUF/resolve/main/UI-AGILE-3B.Q5_K_S.gguf) | Q5_K_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/UI-AGILE-3B-GGUF/resolve/main/UI-AGILE-3B.Q5_K_M.gguf) | Q5_K_M | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/UI-AGILE-3B-GGUF/resolve/main/UI-AGILE-3B.Q6_K.gguf) | Q6_K | 2.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/UI-AGILE-3B-GGUF/resolve/main/UI-AGILE-3B.Q8_0.gguf) | Q8_0 | 3.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/UI-AGILE-3B-GGUF/resolve/main/UI-AGILE-3B.f16.gguf) | f16 | 6.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/InfiGUI-G1-3B-i1-GGUF
mradermacher
2025-08-12T15:17:02Z
0
0
transformers
[ "transformers", "gguf", "gui", "agent", "gui-grounding", "reinforcement-learning", "en", "base_model:InfiX-ai/InfiGUI-G1-3B", "base_model:quantized:InfiX-ai/InfiGUI-G1-3B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
reinforcement-learning
2025-08-12T14:32:57Z
--- base_model: InfiX-ai/InfiGUI-G1-3B language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - gui - agent - gui-grounding - reinforcement-learning --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/InfiX-ai/InfiGUI-G1-3B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#InfiGUI-G1-3B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/InfiGUI-G1-3B-GGUF **This is a vision model - mmproj files (if any) will be in the [static repository](https://huggingface.co/mradermacher/InfiGUI-G1-3B-GGUF).** ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-IQ2_S.gguf) | i1-IQ2_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-IQ2_M.gguf) | i1-IQ2_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 1.4 | very low quality | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-Q2_K.gguf) | i1-Q2_K | 1.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.7 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-IQ3_S.gguf) | i1-IQ3_S | 1.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-IQ3_M.gguf) | i1-IQ3_M | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 2.1 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-Q4_0.gguf) | i1-Q4_0 | 2.1 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 2.1 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-Q4_1.gguf) | i1-Q4_1 | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/InfiGUI-G1-3B-i1-GGUF/resolve/main/InfiGUI-G1-3B.i1-Q6_K.gguf) | i1-Q6_K | 2.9 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
kimxxxx/mistral_r32_a64_b8_gas4_lr5e-5_4500tk_1epoch
kimxxxx
2025-08-12T15:16:32Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-12T15:16:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ZhongyiB/blockassist-bc-colorful_foxy_aardvark_1755009889
ZhongyiB
2025-08-12T15:15:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful foxy aardvark", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T15:15:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful foxy aardvark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
SounTing/mamitaproject
SounTing
2025-08-12T15:14:44Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-12T15:00:44Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: mamita --- # Mamitaproject <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `mamita` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "mamita", "lora_weights": "https://huggingface.co/SounTing/mamitaproject/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('SounTing/mamitaproject', weight_name='lora.safetensors') image = pipeline('mamita').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/SounTing/mamitaproject/discussions) to add images that show off what you’ve made with this LoRA.
zhuojing-huang/l2lm_test
zhuojing-huang
2025-08-12T15:07:56Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T14:55:06Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: l2lm_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # l2lm_test This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 30 - training_steps: 183 ### Training results ### Framework versions - Transformers 4.53.1 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.21.2
indoempatnol/blockassist-bc-fishy_wary_swan_1755009674
indoempatnol
2025-08-12T15:07:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T15:07:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Jovar1/blockassist-bc-bold_hulking_rooster_1755011062
Jovar1
2025-08-12T15:06:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bold hulking rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T15:05:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bold hulking rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
johnyzhao/blockassist-bc-slow_dense_leopard_1755011112
johnyzhao
2025-08-12T15:06:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slow dense leopard", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T15:05:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slow dense leopard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aiface/modernBert-base_v2
aiface
2025-08-12T15:04:52Z
0
0
transformers
[ "transformers", "safetensors", "modernbert", "text-classification", "generated_from_trainer", "base_model:answerdotai/ModernBERT-base", "base_model:finetune:answerdotai/ModernBERT-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-12T14:31:45Z
--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: modernBert-base_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modernBert-base_v2 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7185 - Accuracy: 0.9116 - Precision Macro: 0.8041 - Recall Macro: 0.7362 - F1 Macro: 0.7592 - F1 Weighted: 0.9065 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:-----------:| | 1.2139 | 1.0 | 90 | 0.5024 | 0.8073 | 0.8182 | 0.5993 | 0.6061 | 0.7934 | | 0.6774 | 2.0 | 180 | 0.2870 | 0.9033 | 0.8421 | 0.7140 | 0.7451 | 0.8960 | | 0.4571 | 3.0 | 270 | 0.3474 | 0.8920 | 0.8074 | 0.6669 | 0.6824 | 0.8802 | | 0.2925 | 4.0 | 360 | 0.3089 | 0.9065 | 0.8778 | 0.7074 | 0.7413 | 0.8977 | | 0.1725 | 5.0 | 450 | 0.3611 | 0.8958 | 0.7729 | 0.7574 | 0.7646 | 0.8946 | | 0.0977 | 6.0 | 540 | 0.4743 | 0.9090 | 0.8405 | 0.7388 | 0.7695 | 0.9036 | | 0.0576 | 7.0 | 630 | 0.6044 | 0.8743 | 0.7234 | 0.8019 | 0.7413 | 0.8878 | | 0.0338 | 8.0 | 720 | 0.6118 | 0.9040 | 0.7756 | 0.7506 | 0.7615 | 0.9019 | | 0.016 | 9.0 | 810 | 0.6754 | 0.9071 | 0.8334 | 0.7379 | 0.7670 | 0.9019 | | 0.0113 | 10.0 | 900 | 0.6732 | 0.9065 | 0.7898 | 0.7606 | 0.7733 | 0.9044 | | 0.0065 | 11.0 | 990 | 0.7871 | 0.9046 | 0.8046 | 0.7277 | 0.7519 | 0.8992 | | 0.0037 | 12.0 | 1080 | 0.7134 | 0.9109 | 0.7989 | 0.7147 | 0.7386 | 0.9038 | | 0.0022 | 13.0 | 1170 | 0.7784 | 0.9015 | 0.7765 | 0.7383 | 0.7529 | 0.8982 | | 0.0013 | 14.0 | 1260 | 0.7176 | 0.9109 | 0.7832 | 0.7486 | 0.7625 | 0.9079 | | 0.0011 | 15.0 | 1350 | 0.7681 | 0.9059 | 0.7920 | 0.7371 | 0.7565 | 0.9017 | | 0.0001 | 16.0 | 1440 | 0.7170 | 0.9071 | 0.7833 | 0.7282 | 0.7479 | 0.9024 | | 0.0007 | 17.0 | 1530 | 0.7219 | 0.9109 | 0.8022 | 0.7442 | 0.7652 | 0.9068 | | 0.0003 | 18.0 | 1620 | 0.7379 | 0.9103 | 0.7950 | 0.7398 | 0.7596 | 0.9060 | | 0.0006 | 19.0 | 1710 | 0.7198 | 0.9116 | 0.8074 | 0.7404 | 0.7635 | 0.9068 | | 0.0004 | 20.0 | 1800 | 0.7185 | 0.9116 | 0.8041 | 0.7362 | 0.7592 | 0.9065 | ### Framework versions - Transformers 4.55.0 - Pytorch 2.7.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
milliarderdol/blockassist-bc-roaring_rough_scorpion_1755009233
milliarderdol
2025-08-12T15:02:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring rough scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T15:02:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring rough scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
EYEDOL/FROM_C3_1
EYEDOL
2025-08-12T15:02:15Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "sw", "dataset:mozilla-foundation/common_voice_11_0", "base_model:EYEDOL/SALAMA_C3", "base_model:finetune:EYEDOL/SALAMA_C3", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-12T15:01:59Z
--- library_name: transformers language: - sw base_model: EYEDOL/SALAMA_C3 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: ASR_FROM_C3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: sw split: None args: 'config: sw, split: test' metrics: - name: Wer type: wer value: 15.471181920592226 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ASR_FROM_C3 This model is a fine-tuned version of [EYEDOL/SALAMA_C3](https://huggingface.co/EYEDOL/SALAMA_C3) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2159 - Wer: 15.4712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1344 | 0.8684 | 2000 | 0.2159 | 15.4712 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2
jssaluja/fb-mms-1b-cleaned-jssaluja_rajinder_singh-epochs-3-test-datasets-10-20250812_075152-small
jssaluja
2025-08-12T15:01:10Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "pan", "base_model:facebook/mms-1b-all", "base_model:finetune:facebook/mms-1b-all", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-12T14:54:46Z
--- library_name: transformers language: - pan license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: jssaluja/fb-mms-1b-cleaned-jssaluja_rajinder_singh-epochs-3-test-datasets-10-20250812_075152-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/hustler1313/facebook-mms-1b-train/runs/fb-mms-1b-cleaned-jssaluja_rajinder_singh-epochs-3-test-datasets-10-20250812_075152-small) # jssaluja/fb-mms-1b-cleaned-jssaluja_rajinder_singh-epochs-3-test-datasets-10-20250812_075152-small This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the jssaluja/rajinder_singh dataset. It achieves the following results on the evaluation set: - Loss: 0.4047 - Wer: 0.5297 - Wil: 0.7550 - Mer: 0.5194 - Cer: 0.1336 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Wil | Mer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:| | 4.3878 | 1.0 | 76 | 0.4993 | 0.5921 | 0.8041 | 0.5758 | 0.1531 | | 0.4978 | 2.0 | 152 | 0.4216 | 0.5552 | 0.7741 | 0.5385 | 0.1330 | | 0.3915 | 3.0 | 228 | 0.4047 | 0.5297 | 0.7550 | 0.5194 | 0.1336 | ### Framework versions - Transformers 4.55.0 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.4
maura121/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-prickly_galloping_panda
maura121
2025-08-12T15:00:17Z
72
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am prickly_galloping_panda", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T21:44:57Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am prickly_galloping_panda --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sssravi/gpt-oss-20b-for-reasoning-metric
sssravi
2025-08-12T15:00:09Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:openai/gpt-oss-20b", "base_model:finetune:openai/gpt-oss-20b", "endpoints_compatible", "region:us" ]
null
2025-08-12T14:59:34Z
--- base_model: openai/gpt-oss-20b library_name: transformers model_name: gpt-oss-20b-for-reasoning-metric tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for gpt-oss-20b-for-reasoning-metric This model is a fine-tuned version of [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="sssravi/gpt-oss-20b-for-reasoning-metric", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
johnyzhao/blockassist-bc-slow_dense_leopard_1755010230
johnyzhao
2025-08-12T14:59:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slow dense leopard", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T14:51:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slow dense leopard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
silentember/Lantern_ZdjMYl
silentember
2025-08-12T14:58:31Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-12T14:56:35Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
JohnFatman/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-reclusive_hunting_ibis
JohnFatman
2025-08-12T14:57:15Z
28
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am reclusive_hunting_ibis", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-07T11:47:13Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am reclusive_hunting_ibis --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
abdimoalim/gpt2-instruct-v3
abdimoalim
2025-08-12T14:57:08Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-12T14:57:08Z
--- license: apache-2.0 ---
armaansidana/mohit
armaansidana
2025-08-12T14:57:05Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-12T14:21:29Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: mohit --- # Mohit <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `mohit` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "mohit", "lora_weights": "https://huggingface.co/armaansidana/mohit/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('armaansidana/mohit', weight_name='lora.safetensors') image = pipeline('mohit').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 3000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/armaansidana/mohit/discussions) to add images that show off what you’ve made with this LoRA.
