modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-11 00:42:47
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 553
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-11 00:42:38
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Dytorch/textual_inversion_cat
|
Dytorch
| 2023-08-10T08:50:46Z | 3 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"textual_inversion",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-08-09T02:43:24Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- textual_inversion
inference: true
---
# Textual inversion text2image fine-tuning - Dytorch/textual_inversion_cat
These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
|
taehoon1lee/Reinforce-unit4-11
|
taehoon1lee
| 2023-08-10T08:49:20Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T08:48:53Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-unit4-11
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 50.60 +/- 41.57
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
NickTheSickDick/David-Draiman-V1-RVC
|
NickTheSickDick
| 2023-08-10T08:44:36Z | 0 | 0 | null |
[
"license:openrail",
"region:us"
] | null | 2023-08-06T18:30:29Z |
---
license: openrail
---
The first version of my David Draiman model.
Trained in RVC on a custom dataset, 220 Epochs, mangio-crepe
|
Norquinal/llama-2-7b-claude-instruct
|
Norquinal
| 2023-08-10T08:23:03Z | 18 | 1 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"dataset:Norquinal/claude_multi_instruct_1k",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-10T03:40:43Z |
---
datasets:
- Norquinal/claude_multi_instruct_1k
---
This is a [LLaMA-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) model fine-tuned using QLoRA (4-bit precision) on my [claude_multi_instruct_1k](https://huggingface.co/datasets/Norquinal/claude_multi_instruct_1k) dataset.
Do not take this model very seriously, it is probably not very good. I haven't a clue of what I'm doing. I just thought it was a fun thing to make.
## Prompt Format
The model was finetuned with the following prompt format:
```
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:
```
## Example Usage
>\### Instruction:
>Deconstruct five major technological innovations in 20th and 21st centuries—Internet, personal computing, mobile phones, artificial intelligence, and electric vehicles. For each innovation, provide information on their early origins, key inventors or pioneers, important milestones and breakthroughs, adoption and proliferation into mainstream use, economic effects, societal impact, ethical considerations, and potential future developments. Discuss how these innovations reshaped the way people work, communicate, and live, and explore the synergies or connections among these technologies and the potential for future transformative advancements.
>\### Response:
>The Internet has revolutionized communication, commerce, education, entertainment, and more since its commercialization in the late 1980s. It was initially developed by researchers at universities like Stanford University's ARPANET project in the 1960s. Tim Berners-Lee created the World Wide Web in 1989 as part of his PhD thesis. The first web browser Mosaic launched in 1993 popularizing the concept of surfing the internet. In 1995, Netscape released the first widely used graphical web browser which accelerated growth. By 1997, there were over 1 million websites online. Today, billions of users access the global network daily through devices like smartphones and tablets.
>
>Personal computers have transformed productivity, creativity, and knowledge sharing since the Apple II computer debuted in 1977. Steve Jobs founded Apple Computer Inc. in 1976 to sell the Apple I computer designed by Steve Wozniak. IBM introduced the first commercially successful PC in 1981. Microsoft Windows operating system launched in 1985 cemented the dominance of the x86 architecture. Personal computers democratize technology allowing individuals to create content, run businesses, and participate in digital culture. They also enable remote working and telecommuting.
>
>Mobile phones have become ubiquitous due to rapid improvements in battery life, processing power, connectivity speeds, and user interface design. Martin Cooper made the world's first handheld cellular phone call from Motorola DynaTAC 800x in April 1973. However, it took decades before mass market adoption due to high cost and limited coverage area. With the introduction of GSM standard in Europe in 1991, prices dropped significantly making them affordable for consumers. Smartphone revolution began around 2007 when iPhone and Android platforms emerged. Mobile apps became prevalent after App Store launch in 2008. As of 2020, nearly 4 billion people own a mobile phone globally. Mobile phones allow instantaneous communication anytime anywhere enabling new forms of social interaction and commerce.
>
>Artificial Intelligence (AI) systems are becoming increasingly sophisticated leveraging machine learning algorithms trained on vast amounts of data. AI research dates back to the 1950s but only recently achieved human level performance in tasks such as image recognition, speech transcription, and game playing. DeepMind's AlphaGo program defeated Lee Sedol in Go match in 2016 demonstrating superhuman capabilities. Google Brain team published papers on neural networks in 2012 paving the way for modern deep learning models. Companies like Facebook, Amazon, Netflix, Uber rely heavily on AI to improve customer experience, optimize operations, and automate decision making. While AI holds great promise for solving complex problems, concerns remain about job displacement, bias in training datasets, and lack of transparency in model predictions.
