modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-10 12:31:44
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
552 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-10 12:31:31
card
stringlengths
11
1.01M
edbeeching/decision-transformer-gym-halfcheetah-medium-replay
edbeeching
2022-06-29T19:21:08Z
5
0
transformers
[ "transformers", "pytorch", "decision_transformer", "feature-extraction", "deep-reinforcement-learning", "reinforcement-learning", "decision-transformer", "gym-continous-control", "arxiv:2106.01345", "endpoints_compatible", "region:us" ]
reinforcement-learning
2022-03-16T08:20:08Z
--- tags: - deep-reinforcement-learning - reinforcement-learning - decision-transformer - gym-continous-control pipeline_tag: reinforcement-learning --- # Decision Transformer model trained on medium-replay trajectories sampled from the Gym HalfCheetah environment This is a trained [Decision Transformer](https://arxiv.org/abs/2106.01345) model trained on medium-replay trajectories sampled from the Gym HalfCheetah environment. The following normlization coeficients are required to use this model: mean = [-0.12880704, 0.37381196, -0.14995988, -0.23479079, -0.28412786, -0.13096535, -0.20157982, -0.06517727, 3.4768248, -0.02785066, -0.01503525, 0.07697279, 0.01266712, 0.0273253, 0.02316425, 0.01043872, -0.01583941] std = [0.17019016, 1.2844249, 0.33442774, 0.36727592, 0.26092398, 0.4784107, 0.31814206 ,0.33552638, 2.0931616, 0.80374336, 1.9044334, 6.57321, 7.5728636, 5.0697494, 9.105554, 6.0856543, 7.253004, 5] See our [Blog Post](https://colab.research.google.com/drive/1K3UuajwoPY1MzRKNkONNRS3gS5DxZ-qF?usp=sharing), [Colab notebook](https://colab.research.google.com/drive/1K3UuajwoPY1MzRKNkONNRS3gS5DxZ-qF?usp=sharing) or [Example Script](https://github.com/huggingface/transformers/tree/main/examples/research_projects/decision_transformer) for usage.
edbeeching/decision-transformer-gym-hopper-medium-replay
edbeeching
2022-06-29T19:20:14Z
9
0
transformers
[ "transformers", "pytorch", "decision_transformer", "feature-extraction", "deep-reinforcement-learning", "reinforcement-learning", "decision-transformer", "gym-continous-control", "arxiv:2106.01345", "endpoints_compatible", "region:us" ]
reinforcement-learning
2022-03-16T08:20:43Z
--- tags: - deep-reinforcement-learning - reinforcement-learning - decision-transformer - gym-continous-control pipeline_tag: reinforcement-learning --- # Decision Transformer model trained on medium-replay trajectories sampled from the Gym Hopper environment This is a trained [Decision Transformer](https://arxiv.org/abs/2106.01345) model trained on medium-replay trajectories sampled from the Gym Hopper environment. The following normlization coefficients are required to use this model: mean = [ 1.2305138, -0.04371411, -0.44542956, -0.09370098, 0.09094488, 1.3694725, -0.19992675, -0.02286135, -0.5287045, -0.14465883, -0.19652697] std = [0.17565121, 0.06369286, 0.34383234, 0.19566889, 0.5547985, 1.0510299, 1.1583077, 0.79631287, 1.4802359, 1.6540332, 5.108601] See our [Blog Post](https://colab.research.google.com/drive/1K3UuajwoPY1MzRKNkONNRS3gS5DxZ-qF?usp=sharing), [Colab notebook](https://colab.research.google.com/drive/1K3UuajwoPY1MzRKNkONNRS3gS5DxZ-qF?usp=sharing) or [Example Script](https://github.com/huggingface/transformers/tree/main/examples/research_projects/decision_transformer) for usage.
edbeeching/decision-transformer-gym-hopper-medium
edbeeching
2022-06-29T19:15:16Z
34,485
6
transformers
[ "transformers", "pytorch", "decision_transformer", "feature-extraction", "deep-reinforcement-learning", "reinforcement-learning", "decision-transformer", "gym-continous-control", "arxiv:2106.01345", "endpoints_compatible", "region:us" ]
reinforcement-learning
2022-03-16T08:20:31Z
--- tags: - deep-reinforcement-learning - reinforcement-learning - decision-transformer - gym-continous-control pipeline_tag: reinforcement-learning --- # Decision Transformer model trained on medium trajectories sampled from the Gym Hopper environment This is a trained [Decision Transformer](https://arxiv.org/abs/2106.01345) model trained on medium trajectories sampled from the Gym Hopper environment. The following normlization coefficients are required to use this model: mean = [ 1.311279, -0.08469521, -0.5382719, -0.07201576, 0.04932366, 2.1066856, -0.15017354, 0.00878345, -0.2848186, -0.18540096, -0.28461286] std = [0.17790751, 0.05444621, 0.21297139, 0.14530419, 0.6124444, 0.85174465, 1.4515252, 0.6751696, 1.536239, 1.6160746, 5.6072536 ] See our [Blog Post](https://colab.research.google.com/drive/1K3UuajwoPY1MzRKNkONNRS3gS5DxZ-qF?usp=sharing), [Colab notebook](https://colab.research.google.com/drive/1K3UuajwoPY1MzRKNkONNRS3gS5DxZ-qF?usp=sharing) or [Example Script](https://github.com/huggingface/transformers/tree/main/examples/research_projects/decision_transformer) for usage.
edbeeching/decision-transformer-gym-hopper-expert
edbeeching
2022-06-29T19:12:17Z
566
18
transformers
[ "transformers", "pytorch", "decision_transformer", "feature-extraction", "deep-reinforcement-learning", "reinforcement-learning", "decision-transformer", "gym-continous-control", "arxiv:2106.01345", "endpoints_compatible", "region:us" ]
reinforcement-learning
2022-03-16T08:20:20Z
--- tags: - deep-reinforcement-learning - reinforcement-learning - decision-transformer - gym-continous-control pipeline_tag: reinforcement-learning --- # Decision Transformer model trained on expert trajectories sampled from the Gym Hopper environment This is a trained [Decision Transformer](https://arxiv.org/abs/2106.01345) model trained on expert trajectories sampled from the Gym Hopper environment. The following normlization coefficients are required to use this model: mean = [ 1.3490015, -0.11208222, -0.5506444, -0.13188992, -0.00378754, 2.6071432, 0.02322114, -0.01626922, -0.06840388, -0.05183131, 0.04272673] std = [0.15980862, 0.0446214, 0.14307782, 0.17629202, 0.5912333, 0.5899924, 1.5405099, 0.8152689, 2.0173461, 2.4107876, 5.8440027 ] See our [Blog Post](https://colab.research.google.com/drive/1K3UuajwoPY1MzRKNkONNRS3gS5DxZ-qF?usp=sharing), [Colab notebook](https://colab.research.google.com/drive/1K3UuajwoPY1MzRKNkONNRS3gS5DxZ-qF?usp=sharing) or [Example Script](https://github.com/huggingface/transformers/tree/main/examples/research_projects/decision_transformer) for usage.
zhav1k/q-Taxi-v3
zhav1k
2022-06-29T18:56:01Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-29T18:55:53Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.54 +/- 2.69 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
nbroad/bigbird-base-health-fact
nbroad
2022-06-29T18:29:17Z
17
1
transformers
[ "transformers", "pytorch", "big_bird", "text-classification", "generated_from_trainer", "en", "dataset:health_fact", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-26T17:55:02Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - health_fact model-index: - name: bigbird-base-health-fact results: - task: type: text-classification name: Text Classification dataset: name: health_fact type: health_fact split: test metrics: - name: F1 type: f1 value: 0.6694031411935434 - name: Accuracy type: accuracy value: 0.7948094079480941 - name: False Accuracy type: accuracy value: 0.8092783505154639 - name: Mixture Accuracy type: accuracy value: 0.4975124378109453 - name: True Accuracy type: accuracy value: 0.9148580968280468 - name: Unproven Accuracy type: accuracy value: 0.4 --- # bigbird-base-health-fact This model is a fine-tuned version of [google/bigbird-roberta-base](https://huggingface.co/google/bigbird-roberta-base) on the health_fact dataset. It achieves the following results on the VALIDATION set: - Overall Accuracy: 0.8228995057660626 - Macro F1: 0.6979224830442152 - False Accuracy: 0.8289473684210527 - Mixture Accuracy: 0.47560975609756095 - True Accuracy: 0.9332273449920508 - Unproven Accuracy: 0.4634146341463415 It achieves the following results on the TEST set: - Overall Accuracy: 0.7948094079480941 - Macro F1: 0.6694031411935434 - Mixture Accuracy: 0.4975124378109453 - False Accuracy: 0.8092783505154639 - True Accuracy: 0.9148580968280468 - Unproven Accuracy: 0.4 ## Model description Here is how you can use the model: ```python import torch from transformers import pipeline claim = "A mother revealed to her child in a letter after her death that she had just one eye because she had donated the other to him." text = "In April 2005, we spotted a tearjerker on the Internet about a mother who gave up one of her eyes to a son who had lost one of his at an early age. By February 2007 the item was circulating in e-mail in the following shortened version: My mom only had one eye. I hated her… She was such an embarrassment. She cooked for students and teachers to support the family. There was this one day during elementary school where my mom came to say hello to me. I was so embarrassed. How could she do this to me? I ignored her, threw her a hateful look and ran out. The next day at school one of my classmates said, “EEEE, your mom only has one eye!” I wanted to bury myself. I also wanted my mom to just disappear. I confronted her that day and said, “If you’re only gonna make me a laughing stock, why don’t you just die?” My mom did not respond… I didn’t even stop to think for a second about what I had said, because I was full of anger. I was oblivious to her feelings. I wanted out of that house, and have nothing to do with her. So I studied real hard, got a chance to go abroad to study. Then, I got married. I bought a house of my own. I had kids of my own. I was happy with my life, my kids and the comforts. Then one day, my Mother came to visit me. She hadn’t seen me in years and she didn’t even meet her grandchildren. When she stood by the door, my children laughed at her, and I yelled at her for coming over uninvited. I screamed at her, “How dare you come to my house and scare my children! GET OUT OF HERE! NOW!! !” And to this, my mother quietly answered, “Oh, I’m so sorry. I may have gotten the wrong address,” and she disappeared out of sight. One day, a letter regarding a school reunion came to my house. So I lied to my wife that I was going on a business trip. After the reunion, I went to the old shack just out of curiosity. My neighbors said that she died. I did not shed a single tear. They handed me a letter that she had wanted me to have. My dearest son, I think of you all the time. I’m sorry that I came to your house and scared your children. I was so glad when I heard you were coming for the reunion. But I may not be able to even get out of bed to see you. I’m sorry that I was a constant embarrassment to you when you were growing up. You see……..when you were very little, you got into an accident, and lost your eye. As a mother, I couldn’t stand watching you having to grow up with one eye. So I gave you mine. I was so proud of my son who was seeing a whole new world for me, in my place, with that eye. With all my love to you, Your mother. In its earlier incarnation, the story identified by implication its location as Korea through statements made by both the mother and the son (the son’s “I left my mother and came to Seoul” and the mother’s “I won’t visit Seoul anymore”). It also supplied a reason for the son’s behavior when his mother arrived unexpectedly to visit him (“My little girl ran away, scared of my mom’s eye” and “I screamed at her, ‘How dare you come to my house and scare my daughter!'”). A further twist was provided in the original: rather than gaining the news of his mother’s death from neighbors (who hand him her letter), the son instead discovered the woman who bore him lying dead on the floor of what used to be his childhood home, her missive to him clutched in her lifeless hand: Give your parents roses while they are alive, not deadMY mom only had one eye. I hated her … she was such an embarrassment. My mom ran a small shop at a flea market. She collected little weeds and such to sell … anything for the money we needed she was such an embarrassment. There was this one day during elementary school … It was field day, and my mom came. I was so embarrassed. How could she do this to me? I threw her a hateful look and ran out. The next day at school … “your mom only has one eye?!? !” … And they taunted me. I wished that my mom would just disappear from this world so I said to my mom, “mom … Why don’t you have the other eye?! If you’re only going to make me a laughingstock, why don’t you just die?!! !” my mom did not respond … I guess I felt a little bad, but at the same time, it felt good to think that I had said what I’d wanted to say all this time… maybe it was because my mom hadn’t punished me, but I didn’t think that I had hurt her feelings very badly. That night… I woke up, and went to the kitchen to get a glass of water. My mom was crying there, so quietly, as if she was afraid that she might wake me. I took a look at her, and then turned away. Because of the thing I had said to her earlier, there was something pinching at me in the corner of my heart. Even so, I hated my mother who was crying out of her one eye. So I told myself that I would grow up and become successful. Because I hated my one-eyed mom and our desperate poverty… then I studied real hard. I left my mother and came to Seoul and studied, and got accepted in the Seoul University with all the confidence I had. Then, I got married. I bought a house of my own. Then I had kids, too… now I’m living happily as a successful man. I like it here because it’s a place that doesn’t remind me of my mom. This happiness was getting bigger and bigger, when… what?! Who’s this…it was my mother… still with her one eye. It felt as if the whole sky was falling apart on me. My little girl ran away, scared of my mom’s eye. And I asked her, “who are you? !” “I don’t know you!! !” as if trying to make that real. I screamed at her, “How dare you come to my house and scare my daughter!” “GET OUT OF HERE! NOW!! !” and to this, my mother quietly answered, “oh, I’m so sorry. I may have gotten the wrong address,” and she disappeared out of sight. Thank goodness… she doesn’t recognize me… I was quite relieved. I told myself that I wasn’t going to care, or think about this for the rest of my life. Then a wave of relief came upon me… One day, a letter regarding a school reunion came to my house. So, lying to my wife that I was going on a business trip, I went. After the reunion, I went down to the old shack, that I used to call a house… just out of curiosity there, I found my mother fallen on the cold ground. But I did not shed a single tear. She had a piece of paper in her hand…. it was a letter to me. My son… I think my life has been long enough now… And… I won’t visit Seoul anymore… but would it be too much to ask if I wanted you to come visit me once in a while? I miss you so much… and I was so glad when I heard you were coming for the reunion. But I decided not to go to the school. …for you… and I’m sorry that I only have one eye, and I was an embarrassment for you. You see, when you were very little, you got into an accident, and lost your eye. as a mom, I couldn’t stand watching you having to grow up with only one eye… so I gave you mine… I was so proud of my son that was seeing a whole new world for me, in my place, with that eye. I was never upset at you for anything you did… the couple times that you were angry with me, I thought to myself, ‘it’s because he loves me…’ my son. Oh, my son… I don’t want you to cry for me, because of my death. My son, I love you my son, I love you so much. With all modern medical technology, transplantation of the eyeball is still impossible. The optic nerve isn’t an ordinary nerve, but instead an inset running from the brain. Modern medicine isn’t able to “connect” an eyeball back to brain after an optic nerve has been severed, let alone transplant the eye from a different person. (The only exception is the cornea, the transparent part in front of the eye: corneas are transplanted to replace injured and opaque ones.) We won’t try to comment on whether any surgeon would accept an eye from a living donor for transplant into another — we’ll leave that to others who are far more knowledgeable about medical ethics and transplant procedures. But we will note that the plot device of a mother’s dramatic sacrifice for the sake of her child’s being revealed in a written communication delivered after her demise appears in another legend about maternal love: the 2008 tale about a woman who left a touching message on her cell phone even as life ebbed from her as she used her body to shield the tot during an earthquake. Giving up one’s own life for a loved one is central to a 2005 urban legend about a boy on a motorcycle who has his girlfriend hug him one last time and put on his helmet just before the crash that kills him and spares her. Returning to the “notes from the dead” theme is the 1995 story about a son who discovers only through a posthumous letter from his mother what their occasional dinner “dates” had meant to her. Another legend we’re familiar with features a meme used in the one-eyed mother story (the coming to light of the enduring love of the person who died for the completely unworthy person she’d lavished it on), but that one involves a terminally ill woman and her cheating husband. In it, an about-to-be-spurned wife begs the adulterous hoon she’d married to stick around for another 30 days and to carry her over the threshold of their home once every day of that month as her way of keeping him around long enough for her to kick the bucket and thus spare their son the knowledge that his parents were on the verge of divorce." label = "false" device = 0 if torch.cuda.is_available() else -1 pl = pipeline("text-classification", model="nbroad/bigbird-base-health-fact", device=device) input_text = claim+pl.tokenizer.sep_token+text print(len(pl.tokenizer(input_text).input_ids)) # 2303 (which is why bigbird is useful) pl(input_text) # [{'label': 'false', 'score': 0.3866822123527527}] ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 18 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Micro F1 | Macro F1 | False F1 | Mixture F1 | True F1 | Unproven F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:----------:|:-------:|:-----------:| | 0.5563 | 1.0 | 1226 | 0.5020 | 0.7949 | 0.6062 | 0.7926 | 0.4591 | 0.8986 | 0.2745 | | 0.5048 | 2.0 | 2452 | 0.4969 | 0.8180 | 0.6846 | 0.8202 | 0.4342 | 0.9126 | 0.5714 | | 0.3454 | 3.0 | 3678 | 0.5864 | 0.8130 | 0.6874 | 0.8114 | 0.4557 | 0.9154 | 0.5672 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0a0+17540c5 - Datasets 2.1.1.dev0 - Tokenizers 0.12.1
JHart96/finetuning-sentiment-model-3000-samples
JHart96
2022-06-29T18:20:13Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-29T18:10:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.86 - name: F1 type: f1 value: 0.8627450980392156 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3300 - Accuracy: 0.86 - F1: 0.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ashraq/movielens_user_model_cos_32
ashraq
2022-06-29T18:07:51Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-06-24T19:16:33Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
kakashi210/autotrain-tweet-sentiment-classifier-1055036381
kakashi210
2022-06-29T17:54:00Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain", "unk", "dataset:kakashi210/autotrain-data-tweet-sentiment-classifier", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-29T17:45:44Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - kakashi210/autotrain-data-tweet-sentiment-classifier co2_eq_emissions: 17.43982800509071 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1055036381 - CO2 Emissions (in grams): 17.43982800509071 ## Validation Metrics - Loss: 0.6177256107330322 - Accuracy: 0.7306006137658921 - Macro F1: 0.719534854339415 - Micro F1: 0.730600613765892 - Weighted F1: 0.7302204676842725 - Macro Precision: 0.714938066281146 - Micro Precision: 0.7306006137658921 - Weighted Precision: 0.7316651970219867 - Macro Recall: 0.7258484087500343 - Micro Recall: 0.7306006137658921 - Weighted Recall: 0.7306006137658921 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/kakashi210/autotrain-tweet-sentiment-classifier-1055036381 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("kakashi210/autotrain-tweet-sentiment-classifier-1055036381", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("kakashi210/autotrain-tweet-sentiment-classifier-1055036381", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
BeardedJohn/bert-finetuned-ner-ubb-endava-only-misc
BeardedJohn
2022-06-29T16:59:54Z
4
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-29T11:44:27Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: BeardedJohn/bert-finetuned-ner-ubb-endava-only-misc results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # BeardedJohn/bert-finetuned-ner-ubb-endava-only-misc This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0015 - Validation Loss: 0.0006 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 705, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1740 | 0.0013 | 0 | | 0.0024 | 0.0007 | 1 | | 0.0015 | 0.0006 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
Abonia/finetuning-sentiment-model-3000-samples
Abonia