pinilDissanayaka/HRM
pinilDissanayaka
2025-08-12T14:56:33Z
0
0
null
[ "arxiv:2506.21734", "region:us" ]
null
2025-08-12T14:52:36Z
# Hierarchical Reasoning Model ![](./assets/hrm.png) Reasoning, the process of devising and executing complex goal-oriented action sequences, remains a critical challenge in AI. Current large language models (LLMs) primarily employ Chain-of-Thought (CoT) techniques, which suffer from brittle task decomposition, extensive data requirements, and high latency. Inspired by the hierarchical and multi-timescale processing in the human brain, we propose the Hierarchical Reasoning Model (HRM), a novel recurrent architecture that attains significant computational depth while maintaining both training stability and efficiency. HRM executes sequential reasoning tasks in a single forward pass without explicit supervision of the intermediate process, through two interdependent recurrent modules: a high-level module responsible for slow, abstract planning, and a low-level module handling rapid, detailed computations. With only 27 million parameters, HRM achieves exceptional performance on complex reasoning tasks using only 1000 training samples. The model operates without pre-training or CoT data, yet achieves nearly perfect performance on challenging tasks including complex Sudoku puzzles and optimal path finding in large mazes. Furthermore, HRM outperforms much larger models with significantly longer context windows on the Abstraction and Reasoning Corpus (ARC), a key benchmark for measuring artificial general intelligence capabilities. These results underscore HRM’s potential as a transformative advancement toward universal computation and general-purpose reasoning systems. ## Quick Start Guide 🚀 ### Prerequisites ⚙️ Ensure PyTorch and CUDA are installed. The repo needs CUDA extensions to be built. If not present, run the following commands: ```bash # Install CUDA 12.6 CUDA_URL=https://developer.download.nvidia.com/compute/cuda/12.6.3/local_installers/cuda_12.6.3_560.35.05_linux.run wget -q --show-progress --progress=bar:force:noscroll -O cuda_installer.run $CUDA_URL sudo sh cuda_installer.run --silent --toolkit --override export CUDA_HOME=/usr/local/cuda-12.6 # Install PyTorch with CUDA 12.6 PYTORCH_INDEX_URL=https://download.pytorch.org/whl/cu126 pip3 install torch torchvision torchaudio --index-url $PYTORCH_INDEX_URL # Additional packages for building extensions pip3 install packaging ninja wheel setuptools setuptools-scm ``` Then install FlashAttention. For Hopper GPUs, install FlashAttention 3 ```bash git clone git@github.com:Dao-AILab/flash-attention.git cd flash-attention/hopper python setup.py install ``` For Ampere or earlier GPUs, install FlashAttention 2 ```bash pip3 install flash-attn ``` ## Install Python Dependencies 🐍 ```bash pip install -r requirements.txt ``` ## W&B Integration 📈 This project uses [Weights & Biases](https://wandb.ai/) for experiment tracking and metric visualization. Ensure you're logged in: ```bash wandb login ``` ## Run Experiments ### Quick Demo: Sudoku Solver 💻🗲 Train a master-level Sudoku AI capable of solving extremely difficult puzzles on a modern laptop GPU. 🧩 ```bash # Download and build Sudoku dataset python dataset/build_sudoku_dataset.py --output-dir data/sudoku-extreme-1k-aug-1000 --subsample-size 1000 --num-aug 1000 # Start training (single GPU, smaller batch size) OMP_NUM_THREADS=8 python pretrain.py data_path=data/sudoku-extreme-1k-aug-1000 epochs=20000 eval_interval=2000 global_batch_size=384 lr=7e-5 puzzle_emb_lr=7e-5 weight_decay=1.0 puzzle_emb_weight_decay=1.0 ``` Runtime: ~10 hours on a RTX 4070 laptop GPU ## Trained Checkpoints 🚧 - [ARC-AGI-2](https://huggingface.co/sapientinc/HRM-checkpoint-ARC-2) - [Sudoku 9x9 Extreme (1000 examples)](https://huggingface.co/sapientinc/HRM-checkpoint-sudoku-extreme) - [Maze 30x30 Hard (1000 examples)](https://huggingface.co/sapientinc/HRM-checkpoint-maze-30x30-hard) To use the checkpoints, see Evaluation section below. ## Full-scale Experiments 🔵 Experiments below assume an 8-GPU setup. ### Dataset Preparation ```bash # Initialize submodules git submodule update --init --recursive # ARC-1 python dataset/build_arc_dataset.py # ARC offical + ConceptARC, 960 examples # ARC-2 python dataset/build_arc_dataset.py --dataset-dirs dataset/raw-data/ARC-AGI-2/data --output-dir data/arc-2-aug-1000 # ARC-2 official, 1120 examples # Sudoku-Extreme python dataset/build_sudoku_dataset.py # Full version python dataset/build_sudoku_dataset.py --output-dir data/sudoku-extreme-1k-aug-1000 --subsample-size 1000 --num-aug 1000 # 1000 examples # Maze python dataset/build_maze_dataset.py # 1000 examples ``` ### Dataset Visualization Explore the puzzles visually: * Open `puzzle_visualizer.html` in your browser. * Upload the generated dataset folder located in `data/...`. ## Launch experiments ### Small-sample (1K) ARC-1: ```bash OMP_NUM_THREADS=8 torchrun --nproc-per-node 8 pretrain.py ``` *Runtime:* ~24 hours ARC-2: ```bash OMP_NUM_THREADS=8 torchrun --nproc-per-node 8 pretrain.py data_path=data/arc-2-aug-1000 ``` *Runtime:* ~24 hours (checkpoint after 8 hours is often sufficient) Sudoku Extreme (1k): ```bash OMP_NUM_THREADS=8 torchrun --nproc-per-node 8 pretrain.py data_path=data/sudoku-extreme-1k-aug-1000 epochs=20000 eval_interval=2000 lr=1e-4 puzzle_emb_lr=1e-4 weight_decay=1.0 puzzle_emb_weight_decay=1.0 ``` *Runtime:* ~10 minutes Maze 30x30 Hard (1k): ```bash OMP_NUM_THREADS=8 torchrun --nproc-per-node 8 pretrain.py data_path=data/maze-30x30-hard-1k epochs=20000 eval_interval=2000 lr=1e-4 puzzle_emb_lr=1e-4 weight_decay=1.0 puzzle_emb_weight_decay=1.0 ``` *Runtime:* ~1 hour ### Full Sudoku-Hard ```bash OMP_NUM_THREADS=8 torchrun --nproc-per-node 8 pretrain.py data_path=data/sudoku-hard-full epochs=100 eval_interval=10 lr_min_ratio=0.1 global_batch_size=2304 lr=3e-4 puzzle_emb_lr=3e-4 weight_decay=0.1 puzzle_emb_weight_decay=0.1 arch.loss.loss_type=softmax_cross_entropy arch.L_cycles=8 arch.halt_max_steps=8 arch.pos_encodings=learned ``` *Runtime:* ~2 hours ## Evaluation Evaluate your trained models: * Check `eval/exact_accuracy` in W&B. * For ARC-AGI, follow these additional steps: ```bash OMP_NUM_THREADS=8 torchrun --nproc-per-node 8 evaluate.py checkpoint=<CHECKPOINT_PATH> ``` * Then use the provided `arc_eval.ipynb` notebook to finalize and inspect your results. ## Notes - Small-sample learning typically exhibits accuracy variance of around ±2 points. - For Sudoku-Extreme (1,000-example dataset), late-stage overfitting may cause numerical instability during training and Q-learning. It is advisable to use early stopping once the training accuracy approaches 100%. ## Citation 📜 ```bibtex @misc{wang2025hierarchicalreasoningmodel, title={Hierarchical Reasoning Model}, author={Guan Wang and Jin Li and Yuhao Sun and Xing Chen and Changling Liu and Yue Wu and Meng Lu and Sen Song and Yasin Abbasi Yadkori}, year={2025}, eprint={2506.21734}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2506.21734}, } ```
razor534/blockassist-bc-lazy_extinct_termite_1755010308
razor534
2025-08-12T14:53:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lazy extinct termite", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T14:53:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lazy extinct termite --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
abdeljalilELmajjodi/Darija_Arabic_NER_LID
abdeljalilELmajjodi
2025-08-12T14:47:14Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:atlasia/XLM-RoBERTa-Morocco", "base_model:finetune:atlasia/XLM-RoBERTa-Morocco", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-08-12T14:45:45Z
--- library_name: transformers license: mit base_model: atlasia/XLM-RoBERTa-Morocco tags: - generated_from_trainer metrics: - f1 model-index: - name: Darija_Arabic_NER_LID results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Darija_Arabic_NER_LID This model is a fine-tuned version of [atlasia/XLM-RoBERTa-Morocco](https://huggingface.co/atlasia/XLM-RoBERTa-Morocco) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1501 - F1: 0.9540 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.55.0 - Pytorch 2.7.1+cu128 - Datasets 4.0.0 - Tokenizers 0.21.4
visurg/LEMON_curation_models
visurg
2025-08-12T14:42:47Z
0
1
null
[ "arxiv:2503.19740", "license:apache-2.0", "region:us" ]
null
2025-03-19T11:07:59Z
--- license: apache-2.0 --- <div align="center"> <img src="https://cdn-uploads.huggingface.co/production/uploads/67d9504a41d31cc626fcecc8/cE7UgFfJJ2gUHJr0SSEhc.png"> </img> </div> [📚 Paper](https://arxiv.org/abs/2503.19740) - [🤖 GitHub](https://github.com/visurg-ai/LEMON) We provide the models used in our data curation pipeline in [📚 LEMON: A Large Endoscopic MONocular Dataset and Foundation Model for Perception in Surgical Settings](https://arxiv.org/abs/2503.19740) to assist with constructing the LEMON dataset (for more details about the LEMON dataset and our LemonFM foundation model, please visit our github repository at [🤖 GitHub](https://github.com/visurg-ai/LEMON)) . If you use our dataset, model, or code in your research, please cite our paper: ``` @misc{che2025lemonlargeendoscopicmonocular, title={LEMON: A Large Endoscopic MONocular Dataset and Foundation Model for Perception in Surgical Settings}, author={Chengan Che and Chao Wang and Tom Vercauteren and Sophia Tsoka and Luis C. Garcia-Peraza-Herrera}, year={2025}, eprint={2503.19740}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2503.19740}, } ``` This Hugging Face repository includes video storyboard classification models, frame classification models, and non-surgical object detection models. The model loader file can be found at [model_loader.py](https://huggingface.co/visurg/Surg3M_curation_models/blob/main/model_loader.py) <div align="center"> <table style="margin-left: auto; margin-right: auto;"> <tr> <th>Model</th> <th>Architecture</th> <th colspan="5">Download</th> </tr> <tr> <td>Video storyboard classification models</td> <td>ResNet-18</td> <td><a href="https://huggingface.co/visurg/Surg3M_curation_models/tree/main/video_storyboard_classification">Full ckpt</a></td> </tr> <tr> <td>Frame classification models</td> <td>ResNet-18</td> <td><a href="https://huggingface.co/visurg/Surg3M_curation_models/tree/main/frame_classification">Full ckpt</a></td> </tr> <tr> <td>Non-surgical object detection models</td> <td>Yolov8-Nano</td> <td><a href="https://huggingface.co/visurg/Surg3M_curation_models/tree/main/nonsurgical_object_detection">Full ckpt</a></td> </tr> </table> </div> The data curation pipeline leading to the clean videos in the LEMON dataset is as follows: <div align="center"> <img src="https://cdn-uploads.huggingface.co/production/uploads/67d9504a41d31cc626fcecc8/jzw36jlPT-V_I-Vm01OzO.png"> </img> </div> Usage -------- **Video classification models** are employed in the step **2** of the data curation pipeline to classify a video storyboard as either surgical or non-surgical, the models usage is as follows: ```python import torch import torchvision from PIL import Image from model_loader import build_model # Load the model net = build_model(mode='classify') model_path = 'Video storyboard classification models' # Enable multi-GPU support net = torch.nn.DataParallel(net) torch.backends.cudnn.benchmark = True state = torch.load(model_path, map_location=torch.device('cpu')) net.load_state_dict(state['net']) net.eval() # Load the video storyboard and convert it to a PyTorch tensor img_path = 'path/to/your/image.jpg' img = Image.open(img_path) img = img.resize((224, 224)) transform = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.4299694, 0.29676908, 0.27707579), (0.24373249, 0.20208984, 0.19319402) ) ]) img_tensor = transform(img).unsqueeze(0).to('cuda') # Extract features from the image outputs = net(img_tensor) ``` **Frame classification models** are used in the step **3** of the data curation pipeline to classify a frame as either surgical or non-surgical, the models usage is as follows: ```python import torch import torchvision from PIL import Image from model_loader import build_model # Load the model net = build_model(mode='classify') model_path = 'Frame classification models' # Enable multi-GPU support net = torch.nn.DataParallel(net) torch.backends.cudnn.benchmark = True state = torch.load(model_path, map_location=torch.device('cpu')) net.load_state_dict(state['net']) net.eval() img_path = 'path/to/your/image.jpg' img = Image.open(img_path) img = img.resize((224, 224)) transform = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.4299694, 0.29676908, 0.27707579), (0.24373249, 0.20208984, 0.19319402) ) ]) img_tensor = transform(img).unsqueeze(0).to('cuda') # Extract features from the image outputs = net(img_tensor) ``` **Non-surgical object detection models** are used to obliterate the non-surgical region in the surgical frames (e.g. user interface information), the models usage is as follows: ```python import torch import torchvision from PIL import Image from model_loader import build_model # Load the model net = build_model(mode='mask') model_path = 'Frame classification models' # Enable multi-GPU support net = torch.nn.DataParallel(net) torch.backends.cudnn.benchmark = True state = torch.load(model_path, map_location=torch.device('cpu')) net.load_state_dict(state['net']) net.eval() img_path = 'path/to/your/image.jpg' img = Image.open(img_path) img = img.resize((224, 224)) transform = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.4299694, 0.29676908, 0.27707579), (0.24373249, 0.20208984, 0.19319402) ) ]) img_tensor = transform(img).unsqueeze(0).to('cuda') # Extract features from the image outputs = net(img_tensor) ```
visurg/LemonFM
visurg
2025-08-12T14:42:05Z
0
2
null
[ "arxiv:2503.19740", "license:apache-2.0", "region:us" ]
null
2025-03-18T14:31:13Z
--- license: apache-2.0 --- <div align="center"> <img src="https://cdn-uploads.huggingface.co/production/uploads/67d9504a41d31cc626fcecc8/syYHwLv9Z2s7UfTejhvKm.png"> </img> </div> [📚 Paper](https://arxiv.org/abs/2503.19740) - [🤖 GitHub](https://github.com/visurg-ai/LEMON) This is the official Hugging Face repository for the paper [LEMON: A Large Endoscopic MONocular Dataset and Foundation Model for Perception in Surgical Settings](https://arxiv.org/abs/2503.19740). This repository provides open access to the *LemonFM* foundation model. For the *LEMON* dataset and our code, please see our at our GitHub repository at [🤖 Github](https://github.com/visurg-ai/LEMON) . *LemonFM* is an image foundation model for surgery, it receives an image as input and produces a feature vector of 1536 features as output. If you use our dataset, model, or code in your research, please cite our paper: ``` @misc{che2025lemonlargeendoscopicmonocular, title={LEMON: A Large Endoscopic MONocular Dataset and Foundation Model for Perception in Surgical Settings}, author={Chengan Che and Chao Wang and Tom Vercauteren and Sophia Tsoka and Luis C. Garcia-Peraza-Herrera}, year={2025}, eprint={2503.19740}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2503.19740}, } ``` Abstract -------- Traditional open-access datasets focusing on surgical procedures are often limited by their small size, typically consisting of fewer than 100 videos and less than 30 hours of footage, which leads to poor model generalization. To address this constraint, a new dataset called LEMON has been compiled using a novel aggregation pipeline that collects high-resolution videos from online sources. Featuring an extensive collection of over 4K surgical videos totaling 938 hours (85 million frames) of high-quality footage across multiple procedure types, LEMON offers a comprehensive resource surpassing existing alternatives in size and scope, including two novel downstream tasks. To demonstrate the effectiveness of this diverse dataset, we introduce LemonFM, a foundation model pretrained on LEMON using a novel self-supervised augmented knowledge distillation approach. LemonFM consistently outperforms existing surgical foundation models across four downstream tasks and six datasets, achieving significant gains in surgical phase recognition (+9.5pp, +9.4pp, and +8.4pp of Jaccard in AutoLaparo, M2CAI16, and Cholec80), surgical action recognition (+4.4pp of mAP in CholecT50), surgical tool presence detection (+5.3pp and +10.2pp of mAP in Cholec80 and GraSP), and surgical semantic segmentation (+8.3pp of mDice in CholecSeg8k). LEMON and LemonFM will serve as foundational resources for the research community and industry, accelerating progress in developing autonomous robotic surgery systems and ultimately contributing to safer and more accessible surgical care worldwide. How to run our LemonFM foundation model to extract features from your video frames ---------------------------------------------------------------------------------- ```python import torch from PIL import Image from model_loader import build_LemonFM # Load the pre-trained LemonFM model lemonfm = build_LemonFM(pretrained_weights = 'your path to the LemonFM') lemonfm.eval() # Load the image and convert it to a PyTorch tensor img_path = 'path/to/your/image.jpg' img = Image.open(img_path) img = img.resize((224, 224)) img_tensor = torch.tensor(np.array(img)).unsqueeze(0).to('cuda') # Extract features from the image using the ResNet50 model outputs = lemonfm(img_tensor) ```