>
>Electric cars represent one of the most promising clean energy solutions to reduce carbon emissions and dependence on fossil fuels. Electric motors have been used in trains and boats since mid-19th century. But it wasn't until Tesla Model S debut in 2012 that EVs gained widespread attention. Elon Musk's vision of sustainability and zero emission transportation helped propel industry forward. China leads the world in EV sales followed closely by Norway. Cost parity between gasoline and electric vehicles will likely occur within next decade. Once this happens, EVs could displace up to half of all passenger vehicle miles traveled by 2030 according to BloombergNEF analysis. Challenges include range anxiety, charging infrastructure, and higher initial purchase price compared to internal combustion engine vehicles. Nevertheless, EVs offer significant environmental benefits if deployed rapidly enough to meet climate goals.
>
>In summary, these technologies share common characteristics of exponential progress driven by Moore's Law, network effects, and feedback loops. Their interconnectedness creates powerful synergy amplifying their collective impact. Technologists must balance risks versus rewards while ensuring equitable distribution of benefits across society. Future innovations may build upon these foundational building blocks to unlock even greater possibilities yet unknown. We stand at the dawn of another technological era where imagination meets reality to shape our shared destiny. How we choose to navigate this journey together remains the ultimate test of human ingenuity and wisdom.
|
MochaPixel/Lia
|
MochaPixel
| 2023-08-10T08:19:50Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-18T11:55:18Z |
---
license: creativeml-openrail-m
---
|
TheTravellingEngineer/llama2-7b-chat-hf-v4
|
TheTravellingEngineer
| 2023-08-10T08:18:44Z | 1,547 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-10T07:28:43Z |
The base model is meta's Llama-2-7b-chat-hf. It was finetuned using SFT and the openassistant/oasst1 dataset and the model prompt is similar to the original Guanaco model.
This repo contains the merged fp16 model.
**Legal Disclaimer: This model is bound by the usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.**
---
- license:
- llama2 <br>
- datasets:
- openassistant/oasst1 <br>
- language:
- en <br>
- reference: https://gist.github.com/younesbelkada/9f7f75c94bdc1981c8ca5cc937d4a4da
---
|
ThuyNT03/distilbert-base-uncased-multil-cls-legal
|
ThuyNT03
| 2023-08-10T08:05:47Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-10T00:09:04Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-multil-cls-legal
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-multil-cls-legal
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5448
- Accuracy: 0.9022
- F1: 0.9015
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 2.67 | 1.0 | 396 | 1.9327 | 0.5209 | 0.4806 |
| 1.5362 | 2.0 | 792 | 1.0998 | 0.7061 | 0.6869 |
| 0.8991 | 3.0 | 1188 | 0.7546 | 0.8013 | 0.7975 |
| 0.5899 | 4.0 | 1584 | 0.6136 | 0.8403 | 0.8392 |
| 0.4082 | 5.0 | 1980 | 0.5527 | 0.8601 | 0.8589 |
| 0.2874 | 6.0 | 2376 | 0.5200 | 0.8736 | 0.8731 |
| 0.2136 | 7.0 | 2772 | 0.4991 | 0.8831 | 0.8815 |
| 0.1564 | 8.0 | 3168 | 0.4946 | 0.8853 | 0.8843 |
| 0.1123 | 9.0 | 3564 | 0.4814 | 0.8928 | 0.8920 |
| 0.0866 | 10.0 | 3960 | 0.4959 | 0.8912 | 0.8908 |
| 0.0685 | 11.0 | 4356 | 0.5060 | 0.8928 | 0.8923 |
| 0.0508 | 12.0 | 4752 | 0.5114 | 0.8997 | 0.8989 |
| 0.037 | 13.0 | 5148 | 0.5199 | 0.8978 | 0.8971 |
| 0.0316 | 14.0 | 5544 | 0.5236 | 0.9003 | 0.8993 |
| 0.0243 | 15.0 | 5940 | 0.5253 | 0.9022 | 0.9015 |
| 0.021 | 16.0 | 6336 | 0.5385 | 0.9025 | 0.9019 |
| 0.0177 | 17.0 | 6732 | 0.5396 | 0.9038 | 0.9032 |
| 0.014 | 18.0 | 7128 | 0.5449 | 0.9025 | 0.9018 |
| 0.014 | 19.0 | 7524 | 0.5467 | 0.9010 | 0.9002 |
| 0.0103 | 20.0 | 7920 | 0.5448 | 0.9022 | 0.9015 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
mertege/llama-2-finance
|
mertege
| 2023-08-10T08:02:48Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-10T08:02:31Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
Rida06/bert-finetuned-ner
|
Rida06
| 2023-08-10T07:57:30Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"token-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-08-08T08:29:16Z |
---
license: apache-2.0
base_model: Bert-base-cased
tags:
- generated_from_keras_callback
model-index:
- name: Rida06/bert-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Rida06/bert-finetuned-ner
This model is a fine-tuned version of [Bert-base-cased](https://huggingface.co/Bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1762
- Validation Loss: 0.0705
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.1}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.1762 | 0.0705 | 0 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.13.0
- Datasets 2.14.2
- Tokenizers 0.11.0
|
Stevross/Astrid-LLama-3B-CPU
|
Stevross
| 2023-08-10T07:56:30Z | 35 | 1 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"gpt",
"llm",
"large language model",
"h2o-llmstudio",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-10T00:38:47Z |
---
language:
- en
library_name: transformers
tags:
- gpt
- llm
- large language model
- h2o-llmstudio
inference: true
thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
---
# Model Card
## Summary
This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
- Base model: [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b)
## Usage
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed.