2022-06-29T15:27:48Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-29T15:12:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8766666666666667 - name: F1 type: f1 value: 0.877076411960133 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2991 - Accuracy: 0.8767 - F1: 0.8771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ydshieh/clip-vit-base-patch32
ydshieh
2022-06-29T14:47:32Z
15
1
transformers
[ "transformers", "tf", "clip", "zero-shot-image-classification", "summarization", "en", "dataset:scientific_papers", "arxiv:2007.14062", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: en license: apache-2.0 datasets: - scientific_papers tags: - summarization model-index: - name: google/bigbird-pegasus-large-pubmed results: - task: type: summarization name: Summarization dataset: name: scientific_papers type: scientific_papers config: pubmed split: test metrics: - name: ROUGE-1 type: rouge value: 40.8966 verified: true - name: ROUGE-2 type: rouge value: 18.1161 verified: true - name: ROUGE-L type: rouge value: 26.1743 verified: true - name: ROUGE-LSUM type: rouge value: 34.2773 verified: true - name: loss type: loss value: 2.1707184314727783 verified: true - name: meteor type: meteor value: 0.3513 verified: true - name: gen_len type: gen_len value: 221.2531 verified: true - task: type: summarization name: Summarization dataset: name: scientific_papers type: scientific_papers config: arxiv split: test metrics: - name: ROUGE-1 type: rouge value: 40.3815 verified: true - name: ROUGE-2 type: rouge value: 14.374 verified: true - name: ROUGE-L type: rouge value: 23.4773 verified: true - name: ROUGE-LSUM type: rouge value: 33.772 verified: true - name: loss type: loss value: 3.235051393508911 verified: true - name: gen_len type: gen_len value: 186.2003 verified: true --- # BigBirdPegasus model (large) BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the capabilities of a complete transformer that the sparse model can handle. BigBird was introduced in this [paper](https://arxiv.org/abs/2007.14062) and first released in this [repository](https://github.com/google-research/bigbird). Disclaimer: The team releasing BigBird did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BigBird relies on **block sparse attention** instead of normal attention (i.e. BERT's attention) and can handle sequences up to a length of 4096 at a much lower compute cost compared to BERT. It has achieved SOTA on various tasks involving very long sequences such as long documents summarization, question-answering with long contexts. ## How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BigBirdPegasusForConditionalGeneration, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-pubmed") # by default encoder-attention is `block_sparse` with num_random_blocks=3, block_size=64 model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-pubmed") # decoder attention type can't be changed & will be "original_full" # you can change `attention_type` (encoder only) to full attention like this: model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-pubmed", attention_type="original_full") # you can change `block_size` & `num_random_blocks` like this: model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-pubmed", block_size=16, num_random_blocks=2) text = "Replace me by any text you'd like." inputs = tokenizer(text, return_tensors='pt') prediction = model.generate(**inputs) prediction = tokenizer.batch_decode(prediction) ``` ## Training Procedure This checkpoint is obtained after fine-tuning `BigBirdPegasusForConditionalGeneration` for **summarization** on **pubmed dataset** from [scientific_papers](https://huggingface.co/datasets/scientific_papers). ## BibTeX entry and citation info ```tex @misc{zaheer2021big, title={Big Bird: Transformers for Longer Sequences}, author={Manzil Zaheer and Guru Guruganesh and Avinava Dubey and Joshua Ainslie and Chris Alberti and Santiago Ontanon and Philip Pham and Anirudh Ravula and Qifan Wang and Li Yang and Amr Ahmed}, year={2021}, eprint={2007.14062}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
FabianWillner/bert-base-uncased-finetuned-squad
FabianWillner
2022-06-29T14:46:28Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-29T09:16:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.0106 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0626 | 1.0 | 5533 | 1.0308 | | 0.8157 | 2.0 | 11066 | 1.0106 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
freedomking/prompt-uie-base
freedomking
2022-06-29T14:46:15Z
4
5
transformers
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-06-29T14:28:56Z
## Introduction Universal Information Extraction More detail: https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/uie
igpaub/q-FrozenLake-v1-4x4
igpaub
2022-06-29T14:29:26Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-29T13:12:43Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4 results: - metrics: - type: mean_reward value: 0.78 +/- 0.41 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="igpaub/q-FrozenLake-v1-4x4", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Salvatore/bert-finetuned-mutation-recognition-1
Salvatore
2022-06-29T13:59:03Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-29T09:40:09Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-mutation-recognition-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-mutation-recognition-1 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0380 - Proteinmutation F1: 0.8631 - Dnamutation F1: 0.7522 - Snp F1: 1.0 - Precision: 0.8061 - Recall: 0.8386 - F1: 0.8221 - Accuracy: 0.9942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Proteinmutation F1 | Dnamutation F1 | Snp F1 | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------------------:|:--------------:|:------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 259 | 0.0273 | 0.8072 | 0.5762 | 0.975 | 0.6685 | 0.7580 | 0.7104 | 0.9924 | | 0.0597 | 2.0 | 518 | 0.0260 | 0.8148 | 0.6864 | 0.9873 | 0.7363 | 0.8004 | 0.7670 | 0.9936 | | 0.0597 | 3.0 | 777 | 0.0338 | 0.8252 | 0.7221 | 1.0 | 0.7857 | 0.7941 | 0.7899 | 0.9935 | | 0.0046 | 4.0 | 1036 | 0.0299 | 0.8707 | 0.7214 | 0.9873 | 0.7773 | 0.8450 | 0.8098 | 0.9941 | | 0.0046 | 5.0 | 1295 | 0.0353 | 0.9035 | 0.7364 | 0.9873 | 0.8130 | 0.8493 | 0.8307 | 0.9941 | | 0.0014 | 6.0 | 1554 | 0.0361 | 0.8941 | 0.7391 | 0.9873 | 0.8093 | 0.8471 | 0.8278 | 0.9941 | | 0.0014 | 7.0 | 1813 | 0.0367 | 0.8957 | 0.7249 | 1.0 | 0.8090 | 0.8365 | 0.8225 | 0.9940 | | 0.0004 | 8.0 | 2072 | 0.0381 | 0.8714 | 0.7578 | 1.0 | 0.8266 | 0.8301 | 0.8284 | 0.9940 | | 0.0004 | 9.0 | 2331 | 0.0380 | 0.8732 | 0.7550 | 1.0 | 0.8148 | 0.8408 | 0.8276 | 0.9942 | | 0.0002 | 10.0 | 2590 | 0.0380 | 0.8631 | 0.7522 | 1.0 | 0.8061 | 0.8386 | 0.8221 | 0.9942 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2 - Datasets 2.0.0 - Tokenizers 0.12.1
robingeibel/bigbird-base-finetuned-big_patent
robingeibel
2022-06-29T12:35:25Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "big_bird", "fill-mask", "generated_from_trainer", "dataset:big_patent", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-27T07:03:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - big_patent model-index: - name: bigbird-base-finetuned-big_patent results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bigbird-base-finetuned-big_patent This model is a fine-tuned version of [robingeibel/bigbird-base-finetuned-big_patent](https://huggingface.co/robingeibel/bigbird-base-finetuned-big_patent) on the big_patent dataset. It achieves the following results on the evaluation set: - Loss: 1.0686 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.1432 | 1.0 | 154482 | 1.0686 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
igpaub/q-FrozenLake-v1-4x4-noSlippery
igpaub
2022-06-29T12:17:50Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-29T12:17:41Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="igpaub/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
gguichard/q-Taxi-v3
gguichard
2022-06-29T09:26:50Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-29T09:26:45Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.48 +/- 2.77 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="gguichard/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
squirro/distilroberta-base-squad_v2
squirro
2022-06-29T08:53:58Z
15
1
transformers
[ "transformers", "pytorch", "tf", "onnx", "roberta", "question-answering", "generated_from_trainer", "en", "dataset:squad_v2", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
question-answering
2022-03-07T10:00:04Z
--- license: apache-2.0 language: en tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilroberta-base-squad_v2 results: - task: name: Question Answering type: question-answering dataset: type: squad_v2 # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: The Stanford Question Answering Dataset args: en metrics: - type: eval_exact value: 65.2405 - type: eval_f1 value: 68.6265 - type: eval_HasAns_exact value: 67.5776 - type: eval_HasAns_f1 value: 74.3594 - type: eval_NoAns_exact value: 62.91 - type: eval_NoAns_f1 value: 62.91 --- # distilroberta-base-squad_v2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the squad_v2 dataset. ## Model description This model is fine-tuned on the extractive question answering task -- The Stanford Question Answering Dataset -- [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/). For convenience this model is prepared to be used with the frameworks `PyTorch`, `Tensorflow` and `ONNX`. ## Intended uses & limitations This model can handle mismatched question-context pairs. Make sure to specify `handle_impossible_answer=True` when using `QuestionAnsweringPipeline`. __Example usage:__ ```python >>> from transformers import AutoModelForQuestionAnswering, AutoTokenizer, QuestionAnsweringPipeline >>> model = AutoModelForQuestionAnswering.from_pretrained("squirro/distilroberta-base-squad_v2") >>> tokenizer = AutoTokenizer.from_pretrained("squirro/distilroberta-base-squad_v2") >>> qa_model = QuestionAnsweringPipeline(model, tokenizer) >>> qa_model( >>> question="What's your name?", >>> context="My name is Clara and I live in Berkeley.", >>> handle_impossible_answer=True # important! >>> ) {'score': 0.9498472809791565, 'start': 11, 'end': 16, 'answer': 'Clara'} ``` ## Training and evaluation data Training and evaluation was done on [SQuAD2.0](https://huggingface.co/datasets/squad_v2). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - num_devices: 8 - total_train_batch_size: 512 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Metric | Value | |:-------------------------|-------------:| | epoch | 3 | | eval_HasAns_exact | 67.5776 | | eval_HasAns_f1 | 74.3594 | | eval_HasAns_total | 5928 | | eval_NoAns_exact | 62.91 | | eval_NoAns_f1 | 62.91 | | eval_NoAns_total | 5945 | | eval_best_exact | 65.2489 | | eval_best_exact_thresh | 0 | | eval_best_f1 | 68.6349 | | eval_best_f1_thresh | 0 | | eval_exact | 65.2405 | | eval_f1 | 68.6265 | | eval_samples | 12165 | | eval_total | 11873 | | train_loss | 1.40336 | | train_runtime | 1365.28 | | train_samples | 131823 | | train_samples_per_second | 289.662 | | train_steps_per_second | 0.567 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6 --- # About Us <img src="https://squirro.com/wp-content/themes/squirro/img/squirro_logo.svg" alt="Squirro Logo" width="250"/> Squirro marries data from any source with your intent, and your context to intelligently augment decision-making - right when you need it! An Insight Engine at its core, Squirro works with global organizations, primarily in financial services, public sector, professional services, and manufacturing, among others. Customers include Bank of England, European Central Bank (ECB), Deutsche Bundesbank, Standard Chartered, Henkel, Armacell, Candriam, and many other world-leading firms. Founded in 2012, Squirro is currently present in Zürich, London, New York, and Singapore. Further information about AI-driven business insights can be found at http://squirro.com. ## Social media profiles: - Redefining AI Podcast (Spotify): https://open.spotify.com/show/6NPLcv9EyaD2DcNT8v89Kb - Redefining AI Podcast (Apple Podcasts): https://podcasts.apple.com/us/podcast/redefining-ai/id1613934397 - Squirro LinkedIn: https://www.linkedin.com/company/squirroag - Squirro Academy LinkedIn: https://www.linkedin.com/showcase/the-squirro-academy - Twitter: https://twitter.com/Squirro - Facebook: https://www.facebook.com/squirro - Instagram: https://www.instagram.com/squirro/
RuiqianLi/wav2vec2-large-960h-lv60-self-4-gram_fine-tune_real_29_Jun
RuiqianLi
2022-06-29T08:44:53Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:uob_singlish", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-29T04:45:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - uob_singlish model-index: - name: wav2vec2-large-960h-lv60-self-4-gram_fine-tune_real_29_Jun results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-960h-lv60-self-4-gram_fine-tune_real_29_Jun This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the uob_singlish dataset. It achieves the following results on the evaluation set: - Loss: 1.2895 - Wer: 0.4583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.1283 | 1.82 | 20 | 1.5236 | 0.5764 | | 1.3015 | 3.64 | 40 | 1.2956 | 0.4931 | | 0.9918 | 5.45 | 60 | 1.3087 | 0.5347 | | 0.849 | 7.27 | 80 | 1.2914 | 0.5139 | | 0.6191 | 9.09 | 100 | 1.2895 | 0.4583 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
cwkeam/m-ctc-t-large-lid
cwkeam
2022-06-29T08:11:14Z
3
0
transformers
[ "transformers", "pytorch", "mctct", "speech", "en", "dataset:librispeech_asr", "dataset:common_voice", "arxiv:2111.00161", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-06-29T08:08:36Z
--- language: en datasets: - librispeech_asr - common_voice tags: - speech license: apache-2.0 --- # M-CTC-T ​ Massively multilingual speech recognizer from Meta AI. The model is a 1B-param transformer encoder, with a CTC head over 8065 character labels and a language identification head over 60 language ID labels. It is trained on Common Voice (version 6.1, December 2020 release) and VoxPopuli. After training on Common Voice and VoxPopuli, the model is trained on Common Voice only. The labels are unnormalized character-level transcripts (punctuation and capitalization are not removed). The model takes as input Mel filterbank features from a 16Khz audio signal. ​ ![model image](https://raw.githubusercontent.com/cwkeam/scientific-images/main/MCTCT/mctct-arch.png) ​ The original Flashlight code, model checkpoints, and Colab notebook can be found at https://github.com/flashlight/wav2letter/tree/main/recipes/mling_pl . ​ ​ ## Citation ​ [Paper](https://arxiv.org/abs/2111.00161) ​ Authors: Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, Ronan Collobert ​ ``` @article{lugosch2021pseudo, title={Pseudo-Labeling for Massively Multilingual Speech Recognition}, author={Lugosch, Loren and Likhomanenko, Tatiana and Synnaeve, Gabriel and Collobert, Ronan}, journal={ICASSP}, year={2022} } ``` ​ Additional thanks to [Chan Woo Kim](https://huggingface.co/cwkeam) and [Patrick von Platen](https://huggingface.co/patrickvonplaten) for porting the model from Flashlight to PyTorch. ​ # Training method ​ ![model image](https://raw.githubusercontent.com/cwkeam/scientific-images/main/MCTCT/mctct-slimipl.png) TO-DO: replace with the training diagram from paper ​ For more information on how the model was trained, please take a look at the [official paper](https://arxiv.org/abs/2111.00161). ​ # Usage ​ To transcribe audio files the model can be used as a standalone acoustic model as follows: ​ ```python import torch import torchaudio from datasets import load_dataset from transformers import MCTCTForCTC, MCTCTProcessor model = MCTCTForCTC.from_pretrained("speechbrain/mctct-large") processor = MCTCTProcessor.from_pretrained("speechbrain/mctct-large") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_features = processor(ds[0]["audio"]["array"], return_tensors="pt").input_features # retrieve logits logits = model(input_features).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` Results for Common Voice, averaged over all languages: ​ *Character error rate (CER)*: ​ | Valid | Test | |-------|------| | 21.4 | 23.3 |
prithivida/bert-for-patents-64d
prithivida
2022-06-29T07:47:23Z
41
8
transformers
[ "transformers", "pytorch", "tf", "bert", "feature-extraction", "masked-lm", "en", "license:apache-2.0", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-31T06:40:35Z
--- language: - en tags: - masked-lm - pytorch pipeline-tag: "fill-mask" mask-token: "[MASK]" widget: - text: "The present [MASK] provides a torque sensor that is small and highly rigid and for which high production efficiency is possible." - text: "The present invention relates to [MASK] accessories and pertains particularly to a brake light unit for bicycles." - text: "The present invention discloses a space-bound-free [MASK] and its coordinate determining circuit for determining a coordinate of a stylus pen." - text: "The illuminated [MASK] includes a substantially translucent canopy supported by a plurality of ribs pivotally swingable towards and away from a shaft." license: apache-2.0 metrics: - perplexity --- # Motivation This model is based on anferico/bert-for-patents - a BERT<sub>LARGE</sub> model (See next section for details below). By default, the pre-trained model's output embeddings with size 768 (base-models) or with size 1024 (large-models). However, when you store Millions of embeddings, this can require quite a lot of memory/storage. So have reduced the embedding dimension to 64 i.e 1/16th of 1024 using Principle Component Analysis (PCA) and it still gives a comparable performance. Yes! PCA gives better performance than NMF. Note: This process neither improves the runtime, nor the memory requirement for running the model. It only reduces the needed space to store embeddings, for example, for semantic search using vector databases. # BERT for Patents BERT for Patents is a model trained by Google on 100M+ patents (not just US patents). If you want to learn more about the model, check out the [blog post](https://cloud.google.com/blog/products/ai-machine-learning/how-ai-improves-patent-analysis), [white paper](https://services.google.com/fh/files/blogs/bert_for_patents_white_paper.pdf) and [GitHub page](https://github.com/google/patents-public-data/blob/master/models/BERT%20for%20Patents.md) containing the original TensorFlow checkpoint. --- ### Projects using this model (or variants of it): - [Patents4IPPC](https://github.com/ec-jrc/Patents4IPPC) (carried out by [Pi School](https://picampus-school.com/) and commissioned by the [Joint Research Centre (JRC)](https://ec.europa.eu/jrc/en) of the European Commission)
coolzhao/xlm-roberta-base-finetuned-panx-de
coolzhao
2022-06-29T07:14:20Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-29T07:01:12Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8600306626540231 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1356 - F1: 0.8600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2525 | 1.0 | 525 | 0.1673 | 0.8294 | | 0.1298 | 2.0 | 1050 | 0.1381 | 0.8510 | | 0.0839 | 3.0 | 1575 | 0.1356 | 0.8600 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
hellennamulinda/agric-eng-lug
hellennamulinda
2022-06-29T06:40:17Z
5
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain", "unk", "dataset:hellennamulinda/autotrain-data-agric-eng-lug", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-23T13:50:37Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - hellennamulinda/autotrain-data-agric-eng-lug co2_eq_emissions: 0.04087910671538076 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 1026034854 - CO2 Emissions (in grams): 0.04087910671538076 ## Validation Metrics - Loss: 1.0871405601501465 - Rouge1: 55.8225 - Rouge2: 34.1547 - RougeL: 54.4274 - RougeLsum: 54.408 - Gen Len: 23.178 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/hellennamulinda/autotrain-agric-eng-lug-1026034854 ```
iiShreya/q-FrozenLake-v1-4x4-noSlippery
iiShreya
2022-06-29T05:28:15Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-29T05:28:08Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
RodrigoGuerra/bert-base-spanish-wwm-uncased-finetuned-clinical
RodrigoGuerra
