modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-06 06:27:01
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 542
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-06 06:26:44
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
bah63843/blockassist-bc-plump_fast_antelope_1757032644
|
bah63843
| 2025-09-05T00:38:25Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"plump fast antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T00:38:11Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- plump fast antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
klmdr22/blockassist-bc-wild_loud_newt_1757032625
|
klmdr22
| 2025-09-05T00:37:47Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wild loud newt",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T00:37:43Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wild loud newt
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Stasonelison/blockassist-bc-howling_powerful_aardvark_1757032388
|
Stasonelison
| 2025-09-05T00:33:50Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"howling powerful aardvark",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T00:33:39Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- howling powerful aardvark
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
HouraMor/wh-loraft-lr5e5-dtstf5-adm-ga1ba16-st15k-v2-evalstp10-pat20-trainvalch
|
HouraMor
| 2025-09-05T00:33:35Z | 0 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:HouraMor/wh-ft-lr5e6-dtstf5-adm-ga1ba16-st15k-v2-evalstp500-pat5",
"base_model:adapter:HouraMor/wh-ft-lr5e6-dtstf5-adm-ga1ba16-st15k-v2-evalstp500-pat5",
"license:apache-2.0",
"region:us"
] | null | 2025-09-04T21:32:09Z |
---
library_name: peft
license: apache-2.0
base_model: HouraMor/wh-ft-lr5e6-dtstf5-adm-ga1ba16-st15k-v2-evalstp500-pat5
tags:
- generated_from_trainer
model-index:
- name: wh-loraft-lr5e5-dtstf5-adm-ga1ba16-st15k-v2-evalstp10-pat20-trainvalch
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wh-loraft-lr5e5-dtstf5-adm-ga1ba16-st15k-v2-evalstp10-pat20-trainvalch
This model is a fine-tuned version of [HouraMor/wh-ft-lr5e6-dtstf5-adm-ga1ba16-st15k-v2-evalstp500-pat5](https://huggingface.co/HouraMor/wh-ft-lr5e6-dtstf5-adm-ga1ba16-st15k-v2-evalstp500-pat5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5830
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.3707 | 0.0201 | 10 | 0.5668 |
| 0.3097 | 0.0402 | 20 | 0.5668 |
| 0.2065 | 0.0602 | 30 | 0.5666 |
| 0.3925 | 0.0803 | 40 | 0.5666 |
| 0.3026 | 0.1004 | 50 | 0.5664 |
| 0.272 | 0.1205 | 60 | 0.5668 |
| 0.2404 | 0.1406 | 70 | 0.5668 |
| 0.3042 | 0.1606 | 80 | 0.5665 |
| 0.2961 | 0.1807 | 90 | 0.5670 |
| 0.3403 | 0.2008 | 100 | 0.5671 |
| 0.2824 | 0.2209 | 110 | 0.5677 |
| 0.2276 | 0.2410 | 120 | 0.5690 |
| 0.2789 | 0.2610 | 130 | 0.5700 |
| 0.2466 | 0.2811 | 140 | 0.5726 |
| 0.3524 | 0.3012 | 150 | 0.5742 |
| 0.3732 | 0.3213 | 160 | 0.5727 |
| 0.2749 | 0.3414 | 170 | 0.5725 |
| 0.3158 | 0.3614 | 180 | 0.5728 |
| 0.164 | 0.3815 | 190 | 0.5733 |
| 0.2836 | 0.4016 | 200 | 0.5752 |
| 0.2513 | 0.4217 | 210 | 0.5772 |
| 0.2227 | 0.4418 | 220 | 0.5790 |
| 0.2556 | 0.4618 | 230 | 0.5809 |
| 0.1861 | 0.4819 | 240 | 0.5831 |
| 0.2953 | 0.5020 | 250 | 0.5830 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.52.3
- Pytorch 2.7.0+cu118
- Datasets 3.6.0
- Tokenizers 0.21.1
|
Kaori1707/gemma-3-1b-it-r8-linear-4bit
|
Kaori1707
| 2025-09-05T00:28:51Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:google/gemma-3-1b-it",
"base_model:finetune:google/gemma-3-1b-it",
"endpoints_compatible",
"region:us"
] | null | 2025-09-04T08:58:44Z |
---
base_model: google/gemma-3-1b-it
library_name: transformers
model_name: gemma-3-1b-it-r8-linear-4bit
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for gemma-3-1b-it-r8-linear-4bit
This model is a fine-tuned version of [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Kaori1707/gemma-3-1b-it-r8-linear-4bit", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.19.1
- Transformers: 4.52.4
- Pytorch: 2.6.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
felixmayor/pi0_golf_ball_lambda
|
felixmayor
| 2025-09-05T00:25:48Z | 0 | 0 |
lerobot
|
[
"lerobot",
"safetensors",
"pi0",
"robotics",
"dataset:felixmayor/golf_ball_20250902_part2",
"arxiv:2410.24164",
"license:apache-2.0",
"region:us"
] |
robotics
| 2025-09-05T00:24:44Z |
---
datasets: felixmayor/golf_ball_20250902_part2
library_name: lerobot
license: apache-2.0
model_name: pi0
pipeline_tag: robotics
tags:
- lerobot
- pi0
- robotics
---
# Model Card for pi0
<!-- Provide a quick summary of what the model is/does. -->
[Pi0](https://huggingface.co/papers/2410.24164) is a generalist vision-language-action transformer that converts multimodal observations and text instructions into robot actions for zero-shot task transfer.
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
---
## How to Get Started with the Model
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:
### Train from scratch
```bash
python -m lerobot.scripts.train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
```
_Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
### Evaluate the policy/run inference
```bash
python -m lerobot.record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
```
Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
---
## Model Details
- **License:** apache-2.0
|
goptouy/blockassist-bc-stinky_stinky_cassowary_1757031706
|
goptouy
| 2025-09-05T00:22:08Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stinky stinky cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T00:21:47Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stinky stinky cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1757031126
|
liukevin666
| 2025-09-05T00:13:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T00:13:04Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
raihannabiil/blockassist-bc-humming_rugged_viper_1757028924
|
raihannabiil
| 2025-09-05T00:12:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"humming rugged viper",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T00:12:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- humming rugged viper
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
NahedDom/blockassist-bc-flapping_stocky_leopard_1757028645
|
NahedDom
| 2025-09-05T00:04:31Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"flapping stocky leopard",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T00:04:26Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- flapping stocky leopard
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1757030469
|
liukevin666
| 2025-09-05T00:02:24Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T00:02:04Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
GroomerG/blockassist-bc-vicious_pawing_badger_1757028940
|
GroomerG
| 2025-09-05T00:00:30Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"vicious pawing badger",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T00:00:26Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- vicious pawing badger
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mixedbread-ai/mxbai-ettin-32m-pretrained-st
|
mixedbread-ai
| 2025-09-04T23:49:04Z | 0 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"safetensors",
"modernbert",
"sentence-similarity",
"feature-extraction",
"dense",
"base_model:mixedbread-ai/mxbai-ettin-32m-pretrained",
"base_model:finetune:mixedbread-ai/mxbai-ettin-32m-pretrained",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2025-09-04T23:49:01Z |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
base_model: mixedbread-ai/mxbai-ettin-32m-pretrained
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on mixedbread-ai/mxbai-ettin-32m-pretrained
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [mixedbread-ai/mxbai-ettin-32m-pretrained](https://huggingface.co/mixedbread-ai/mxbai-ettin-32m-pretrained). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [mixedbread-ai/mxbai-ettin-32m-pretrained](https://huggingface.co/mixedbread-ai/mxbai-ettin-32m-pretrained) <!-- at revision 3e1d0757d6254e615597cdcc0114285086ae5995 -->
- **Maximum Sequence Length:** 7999 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 7999, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("mixedbread-ai/mxbai-ettin-32m-pretrained-st")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.3843, 0.1600],
# [0.3843, 1.0000, 0.1203],
# [0.1600, 0.1203, 1.0000]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Framework Versions
- Python: 3.10.18
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
## Citation
### BibTeX
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->
|
mixedbread-ai/mxbai-ettin-32m-pretrained
|
mixedbread-ai
| 2025-09-04T23:48:56Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"modernbert",
"feature-extraction",
"arxiv:1910.09700",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2025-09-04T23:48:51Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
pidbu/blockassist-bc-whistling_alert_shrew_1757029266
|
pidbu
| 2025-09-04T23:42:27Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"whistling alert shrew",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T23:41:51Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- whistling alert shrew
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