```bash
pip install transformers==4.30.1
pip install accelerate==0.20.3
pip install torch==2.0.0
```
```python
import torch
from transformers import pipeline
generate_text = pipeline(
model="Stevross/Astrid-LLama-3B-CPU",
torch_dtype="auto",
trust_remote_code=True,
use_fast=False,
device_map={"": "cuda:0"},
)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)
print(res[0]["generated_text"])
```
You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer:
```python
print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"])
```
```bash
<|prompt|>Why is drinking water so healthy?</s><|answer|>
```
Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`.
```python
import torch
from h2oai_pipeline import H2OTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"Stevross/Astrid-LLama-3B-CPU",
use_fast=False,
padding_side="left",
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
"Stevross/Astrid-LLama-3B-CPU",
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=True,
)
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)
print(res[0]["generated_text"])
```
You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Stevross/Astrid-LLama-3B-CPU" # either local folder or huggingface model name
# Important: The prompt needs to be in the same format the model was trained with.
# You can find an example prompt in the experiment logs.
prompt = "<|prompt|>How are you?</s><|answer|>"
tokenizer = AutoTokenizer.from_pretrained(
model_name,
use_fast=False,
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=True,
)
model.cuda().eval()
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
# generate configuration can be modified to your needs
tokens = model.generate(
**inputs,
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)[0]
tokens = tokens[inputs["input_ids"].shape[1]:]
answer = tokenizer.decode(tokens, skip_special_tokens=True)
print(answer)
```
## Model Architecture
```
LlamaForCausalLM(
(model): LlamaModel(
(embed_tokens): Embedding(32000, 3200, padding_idx=0)
(layers): ModuleList(
(0-25): 26 x LlamaDecoderLayer(
(self_attn): LlamaAttention(
(q_proj): Linear(in_features=3200, out_features=3200, bias=False)
(k_proj): Linear(in_features=3200, out_features=3200, bias=False)
(v_proj): Linear(in_features=3200, out_features=3200, bias=False)
(o_proj): Linear(in_features=3200, out_features=3200, bias=False)
(rotary_emb): LlamaRotaryEmbedding()
)
(mlp): LlamaMLP(
(gate_proj): Linear(in_features=3200, out_features=8640, bias=False)
(down_proj): Linear(in_features=8640, out_features=3200, bias=False)
(up_proj): Linear(in_features=3200, out_features=8640, bias=False)
(act_fn): SiLUActivation()
)
(input_layernorm): LlamaRMSNorm()
(post_attention_layernorm): LlamaRMSNorm()
)
)
(norm): LlamaRMSNorm()
)
(lm_head): Linear(in_features=3200, out_features=32000, bias=False)
)
```
## Model Configuration
This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
## Model Validation
Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
```bash
CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=Stevross/Astrid-LLama-3B-CPU --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log
```
## Disclaimer
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
- Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
- Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
- Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
- Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
- Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
- Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.