0xAgo/blockassist-bc-agile_tough_camel_1755008884
0xAgo
2025-08-12T14:41:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "agile tough camel", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T14:41:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - agile tough camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Kbashiru/distil_Naija_bert_on_jumia_dataset
Kbashiru
2025-08-12T14:41:24Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-12T14:41:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
palkonhax/blockassist-bc-stinging_slender_armadillo_1755008928
palkonhax
2025-08-12T14:41:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stinging slender armadillo", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T14:29:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stinging slender armadillo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
razor534/blockassist-bc-lazy_extinct_termite_1755009502
razor534
2025-08-12T14:40:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lazy extinct termite", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T14:40:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lazy extinct termite --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mendrika261/Qwen3-4B-Thinking-2507-abliterated
mendrika261
2025-08-12T14:40:05Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T12:06:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lucyknada/janhq_Jan-v1-4B-exl3
lucyknada
2025-08-12T14:39:12Z
0
0
null
[ "text-generation", "en", "base_model:Qwen/Qwen3-4B-Thinking-2507", "base_model:finetune:Qwen/Qwen3-4B-Thinking-2507", "license:apache-2.0", "region:us" ]
text-generation
2025-08-12T14:38:33Z
--- license: apache-2.0 language: - en base_model: - Qwen/Qwen3-4B-Thinking-2507 pipeline_tag: text-generation --- ### exl3 quant --- ### check revisions for quants --- # Jan-v1: Advanced Agentic Language Model [![GitHub](https://img.shields.io/badge/GitHub-Repository-blue?logo=github)](https://github.com/menloresearch/deep-research) [![License](https://img.shields.io/badge/License-Apache%202.0-yellow)](https://opensource.org/licenses/Apache-2.0) [![Jan App](https://img.shields.io/badge/Powered%20by-Jan%20App-purple?style=flat&logo=android)](https://jan.ai/) <!-- Optional: If you have a GIF for Jan-v1, include it here like Lucy's. --> <!-- ![image/gif](jan_v1_demo.gif) --> ## Overview **Jan-v1** is the first release in the **Jan Family**, designed for agentic reasoning and problem-solving within the [Jan App](https://jan.ai/). Based on our [**Lucy**](https://huggingface.co/Menlo/Lucy) model, Jan-v1 achieves improved performance through model scaling. Jan-v1 uses the [Qwen3-4B-thinking](https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507) model to provide enhanced reasoning capabilities and tool utilization. This architecture delivers better performance on complex agentic tasks. ## Performance ### Question Answering (SimpleQA) For question-answering, Jan-v1 shows a significant performance gain from model scaling, achieving 91.1% accuracy. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/6CaETynCW18MXgDrbp_N9.png) *The 91.1% SimpleQA accuracy represents a significant milestone in factual question answering for models of this scale, demonstrating the effectiveness of our scaling and fine-tuning approach.* ### Chat Benchmarks These benchmarks evaluate the model's conversational and instructional capabilities. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/f3bzNYRuA_iTFQIcvu6Rr.png) ## Quick Start ### Integration with Jan App Jan-v1 is optimized for direct integration with the [Jan App](https://jan.ai/). Simply select the model from the Jan App interface for immediate access to its full capabilities. ![image/gif](demo.gif) ### Local Deployment **Using vLLM:** ```bash vllm serve janhq/Jan-v1-4B \ --host 0.0.0.0 \ --port 1234 \ --enable-auto-tool-choice \ --tool-call-parser hermes ``` **Using llama.cpp:** ```bash llama-server --model Jan-v1-4B-Q4_K_M.gguf \ --host 0.0.0.0 \ --port 1234 \ --jinja \ --no-context-shift ``` ### Recommended Parameters ```yaml temperature: 0.6 top_p: 0.95 top_k: 20 min_p: 0.0 max_tokens: 2048 ``` ## 🤝 Community & Support - **Discussions**: [HuggingFace Community](https://huggingface.co/janhq/Jan-v1-4B/discussions) - **Jan App**: Learn more about the Jan App at [jan.ai](https://jan.ai/) ## 📄 Citation ```bibtex Updated Soon ``` ---
agurung/v2sft_all_qwen7B_25percent_lr_1e4_allgrad
agurung
2025-08-12T14:38:36Z
31
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-10T19:01:05Z
--- library_name: transformers model_name: v2sft_all_qwen7B_25percent_lr_1e4_allgrad tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for v2sft_all_qwen7B_25percent_lr_1e4_allgrad This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="agurung/v2sft_all_qwen7B_25percent_lr_1e4_allgrad", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/alexgurung/ncp_reasoning_projector/runs/upr91dfy) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.53.3 - Pytorch: 2.7.0+cu128 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
knowledgator/gliclass-modern-base-v2.0
knowledgator
2025-08-12T14:36:13Z
1,242
1
null
[ "safetensors", "GLiClass", "dataset:knowledgator/events_classification_biotech", "dataset:knowledgator/Scientific-text-classification", "arxiv:2508.07662", "license:apache-2.0", "region:us" ]
null
2025-03-27T12:48:20Z
--- license: apache-2.0 datasets: - knowledgator/events_classification_biotech - knowledgator/Scientific-text-classification --- # ⭐ GLiClass: Generalist and Lightweight Model for Sequence Classification This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path. It can be used for `topic classification`, `sentiment analysis` and as a reranker in `RAG` pipelines. The model was trained on synthetic and licensed data that allow commercial use and can be used in commercial applications. This version of the model uses a layer-wise selection of features that enables a better understanding of different levels of language. The backbone model is [ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base), which effectively processes long sequences. The model was fine-tuned using a new RL-based approach to classification, with F1 and recall rewards. ### How to use: First of all, you need to install GLiClass library: ```bash pip install gliclass pip install -U transformers>=4.48.0 ``` Than you need to initialize a model and a pipeline: ```python from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-modern-base-v2.0") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-modern-base-v2.0", add_prefix_space=True) pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "One day I will see the world!" labels = ["travel", "dreams", "sport", "science", "politics"] results = pipeline(text, labels, threshold=0.5)[0] #because we have one text for result in results: print(result["label"], "=>", result["score"]) ``` If you want to use it for NLI type of tasks, we recommend representing your premise as a text and hypothesis as a label, you can put several hypotheses, but the model works best with a single input hypothesis. ```python # Initialize model and multi-label pipeline text = "The cat slept on the windowsill all afternoon" labels = ["The cat was awake and playing outside."] results = pipeline(text, labels, threshold=0.0)[0] print(results) ``` ### Benchmarks: Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting. | Model | IMDB | AG_NEWS | Emotions | |-----------------------------|------|---------|----------| | [gliclass-modern-large-v2.0-init (399 M)](knowledgator/gliclass-modern-large-v2.0-init) | 0.9137 | 0.7357 | 0.4140 | | [gliclass-modern-base-v2.0-init (151 M)](knowledgator/gliclass-modern-base-v2.0-init) | 0.8264 | 0.6637 | 0.2985 | | [gliclass-modern-large-v2.0 (399 M)](knowledgator/gliclass-modern-large-v2.0) | 0.9448 | 0.736 | 0.4970 | | [gliclass-modern-base-v2.0 (151 M)](knowledgator/gliclass-modern-base-v2.0) | 0.9188 | 0.7089 | 0.4250 | | [gliclass-large-v1.0 (438 M)](https://huggingface.co/knowledgator/gliclass-large-v1.0) | 0.9404 | 0.7516 | 0.4874 | | [gliclass-base-v1.0 (186 M)](https://huggingface.co/knowledgator/gliclass-base-v1.0) | 0.8650 | 0.6837 | 0.4749 | | [gliclass-small-v1.0 (144 M)](https://huggingface.co/knowledgator/gliclass-small-v1.0) | 0.8650 | 0.6805 | 0.4664 | | [Bart-large-mnli (407 M)](https://huggingface.co/facebook/bart-large-mnli) | 0.89 | 0.6887 | 0.3765 | | [Deberta-base-v3 (184 M)](https://huggingface.co/cross-encoder/nli-deberta-v3-base) | 0.85 | 0.6455 | 0.5095 | | [Comprehendo (184M)](https://huggingface.co/knowledgator/comprehend_it-base) | 0.90 | 0.7982 | 0.5660 | | SetFit [BAAI/bge-small-en-v1.5 (33.4M)](https://huggingface.co/BAAI/bge-small-en-v1.5) | 0.86 | 0.5636 | 0.5754 | Below you can find a comparison with other GLiClass models: | Dataset | gliclass-modern-base-v2.0 | gliclass-modern-large-v2.0 | gliclass-modern-base-v2.0-init | gliclass-modern-large-v2.0-init | |----------------------|-----------------------|-----------------------|---------------------|---------------------| | CR | 0.8976 | 0.9198 | 0.9041 | 0.8980 | | sst2 | 0.8525 | 0.9318 | 0.9011 | 0.9434 | | sst5 | 0.2348 | 0.2147 | 0.1972 | 0.1123 | | 20_news_groups | 0.351 | 0.3755 | 0.2448 | 0.2792 | | spam | 0.483 | 0.6608 | 0.5074 | 0.6364 | | financial_phrasebank | 0.3475 | 0.3157 | 0.2537 | 0.2562 | | imdb | 0.9188 | 0.9448 | 0.8255 | 0.9137 | | ag_news | 0.6835 | 0.7025 | 0.6050 | 0.6933 | | emotion | 0.3925 | 0.4325 | 0.2474 | 0.3746 | | cap_sotu | 0.3725 | 0.4157 | 0.2929 | 0.2919 | | rotten_tomatoes | 0.6955 | 0.7357 | 0.6630 | 0.5928 | | **AVERAGE:** | 0.5563 | 0.6045 | 0.5129 | 0.5447 | ## Citation ```bibtex @misc{stepanov2025gliclassgeneralistlightweightmodel, title={GLiClass: Generalist Lightweight Model for Sequence Classification Tasks}, author={Ihor Stepanov and Mykhailo Shtopko and Dmytro Vodianytskyi and Oleksandr Lukashov and Alexander Yavorskyi and Mykyta Yaroshenko}, year={2025}, eprint={2508.07662}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2508.07662}, } ```
kota123123/blockassist-bc-lithe_leggy_macaw_1755008158
kota123123
2025-08-12T14:34:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lithe leggy macaw", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T14:33:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lithe leggy macaw --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/GPT-OSS-30B-Preview-GGUF
mradermacher
2025-08-12T14:33:48Z
0
0
transformers
[ "transformers", "gguf", "vllm", "unsloth", "mergekit", "gpt_oss", "en", "base_model:win10/GPT-OSS-30B-Preview", "base_model:quantized:win10/GPT-OSS-30B-Preview", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-12T12:41:38Z
--- base_model: win10/GPT-OSS-30B-Preview language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - vllm - unsloth - mergekit - gpt_oss --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/win10/GPT-OSS-30B-Preview <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#GPT-OSS-30B-Preview-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/GPT-OSS-30B-Preview-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/GPT-OSS-30B-Preview-GGUF/resolve/main/GPT-OSS-30B-Preview.Q3_K_S.gguf) | Q3_K_S | 17.7 | | | [GGUF](https://huggingface.co/mradermacher/GPT-OSS-30B-Preview-GGUF/resolve/main/GPT-OSS-30B-Preview.Q2_K.gguf) | Q2_K | 17.7 | | | [GGUF](https://huggingface.co/mradermacher/GPT-OSS-30B-Preview-GGUF/resolve/main/GPT-OSS-30B-Preview.IQ4_XS.gguf) | IQ4_XS | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/GPT-OSS-30B-Preview-GGUF/resolve/main/GPT-OSS-30B-Preview.Q3_K_M.gguf) | Q3_K_M | 19.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/GPT-OSS-30B-Preview-GGUF/resolve/main/GPT-OSS-30B-Preview.Q3_K_L.gguf) | Q3_K_L | 19.6 | | | [GGUF](https://huggingface.co/mradermacher/GPT-OSS-30B-Preview-GGUF/resolve/main/GPT-OSS-30B-Preview.Q4_K_S.gguf) | Q4_K_S | 21.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GPT-OSS-30B-Preview-GGUF/resolve/main/GPT-OSS-30B-Preview.Q4_K_M.gguf) | Q4_K_M | 23.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GPT-OSS-30B-Preview-GGUF/resolve/main/GPT-OSS-30B-Preview.Q5_K_S.gguf) | Q5_K_S | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/GPT-OSS-30B-Preview-GGUF/resolve/main/GPT-OSS-30B-Preview.Q5_K_M.gguf) | Q5_K_M | 24.9 | | | [GGUF](https://huggingface.co/mradermacher/GPT-OSS-30B-Preview-GGUF/resolve/main/GPT-OSS-30B-Preview.Q6_K.gguf) | Q6_K | 32.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/GPT-OSS-30B-Preview-GGUF/resolve/main/GPT-OSS-30B-Preview.Q8_0.gguf) | Q8_0 | 32.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
knowledgator/gliclass-qwen-0.5B-v1.0
knowledgator
2025-08-12T14:33:19Z
87
1
null
[ "onnx", "safetensors", "GLiClass", "text classification", "zero-shot", "small language models", "RAG", "sentiment analysis", "zero-shot-classification", "en", "dataset:MoritzLaurer/synthetic_zeroshot_mixtral_v0.1", "arxiv:2508.07662", "license:apache-2.0", "region:us" ]
zero-shot-classification
2024-09-09T16:29:54Z
--- license: apache-2.0 datasets: - MoritzLaurer/synthetic_zeroshot_mixtral_v0.1 language: - en metrics: - f1 pipeline_tag: zero-shot-classification tags: - text classification - zero-shot - small language models - RAG - sentiment analysis --- # ⭐ GLiClass: Generalist and Lightweight Model for Sequence Classification This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path. It can be used for `topic classification`, `sentiment analysis` and as a reranker in `RAG` pipelines. The model was trained on synthetic data and can be used in commercial applications. This version of the model utilize the [LLM2Vec](https://github.com/McGill-NLP/llm2vec/tree/main/llm2vec) approach for converting modern decoders to bi-directional encoder. It brings the following benefits: * Enhanced performance and generalization capabilities; * Support for Flash Attention; * Extended context window. ### How to use: First of all, you need to install GLiClass library: ```bash pip install gliclass ``` To use this particular Qwen-based model you need different `transformers` package version than llm2vec requires, so install it manually: ```bash pip install transformers==4.44.1 ``` Than you need to initialize a model and a pipeline: ```python from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-qwen-0.5B-v1.0") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-qwen-0.5B-v1.0") pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "One day I will see the world!" labels = ["travel", "dreams", "sport", "science", "politics"] results = pipeline(text, labels, threshold=0.5)[0] #because we have one text for result in results: print(result["label"], "=>", result["score"]) ``` ### Benchmarks: While the model is some how comparable to DeBERTa version in zero-shot setting, it demonstrates state-of-the-art performance in few-shot setting. ![Few-shot performance](few_shot.png) ### Join Our Discord Connect with our community on Discord for news, support, and discussion about our models. Join [Discord](https://discord.gg/dkyeAgs9DG). ## Citation ```bibtex @misc{stepanov2025gliclassgeneralistlightweightmodel, title={GLiClass: Generalist Lightweight Model for Sequence Classification Tasks}, author={Ihor Stepanov and Mykhailo Shtopko and Dmytro Vodianytskyi and Oleksandr Lukashov and Alexander Yavorskyi and Mykyta Yaroshenko}, year={2025}, eprint={2508.07662}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2508.07662}, } ```
MAGICYA0/blockassist-bc-silky_lively_badger_1755005987
MAGICYA0