fakir22/blockassist-bc-flapping_peaceful_caterpillar_1757028740
|
fakir22
| 2025-09-04T23:33:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"flapping peaceful caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T23:32:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- flapping peaceful caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/Mistral-7B-Instruct-v0.2-abliterated-GGUF
|
mradermacher
| 2025-09-04T23:31:23Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:ShadowCypher/Mistral-7B-Instruct-v0.2-abliterated",
"base_model:quantized:ShadowCypher/Mistral-7B-Instruct-v0.2-abliterated",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-09-04T22:41:17Z |
---
base_model: ShadowCypher/Mistral-7B-Instruct-v0.2-abliterated
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags: []
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/ShadowCypher/Mistral-7B-Instruct-v0.2-abliterated
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Mistral-7B-Instruct-v0.2-abliterated-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-v0.2-abliterated-GGUF/resolve/main/Mistral-7B-Instruct-v0.2-abliterated.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-v0.2-abliterated-GGUF/resolve/main/Mistral-7B-Instruct-v0.2-abliterated.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-v0.2-abliterated-GGUF/resolve/main/Mistral-7B-Instruct-v0.2-abliterated.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-v0.2-abliterated-GGUF/resolve/main/Mistral-7B-Instruct-v0.2-abliterated.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-v0.2-abliterated-GGUF/resolve/main/Mistral-7B-Instruct-v0.2-abliterated.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-v0.2-abliterated-GGUF/resolve/main/Mistral-7B-Instruct-v0.2-abliterated.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-v0.2-abliterated-GGUF/resolve/main/Mistral-7B-Instruct-v0.2-abliterated.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-v0.2-abliterated-GGUF/resolve/main/Mistral-7B-Instruct-v0.2-abliterated.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-v0.2-abliterated-GGUF/resolve/main/Mistral-7B-Instruct-v0.2-abliterated.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-v0.2-abliterated-GGUF/resolve/main/Mistral-7B-Instruct-v0.2-abliterated.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-v0.2-abliterated-GGUF/resolve/main/Mistral-7B-Instruct-v0.2-abliterated.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Mistral-7B-Instruct-v0.2-abliterated-GGUF/resolve/main/Mistral-7B-Instruct-v0.2-abliterated.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
GroomerG/blockassist-bc-vicious_pawing_badger_1757027074
|
GroomerG
| 2025-09-04T23:31:14Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"vicious pawing badger",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T23:31:10Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- vicious pawing badger
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
raihannabiil/blockassist-bc-humming_rugged_viper_1757026059
|
raihannabiil
| 2025-09-04T23:27:11Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"humming rugged viper",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T23:27:04Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- humming rugged viper
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
calegpedia/blockassist-bc-stealthy_slimy_rooster_1757026358
|
calegpedia
| 2025-09-04T23:22:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stealthy slimy rooster",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T23:22:01Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stealthy slimy rooster
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
jqwrxcv/blockassist-bc-ravenous_vocal_barracuda_1757027909
|
jqwrxcv
| 2025-09-04T23:18:45Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"ravenous vocal barracuda",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T23:18:29Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- ravenous vocal barracuda
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
bah63843/blockassist-bc-plump_fast_antelope_1757027714
|
bah63843
| 2025-09-04T23:16:02Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"plump fast antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T23:15:54Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- plump fast antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Reihaneh/wav2vec2_fi_et_LID_50_epochs_10
|
Reihaneh
| 2025-09-04T23:12:40Z | 0 | 0 |
transformers
|
[
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-09-04T23:12:39Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
jqwrxcv/blockassist-bc-sedate_whiskered_crow_1757027356
|
jqwrxcv
| 2025-09-04T23:09:32Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"sedate whiskered crow",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T23:09:17Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- sedate whiskered crow
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
fakir22/blockassist-bc-flapping_peaceful_caterpillar_1757027248
|
fakir22
| 2025-09-04T23:08:08Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"flapping peaceful caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T23:08:05Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- flapping peaceful caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
acidjp/blockassist-bc-pesty_extinct_prawn_1757024592
|
acidjp
| 2025-09-04T23:03:53Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"pesty extinct prawn",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T23:03:49Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- pesty extinct prawn
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
jqwrxcv/blockassist-bc-foxy_aquatic_baboon_1757026983
|
jqwrxcv
| 2025-09-04T23:03:20Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"foxy aquatic baboon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T23:03:03Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- foxy aquatic baboon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ntnu-smil/phi4-scorer-all-in-one
|
ntnu-smil
| 2025-09-04T23:02:05Z | 0 | 0 | null |
[
"safetensors",
"model_hub_mixin",
"pytorch_model_hub_mixin",
"region:us"
] | null | 2025-09-04T23:00:28Z |
---
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
---
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
- Code: [More Information Needed]
- Paper: [More Information Needed]
- Docs: [More Information Needed]
|
mradermacher/Llama-2-13b-sft-gen-dpo-10k-GGUF
|
mradermacher
| 2025-09-04T23:00:34Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"generated_from_trainer",
"trl",
"dpo",
"en",
"base_model:AmberYifan/Llama-2-13b-sft-gen-dpo-10k",
"base_model:quantized:AmberYifan/Llama-2-13b-sft-gen-dpo-10k",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-09-04T21:20:10Z |
---
base_model: AmberYifan/Llama-2-13b-sft-gen-dpo-10k
language:
- en
library_name: transformers
model_name: Llama-2-13b-sft-gen-dpo-10k
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- generated_from_trainer
- trl
- dpo
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/AmberYifan/Llama-2-13b-sft-gen-dpo-10k
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Llama-2-13b-sft-gen-dpo-10k-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-gen-dpo-10k-GGUF/resolve/main/Llama-2-13b-sft-gen-dpo-10k.Q2_K.gguf) | Q2_K | 5.0 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-gen-dpo-10k-GGUF/resolve/main/Llama-2-13b-sft-gen-dpo-10k.Q3_K_S.gguf) | Q3_K_S | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-gen-dpo-10k-GGUF/resolve/main/Llama-2-13b-sft-gen-dpo-10k.Q3_K_M.gguf) | Q3_K_M | 6.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-gen-dpo-10k-GGUF/resolve/main/Llama-2-13b-sft-gen-dpo-10k.Q3_K_L.gguf) | Q3_K_L | 7.0 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-gen-dpo-10k-GGUF/resolve/main/Llama-2-13b-sft-gen-dpo-10k.IQ4_XS.gguf) | IQ4_XS | 7.1 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-gen-dpo-10k-GGUF/resolve/main/Llama-2-13b-sft-gen-dpo-10k.Q4_K_S.gguf) | Q4_K_S | 7.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-gen-dpo-10k-GGUF/resolve/main/Llama-2-13b-sft-gen-dpo-10k.Q4_K_M.gguf) | Q4_K_M | 8.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-gen-dpo-10k-GGUF/resolve/main/Llama-2-13b-sft-gen-dpo-10k.Q5_K_S.gguf) | Q5_K_S | 9.1 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-gen-dpo-10k-GGUF/resolve/main/Llama-2-13b-sft-gen-dpo-10k.Q5_K_M.gguf) | Q5_K_M | 9.3 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-gen-dpo-10k-GGUF/resolve/main/Llama-2-13b-sft-gen-dpo-10k.Q6_K.gguf) | Q6_K | 10.8 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-gen-dpo-10k-GGUF/resolve/main/Llama-2-13b-sft-gen-dpo-10k.Q8_0.gguf) | Q8_0 | 13.9 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
mradermacher/Jan-v1-edge-i1-GGUF
|
mradermacher
| 2025-09-04T23:00:34Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:janhq/Jan-v1-edge",
"base_model:quantized:janhq/Jan-v1-edge",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-09-04T21:44:44Z |
---
base_model: janhq/Jan-v1-edge
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
<!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
weighted/imatrix quants of https://huggingface.co/janhq/Jan-v1-edge
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Jan-v1-edge-i1-GGUF).***