By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
|
jakezou/rl_course_vizdoom_health_gathering_supreme
|
jakezou
| 2023-08-10T07:41:19Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T07:41:13Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 10.63 +/- 5.23
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r jakezou/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
newronai/llama-2-7b-Chat-QLoRA-Trial1
|
newronai
| 2023-08-10T07:32:04Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-10T07:31:16Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
kuangyebinbaba/sd
|
kuangyebinbaba
| 2023-08-10T07:21:30Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-08-10T07:20:57Z |
https://50f27352367144b604.gradio.live
|
hashu/my-pet-cat-xyz
|
hashu
| 2023-08-10T07:12:37Z | 0 | 0 | null |
[
"safetensors",
"NxtWave-GenAI-Webinar",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-08-10T07:09:43Z |
---
license: creativeml-openrail-m
tags:
- NxtWave-GenAI-Webinar
- text-to-image
- stable-diffusion
---
### My-Pet-Cat-xyz Dreambooth model trained by hashu following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: VJCET527
Sample pictures of this concept:
.jpg)
|
Minggu/ismi
|
Minggu
| 2023-08-10T07:04:15Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-08-09T12:42:43Z |
---
license: creativeml-openrail-m
---
|
yyyy1992/my_awesome_wnut_model
|
yyyy1992
| 2023-08-10T06:58:22Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"dataset:wnut_17",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-08-10T06:51:33Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- wnut_17
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_awesome_wnut_model
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wnut_17
type: wnut_17
config: wnut_17
split: test
args: wnut_17
metrics:
- name: Precision
type: precision
value: 0.5096660808435852
- name: Recall
type: recall
value: 0.26876737720111216
- name: F1
type: f1
value: 0.35194174757281554
- name: Accuracy
type: accuracy
value: 0.9392501389423282
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_wnut_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0772
- Precision: 0.5097
- Recall: 0.2688
- F1: 0.3519
- Accuracy: 0.9393
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 213 | 0.0816 | 0.4192 | 0.1779 | 0.2498 | 0.9351 |
| No log | 2.0 | 426 | 0.0772 | 0.5097 | 0.2688 | 0.3519 | 0.9393 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.11.0
- Tokenizers 0.13.3
|
reinhardfr/bloomz-560m_PROMPT_TUNING_CAUSAL_LM
|
reinhardfr
| 2023-08-10T06:53:25Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-10T05:52:22Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0
|
bjfxs/llama2-7b-200steps-finetunined-sxl
|
bjfxs
| 2023-08-10T06:49:06Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-10T06:49:02Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
huang0624/LegalBERT_tuned_DRCD_and_LegalQA
|
huang0624
| 2023-08-10T06:45:22Z | 115 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-08-10T06:21:27Z |
* pretrained by legal corpus
* tuned on DRCD
* tuned on LegalQA
|
tanviraumi/q-FrozenLake-v1-4x4-noSlippery
|
tanviraumi
| 2023-08-10T06:40:11Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T06:40:08Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="tanviraumi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
kasperchen/q-Taxi-v3
|
kasperchen
| 2023-08-10T06:36:12Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T06:36:10Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.48 +/- 2.79
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="kasperchen/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
openerotica/mpt-7b-8k-GPTQ
|
openerotica
| 2023-08-10T06:30:59Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mpt",
"text-generation",
"Composer",
"MosaicML",
"llm-foundry",
"StreamingDatasets",
"custom_code",
"dataset:mc4",
"dataset:c4",
"dataset:togethercomputer/RedPajama-Data-1T",
"dataset:bigcode/the-stack",
"dataset:allenai/s2orc",
"arxiv:2108.12409",
"arxiv:2302.13971",
"arxiv:2205.14135",
"arxiv:2010.04245",
"arxiv:1909.08053",
"arxiv:2302.06675",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-08-10T06:08:21Z |
---
license: apache-2.0
tags:
- Composer
- MosaicML
- llm-foundry
- StreamingDatasets
datasets:
- mc4
- c4
- togethercomputer/RedPajama-Data-1T
- bigcode/the-stack
- allenai/s2orc
inference: false
---
# MPT-7B-8k
MPT-7B-8k is a decoder-style transformer pretrained starting from MPT-7B, but updating the sequence length to 8k and training for an additional 500B tokens, resulting in a total of 1.5T tokens of text and code.
This model was trained by [MosaicML](https://www.mosaicml.com).
MPT-7B-8k is part of the family of Mosaic Pretrained Transformer (MPT) models, which use a modified transformer architecture optimized for efficient training and inference.
These architectural changes include performance-optimized layer implementations and the elimination of context length limits by replacing
positional embeddings with Attention with Linear Biases ([ALiBi](https://arxiv.org/abs/2108.12409)).
Thanks to these modifications, MPT models can be trained with high throughput efficiency and stable convergence.
MPT models can also be served efficiently with both standard HuggingFace pipelines and NVIDIA's [FasterTransformer](https://github.com/NVIDIA/FasterTransformer).
This model uses the MosaicML LLM codebase, which can be found in the [llm-foundry repository](https://github.com/mosaicml/llm-foundry). It was trained by MosaicML’s NLP team on the [MosaicML platform](https://www.mosaicml.com/training) for LLM pretraining, finetuning, and inference.
### How is this model different?
MPT-7B-8k is
* **Licensed for the possibility of commercial use.**
* **Trained on a large amount of data** (1.5T tokens like [XGen](https://huggingface.co/Salesforce/xgen-7b-8k-base) vs. 1T for [LLaMA](https://arxiv.org/abs/2302.13971), 1T for [MPT-7B](https://www.mosaicml.com/blog/mpt-7b), 300B for [Pythia](https://github.com/EleutherAI/pythia), 300B for [OpenLLaMA](https://github.com/openlm-research/open_llama), and 800B for [StableLM](https://github.com/Stability-AI/StableLM)).