2022-06-29T05:26:54Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-29T04:04:21Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-base-spanish-wwm-uncased-finetuned-clinical results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-spanish-wwm-uncased-finetuned-clinical This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7962 - F1: 0.1081 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:------:|:---------------:|:------:| | 1.1202 | 1.0 | 2007 | 1.0018 | 0.0062 | | 1.0153 | 2.0 | 4014 | 0.9376 | 0.0166 | | 0.9779 | 3.0 | 6021 | 0.9026 | 0.0342 | | 0.9598 | 4.0 | 8028 | 0.8879 | 0.0337 | | 0.9454 | 5.0 | 10035 | 0.8699 | 0.0598 | | 0.9334 | 6.0 | 12042 | 0.8546 | 0.0682 | | 0.9263 | 7.0 | 14049 | 0.8533 | 0.0551 | | 0.9279 | 8.0 | 16056 | 0.8538 | 0.0715 | | 0.9184 | 9.0 | 18063 | 0.8512 | 0.0652 | | 0.9151 | 10.0 | 20070 | 0.8313 | 0.0789 | | 0.9092 | 11.0 | 22077 | 0.8299 | 0.0838 | | 0.9083 | 12.0 | 24084 | 0.8331 | 0.0718 | | 0.9057 | 13.0 | 26091 | 0.8319 | 0.0719 | | 0.9018 | 14.0 | 28098 | 0.8133 | 0.0969 | | 0.9068 | 15.0 | 30105 | 0.8234 | 0.0816 | | 0.9034 | 16.0 | 32112 | 0.8151 | 0.0899 | | 0.9008 | 17.0 | 34119 | 0.8145 | 0.0967 | | 0.8977 | 18.0 | 36126 | 0.8168 | 0.0891 | | 0.898 | 19.0 | 38133 | 0.8167 | 0.0818 | | 0.8956 | 20.0 | 40140 | 0.8076 | 0.1030 | | 0.8983 | 21.0 | 42147 | 0.8129 | 0.0867 | | 0.896 | 22.0 | 44154 | 0.8118 | 0.0892 | | 0.8962 | 23.0 | 46161 | 0.8066 | 0.1017 | | 0.8917 | 24.0 | 48168 | 0.8154 | 0.0908 | | 0.8923 | 25.0 | 50175 | 0.8154 | 0.0897 | | 0.8976 | 26.0 | 52182 | 0.8089 | 0.0910 | | 0.8926 | 27.0 | 54189 | 0.8069 | 0.0947 | | 0.8911 | 28.0 | 56196 | 0.8170 | 0.0882 | | 0.8901 | 29.0 | 58203 | 0.7991 | 0.1112 | | 0.8934 | 30.0 | 60210 | 0.7996 | 0.1112 | | 0.8903 | 31.0 | 62217 | 0.8049 | 0.0950 | | 0.8924 | 32.0 | 64224 | 0.8116 | 0.0951 | | 0.8887 | 33.0 | 66231 | 0.7982 | 0.1075 | | 0.8922 | 34.0 | 68238 | 0.8013 | 0.1025 | | 0.8871 | 35.0 | 70245 | 0.8064 | 0.0979 | | 0.8913 | 36.0 | 72252 | 0.8108 | 0.0909 | | 0.8924 | 37.0 | 74259 | 0.8081 | 0.0889 | | 0.8848 | 38.0 | 76266 | 0.7923 | 0.1228 | | 0.8892 | 39.0 | 78273 | 0.8025 | 0.0959 | | 0.8886 | 40.0 | 80280 | 0.7954 | 0.1148 | | 0.8938 | 41.0 | 82287 | 0.8017 | 0.1058 | | 0.8897 | 42.0 | 84294 | 0.7946 | 0.1146 | | 0.8906 | 43.0 | 86301 | 0.7983 | 0.1102 | | 0.889 | 44.0 | 88308 | 0.8068 | 0.0950 | | 0.8872 | 45.0 | 90315 | 0.7999 | 0.1089 | | 0.8902 | 46.0 | 92322 | 0.7992 | 0.0999 | | 0.8912 | 47.0 | 94329 | 0.7981 | 0.1048 | | 0.886 | 48.0 | 96336 | 0.8024 | 0.0991 | | 0.8848 | 49.0 | 98343 | 0.8026 | 0.0984 | | 0.8866 | 50.0 | 100350 | 0.7965 | 0.1135 | | 0.8848 | 51.0 | 102357 | 0.8054 | 0.0926 | | 0.8863 | 52.0 | 104364 | 0.8068 | 0.0917 | | 0.8866 | 53.0 | 106371 | 0.7993 | 0.0964 | | 0.8823 | 54.0 | 108378 | 0.7929 | 0.1126 | | 0.8911 | 55.0 | 110385 | 0.7938 | 0.1132 | | 0.8911 | 56.0 | 112392 | 0.7932 | 0.1144 | | 0.8866 | 57.0 | 114399 | 0.8018 | 0.0957 | | 0.8841 | 58.0 | 116406 | 0.7976 | 0.1015 | | 0.8874 | 59.0 | 118413 | 0.8035 | 0.0966 | | 0.887 | 60.0 | 120420 | 0.7954 | 0.1112 | | 0.888 | 61.0 | 122427 | 0.7927 | 0.1164 | | 0.8845 | 62.0 | 124434 | 0.7982 | 0.1012 | | 0.8848 | 63.0 | 126441 | 0.7978 | 0.1034 | | 0.8857 | 64.0 | 128448 | 0.8036 | 0.0969 | | 0.8827 | 65.0 | 130455 | 0.7958 | 0.1036 | | 0.8878 | 66.0 | 132462 | 0.7983 | 0.1030 | | 0.885 | 67.0 | 134469 | 0.7956 | 0.1055 | | 0.8859 | 68.0 | 136476 | 0.7964 | 0.1058 | | 0.8872 | 69.0 | 138483 | 0.7989 | 0.1005 | | 0.8841 | 70.0 | 140490 | 0.7949 | 0.1138 | | 0.8846 | 71.0 | 142497 | 0.7960 | 0.1062 | | 0.8867 | 72.0 | 144504 | 0.7965 | 0.1058 | | 0.8856 | 73.0 | 146511 | 0.7980 | 0.1007 | | 0.8852 | 74.0 | 148518 | 0.7971 | 0.1012 | | 0.8841 | 75.0 | 150525 | 0.7975 | 0.1049 | | 0.8865 | 76.0 | 152532 | 0.7981 | 0.1010 | | 0.8887 | 77.0 | 154539 | 0.7945 | 0.1095 | | 0.8853 | 78.0 | 156546 | 0.7965 | 0.1053 | | 0.8843 | 79.0 | 158553 | 0.7966 | 0.1062 | | 0.8858 | 80.0 | 160560 | 0.7962 | 0.1081 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.9.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
domenicrosati/deberta-mlm-test
domenicrosati
2022-06-29T05:17:09Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta-v2", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-28T23:53:45Z
--- license: mit tags: - fill-mask - generated_from_trainer metrics: - accuracy model-index: - name: deberta-mlm-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-mlm-test This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2792 - Accuracy: 0.4766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 4.4466 | 1.0 | 2067 | 4.1217 | 0.3847 | | 3.9191 | 2.0 | 4134 | 3.6562 | 0.4298 | | 3.6397 | 3.0 | 6201 | 3.4417 | 0.4550 | | 3.522 | 4.0 | 8268 | 3.3239 | 0.4692 | | 3.4504 | 5.0 | 10335 | 3.2792 | 0.4766 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0a0+17540c5 - Datasets 2.3.2 - Tokenizers 0.12.1
Abhinandan/Atari
Abhinandan
2022-06-29T04:59:38Z
5
1
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-29T04:38:24Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 14.50 +/- 12.34 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Abhinandan -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Abhinandan ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 100000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Shikenrua/distilbert-base-uncased-finetuned-emotion
Shikenrua
2022-06-29T04:46:53Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-17T05:16:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0 - Datasets 1.16.1 - Tokenizers 0.10.3
cwkeam/m-ctc-t-large-sequence-lid
cwkeam
2022-06-29T04:31:03Z
3
0
transformers
[ "transformers", "pytorch", "mctct", "text-classification", "speech", "en", "dataset:librispeech_asr", "dataset:common_voice", "arxiv:2111.00161", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-23T15:10:55Z
--- language: en datasets: - librispeech_asr - common_voice tags: - speech license: apache-2.0 --- # M-CTC-T ​ Massively multilingual speech recognizer from Meta AI. The model is a 1B-param transformer encoder, with a CTC head over 8065 character labels and a language identification head over 60 language ID labels. It is trained on Common Voice (version 6.1, December 2020 release) and VoxPopuli. After training on Common Voice and VoxPopuli, the model is trained on Common Voice only. The labels are unnormalized character-level transcripts (punctuation and capitalization are not removed). The model takes as input Mel filterbank features from a 16Khz audio signal. ​ ![model image](https://raw.githubusercontent.com/cwkeam/scientific-images/main/MCTCT/mctct-arch.png) ​ The original Flashlight code, model checkpoints, and Colab notebook can be found at https://github.com/flashlight/wav2letter/tree/main/recipes/mling_pl . ​ ​ ## Citation ​ [Paper](https://arxiv.org/abs/2111.00161) ​ Authors: Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, Ronan Collobert ​ ``` @article{lugosch2021pseudo, title={Pseudo-Labeling for Massively Multilingual Speech Recognition}, author={Lugosch, Loren and Likhomanenko, Tatiana and Synnaeve, Gabriel and Collobert, Ronan}, journal={ICASSP}, year={2022} } ``` ​ Additional thanks to [Chan Woo Kim](https://huggingface.co/cwkeam) and [Patrick von Platen](https://huggingface.co/patrickvonplaten) for porting the model from Flashlight to PyTorch. ​ # Training method ​ ![model image](https://raw.githubusercontent.com/cwkeam/scientific-images/main/MCTCT/mctct-slimipl.png) TO-DO: replace with the training diagram from paper ​ For more information on how the model was trained, please take a look at the [official paper](https://arxiv.org/abs/2111.00161). ​ # Usage ​ To transcribe audio files the model can be used as a standalone acoustic model as follows: ​ ```python import torch import torchaudio from datasets import load_dataset from transformers import MCTCTForCTC, MCTCTProcessor model = MCTCTForCTC.from_pretrained("speechbrain/mctct-large") processor = MCTCTProcessor.from_pretrained("speechbrain/mctct-large") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_features = processor(ds[0]["audio"]["array"], return_tensors="pt").input_features # retrieve logits logits = model(input_features).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` Results for Common Voice, averaged over all languages: ​ *Character error rate (CER)*: ​ | Valid | Test | |-------|------| | 21.4 | 23.3 |
KyanChen/BuildingExtraction
KyanChen
2022-06-29T02:13:33Z
0
1
null
[ "region:us" ]
null
2022-06-29T01:34:01Z
# STTNet Paper: Building Extraction from Remote Sensing Images with Sparse Token Transformers 1. Prepare Data Prepare data for training, validation, and test phase. All images are with the resolution of $512 \times 512$. Please refer to the directory of **Data**. For larger images, you can patch the images with labels using **Tools/CutImgSegWithLabel.py**. 2. Get Data List Please refer to **Tools/GetTrainValTestCSV.py** to get the train, val, and test csv files. 3. Get Imgs Infos Please refer to **Tools/GetImgMeanStd.py** to get the mean value and standard deviation of the all image pixels in training set. 4. Modify Model Infos Please modify the model information if you want, or keep the default configuration. 5. Run to Train Train the model in **Main.py**. 6. [Optional] Run to Test Test the model with checkpoint in **Test.py**. We have provided pretrained models on INRIA and WHU Datasets. The pt models are in folder **Pretrain**. If you have any questions, please refer to [our paper](https://www.mdpi.com/2072-4292/13/21/4441) or contact with us by email. ``` @Article{rs13214441, AUTHOR = {Chen, Keyan and Zou, Zhengxia and Shi, Zhenwei}, TITLE = {Building Extraction from Remote Sensing Images with Sparse Token Transformers}, JOURNAL = {Remote Sensing}, VOLUME = {13}, YEAR = {2021}, NUMBER = {21}, ARTICLE-NUMBER = {4441}, URL = {https://www.mdpi.com/2072-4292/13/21/4441}, ISSN = {2072-4292}, DOI = {10.3390/rs13214441} } ```
gary109/ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-5gram-v3
gary109
2022-06-29T01:22:31Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-28T14:58:21Z
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-5gram-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-5gram-v3 This model is a fine-tuned version of [gary109/ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-v2](https://huggingface.co/gary109/ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-v2) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING2 dataset. It achieves the following results on the evaluation set: - Loss: 0.5265 - Wer: 0.2256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2546 | 1.0 | 280 | 0.6004 | 0.2796 | | 0.2325 | 2.0 | 560 | 0.6337 | 0.2729 | | 0.2185 | 3.0 | 840 | 0.5546 | 0.2299 | | 0.1988 | 4.0 | 1120 | 0.5265 | 0.2256 | | 0.1755 | 5.0 | 1400 | 0.5577 | 0.2212 | | 0.1474 | 6.0 | 1680 | 0.6353 | 0.2241 | | 0.1498 | 7.0 | 1960 | 0.5758 | 0.2086 | | 0.1252 | 8.0 | 2240 | 0.5738 | 0.2052 | | 0.1174 | 9.0 | 2520 | 0.5994 | 0.2048 | | 0.1035 | 10.0 | 2800 | 0.5988 | 0.2038 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
gary109/ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-5gram-v4-1
gary109
2022-06-29T01:00:45Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-28T05:51:25Z
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-5gram-v4-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-5gram-v4-1 This model is a fine-tuned version of [gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v4](https://huggingface.co/gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v4) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING2 dataset. It achieves the following results on the evaluation set: - Loss: 0.2143 - Wer: 0.1211 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2609 | 1.0 | 280 | 0.2313 | 0.1376 | | 0.2297 | 2.0 | 560 | 0.2240 | 0.1397 | | 0.1951 | 3.0 | 840 | 0.2280 | 0.1361 | | 0.1816 | 4.0 | 1120 | 0.2215 | 0.1282 | | 0.1634 | 5.0 | 1400 | 0.2180 | 0.1240 | | 0.1338 | 6.0 | 1680 | 0.2226 | 0.1241 | | 0.1411 | 7.0 | 1960 | 0.2143 | 0.1211 | | 0.1143 | 8.0 | 2240 | 0.2181 | 0.1174 | | 0.1127 | 9.0 | 2520 | 0.2215 | 0.1167 | | 0.105 | 10.0 | 2800 | 0.2196 | 0.1160 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
workRL/q-Taxi-v3
workRL
2022-06-28T23:49:57Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-28T23:49:51Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Aalaa/opt-125m-wikitext2
Aalaa
2022-06-28T22:39:40Z
53
0
transformers
[ "transformers", "pytorch", "tensorboard", "opt", "text-generation", "generated_from_trainer", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-28T21:52:26Z
--- license: other tags: - generated_from_trainer model-index: - name: opt-125m-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-125m-wikitext2 This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.4123 | 1.0 | 2370 | 3.3621 | | 3.2096 | 2.0 | 4740 | 3.3452 | | 3.0822 | 3.0 | 7110 | 3.3409 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
13hannes11/master_thesis_models
13hannes11
2022-06-28T21:14:01Z
0
0
null
[ "tensorboard", "focus-prediction", "microscopy", "pytorch", "license:mit", "region:us" ]
null
2022-03-08T16:31:24Z
--- name: "K-POP" license: "mit" metrics: - MAE - PLCC - SRCC - R2 tags: - focus-prediction - microscopy - pytorch --- # K-POP: Predicting Distance to Focal Plane for Kato-Katz Prepared Microscopy Slides Using Deep Learning <a href="https://pytorch.org/get-started/locally/"><img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white"></a><a href="https://pytorchlightning.ai/"> <img alt="Lightning" src="https://img.shields.io/badge/-Lightning-792ee5?logo=pytorchlightning&logoColor=white"></a> <a href="https://hydra.cc/"><img alt="Config: Hydra" src="https://img.shields.io/badge/Config-Hydra-89b8cd"></a> ## Description This repository contains the models and training pipeline for my master thesis. The main repository is hosted on [GitHub](https://github.com/13hannes11/master_thesis_code). The project structure is based on the template by [ashleve](https://github.com/ashleve/lightning-hydra-template). The metadata is stored in `data/focus150/`. The relevant files are `test_metadata.csv`, `train_metadata.csv` and `validation_metadata.csv`. Image data (of 150 x 150 px images) is not published together with this repository therefore training runs are not possible to do without it. The layout of the metadata files is as follows ```csv ,image_path,scan_uuid,study_id,focus_height,original_filename,stack_id,obj_name 0,31/b0d4005e-57d0-4516-a239-abe02a8d0a67/I02413_X009_Y014_Z5107_750_300.jpg,b0d4005e-57d0-4516-a239-abe02a8d0a67,31,-0.013672000000000017,I02413_X009_Y014_Z5107.jpg,1811661,schistosoma 1,31/274d8969-aa7c-4ac0-be60-e753579393ad/I01981_X019_Y014_Z4931_450_0.jpg,274d8969-aa7c-4ac0-be60-e753579393ad,31,-0.029296999999999962,I01981_X019_Y014_Z4931.jpg,1661371,schistosoma ... ``` ## How to run Train model with chosen experiment configuration from `configs/experiment/` ```bash python train.py experiment=focusResNet_150 ``` Train with hyperparameter search from `configs/hparams_search/` ```bash python train.py -m hparams_search=focusResNetMSE_150 ``` You can override any parameter from command line like this ```bash python train.py trainer.max_epochs=20 datamodule.batch_size=64 ``` ## Jupyter notebooks Figures and other evaluation code was run in Jupyter notebooks. These are available at `notebooks/`
syndi-models/article-title-generator
syndi-models
2022-06-28T20:08:16Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-09T18:49:29Z
--- license: mit --- ## Article Title Generator The model is based on the T5 language model and trained using a large collection of Medium articles. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("czearing/article-title-generator") model = AutoModel.from_pretrained("czearing/article-title-generator") ``` ## License MIT
czearing/article-title-generator
czearing
2022-06-28T20:08:16Z
1,175
21
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-28T19:44:19Z
--- license: mit --- ## Article Title Generator The model is based on the T5 language model and trained using a large collection of Medium articles. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("czearing/article-title-generator") model = AutoModel.from_pretrained("czearing/article-title-generator") ``` ## License MIT
YushiUeda/callhome_adapt_simu
YushiUeda
2022-06-28T19:33:39Z
3
0
espnet
[ "espnet", "audio", "diarization", "dataset:callhome", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-06-28T19:32:41Z
--- tags: - espnet - audio - diarization language: noinfo datasets: - callhome license: cc-by-4.0 --- ## ESPnet2 DIAR model ### `YushiUeda/callhome_adapt_simu` This model was trained by YushiUeda using callhome recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 0cabe65afd362122e77b04e2e967986a91de0fd8 pip install -e . cd egs2/callhome/diar1 ./run.sh --skip_data_prep false --skip_train true --download_model YushiUeda/callhome_adapt_simu ``` ## DIAR config <details><summary>expand</summary> ``` config: conf/tuning/train_diar_eda_adapt.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/diar_train_diar_eda_adapt_simu ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 43777 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max - - train - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: - exp/diar_train_diar_eda_5_raw/latest.pth ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 16 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/diar_stats_8k/train/speech_shape - exp/diar_stats_8k/train/spk_labels_shape valid_shape_file: - exp/diar_stats_8k/valid/speech_shape - exp/diar_stats_8k/valid/spk_labels_shape batch_type: folded valid_batch_type: null fold_length: - 80000 - 800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/simu/data/swb_sre_tr_ns1n2n3n4_beta2n2n5n9_100000/wav.scp - speech - sound - - dump/raw/simu/data/swb_sre_tr_ns1n2n3n4_beta2n2n5n9_100000/espnet_rttm - spk_labels - rttm valid_data_path_and_name_and_type: - - dump/raw/simu/data/swb_sre_cv_ns1n2n3n4_beta2n2n5n9_500/wav.scp - speech - sound - - dump/raw/simu/data/swb_sre_cv_ns1n2n3n4_beta2n2n5n9_500/espnet_rttm - spk_labels - rttm allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0001 scheduler: null scheduler_conf: {} num_spk: 4 init: null input_size: null model_conf: attractor_weight: 1.0 use_preprocessor: true frontend: default frontend_conf: fs: 8k hop_length: 128 specaug: specaug specaug_conf: apply_time_warp: false apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/diar_stats_8k/train/feats_stats.npz encoder: transformer encoder_conf: input_layer: conv2d num_blocks: 4 linear_units: 512 dropout_rate: 0.1 output_size: 256 attention_heads: 4 attention_dropout_rate: 0.1 decoder: linear decoder_conf: {} label_aggregator: label_aggregator label_aggregator_conf: win_length: 1024 hop_length: 512 attractor: rnn attractor_conf: unit: 256 layer: 1 dropout: 0.0 attractor_grad: true required: - output_dir version: '202204' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
b3ck1/gpt-neo-125M-finetuned-beer-recipes
b3ck1
2022-06-28T19:03:17Z
14
3
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "text generation", "causal-lm", "en", "dataset:custom", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - text generation - pytorch - causal-lm license: apache-2.0 datasets: - custom widget: - text: "style: Pilsner\nbatch_size: 20\nefficiency: 75\nboil_size:" example_title: "Pilsener" - text: "style: IPA\nbatch_size: 20\nefficiency: 75\nboil_size:" example_title: "IPA" - text: "style: Scottish Ale\nbatch_size: 20\nefficiency: 75\nboil_size:" example_title: "Scottish Ale" inference: parameters: do_sample: true top_k: 10 top_p: 0.99 max_length: 500 --- # GPT-Neo 125M finetuned with beer recipes ## Model Description GPT-Neo 125M is a transformer model based on EleutherAI's replication of the GPT-3 architecture https://huggingface.co/EleutherAI/gpt-neo-125M. It generates recipes for brewing beer in a YAML-like format which can be easily used for different purposes. ## Training data This model was trained on a custom dataset of ~ 76,800 beer recipes from the internet. It includes recipes for the following styles of beer: * Strong American Ale * Pale American Ale * India Pale Ale (IPA) * Standard American Beer * Stout * English Pale Ale * IPA * American Porter and Stout * Sour Ale * Irish Beer * Strong British Ale * Belgian and French Ale * German Wheat and Rye Beer * Czech Lager * Spice/Herb/Vegetable Beer * Specialty Beer * American Ale * Pilsner * Belgian Ale * Strong Belgian Ale * Bock * Brown British Beer * German Wheat Beer * Fruit Beer * Amber Malty European Lager * Pale Malty European Lager * British Bitter * Amber and Brown American Beer * Light Hybrid Beer * Pale Commonwealth Beer * American Wild Ale * European Amber Lager * Belgian Strong Ale * International Lager * Amber Bitter European Lager * Light Lager * Scottish and Irish Ale * European Sour Ale * Trappist Ale * Strong European Beer * Porter * Historical Beer * Pale Bitter European Beer * Amber Hybrid Beer * Smoke Flavored/Wood-Aged Beer * Spiced Beer * Dark European Lager * Alternative Fermentables Beer * Mead * Strong Ale * Dark British Beer * Scottish Ale * Smoked Beer * English Brown Ale * Dark Lager * Cider or Perry * Wood Beer ### How to use You can use this model directly with a pipeline for text generation. This example generates a different recipe each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='b3ck1/gpt-neo-125M-finetuned-beer-recipes') >>> generator("style: Pilsner\nbatch_size: 20\nefficiency: 75\nboil_size:", do_sample=True, min_length=50, max_length=500) >>> print(output[0]['generated_text']) style: Pilsner batch_size: 20 efficiency: 70 boil_size: 24 boil_time: 60 fermentables: - name: Pale Ale type: Grain amount: 6.5 hops: - name: Saaz alpha: 3.5 use: Boil time: 60 amount: 0.06 - name: Saaz alpha: 3.5 use: Boil time: 30 amount: 0.06 - name: Saaz alpha: 3.5 use: Boil time: 10 amount: 0.06 - name: Saaz alpha: 3.5 use: Boil time: 0 amount: 0.06 yeasts: - name: Safale - American Ale Yeast US-05 amount: 0.11 min_temperature: 12 max_temperature: 25 primary_temp: null mash_steps: - step_temp: 65 step_time: 60 miscs: [] ``` ### See this model in action This model was used to build https://beerai.net.