static quants are available at https://huggingface.co/mradermacher/Jan-v1-edge-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-IQ1_S.gguf) | i1-IQ1_S | 0.6 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-IQ1_M.gguf) | i1-IQ1_M | 0.6 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.7 | |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.7 | |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-IQ2_S.gguf) | i1-IQ2_S | 0.8 | |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-IQ2_M.gguf) | i1-IQ2_M | 0.8 | |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.8 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-Q2_K.gguf) | i1-Q2_K | 0.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.9 | |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-IQ3_S.gguf) | i1-IQ3_S | 1.0 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.0 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-IQ3_M.gguf) | i1-IQ3_M | 1.0 | |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.0 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.1 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.1 | |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-IQ4_NL.gguf) | i1-IQ4_NL | 1.2 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-Q4_0.gguf) | i1-Q4_0 | 1.2 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-Q4_K_S.gguf) | i1-Q4_K_S | 1.2 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-Q4_K_M.gguf) | i1-Q4_K_M | 1.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-Q4_1.gguf) | i1-Q4_1 | 1.2 | |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-Q5_K_S.gguf) | i1-Q5_K_S | 1.3 | |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-Q5_K_M.gguf) | i1-Q5_K_M | 1.4 | |
| [GGUF](https://huggingface.co/mradermacher/Jan-v1-edge-i1-GGUF/resolve/main/Jan-v1-edge.i1-Q6_K.gguf) | i1-Q6_K | 1.5 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
Miracle-man/blockassist-bc-singing_lithe_koala_1757024703
|
Miracle-man
| 2025-09-04T23:00:14Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"singing lithe koala",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T23:00:10Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- singing lithe koala
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
tatsuyaaaaaaa/Qwen2.5-VL-7B-Instruct-gguf
|
tatsuyaaaaaaa
| 2025-09-04T22:55:55Z | 86 | 0 | null |
[
"gguf",
"ja",
"en",
"base_model:Qwen/Qwen2.5-VL-7B-Instruct",
"base_model:quantized:Qwen/Qwen2.5-VL-7B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-09-03T02:13:24Z |
---
license: apache-2.0
language:
- ja
- en
base_model:
- Qwen/Qwen2.5-VL-7B-Instruct
---
Qwenの[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)のgguf変換したものです。
|
vengky/blockassist-bc-wild_gentle_manatee_1757023257
|
vengky
| 2025-09-04T22:36:05Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wild gentle manatee",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T22:35:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wild gentle manatee
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
fakir22/blockassist-bc-flapping_peaceful_caterpillar_1757024920
|
fakir22
| 2025-09-04T22:29:25Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"flapping peaceful caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T22:29:17Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- flapping peaceful caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/MneumonicPetal-20B-GGUF
|
mradermacher
| 2025-09-04T22:29:15Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:Elfrino/MneumonicPetal-20B",
"base_model:quantized:Elfrino/MneumonicPetal-20B",
"endpoints_compatible",
"region:us"
] | null | 2025-09-04T20:24:16Z |
---
base_model: Elfrino/MneumonicPetal-20B
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/Elfrino/MneumonicPetal-20B
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#MneumonicPetal-20B-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/MneumonicPetal-20B-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/MneumonicPetal-20B-GGUF/resolve/main/MneumonicPetal-20B.Q2_K.gguf) | Q2_K | 7.5 | |
| [GGUF](https://huggingface.co/mradermacher/MneumonicPetal-20B-GGUF/resolve/main/MneumonicPetal-20B.Q3_K_S.gguf) | Q3_K_S | 8.8 | |
| [GGUF](https://huggingface.co/mradermacher/MneumonicPetal-20B-GGUF/resolve/main/MneumonicPetal-20B.Q3_K_M.gguf) | Q3_K_M | 9.8 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/MneumonicPetal-20B-GGUF/resolve/main/MneumonicPetal-20B.Q3_K_L.gguf) | Q3_K_L | 10.7 | |
| [GGUF](https://huggingface.co/mradermacher/MneumonicPetal-20B-GGUF/resolve/main/MneumonicPetal-20B.IQ4_XS.gguf) | IQ4_XS | 10.8 | |
| [GGUF](https://huggingface.co/mradermacher/MneumonicPetal-20B-GGUF/resolve/main/MneumonicPetal-20B.Q4_K_S.gguf) | Q4_K_S | 11.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/MneumonicPetal-20B-GGUF/resolve/main/MneumonicPetal-20B.Q4_K_M.gguf) | Q4_K_M | 12.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/MneumonicPetal-20B-GGUF/resolve/main/MneumonicPetal-20B.Q5_K_S.gguf) | Q5_K_S | 13.9 | |
| [GGUF](https://huggingface.co/mradermacher/MneumonicPetal-20B-GGUF/resolve/main/MneumonicPetal-20B.Q5_K_M.gguf) | Q5_K_M | 14.3 | |
| [GGUF](https://huggingface.co/mradermacher/MneumonicPetal-20B-GGUF/resolve/main/MneumonicPetal-20B.Q6_K.gguf) | Q6_K | 16.5 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/MneumonicPetal-20B-GGUF/resolve/main/MneumonicPetal-20B.Q8_0.gguf) | Q8_0 | 21.3 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
bah63843/blockassist-bc-plump_fast_antelope_1757024773
|
bah63843
| 2025-09-04T22:27:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"plump fast antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T22:26:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- plump fast antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
6S-bobby/Llama-2-7b-chat-hf-distortion-6-casual-v1
|
6S-bobby
| 2025-09-04T22:24:58Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-09-04T22:24:52Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1757024552
|
liukevin666
| 2025-09-04T22:23:36Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T22:23:28Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
bah63843/blockassist-bc-plump_fast_antelope_1757024518
|
bah63843
| 2025-09-04T22:22:46Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"plump fast antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T22:22:38Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- plump fast antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
fakir22/blockassist-bc-flapping_peaceful_caterpillar_1757024387
|
fakir22
| 2025-09-04T22:20:32Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"flapping peaceful caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T22:20:24Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- flapping peaceful caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ntnu-smil/Phi-4-multimodal-instruct-sandi-MIX-0902
|
ntnu-smil
| 2025-09-04T22:16:24Z | 198 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"phi4mm",
"text-generation",
"generated_from_trainer",
"conversational",
"custom_code",
"autotrain_compatible",
"region:us"
] |
text-generation
| 2025-09-02T17:28:21Z |
---
library_name: transformers
tags:
- generated_from_trainer
model-index:
- name: Phi-4-multimodal-instruct-sandi-MIX-0902
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Phi-4-multimodal-instruct-sandi-MIX-0902
This model was trained from scratch on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.48.2
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
|
acidjp/blockassist-bc-pesty_extinct_prawn_1757021702
|
acidjp
| 2025-09-04T22:15:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"pesty extinct prawn",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T22:15:04Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- pesty extinct prawn
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
CodeAtCMU/Models_Llama-3.2-3B_full_sftcode_data_120K_remove_whitespace
|
CodeAtCMU
| 2025-09-04T22:14:41Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-04T22:13:40Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
calegpedia/blockassist-bc-stealthy_slimy_rooster_1757022217
|
calegpedia
| 2025-09-04T22:13:49Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stealthy slimy rooster",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T22:13:45Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stealthy slimy rooster
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ry-5/candy_garlic_pickup_modified
|
ry-5
| 2025-09-04T22:03:25Z | 0 | 0 | null |
[
"robotics",
"manipulation",
"aloha",
"garlic-candy",
"physical-intelligence",
"en",
"license:apache-2.0",
"region:us"
] |
robotics
| 2025-09-04T21:13:50Z |
---
license: apache-2.0
language:
- en
pipeline_tag: robotics
tags:
- robotics
- manipulation
- aloha
- garlic-candy
- physical-intelligence
---
# Pi0 Candy Garlic Pickup Modified Model
This repository contains a trained model checkpoint for garlic and candy pickup tasks using the Pi0 architecture.
## Model Details
- **Model Type**: Pi0 (Physical Intelligence)
- **Task**: Garlic and candy pickup manipulation
- **Training Data**: Modified garlic and candy pickup dataset
- **Checkpoint**: Step 39999
## Usage
This checkpoint can be used with the Physical Intelligence Pi0 framework for robotic manipulation tasks.