2025-08-12T14:32:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky lively badger", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T14:32:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky lively badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
knowledgator/gliclass-base-v1.0
knowledgator
2025-08-12T14:31:58Z
855
3
transformers
[ "transformers", "onnx", "safetensors", "GLiClass", "text classification", "zero-shot", "small language models", "RAG", "sentiment analysis", "zero-shot-classification", "en", "dataset:MoritzLaurer/synthetic_zeroshot_mixtral_v0.1", "arxiv:2508.07662", "license:apache-2.0", "endpoints_compatible", "region:us" ]
zero-shot-classification
2024-07-03T15:20:49Z
--- license: apache-2.0 datasets: - MoritzLaurer/synthetic_zeroshot_mixtral_v0.1 language: - en metrics: - f1 pipeline_tag: zero-shot-classification tags: - text classification - zero-shot - small language models - RAG - sentiment analysis --- # ⭐ GLiClass: Generalist and Lightweight Model for Sequence Classification This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path. It can be used for `topic classification`, `sentiment analysis` and as a reranker in `RAG` pipelines. The model was trained on synthetic data and can be used in commercial applications. ### How to use: First of all, you need to install GLiClass library: ```bash pip install gliclass ``` Than you need to initialize a model and a pipeline: ```python from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-base-v1.0") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-base-v1.0") pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "One day I will see the world!" labels = ["travel", "dreams", "sport", "science", "politics"] results = pipeline(text, labels, threshold=0.5)[0] #because we have one text for result in results: print(result["label"], "=>", result["score"]) ``` ### Benchmarks: Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting. | Model | IMDB | AG_NEWS | Emotions | |-----------------------------|------|---------|----------| | [gliclass-large-v1.0 (438 M)](https://huggingface.co/knowledgator/gliclass-large-v1.0) | 0.9404 | 0.7516 | 0.4874 | | [gliclass-base-v1.0 (186 M)](https://huggingface.co/knowledgator/gliclass-base-v1.0) | 0.8650 | 0.6837 | 0.4749 | | [gliclass-small-v1.0 (144 M)](https://huggingface.co/knowledgator/gliclass-small-v1.0) | 0.8650 | 0.6805 | 0.4664 | | [Bart-large-mnli (407 M)](https://huggingface.co/facebook/bart-large-mnli) | 0.89 | 0.6887 | 0.3765 | | [Deberta-base-v3 (184 M)](https://huggingface.co/cross-encoder/nli-deberta-v3-base) | 0.85 | 0.6455 | 0.5095 | | [Comprehendo (184M)](https://huggingface.co/knowledgator/comprehend_it-base) | 0.90 | 0.7982 | 0.5660 | | SetFit [BAAI/bge-small-en-v1.5 (33.4M)](https://huggingface.co/BAAI/bge-small-en-v1.5) | 0.86 | 0.5636 | 0.5754 | Below you can find a comparison with other GLiClass models: | Dataset | gliclass-small-v1.0-lw | gliclass-base-v1.0-lw | gliclass-large-v1.0-lw | gliclass-small-v1.0 | gliclass-base-v1.0 | gliclass-large-v1.0 | |----------------------|-----------------------|-----------------------|-----------------------|---------------------|---------------------|---------------------| | CR | 0.8886 | 0.9097 | 0.9226 | 0.8824 | 0.8942 | 0.9219 | | sst2 | 0.8392 | 0.8987 | 0.9247 | 0.8518 | 0.8979 | 0.9269 | | sst5 | 0.2865 | 0.3779 | 0.2891 | 0.2424 | 0.2789 | 0.3900 | | 20_news_groups | 0.4572 | 0.3953 | 0.4083 | 0.3366 | 0.3576 | 0.3863 | | spam | 0.5118 | 0.5126 | 0.3642 | 0.4089 | 0.4938 | 0.3661 | | rotten_tomatoes | 0.8015 | 0.8429 | 0.8807 | 0.7987 | 0.8508 | 0.8808 | | massive | 0.3180 | 0.4635 | 0.5606 | 0.2546 | 0.1893 | 0.4376 | | banking | 0.1768 | 0.4396 | 0.3317 | 0.1374 | 0.2077 | 0.2847 | | yahoo_topics | 0.4686 | 0.4784 | 0.4760 | 0.4477 | 0.4516 | 0.4921 | | financial_phrasebank | 0.8665 | 0.8880 | 0.9044 | 0.8901 | 0.8955 | 0.8735 | | imdb | 0.9048 | 0.9351 | 0.9429 | 0.8982 | 0.9238 | 0.9333 | | ag_news | 0.7252 | 0.6985 | 0.7559 | 0.7242 | 0.6848 | 0.7503 | | dair_emotion | 0.4012 | 0.3516 | 0.3951 | 0.3450 | 0.2357 | 0.4013 | | capsotu | 0.3794 | 0.4643 | 0.4749 | 0.3432 | 0.4375 | 0.4644 | |Average:|0.5732|0.6183|0.6165|0.5401|0.5571|0.6078| Here you can see how the performance of the model grows providing more examples: | Model | Num Examples | sst5 | spam | massive | banking | ag news | dair emotion | capsotu | Average | |-----------------------------|--------------|--------|---------|---------|---------|---------|--------------|---------|-------------| | gliclass-small-v1.0-lw | 0 | 0.2865 | 0.5118 | 0.318 | 0.1768 | 0.7252 | 0.4012 | 0.3794 | 0.3998428571| | gliclass-base-v1.0-lw | 0 | 0.3779 | 0.5126 | 0.4635 | 0.4396 | 0.6985 | 0.3516 | 0.4643 | 0.4725714286| | gliclass-large-v1.0-lw | 0 | 0.2891 | 0.3642 | 0.5606 | 0.3317 | 0.7559 | 0.3951 | 0.4749 | 0.4530714286| | gliclass-small-v1.0 | 0 | 0.2424 | 0.4089 | 0.2546 | 0.1374 | 0.7242 | 0.345 | 0.3432 | 0.3508142857| | gliclass-base-v1.0 | 0 | 0.2789 | 0.4938 | 0.1893 | 0.2077 | 0.6848 | 0.2357 | 0.4375 | 0.3611 | | gliclass-large-v1.0 | 0 | 0.39 | 0.3661 | 0.4376 | 0.2847 | 0.7503 | 0.4013 | 0.4644 | 0.4420571429| | gliclass-small-v1.0-lw | 8 | 0.2709 | 0.84026 | 0.62 | 0.6883 | 0.7786 | 0.449 | 0.4918 | 0.5912657143| | gliclass-base-v1.0-lw | 8 | 0.4275 | 0.8836 | 0.729 | 0.7667 | 0.7968 | 0.3866 | 0.4858 | 0.6394285714| | gliclass-large-v1.0-lw | 8 | 0.3345 | 0.8997 | 0.7658 | 0.848 | 0.84843 | 0.5219 | 0.508 | 0.67519 | | gliclass-small-v1.0 | 8 | 0.3042 | 0.5683 | 0.6332 | 0.7072 | 0.759 | 0.4509 | 0.4434 | 0.5523142857| | gliclass-base-v1.0 | 8 | 0.3387 | 0.7361 | 0.7059 | 0.7456 | 0.7896 | 0.4323 | 0.4802 | 0.6040571429| | gliclass-large-v1.0 | 8 | 0.4365 | 0.9018 | 0.77 | 0.8533 | 0.8509 | 0.5061 | 0.4935 | 0.6874428571| ## Citation ```bibtex @misc{stepanov2025gliclassgeneralistlightweightmodel, title={GLiClass: Generalist Lightweight Model for Sequence Classification Tasks}, author={Ihor Stepanov and Mykhailo Shtopko and Dmytro Vodianytskyi and Oleksandr Lukashov and Alexander Yavorskyi and Mykyta Yaroshenko}, year={2025}, eprint={2508.07662}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2508.07662}, } ```
relapseone/blockassist-bc-insectivorous_prickly_shrew_1755007139
relapseone
2025-08-12T14:31:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous prickly shrew", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T14:31:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous prickly shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
knowledgator/gliclass-large-v1.0-lw
knowledgator
2025-08-12T14:30:50Z
301
1
transformers
[ "transformers", "onnx", "safetensors", "GLiClass", "text classification", "zero-shot", "small language models", "RAG", "sentiment analysis", "zero-shot-classification", "en", "dataset:MoritzLaurer/synthetic_zeroshot_mixtral_v0.1", "arxiv:2508.07662", "license:apache-2.0", "endpoints_compatible", "region:us" ]
zero-shot-classification
2024-07-03T06:01:13Z
--- license: apache-2.0 datasets: - MoritzLaurer/synthetic_zeroshot_mixtral_v0.1 language: - en metrics: - f1 pipeline_tag: zero-shot-classification tags: - text classification - zero-shot - small language models - RAG - sentiment analysis --- # ⭐ GLiClass: Generalist and Lightweight Model for Sequence Classification This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path. It can be used for `topic classification`, `sentiment analysis` and as a reranker in `RAG` pipelines. The model was trained on synthetic data and can be used in commercial applications. This version of the model uses a layer-wise selection of features that enables a better understanding of different levels of language. ### How to use: First of all, you need to install GLiClass library: ```bash pip install gliclass ``` Than you need to initialize a model and a pipeline: ```python from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-large-v1.0-lw") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-large-v1.0-lw") pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "One day I will see the world!" labels = ["travel", "dreams", "sport", "science", "politics"] results = pipeline(text, labels, threshold=0.5)[0] #because we have one text for result in results: print(result["label"], "=>", result["score"]) ``` ### Benchmarks: Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting. | Model | IMDB | AG_NEWS | Emotions | |-----------------------------|------|---------|----------| | [gliclass-large-v1.0 (438 M)](https://huggingface.co/knowledgator/gliclass-large-v1.0) | 0.9404 | 0.7516 | 0.4874 | | [gliclass-base-v1.0 (186 M)](https://huggingface.co/knowledgator/gliclass-base-v1.0) | 0.8650 | 0.6837 | 0.4749 | | [gliclass-small-v1.0 (144 M)](https://huggingface.co/knowledgator/gliclass-small-v1.0) | 0.8650 | 0.6805 | 0.4664 | | [Bart-large-mnli (407 M)](https://huggingface.co/facebook/bart-large-mnli) | 0.89 | 0.6887 | 0.3765 | | [Deberta-base-v3 (184 M)](https://huggingface.co/cross-encoder/nli-deberta-v3-base) | 0.85 | 0.6455 | 0.5095 | | [Comprehendo (184M)](https://huggingface.co/knowledgator/comprehend_it-base) | 0.90 | 0.7982 | 0.5660 | | SetFit [BAAI/bge-small-en-v1.5 (33.4M)](https://huggingface.co/BAAI/bge-small-en-v1.5) | 0.86 | 0.5636 | 0.5754 | Below you can find a comparison with other GLiClass models: | Dataset | gliclass-small-v1.0-lw | gliclass-base-v1.0-lw | gliclass-large-v1.0-lw | gliclass-small-v1.0 | gliclass-base-v1.0 | gliclass-large-v1.0 | |----------------------|-----------------------|-----------------------|-----------------------|---------------------|---------------------|---------------------| | CR | 0.8886 | 0.9097 | 0.9226 | 0.8824 | 0.8942 | 0.9219 | | sst2 | 0.8392 | 0.8987 | 0.9247 | 0.8518 | 0.8979 | 0.9269 | | sst5 | 0.2865 | 0.3779 | 0.2891 | 0.2424 | 0.2789 | 0.3900 | | 20_news_groups | 0.4572 | 0.3953 | 0.4083 | 0.3366 | 0.3576 | 0.3863 | | spam | 0.5118 | 0.5126 | 0.3642 | 0.4089 | 0.4938 | 0.3661 | | rotten_tomatoes | 0.8015 | 0.8429 | 0.8807 | 0.7987 | 0.8508 | 0.8808 | | massive | 0.3180 | 0.4635 | 0.5606 | 0.2546 | 0.1893 | 0.4376 | | banking | 0.1768 | 0.4396 | 0.3317 | 0.1374 | 0.2077 | 0.2847 | | yahoo_topics | 0.4686 | 0.4784 | 0.4760 | 0.4477 | 0.4516 | 0.4921 | | financial_phrasebank | 0.8665 | 0.8880 | 0.9044 | 0.8901 | 0.8955 | 0.8735 | | imdb | 0.9048 | 0.9351 | 0.9429 | 0.8982 | 0.9238 | 0.9333 | | ag_news | 0.7252 | 0.6985 | 0.7559 | 0.7242 | 0.6848 | 0.7503 | | dair_emotion | 0.4012 | 0.3516 | 0.3951 | 0.3450 | 0.2357 | 0.4013 | | capsotu | 0.3794 | 0.4643 | 0.4749 | 0.3432 | 0.4375 | 0.4644 | |Average:|0.5732|0.6183|0.6165|0.5401|0.5571|0.6078| Here you can see how the performance of the model grows providing more examples: | Model | Num Examples | sst5 | spam | massive | banking | ag news | dair emotion | capsotu | Average | |-----------------------------|--------------|--------|---------|---------|---------|---------|--------------|---------|-------------| | gliclass-small-v1.0-lw | 0 | 0.2865 | 0.5118 | 0.318 | 0.1768 | 0.7252 | 0.4012 | 0.3794 | 0.3998428571| | gliclass-base-v1.0-lw | 0 | 0.3779 | 0.5126 | 0.4635 | 0.4396 | 0.6985 | 0.3516 | 0.4643 | 0.4725714286| | gliclass-large-v1.0-lw | 0 | 0.2891 | 0.3642 | 0.5606 | 0.3317 | 0.7559 | 0.3951 | 0.4749 | 0.4530714286| | gliclass-small-v1.0 | 0 | 0.2424 | 0.4089 | 0.2546 | 0.1374 | 0.7242 | 0.345 | 0.3432 | 0.3508142857| | gliclass-base-v1.0 | 0 | 0.2789 | 0.4938 | 0.1893 | 0.2077 | 0.6848 | 0.2357 | 0.4375 | 0.3611 | | gliclass-large-v1.0 | 0 | 0.39 | 0.3661 | 0.4376 | 0.2847 | 0.7503 | 0.4013 | 0.4644 | 0.4420571429| | gliclass-small-v1.0-lw | 8 | 0.2709 | 0.84026 | 0.62 | 0.6883 | 0.7786 | 0.449 | 0.4918 | 0.5912657143| | gliclass-base-v1.0-lw | 8 | 0.4275 | 0.8836 | 0.729 | 0.7667 | 0.7968 | 0.3866 | 0.4858 | 0.6394285714| | gliclass-large-v1.0-lw | 8 | 0.3345 | 0.8997 | 0.7658 | 0.848 | 0.84843 | 0.5219 | 0.508 | 0.67519 | | gliclass-small-v1.0 | 8 | 0.3042 | 0.5683 | 0.6332 | 0.7072 | 0.759 | 0.4509 | 0.4434 | 0.5523142857| | gliclass-base-v1.0 | 8 | 0.3387 | 0.7361 | 0.7059 | 0.7456 | 0.7896 | 0.4323 | 0.4802 | 0.6040571429| | gliclass-large-v1.0 | 8 | 0.4365 | 0.9018 | 0.77 | 0.8533 | 0.8509 | 0.5061 | 0.4935 | 0.6874428571| ## Citation ```bibtex @misc{stepanov2025gliclassgeneralistlightweightmodel, title={GLiClass: Generalist Lightweight Model for Sequence Classification Tasks}, author={Ihor Stepanov and Mykhailo Shtopko and Dmytro Vodianytskyi and Oleksandr Lukashov and Alexander Yavorskyi and Mykyta Yaroshenko}, year={2025}, eprint={2508.07662}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2508.07662}, } ```
knowledgator/gliclass-base-v1.0-lw
knowledgator
2025-08-12T14:30:28Z
214
2
transformers
[ "transformers", "onnx", "safetensors", "GLiClass", "text classification", "zero-shot", "small language models", "RAG", "sentiment analysis", "zero-shot-classification", "en", "dataset:MoritzLaurer/synthetic_zeroshot_mixtral_v0.1", "arxiv:2508.07662", "license:apache-2.0", "endpoints_compatible", "region:us" ]
zero-shot-classification
2024-07-03T05:59:00Z
--- license: apache-2.0 datasets: - MoritzLaurer/synthetic_zeroshot_mixtral_v0.1 language: - en metrics: - f1 pipeline_tag: zero-shot-classification tags: - text classification - zero-shot - small language models - RAG - sentiment analysis --- # ⭐ GLiClass: Generalist and Lightweight Model for Sequence Classification This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path. It can be used for `topic classification`, `sentiment analysis` and as a reranker in `RAG` pipelines. The model was trained on synthetic data and can be used in commercial applications. This version of the model uses a layer-wise selection of features that enables a better understanding of different levels of language. ### How to use: First of all, you need to install GLiClass library: ```bash pip install gliclass ``` Than you need to initialize a model and a pipeline: ```python from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-base-v1.0-lw") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-base-v1.0-lw") pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "One day I will see the world!" labels = ["travel", "dreams", "sport", "science", "politics"] results = pipeline(text, labels, threshold=0.5)[0] #because we have one text for result in results: print(result["label"], "=>", result["score"]) ``` ### Benchmarks: Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting. | Model | IMDB | AG_NEWS | Emotions | |-----------------------------|------|---------|----------| | [gliclass-large-v1.0 (438 M)](https://huggingface.co/knowledgator/gliclass-large-v1.0) | 0.9404 | 0.7516 | 0.4874 | | [gliclass-base-v1.0 (186 M)](https://huggingface.co/knowledgator/gliclass-base-v1.0) | 0.8650 | 0.6837 | 0.4749 | | [gliclass-small-v1.0 (144 M)](https://huggingface.co/knowledgator/gliclass-small-v1.0) | 0.8650 | 0.6805 | 0.4664 | | [Bart-large-mnli (407 M)](https://huggingface.co/facebook/bart-large-mnli) | 0.89 | 0.6887 | 0.3765 | | [Deberta-base-v3 (184 M)](https://huggingface.co/cross-encoder/nli-deberta-v3-base) | 0.85 | 0.6455 | 0.5095 | | [Comprehendo (184M)](https://huggingface.co/knowledgator/comprehend_it-base) | 0.90 | 0.7982 | 0.5660 | | SetFit [BAAI/bge-small-en-v1.5 (33.4M)](https://huggingface.co/BAAI/bge-small-en-v1.5) | 0.86 | 0.5636 | 0.5754 | Below you can find a comparison with other GLiClass models: | Dataset | gliclass-small-v1.0-lw | gliclass-base-v1.0-lw | gliclass-large-v1.0-lw | gliclass-small-v1.0 | gliclass-base-v1.0 | gliclass-large-v1.0 | |----------------------|-----------------------|-----------------------|-----------------------|---------------------|---------------------|---------------------| | CR | 0.8886 | 0.9097 | 0.9226 | 0.8824 | 0.8942 | 0.9219 | | sst2 | 0.8392 | 0.8987 | 0.9247 | 0.8518 | 0.8979 | 0.9269 | | sst5 | 0.2865 | 0.3779 | 0.2891 | 0.2424 | 0.2789 | 0.3900 | | 20_news_groups | 0.4572 | 0.3953 | 0.4083 | 0.3366 | 0.3576 | 0.3863 | | spam | 0.5118 | 0.5126 | 0.3642 | 0.4089 | 0.4938 | 0.3661 | | rotten_tomatoes | 0.8015 | 0.8429 | 0.8807 | 0.7987 | 0.8508 | 0.8808 | | massive | 0.3180 | 0.4635 | 0.5606 | 0.2546 | 0.1893 | 0.4376 | | banking | 0.1768 | 0.4396 | 0.3317 | 0.1374 | 0.2077 | 0.2847 | | yahoo_topics | 0.4686 | 0.4784 | 0.4760 | 0.4477 | 0.4516 | 0.4921 | | financial_phrasebank | 0.8665 | 0.8880 | 0.9044 | 0.8901 | 0.8955 | 0.8735 | | imdb | 0.9048 | 0.9351 | 0.9429 | 0.8982 | 0.9238 | 0.9333 | | ag_news | 0.7252 | 0.6985 | 0.7559 | 0.7242 | 0.6848 | 0.7503 | | dair_emotion | 0.4012 | 0.3516 | 0.3951 | 0.3450 | 0.2357 | 0.4013 | | capsotu | 0.3794 | 0.4643 | 0.4749 | 0.3432 | 0.4375 | 0.4644 | |Average:|0.5732|0.6183|0.6165|0.5401|0.5571|0.6078| Here you can see how the performance of the model grows providing more examples: | Model | Num Examples | sst5 | spam | massive | banking | ag news | dair emotion | capsotu | Average | |-----------------------------|--------------|--------|---------|---------|---------|---------|--------------|---------|-------------| | gliclass-small-v1.0-lw | 0 | 0.2865 | 0.5118 | 0.318 | 0.1768 | 0.7252 | 0.4012 | 0.3794 | 0.3998428571| | gliclass-base-v1.0-lw | 0 | 0.3779 | 0.5126 | 0.4635 | 0.4396 | 0.6985 | 0.3516 | 0.4643 | 0.4725714286| | gliclass-large-v1.0-lw | 0 | 0.2891 | 0.3642 | 0.5606 | 0.3317 | 0.7559 | 0.3951 | 0.4749 | 0.4530714286| | gliclass-small-v1.0 | 0 | 0.2424 | 0.4089 | 0.2546 | 0.1374 | 0.7242 | 0.345 | 0.3432 | 0.3508142857| | gliclass-base-v1.0 | 0 | 0.2789 | 0.4938 | 0.1893 | 0.2077 | 0.6848 | 0.2357 | 0.4375 | 0.3611 | | gliclass-large-v1.0 | 0 | 0.39 | 0.3661 | 0.4376 | 0.2847 | 0.7503 | 0.4013 | 0.4644 | 0.4420571429| | gliclass-small-v1.0-lw | 8 | 0.2709 | 0.84026 | 0.62 | 0.6883 | 0.7786 | 0.449 | 0.4918 | 0.5912657143| | gliclass-base-v1.0-lw | 8 | 0.4275 | 0.8836 | 0.729 | 0.7667 | 0.7968 | 0.3866 | 0.4858 | 0.6394285714| | gliclass-large-v1.0-lw | 8 | 0.3345 | 0.8997 | 0.7658 | 0.848 | 0.84843 | 0.5219 | 0.508 | 0.67519 | | gliclass-small-v1.0 | 8 | 0.3042 | 0.5683 | 0.6332 | 0.7072 | 0.759 | 0.4509 | 0.4434 | 0.5523142857| | gliclass-base-v1.0 | 8 | 0.3387 | 0.7361 | 0.7059 | 0.7456 | 0.7896 | 0.4323 | 0.4802 | 0.6040571429| | gliclass-large-v1.0 | 8 | 0.4365 | 0.9018 | 0.77 | 0.8533 | 0.8509 | 0.5061 | 0.4935 | 0.6874428571| ## Citation ```bibtex @misc{stepanov2025gliclassgeneralistlightweightmodel, title={GLiClass: Generalist Lightweight Model for Sequence Classification Tasks}, author={Ihor Stepanov and Mykhailo Shtopko and Dmytro Vodianytskyi and Oleksandr Lukashov and Alexander Yavorskyi and Mykyta Yaroshenko}, year={2025}, eprint={2508.07662}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2508.07662}, } ```