* **Prepared to handle long inputs** thanks to [ALiBi](https://arxiv.org/abs/2108.12409). With ALiBi, the model can extrapolate beyond the 8k training sequence length to up to 10k, and with a few million tokens it can be finetuned to extrapolate much further.
* **Capable of fast training and inference** via [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) and [FasterTransformer](https://github.com/NVIDIA/FasterTransformer)
* **Equipped with highly efficient open-source training code** via the [llm-foundry repository](https://github.com/mosaicml/llm-foundry)
### Models finetuned off MPT-7B-8k:
The following models are finetuned on MPT-7B-8k:
* [MPT-7B-8k-Instruct](https://huggingface.co/mosaicml/mpt-7b-8k-instruct): a model for long-form instruction following (especially summarization and question-answering).
Built by finetuning MPT-7B-8k on several carefully curated datasets.
* License: _CC-BY-SA-3.0_
* [MPT-7B-8k-Chat](https://huggingface.co/mosaicml/mpt-7b-8k-chat): a chatbot-like model for dialogue generation.
Built by finetuning MPT-7B-8k on approximately 1.5B tokens of chat data.
* License: _CC-By-NC-SA-4.0_
## Model Date
July 18, 2023
## Model License
Apache-2.0
## Documentation
* [Blog post: MPT-7B-8k](https://www.mosaicml.com/blog/long-context-mpt-7b-8k)
* [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
* Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)!
## How to Use
This model is best used with the MosaicML [llm-foundry repository](https://github.com/mosaicml/llm-foundry) for training and finetuning.
```python
import transformers
model = transformers.AutoModelForCausalLM.from_pretrained(
'mosaicml/mpt-7b-8k',
trust_remote_code=True
)
```
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method.
This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package.
`MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more.
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision:
```python
import torch
import transformers
name = 'mosaicml/mpt-7b-8k'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.attn_config['attn_impl'] = 'triton'
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
torch_dtype=torch.bfloat16, # Load model weights in bfloat16
trust_remote_code=True
)
```
Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
```python
import transformers
name = 'mosaicml/mpt-7b-8k'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.max_seq_len = 10000 # (input + output) tokens can now be up to 10000
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
trust_remote_code=True
)
```
This model was trained with the MPT-7B-8k tokenizer which is identical to the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('mosaicml/mpt-7b-8k')
```
The model can then be used, for example, within a text-generation pipeline.
Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html).
```python
from transformers import pipeline
with torch.autocast('cuda', dtype=torch.bfloat16):
inputs = tokenizer('Here is a recipe for vegan banana bread:\n', return_tensors="pt").to('cuda')
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
# or using the HF pipeline
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
with torch.autocast('cuda', dtype=torch.bfloat16):
print(
pipe('Here is a recipe for vegan banana bread:\n',
max_new_tokens=100,
do_sample=True,
use_cache=True))
```
## Model Description
The architecture is a modification of a standard decoder-only transformer.
The model has been modified from a standard transformer in the following ways:
* It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
* It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
* It does not use biases
| Hyperparameter | Value |
|----------------|-------|
|n_parameters | 6.7B |
|n_layers | 32 |
| n_heads | 32 |
| d_model | 4096 |
| vocab size | 50432 |
| sequence length | 2048 |
## Training Data
### Streaming Datasets
Data was formatted using the MosaicML [StreamingDataset](https://github.com/mosaicml/streaming) library to host our data in object storage and efficiently stream it to our compute cluster during training.
StreamingDataset obviates the need to download the whole dataset before starting training, and allows instant resumption of training from any point in the dataset.
### Data Mix
The model was trained for ___T tokens. First it was trained for 1T tokens (with batch size 1760 and sequence length 2048) on the following data mix:
#### Data Mix for Original 1T Tokens Used to Train MPT-7B
| Data Source | Number of Tokens in Source | Proportion | Effective Number of Tokens | Epochs |
|-------------|----------------------------|------------|----------------------------|--------|
| mC4 3.1.0 - English | 417.99 B | 0.33 | 330 B | 0.14 |
| C4 - English - SemDedup 80% | 100.42 B | 0.299 | 299 B | 2.98 |
| RedPajama - CommonCrawl | 878.45 B | 0.1 | 100 B | 0.11 |
| The Stack - Selected Languages | 463.78 B | 0.1 | 100 B | 0.22 |
| RedPajama - Wikipedia - En | 4.87 B | 0.04 | 40 B | 8.21 |
| The Stack - Markdown | 107.07 B | 0.035 | 35 B | 0.33 |
| S2ORC | 48.85 B | 0.033 | 33 B | 0.68 |
| RedPajama - Books | 26.02 B | 0.03 | 30B | 1.15 |
| RedPajama - arXiv | 28.10 B | 0.019 | 19 B | 0.68 |
| RedPajama - StackExchange | 20.54 B | 0.014 | 14 B |0.68 |
#### Data Mix for Additional 500B Tokens Used to Further Train MPT-7B-8k
We took 80B tokens from document samples that were longer than 4096 tokens, and 120B tokens with varying document sample lengths that matched the "baseline" length distribution for a total of 200B tokens in a single dataset.