## Files Structure
- `_CHECKPOINT_METADATA`: Checkpoint metadata
- `assets/`: Model assets
- `params/`: Model parameters
- `train_state/`: Training state
## Training Details
The model was trained using the Physical Intelligence Pi0 framework with modified garlic and candy pickup data.
|
RZ412/qwen-s1k-claude-3b-s1-reproduce
|
RZ412
| 2025-09-04T21:49:48Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen2.5-3B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-3B-Instruct",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-04T21:27:07Z |
---
library_name: transformers
license: other
base_model: Qwen/Qwen2.5-3B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: Qwen2.5-3B-Instruct-S1K-Claude-S1-Reproduce
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Qwen2.5-3B-Instruct-S1K-Claude-S1-Reproduce
This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the s1k_claude dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 13.0
### Training results
### Framework versions
- Transformers 4.52.4
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
|
kafa22/blockassist-bc-regal_leggy_hummingbird_1757022136
|
kafa22
| 2025-09-04T21:42:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"regal leggy hummingbird",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T21:42:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- regal leggy hummingbird
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1757020360
|
sampingkaca72
| 2025-09-04T21:39:22Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"armored stealthy elephant",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T21:39:19Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- armored stealthy elephant
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Muapi/dynamic-camera
|
Muapi
| 2025-09-04T21:38:27Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-09-04T21:38:12Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Dynamic Camera

**Base model**: Flux.1 D
**Trained words**:
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1190006@1339761", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Miracle-man/blockassist-bc-singing_lithe_koala_1757019872
|
Miracle-man
| 2025-09-04T21:38:21Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"singing lithe koala",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T21:38:14Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- singing lithe koala
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
giovannidemuri/llama3b-llama8b-er-v583-seed2-seed2-hx-openmath-fpt
|
giovannidemuri
| 2025-09-04T21:37:52Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-04T16:31:46Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mradermacher/LFM2-350M-ENJP-MT-GGUF
|
mradermacher
| 2025-09-04T21:35:56Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"liquid",
"lfm2",
"edge",
"translation",
"japanese",
"en",
"ja",
"base_model:LiquidAI/LFM2-350M-ENJP-MT",
"base_model:quantized:LiquidAI/LFM2-350M-ENJP-MT",
"license:other",
"endpoints_compatible",
"region:us",
"conversational"
] |
translation
| 2025-09-04T21:33:38Z |
---
base_model: LiquidAI/LFM2-350M-ENJP-MT
language:
- en
- ja
library_name: transformers
license: other
license_link: LICENSE
license_name: lfm1.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- liquid
- lfm2
- edge
- translation
- japanese
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/LiquidAI/LFM2-350M-ENJP-MT
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#LFM2-350M-ENJP-MT-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/LFM2-350M-ENJP-MT-GGUF/resolve/main/LFM2-350M-ENJP-MT.Q2_K.gguf) | Q2_K | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/LFM2-350M-ENJP-MT-GGUF/resolve/main/LFM2-350M-ENJP-MT.Q3_K_S.gguf) | Q3_K_S | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/LFM2-350M-ENJP-MT-GGUF/resolve/main/LFM2-350M-ENJP-MT.Q3_K_M.gguf) | Q3_K_M | 0.3 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/LFM2-350M-ENJP-MT-GGUF/resolve/main/LFM2-350M-ENJP-MT.Q3_K_L.gguf) | Q3_K_L | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/LFM2-350M-ENJP-MT-GGUF/resolve/main/LFM2-350M-ENJP-MT.IQ4_XS.gguf) | IQ4_XS | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/LFM2-350M-ENJP-MT-GGUF/resolve/main/LFM2-350M-ENJP-MT.Q4_K_S.gguf) | Q4_K_S | 0.3 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/LFM2-350M-ENJP-MT-GGUF/resolve/main/LFM2-350M-ENJP-MT.Q4_K_M.gguf) | Q4_K_M | 0.3 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/LFM2-350M-ENJP-MT-GGUF/resolve/main/LFM2-350M-ENJP-MT.Q5_K_S.gguf) | Q5_K_S | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/LFM2-350M-ENJP-MT-GGUF/resolve/main/LFM2-350M-ENJP-MT.Q5_K_M.gguf) | Q5_K_M | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/LFM2-350M-ENJP-MT-GGUF/resolve/main/LFM2-350M-ENJP-MT.Q6_K.gguf) | Q6_K | 0.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/LFM2-350M-ENJP-MT-GGUF/resolve/main/LFM2-350M-ENJP-MT.Q8_0.gguf) | Q8_0 | 0.5 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/LFM2-350M-ENJP-MT-GGUF/resolve/main/LFM2-350M-ENJP-MT.f16.gguf) | f16 | 0.8 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
UnifiedHorusRA/Background_change
|
UnifiedHorusRA
| 2025-09-04T21:31:21Z | 0 | 0 | null |
[
"custom",
"art",
"en",
"region:us"
] | null | 2025-09-04T20:40:10Z |
---
language:
- en
tags:
- art
---
# Background change
**Creator**: [zhouHH](https://civitai.com/user/zhouHH)
**Type**: LORA
**Base Model**: Wan Video 2.2 I2V-A14B
**Version**: v1.0
**Trigger Words**: `ZHOUHHBJ`
**Civitai Model ID**: 1866087
**Civitai Version ID**: 2112083
**Stats (at time of fetch for this version)**:
* Downloads: 293
* Rating: 0 (0 ratings)
* Favorites: N/A
---
## 📄 Description (Parent Model)
改变背景
提示词:ZHOUHHBJ,一女子在镜头前,女子背后的场景最初是棕色的背景,随后女子背后的场景变为太空。
只有低噪模型,使用时以强度2挂在高噪上。正常挂在低噪上。
Change the background
If it doesn't work, try changing the seeds
Prompt: ZHOUHHBJ, a woman in front of the camera, the scene behind the woman is initially brown, and then the scene behind the woman changes to space.
Only the low-noise model is hung on the high noise with intensity 2 when used. Normally hangs on low noise.
## Version Notes (v1.0)
低噪版本
---
## Civitai Links
* **[🔗 View This Version on Civitai →](https://civitai.com/models/1866087?modelVersionId=2112083)**
* [View Full Model Page →](https://civitai.com/models/1866087)
* [View Creator Profile →](https://civitai.com/user/zhouHH)
---
## File Information
* **Filename**: `ZHOUHHBJ.safetensors`
* **Size**: 292.63 MB
* **Hash (AutoV2)**: `E859D72766`
* **Hash (SHA256)**: `E859D72766FDE77C0C7651006B51513E1ECAA8EC92A89B6A983075011F93CA8D`
|
UnifiedHorusRA/wan2.2-i2v-high-InflatableFashion
|
UnifiedHorusRA
| 2025-09-04T21:28:21Z | 0 | 0 | null |
[
"custom",
"art",
"en",
"region:us"
] | null | 2025-09-04T20:39:53Z |
---
language:
- en
tags:
- art
---
# wan2.2-i2v-high-InflatableFashion
**Creator**: [hxxwoq2222](https://civitai.com/user/hxxwoq2222)
**Type**: LORA
**Base Model**: Wan Video 2.2 I2V-A14B
**Version**: HIGH
**Trigger Words**: `N/A`
**Civitai Model ID**: 1882717
**Civitai Version ID**: 2130979
**Stats (at time of fetch for this version)**:
* Downloads: 208
* Rating: 0 (0 ratings)
* Favorites: N/A
---
## 📄 Description (Parent Model)
🚀
Run this model instantly on RTX 4090s with my pre-built workflow!
*
Sign Up Here:
https://www.runninghub.ai/?inviteCode=rh-v1221
*
Run Directly:
https://www.runninghub.ai/post/1956586031082602497/?inviteCode=rh-v1221
🎁 Use invite code
rh-v1221
to get
1,000 Free Credits
(Double!) +
100 Daily Credits
.
Thank you for your support!
Here's the explanation: Most special effects loras do not require low noise. If you understand the principle, you should know
Just load high noise, weight: 0.8-1,(On wan2.2, most special effects Lora only need to load high-noise models)
Example prompt word:
cq567, A woman lying on a beach at sunset watches her purple bikini top inflate into large spheres.
cq567, A woman taking a mirror selfie in a locker room sees her dark sweatshirt and white shorts inflate to become huge and puffy.