facebook/regnet-x-002
facebook
2022-06-28T17:54:23Z
142
1
transformers
[ "transformers", "pytorch", "tf", "regnet", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2003.13678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-15T19:34:23Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
DeepPavlov/distilrubert-small-cased-conversational
DeepPavlov
2022-06-28T17:19:09Z
28,705
3
transformers
[ "transformers", "pytorch", "distilbert", "ru", "arxiv:2205.02340", "arxiv:1910.01108", "endpoints_compatible", "region:us" ]
null
2022-06-28T17:15:00Z
--- language: - ru --- # distilrubert-small-cased-conversational Conversational DistilRuBERT-small \(Russian, cased, 2‑layer, 768‑hidden, 12‑heads, 107M parameters\) was trained on OpenSubtitles\[1\], [Dirty](https://d3.ru/), [Pikabu](https://pikabu.ru/), and a Social Media segment of Taiga corpus\[2\] (as [Conversational RuBERT](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational)). It can be considered as small copy of [Conversational DistilRuBERT-base](https://huggingface.co/DeepPavlov/distilrubert-base-cased-conversational). Our DistilRuBERT-small was highly inspired by \[3\], \[4\]. Namely, we used * KL loss (between teacher and student output logits) * MLM loss (between tokens labels and student output logits) * Cosine embedding loss (between averaged six consecutive hidden states from teacher's encoder and one hidden state of the student) * MSE loss (between averaged six consecutive attention maps from teacher's encoder and one attention map of the student) The model was trained for about 80 hrs. on 8 nVIDIA Tesla P100-SXM2.0 16Gb. To evaluate improvements in the inference speed, we ran teacher and student models on random sequences with seq_len=512, batch_size = 16 (for throughput) and batch_size=1 (for latency). All tests were performed on Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz and nVIDIA Tesla P100-SXM2.0 16Gb. | Model | Size, Mb. | CPU latency, sec.| GPU latency, sec. | CPU throughput, samples/sec. | GPU throughput, samples/sec. | |-------------------------------------------------|------------|------------------|-------------------|------------------------------|------------------------------| | Teacher (RuBERT-base-cased-conversational) | 679 | 0.655 | 0.031 | 0.3754 | 36.4902 | | Student (DistilRuBERT-small-cased-conversational)| 409 | 0.1656 | 0.015 | 0.9692 | 71.3553 | To evaluate model quality, we fine-tuned DistilRuBERT-small on classification, NER and question answering tasks. Scores and archives with fine-tuned models can be found in [DeepPavlov docs](http://docs.deeppavlov.ai/en/master/features/overview.html#models). Also, results could be found in the [paper](https://arxiv.org/abs/2205.02340) Tables 1&2 as well as performance benchmarks and training details. # Citation If you found the model useful for your research, we are kindly ask to cite [this](https://arxiv.org/abs/2205.02340) paper: ``` @misc{https://doi.org/10.48550/arxiv.2205.02340, doi = {10.48550/ARXIV.2205.02340}, url = {https://arxiv.org/abs/2205.02340}, author = {Kolesnikova, Alina and Kuratov, Yuri and Konovalov, Vasily and Burtsev, Mikhail}, keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Knowledge Distillation of Russian Language Models with Reduction of Vocabulary}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ``` \[1\]: P. Lison and J. Tiedemann, 2016, OpenSubtitles2016: Extracting Large Parallel Corpora from Movie and TV Subtitles. In Proceedings of the 10th International Conference on Language Resources and Evaluation \(LREC 2016\) \[2\]: Shavrina T., Shapovalova O. \(2017\) TO THE METHODOLOGY OF CORPUS CONSTRUCTION FOR MACHINE LEARNING: «TAIGA» SYNTAX TREE CORPUS AND PARSER. in proc. of “CORPORA2017”, international conference , Saint-Petersbourg, 2017. \[3\]: Sanh, V., Debut, L., Chaumond, J., & Wolf, T. \(2019\). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108. \[4\]: <https://github.com/huggingface/transformers/tree/master/examples/research_projects/distillation>
ranesh/qw
ranesh
2022-06-28T17:17:47Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-06-28T17:17:47Z
--- license: bigscience-bloom-rail-1.0 ---
mariastull/dqn-SpaceInvadersNoFrameSkip-v4
mariastull
2022-06-28T16:55:20Z
5
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-28T16:54:53Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 3.00 +/- 4.58 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mariastull -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mariastull ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 100000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
crumb/gpt2-regular-large
crumb
2022-06-28T16:35:01Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-13T14:08:55Z
--- tags: - generated_from_trainer model-index: - name: gpt-regular-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-regular-test i was stupid and all the newline tokens are replaced with [/n] so be wary if you're using the demo on this page that that just means new line ```python from transformers import AutoTokenizer from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("crumb/gpt2-regular-large") tokenizer = AutoTokenizer.from_pretrained("gpt2-large", use_fast=True) prompt = """(Episode begins with Mordecai and Rigby watching TV) Mordecai: Dude, what are you doing? I think I'm gonna lose my mind. Rigby:""" prompt=prompt.replace("\n","[/n]") tokenz = tokenizer(prompt,return_tensors='pt')['input_ids'] output = model.generate( tokenz, max_length=length, num_return_sequences=1, top_p=.92, temperature=.65, do_sample=True, top_k=125, early_stopping=True, pad_token_id=tokenizer.eos_token_id ) output = tokenizer.decode(output[0]).replace("[/n]","\n") print(output) ``` This model is a fine-tuned version of gpt2-large on the entirety of Regular Show. It achieves the following results on the evaluation set (The Power, Death Punchies, Do Me a Solid): - Loss: 1.6383 ## Intended uses & limitations Same as gpt2-large ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1844 | 1.0 | 7633 | 1.6383 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
fxtentacle/wav2vec2-xls-r-1b-tevr
fxtentacle
2022-06-28T16:22:18Z
27
14
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "hf-asr-leaderboard", "de", "dataset:common_voice", "arxiv:2206.12693", "license:apache-2.0", "model-index", "region:us" ]
automatic-speech-recognition
2022-06-02T09:09:53Z
--- language: de datasets: - common_voice inference: false metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - hf-asr-leaderboard license: apache-2.0 model-index: - name: wav2vec 2.0 XLS-R 1B + TEVR tokens + 5-gram LM by Hajo Nils Krabbenhöft results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice de type: common_voice args: de metrics: - name: Test WER type: wer value: 3.6433399042523233 - name: Test CER type: cer value: 1.5398893560981173 --- ## Overview This folder contains a fully trained German speech recognition pipeline consisting of an acoustic model using the new wav2vec 2.0 XLS-R 1B **TEVR** architecture and a 5-gram KenLM language model. For an explanation of the TEVR enhancements and their motivation, please see our paper: [TEVR: Improving Speech Recognition by Token Entropy Variance Reduction](https://arxiv.org/abs/2206.12693). [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/tevr-improving-speech-recognition-by-token/speech-recognition-on-common-voice-german)](https://paperswithcode.com/sota/speech-recognition-on-common-voice-german?p=tevr-improving-speech-recognition-by-token) This pipeline scores a very competitive (as of June 2022) **word error rate of 3.64%** on CommonVoice German. The character error rate was 1.54%. ## Citation If you use this ASR pipeline for research, please cite: ```bibtex @misc{https://doi.org/10.48550/arxiv.2206.12693, doi = {10.48550/ARXIV.2206.12693}, url = {https://arxiv.org/abs/2206.12693}, author = {Krabbenhöft, Hajo Nils and Barth, Erhardt}, keywords = {Computation and Language (cs.CL), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering, F.2.1; I.2.6; I.2.7}, title = {TEVR: Improving Speech Recognition by Token Entropy Variance Reduction}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` ## TEVR Tokenizer Creation / Testing See https://huggingface.co/fxtentacle/tevr-token-entropy-predictor-de for: - our trained ByT5 model used to calculate the entropies in the paper - a Jupyter Notebook to generate a TEVR Tokenizer from a text corpus - a Jupyter Notebook to generate the illustration image in the paper ## Evaluation To evalue this pipeline yourself and/or on your own data, see the `HF Eval Script.ipynb` Jupyter Notebook or use the following python script: ```python !pip install --quiet --root-user-action=ignore --upgrade pip !pip install --quiet --root-user-action=ignore "datasets>=1.18.3" "transformers==4.11.3" librosa jiwer huggingface_hub !pip install --quiet --root-user-action=ignore https://github.com/kpu/kenlm/archive/master.zip pyctcdecode !pip install --quiet --root-user-action=ignore --upgrade transformers !pip install --quiet --root-user-action=ignore torch_audiomentations audiomentations ``` ```python from datasets import load_dataset, Audio, load_metric from transformers import AutoModelForCTC, Wav2Vec2ProcessorWithLM import torchaudio.transforms as T import torch import unicodedata import numpy as np import re # load testing dataset testing_dataset = load_dataset("common_voice", "de", split="test") # replace invisible characters with space allchars = list(set([c for t in testing_dataset['sentence'] for c in list(t)])) map_to_space = [c for c in allchars if unicodedata.category(c)[0] in 'PSZ' and c not in 'ʻ-'] replacements = ''.maketrans(''.join(map_to_space), ''.join(' ' for i in range(len(map_to_space))), '\'ʻ') def text_fix(text): # change ß to ss text = text.replace('ß','ss') # convert dash to space and remove double-space text = text.replace('-',' ').replace(' ',' ').replace(' ',' ') # make lowercase text = text.lower() # remap all invisible characters to space text = text.translate(replacements).strip() # for easier comparison to Zimmermeister, replace unrepresentable characters with ? text = re.sub("[âşěýňעảנźțãòàǔł̇æồאắîשðșęūāñë生בøúıśžçćńřğ]+","?",text) # remove multiple spaces (again) text = ' '.join([w for w in text.split(' ') if w != '']) return text # load model model = AutoModelForCTC.from_pretrained("fxtentacle/wav2vec2-xls-r-1b-tevr") model.to('cuda') # load processor class HajoProcessor(Wav2Vec2ProcessorWithLM): @staticmethod def get_missing_alphabet_tokens(decoder, tokenizer): return [] processor = HajoProcessor.from_pretrained("fxtentacle/wav2vec2-xls-r-1b-tevr") # this function will be called for each WAV file def predict_single_audio(batch, image=False): audio = batch['audio']['array'] # resample, if needed if batch['audio']['sampling_rate'] != 16000: audio = T.Resample(orig_freq=batch['audio']['sampling_rate'], new_freq=16000)(torch.from_numpy(audio)).numpy() # normalize audio = (audio - audio.mean()) / np.sqrt(audio.var() + 1e-7) # ask HF processor to prepare audio for GPU eval input_values = processor(audio, return_tensors="pt", sampling_rate=16_000).input_values # call model on GPU with torch.no_grad(): logits = model(input_values.to('cuda')).logits.cpu().numpy()[0] # ask HF processor to decode logits decoded = processor.decode(logits, beam_width=500) # return as dictionary return { 'groundtruth': text_fix(batch['sentence']), 'prediction': decoded.text } # process all audio files all_predictions = testing_dataset.map(predict_single_audio, remove_columns=testing_dataset.column_names) # print results print('WER', load_metric("wer").compute(predictions=all_predictions['prediction'], references=all_predictions['groundtruth'])*100.0, '%') print('CER', load_metric("cer").compute(predictions=all_predictions['prediction'], references=all_predictions['groundtruth'])*100.0, '%') ``` WER 3.6433399042523233 % CER 1.5398893560981173 %
Parkerboys211/IDK
Parkerboys211
2022-06-28T15:45:54Z
0
0
null
[ "region:us" ]
null
2022-06-28T15:44:55Z
can someone teach me how to do this pls help me--- license: isc ---
facebook/regnet-x-120
facebook
2022-06-28T15:40:50Z
68
0
transformers
[ "transformers", "pytorch", "tf", "regnet", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2003.13678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-18T15:26:36Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
Shanny/dbgbert-finetuned-squad
Shanny
2022-06-28T15:28:28Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-06-27T09:04:37Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: dbgbert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dbgbert-finetuned-squad This model was trained from scratch on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Salvatore/bert-finetuned-ner
Salvatore
2022-06-28T15:24:09Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-16T09:09:26Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0997 - Proteinmutation F1: 0.1309 - Snp F1: 0.1953 - Dnamutation F1: 0.3778 - Precision: 0.2380 - Recall: 0.2416 - F1: 0.2398 - Accuracy: 0.9703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Proteinmutation F1 | Snp F1 | Dnamutation F1 | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------------------:|:------:|:--------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 324 | 0.0533 | 0.0396 | 0.2830 | 0.4667 | 0.2334 | 0.3221 | 0.2707 | 0.9788 | | 0.1072 | 2.0 | 648 | 0.0437 | 0.6065 | 0.4906 | 0.5009 | 0.4802 | 0.6348 | 0.5468 | 0.9868 | | 0.1072 | 3.0 | 972 | 0.0592 | 0.1379 | 0.2485 | 0.2005 | 0.1639 | 0.2228 | 0.1889 | 0.9731 | | 0.0573 | 4.0 | 1296 | 0.0722 | 0.0749 | 0.2530 | 0.4692 | 0.2705 | 0.2959 | 0.2826 | 0.9749 | | 0.0431 | 5.0 | 1620 | 0.0766 | 0.1574 | 0.1847 | 0.2540 | 0.1766 | 0.2285 | 0.1992 | 0.9723 | | 0.0431 | 6.0 | 1944 | 0.0805 | 0.1099 | 0.2202 | 0.2383 | 0.1657 | 0.2097 | 0.1851 | 0.9715 | | 0.0396 | 7.0 | 2268 | 0.0886 | 0.1337 | 0.2138 | 0.4318 | 0.2683 | 0.2678 | 0.2680 | 0.9724 | | 0.0354 | 8.0 | 2592 | 0.0927 | 0.1535 | 0.2113 | 0.3769 | 0.2505 | 0.2528 | 0.2516 | 0.9714 | | 0.0354 | 9.0 | 2916 | 0.0978 | 0.1011 | 0.2540 | 0.3812 | 0.2495 | 0.2528 | 0.2512 | 0.9705 | | 0.0312 | 10.0 | 3240 | 0.0997 | 0.1309 | 0.1953 | 0.3778 | 0.2380 | 0.2416 | 0.2398 | 0.9703 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2 - Datasets 2.0.0 - Tokenizers 0.12.1
Willy/bert-base-spanish-wwm-cased-finetuned-NLP-IE-4
Willy
2022-06-28T14:44:34Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-20T07:09:26Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-spanish-wwm-cased-finetuned-NLP-IE-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-spanish-wwm-cased-finetuned-NLP-IE-4 This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7825 - Accuracy: 0.4931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7005 | 1.0 | 9 | 0.6977 | 0.5069 | | 0.65 | 2.0 | 18 | 0.7035 | 0.4861 | | 0.6144 | 3.0 | 27 | 0.7189 | 0.4722 | | 0.5898 | 4.0 | 36 | 0.7859 | 0.4861 | | 0.561 | 5.0 | 45 | 0.7825 | 0.4931 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
mmdjiji/bert-chinese-idioms
mmdjiji
2022-06-28T14:12:31Z
7
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-28T02:02:33Z
--- license: gpl-3.0 --- For the detail, see [github:mmdjiji/bert-chinese-idioms](https://github.com/mmdjiji/bert-chinese-idioms).