We then trained MPT-7B for 500B tokens with a maximum sequence length of 8192, resulting in MPT-7B-8k. Since we trained for 500B tokens using 200B tokens, nearly every subset was trained on for exactly 2.5 epochs.
| Sequence Length Distribution | Number of Tokens in Source (Billion) | Proportion | Effective Number of Tokens (Billion) | Epochs |
|---|---|---|---|---|
| mC4 3.1.0 - English (200+ words) - Baseline | 33.60 | 16.80% | 84.00 | 2.50 |
| mC4 3.1.0 - English (200+ words) - ≥4096 tokens | 23.04 | 11.52% | 57.60 | 2.50 |
| c4 - English - SemDedup 80% - Baseline | 30.12 | 15.06% | 75.30 | 2.50 |
| c4 - English - SemDedup 80% - ≥4096 tokens | 0.92 | 0.46% | 2.30 | 2.50 |
| RedPajama - CommonCrawl - Baseline | 8.52 | 4.26% | 21.30 | 2.50 |
| RedPajama - CommonCrawl - ≥4096 tokens | 12.80 | 6.40% | 32.00 | 2.50 |
| The Stack - Selected Languages - Baseline | 30.00 | 15.00% | 75.00 | 2.50 |
| The Stack - Selected Languages - ≥4096 tokens | 10.00 | 5.00% | 25.00 | 2.50 |
| RedPajama - Wikipedia - Baseline | 3.60 | 1.80% | 9.00 | 2.50 |
| RedPajama - Wikipedia - ≥4096 tokens | 1.04 | 0.52% | 2.60 | 2.50 |
| The Stack - Markdown - Baseline | 4.50 | 2.25% | 11.25 | 2.50 |
| The Stack - Markdown - ≥4096 tokens | 8.00 | 4.00% | 20.00 | 2.50 |
| Semantic Scholar ORC - Baseline | 3.30 | 1.65% | 8.25 | 2.50 |
| Semantic Scholar ORC - ≥4096 tokens | 8.00 | 4.00% | 20.00 | 2.50 |
| RedPajama - Books - Baseline | 3.00 | 1.50% | 7.50 | 2.50 |
| RedPajama - Books - ≥4096 tokens | 8.00 | 4.00% | 20.00 | 2.50 |
| RedPajama - arXiv - Baseline | 1.92 | 0.96% | 4.80 | 2.50 |
| RedPajama - arXiv - ≥4096 tokens | 5.40 | 2.70% | 13.50 | 2.50 |
| RedPajama - StackExchange - Baseline | 1.44 | 0.72% | 3.60 | 2.50 |
| RedPajama - StackExchange - ≥4096 tokens | 1.52 | 1.40% | 7.00 | 4.60 |
| N Training Tokens | 200 | 100.00% | | 2.5 epochs * 200B = 500B tokens |
Samples for each batch were selected from one of the datasets with the probability specified above.
The examples were shuffled within each dataset, and each example was constructed from as many sequences from that dataset as were necessary to fill the 2048 sequence length.
The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. This BPE tokenizer has a number of desirable characteristics,
most of which are relevant for tokenizing code:
(1) It was trained on a diverse mix of data that includes code (The Pile)
(2) It applies consistent space delimitation, unlike the GPT2 tokenizer which tokenizes inconsistently depending on the presence of prefix spaces
(3) It contains tokens for repeated space characters, which allows superior compression of text with large amounts of repeated space characters.
The model vocabulary size of 50432 was set to be a multiple of 128 (as in [MEGATRON-LM](https://arxiv.org/abs/1909.08053)), model flop utilization (MFU) increased by up to four percentage points.
### Training Configuration
This model was trained on 440 A100-40GBs for about 9.5 days using the [MosaicML Platform](https://www.mosaicml.com/platform).
The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the [LION](https://arxiv.org/abs/2302.06675) optimizer.
## Limitations and Biases
_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
MPT-7B-8k is **not** intended for deployment without finetuning.
It should not be used for human-facing interactions without further guardrails and user consent.
MPT-7B-8k can produce factually incorrect output, and should not be relied on to produce factually accurate information.
MPT-7B-8k was trained on various public datasets.
While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
## MosaicML Platform
If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://www.mosaicml.com/get-started?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b-8k).
## Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.