## Civitai Links
* **[🔗 View This Version on Civitai →](https://civitai.com/models/1882717?modelVersionId=2130979)**
* [View Full Model Page →](https://civitai.com/models/1882717)
* [View Creator Profile →](https://civitai.com/user/hxxwoq2222)
---
## File Information
* **Filename**: `充气-high.safetensors`
* **Size**: 292.59 MB
* **Hash (AutoV2)**: `868946FA4D`
* **Hash (SHA256)**: `868946FA4D9ADC9CF7C290331765159D0C6D6879EFEDD0012B87FA3009D3E506`
|
acidjp/blockassist-bc-pesty_extinct_prawn_1757018342
|
acidjp
| 2025-09-04T21:28:14Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"pesty extinct prawn",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T21:28:10Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- pesty extinct prawn
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
cactusfriend/nightmare-promptgen-3
|
cactusfriend
| 2025-09-04T21:27:25Z | 1,747 | 1 |
transformers
|
[
"transformers",
"safetensors",
"openelm",
"text-generation",
"custom_code",
"license:openrail",
"autotrain_compatible",
"region:us"
] |
text-generation
| 2024-06-27T17:17:25Z |
---
library_name: transformers
license: openrail
pipeline_tag: text-generation
tags: []
---
This is the third generation Nightmare Promptgen text generation model based upon Apple's OpenELM. It's for generating InvokeAI prompts.
It can be used similarly to the previous models, and has an InvokeAI node available on Github [here](https://github.com/gogurtenjoyer/nightmare-promptgen).
|
UnifiedHorusRA/wan2.2-i2v-high-Superstar_Moment
|
UnifiedHorusRA
| 2025-09-04T21:25:52Z | 0 | 0 | null |
[
"custom",
"art",
"en",
"region:us"
] | null | 2025-09-04T20:39:27Z |
---
language:
- en
tags:
- art
---
# wan2.2-i2v-high-Superstar Moment
**Creator**: [hxxwoq2222](https://civitai.com/user/hxxwoq2222)
**Type**: LORA
**Base Model**: Wan Video 2.2 I2V-A14B
**Version**: high
**Trigger Words**: `N/A`
**Civitai Model ID**: 1888178
**Civitai Version ID**: 2137210
**Stats (at time of fetch for this version)**:
* Downloads: 347
* Rating: 0 (0 ratings)
* Favorites: N/A
---
## 📄 Description (Parent Model)
🚀
Run this model instantly on RTX 4090s with my pre-built workflow!
*
Sign Up Here:
https://www.runninghub.ai/?inviteCode=rh-v1221
*
Run Directly:
https://www.runninghub.ai/post/1956586031082602497/?inviteCode=rh-v1221
🎁 Use invite code
rh-v1221
to get
1,000 Free Credits
(Double!) +
100 Daily Credits
.
Thank you for your support!
Here's the explanation: Most special effects loras do not require low noise. If you understand the principle, you should know
Recommended weight: 1, example prompt word:
huazhuang567, a beautiful anime girl with orange hair in twintails and blue eyes, wearing a school uniform, reaches her hand towards the camera inside a dark room, as the camera slowly pulls back to reveal stylists and makeup artists with a time-lapse blur, rapidly perfecting her hair and makeup.
## Civitai Links
* **[🔗 View This Version on Civitai →](https://civitai.com/models/1888178?modelVersionId=2137210)**
* [View Full Model Page →](https://civitai.com/models/1888178)
* [View Creator Profile →](https://civitai.com/user/hxxwoq2222)
---
## File Information
* **Filename**: `延时化妆-high.safetensors`
* **Size**: 292.59 MB
* **Hash (AutoV2)**: `D643F32A54`
* **Hash (SHA256)**: `D643F32A54E67178B4A2FF764E8635398EBB8192E8A80AC225903415801FABB3`
|
UnifiedHorusRA/wan2.2-i2v-Cinematic_Flare
|
UnifiedHorusRA
| 2025-09-04T21:25:42Z | 0 | 0 | null |
[
"custom",
"art",
"en",
"region:us"
] | null | 2025-09-04T20:39:25Z |
---
language:
- en
tags:
- art
---
# wan2.2-i2v-Cinematic Flare
**Creator**: [hxxwoq2222](https://civitai.com/user/hxxwoq2222)
**Type**: LORA
**Base Model**: Wan Video 2.2 I2V-A14B
**Version**: low
**Trigger Words**: `N/A`
**Civitai Model ID**: 1902817
**Civitai Version ID**: 2153813
**Stats (at time of fetch for this version)**:
* Downloads: 375
* Rating: 0 (0 ratings)
* Favorites: N/A
---
## 📄 Description (Parent Model)
🚀
RTX 4090 Power!
Run my workflow instantly for free.
Use invite code
rh-v1221
for
1,000 Free Credits
+
100 Daily Credits
.
Sign Up:
https://www.runninghub.ai/?inviteCode=rh-v1221
Run Now:
https://www.runninghub.ai/post/1956586031082602497/?inviteCode=rh-v1221
Thank you for your support, 国内合作加Q:549791525
Reposting the model requires crediting the source and adding my RunningHub profile link.
Cinematic Flare
is a LoRA that adds realistic, cinematic lens flares when bright light hits the lens, creating a dreamy and dramatic atmosphere.
Usage:
Recommended weight is 1.5, you can even increase it to 2.0 to enhance the effect. This LoRA only requires low denoise。
Example prompt word:
gy567, a slow push-in shot towards a young woman holding flowers on a sunlit street. As the camera moves forward, the strong backlight creates a beautiful, cinematic lens flare in the shape of a glowing semicircle.
gy567, a stylish young woman on a sunny balcony overlooking the sea. The camera smoothly arcs to the right, causing the bright sun from the left to sweep across the lens and create a beautiful cinematic flare.
## Civitai Links
* **[🔗 View This Version on Civitai →](https://civitai.com/models/1902817?modelVersionId=2153813)**
* [View Full Model Page →](https://civitai.com/models/1902817)
* [View Creator Profile →](https://civitai.com/user/hxxwoq2222)
---
## File Information
* **Filename**: `镜头光晕-low.safetensors`
* **Size**: 292.59 MB
* **Hash (AutoV2)**: `2810197AC6`
* **Hash (SHA256)**: `2810197AC68C6409761D1850097D8827A0CB626E40A91B02947BC1F9DC306EB1`
|
NahedDom/blockassist-bc-flapping_stocky_leopard_1757018891
|
NahedDom
| 2025-09-04T21:23:54Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"flapping stocky leopard",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T21:23:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- flapping stocky leopard
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
UnifiedHorusRA/wan2.2-i2v-high-Anguish_Wail
|
UnifiedHorusRA
| 2025-09-04T21:22:50Z | 0 | 0 | null |
[
"custom",
"art",
"en",
"region:us"
] | null | 2025-09-04T20:38:59Z |
---
language:
- en
tags:
- art
---
# wan2.2-i2v-high-Anguish Wail
**Creator**: [hxxwoq2222](https://civitai.com/user/hxxwoq2222)
**Type**: LORA
**Base Model**: Wan Video 2.2 I2V-A14B
**Version**: high
**Trigger Words**: `N/A`
**Civitai Model ID**: 1890900
**Civitai Version ID**: 2140307
**Stats (at time of fetch for this version)**:
* Downloads: 1065
* Rating: 0 (0 ratings)
* Favorites: N/A
---
## 📄 Description (Parent Model)
🚀
RTX 4090 Power!
Run my workflow instantly for free.
Use invite code
rh-v1221
for
1,000 Free Credits
+
100 Daily Credits
.
Sign Up:
https://www.runninghub.ai/?inviteCode=rh-v1221
Run Now:
https://www.runninghub.ai/post/1956586031082602497/?inviteCode=rh-v1221
To reprint the model, you need to explain the source, and add my runninghub link to the introduction area.
Thank you for your support
Here's the explanation: Most special effects loras do not require low noise. If you understand the principle, you should know
I trained this LoRA because I found it difficult to generate expressions of convulsive crying (crying to the point of trembling) with the wan2.2 model.