moonzi/distilbert-base-uncased-finetuned-imdb
moonzi
2022-06-28T13:46:11Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-28T13:37:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4702 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6898 | 1.0 | 157 | 2.5423 | | 2.5746 | 2.0 | 314 | 2.4453 | | 2.5548 | 3.0 | 471 | 2.4528 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v5
gary109
2022-06-28T11:49:44Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-27T14:51:07Z
--- license: apache-2.0 tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v5 This model is a fine-tuned version of [gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4](https://huggingface.co/gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4) on the GARY109/AI_LIGHT_DANCE - ONSET-STEPMANIA2 dataset. It achieves the following results on the evaluation set: - Loss: 1.0163 - Wer: 0.6622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8867 | 1.0 | 376 | 1.0382 | 0.6821 | | 0.8861 | 2.0 | 752 | 1.0260 | 0.6686 | | 0.8682 | 3.0 | 1128 | 1.0358 | 0.6604 | | 0.8662 | 4.0 | 1504 | 1.0234 | 0.6665 | | 0.8463 | 5.0 | 1880 | 1.0333 | 0.6666 | | 0.8573 | 6.0 | 2256 | 1.0163 | 0.6622 | | 0.8628 | 7.0 | 2632 | 1.0209 | 0.6551 | | 0.8493 | 8.0 | 3008 | 1.0525 | 0.6582 | | 0.8371 | 9.0 | 3384 | 1.0409 | 0.6515 | | 0.8229 | 10.0 | 3760 | 1.0597 | 0.6523 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
twieland/MIX3_ja-en_helsinki
twieland
2022-06-28T11:46:58Z
113
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-22T00:54:09Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: MIX3_ja-en_helsinki results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MIX3_ja-en_helsinki This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 2.8699 | 0.01 | 5000 | 2.3465 | | 2.6168 | 0.02 | 10000 | 2.2205 | | 2.5083 | 0.03 | 15000 | 2.2382 | | 2.4359 | 0.04 | 20000 | 2.1670 | | 2.3821 | 0.06 | 25000 | 2.1122 | | 2.3358 | 0.07 | 30000 | 2.0902 | | 2.3045 | 0.08 | 35000 | 2.0461 | | 2.2782 | 0.09 | 40000 | 2.0290 | | 2.2481 | 0.1 | 45000 | 1.9910 | | 2.2267 | 0.11 | 50000 | 2.0059 | | 2.2056 | 0.12 | 55000 | 1.9858 | | 2.1903 | 0.13 | 60000 | 1.9725 | | 2.173 | 0.15 | 65000 | 1.9797 | | 2.154 | 0.16 | 70000 | 1.9654 | | 2.1429 | 0.17 | 75000 | 1.9567 | | 2.1304 | 0.18 | 80000 | 1.9348 | | 2.1232 | 0.19 | 85000 | 1.9361 | | 2.116 | 0.2 | 90000 | 1.9277 | | 2.1016 | 0.21 | 95000 | 1.9193 | | 2.0984 | 0.22 | 100000 | 1.9064 | | 2.0797 | 0.24 | 105000 | 1.9177 | | 2.0767 | 0.25 | 110000 | 1.8975 | | 2.0642 | 0.26 | 115000 | 1.8782 | | 2.0595 | 0.27 | 120000 | 1.9012 | | 2.0533 | 0.28 | 125000 | 1.8977 | | 2.044 | 0.29 | 130000 | 1.8984 | | 2.0374 | 0.3 | 135000 | 1.9221 | | 2.0305 | 0.31 | 140000 | 1.9243 | | 2.02 | 0.32 | 145000 | 1.8773 | | 2.0195 | 0.34 | 150000 | 1.8676 | | 2.0151 | 0.35 | 155000 | 1.8637 | | 2.0065 | 0.36 | 160000 | 1.8556 | | 2.0037 | 0.37 | 165000 | 1.8399 | | 1.9963 | 0.38 | 170000 | 1.8452 | | 1.9878 | 0.39 | 175000 | 1.8644 | | 1.9871 | 0.4 | 180000 | 1.8576 | | 1.9779 | 0.41 | 185000 | 1.8509 | | 1.9721 | 0.43 | 190000 | 1.8405 | | 1.9724 | 0.44 | 195000 | 1.8594 | | 1.9685 | 0.45 | 200000 | 1.8540 | | 1.9634 | 0.46 | 205000 | 1.8694 | | 1.9583 | 0.47 | 210000 | 1.8591 | | 1.9557 | 0.48 | 215000 | 1.8539 | | 1.9494 | 0.49 | 220000 | 1.8673 | | 1.9484 | 0.5 | 225000 | 1.8021 | | 1.9395 | 0.52 | 230000 | 1.8309 | | 1.9384 | 0.53 | 235000 | 1.7933 | | 1.937 | 0.54 | 240000 | 1.8199 | | 1.9315 | 0.55 | 245000 | 1.8065 | | 1.9276 | 0.56 | 250000 | 1.7857 | | 1.9248 | 0.57 | 255000 | 1.8207 | | 1.9195 | 0.58 | 260000 | 1.7898 | | 1.9187 | 0.59 | 265000 | 1.8097 | | 1.9138 | 0.6 | 270000 | 1.7909 | | 1.9094 | 0.62 | 275000 | 1.7995 | | 1.9098 | 0.63 | 280000 | 1.8165 | | 1.9038 | 0.64 | 285000 | 1.8132 | | 1.9034 | 0.65 | 290000 | 1.7951 | | 1.899 | 0.66 | 295000 | 1.7880 | | 1.8965 | 0.67 | 300000 | 1.7953 | | 1.8941 | 0.68 | 305000 | 1.7986 | | 1.8919 | 0.69 | 310000 | 1.7964 | | 1.8875 | 0.71 | 315000 | 1.8041 | | 1.884 | 0.72 | 320000 | 1.7764 | | 1.8798 | 0.73 | 325000 | 1.8019 | | 1.8801 | 0.74 | 330000 | 1.7790 | | 1.8809 | 0.75 | 335000 | 1.7849 | | 1.8736 | 0.76 | 340000 | 1.7800 | | 1.8727 | 0.77 | 345000 | 1.7900 | | 1.8722 | 0.78 | 350000 | 1.7727 | | 1.8699 | 0.8 | 355000 | 1.7597 | | 1.8672 | 0.81 | 360000 | 1.7824 | | 1.8638 | 0.82 | 365000 | 1.7674 | | 1.8609 | 0.83 | 370000 | 1.7715 | | 1.8584 | 0.84 | 375000 | 1.7694 | | 1.8568 | 0.85 | 380000 | 1.7776 | | 1.8523 | 0.86 | 385000 | 1.7697 | | 1.8584 | 0.87 | 390000 | 1.7436 | | 1.8474 | 0.88 | 395000 | 1.7644 | | 1.8492 | 0.9 | 400000 | 1.7732 | | 1.8465 | 0.91 | 405000 | 1.7611 | | 1.846 | 0.92 | 410000 | 1.7717 | | 1.8431 | 0.93 | 415000 | 1.7514 | | 1.8402 | 0.94 | 420000 | 1.7353 | | 1.8398 | 0.95 | 425000 | 1.7720 | | 1.8314 | 0.96 | 430000 | 1.7728 | | 1.8322 | 0.97 | 435000 | 1.7491 | | 1.8284 | 0.99 | 440000 | 1.7561 | | 1.8301 | 1.0 | 445000 | 1.7499 | | 1.8182 | 1.01 | 450000 | 1.7514 | | 1.8111 | 1.02 | 455000 | 1.7596 | | 1.8116 | 1.03 | 460000 | 1.7455 | | 1.8098 | 1.04 | 465000 | 1.7495 | | 1.809 | 1.05 | 470000 | 1.7446 | | 1.8088 | 1.06 | 475000 | 1.7290 | | 1.8127 | 1.08 | 480000 | 1.7453 | | 1.8051 | 1.09 | 485000 | 1.7495 | | 1.8026 | 1.1 | 490000 | 1.7453 | | 1.8028 | 1.11 | 495000 | 1.7615 | | 1.8046 | 1.12 | 500000 | 1.7491 | | 1.8052 | 1.13 | 505000 | 1.7280 | | 1.7997 | 1.14 | 510000 | 1.7482 | | 1.7976 | 1.15 | 515000 | 1.7368 | | 1.7981 | 1.16 | 520000 | 1.7354 | | 1.7949 | 1.18 | 525000 | 1.7076 | | 1.7943 | 1.19 | 530000 | 1.7020 | | 1.7911 | 1.2 | 535000 | 1.7121 | | 1.7909 | 1.21 | 540000 | 1.7170 | | 1.7926 | 1.22 | 545000 | 1.7310 | | 1.7856 | 1.23 | 550000 | 1.7218 | | 1.7875 | 1.24 | 555000 | 1.7362 | | 1.7801 | 1.25 | 560000 | 1.7484 | | 1.7854 | 1.27 | 565000 | 1.7466 | | 1.7799 | 1.28 | 570000 | 1.7248 | | 1.7823 | 1.29 | 575000 | 1.7355 | | 1.7765 | 1.3 | 580000 | 1.7188 | | 1.7779 | 1.31 | 585000 | 1.6993 | | 1.7751 | 1.32 | 590000 | 1.7154 | | 1.7762 | 1.33 | 595000 | 1.7348 | | 1.7725 | 1.34 | 600000 | 1.7272 | | 1.7701 | 1.36 | 605000 | 1.7157 | | 1.7644 | 1.37 | 610000 | 1.7161 | | 1.7707 | 1.38 | 615000 | 1.6961 | | 1.764 | 1.39 | 620000 | 1.6930 | | 1.7639 | 1.4 | 625000 | 1.6927 | | 1.7654 | 1.41 | 630000 | 1.6989 | | 1.7623 | 1.42 | 635000 | 1.6892 | | 1.7598 | 1.43 | 640000 | 1.6911 | | 1.7575 | 1.44 | 645000 | 1.7199 | | 1.7574 | 1.46 | 650000 | 1.6992 | | 1.7526 | 1.47 | 655000 | 1.6981 | | 1.7556 | 1.48 | 660000 | 1.6860 | | 1.7558 | 1.49 | 665000 | 1.7099 | | 1.7539 | 1.5 | 670000 | 1.6950 | | 1.7454 | 1.51 | 675000 | 1.6999 | | 1.748 | 1.52 | 680000 | 1.6871 | | 1.7476 | 1.53 | 685000 | 1.6884 | | 1.7493 | 1.55 | 690000 | 1.6984 | | 1.745 | 1.56 | 695000 | 1.6999 | | 1.7397 | 1.57 | 700000 | 1.7036 | | 1.7429 | 1.58 | 705000 | 1.7223 | | 1.7367 | 1.59 | 710000 | 1.7111 | | 1.7403 | 1.6 | 715000 | 1.6691 | | 1.7361 | 1.61 | 720000 | 1.6693 | | 1.737 | 1.62 | 725000 | 1.6884 | | 1.7347 | 1.63 | 730000 | 1.6641 | | 1.7323 | 1.65 | 735000 | 1.6628 | | 1.7329 | 1.66 | 740000 | 1.6759 | | 1.7292 | 1.67 | 745000 | 1.6654 | | 1.7275 | 1.68 | 750000 | 1.6738 | | 1.7266 | 1.69 | 755000 | 1.6792 | | 1.7259 | 1.7 | 760000 | 1.6752 | | 1.7231 | 1.71 | 765000 | 1.6641 | | 1.7238 | 1.72 | 770000 | 1.6676 | | 1.7223 | 1.74 | 775000 | 1.6563 | | 1.722 | 1.75 | 780000 | 1.6541 | | 1.7195 | 1.76 | 785000 | 1.6560 | | 1.7171 | 1.77 | 790000 | 1.6786 | | 1.7187 | 1.78 | 795000 | 1.6434 | | 1.7186 | 1.79 | 800000 | 1.6538 | | 1.7115 | 1.8 | 805000 | 1.6535 | | 1.7119 | 1.81 | 810000 | 1.6738 | | 1.7106 | 1.83 | 815000 | 1.6597 | | 1.7088 | 1.84 | 820000 | 1.6486 | | 1.7079 | 1.85 | 825000 | 1.6576 | | 1.7062 | 1.86 | 830000 | 1.6676 | | 1.7084 | 1.87 | 835000 | 1.6449 | | 1.7059 | 1.88 | 840000 | 1.6515 | | 1.7057 | 1.89 | 845000 | 1.6609 | | 1.7021 | 1.9 | 850000 | 1.6482 | | 1.7005 | 1.91 | 855000 | 1.6653 | | 1.6988 | 1.93 | 860000 | 1.6801 | | 1.6964 | 1.94 | 865000 | 1.6830 | | 1.6954 | 1.95 | 870000 | 1.6589 | | 1.693 | 1.96 | 875000 | 1.6553 | | 1.689 | 1.97 | 880000 | 1.6554 | | 1.69 | 1.98 | 885000 | 1.6424 | | 1.6893 | 1.99 | 890000 | 1.6628 | | 1.6772 | 2.0 | 895000 | 1.6709 | | 1.6703 | 2.02 | 900000 | 1.6627 | | 1.6726 | 2.03 | 905000 | 1.6612 | | 1.669 | 2.04 | 910000 | 1.6595 | | 1.6696 | 2.05 | 915000 | 1.6427 | | 1.6672 | 2.06 | 920000 | 1.6497 | | 1.669 | 2.07 | 925000 | 1.6288 | | 1.6675 | 2.08 | 930000 | 1.6443 | | 1.6685 | 2.09 | 935000 | 1.6316 | | 1.6671 | 2.11 | 940000 | 1.6451 | | 1.6673 | 2.12 | 945000 | 1.6313 | | 1.6649 | 2.13 | 950000 | 1.6363 | | 1.6655 | 2.14 | 955000 | 1.6440 | | 1.6637 | 2.15 | 960000 | 1.6238 | | 1.6632 | 2.16 | 965000 | 1.6226 | | 1.6599 | 2.17 | 970000 | 1.6171 | | 1.6602 | 2.18 | 975000 | 1.6466 | | 1.658 | 2.19 | 980000 | 1.6341 | | 1.6571 | 2.21 | 985000 | 1.6500 | | 1.6572 | 2.22 | 990000 | 1.6225 | | 1.6572 | 2.23 | 995000 | 1.6296 | | 1.6552 | 2.24 | 1000000 | 1.6437 | | 1.6548 | 2.25 | 1005000 | 1.6162 | | 1.6552 | 2.26 | 1010000 | 1.6223 | | 1.6544 | 2.27 | 1015000 | 1.6355 | | 1.6464 | 2.28 | 1020000 | 1.6250 | | 1.652 | 2.3 | 1025000 | 1.6217 | | 1.6481 | 2.31 | 1030000 | 1.6079 | | 1.6466 | 2.32 | 1035000 | 1.6110 | | 1.6462 | 2.33 | 1040000 | 1.6210 | | 1.6448 | 2.34 | 1045000 | 1.5993 | | 1.6461 | 2.35 | 1050000 | 1.6096 | | 1.6396 | 2.36 | 1055000 | 1.6137 | | 1.644 | 2.37 | 1060000 | 1.6189 | | 1.6396 | 2.39 | 1065000 | 1.6211 | | 1.639 | 2.4 | 1070000 | 1.6149 | | 1.6358 | 2.41 | 1075000 | 1.6144 | | 1.6356 | 2.42 | 1080000 | 1.6018 | | 1.6364 | 2.43 | 1085000 | 1.5999 | | 1.6352 | 2.44 | 1090000 | 1.6095 | | 1.634 | 2.45 | 1095000 | 1.6114 | | 1.6279 | 2.46 | 1100000 | 1.6156 | | 1.6272 | 2.47 | 1105000 | 1.6124 | | 1.6319 | 2.49 | 1110000 | 1.6046 | | 1.6276 | 2.5 | 1115000 | 1.6152 | | 1.6285 | 2.51 | 1120000 | 1.6129 | | 1.6242 | 2.52 | 1125000 | 1.5984 | | 1.6261 | 2.53 | 1130000 | 1.6116 | | 1.623 | 2.54 | 1135000 | 1.6061 | | 1.6203 | 2.55 | 1140000 | 1.6182 | | 1.62 | 2.56 | 1145000 | 1.5887 | | 1.6177 | 2.58 | 1150000 | 1.5731 | | 1.6172 | 2.59 | 1155000 | 1.5990 | | 1.6179 | 2.6 | 1160000 | 1.5965 | | 1.6206 | 2.61 | 1165000 | 1.6000 | | 1.6156 | 2.62 | 1170000 | 1.5873 | | 1.6124 | 2.63 | 1175000 | 1.5899 | | 1.613 | 2.64 | 1180000 | 1.5910 | | 1.6134 | 2.65 | 1185000 | 1.6017 | | 1.609 | 2.67 | 1190000 | 1.5822 | | 1.6084 | 2.68 | 1195000 | 1.5906 | | 1.6101 | 2.69 | 1200000 | 1.6218 | | 1.6077 | 2.7 | 1205000 | 1.6149 | | 1.6057 | 2.71 | 1210000 | 1.5994 | | 1.6018 | 2.72 | 1215000 | 1.5839 | | 1.6049 | 2.73 | 1220000 | 1.5864 | | 1.6012 | 2.74 | 1225000 | 1.5994 | | 1.6013 | 2.75 | 1230000 | 1.5821 | | 1.5957 | 2.77 | 1235000 | 1.5964 | | 1.5971 | 2.78 | 1240000 | 1.5897 | | 1.5967 | 2.79 | 1245000 | 1.5774 | | 1.5927 | 2.8 | 1250000 | 1.5861 | | 1.5954 | 2.81 | 1255000 | 1.5789 | | 1.5937 | 2.82 | 1260000 | 1.5739 | | 1.5895 | 2.83 | 1265000 | 1.5701 | | 1.5912 | 2.84 | 1270000 | 1.5622 | | 1.5922 | 2.86 | 1275000 | 1.5730 | | 1.5883 | 2.87 | 1280000 | 1.5775 | | 1.5864 | 2.88 | 1285000 | 1.5726 | | 1.5837 | 2.89 | 1290000 | 1.5679 | | 1.5824 | 2.9 | 1295000 | 1.5683 | | 1.5817 | 2.91 | 1300000 | 1.5508 | | 1.5778 | 2.92 | 1305000 | 1.5620 | | 1.5822 | 2.93 | 1310000 | 1.5556 | | 1.5783 | 2.95 | 1315000 | 1.5693 | | 1.5751 | 2.96 | 1320000 | 1.5781 | | 1.5716 | 2.97 | 1325000 | 1.5655 | | 1.5765 | 2.98 | 1330000 | 1.5528 | | 1.5728 | 2.99 | 1335000 | 1.5748 | | 1.5672 | 3.0 | 1340000 | 1.5597 | | 1.5467 | 3.01 | 1345000 | 1.5461 | | 1.547 | 3.02 | 1350000 | 1.5516 | | 1.5462 | 3.03 | 1355000 | 1.5519 | | 1.5464 | 3.05 | 1360000 | 1.5593 | | 1.5457 | 3.06 | 1365000 | 1.5576 | | 1.5441 | 3.07 | 1370000 | 1.5653 | | 1.544 | 3.08 | 1375000 | 1.5662 | | 1.5467 | 3.09 | 1380000 | 1.5611 | | 1.5439 | 3.1 | 1385000 | 1.5635 | | 1.5449 | 3.11 | 1390000 | 1.5467 | | 1.5417 | 3.12 | 1395000 | 1.5495 | | 1.5428 | 3.14 | 1400000 | 1.5552 | | 1.5432 | 3.15 | 1405000 | 1.5347 | | 1.5401 | 3.16 | 1410000 | 1.5394 | | 1.5391 | 3.17 | 1415000 | 1.5497 | | 1.539 | 3.18 | 1420000 | 1.5431 | | 1.5368 | 3.19 | 1425000 | 1.5479 | | 1.5365 | 3.2 | 1430000 | 1.5513 | | 1.5327 | 3.21 | 1435000 | 1.5467 | | 1.5337 | 3.23 | 1440000 | 1.5477 | | 1.5317 | 3.24 | 1445000 | 1.5398 | | 1.5315 | 3.25 | 1450000 | 1.5481 | | 1.532 | 3.26 | 1455000 | 1.5385 | | 1.5312 | 3.27 | 1460000 | 1.5520 | | 1.5328 | 3.28 | 1465000 | 1.5423 | | 1.5288 | 3.29 | 1470000 | 1.5489 | | 1.5271 | 3.3 | 1475000 | 1.5395 | | 1.5273 | 3.31 | 1480000 | 1.5335 | | 1.5235 | 3.33 | 1485000 | 1.5381 | | 1.5224 | 3.34 | 1490000 | 1.5289 | | 1.5206 | 3.35 | 1495000 | 1.5331 | | 1.5189 | 3.36 | 1500000 | 1.5343 | | 1.5152 | 3.37 | 1505000 | 1.5246 | | 1.5225 | 3.38 | 1510000 | 1.5280 | | 1.5168 | 3.39 | 1515000 | 1.5315 | | 1.5161 | 3.4 | 1520000 | 1.5284 | | 1.5111 | 3.42 | 1525000 | 1.5278 | | 1.5154 | 3.43 | 1530000 | 1.5148 | | 1.515 | 3.44 | 1535000 | 1.5286 | | 1.5117 | 3.45 | 1540000 | 1.5291 | | 1.5099 | 3.46 | 1545000 | 1.5320 | | 1.5097 | 3.47 | 1550000 | 1.5323 | | 1.5075 | 3.48 | 1555000 | 1.5157 | | 1.5059 | 3.49 | 1560000 | 1.5214 | | 1.5011 | 3.51 | 1565000 | 1.5199 | | 1.5074 | 3.52 | 1570000 | 1.5114 | | 1.5033 | 3.53 | 1575000 | 1.5145 | | 1.5009 | 3.54 | 1580000 | 1.5184 | | 1.4994 | 3.55 | 1585000 | 1.5125 | | 1.5041 | 3.56 | 1590000 | 1.5048 | | 1.5002 | 3.57 | 1595000 | 1.5156 | | 1.4967 | 3.58 | 1600000 | 1.5176 | | 1.4923 | 3.59 | 1605000 | 1.5128 | | 1.495 | 3.61 | 1610000 | 1.5188 | | 1.4929 | 3.62 | 1615000 | 1.5149 | | 1.4921 | 3.63 | 1620000 | 1.5097 | | 1.4916 | 3.64 | 1625000 | 1.5161 | | 1.4852 | 3.65 | 1630000 | 1.5134 | | 1.4881 | 3.66 | 1635000 | 1.5101 | | 1.4873 | 3.67 | 1640000 | 1.5027 | | 1.4911 | 3.68 | 1645000 | 1.4968 | | 1.488 | 3.7 | 1650000 | 1.4962 | | 1.4842 | 3.71 | 1655000 | 1.5030 | | 1.4829 | 3.72 | 1660000 | 1.5041 | | 1.4816 | 3.73 | 1665000 | 1.5076 | | 1.479 | 3.74 | 1670000 | 1.5029 | | 1.4768 | 3.75 | 1675000 | 1.5053 | | 1.4769 | 3.76 | 1680000 | 1.5026 | | 1.4781 | 3.77 | 1685000 | 1.5016 | | 1.4781 | 3.79 | 1690000 | 1.5034 | | 1.4777 | 3.8 | 1695000 | 1.4976 | | 1.4736 | 3.81 | 1700000 | 1.5002 | | 1.4715 | 3.82 | 1705000 | 1.4995 | | 1.4716 | 3.83 | 1710000 | 1.4996 | | 1.4648 | 3.84 | 1715000 | 1.4952 | | 1.4711 | 3.85 | 1720000 | 1.4934 | | 1.4682 | 3.86 | 1725000 | 1.4965 | | 1.4659 | 3.87 | 1730000 | 1.4932 | | 1.4689 | 3.89 | 1735000 | 1.4920 | | 1.4656 | 3.9 | 1740000 | 1.4910 | | 1.4666 | 3.91 | 1745000 | 1.4893 | | 1.4611 | 3.92 | 1750000 | 1.4888 | | 1.4623 | 3.93 | 1755000 | 1.4898 | | 1.4637 | 3.94 | 1760000 | 1.4909 | | 1.4585 | 3.95 | 1765000 | 1.4858 | | 1.4586 | 3.96 | 1770000 | 1.4847 | | 1.4579 | 3.98 | 1775000 | 1.4841 | | 1.458 | 3.99 | 1780000 | 1.4840 | | 1.4572 | 4.0 | 1785000 | 1.4832 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
facebook/regnet-y-016
facebook
2022-06-28T11:38:42Z
64
0
transformers
[ "transformers", "pytorch", "tf", "regnet", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2003.13678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-18T15:34:34Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
muhammedshihebi/test_Model
muhammedshihebi
2022-06-28T10:32:10Z
3
0
transformers
[ "transformers", "tf", "xlm-roberta", "question-answering", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
question-answering
2022-06-28T10:31:50Z
--- tags: - generated_from_keras_callback model-index: - name: test_Model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # test_Model This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
fusing/glide-base
fusing
2022-06-28T10:27:26Z
0
2
null
[ "arxiv:2112.10741", "license:apache-2.0", "region:us" ]
null
2022-06-07T12:52:41Z
--- license: apache-2.0 --- GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models **Paper**: [GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models](https://arxiv.org/abs/2112.10741) **Abstract**: *Diffusion models have recently been shown to generate high-quality synthetic images, especially when paired with a guidance technique to trade off diversity for fidelity. We explore diffusion models for the problem of text-conditional image synthesis and compare two different guidance strategies: CLIP guidance and classifier-free guidance. We find that the latter is preferred by human evaluators for both photorealism and caption similarity, and often produces photorealistic samples. Samples from a 3.5 billion parameter text-conditional diffusion model using classifier-free guidance are favored by human evaluators to those from DALL-E, even when the latter uses expensive CLIP reranking. Additionally, we find that our models can be fine-tuned to perform image inpainting, enabling powerful text-driven image editing.* ## Usage ```python # !pip install diffusers import torch from diffusers import DiffusionPipeline import PIL.Image model_id = "fusing/glide-base" # load model and scheduler pipeline = DiffusionPipeline.from_pretrained(model_id) # run inference (text-conditioned denoising + upscaling) img = pipeline("a crayon drawing of a corgi") # process image to PIL img = img.squeeze(0) img = ((img + 1)*127.5).round().clamp(0, 255).to(torch.uint8).cpu().numpy() image_pil = PIL.Image.fromarray(img) # save image image_pil.save("test.png") ``` ## Samples 1. ![sample_1](https://huggingface.co/datasets/anton-l/images/resolve/main/glide1.png) 2. ![sample_2](https://huggingface.co/datasets/anton-l/images/resolve/main/glide2.png) 3. ![sample_3](https://huggingface.co/datasets/anton-l/images/resolve/main/glide3.png)
Shanny/bert-finetuned-squad
Shanny
2022-06-28T10:07:41Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-26T21:27:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
SerdarHelli/ThyroidTumorClassificationModel
SerdarHelli
2022-06-28T09:52:22Z
92
2
transformers
[ "transformers", "pytorch", "convnext", "image-classification", "medicalimaging", "thyroidtumor", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-26T10:52:45Z
--- tags: - medicalimaging - thyroidtumor metrics: - accuracy --- Thyroid nodule is one of the most common endocrine carcinomas. Due to its higher reveal ability and ability to distinguish between benign and malignant nodules in pathological features, ultrasonography has become the most widely used modality for finding and diagnosing thyroid cancer when compared to CT and MRI. In this study, the purpose is the classification of thyroid tumors on ultrasound images with 2 different categories: - Malign(1) - Benign(0) This study was made using HF Transformers : - [ On Google Colab](https://colab.research.google.com/drive/1ueSq8Y_NmFr7NGdtS8FStI3d2HR-43LD?usp=sharing) - [On Github](https://github.com/SerdarHelli/The-Classification-of-Thyroid-Tumors-on-UltraSound-Images-using-Deep-Learning-Methods) - [ Using Keras and GradCam With MultiClasses Medium Article](https://serdarhelli.medium.com/the-basic-classification-of-thyroid-tumors-on-ultrasound-images-using-deep-learning-methods-46f812d859ea) The Dataset: [Colombia National University presented an open access database of thyroid ultrasound images.](http://cimalab.unal.edu.co/?lang=es&mod=program&id=5) Ref : Pedraza, Lina & Vargas, Carlos & Narváez, Fabián & Durán, Oscar & Muñoz, Emma & Romero, Eduardo. (2015). An open access thyroid ultrasound-image Database. Progress in Biomedical Optics and Imaging — Proceedings of SPIE. 9287. 10.1117/12.2073532.