## Citation
Please cite this model using the following format:
```
@online{MosaicML2023Introducing,
author = {MosaicML NLP Team},
title = {Introducing MPT-7B: A New Standard for Open-Source,
ly Usable LLMs},
year = {2023},
url = {www.mosaicml.com/blog/mpt-7b},
note = {Accessed: 2023-03-28}, % change this date
urldate = {2023-03-28} % change this date
}
```
|
TheTravellingEngineer/llama2-7b-chat-hf-v3
|
TheTravellingEngineer
| 2023-08-10T06:21:28Z | 1,536 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-10T06:03:25Z |
The base model is meta's Llama-2-7b-chat-hf. It was finetuned using SFT and the Anthropic/hh-rlhf dataset and the model prompt is similar to the original Guanaco model.
This repo contains the merged fp16 model.
**Legal Disclaimer: This model is bound by the usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.**
---
- license:
- llama2 <br>
- datasets:
- Anthropic/hh-rlhf <br>
- language:
- en <br>
- reference: https://gist.github.com/younesbelkada/9f7f75c94bdc1981c8ca5cc937d4a4da
---
|
deepvk/deberta-v1-base
|
deepvk
| 2023-08-10T06:20:15Z | 522 | 7 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"deberta",
"feature-extraction",
"ru",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2023-02-07T14:56:44Z |
---
license: apache-2.0
language:
- ru
- en
library_name: transformers
pipeline_tag: feature-extraction
---
# DeBERTa-base
<!-- Provide a quick summary of what the model is/does. -->
Pretrained bidirectional encoder for russian language.
The model was trained using standard MLM objective on large text corpora including open social data.
See `Training Details` section for more information.
⚠️ This model contains only the encoder part without any pretrained head.
- **Developed by:** [deepvk](https://vk.com/deepvk)
- **Model type:** DeBERTa
- **Languages:** Mostly russian and small fraction of other languages
- **License:** Apache 2.0
## How to Get Started with the Model
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("deepvk/deberta-v1-base")
model = AutoModel.from_pretrained("deepvk/deberta-v1-base")
text = "Привет, мир!"
inputs = tokenizer(text, return_tensors='pt')
predictions = model(**inputs)
```
## Training Details
### Training Data
400 GB of filtered and deduplicated texts in total.
A mix of the following data: Wikipedia, Books, Twitter comments, Pikabu, Proza.ru, Film subtitles, News websites, and Social corpus.
#### Deduplication procedure
1. Calculate shingles with size of 5
2. Calculate MinHash with 100 seeds → for every sample (text) have a hash of size 100
3. Split every hash into 10 buckets → every bucket, which contains (100 / 10) = 10 numbers, get hashed into 1 hash → we have 10 hashes for every sample
4. For each bucket find duplicates: find samples which have the same hash → calculate pair-wise jaccard similarity → if the similarity is >0.7 than it's a duplicate
5. Gather duplicates from all the buckets and filter
### Training Hyperparameters
| Argument | Value |
|--------------------|----------------------|
| Training regime | fp16 mixed precision |
| Optimizer | AdamW |
| Adam betas | 0.9,0.98 |
| Adam eps | 1e-6 |
| Weight decay | 1e-2 |
| Batch size | 2240 |
| Num training steps | 1kk |
| Num warm-up steps | 10k |
| LR scheduler | Linear |
| LR | 2e-5 |
| Gradient norm | 1.0 |
The model was trained on a machine with 8xA100 for approximately 30 days.
### Architecture details
| Argument | Value |
|-------------------------|----------------|
|Encoder layers | 12 |
|Encoder attention heads | 12 |
|Encoder embed dim | 768 |
|Encoder ffn embed dim | 3,072 |
|Activation function | GeLU |
|Attention dropout | 0.1 |
|Dropout | 0.1 |
|Max positions | 512 |
|Vocab size | 50266 |
|Tokenizer type | Byte-level BPE |
## Evaluation
We evaluated the model on [Russian Super Glue](https://russiansuperglue.com/) dev set.
The best result in each task is marked in bold.
All models have the same size except the distilled version of DeBERTa.