Recommended weight:
1.0
Example prompt(s):
kuqi567, a static shot of a young woman in a black hoodie wailing uncontrollably with her eyes shut while standing in a doorway.
kuqi567, a static shot of a young woman in a red headscarf wailing uncontrollably in front of a vibrant red wall under a blue sky.
## Civitai Links
* **[🔗 View This Version on Civitai →](https://civitai.com/models/1890900?modelVersionId=2140307)**
* [View Full Model Page →](https://civitai.com/models/1890900)
* [View Creator Profile →](https://civitai.com/user/hxxwoq2222)
---
## File Information
* **Filename**: `哭泣-high.safetensors`
* **Size**: 292.59 MB
* **Hash (AutoV2)**: `8B14C827B7`
* **Hash (SHA256)**: `8B14C827B700D9061EC00ADCBC32692D25B039A44E3068892B31E4F824E755B8`
|
UnifiedHorusRA/Writing_effects
|
UnifiedHorusRA
| 2025-09-04T21:22:38Z | 0 | 0 | null |
[
"custom",
"art",
"en",
"region:us"
] | null | 2025-09-04T20:38:58Z |
---
language:
- en
tags:
- art
---
# Writing effects
**Creator**: [zhouHH](https://civitai.com/user/zhouHH)
**Type**: LORA
**Base Model**: Wan Video 2.2 I2V-A14B
**Version**: wan2.2v1
**Trigger Words**: `N/A`
**Civitai Model ID**: 1653028
**Civitai Version ID**: 2135182
**Stats (at time of fetch for this version)**:
* Downloads: 199
* Rating: 0 (0 ratings)
* Favorites: N/A
---
## 📄 Description (Parent Model)
Writing effects
wan2.2
以低噪为底膜炼的,使用时以强度2挂在高噪上,以强度1挂在低噪上,不挂高噪会有其他的效果如例图无法控制。
If the bottom film is made with low noise, it is hung on the high noise with intensity 2 and low noise with intensity 1 when used, and there will be other effects that cannot be controlled as shown in the example figure.
提示词:有一个红色(颜色可变)发光光线完成了ZHOUHHXZ
Prompt: There is a red (color variable) glow that completes ZHOUHHXZ
可以在这里体验:☞
https://www.runninghub.ai/ai-detail/1958566466146693121/?inviteCode=rh-v1250
can be experienced here☞
https://www.runninghub.ai/ai-detail/1958566466146693121/?inviteCode=rh-v1250
wan2.1
提示词:ZHOUHHXZ,在(什么样的)背景下有一个(颜色)的光线完成ZHOUHHXZ,写出了“(什么字)”的个性签名字体
这是尾帧lora。我跑的示例都以i2v尾帧来跑的
This is the tail frame lora. All the examples I ran used i2v tail frames.
## Version Notes (wan2.2v1)
更新wan2.2,
---
## Civitai Links
* **[🔗 View This Version on Civitai →](https://civitai.com/models/1653028?modelVersionId=2135182)**
* [View Full Model Page →](https://civitai.com/models/1653028)
* [View Creator Profile →](https://civitai.com/user/zhouHH)
---
## File Information
* **Filename**: `ZHOUHHXZLOW.safetensors`
* **Size**: 292.63 MB
* **Hash (AutoV2)**: `D8C7A0A6CD`
* **Hash (SHA256)**: `D8C7A0A6CD327D6B53FD5D9FEB9A83512F4273E3089068751DC0FAA2F0642F13`
|
Muapi/minimalist-chinese-ink-brush-style-feng-zikai
|
Muapi
| 2025-09-04T21:20:08Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-09-04T21:19:52Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Minimalist Chinese Ink Brush Style (Feng Zikai)

**Base model**: Flux.1 D
**Trained words**: fzk1 painting, fzk1 ink painting
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1105994@1242549", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
manasp2025/my-embedding-gemma
|
manasp2025
| 2025-09-04T21:19:29Z | 0 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"safetensors",
"gemma3_text",
"sentence-similarity",
"feature-extraction",
"dense",
"generated_from_trainer",
"dataset_size:3",
"loss:MultipleNegativesRankingLoss",
"arxiv:1908.10084",
"arxiv:1705.00652",
"base_model:google/embeddinggemma-300m",
"base_model:finetune:google/embeddinggemma-300m",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2025-09-04T21:18:33Z |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:3
- loss:MultipleNegativesRankingLoss
base_model: google/embeddinggemma-300m
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on google/embeddinggemma-300m
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google/embeddinggemma-300m](https://huggingface.co/google/embeddinggemma-300m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google/embeddinggemma-300m](https://huggingface.co/google/embeddinggemma-300m) <!-- at revision 64614b0b8b64f0c6c1e52b07e4e9a4e8fe4d2da2 -->
- **Maximum Sequence Length:** 2048 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(4): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("manasp2025/my-embedding-gemma")
# Run inference
queries = [
"Which planet is known as the Red Planet?",
]
documents = [
"Venus is often called Earth's twin because of its similar size and proximity.",
'Mars, known for its reddish appearance, is often referred to as the Red Planet.',
'Saturn, famous for its rings, is sometimes mistaken for the Red Planet.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.4507, 0.7751, 0.6039]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 3 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 3 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 12.0 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 15.33 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 12.67 tokens</li><li>max: 14 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:--------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------|
| <code>How do I open a NISA account?</code> | <code>What is the procedure for starting a new tax-free investment account?</code> | <code>I want to check the balance of my regular savings account.</code> |
| <code>Are there fees for making an early repayment on a home loan?</code> | <code>If I pay back my house loan early, will there be any costs?</code> | <code>What is the management fee for this investment trust?</code> |
| <code>What is the coverage for medical insurance?</code> | <code>Tell me about the benefits of the health insurance plan.</code> | <code>What is the cancellation policy for my life insurance?</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 1
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `prompts`: task: sentence similarity | query:
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 1
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: task: sentence similarity | query:
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss |
|:-----:|:----:|:-------------:|
| 1.0 | 3 | 0.5711 |
| 2.0 | 6 | 0.0 |
| 3.0 | 9 | 0.0 |
| 4.0 | 12 | 0.0 |
| 5.0 | 15 | 0.0 |
| 1.0 | 3 | 0.0 |
| 2.0 | 6 | 0.0 |
### Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->
|
NexVeridian/Apertus-8B-Instruct-2509-4bit
|
NexVeridian
| 2025-09-04T21:19:17Z | 0 | 0 |
mlx
|
[
"mlx",
"safetensors",
"apertus",
"multilingual",
"compliant",
"swiss-ai",
"text-generation",
"conversational",
"base_model:swiss-ai/Apertus-8B-Instruct-2509",
"base_model:quantized:swiss-ai/Apertus-8B-Instruct-2509",
"license:apache-2.0",
"4-bit",
"region:us"
] |
text-generation
| 2025-09-04T21:10:19Z |
---
license: apache-2.0
base_model: swiss-ai/Apertus-8B-Instruct-2509
pipeline_tag: text-generation
library_name: mlx
tags:
- multilingual
- compliant
- swiss-ai
- apertus
- mlx
extra_gated_prompt: "### Apertus LLM Acceptable Use Policy \n(1.0 | September 1,\
\ 2025)\n\"Agreement\" The Swiss National AI Institute (SNAI) is a partnership between\
\ the two Swiss Federal Institutes of Technology, ETH Zurich and EPFL. \n\nBy using\
\ the Apertus LLM you agree to indemnify, defend, and hold harmless ETH Zurich and\
\ EPFL against any third-party claims arising from your use of Apertus LLM. \n\n\
The training data and the Apertus LLM may contain or generate information that directly\
\ or indirectly refers to an identifiable individual (Personal Data). You process\
\ Personal Data as independent controller in accordance with applicable data protection\
\ law. SNAI will regularly provide a file with hash values for download which you\
\ can apply as an output filter to your use of our Apertus LLM. The file reflects\
\ data protection deletion requests which have been addressed to SNAI as the developer\
\ of the Apertus LLM. It allows you to remove Personal Data contained in the model\
\ output. We strongly advise downloading and applying this output filter from SNAI\
\ every six months following the release of the model. "
extra_gated_fields:
Your Name: text
Country: country
Affiliation: text
geo: ip_location
By clicking Submit below I accept the terms of use: checkbox
extra_gated_button_content: Submit
---
# NexVeridian/Apertus-8B-Instruct-2509-4bit
This model [NexVeridian/Apertus-8B-Instruct-2509-4bit](https://huggingface.co/NexVeridian/Apertus-8B-Instruct-2509-4bit) was
converted to MLX format from [swiss-ai/Apertus-8B-Instruct-2509](https://huggingface.co/swiss-ai/Apertus-8B-Instruct-2509)
using mlx-lm version **0.27.1**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("NexVeridian/Apertus-8B-Instruct-2509-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|
Witan7725/thai-qa-lab-modelfin
|
Witan7725
| 2025-09-04T21:18:14Z | 0 | 0 | null |
[
"safetensors",
"gpt2",
"thai",
"qa",
"fine-tuned",
"th",
"dataset:disease_3000",
"arxiv:1910.09700",
"license:mit",
"region:us"
] | null | 2025-09-04T21:15:45Z |