rtorrero/my-first-model
rtorrero
2022-06-28T08:44:52Z
0
0
null
[ "region:us" ]
null
2022-06-28T07:41:49Z
This is just me playing around with Hugging Face :-)
vebie91/dqn-SpaceInvadersNoFrameskip-v4-1.2
vebie91
2022-06-28T04:33:56Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-28T04:33:19Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 563.00 +/- 159.85 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga vebie91 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga vebie91 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 6), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 2000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
mastak128/unit1
mastak128
2022-06-28T04:20:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-28T04:19:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 182.30 +/- 78.62 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
chandrasutrisnotjhong/marian-finetuned-kde4-en-to-fr
chandrasutrisnotjhong
2022-06-28T04:10:31Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-22T02:01:51Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-fr metrics: - name: Bleu type: bleu value: 52.83242564204547 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8560 - Bleu: 52.8324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
JeremiahZ/reproduce-sup-roberta-base-avg
JeremiahZ
2022-06-28T04:10:25Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "generated_from_trainer", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-06-27T08:38:05Z
--- language: - en license: mit tags: - generated_from_trainer model-index: - name: reproduce-sup-roberta-base-avg results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reproduce-sup-roberta-base-avg This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
jackieliu930/bart-large-cnn-samsum
jackieliu930
2022-06-28T03:46:12Z
15
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "sagemaker", "summarization", "en", "dataset:samsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: en tags: - sagemaker - bart - summarization license: apache-2.0 datasets: - samsum model-index: - name: bart-large-cnn-samsum results: - task: name: Abstractive Text Summarization type: abstractive-text-summarization dataset: name: 'SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization' type: samsum metrics: - name: Validation ROGUE-1 type: rogue-1 value: 42.621 - name: Validation ROGUE-2 type: rogue-2 value: 21.9825 - name: Validation ROGUE-L type: rogue-l value: 33.034 - name: Test ROGUE-1 type: rogue-1 value: 41.3174 - name: Test ROGUE-2 type: rogue-2 value: 20.8716 - name: Test ROGUE-L type: rogue-l value: 32.1337 - task: type: summarization name: Summarization dataset: name: samsum type: samsum config: samsum split: test metrics: - name: ROUGE-1 type: rouge value: 40.8911 verified: true - name: ROUGE-2 type: rouge value: 20.3551 verified: true - name: ROUGE-L type: rouge value: 31.2696 verified: true - name: ROUGE-LSUM type: rouge value: 37.9313 verified: true - name: loss type: loss value: 1.4995627403259277 verified: true - name: gen_len type: gen_len value: 60.2247 verified: true widget: - text: "Jeff: Can I train a \U0001F917 Transformers model on Amazon SageMaker? \n\ Philipp: Sure you can use the new Hugging Face Deep Learning Container. \nJeff:\ \ ok.\nJeff: and how can I get started? \nJeff: where can I find documentation?\ \ \nPhilipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face " --- ## `bart-large-cnn-samsum` This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container. For more information look at: - [🤗 Transformers Documentation: Amazon SageMaker](https://huggingface.co/transformers/sagemaker.html) - [Example Notebooks](https://github.com/huggingface/notebooks/tree/master/sagemaker) - [Amazon SageMaker documentation for Hugging Face](https://docs.aws.amazon.com/sagemaker/latest/dg/hugging-face.html) - [Python SDK SageMaker documentation for Hugging Face](https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/index.html) - [Deep Learning Container](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#huggingface-training-containers) ## Hyperparameters { "dataset_name": "samsum", "do_eval": true, "do_predict": true, "do_train": true, "fp16": true, "learning_rate": 5e-05, "model_name_or_path": "facebook/bart-large-cnn", "num_train_epochs": 3, "output_dir": "/opt/ml/model", "per_device_eval_batch_size": 4, "per_device_train_batch_size": 4, "predict_with_generate": true, "sagemaker_container_log_level": 20, "sagemaker_job_name": "huggingface-pytorch-training-2021-09-08-06-40-19-182", "sagemaker_program": "run_summarization.py", "sagemaker_region": "us-west-2", "sagemaker_submit_directory": "s3://sagemaker-us-west-2-847380964353/huggingface-pytorch-training-2021-09-08-06-40-19-182/source/sourcedir.tar.gz", "seed": 7 } ## Usage from transformers import pipeline summarizer = pipeline("summarization", model="philschmid/bart-large-cnn-samsum") conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? Philipp: Sure you can use the new Hugging Face Deep Learning Container. Jeff: ok. Jeff: and how can I get started? Jeff: where can I find documentation? Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face ''' nlp(conversation) ## Results | key | value | | --- | ----- | | eval_rouge1 | 42.059 | | eval_rouge2 | 21.5509 | | eval_rougeL | 32.4083 | | eval_rougeLsum | 39.0015 | | test_rouge1 | 40.8656 | | test_rouge2 | 20.3517 | | test_rougeL | 31.2268 | | test_rougeLsum | 37.9301 |
jmwolf27/finetuning-sentiment-model-3000-samples
jmwolf27
2022-06-28T02:19:32Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-28T02:00:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8766666666666667 - name: F1 type: f1 value: 0.877887788778878 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3167 - Accuracy: 0.8767 - F1: 0.8779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ajtamayoh/Negation_Scope_Detection_SFU_Spanish_NLP-CIC-WFU_DisTEMIST_fine_tuned
ajtamayoh
2022-06-28T02:13:29Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-28T01:50:03Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Negation_Scope_Detection_SFU_Spanish_NLP-CIC-WFU_DisTEMIST_fine_tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Negation_Scope_Detection_SFU_Spanish_NLP-CIC-WFU_DisTEMIST_fine_tuned This model is a fine-tuned version of [ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT](https://huggingface.co/ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3219 - Precision: 0.7403 - Recall: 0.7571 - F1: 0.7486 - Accuracy: 0.9518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 72 | 0.2142 | 0.5227 | 0.6497 | 0.5793 | 0.9267 | | No log | 2.0 | 144 | 0.2019 | 0.625 | 0.7062 | 0.6631 | 0.9420 | | No log | 3.0 | 216 | 0.3089 | 0.6444 | 0.6554 | 0.6499 | 0.9432 | | No log | 4.0 | 288 | 0.2376 | 0.6952 | 0.7345 | 0.7143 | 0.9478 | | No log | 5.0 | 360 | 0.2876 | 0.7037 | 0.7514 | 0.7268 | 0.9538 | | No log | 6.0 | 432 | 0.3077 | 0.7278 | 0.7401 | 0.7339 | 0.9534 | | 0.091 | 7.0 | 504 | 0.3219 | 0.7403 | 0.7571 | 0.7486 | 0.9518 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Abdelmageed95/distilgpt2-finetuned-wikitext2
Abdelmageed95
2022-06-27T22:58:48Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-27T22:27:02Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.653 | 2.0 | 4668 | 3.6472 | | 3.6006 | 3.0 | 7002 | 3.6421 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
matteopilotto/vit-base-patch16-224-in21k-snacks
matteopilotto
2022-06-27T22:19:35Z
65
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "dataset:Matthijs/snacks", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-05-14T16:23:18Z
--- datasets: - Matthijs/snacks model-index: - name: matteopilotto/vit-base-patch16-224-in21k-snacks results: - task: type: image-classification name: Image Classification dataset: name: Matthijs/snacks type: Matthijs/snacks config: default split: test metrics: - name: Accuracy type: accuracy value: 0.8928571428571429 verified: true - name: Precision Macro type: precision value: 0.8990033704680036 verified: true - name: Precision Micro type: precision value: 0.8928571428571429 verified: true - name: Precision Weighted type: precision value: 0.8972398709051788 verified: true - name: Recall Macro type: recall value: 0.8914608843537415 verified: true - name: Recall Micro type: recall value: 0.8928571428571429 verified: true - name: Recall Weighted type: recall value: 0.8928571428571429 verified: true - name: F1 Macro type: f1 value: 0.892544821273258 verified: true - name: F1 Micro type: f1 value: 0.8928571428571429 verified: true - name: F1 Weighted type: f1 value: 0.8924168605019522 verified: true - name: loss type: loss value: 0.479541540145874 verified: true --- # Vision Transformer fine-tuned on `Matthijs/snacks` dataset Vision Transformer (ViT) model pre-trained on ImageNet-21k and fine-tuned on [**Matthijs/snacks**](https://huggingface.co/datasets/Matthijs/snacks) for 5 epochs using various data augmentation transformations from `torchvision`. The model achieves a **94.97%** and **94.43%** accuracy on the validation and test set, respectively. ## Data augmentation pipeline The code block below shows the various transformations applied during pre-processing to augment the original dataset. The augmented images where generated on-the-fly with the `set_transform` method. ```python from transformers import ViTFeatureExtractor from torchvision.transforms import ( Compose, Normalize, Resize, RandomResizedCrop, RandomHorizontalFlip, RandomAdjustSharpness, ToTensor ) checkpoint = 'google/vit-base-patch16-224-in21k' feature_extractor = ViTFeatureExtractor.from_pretrained(checkpoint) # transformations on the training set train_aug_transforms = Compose([ RandomResizedCrop(size=feature_extractor.size), RandomHorizontalFlip(p=0.5), RandomAdjustSharpness(sharpness_factor=5, p=0.5), ToTensor(), Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std), ]) # transformations on the validation/test set valid_aug_transforms = Compose([ Resize(size=(feature_extractor.size, feature_extractor.size)), ToTensor(), Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std), ]) ```
huggingtweets/borisdayma
huggingtweets
2022-06-27T21:46:28Z
67
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/borisdayma/1656366383066/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1152601773330370560/UhVRDMyp_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Boris Dayma 🖍️</div> <div style="text-align: center; font-size: 14px;">@borisdayma</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Boris Dayma 🖍️. | Data | Boris Dayma 🖍️ | | --- | --- | | Tweets downloaded | 1371 | | Retweets | 146 | | Short tweets | 42 | | Tweets kept | 1183 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/tlbliehz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @borisdayma's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3qs9dfef) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3qs9dfef/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/borisdayma') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
hidude562/discordgpt2mini
hidude562
2022-06-27T21:19:20Z
0
1
null
[ "generated_from_trainer", "license:mit", "region:us" ]
null
2022-05-05T09:56:43Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-discordgpt2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-discordgpt2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 5.3032 - eval_runtime: 59.2004 - eval_samples_per_second: 274.542 - eval_steps_per_second: 34.324 - epoch: 0.26 - step: 25500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
SEBIS/code_trans_t5_small_program_synthese_transfer_learning_finetune
SEBIS
2022-06-27T20:56:39Z
34
5
transformers
[ "transformers", "pytorch", "tf", "jax", "t5", "feature-extraction", "summarization", "arxiv:2104.02443", "arxiv:1910.09700", "arxiv:2105.09680", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:04Z
--- tags: - summarization widget: - text: "you are given an array of numbers a and a number b , compute the difference of elements in a and b" --- # CodeTrans model for program synthesis ## Table of Contents - [Model Details](#model-details) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [Training](#training) - [Evaluation](#evaluation) - [Environmental Impact](#environmental-impact) - [Citation Information](#citation-information) ## Model Details - **Model Description:** This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the program synthesis task for the lisp inspired DSL code. - **Developed by:** [Ahmed Elnaggar](https://www.linkedin.com/in/prof-ahmed-elnaggar/),[Wei Ding](https://www.linkedin.com/in/wei-ding-92561270/) - **Model Type:** Summarization - **Language(s):** English - **License:** Unknown - **Resources for more information:** - [Research Paper](https://arxiv.org/pdf/2104.02443.pdf) - [GitHub Repo](https://github.com/agemagician/CodeTrans) ## How to Get Started With the Model Here is how to use this model to generate lisp inspired DSL code using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_program_synthese_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_program_synthese_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "you are given an array of numbers a and a number b , compute the difference of elements in a and b" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/transfer%20learning%20fine-tuning/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Uses #### Direct Use The model could be used to generate lisp inspired DSL code given the human language description tasks. ## Risks, Limitations and Biases As detailed in this model’s [publication](https://arxiv.org/pdf/2104.02443.pdf), this model makes use of the data-set [One Billion Word Language Model Benchmark corpus](https://www.researchgate.net/publication/259239818_One_Billion_Word_Benchmark_for_Measuring_Progress_in_Statistical_Language_Modeling) in order to gather the self-supervised English data samples. Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). As such, it should be noted that language models that are pretrained from text corpus such as the One Billion Word Word Language Model Benchmark corpus have been further explored (e.g by [Ngo, Helen & Araújo et al(2021)](https://www.researchgate.net/publication/355582954_No_News_is_Good_News_A_Critique_of_the_One_Billion_Word_Benchmark) reports that the One Billion Word Word Language Model Benchmark corpus > “generate text in the linguistic style of news, without any grounding in the real world. In addition to potential harms from models which are inadvertently optimized for generating fake news.” The aforementioned publication continues to warn that the One Billion Word Word Language Model Benchmark corpus > contains sentences which contain words commonly found on blocklists. While these sentences may have plausibly been used in expository contexts within the article, the destructive sentence-level preprocessing and shuffling applied to lm1b [One Billion Word Word Language Model Benchmark corpus] removes all long-range structure from the text and makes it infeasible to track the context and intent of individual examples. [Ngo, Helen & Araújo et al(2021)](https://www.researchgate.net/publication/355582954_No_News_is_Good_News_A_Critique_of_the_One_Billion_Word_Benchmark) ## Training #### Training Data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) The authors provide additionally notes about the vocabulary used, in the [associated paper](https://arxiv.org/pdf/2104.02443.pdf): > We used the SentencePiece model (Kudo, 2018) to construct the vocabulary for this research, as well as to decode and encode the input/output. ## Training procedure #### Preprocessing ##### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ###### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 5,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing lisp inspired DSL data. ## Evaluation #### Results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | LISP | | -------------------- | :------------: | | CodeTrans-ST-Small | 89.43 | | CodeTrans-ST-Base | 89.65 | | CodeTrans-TF-Small | 90.30 | | CodeTrans-TF-Base | 90.24 | | CodeTrans-TF-Large | 90.21 | | CodeTrans-MT-Small | 82.88 | | CodeTrans-MT-Base | 86.99 | | CodeTrans-MT-Large | 90.27 | | CodeTrans-MT-TF-Small | **90.31** | | CodeTrans-MT-TF-Base | 90.30 | | CodeTrans-MT-TF-Large | 90.17 | | State of the art | 85.80 | ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). We present the hardware type based on the [associated paper](https://arxiv.org/pdf/2105.09680.pdf). - **Hardware Type:** Nvidia RTX 8000 GPUs - **Hours used:** Unknown - **Cloud Provider:** GCC TPU v2-8 and v3-8. - **Compute Region:** Unknown - **Carbon Emitted:** Unknown ## Citation Information ```bibtex @misc{elnaggar2021codetrans, title={CodeTrans: Towards Cracking the Language of Silicon's Code Through Self-Supervised Deep Learning and High Performance Computing}, author={Ahmed Elnaggar and Wei Ding and Llion Jones and Tom Gibbs and Tamas Feher and Christoph Angerer and Silvia Severini and Florian Matthes and Burkhard Rost}, year={2021}, eprint={2104.02443}, archivePrefix={arXiv}, primaryClass={cs.SE} } ```
huggingface/CodeBERTa-small-v1
huggingface
2022-06-27T15:48:41Z
35,783
76
transformers