tungkhau/qtable-taxi
tungkhau
2025-08-12T14:30:22Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-08-12T14:30:19Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: qtable-taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.38 +/- 2.45 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="tungkhau/qtable-taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
knowledgator/gliclass-small-v1.0-init
knowledgator
2025-08-12T14:30:10Z
73
5
transformers
[ "transformers", "onnx", "safetensors", "GLiClass", "text classification", "zero-shot", "small language models", "RAG", "sentiment analysis", "zero-shot-classification", "en", "dataset:MoritzLaurer/synthetic_zeroshot_mixtral_v0.1", "arxiv:2508.07662", "license:apache-2.0", "endpoints_compatible", "region:us" ]
zero-shot-classification
2024-06-02T13:35:24Z
--- license: apache-2.0 datasets: - MoritzLaurer/synthetic_zeroshot_mixtral_v0.1 language: - en metrics: - f1 pipeline_tag: zero-shot-classification tags: - text classification - zero-shot - small language models - RAG - sentiment analysis --- # ⭐ GLiClass: Generalist and Lightweight Model for Sequence Classification This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path. It can be used for `topic classification`, `sentiment analysis` and as a reranker in `RAG` pipelines. The model was trained on synthetic data and can be used in commercial applications. This model wasn't additionally fine-tuned on any dataset except initial (MoritzLaurer/synthetic_zeroshot_mixtral_v0.1). ### How to use: First of all, you need to install GLiClass library: ```bash pip install gliclass ``` Than you need to initialize a model and a pipeline: ```python from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-small-v1.0-init") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-small-v1.0-init") pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "One day I will see the world!" labels = ["travel", "dreams", "sport", "science", "politics"] results = pipeline(text, labels, threshold=0.5)[0] #because we have one text for result in results: print(result["label"], "=>", result["score"]) ``` ### Benchmarks: Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting. | Model | IMDB | AG_NEWS | Emotions | |-----------------------------|------|---------|----------| | [gliclass-large-v1.0 (438 M)](https://huggingface.co/knowledgator/gliclass-large-v1.0) | 0.9404 | 0.7516 | 0.4874 | | [gliclass-base-v1.0 (186 M)](https://huggingface.co/knowledgator/gliclass-base-v1.0) | 0.8650 | 0.6837 | 0.4749 | | [gliclass-small-v1.0 (144 M)](https://huggingface.co/knowledgator/gliclass-small-v1.0) | 0.8650 | 0.6805 | 0.4664 | | [Bart-large-mnli (407 M)](https://huggingface.co/facebook/bart-large-mnli) | 0.89 | 0.6887 | 0.3765 | | [Deberta-base-v3 (184 M)](https://huggingface.co/cross-encoder/nli-deberta-v3-base) | 0.85 | 0.6455 | 0.5095 | | [Comprehendo (184M)](https://huggingface.co/knowledgator/comprehend_it-base) | 0.90 | 0.7982 | 0.5660 | | SetFit [BAAI/bge-small-en-v1.5 (33.4M)](https://huggingface.co/BAAI/bge-small-en-v1.5) | 0.86 | 0.5636 | 0.5754 | ## Citation ```bibtex @misc{stepanov2025gliclassgeneralistlightweightmodel, title={GLiClass: Generalist Lightweight Model for Sequence Classification Tasks}, author={Ihor Stepanov and Mykhailo Shtopko and Dmytro Vodianytskyi and Oleksandr Lukashov and Alexander Yavorskyi and Mykyta Yaroshenko}, year={2025}, eprint={2508.07662}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2508.07662}, } ```
DougGran/CyberSeek-8B
DougGran
2025-08-12T14:30:07Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation-inference", "unsloth", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-12T13:43:36Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** DougGran - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
FoggiFoggi/djsdmk
FoggiFoggi
2025-08-12T14:29:53Z
0
0
null
[ "license:cc-by-nc-sa-3.0", "region:us" ]
null
2025-08-12T14:29:53Z
--- license: cc-by-nc-sa-3.0 ---
OscarGD6/qwen2-vl-asr-lora
OscarGD6
2025-08-12T14:29:13Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-12T14:24:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
knowledgator/gliclass-base-v1.0-init
knowledgator
2025-08-12T14:28:49Z
8
2
transformers
[ "transformers", "onnx", "safetensors", "GLiClass", "text classification", "zero-shot", "small language models", "RAG", "sentiment analysis", "zero-shot-classification", "en", "dataset:MoritzLaurer/synthetic_zeroshot_mixtral_v0.1", "arxiv:2508.07662", "license:apache-2.0", "endpoints_compatible", "region:us" ]
zero-shot-classification
2024-06-02T17:24:37Z
--- license: apache-2.0 datasets: - MoritzLaurer/synthetic_zeroshot_mixtral_v0.1 language: - en metrics: - f1 pipeline_tag: zero-shot-classification tags: - text classification - zero-shot - small language models - RAG - sentiment analysis --- # ⭐ GLiClass: Generalist and Lightweight Model for Sequence Classification This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path. It can be used for `topic classification`, `sentiment analysis` and as a reranker in `RAG` pipelines. The model was trained on synthetic data and can be used in commercial applications. This model wasn't additionally fine-tuned on any dataset except initial (MoritzLaurer/synthetic_zeroshot_mixtral_v0.1). ### How to use: First of all, you need to install GLiClass library: ```bash pip install gliclass ``` Than you need to initialize a model and a pipeline: ```python from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-base-v1.0-init") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-base-v1.0-init") pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "One day I will see the world!" labels = ["travel", "dreams", "sport", "science", "politics"] results = pipeline(text, labels, threshold=0.5)[0] #because we have one text for result in results: print(result["label"], "=>", result["score"]) ``` ### Benchmarks: Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting. | Model | IMDB | AG_NEWS | Emotions | |-----------------------------|------|---------|----------| | [gliclass-large-v1.0 (438 M)](https://huggingface.co/knowledgator/gliclass-large-v1.0) | 0.9404 | 0.7516 | 0.4874 | | [gliclass-base-v1.0 (186 M)](https://huggingface.co/knowledgator/gliclass-base-v1.0) | 0.8650 | 0.6837 | 0.4749 | | [gliclass-small-v1.0 (144 M)](https://huggingface.co/knowledgator/gliclass-small-v1.0) | 0.8650 | 0.6805 | 0.4664 | | [Bart-large-mnli (407 M)](https://huggingface.co/facebook/bart-large-mnli) | 0.89 | 0.6887 | 0.3765 | | [Deberta-base-v3 (184 M)](https://huggingface.co/cross-encoder/nli-deberta-v3-base) | 0.85 | 0.6455 | 0.5095 | | [Comprehendo (184M)](https://huggingface.co/knowledgator/comprehend_it-base) | 0.90 | 0.7982 | 0.5660 | | SetFit [BAAI/bge-small-en-v1.5 (33.4M)](https://huggingface.co/BAAI/bge-small-en-v1.5) | 0.86 | 0.5636 | 0.5754 | ## Citation ```bibtex @misc{stepanov2025gliclassgeneralistlightweightmodel, title={GLiClass: Generalist Lightweight Model for Sequence Classification Tasks}, author={Ihor Stepanov and Mykhailo Shtopko and Dmytro Vodianytskyi and Oleksandr Lukashov and Alexander Yavorskyi and Mykyta Yaroshenko}, year={2025}, eprint={2508.07662}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2508.07662}, } ```
kayacrypto/blockassist-bc-thriving_barky_wolf_1755008806
kayacrypto
2025-08-12T14:28:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thriving barky wolf", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T14:28:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thriving barky wolf --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
knowledgator/gliclass-large-v1.0-init
knowledgator
2025-08-12T14:28:26Z
91
14
transformers
[ "transformers", "onnx", "safetensors", "GLiClass", "text classification", "zero-shot", "small language models", "RAG", "sentiment analysis", "zero-shot-classification", "en", "dataset:MoritzLaurer/synthetic_zeroshot_mixtral_v0.1", "arxiv:2508.07662", "license:apache-2.0", "endpoints_compatible", "region:us" ]
zero-shot-classification
2024-06-03T20:04:04Z
--- license: apache-2.0 datasets: - MoritzLaurer/synthetic_zeroshot_mixtral_v0.1 language: - en metrics: - f1 pipeline_tag: zero-shot-classification tags: - text classification - zero-shot - small language models - RAG - sentiment analysis --- # ⭐ GLiClass: Generalist and Lightweight Model for Sequence Classification This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path. It can be used for `topic classification`, `sentiment analysis` and as a reranker in `RAG` pipelines. The model was trained on synthetic data and can be used in commercial applications. This model wasn't additionally fine-tuned on any dataset except initial (MoritzLaurer/synthetic_zeroshot_mixtral_v0.1). ### How to use: First of all, you need to install GLiClass library: ```bash pip install gliclass ``` Than you need to initialize a model and a pipeline: ```python from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-large-v1.0-init") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-large-v1.0-init") pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "One day I will see the world!" labels = ["travel", "dreams", "sport", "science", "politics"] results = pipeline(text, labels, threshold=0.5)[0] #because we have one text for result in results: print(result["label"], "=>", result["score"]) ``` ### Benchmarks: Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting. | Model | IMDB | AG_NEWS | Emotions | |-----------------------------|------|---------|----------| | [gliclass-large-v1.0 (438 M)](https://huggingface.co/knowledgator/gliclass-large-v1.0) | 0.9404 | 0.7516 | 0.4874 | | [gliclass-base-v1.0 (186 M)](https://huggingface.co/knowledgator/gliclass-base-v1.0) | 0.8650 | 0.6837 | 0.4749 | | [gliclass-small-v1.0 (144 M)](https://huggingface.co/knowledgator/gliclass-small-v1.0) | 0.8650 | 0.6805 | 0.4664 | | [Bart-large-mnli (407 M)](https://huggingface.co/facebook/bart-large-mnli) | 0.89 | 0.6887 | 0.3765 | | [Deberta-base-v3 (184 M)](https://huggingface.co/cross-encoder/nli-deberta-v3-base) | 0.85 | 0.6455 | 0.5095 | | [Comprehendo (184M)](https://huggingface.co/knowledgator/comprehend_it-base) | 0.90 | 0.7982 | 0.5660 | | SetFit [BAAI/bge-small-en-v1.5 (33.4M)](https://huggingface.co/BAAI/bge-small-en-v1.5) | 0.86 | 0.5636 | 0.5754 | ## Citation ```bibtex @misc{stepanov2025gliclassgeneralistlightweightmodel, title={GLiClass: Generalist Lightweight Model for Sequence Classification Tasks}, author={Ihor Stepanov and Mykhailo Shtopko and Dmytro Vodianytskyi and Oleksandr Lukashov and Alexander Yavorskyi and Mykyta Yaroshenko}, year={2025}, eprint={2508.07662}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2508.07662}, } ```
mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic-GGUF
mradermacher
2025-08-12T14:28:21Z
0
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "grpo", "open-r1", "trl", "en", "dataset:AIML-TUDA/SLR-Bench", "base_model:leonMW/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic", "base_model:quantized:leonMW/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-12T14:22:19Z
--- base_model: leonMW/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic datasets: AIML-TUDA/SLR-Bench language: - en library_name: transformers model_name: DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - generated_from_trainer - grpo - open-r1 - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/leonMW/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic.Q2_K.gguf) | Q2_K | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic.Q3_K_S.gguf) | Q3_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic.Q3_K_L.gguf) | Q3_K_L | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic.IQ4_XS.gguf) | IQ4_XS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic.Q5_K_S.gguf) | Q5_K_S | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic.Q5_K_M.gguf) | Q5_K_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic.Q6_K.gguf) | Q6_K | 1.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic.Q8_0.gguf) | Q8_0 | 2.0 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-GSPO-Basic.f16.gguf) | f16 | 3.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
ultramit/blockassist-bc-sturdy_mute_opossum_1755008847
ultramit
2025-08-12T14:28:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sturdy mute opossum", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T14:28:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sturdy mute opossum --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
netcat420/DeepSeek-R1-0528-Qwen3-8B-KAYLA-BASE
netcat420
2025-08-12T14:27:59Z
0
0
null
[ "safetensors", "qwen3", "merge", "mergekit", "lazymergekit", "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B", "netcat420/DeepSeek-R1-0528-Qwen3-8B-SLERPSOURCE", "license:apache-2.0", "region:us" ]
null
2025-08-12T14:22:29Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - deepseek-ai/DeepSeek-R1-0528-Qwen3-8B - netcat420/DeepSeek-R1-0528-Qwen3-8B-SLERPSOURCE --- # DeepSeek-R1-0528-Qwen3-8B-KAYLA-BASE DeepSeek-R1-0528-Qwen3-8B-KAYLA-BASE is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [deepseek-ai/DeepSeek-R1-0528-Qwen3-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B) * [netcat420/DeepSeek-R1-0528-Qwen3-8B-SLERPSOURCE](https://huggingface.co/netcat420/DeepSeek-R1-0528-Qwen3-8B-SLERPSOURCE) ## 🧩 Configuration ```yaml slices: - sources: - model: deepseek-ai/DeepSeek-R1-0528-Qwen3-8B layer_range: [0, 36] - model: netcat420/DeepSeek-R1-0528-Qwen3-8B-SLERPSOURCE layer_range: [0, 36] merge_method: slerp base_model: deepseek-ai/DeepSeek-R1-0528-Qwen3-8B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 # fallback for rest of tensors dtype: float16 ```
sdaschel/stacyreplicate
sdaschel
2025-08-12T14:27:58Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-12T13:52:52Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Stacy --- # Stacyreplicate <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Stacy` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "Stacy", "lora_weights": "https://huggingface.co/sdaschel/stacyreplicate/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('sdaschel/stacyreplicate', weight_name='lora.safetensors') image = pipeline('Stacy').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2002 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/sdaschel/stacyreplicate/discussions) to add images that show off what you’ve made with this LoRA.