---
datasets:
- disease_3000
language: th
license: mit
metrics:
- perplexity
model_name: Thai GPT-2 Fine-Tuned
tags:
- thai
- gpt2
- qa
- fine-tuned
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
โมเดล GPT-2 ที่ปรับแต่งสำหรับงานถาม-ตอบภาษาไทย ฝึกด้วยชุดข้อมูลคำถาม-คำตอบเกี่ยวกับสัตว์ 3000 คู่
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** th
- **License:** mit
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
poki1/blockassist-bc-furry_pesty_pig_1757020430
|
poki1
| 2025-09-04T21:14:13Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"furry pesty pig",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T21:13:51Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- furry pesty pig
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
RZ412/qwen-3b-ot3-1k-qwq
|
RZ412
| 2025-09-04T21:06:20Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen2.5-3B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-3B-Instruct",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-04T20:45:57Z |
---
library_name: transformers
license: other
base_model: Qwen/Qwen2.5-3B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: Qwen2.5-3B-Instruct-OT3-1K-QwQ
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Qwen2.5-3B-Instruct-OT3-1K-QwQ
This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the ot3_8k_subset_qwq_1000 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.52.4
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
|
kimono998/wordle-exp-mix-5-lora-adapter-iter-60
|
kimono998
| 2025-09-04T21:05:56Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-09-04T21:05:53Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mlx-community/Jan-v1-edge-bf16
|
mlx-community
| 2025-09-04T21:03:23Z | 0 | 0 |
mlx
|
[
"mlx",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"en",
"base_model:janhq/Jan-v1-edge",
"base_model:finetune:janhq/Jan-v1-edge",
"license:apache-2.0",
"region:us"
] |
text-generation
| 2025-09-04T21:02:59Z |
---
license: apache-2.0
language:
- en
base_model: janhq/Jan-v1-edge
pipeline_tag: text-generation
library_name: mlx
tags:
- mlx
---
# mlx-community/Jan-v1-edge-bf16
This model [mlx-community/Jan-v1-edge-bf16](https://huggingface.co/mlx-community/Jan-v1-edge-bf16) was
converted to MLX format from [janhq/Jan-v1-edge](https://huggingface.co/janhq/Jan-v1-edge)
using mlx-lm version **0.27.1**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Jan-v1-edge-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|
kimono998/wordle-exp-mix-5-lora-adapter-iter-35
|
kimono998
| 2025-09-04T21:02:51Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-09-04T21:02:48Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
kimono998/wordle-exp-mix-5-lora-adapter-iter-20
|
kimono998
| 2025-09-04T21:02:12Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-09-04T21:02:08Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
calegpedia/blockassist-bc-stealthy_slimy_rooster_1757018028
|
calegpedia
| 2025-09-04T21:01:40Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stealthy slimy rooster",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T21:01:36Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stealthy slimy rooster
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kimono998/wordle-exp-mix-4-v2-lora-adapter-iter-35
|
kimono998
| 2025-09-04T20:58:20Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-09-04T20:58:16Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
kimono998/wordle-exp-gen-4-lora-adapter-iter-70
|
kimono998
| 2025-09-04T20:55:58Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-09-04T20:46:09Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
kimono998/wordle-exp-gen-4-lora-adapter-iter-55
|
kimono998
| 2025-09-04T20:55:02Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-09-04T20:45:58Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
kimono998/wordle-exp-gen-4-lora-adapter-iter-40
|
kimono998
| 2025-09-04T20:53:36Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-09-04T20:45:45Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
kimono998/wordle-exp-gen-4-lora-adapter-iter-35
|
kimono998
| 2025-09-04T20:52:58Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-09-04T20:45:33Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
kimono998/wordle-exp-gen-4-lora-adapter-iter-30
|
kimono998
| 2025-09-04T20:52:38Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-09-04T20:45:29Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
sekirr/blockassist-bc-masked_tenacious_whale_1757019106
|
sekirr
| 2025-09-04T20:52:26Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"masked tenacious whale",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T20:52:22Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- masked tenacious whale
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
sterut/blockassist-bc-untamed_aquatic_antelope_1757019068
|
sterut
| 2025-09-04T20:51:32Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"untamed aquatic antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T20:51:09Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- untamed aquatic antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
sterut/blockassist-bc-silent_sly_rabbit_1757018843
|
sterut
| 2025-09-04T20:47:46Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"silent sly rabbit",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T20:47:23Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- silent sly rabbit
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
nparra10/lora_gemma-3-4b-pt_train_img_version_2_instruction_20250904_1655
|
nparra10
| 2025-09-04T20:44:11Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:google/gemma-3-4b-pt",
"base_model:finetune:google/gemma-3-4b-pt",
"endpoints_compatible",
"region:us"
] | null | 2025-09-04T16:55:42Z |
---
base_model: google/gemma-3-4b-pt
library_name: transformers
model_name: lora_gemma-3-4b-pt_train_img_version_2_instruction_20250904_1655
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for lora_gemma-3-4b-pt_train_img_version_2_instruction_20250904_1655
This model is a fine-tuned version of [google/gemma-3-4b-pt](https://huggingface.co/google/gemma-3-4b-pt).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="nparra10/lora_gemma-3-4b-pt_train_img_version_2_instruction_20250904_1655", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.19.1
- Transformers: 4.53.2
- Pytorch: 2.6.0
- Datasets: 4.0.0
- Tokenizers: 0.21.2
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
bah63843/blockassist-bc-plump_fast_antelope_1757018252
|
bah63843
| 2025-09-04T20:38:18Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"plump fast antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T20:38:11Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- plump fast antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1757017978
|
liukevin666
| 2025-09-04T20:34:10Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T20:34:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
zenqqq/blockassist-bc-restless_reptilian_caterpillar_1757017835
|
zenqqq
| 2025-09-04T20:32:04Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"restless reptilian caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T20:31:54Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- restless reptilian caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kimono998/wordle-pos-1-lora-adapter-iter-20
|
kimono998
| 2025-09-04T20:31:49Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-21T14:52:17Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
kimono998/wordle-pos-1-lora-adapter-iter-10
|
kimono998
| 2025-09-04T20:31:38Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-21T14:52:33Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mlx-community/embeddinggemma-300m-qat-q4_0-unquantized-bf16
|
mlx-community
| 2025-09-04T20:25:02Z | 0 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"safetensors",
"gemma3_text",
"sentence-similarity",
"feature-extraction",
"mlx",
"license:gemma",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2025-09-04T20:06:20Z |
---
license: gemma
pipeline_tag: sentence-similarity
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- mlx
extra_gated_heading: Access EmbeddingGemma on Hugging Face
extra_gated_prompt: To access EmbeddingGemma on Hugging Face, you’re required to review
and agree to Google’s usage license. To do this, please ensure you’re logged in
to Hugging Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
---
# mlx-community/embeddinggemma-300m-qat-q4_0-unquantized-bf16
The Model [mlx-community/embeddinggemma-300m-qat-q4_0-unquantized-bf16](https://huggingface.co/mlx-community/embeddinggemma-300m-qat-q4_0-unquantized-bf16) was converted to MLX format from [google/embeddinggemma-300m-qat-q4_0-unquantized](https://huggingface.co/google/embeddinggemma-300m-qat-q4_0-unquantized) using mlx-lm version **0.0.4**.