[ "transformers", "pytorch", "tf", "jax", "roberta", "fill-mask", "code", "dataset:code_search_net", "arxiv:1909.09436", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: code thumbnail: https://cdn-media.huggingface.co/CodeBERTa/CodeBERTa.png datasets: - code_search_net --- # CodeBERTa CodeBERTa is a RoBERTa-like model trained on the [CodeSearchNet](https://github.blog/2019-09-26-introducing-the-codesearchnet-challenge/) dataset from GitHub. Supported languages: ```shell "go" "java" "javascript" "php" "python" "ruby" ``` The **tokenizer** is a Byte-level BPE tokenizer trained on the corpus using Hugging Face `tokenizers`. Because it is trained on a corpus of code (vs. natural language), it encodes the corpus efficiently (the sequences are between 33% to 50% shorter, compared to the same corpus tokenized by gpt2/roberta). The (small) **model** is a 6-layer, 84M parameters, RoBERTa-like Transformer model – that’s the same number of layers & heads as DistilBERT – initialized from the default initialization settings and trained from scratch on the full corpus (~2M functions) for 5 epochs. ### Tensorboard for this training ⤵️ [![tb](https://cdn-media.huggingface.co/CodeBERTa/tensorboard.png)](https://tensorboard.dev/experiment/irRI7jXGQlqmlxXS0I07ew/#scalars) ## Quick start: masked language modeling prediction ```python PHP_CODE = """ public static <mask> set(string $key, $value) { if (!in_array($key, self::$allowedKeys)) { throw new \InvalidArgumentException('Invalid key given'); } self::$storedValues[$key] = $value; } """.lstrip() ``` ### Does the model know how to complete simple PHP code? ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="huggingface/CodeBERTa-small-v1", tokenizer="huggingface/CodeBERTa-small-v1" ) fill_mask(PHP_CODE) ## Top 5 predictions: # ' function' # prob 0.9999827146530151 'function' # ' void' # ' def' # ' final' # ``` ### Yes! That was easy 🎉 What about some Python (warning: this is going to be meta) ```python PYTHON_CODE = """ def pipeline( task: str, model: Optional = None, framework: Optional[<mask>] = None, **kwargs ) -> Pipeline: pass """.lstrip() ``` Results: ```python 'framework', 'Framework', ' framework', 'None', 'str' ``` > This program can auto-complete itself! 😱 ### Just for fun, let's try to mask natural language (not code): ```python fill_mask("My name is <mask>.") # {'sequence': '<s> My name is undefined.</s>', 'score': 0.2548016905784607, 'token': 3353} # {'sequence': '<s> My name is required.</s>', 'score': 0.07290805131196976, 'token': 2371} # {'sequence': '<s> My name is null.</s>', 'score': 0.06323737651109695, 'token': 469} # {'sequence': '<s> My name is name.</s>', 'score': 0.021919190883636475, 'token': 652} # {'sequence': '<s> My name is disabled.</s>', 'score': 0.019681859761476517, 'token': 7434} ``` This (kind of) works because code contains comments (which contain natural language). Of course, the most frequent name for a Computer scientist must be undefined 🤓. ## Downstream task: [programming language identification](https://huggingface.co/huggingface/CodeBERTa-language-id) See the model card for **[`huggingface/CodeBERTa-language-id`](https://huggingface.co/huggingface/CodeBERTa-language-id)** 🤯. <br> ## CodeSearchNet citation <details> ```bibtex @article{husain_codesearchnet_2019, title = {{CodeSearchNet} {Challenge}: {Evaluating} the {State} of {Semantic} {Code} {Search}}, shorttitle = {{CodeSearchNet} {Challenge}}, url = {http://arxiv.org/abs/1909.09436}, urldate = {2020-03-12}, journal = {arXiv:1909.09436 [cs, stat]}, author = {Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc}, month = sep, year = {2019}, note = {arXiv: 1909.09436}, } ``` </details>
microsoft/deberta-xlarge-mnli
microsoft
2022-06-27T15:47:33Z
504,931
16
transformers
[ "transformers", "pytorch", "tf", "deberta", "text-classification", "deberta-v1", "deberta-mnli", "en", "arxiv:2006.03654", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: en tags: - deberta-v1 - deberta-mnli tasks: mnli thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit widget: - text: "[CLS] I love you. [SEP] I like you. [SEP]" --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This the DeBERTa xlarge model(750M) fine-tuned with mnli task. ### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp** ```bash cd transformers/examples/text-classification/ export TASK_NAME=mrpc python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \\ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
jcastanyo/dqn-SpaceInvadersNoFrameskip-v4
jcastanyo
2022-06-27T15:43:15Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-27T15:42:39Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 644.00 +/- 281.09 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jcastanyo -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jcastanyo ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
begmannen/ju
begmannen
2022-06-27T15:15:07Z
0
0
null
[ "license:bsd-3-clause-clear", "region:us" ]
null
2022-06-27T15:15:06Z
--- license: bsd-3-clause-clear ---
BukaByaka/opus-mt-ru-en-finetuned-ru-to-en
BukaByaka
2022-06-27T14:05:53Z
43
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-26T14:26:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-ru-en-finetuned-ru-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ru-en metrics: - name: Bleu type: bleu value: 30.4049 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ru-en-finetuned-ru-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ru-en](https://huggingface.co/Helsinki-NLP/opus-mt-ru-en) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4092 - Bleu: 30.4049 - Gen Len: 26.3911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 2.2606 | 1.0 | 94761 | 1.4092 | 30.4049 | 26.3911 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0.post202 - Datasets 2.3.2 - Tokenizers 0.12.1
kktoto/tiny_focal_alpah
kktoto
2022-06-27T13:47:19Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-27T01:31:29Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tiny_focal_alpah results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny_focal_alpah This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0492 - Precision: 0.6951 - Recall: 0.6796 - F1: 0.6873 - Accuracy: 0.9512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0588 | 1.0 | 5561 | 0.0548 | 0.6801 | 0.6235 | 0.6506 | 0.9453 | | 0.054 | 2.0 | 11122 | 0.0521 | 0.6850 | 0.6478 | 0.6659 | 0.9476 | | 0.0525 | 3.0 | 16683 | 0.0509 | 0.6834 | 0.6676 | 0.6754 | 0.9486 | | 0.0492 | 4.0 | 22244 | 0.0503 | 0.6829 | 0.6754 | 0.6791 | 0.9491 | | 0.0482 | 5.0 | 27805 | 0.0500 | 0.6917 | 0.6727 | 0.6820 | 0.9501 | | 0.0471 | 6.0 | 33366 | 0.0491 | 0.7085 | 0.6546 | 0.6805 | 0.9510 | | 0.0459 | 7.0 | 38927 | 0.0486 | 0.6964 | 0.6746 | 0.6853 | 0.9510 | | 0.0448 | 8.0 | 44488 | 0.0495 | 0.6922 | 0.6813 | 0.6867 | 0.9509 | | 0.044 | 9.0 | 50049 | 0.0491 | 0.6961 | 0.6755 | 0.6857 | 0.9511 | | 0.0433 | 10.0 | 55610 | 0.0492 | 0.6951 | 0.6796 | 0.6873 | 0.9512 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4
gary109
2022-06-27T13:34:30Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-26T14:19:49Z
--- license: apache-2.0 tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4 This model is a fine-tuned version of [gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v3](https://huggingface.co/gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v3) on the GARY109/AI_LIGHT_DANCE - ONSET-STEPMANIA2 dataset. It achieves the following results on the evaluation set: - Loss: 1.0298 - Wer: 0.6642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.9218 | 1.0 | 188 | 1.0718 | 0.6958 | | 0.9194 | 2.0 | 376 | 1.0354 | 0.6937 | | 0.9077 | 3.0 | 564 | 1.0365 | 0.6730 | | 0.8956 | 4.0 | 752 | 1.0497 | 0.6727 | | 0.877 | 5.0 | 940 | 1.0299 | 0.6694 | | 0.8736 | 6.0 | 1128 | 1.0298 | 0.6642 | | 0.8769 | 7.0 | 1316 | 1.0348 | 0.6584 | | 0.8571 | 8.0 | 1504 | 1.0689 | 0.6602 | | 0.8573 | 9.0 | 1692 | 1.0559 | 0.6549 | | 0.8458 | 10.0 | 1880 | 1.0706 | 0.6588 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
sasha/swin-tiny-finetuned-dogfood
sasha
2022-06-27T13:26:02Z
83
1
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "dataset:lewtun/dog_food", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-26T09:46:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder - lewtun/dog_food metrics: - accuracy model-index: - name: swin-tiny-finetuned-dogfood results: - task: name: Image Classification type: image-classification dataset: name: lewtun/dog_food type: lewtun/dog_food args: lewtun--dog_food metrics: - name: Accuracy type: accuracy value: 0.988 - task: type: image-classification name: Image Classification dataset: name: lewtun/dog_food type: lewtun/dog_food config: lewtun--dog_food split: test metrics: - name: Accuracy type: accuracy value: 0.9826666666666667 verified: true - name: Precision Macro type: precision value: 0.9820904286553143 verified: true - name: Precision Micro type: precision value: 0.9826666666666667 verified: true - name: Precision Weighted type: precision value: 0.9828416519866903 verified: true - name: Recall Macro type: recall value: 0.9828453314981092 verified: true - name: Recall Micro type: recall value: 0.9826666666666667 verified: true - name: Recall Weighted type: recall value: 0.9826666666666667 verified: true - name: F1 Macro type: f1 value: 0.9824101123169301 verified: true - name: F1 Micro type: f1 value: 0.9826666666666667 verified: true - name: F1 Weighted type: f1 value: 0.9826983433609648 verified: true - name: loss type: loss value: 0.2326570302248001 verified: true - name: matthews_correlation type: matthews_correlation value: 0.974016655798285 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-finetuned-dogfood This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the lewtun/dog_food dataset. It achieves the following results on the evaluation set: - Loss: 0.1959 - Accuracy: 0.988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8198 | 1.0 | 16 | 0.1901 | 0.9822 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
gopalkalpande/t5-small-finetuned-bbc-news-summarization
gopalkalpande
2022-06-27T13:15:58Z
5
1
transformers
[ "transformers", "tf", "tensorboard", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-27T13:12:49Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: gopalkalpande/t5-small-finetuned-bbc-news-summarization results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # gopalkalpande/t5-small-finetuned-bbc-news-summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7637 - Validation Loss: 0.3528 - Train Rouge1: 19.4783 - Train Rouge2: 13.2994 - Train Rougel: 17.4791 - Train Rougelsum: 17.6204 - Train Gen Len: 19.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 4e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.001} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 0.7637 | 0.3528 | 19.4783 | 13.2994 | 17.4791 | 17.6204 | 19.0 | 0 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
douwekiela/resnet-18-finetuned-dogfood
douwekiela
2022-06-27T12:38:50Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "resnet", "image-classification", "generated_from_trainer", "dataset:imagefolder", "dataset:lewtun/dog_food", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-26T09:42:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder - lewtun/dog_food metrics: - accuracy model-index: - name: resnet-18-finetuned-dogfood results: - task: name: Image Classification type: image-classification dataset: name: lewtun/dog_food type: lewtun/dog_food args: lewtun--dog_food metrics: - name: Accuracy type: accuracy value: 0.896 - task: type: image-classification name: Image Classification dataset: name: lewtun/dog_food type: lewtun/dog_food config: lewtun--dog_food split: test metrics: - name: Accuracy type: accuracy value: 0.8466666666666667 verified: true - name: Precision Macro type: precision value: 0.8850127293141284 verified: true - name: Precision Micro type: precision value: 0.8466666666666667 verified: true - name: Precision Weighted type: precision value: 0.8939157698241645 verified: true - name: Recall Macro type: recall value: 0.8555113273379528 verified: true - name: Recall Micro type: recall value: 0.8466666666666667 verified: true - name: Recall Weighted type: recall value: 0.8466666666666667 verified: true - name: F1 Macro type: f1 value: 0.8431399312051647 verified: true - name: F1 Micro type: f1 value: 0.8466666666666667 verified: true - name: F1 Weighted type: f1 value: 0.8430272582865614 verified: true - name: loss type: loss value: 0.3633290231227875 verified: true - name: matthews_correlation type: matthews_correlation value: 0.7973101366252381 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-18-finetuned-dogfood This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the lewtun/dog_food dataset. It achieves the following results on the evaluation set: - Loss: 0.2991 - Accuracy: 0.896 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.846 | 1.0 | 16 | 0.2662 | 0.9156 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
zezafa/q-Taxi-v3
zezafa
2022-06-27T11:52:15Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-27T11:52:09Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.38 +/- 2.77 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="zezafa/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Davlan/naija-twitter-sentiment-afriberta-large
Davlan
2022-06-27T11:50:40Z
69
3
transformers
[ "transformers", "pytorch", "tf", "xlm-roberta", "text-classification", "arxiv:2201.08277", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - hau - ibo - pcm - yor - multilingual --- # naija-twitter-sentiment-afriberta-large ## Model description **naija-twitter-sentiment-afriberta-large** is the first multilingual twitter **sentiment classification** model for four (4) Nigerian languages (Hausa, Igbo, Nigerian Pidgin, and Yorùbá) based on a fine-tuned castorini/afriberta_large large model. It achieves the **state-of-the-art performance** for the twitter sentiment classification task trained on the [NaijaSenti corpus](https://github.com/hausanlp/NaijaSenti). The model has been trained to classify tweets into 3 sentiment classes: negative, neutral and positive Specifically, this model is a *xlm-roberta-large* model that was fine-tuned on an aggregation of 4 Nigerian language datasets obtained from [NaijaSenti](https://github.com/hausanlp/NaijaSenti) dataset. ## Intended uses & limitations #### How to use You can use this model with Transformers for Sentiment Classification. ```python from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax MODEL = "Davlan/naija-twitter-sentiment-afriberta-large" tokenizer = AutoTokenizer.from_pretrained(MODEL) # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) text = "I like you" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) id2label = {0:"positive", 1:"neutral", 2:"negative"} ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = id2label[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` #### Limitations and bias This model is limited by its training dataset and domain i.e Twitter. This may not generalize well for all use cases in different domains. ## Training procedure This model was trained on a single Nvidia RTX 2080 GPU with recommended hyperparameters from the [original NaijaSenti paper](https://arxiv.org/abs/2201.08277). ## Eval results on Test set (F-score), average over 5 runs. language|F1-score -|- hau |81.2 ibo |80.8 pcm |74.5 yor |80.4 ### BibTeX entry and citation info ``` @inproceedings{Muhammad2022NaijaSentiAN, title={NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis}, author={Shamsuddeen Hassan Muhammad and David Ifeoluwa Adelani and Sebastian Ruder and Ibrahim Said Ahmad and Idris Abdulmumin and Bello Shehu Bello and Monojit Choudhury and Chris C. Emezue and Saheed Salahudeen Abdullahi and Anuoluwapo Aremu and Alipio Jeorge and Pavel B. Brazdil}, year={2022} } ```
Davlan/bert-base-multilingual-cased-masakhaner
Davlan
2022-06-27T11:50:04Z
14
3
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - ha - ig - rw - lg - luo - pcm - sw - wo - yo - multilingual datasets: - masakhaner --- # bert-base-multilingual-cased-masakhaner ## Model description **bert-base-multilingual-cased-masakhaner** is the first **Named Entity Recognition** model for 9 African languages (Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahilu, Wolof, and Yorùbá) based on a fine-tuned mBERT base model. It achieves the **state-of-the-art performance** for the NER task. It has been trained to recognize four types of entities: dates & times (DATE), location (LOC), organizations (ORG), and person (PER). Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on an aggregation of African language datasets obtained from Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("Davlan/bert-base-multilingual-cased-masakhaner") model = AutoModelForTokenClassification.from_pretrained("Davlan/bert-base-multilingual-cased-masakhaner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Emir of Kano turban Zhang wey don spend 18 years for Nigeria" ner_results = nlp(example) print(ner_results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on 9 African NER datasets (Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahilu, Wolof, and Yorùbá) Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes: Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location ## Training procedure This model was trained on a single NVIDIA V100 GPU with recommended hyperparameters from the [original MasakhaNER paper](https://arxiv.org/abs/2103.11811) which trained & evaluated the model on MasakhaNER corpus. ## Eval results on Test set (F-score) language|F1-score -|- hau |88.66 ibo |85.72 kin |71.94 lug |81.73 luo |77.39 pcm |88.96 swa |88.23 wol |66.27 yor |80.09 ### BibTeX entry and citation info ``` @article{adelani21tacl, title = {Masakha{NER}: Named Entity Recognition for African Languages}, author = {David Ifeoluwa Adelani and Jade Abbott and Graham Neubig and Daniel D'souza and Julia Kreutzer and Constantine Lignos and Chester Palen-Michel and Happy Buzaaba and Shruti Rijhwani and Sebastian Ruder and Stephen Mayhew and Israel Abebe Azime and Shamsuddeen Muhammad and Chris Chinenye Emezue and Joyce Nakatumba-Nabende and Perez Ogayo and Anuoluwapo Aremu and Catherine Gitau and Derguene Mbaye and Jesujoba Alabi and Seid Muhie Yimam and Tajuddeen Gwadabe and Ignatius Ezeani and Rubungo Andre Niyongabo and Jonathan Mukiibi and Verrah Otiende and Iroro Orife and Davis David and Samba Ngom and Tosin Adewumi and Paul Rayson and Mofetoluwa Adeyemi and Gerald Muriuki and Emmanuel Anebi and Chiamaka Chukwuneke and Nkiruka Odu and Eric Peter Wairagala and Samuel Oyerinde and Clemencia Siro and Tobius Saul Bateesa and Temilola Oloyede and Yvonne Wambui and Victor Akinode and Deborah Nabagereka and Maurice Katusiime and Ayodele Awokoya and Mouhamadane MBOUP and Dibora Gebreyohannes and Henok Tilaye and Kelechi Nwaike and Degaga Wolde and Abdoulaye Faye and Blessing Sibanda and Orevaoghene Ahia and Bonaventure F. P. Dossou and Kelechi Ogueji and Thierno Ibrahima DIOP and Abdoulaye Diallo and Adewale Akinfaderin and Tendai Marengereke and Salomey Osei}, journal = {Transactions of the Association for Computational Linguistics (TACL)}, month = {}, url = {https://arxiv.org/abs/2103.11811}, year = {2021} } ```
abhishek/convnext-tiny-finetuned-dogfood
abhishek
2022-06-27T11:01:31Z
59
1
transformers