silentember/Lantern_qM2kTD
silentember
2025-08-12T14:26:09Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-12T14:24:11Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
Kbashiru/distil-base_on_jumia_dataset
Kbashiru
2025-08-12T14:25:24Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-12T14:24:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
knowledgator/gliclass-x-base
knowledgator
2025-08-12T14:25:23Z
257
5
null
[ "safetensors", "GLiClass", "text-classification", "dataset:knowledgator/gliclass-v2.0", "arxiv:2508.07662", "license:apache-2.0", "region:us" ]
text-classification
2025-07-17T14:16:33Z
--- license: apache-2.0 datasets: - knowledgator/gliclass-v2.0 pipeline_tag: text-classification --- # ⭐ GLiClass: Generalist and Lightweight Model for Sequence Classification This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path. It can be used for `topic classification`, `sentiment analysis` and as a reranker in `RAG` pipelines. The model was trained on synthetic and licensed data that allow commercial use and can be used in commercial applications. The backbone model is [mdeberta-v3-base](huggingface.co/microsoft/mdeberta-v3-base). It supports multilingual understanding, making it well-suited for tasks involving texts in different languages. ### How to use: First of all, you need to install GLiClass library: ```bash pip install gliclass pip install -U transformers>=4.48.0 ``` Than you need to initialize a model and a pipeline: <details> <summary>English</summary> ```python from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-x-base") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-x-base", add_prefix_space=True) pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "One day I will see the world!" labels = ["travel", "dreams", "sport", "science", "politics"] results = pipeline(text, labels, threshold=0.5)[0] #because we have one text for result in results: print(result["label"], "=>", result["score"]) ``` </details> <details> <summary>Spanish</summary> ```python from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-x-base") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-x-base", add_prefix_space=True) pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "¡Un día veré el mundo!" labels = ["viajes", "sueños", "deportes", "ciencia", "política"] results = pipeline(text, labels, threshold=0.5)[0] for result in results: print(result["label"], "=>", result["score"]) ``` </details> <details> <summary>Italitan</summary> ```python from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-x-base") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-x-base", add_prefix_space=True) pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "Un giorno vedrò il mondo!" labels = ["viaggi", "sogni", "sport", "scienza", "politica"] results = pipeline(text, labels, threshold=0.5)[0] for result in results: print(result["label"], "=>", result["score"]) ``` </details> <details> <summary>French</summary> ```python from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-x-base") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-x-base", add_prefix_space=True) pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "Un jour, je verrai le monde!" labels = ["voyage", "rêves", "sport", "science", "politique"] results = pipeline(text, labels, threshold=0.5)[0] for result in results: print(result["label"], "=>", result["score"]) ``` </details> <details> <summary>German</summary> ```python from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-x-base") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-x-base", add_prefix_space=True) pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "Eines Tages werde ich die Welt sehen!" labels = ["Reisen", "Träume", "Sport", "Wissenschaft", "Politik"] results = pipeline(text, labels, threshold=0.5)[0] for result in results: print(result["label"], "=>", result["score"]) ``` </details> ### Benchmarks: Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting. #### Multilingual benchmarks | Dataset | gliclass-x-base | gliclass-base-v3.0 | gliclass-large-v3.0 | | ------------------------ | --------------- | ------------------ | ------------------- | | FredZhang7/toxi-text-3M | 0.5972 | 0.5072 | 0.6118 | | SetFit/xglue\_nc | 0.5014 | 0.5348 | 0.5378 | | Davlan/sib200\_14classes | 0.4663 | 0.2867 | 0.3173 | | uhhlt/GermEval2017 | 0.3999 | 0.4010 | 0.4299 | | dolfsai/toxic\_es | 0.1250 | 0.1399 | 0.1412 | | **Average** | **0.41796** | **0.37392** | **0.4076** | #### General benchmarks | Dataset | gliclass-x-base | gliclass-base-v3.0 | gliclass-large-v3.0 | | ---------------------------- | --------------- | ------------------ | ------------------- | | SetFit/CR | 0.8630 | 0.9127 | 0.9398 | | SetFit/sst2 | 0.8554 | 0.8959 | 0.9192 | | SetFit/sst5 | 0.3287 | 0.3376 | 0.4606 | | AmazonScience/massive | 0.2611 | 0.5040 | 0.5649 | | stanfordnlp/imdb | 0.8840 | 0.9251 | 0.9366 | | SetFit/20\_newsgroups | 0.4116 | 0.4759 | 0.5958 | | SetFit/enron\_spam | 0.5929 | 0.6760 | 0.7584 | | PolyAI/banking77 | 0.3098 | 0.4698 | 0.5574 | | takala/financial\_phrasebank | 0.7851 | 0.8971 | 0.9000 | | ag\_news | 0.6815 | 0.7279 | 0.7181 | | dair-ai/emotion | 0.3667 | 0.4447 | 0.4506 | | MoritzLaurer/cap\_sotu | 0.3935 | 0.4614 | 0.4589 | | cornell/rotten\_tomatoes | 0.7252 | 0.7943 | 0.8411 | | snips | 0.6307 | 0.9474 | 0.9692 | | **Average** | **0.5778** | **0.6764** | **0.7193** | ## Citation ```bibtex @misc{stepanov2025gliclassgeneralistlightweightmodel, title={GLiClass: Generalist Lightweight Model for Sequence Classification Tasks}, author={Ihor Stepanov and Mykhailo Shtopko and Dmytro Vodianytskyi and Oleksandr Lukashov and Alexander Yavorskyi and Mykyta Yaroshenko}, year={2025}, eprint={2508.07662}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2508.07662}, } ```
knowledgator/gliclass-base-v3.0
knowledgator
2025-08-12T14:24:41Z
2,054
5
null
[ "safetensors", "GLiClass", "text classification", "nli", "sentiment analysis", "text-classification", "dataset:BioMike/formal-logic-reasoning-gliclass-2k", "dataset:knowledgator/gliclass-v3-logic-dataset", "dataset:tau/commonsense_qa", "arxiv:2508.07662", "license:apache-2.0", "region:us" ]
text-classification
2025-07-14T13:53:40Z
--- license: apache-2.0 datasets: - BioMike/formal-logic-reasoning-gliclass-2k - knowledgator/gliclass-v3-logic-dataset - tau/commonsense_qa metrics: - f1 tags: - text classification - nli - sentiment analysis pipeline_tag: text-classification --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6405f62ba577649430be5124/I9RAQol7giilBHbbf2T7M.png) # GLiClass: Generalist and Lightweight Model for Sequence Classification This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path. It can be used for `topic classification`, `sentiment analysis`, and as a reranker in `RAG` pipelines. The model was trained on logical tasks to induce reasoning. LoRa adapters were used to fine-tune the model without destroying the previous knowledge. LoRA parameters: | | [gliclass‑modern‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-base-v3.0) | [gliclass‑modern‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-large-v3.0) | [gliclass‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-base-v3.0) | [gliclass‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-large-v3.0) | |----------------------|---------------------------------|----------------------------------|--------------------------------|---------------------------------| | LoRa r | 512 | 768 | 384 | 384 | | LoRa α | 1024 | 1536 | 768 | 768 | | focal loss α | 0.7 | 0.7 | 0.7 | 0.7 | | Target modules | "Wqkv", "Wo", "Wi", "linear_1", "linear_2" | "Wqkv", "Wo", "Wi", "linear_1", "linear_2" | "query_proj", "key_proj", "value_proj", "dense", "linear_1", "linear_2", mlp.0", "mlp.2", "mlp.4" | "query_proj", "key_proj", "value_proj", "dense", "linear_1", "linear_2", mlp.0", "mlp.2", "mlp.4" | GLiClass-V3 Models: Model name | Size | Params | Average Banchmark | Average Inference Speed (batch size = 1, a6000, examples/s) |----------|------|--------|-------------------|---------------------------------------------------------| [gliclass‑edge‑v3.0](https://huggingface.co/knowledgator/gliclass‑edge‑v3.0)| 131 MB | 32.7M | 0.4873 | 97.29 | [gliclass‑modern‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-base-v3.0)| 606 MB | 151M | 0.5571 | 54.46 | [gliclass‑modern‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-large-v3.0)| 1.6 GB | 399M | 0.6082 | 43.80 | [gliclass‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-base-v3.0)| 746 MB | 187M | 0.6556 | 51.61 | [gliclass‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-large-v3.0)| 1.75 GB | 439M | 0.7001 | 25.22 | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6405f62ba577649430be5124/MvfWyOdG824KWWB4Hy-dG.png) ### How to use: First of all, you need to install GLiClass library: ```bash pip install gliclass pip install -U transformers>=4.48.0 ``` Then you need to initialize a model and a pipeline: ```python from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-base-v3.0") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-base-v3.0") pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "One day I will see the world!" labels = ["travel", "dreams", "sport", "science", "politics"] results = pipeline(text, labels, threshold=0.5)[0] #because we have one text for result in results: print(result["label"], "=>", result["score"]) ``` If you want to use it for NLI type of tasks, we recommend representing your premise as a text and hypothesis as a label, you can put several hypotheses, but the model works best with a single input hypothesis. ```python # Initialize model and multi-label pipeline text = "The cat slept on the windowsill all afternoon" labels = ["The cat was awake and playing outside."] results = pipeline(text, labels, threshold=0.0)[0] print(results) ``` ### Benchmarks: Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting. GLiClass-V3: | Dataset | [gliclass‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-large-v3.0) | [gliclass‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-base-v3.0) | [gliclass‑modern‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-large-v3.0) | [gliclass‑modern‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-base-v3.0) | [gliclass‑edge‑v3.0](https://huggingface.co/knowledgator/gliclass-edge-v3.0) | |----------------------------|---------|---------|---------|---------|---------| | CR | 0.9398 | 0.9127 | 0.8952 | 0.8902 | 0.8215 | | sst2 | 0.9192 | 0.8959 | 0.9330 | 0.8959 | 0.8199 | | sst5 | 0.4606 | 0.3376 | 0.4619 | 0.2756 | 0.2823 | | 20_news_<br>groups | 0.5958 | 0.4759 | 0.3905 | 0.3433 | 0.2217 | | spam | 0.7584 | 0.6760 | 0.5813 | 0.6398 | 0.5623 | | financial_<br>phrasebank | 0.9000 | 0.8971 | 0.5929 | 0.4200 | 0.5004 | | imdb | 0.9366 | 0.9251 | 0.9402 | 0.9158 | 0.8485 | | ag_news | 0.7181 | 0.7279 | 0.7269 | 0.6663 | 0.6645 | | emotion | 0.4506 | 0.4447 | 0.4517 | 0.4254 | 0.3851 | | cap_sotu | 0.4589 | 0.4614 | 0.4072 | 0.3625 | 0.2583 | | rotten_<br>tomatoes | 0.8411 | 0.7943 | 0.7664 | 0.7070 | 0.7024 | | massive | 0.5649 | 0.5040 | 0.3905 | 0.3442 | 0.2414 | | banking | 0.5574 | 0.4698 | 0.3683 | 0.3561 | 0.0272 | | snips | 0.9692 | 0.9474 | 0.7707 | 0.5663 | 0.5257 | | **AVERAGE** | **0.7193** | **0.6764** | **0.6197** | **0.5577** | **0.4900** | Previous GLiClass models: | Dataset | [gliclass‑large‑v1.0‑lw](https://huggingface.co/knowledgator/gliclass-large-v1.0-lw) | [gliclass‑base‑v1.0‑lw](https://huggingface.co/knowledgator/gliclass-base-v1.0-lw) | [gliclass‑modern‑large‑v2.0](https://huggingface.co/knowledgator/gliclass-modern-large-v2.0) | [gliclass‑modern‑base‑v2.0](https://huggingface.co/knowledgator/gliclass-modern-base-v2.0) | |----------------------------|---------------------------------|--------------------------------|----------------------------------|---------------------------------| | CR | 0.9226 | 0.9097 | 0.9154 | 0.8977 | | sst2 | 0.9247 | 0.8987 | 0.9308 | 0.8524 | | sst5 | 0.2891 | 0.3779 | 0.2152 | 0.2346 | | 20_news_<br>groups | 0.4083 | 0.3953 | 0.3813 | 0.3857 | | spam | 0.3642 | 0.5126 | 0.6603 | 0.4608 | | financial_<br>phrasebank | 0.9044 | 0.8880 | 0.3152 | 0.3465 | | imdb | 0.9429 | 0.9351 | 0.9449 | 0.9188 | | ag_news | 0.7559 | 0.6985 | 0.6999 | 0.6836 | | emotion | 0.3951 | 0.3516 | 0.4341 | 0.3926 | | cap_sotu | 0.4749 | 0.4643 | 0.4095 | 0.3588 | | rotten_<br>tomatoes | 0.8807 | 0.8429 | 0.7386 | 0.6066 | | massive | 0.5606 | 0.4635 | 0.2394 | 0.3458 | | banking | 0.3317 | 0.4396 | 0.1355 | 0.2907 | | snips | 0.9707 | 0.9572 | 0.8468 | 0.7378 | | **AVERAGE** | **0.6518** | **0.6525** | **0.5619** | **0.5366** | Cross-Encoders: | Dataset | [deberta‑v3‑large‑zeroshot‑v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v2.0) | [deberta‑v3‑base‑zeroshot‑v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-base-zeroshot-v2.0) | [roberta‑large‑zeroshot‑v2.0‑c](https://huggingface.co/MoritzLaurer/roberta-large-zeroshot-v2.0-c) | [comprehend_it‑base](https://huggingface.co/knowledgator/comprehend_it-base) | |------------------------------------|--------|--------|--------|--------| | CR | 0.9134 | 0.9051 | 0.9141 | 0.8936 | | sst2 | 0.9272 | 0.9176 | 0.8573 | 0.9006 | | sst5 | 0.3861 | 0.3848 | 0.4159 | 0.4140 | | enron_<br>spam | 0.5970 | 0.4640 | 0.5040 | 0.3637 | | financial_<br>phrasebank | 0.5820 | 0.6690 | 0.4550 | 0.4695 | | imdb | 0.9180 | 0.8990 | 0.9040 | 0.4644 | | ag_news | 0.7710 | 0.7420 | 0.7450 | 0.6016 | | emotion | 0.4840 | 0.4950 | 0.4860 | 0.4165 | | cap_sotu | 0.5020 | 0.4770 | 0.5230 | 0.3823 | | rotten_<br>tomatoes | 0.8680 | 0.8600 | 0.8410 | 0.4728 | | massive | 0.5180 | 0.5200 | 0.5200 | 0.3314 | | banking77 | 0.5670 | 0.4460 | 0.2900 | 0.4972 | | snips | 0.8340 | 0.7477 | 0.5430 | 0.7227 | | **AVERAGE** | **0.6821** | **0.6559** | **0.6152** | **0.5331** | Inference Speed: Each model was tested on examples with 64, 256, and 512 tokens in text and 1, 2, 4, 8, 16, 32, 64, and 128 labels on an a6000 GPU. Then, scores were averaged across text lengths. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6405f62ba577649430be5124/YipDUMZuIqL4f8mWl7IHt.png) Model  Name / n samples per second per m labels | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | **Average** | |---------------------|---|---|---|---|----|----|----|-----|---------| | [gliclass‑edge‑v3.0](https://huggingface.co/knowledgator/gliclass-edge-v3.0) | 103.81 | 101.01 | 103.50 | 103.50 | 98.36 | 96.77 | 88.76 | 82.64 | **97.29** | | [gliclass‑modern‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-base-v3.0) | 56.00 | 55.46 | 54.95 | 55.66 | 54.73 | 54.95 | 53.48 | 50.34 | **54.46** | | [gliclass‑modern‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-large-v3.0) | 46.30 | 46.82 | 46.66 | 46.30 | 43.93 | 44.73 | 42.77 | 32.89 | **43.80** | | [gliclass‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-base-v3.0) | 49.42 | 50.25 | 40.05 | 57.69 | 57.14 | 56.39 | 55.97 | 45.94 | **51.61** | | [gliclass‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-large-v3.0) | 19.05 | 26.86 | 23.64 | 29.27 | 29.04 | 28.79 | 27.55 | 17.60 | **25.22** | | [deberta‑v3‑base‑zeroshot‑v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-base-zeroshot-v2.0) | 24.55 | 30.40 | 15.38 | 7.62 | 3.77 | 1.87 | 0.94 | 0.47 | **10.63** | | [deberta‑v3‑large‑zeroshot‑v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v2.0) | 16.82 | 15.82 | 7.93 | 3.98 | 1.99 | 0.99 | 0.49 | 0.25 | **6.03** | | [roberta‑large‑zeroshot‑v2.0‑c](https://huggingface.co/MoritzLaurer/roberta-large-zeroshot-v2.0-c) | 50.42 | 39.27 | 19.95 | 9.95 | 5.01 | 2.48 | 1.25 | 0.64 | **16.12** | | [comprehend_it‑base](https://huggingface.co/knowledgator/comprehend_it-base) | 21.79 | 27.32 | 13.60 | 7.58 | 3.80 | 1.90 | 0.97 | 0.49 | **9.72** | ## Citation ```bibtex @misc{stepanov2025gliclassgeneralistlightweightmodel, title={GLiClass: Generalist Lightweight Model for Sequence Classification Tasks}, author={Ihor Stepanov and Mykhailo Shtopko and Dmytro Vodianytskyi and Oleksandr Lukashov and Alexander Yavorskyi and Mykyta Yaroshenko}, year={2025}, eprint={2508.07662}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2508.07662}, } ```
knowledgator/gliclass-modern-base-v3.0
knowledgator
2025-08-12T14:23:32Z
2,479
3
null
[ "safetensors", "GLiClass", "text classification", "nli", "sentiment analysis", "text-classification", "dataset:BioMike/formal-logic-reasoning-gliclass-2k", "dataset:knowledgator/gliclass-v3-logic-dataset", "dataset:tau/commonsense_qa", "arxiv:2508.07662", "license:apache-2.0", "region:us" ]
text-classification
2025-07-14T12:32:17Z
--- license: apache-2.0 datasets: - BioMike/formal-logic-reasoning-gliclass-2k - knowledgator/gliclass-v3-logic-dataset - tau/commonsense_qa metrics: - f1 tags: - text classification - nli - sentiment analysis pipeline_tag: text-classification --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6405f62ba577649430be5124/I9RAQol7giilBHbbf2T7M.png) # GLiClass: Generalist and Lightweight Model for Sequence Classification This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path. It can be used for `topic classification`, `sentiment analysis`, and as a reranker in `RAG` pipelines. The model was trained on logical tasks to induce reasoning. LoRa adapters were used to fine-tune the model without destroying the previous knowledge. LoRA parameters: | | [gliclass‑modern‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-base-v3.0) | [gliclass‑modern‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-large-v3.0) | [gliclass‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-base-v3.0) | [gliclass‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-large-v3.0) | |----------------------|---------------------------------|----------------------------------|--------------------------------|---------------------------------| | LoRa r | 512 | 768 | 384 | 384 | | LoRa α | 1024 | 1536 | 768 | 768 | | focal loss α | 0.7 | 0.7 | 0.7 | 0.7 | | Target modules | "Wqkv", "Wo", "Wi", "linear_1", "linear_2" | "Wqkv", "Wo", "Wi", "linear_1", "linear_2" | "query_proj", "key_proj", "value_proj", "dense", "linear_1", "linear_2", mlp.0", "mlp.2", "mlp.4" | "query_proj", "key_proj", "value_proj", "dense", "linear_1", "linear_2", mlp.0", "mlp.2", "mlp.4" | GLiClass-V3 Models: Model name | Size | Params | Average Banchmark | Average Inference Speed (batch size = 1, a6000, examples/s) |----------|------|--------|-------------------|---------------------------------------------------------| [gliclass‑edge‑v3.0](https://huggingface.co/knowledgator/gliclass‑edge‑v3.0)| 131 MB | 32.7M | 0.4873 | 97.29 | [gliclass‑modern‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-base-v3.0)| 606 MB | 151M | 0.5571 | 54.46 | [gliclass‑modern‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-large-v3.0)| 1.6 GB | 399M | 0.6082 | 43.80 | [gliclass‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-base-v3.0)| 746 MB | 187M | 0.6556 | 51.61 | [gliclass‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-large-v3.0)| 1.75 GB | 439M | 0.7001 | 25.22 | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6405f62ba577649430be5124/MvfWyOdG824KWWB4Hy-dG.png) ### How to use: First of all, you need to install GLiClass library: ```bash pip install gliclass pip install -U transformers>=4.48.0 ``` Then you need to initialize a model and a pipeline: ```python from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-modern-base-v3.0") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-modern-base-v3.0", add_prefix_space=True) pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "One day I will see the world!" labels = ["travel", "dreams", "sport", "science", "politics"] results = pipeline(text, labels, threshold=0.5)[0] #because we have one text for result in results: print(result["label"], "=>", result["score"]) ``` If you want to use it for NLI type of tasks, we recommend representing your premise as a text and hypothesis as a label, you can put several hypotheses, but the model works best with a single input hypothesis. ```python # Initialize model and multi-label pipeline text = "The cat slept on the windowsill all afternoon" labels = ["The cat was awake and playing outside."] results = pipeline(text, labels, threshold=0.0)[0] print(results) ``` ### Benchmarks: Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting. GLiClass-V3: | Dataset | [gliclass‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-large-v3.0) | [gliclass‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-base-v3.0) | [gliclass‑modern‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-large-v3.0) | [gliclass‑modern‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-base-v3.0) | [gliclass‑edge‑v3.0](https://huggingface.co/knowledgator/gliclass-edge-v3.0) | |----------------------------|---------|---------|---------|---------|---------| | CR | 0.9398 | 0.9127 | 0.8952 | 0.8902 | 0.8215 | | sst2 | 0.9192 | 0.8959 | 0.9330 | 0.8959 | 0.8199 | | sst5 | 0.4606 | 0.3376 | 0.4619 | 0.2756 | 0.2823 | | 20_news_<br>groups | 0.5958 | 0.4759 | 0.3905 | 0.3433 | 0.2217 | | spam | 0.7584 | 0.6760 | 0.5813 | 0.6398 | 0.5623 | | financial_<br>phrasebank | 0.9000 | 0.8971 | 0.5929 | 0.4200 | 0.5004 | | imdb | 0.9366 | 0.9251 | 0.9402 | 0.9158 | 0.8485 | | ag_news | 0.7181 | 0.7279 | 0.7269 | 0.6663 | 0.6645 | | emotion | 0.4506 | 0.4447 | 0.4517 | 0.4254 | 0.3851 | | cap_sotu | 0.4589 | 0.4614 | 0.4072 | 0.3625 | 0.2583 | | rotten_<br>tomatoes | 0.8411 | 0.7943 | 0.7664 | 0.7070 | 0.7024 | | massive | 0.5649 | 0.5040 | 0.3905 | 0.3442 | 0.2414 | | banking | 0.5574 | 0.4698 | 0.3683 | 0.3561 | 0.0272 | | snips | 0.9692 | 0.9474 | 0.7707 | 0.5663 | 0.5257 | | **AVERAGE** | **0.7193** | **0.6764** | **0.6197** | **0.5577** | **0.4900** | Previous GLiClass models: | Dataset | [gliclass‑large‑v1.0‑lw](https://huggingface.co/knowledgator/gliclass-large-v1.0-lw) | [gliclass‑base‑v1.0‑lw](https://huggingface.co/knowledgator/gliclass-base-v1.0-lw) | [gliclass‑modern‑large‑v2.0](https://huggingface.co/knowledgator/gliclass-modern-large-v2.0) | [gliclass‑modern‑base‑v2.0](https://huggingface.co/knowledgator/gliclass-modern-base-v2.0) | |----------------------------|---------------------------------|--------------------------------|----------------------------------|---------------------------------| | CR | 0.9226 | 0.9097 | 0.9154 | 0.8977 | | sst2 | 0.9247 | 0.8987 | 0.9308 | 0.8524 | | sst5 | 0.2891 | 0.3779 | 0.2152 | 0.2346 | | 20_news_<br>groups | 0.4083 | 0.3953 | 0.3813 | 0.3857 | | spam | 0.3642 | 0.5126 | 0.6603 | 0.4608 | | financial_<br>phrasebank | 0.9044 | 0.8880 | 0.3152 | 0.3465 | | imdb | 0.9429 | 0.9351 | 0.9449 | 0.9188 | | ag_news | 0.7559 | 0.6985 | 0.6999 | 0.6836 | | emotion | 0.3951 | 0.3516 | 0.4341 | 0.3926 | | cap_sotu | 0.4749 | 0.4643 | 0.4095 | 0.3588 | | rotten_<br>tomatoes | 0.8807 | 0.8429 | 0.7386 | 0.6066 | | massive | 0.5606 | 0.4635 | 0.2394 | 0.3458 | | banking | 0.3317 | 0.4396 | 0.1355 | 0.2907 | | snips | 0.9707 | 0.9572 | 0.8468 | 0.7378 | | **AVERAGE** | **0.6518** | **0.6525** | **0.5619** | **0.5366** | Cross-Encoders: | Dataset | [deberta‑v3‑large‑zeroshot‑v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v2.0) | [deberta‑v3‑base‑zeroshot‑v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-base-zeroshot-v2.0) | [roberta‑large‑zeroshot‑v2.0‑c](https://huggingface.co/MoritzLaurer/roberta-large-zeroshot-v2.0-c) | [comprehend_it‑base](https://huggingface.co/knowledgator/comprehend_it-base) | |------------------------------------|--------|--------|--------|--------| | CR | 0.9134 | 0.9051 | 0.9141 | 0.8936 | | sst2 | 0.9272 | 0.9176 | 0.8573 | 0.9006 | | sst5 | 0.3861 | 0.3848 | 0.4159 | 0.4140 | | enron_<br>spam | 0.5970 | 0.4640 | 0.5040 | 0.3637 | | financial_<br>phrasebank | 0.5820 | 0.6690 | 0.4550 | 0.4695 | | imdb | 0.9180 | 0.8990 | 0.9040 | 0.4644 | | ag_news | 0.7710 | 0.7420 | 0.7450 | 0.6016 | | emotion | 0.4840 | 0.4950 | 0.4860 | 0.4165 | | cap_sotu | 0.5020 | 0.4770 | 0.5230 | 0.3823 | | rotten_<br>tomatoes | 0.8680 | 0.8600 | 0.8410 | 0.4728 | | massive | 0.5180 | 0.5200 | 0.5200 | 0.3314 | | banking77 | 0.5670 | 0.4460 | 0.2900 | 0.4972 | | snips | 0.8340 | 0.7477 | 0.5430 | 0.7227 | | **AVERAGE** | **0.6821** | **0.6559** | **0.6152** | **0.5331** | Inference Speed: Each model was tested on examples with 64, 256, and 512 tokens in text and 1, 2, 4, 8, 16, 32, 64, and 128 labels on an a6000 GPU. Then, scores were averaged across text lengths. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6405f62ba577649430be5124/YipDUMZuIqL4f8mWl7IHt.png) Model  Name / n samples per second per m labels | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | **Average** | |---------------------|---|---|---|---|----|----|----|-----|---------| | [gliclass‑edge‑v3.0](https://huggingface.co/knowledgator/gliclass-edge-v3.0) | 103.81 | 101.01 | 103.50 | 103.50 | 98.36 | 96.77 | 88.76 | 82.64 | **97.29** | | [gliclass‑modern‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-base-v3.0) | 56.00 | 55.46 | 54.95 | 55.66 | 54.73 | 54.95 | 53.48 | 50.34 | **54.46** | | [gliclass‑modern‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-modern-large-v3.0) | 46.30 | 46.82 | 46.66 | 46.30 | 43.93 | 44.73 | 42.77 | 32.89 | **43.80** | | [gliclass‑base‑v3.0](https://huggingface.co/knowledgator/gliclass-base-v3.0) | 49.42 | 50.25 | 40.05 | 57.69 | 57.14 | 56.39 | 55.97 | 45.94 | **51.61** | | [gliclass‑large‑v3.0](https://huggingface.co/knowledgator/gliclass-large-v3.0) | 19.05 | 26.86 | 23.64 | 29.27 | 29.04 | 28.79 | 27.55 | 17.60 | **25.22** | | [deberta‑v3‑base‑zeroshot‑v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-base-zeroshot-v2.0) | 24.55 | 30.40 | 15.38 | 7.62 | 3.77 | 1.87 | 0.94 | 0.47 | **10.63** | | [deberta‑v3‑large‑zeroshot‑v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v2.0) | 16.82 | 15.82 | 7.93 | 3.98 | 1.99 | 0.99 | 0.49 | 0.25 | **6.03** | | [roberta‑large‑zeroshot‑v2.0‑c](https://huggingface.co/MoritzLaurer/roberta-large-zeroshot-v2.0-c) | 50.42 | 39.27 | 19.95 | 9.95 | 5.01 | 2.48 | 1.25 | 0.64 | **16.12** | | [comprehend_it‑base](https://huggingface.co/knowledgator/comprehend_it-base) | 21.79 | 27.32 | 13.60 | 7.58 | 3.80 | 1.90 | 0.97 | 0.49 | **9.72** | ## Citation ```bibtex @misc{stepanov2025gliclassgeneralistlightweightmodel, title={GLiClass: Generalist Lightweight Model for Sequence Classification Tasks}, author={Ihor Stepanov and Mykhailo Shtopko and Dmytro Vodianytskyi and Oleksandr Lukashov and Alexander Yavorskyi and Mykyta Yaroshenko}, year={2025}, eprint={2508.07662}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2508.07662}, } ```
tungkhau/q-FrozenLake-v1-4x4-noSlippery
tungkhau
2025-08-12T14:23:18Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-08-12T14:23:15Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="tungkhau/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