## Use with mlx
```bash
pip install mlx-embeddings
```
```python
from mlx_embeddings import load, generate
import mlx.core as mx
model, tokenizer = load("mlx-community/embeddinggemma-300m-qat-q4_0-unquantized-bf16")
# For text embedding
sentences = [
"task: sentence similarity | query: Nothing really matters.",
"task: sentence similarity | query: The dog is barking.",
"task: sentence similarity | query: The dog is barking.",
]
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='mlx')
# Compute token embeddings
input_ids = encoded_input['input_ids']
attention_mask = encoded_input['attention_mask']
output = model(input_ids, attention_mask)
embeddings = output.text_embeds # Normalized embeddings
# Compute dot product between normalized embeddings
similarity_matrix = mx.matmul(embeddings, embeddings.T)
print("Similarity matrix between texts:")
print(similarity_matrix)
# You can use these task-specific prefixes for different tasks
task_prefixes = {
"BitextMining": "task: search result | query: ",
"Clustering": "task: clustering | query: ",
"Classification": "task: classification | query: ",
"MultilabelClassification": "task: classification | query: ",
"PairClassification": "task: sentence similarity | query: ",
"InstructionRetrieval": "task: code retrieval | query: ",
"Reranking": "task: search result | query: ",
"Retrieval": "task: search result | query: ",
"Retrieval-query": "task: search result | query: ",
"Retrieval-document": "title: none | text: ",
"STS": "task: sentence similarity | query: ",
"Summarization": "task: summarization | query: ",
"document": "title: none | text: "
}
```
|
mlx-community/embeddinggemma-300m-bf16
|
mlx-community
| 2025-09-04T20:24:20Z | 0 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"safetensors",
"gemma3_text",
"sentence-similarity",
"feature-extraction",
"text-embeddings-inference",
"mlx",
"license:gemma",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2025-09-04T20:00:51Z |
---
license: gemma
pipeline_tag: sentence-similarity
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- text-embeddings-inference
- mlx
extra_gated_heading: Access EmbeddingGemma on Hugging Face
extra_gated_prompt: To access EmbeddingGemma on Hugging Face, you’re required to review
and agree to Google’s usage license. To do this, please ensure you’re logged in
to Hugging Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
---
# mlx-community/embeddinggemma-300m-bf16
The Model [mlx-community/embeddinggemma-300m-bf16](https://huggingface.co/mlx-community/embeddinggemma-300m-bf16) was converted to MLX format from [google/embeddinggemma-300m](https://huggingface.co/google/embeddinggemma-300m) using mlx-lm version **0.0.4**.
## Use with mlx
```bash
pip install mlx-embeddings
```
```python
from mlx_embeddings import load, generate
import mlx.core as mx
model, tokenizer = load("mlx-community/embeddinggemma-300m-bf16")
# For text embedding
sentences = [
"task: sentence similarity | query: Nothing really matters.",
"task: sentence similarity | query: The dog is barking.",
"task: sentence similarity | query: The dog is barking.",
]
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='mlx')
# Compute token embeddings
input_ids = encoded_input['input_ids']
attention_mask = encoded_input['attention_mask']
output = model(input_ids, attention_mask)
embeddings = output.text_embeds # Normalized embeddings
# Compute dot product between normalized embeddings
similarity_matrix = mx.matmul(embeddings, embeddings.T)
print("Similarity matrix between texts:")
print(similarity_matrix)
# You can use these task-specific prefixes for different tasks
task_prefixes = {
"BitextMining": "task: search result | query: ",
"Clustering": "task: clustering | query: ",
"Classification": "task: classification | query: ",
"MultilabelClassification": "task: classification | query: ",
"PairClassification": "task: sentence similarity | query: ",
"InstructionRetrieval": "task: code retrieval | query: ",
"Reranking": "task: search result | query: ",
"Retrieval": "task: search result | query: ",
"Retrieval-query": "task: search result | query: ",
"Retrieval-document": "title: none | text: ",
"STS": "task: sentence similarity | query: ",
"Summarization": "task: summarization | query: ",
"document": "title: none | text: "
}
```
|
mlx-community/embeddinggemma-300m-6bit
|
mlx-community
| 2025-09-04T20:23:56Z | 0 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"safetensors",
"gemma3_text",
"sentence-similarity",
"feature-extraction",
"mlx",
"license:gemma",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2025-09-04T16:54:30Z |
---
license: gemma
pipeline_tag: sentence-similarity
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- mlx
extra_gated_heading: Access EmbeddingGemma on Hugging Face
extra_gated_prompt: To access EmbeddingGemma on Hugging Face, you’re required to review
and agree to Google’s usage license. To do this, please ensure you’re logged in
to Hugging Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
---
# mlx-community/embeddinggemma-300m-6bit
The Model [mlx-community/embeddinggemma-300m-6bit](https://huggingface.co/mlx-community/embeddinggemma-300m-6bit) was converted to MLX format from [google/embeddinggemma-300m-qat-q8_0-unquantized](https://huggingface.co/google/embeddinggemma-300m-qat-q8_0-unquantized) using mlx-lm version **0.0.4**.
## Use with mlx
```bash
pip install mlx-embeddings
```
```python
from mlx_embeddings import load, generate
import mlx.core as mx
model, tokenizer = load("mlx-community/embeddinggemma-300m-6bit")
# For text embedding
sentences = [
"task: sentence similarity | query: Nothing really matters.",
"task: sentence similarity | query: The dog is barking.",
"task: sentence similarity | query: The dog is barking.",
]
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='mlx')
# Compute token embeddings
input_ids = encoded_input['input_ids']
attention_mask = encoded_input['attention_mask']
output = model(input_ids, attention_mask)
embeddings = output.text_embeds # Normalized embeddings
# Compute dot product between normalized embeddings
similarity_matrix = mx.matmul(embeddings, embeddings.T)
print("Similarity matrix between texts:")
print(similarity_matrix)
# You can use these task-specific prefixes for different tasks
task_prefixes = {
"BitextMining": "task: search result | query: ",
"Clustering": "task: clustering | query: ",
"Classification": "task: classification | query: ",
"MultilabelClassification": "task: classification | query: ",
"PairClassification": "task: sentence similarity | query: ",
"InstructionRetrieval": "task: code retrieval | query: ",
"Reranking": "task: search result | query: ",
"Retrieval": "task: search result | query: ",
"Retrieval-query": "task: search result | query: ",
"Retrieval-document": "title: none | text: ",
"STS": "task: sentence similarity | query: ",
"Summarization": "task: summarization | query: ",
"document": "title: none | text: "
}
```
|
nikolabilicka/natalia
|
nikolabilicka
| 2025-09-04T20:18:22Z | 0 | 0 | null |
[
"license:other",
"region:us"
] | null | 2025-09-04T19:33:31Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
|
giovannidemuri/llama8b-er-v580-seed2-hx_lora
|
giovannidemuri
| 2025-09-04T20:14:01Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-04T14:34:52Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
vendi11/blockassist-bc-placid_placid_llama_1757016378
|
vendi11
| 2025-09-04T20:07:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"placid placid llama",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T20:06:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- placid placid llama
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
NahedDom/blockassist-bc-flapping_stocky_leopard_1757014095
|
NahedDom
| 2025-09-04T20:03:17Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"flapping stocky leopard",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T20:03:11Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- flapping stocky leopard
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1757014705
|
helmutsukocok
| 2025-09-04T20:03:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"loud scavenging kangaroo",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T20:03:04Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- loud scavenging kangaroo
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
giovannidemuri/llama8b-er-v550-seed2-hx_lora
|
giovannidemuri
| 2025-09-04T20:02:51Z | 39 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-02T23:07:07Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
bah63843/blockassist-bc-plump_fast_antelope_1757015745
|
bah63843
| 2025-09-04T19:56:36Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"plump fast antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T19:56:27Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- plump fast antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
zxvvcnh/blockassist-bc-soft_curious_camel_1757015436
|
zxvvcnh
| 2025-09-04T19:51:03Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"soft curious camel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T19:50:37Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- soft curious camel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1757013237
|
coelacanthxyz
| 2025-09-04T19:43:35Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"finicky thriving grouse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T19:43:25Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- finicky thriving grouse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
bah63843/blockassist-bc-plump_fast_antelope_1757014958
|
bah63843
| 2025-09-04T19:43:28Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"plump fast antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-04T19:43:18Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- plump fast antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.