[ "transformers", "pytorch", "tensorboard", "convnext", "image-classification", "generated_from_trainer", "dataset:imagefolder", "dataset:lewtun/dog_food", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-26T09:36:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder - lewtun/dog_food metrics: - accuracy model-index: - name: convnext-tiny-finetuned-dogfood results: - task: name: Image Classification type: image-classification dataset: name: lewtun/dog_food type: lewtun/dog_food args: lewtun--dog_food metrics: - name: Accuracy type: accuracy value: 0.7253333333333334 - task: type: image-classification name: Image Classification dataset: name: lewtun/dog_food type: lewtun/dog_food config: lewtun--dog_food split: test metrics: - name: Accuracy type: accuracy value: 0.6866666666666666 verified: true - name: Precision Macro type: precision value: 0.7181484576740136 verified: true - name: Precision Micro type: precision value: 0.6866666666666666 verified: true - name: Precision Weighted type: precision value: 0.7235392474854474 verified: true - name: Recall Macro type: recall value: 0.7006250320552644 verified: true - name: Recall Micro type: recall value: 0.6866666666666666 verified: true - name: Recall Weighted type: recall value: 0.6866666666666666 verified: true - name: F1 Macro type: f1 value: 0.6690027379410202 verified: true - name: F1 Micro type: f1 value: 0.6866666666666666 verified: true - name: F1 Weighted type: f1 value: 0.6647526870157503 verified: true - name: loss type: loss value: 0.9549381732940674 verified: true - name: matthews_correlation type: matthews_correlation value: 0.5737269361889515 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-finetuned-dogfood This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the lewtun/dog_food dataset. It achieves the following results on the evaluation set: - Loss: 0.9277 - Accuracy: 0.7253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0681 | 1.0 | 16 | 0.9125 | 0.7422 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Davlan/distilbert-base-multilingual-cased-masakhaner
Davlan
2022-06-27T10:57:26Z
27
2
transformers
[ "transformers", "pytorch", "tf", "distilbert", "token-classification", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - ha - ig - rw - lg - luo - pcm - sw - wo - yo - multilingual datasets: - masakhaner --- # bert-base-multilingual-cased-masakhaner ## Model description **distilbert-base-multilingual-cased-masakhaner** is the first **Named Entity Recognition** model for 9 African languages (Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahilu, Wolof, and Yorùbá) based on a fine-tuned BERT base model. It has been trained to recognize four types of entities: dates & times (DATE), location (LOC), organizations (ORG), and person (PER). Specifically, this model is a *distilbert-base-multilingual-cased* model that was fine-tuned on an aggregation of African language datasets obtained from Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("Davlan/distilbert-base-multilingual-cased-masakhaner") model = AutoModelForTokenClassification.from_pretrained("Davlan/distilbert-base-multilingual-cased-masakhaner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Emir of Kano turban Zhang wey don spend 18 years for Nigeria" ner_results = nlp(example) print(ner_results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on 9 African NER datasets (Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahilu, Wolof, and Yorùbá) Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes: Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location ## Training procedure This model was trained on a single NVIDIA V100 GPU with recommended hyperparameters from the [original MasakhaNER paper](https://arxiv.org/abs/2103.11811) which trained & evaluated the model on MasakhaNER corpus. ## Eval results on Test set (F-score) language|F1-score -|- hau |88.88 ibo |84.87 kin |74.19 lug |78.43 luo |73.32 pcm |87.98 swa |86.20 wol |64.67 yor |78.10 ### BibTeX entry and citation info ``` @article{adelani21tacl, title = {Masakha{NER}: Named Entity Recognition for African Languages}, author = {David Ifeoluwa Adelani and Jade Abbott and Graham Neubig and Daniel D'souza and Julia Kreutzer and Constantine Lignos and Chester Palen-Michel and Happy Buzaaba and Shruti Rijhwani and Sebastian Ruder and Stephen Mayhew and Israel Abebe Azime and Shamsuddeen Muhammad and Chris Chinenye Emezue and Joyce Nakatumba-Nabende and Perez Ogayo and Anuoluwapo Aremu and Catherine Gitau and Derguene Mbaye and Jesujoba Alabi and Seid Muhie Yimam and Tajuddeen Gwadabe and Ignatius Ezeani and Rubungo Andre Niyongabo and Jonathan Mukiibi and Verrah Otiende and Iroro Orife and Davis David and Samba Ngom and Tosin Adewumi and Paul Rayson and Mofetoluwa Adeyemi and Gerald Muriuki and Emmanuel Anebi and Chiamaka Chukwuneke and Nkiruka Odu and Eric Peter Wairagala and Samuel Oyerinde and Clemencia Siro and Tobius Saul Bateesa and Temilola Oloyede and Yvonne Wambui and Victor Akinode and Deborah Nabagereka and Maurice Katusiime and Ayodele Awokoya and Mouhamadane MBOUP and Dibora Gebreyohannes and Henok Tilaye and Kelechi Nwaike and Degaga Wolde and Abdoulaye Faye and Blessing Sibanda and Orevaoghene Ahia and Bonaventure F. P. Dossou and Kelechi Ogueji and Thierno Ibrahima DIOP and Abdoulaye Diallo and Adewale Akinfaderin and Tendai Marengereke and Salomey Osei}, journal = {Transactions of the Association for Computational Linguistics (TACL)}, month = {}, url = {https://arxiv.org/abs/2103.11811}, year = {2021} } ```
Rahulrr/language_model_en_de
Rahulrr
2022-06-27T10:42:46Z
11
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "en", "de", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-27T10:09:17Z
--- language: - en - de tags: - translation license: apache-2.0 --- ### en-de * source group: English * target group: German * OPUS readme: [eng-deu](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-deu/README.md) * model: transformer-big * source language(s): eng * target language(s): deu * raw source language(s): eng * raw target language(s): deu * model: transformer-big * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opusTCv20210807+bt-2021-12-08.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opusTCv20210807+bt-2021-12-08.zip) * test set translations: [opusTCv20210807+bt-2021-12-08.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opusTCv20210807+bt-2021-12-08.test.txt) * test set scores: [opusTCv20210807+bt-2021-12-08.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opusTCv20210807+bt-2021-12-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | #sent | #words | BP | |---------|-------|-------|-------|--------|----| | newssyscomb2009.eng-deu | 24.3 | 0.5462 | 502 | 11271 | 0.993 | | news-test2008.eng-deu | 24.7 | 0.5412 | 2051 | 47427 | 1.000 | | newstest2009.eng-deu | 23.6 | 0.5385 | 2525 | 62816 | 0.999 | | newstest2010.eng-deu | 26.9 | 0.5589 | 2489 | 61511 | 0.966 | | newstest2011.eng-deu | 24.1 | 0.5364 | 3003 | 72981 | 0.990 | | newstest2012.eng-deu | 24.6 | 0.5375 | 3003 | 72886 | 0.972 | | newstest2013.eng-deu | 28.3 | 0.5636 | 3000 | 63737 | 0.988 | | newstest2014-deen.eng-deu | 30.9 | 0.6084 | 3003 | 62964 | 1.000 | | newstest2015-ende.eng-deu | 33.2 | 0.6106 | 2169 | 44260 | 1.000 | | newstest2016-ende.eng-deu | 39.8 | 0.6595 | 2999 | 62670 | 0.993 | | newstest2017-ende.eng-deu | 32.0 | 0.6047 | 3004 | 61291 | 1.000 | | newstest2018-ende.eng-deu | 48.8 | 0.7146 | 2998 | 64276 | 1.000 | | newstest2019-ende.eng-deu | 45.0 | 0.6821 | 1997 | 48969 | 0.995 | | Tatoeba-test-v2021-08-07.eng-deu | 43.7 | 0.6442 | 10000 | 85728 | 1.000 | ### System Info: - hf_name: en-de - source_languages: eng - target_languages: deu - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-deu/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'de'] - src_constituents: ('English', {'eng'}) - tgt_constituents: ('German', {'deu'}) - src_multilingual: False - tgt_multilingual: False - long_pair: eng-deu - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opusTCv20210807+bt-2021-12-08.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opusTCv20210807+bt-2021-12-08.test.txt - src_alpha3: eng - tgt_alpha3: deu - chrF2_score: 0.6442 - bleu: 43.7 - src_name: English - tgt_name: German - train_date: 2021-12-08 00:00:00 - src_alpha2: en - tgt_alpha2: de - prefer_old: False - short_pair: en-de - helsinki_git_sha: c4e978d8de47875b482653b423dcfe968979d7d5 - transformers_git_sha: 56b83cf049823ed074a655eceb28f31e2077c6eb - port_machine: LAPIN4GLQ2G3 - port_time: 2022-06-27-16:10
JeremiahZ/reproduce-unsup-roberta-base-avg
JeremiahZ
2022-06-27T10:19:27Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "generated_from_trainer", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-06-27T08:09:54Z
--- language: - en license: mit tags: - generated_from_trainer model-index: - name: reproduce-unsup-roberta-base-avg results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reproduce-unsup-roberta-base-avg This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 512 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Laure996/bert-finetuned-ner
Laure996
2022-06-27T10:00:55Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-27T09:31:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9329136988570482 - name: Recall type: recall value: 0.9478290138000673 - name: F1 type: f1 value: 0.9403122130394858 - name: Accuracy type: accuracy value: 0.9855477718255137 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0663 - Precision: 0.9329 - Recall: 0.9478 - F1: 0.9403 - Accuracy: 0.9855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0837 | 1.0 | 1756 | 0.0656 | 0.9151 | 0.9392 | 0.9270 | 0.9834 | | 0.0388 | 2.0 | 3512 | 0.0619 | 0.9249 | 0.9475 | 0.9361 | 0.9855 | | 0.0198 | 3.0 | 5268 | 0.0663 | 0.9329 | 0.9478 | 0.9403 | 0.9855 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
danielmantisnlp/autotrain-oms-ner-bi-1044135953
danielmantisnlp
2022-06-27T09:39:42Z
4
1
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain", "en", "dataset:danielmantisnlp/autotrain-data-oms-ner-bi", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-27T09:38:38Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - danielmantisnlp/autotrain-data-oms-ner-bi co2_eq_emissions: 1.425282392185522 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1044135953 - CO2 Emissions (in grams): 1.425282392185522 ## Validation Metrics - Loss: 0.4587894678115845 - Accuracy: 0.8957797220792589 - Precision: 0.553921568627451 - Recall: 0.6793587174348698 - F1: 0.6102610261026103 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/danielmantisnlp/autotrain-oms-ner-bi-1044135953 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("danielmantisnlp/autotrain-oms-ner-bi-1044135953", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("danielmantisnlp/autotrain-oms-ner-bi-1044135953", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
facebook/convnext-xlarge-224-22k-1k
facebook
2022-06-27T08:55:36Z
279
2
transformers
[ "transformers", "pytorch", "tf", "convnext", "image-classification", "vision", "dataset:imagenet-21k", "dataset:imagenet-1k", "arxiv:2201.03545", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-21k - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # ConvNeXT (xlarge-sized model) ConvNeXT model trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Liu et al. and first released in [this repository](https://github.com/facebookresearch/ConvNeXt). Disclaimer: The team releasing ConvNeXT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ConvNeXT is a pure convolutional model (ConvNet), inspired by the design of Vision Transformers, that claims to outperform them. The authors started from a ResNet and "modernized" its design by taking the Swin Transformer as inspiration. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnext_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=convnext) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import ConvNextFeatureExtractor, ConvNextForImageClassification import torch from datasets import load_dataset dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] feature_extractor = ConvNextFeatureExtractor.from_pretrained("facebook/convnext-xlarge-224-22k-1k") model = ConvNextForImageClassification.from_pretrained("facebook/convnext-xlarge-224-22k-1k") inputs = feature_extractor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 1000 ImageNet classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]), ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/convnext). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2201-03545, author = {Zhuang Liu and Hanzi Mao and Chao{-}Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {CoRR}, volume = {abs/2201.03545}, year = {2022}, url = {https://arxiv.org/abs/2201.03545}, eprinttype = {arXiv}, eprint = {2201.03545}, timestamp = {Thu, 20 Jan 2022 14:21:35 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-03545.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
Corianas/ppo-SpaceInvadersNoFrameskip-v4.loadbest
Corianas
2022-06-27T08:25:03Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-27T08:24:26Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 729.50 +/- 289.14 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **PPO** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **PPO** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo ppo --env SpaceInvadersNoFrameskip-v4 -orga Corianas -f logs/ python enjoy.py --algo ppo --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ppo --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo ppo --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Corianas ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 'lin_0.1'), ('ent_coef', 0.01), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('frame_stack', 4), ('learning_rate', 'lin_2.5e-4'), ('n_envs', 8), ('n_epochs', 4), ('n_steps', 128), ('n_timesteps', 10000000.0), ('policy', 'CnnPolicy'), ('vf_coef', 0.5), ('normalize', False)]) ```
zyxzyx/autotrain-sum-1042335811
zyxzyx
2022-06-27T05:15:17Z
3
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain", "zh", "dataset:zyxzyx/autotrain-data-sum", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-27T01:25:28Z
--- tags: autotrain language: zh widget: - text: "I love AutoTrain 🤗" datasets: - zyxzyx/autotrain-data-sum co2_eq_emissions: 426.15271368095927 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1042335811 - CO2 Emissions (in grams): 426.15271368095927 ## Validation Metrics - Loss: 1.7748287916183472 - Rouge1: 0.536 - Rouge2: 0.0 - RougeL: 0.536 - RougeLsum: 0.536 - Gen Len: 10.9089 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/zyxzyx/autotrain-sum-1042335811 ```
jcmc/q-Taxi-v3
jcmc
2022-06-27T04:21:20Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-27T04:21:13Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.46 +/- 2.70 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jcmc/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
TheRensselaerIDEA/gpt2-large-vaccine-tweet-response
TheRensselaerIDEA
2022-06-27T03:22:42Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "arxiv:2204.04353", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-27T03:03:38Z
--- license: mit --- Base model: [gpt2-large](https://huggingface.co/gpt2-large) Fine-tuned to generate responses on a dataset of [Vaccine public health tweets](https://github.com/TheRensselaerIDEA/generative-response-modeling). For more information about the dataset, task and training, see [our paper](https://arxiv.org/abs/2204.04353). This checkpoint corresponds to the lowest validation perplexity (2.82 at 2 epochs) seen during training. See Training metrics for Tensorboard logs. For input format and usage examples, see our [COVID-19 public health tweet response model](https://huggingface.co/TheRensselaerIDEA/gpt2-large-covid-tweet-response).
neweasterns/wav2vec2-base-timit-demo-google-colab
neweasterns
2022-06-27T02:49:23Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-27T00:01:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5206 - Wer: 0.3388 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5597 | 1.0 | 500 | 2.3415 | 0.9991 | | 0.9759 | 2.01 | 1000 | 0.5556 | 0.5382 | | 0.4587 | 3.01 | 1500 | 0.7690 | 0.4781 | | 0.3156 | 4.02 | 2000 | 0.7994 | 0.4412 | | 0.2272 | 5.02 | 2500 | 0.8948 | 0.4120 | | 0.1921 | 6.02 | 3000 | 0.7065 | 0.3940 | | 0.1618 | 7.03 | 3500 | 0.4333 | 0.3855 | | 0.1483 | 8.03 | 4000 | 0.4232 | 0.3872 | | 0.156 | 9.04 | 4500 | 0.4172 | 0.3749 | | 0.1138 | 10.04 | 5000 | 0.4084 | 0.3758 | | 0.1045 | 11.04 | 5500 | 0.4665 | 0.3623 | | 0.0908 | 12.05 | 6000 | 0.4416 | 0.3684 | | 0.0788 | 13.05 | 6500 | 0.4801 | 0.3659 | | 0.0773 | 14.06 | 7000 | 0.4560 | 0.3583 | | 0.0684 | 15.06 | 7500 | 0.4878 | 0.3610 | | 0.0645 | 16.06 | 8000 | 0.4635 | 0.3567 | | 0.0577 | 17.07 | 8500 | 0.5245 | 0.3548 | | 0.0547 | 18.07 | 9000 | 0.5265 | 0.3639 | | 0.0466 | 19.08 | 9500 | 0.5161 | 0.3546 | | 0.0432 | 20.08 | 10000 | 0.5263 | 0.3558 | | 0.0414 | 21.08 | 10500 | 0.4874 | 0.3500 | | 0.0365 | 22.09 | 11000 | 0.5266 | 0.3472 | | 0.0321 | 23.09 | 11500 | 0.5422 | 0.3458 | | 0.0325 | 24.1 | 12000 | 0.5201 | 0.3428 | | 0.0262 | 25.1 | 12500 | 0.5208 | 0.3398 | | 0.0249 | 26.1 | 13000 | 0.5034 | 0.3429 | | 0.0262 | 27.11 | 13500 | 0.5055 | 0.3396 | | 0.0248 | 28.11 | 14000 | 0.5164 | 0.3404 | | 0.0222 | 29.12 | 14500 | 0.5206 | 0.3388 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
RUCAIBox/mvp-task-dialog
RUCAIBox
2022-06-27T02:28:25Z
2
3
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T11:53:57Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Given the task dialog: Belief state [X_SEP] I'm looking for a affordable BBQ restaurant in Dallas for a large group of guest." example_title: "Example1" - text: "Given the task dialog: Dialogue action [X_SEP] I'm looking for a affordable BBQ restaurant in Dallas for a large group of guest." example_title: "Example2" - text: "Given the task dialog: System response [X_SEP] I'm looking for a affordable BBQ restaurant in Dallas for a large group of guest." example_title: "Example3" --- # MVP-task-dialog The MVP-task-dialog model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP-task-dialog is a prompt-based model that MVP is further equipped with prompts pre-trained using labeled task-oriented system datasets. It is a variant (MVP+S) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts. MVP-task-dialog is specially designed for task-oriented tasks, such as MultiWOZ. ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-task-dialog") >>> inputs = tokenizer( ... "Given the task dialog: System response [X_SEP] I'm looking for a affordable BBQ restaurant in Dallas for a large group of guest.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['What date and time would you like to go?'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```