koloni/blockassist-bc-deadly_graceful_stingray_1755006891
koloni
2025-08-12T14:22:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T14:22:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Spark-TTS_KN_V1.1-GGUF
mradermacher
2025-08-12T14:22:06Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Balaji-1904/Spark-TTS_KN_V1.1", "base_model:quantized:Balaji-1904/Spark-TTS_KN_V1.1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-12T14:19:46Z
--- base_model: Balaji-1904/Spark-TTS_KN_V1.1 language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Balaji-1904/Spark-TTS_KN_V1.1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Spark-TTS_KN_V1.1-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Spark-TTS_KN_V1.1-GGUF/resolve/main/Spark-TTS_KN_V1.1.Q3_K_S.gguf) | Q3_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Spark-TTS_KN_V1.1-GGUF/resolve/main/Spark-TTS_KN_V1.1.Q2_K.gguf) | Q2_K | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Spark-TTS_KN_V1.1-GGUF/resolve/main/Spark-TTS_KN_V1.1.IQ4_XS.gguf) | IQ4_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Spark-TTS_KN_V1.1-GGUF/resolve/main/Spark-TTS_KN_V1.1.Q3_K_M.gguf) | Q3_K_M | 0.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Spark-TTS_KN_V1.1-GGUF/resolve/main/Spark-TTS_KN_V1.1.Q3_K_L.gguf) | Q3_K_L | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Spark-TTS_KN_V1.1-GGUF/resolve/main/Spark-TTS_KN_V1.1.Q4_K_S.gguf) | Q4_K_S | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Spark-TTS_KN_V1.1-GGUF/resolve/main/Spark-TTS_KN_V1.1.Q4_K_M.gguf) | Q4_K_M | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Spark-TTS_KN_V1.1-GGUF/resolve/main/Spark-TTS_KN_V1.1.Q5_K_S.gguf) | Q5_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Spark-TTS_KN_V1.1-GGUF/resolve/main/Spark-TTS_KN_V1.1.Q5_K_M.gguf) | Q5_K_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Spark-TTS_KN_V1.1-GGUF/resolve/main/Spark-TTS_KN_V1.1.Q6_K.gguf) | Q6_K | 0.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Spark-TTS_KN_V1.1-GGUF/resolve/main/Spark-TTS_KN_V1.1.Q8_0.gguf) | Q8_0 | 0.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Spark-TTS_KN_V1.1-GGUF/resolve/main/Spark-TTS_KN_V1.1.f16.gguf) | f16 | 1.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
giovannidemuri/llama3b-llamab8-er-afg-v14-seed2-french-codealpaca-fpt
giovannidemuri
2025-08-12T14:21:32Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-3.2-3B", "base_model:finetune:meta-llama/Llama-3.2-3B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T13:52:11Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-3B tags: - generated_from_trainer model-index: - name: llama3b-llamab8-er-afg-v14-seed2-french-codealpaca-fpt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3b-llamab8-er-afg-v14-seed2-french-codealpaca-fpt This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cu128 - Datasets 3.6.0 - Tokenizers 0.21.2
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755007398
Sayemahsjn
2025-08-12T14:21:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T14:21:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rmtlabs/s-ai-azure-adapter
rmtlabs
2025-08-12T14:21:12Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:mistralai/Mistral-Small-24B-Instruct-2501", "lora", "transformers", "text-generation", "conversational", "arxiv:1910.09700", "base_model:mistralai/Mistral-Small-24B-Instruct-2501", "region:us" ]
text-generation
2025-08-12T14:21:04Z
--- base_model: mistralai/Mistral-Small-24B-Instruct-2501 library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:mistralai/Mistral-Small-24B-Instruct-2501 - lora - transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
afroneko/blockassist-bc-yawning_melodic_starfish_1755008254
afroneko
2025-08-12T14:21:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning melodic starfish", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T14:20:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning melodic starfish --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/TalkT2-0.1b-GGUF
mradermacher
2025-08-12T14:20:11Z
0
0
transformers
[ "transformers", "gguf", "code", "conversational", "philosophical", "poetic", "experimental", "small", "best", "chatbot", "en", "base_model:Notbobjoe/TalkT2-0.1b", "base_model:quantized:Notbobjoe/TalkT2-0.1b", "license:mit", "endpoints_compatible", "region:us" ]
null
2025-08-12T14:19:17Z
--- base_model: Notbobjoe/TalkT2-0.1b language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - code - conversational - transformers - philosophical - poetic - experimental - small - best - chatbot --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Notbobjoe/TalkT2-0.1b <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#TalkT2-0.1b-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/TalkT2-0.1b-GGUF/resolve/main/TalkT2-0.1b.Q2_K.gguf) | Q2_K | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/TalkT2-0.1b-GGUF/resolve/main/TalkT2-0.1b.Q3_K_S.gguf) | Q3_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/TalkT2-0.1b-GGUF/resolve/main/TalkT2-0.1b.Q3_K_M.gguf) | Q3_K_M | 0.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/TalkT2-0.1b-GGUF/resolve/main/TalkT2-0.1b.IQ4_XS.gguf) | IQ4_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/TalkT2-0.1b-GGUF/resolve/main/TalkT2-0.1b.Q4_K_S.gguf) | Q4_K_S | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TalkT2-0.1b-GGUF/resolve/main/TalkT2-0.1b.Q3_K_L.gguf) | Q3_K_L | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/TalkT2-0.1b-GGUF/resolve/main/TalkT2-0.1b.Q4_K_M.gguf) | Q4_K_M | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TalkT2-0.1b-GGUF/resolve/main/TalkT2-0.1b.Q5_K_S.gguf) | Q5_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/TalkT2-0.1b-GGUF/resolve/main/TalkT2-0.1b.Q5_K_M.gguf) | Q5_K_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/TalkT2-0.1b-GGUF/resolve/main/TalkT2-0.1b.Q6_K.gguf) | Q6_K | 0.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/TalkT2-0.1b-GGUF/resolve/main/TalkT2-0.1b.Q8_0.gguf) | Q8_0 | 0.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/TalkT2-0.1b-GGUF/resolve/main/TalkT2-0.1b.f16.gguf) | f16 | 0.4 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
jssaluja/fb-mms-1b-cleaned-jssaluja_rajinder_singh-epochs-12-test-datasets-10-20250812_071659
jssaluja
2025-08-12T14:19:44Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-12T14:19:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Atotti/Google-USM
Atotti
2025-08-12T14:19:35Z
683
15
transformers
[ "transformers", "safetensors", "gemma3n_audio", "feature-extraction", "arxiv:2303.01037", "license:gemma", "endpoints_compatible", "region:us" ]
feature-extraction
2025-07-02T23:55:53Z
--- library_name: transformers license: gemma --- # Google USM: Extracted Gemma-3n Audio Encoder (USM) > [!Note] > このモデルの実態は不明確です。[Introducing Gemma 3n: The developer guide](https://developers.googleblog.com/en/introducing-gemma-3n-developer-guide/#:~:text=Gemma%203n%20uses%20an%20advanced%20audio%20encoder%20based%20on%20the%20Universal%20Speech%20Model%20(USM).)には、 > USMに基づくエンコーダーが使用されていると記述されていますが、USMの論文とこのモデルにはいくつかの異なる点が存在します。 > このモデルは0.6Bですが、USMの論文の0.6Bモデルとは層の数が異なります。 > このモデルは Gemma 3n の AudioEncoder であり、本来の USM とは異なる可能性があります。 ## Model Description このモデルは、Googleのマルチモーダルモデル [google/gemma-3n-e2b-it](https://huggingface.co/google/gemma-3n-e2b-it) から、音声エンコーダー部分 (`audio_tower`) のみを抽出したものです。 bf16版:https://huggingface.co/Atotti/google-usm-bf16 アーキテクチャは、論文 [Universal Speech Model](https://arxiv.org/abs/2303.01037) に基づくGemma3nAudioEncoderです。 このエンコーダーは、音声波形データを受け取り、その内容を表現する高次元の特徴量(エンコーディング)のシーケンスに変換する役割を果たします。 ## Intended Use このモデルは単体で音声認識(文字起こし)などを行うものではなく、より大きなモデルのコンポーネントとして使用されることを想定しています。 * マルチモーダルモデルの音声入力部として: 生成AIに音声情報を与えるための特徴量を抽出します。 * 音声分類: このモデルの出力に分類ヘッドを追加して、特定の音声を分類するタスクでファインチューニングします。 ## How to Use ### dependencies ``` pip install transformers==4.53.0 ``` ```python import torch import soundfile as sf from transformers import Gemma3nAudioEncoder, Gemma3nAudioFeatureExtractor encoder_id = "Atotti/google-usm" source_model_id = "google/gemma-3n-e2b-it" audio_encoder = Gemma3nAudioEncoder.from_pretrained(encoder_id) feature_extractor = Gemma3nAudioFeatureExtractor.from_pretrained(source_model_id) device = "cuda" if torch.cuda.is_available() else "cpu" audio_encoder.to(device) audio_encoder.eval() waveform, sampling_rate = sf.read("/path/to/your_audio_file.wav") inputs = feature_extractor( [waveform], sampling_rate=sampling_rate, return_tensors="pt" ) audio_mel = inputs["input_features"].to(device) audio_mel_mask = (inputs["input_features_mask"] == 0).to(device) with torch.inference_mode(): audio_encodings, output_mask = audio_encoder( audio_mel=audio_mel, audio_mel_mask=audio_mel_mask ) print(audio_encodings.shape) # torch.Size([1, 18, 1536]) print(audio_encodings[0, :5, :10]) # tensor([[ 0.0014, -0.0044, 0.0003, 0.0084, -0.0076, -0.0194, 0.0071, 0.0160, # 0.0137, 0.0146], # [-0.0153, 0.0051, 0.0111, -0.0134, -0.0032, -0.0134, 0.0112, -0.0163, # 0.0050, 0.0036], # [ 0.0003, -0.0022, 0.0164, -0.0090, -0.0033, -0.0043, 0.0030, -0.0042, # -0.0060, 0.0066], # [-0.0006, -0.0194, -0.0006, -0.0097, -0.0049, -0.0132, 0.0012, 0.0175, # -0.0242, -0.0091], # [ 0.0127, 0.0122, 0.0125, 0.0277, 0.0116, 0.0152, 0.0142, -0.0099, # -0.0080, -0.0233]], device='cuda:0') ``` ## Model Architecture ``` Gemma3nAudioEncoder( (subsample_conv_projection): Gemma3nAudioSubSampleConvProjection( (conv_0): Gemma3nAudioSSCPConvBlock( (conv): Conv2d(1, 128, kernel_size=(3, 3), stride=(2, 2), bias=False) (norm): Gemma3nAudioCumulativeGroupNorm() (activation): ReLU() ) (conv_1): Gemma3nAudioSSCPConvBlock( (conv): Conv2d(128, 32, kernel_size=(3, 3), stride=(2, 2), bias=False) (norm): Gemma3nAudioCumulativeGroupNorm() (activation): ReLU() ) (input_proj_linear): Linear(in_features=1024, out_features=1536, bias=False) ) (conformer): ModuleList( (0-11): 12 x Gemma3nAudioConformerBlock( (ffw_layer_start): Gemma3nAudioConformerFeedForward( (pre_layer_norm): Gemma3nRMSNorm((1536,), eps=1e-06) (ffw_layer_1): Linear(in_features=1536, out_features=6144, bias=False) (ffw_layer_2): Linear(in_features=6144, out_features=1536, bias=False) (post_layer_norm): Gemma3nRMSNorm((1536,), eps=1e-06) ) (attention): Gemma3nAudioConformerAttention( (pre_attn_norm): Gemma3nRMSNorm((1536,), eps=1e-06) (attn): Gemma3nAudioAttention( (relative_position_embedding): Gemma3nAudioRelativePositionEmbedding( (pos_proj): Linear(in_features=1536, out_features=1536, bias=False) ) (q_proj): Linear(in_features=1536, out_features=1536, bias=False) (k_proj): Linear(in_features=1536, out_features=1536, bias=False) (v_proj): Linear(in_features=1536, out_features=1536, bias=False) ) (post): Linear(in_features=1536, out_features=1536, bias=False) (post_norm): Gemma3nRMSNorm((1536,), eps=1e-06) ) (lconv1d): Gemma3nAudioConformerLightConv1d( (pre_layer_norm): Gemma3nRMSNorm((1536,), eps=1e-06) (linear_start): Linear(in_features=1536, out_features=3072, bias=False) (depthwise_conv1d): Conv1d(1536, 1536, kernel_size=(5,), stride=(1,), groups=1536, bias=False) (conv_norm): Gemma3nRMSNorm((1536,), eps=1e-06) (linear_end): Linear(in_features=1536, out_features=1536, bias=False) ) (ffw_layer_end): Gemma3nAudioConformerFeedForward( (pre_layer_norm): Gemma3nRMSNorm((1536,), eps=1e-06) (ffw_layer_1): Linear(in_features=1536, out_features=6144, bias=False) (ffw_layer_2): Linear(in_features=6144, out_features=1536, bias=False) (post_layer_norm): Gemma3nRMSNorm((1536,), eps=1e-06) ) (norm): Gemma3nRMSNorm((1536,), eps=1e-06) ) ) ) ```
pimplefeet/omega_n7mePND
pimplefeet
2025-08-12T14:19:32Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-12T14:19:32Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
tootshine/omega_61a8qdG
tootshine
2025-08-12T14:19:31Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-12T14:19:31Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
pimplefeet/omega_xg0OHQr
pimplefeet
2025-08-12T14:19:30Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-12T14:19:30Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
tootshine/omega_Gb4Y1xk
tootshine
2025-08-12T14:19:27Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-12T14:19:27Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
pimplefeet/omega_kyo8HeP
pimplefeet
2025-08-12T14:19:25Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-12T14:19:25Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
pimplefeet/omega_5Nc9q2o
pimplefeet
2025-08-12T14:19:23Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-12T14:19:21Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
northhycao/grasp_cubes_topside_diffusion
northhycao
2025-08-12T14:18:45Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "diffusion", "dataset:northhycao/grasp_cubes_topside_1", "arxiv:2303.04137", "license:apache-2.0", "region:us" ]
robotics
2025-08-12T13:52:31Z
--- datasets: northhycao/grasp_cubes_topside_1 library_name: lerobot license: apache-2.0 model_name: diffusion pipeline_tag: robotics tags: - robotics - lerobot - diffusion --- # Model Card for diffusion <!-- Provide a quick summary of what the model is/does. --> [Diffusion Policy](https://huggingface.co/papers/2303.04137) treats visuomotor control as a generative diffusion process, producing smooth, multi-step action trajectories that excel at contact-rich manipulation. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755006517
calegpedia
2025-08-12T14:17:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T14:17:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).