| Model | RCB | PARus | MuSeRC | TERRa | RUSSE | RWSD | DaNetQA | Score |
|------------------------------------------------------------------------|-----------|--------|---------|-------|---------|---------|---------|-----------|
| [vk-deberta-distill](https://huggingface.co/deepvk/deberta-v1-distill) | 0.433 | 0.56 | 0.625 | 0.59 | 0.943 | 0.569 | 0.726 | 0.635 |
| [vk-roberta-base](https://huggingface.co/deepvk/roberta-base) | 0.46 | 0.56 | 0.679 | 0.769 | 0.960 | 0.569 | 0.658 | 0.665 |
| [vk-deberta-base](https://huggingface.co/deepvk/deberta-v1-base) | 0.450 |**0.61**|**0.722**| 0.704 | 0.948 | 0.578 |**0.76** |**0.682** |
| [vk-bert-base](https://huggingface.co/deepvk/bert-base-uncased) | 0.467 | 0.57 | 0.587 | 0.704 | 0.953 |**0.583**| 0.737 | 0.657 |
| [sber-bert-base](https://huggingface.co/ai-forever/ruBert-base) | **0.491** |**0.61**| 0.663 | 0.769 |**0.962**| 0.574 | 0.678 | 0.678 |
|
AshutoshShrivastava/sdxl-db-lionelmessi
|
AshutoshShrivastava
| 2023-08-10T06:17:43Z | 2 | 3 |
diffusers
|
[
"diffusers",
"text-to-image",
"autotrain",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"region:us"
] |
text-to-image
| 2023-08-10T06:17:36Z |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: photo of a sks leoandresmessi
tags:
- text-to-image
- diffusers
- autotrain
inference: true
---
# DreamBooth trained by AutoTrain
Test enoder was not trained.
|
HG7/ReQLoRA_QKVO8
|
HG7
| 2023-08-10T06:01:24Z | 2 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-10T06:01:20Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
mchablani/Llama-2-7b-chat-hf-mini-lawyer-chat
|
mchablani
| 2023-08-10T05:36:12Z | 2 | 0 |
peft
|
[
"peft",
"pytorch",
"llama",
"region:us"
] | null | 2023-08-05T03:54:19Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
- PEFT 0.4.0
|
jonalkw/Reinforce-pixelcopter
|
jonalkw
| 2023-08-10T05:25:14Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T05:25:11Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-pixelcopter
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 9.60 +/- 12.56
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
nanirudh/qa_model_v3
|
nanirudh
| 2023-08-10T05:23:57Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-10T05:23:48Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
calvpang/distilhubert-finetuned-gtzan-finetuned-gtzan
|
calvpang
| 2023-08-10T05:04:13Z | 160 | 0 |
transformers
|
[
"transformers",
"pytorch",
"hubert",
"audio-classification",
"generated_from_trainer",
"dataset:marsyas/gtzan",
"base_model:VinayHajare/distilhubert-finetuned-gtzan",
"base_model:finetune:VinayHajare/distilhubert-finetuned-gtzan",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2023-08-10T03:51:48Z |
---
license: apache-2.0
base_model: VinayHajare/distilhubert-finetuned-gtzan
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.89
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan-finetuned-gtzan
This model is a fine-tuned version of [VinayHajare/distilhubert-finetuned-gtzan](https://huggingface.co/VinayHajare/distilhubert-finetuned-gtzan) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5147
- Accuracy: 0.89
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4687 | 1.0 | 113 | 0.5210 | 0.89 |
| 0.5003 | 2.0 | 226 | 0.5186 | 0.89 |
| 0.3839 | 3.0 | 339 | 0.5186 | 0.89 |
| 0.4082 | 4.0 | 452 | 0.5183 | 0.89 |
| 0.4479 | 5.0 | 565 | 0.5183 | 0.89 |
| 0.4078 | 6.0 | 678 | 0.5171 | 0.89 |
| 0.3089 | 7.0 | 791 | 0.5156 | 0.89 |
| 0.3432 | 8.0 | 904 | 0.5152 | 0.89 |
| 0.4122 | 9.0 | 1017 | 0.5148 | 0.89 |
| 0.4231 | 10.0 | 1130 | 0.5147 | 0.89 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.14.4
- Tokenizers 0.13.3
|
kasperchen/q-FrozenLake-v1-4x4-noSlippery
|
kasperchen
| 2023-08-10T05:00:06Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T04:11:41Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="kasperchen/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Abhi5ingh/model_dresscode
|
Abhi5ingh
| 2023-08-10T04:45:23Z | 2 | 1 |
diffusers
|
[
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"controlnet",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-08-09T01:43:22Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- controlnet
inference: true
---
# controlnet-Abhi5ingh/model_dresscode
These are controlnet weights trained on runwayml/stable-diffusion-v1-5 with new type of conditioning.
You can find some example images below.
prompt: hem shoulder top in navy blue

prompt: beautiful floral gown

prompt: one-shoulder textured dress one long draping sleeve one sleeved mini purple evening dress

|
KallistiTMR/llama-2-7b-chat-wiz-k16-8
|
KallistiTMR
| 2023-08-10T04:04:30Z | 12 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-02T02:24:03Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
|
chunwoolee0/keti-air-ke-t5-base-en-to-ko
|
chunwoolee0
| 2023-08-10T04:00:42Z | 114 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"translation",
"generated_from_trainer",
"dataset:kde4",
"base_model:KETI-AIR/ke-t5-base",
"base_model:finetune:KETI-AIR/ke-t5-base",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-08-10T03:27:30Z |
---
license: apache-2.0
base_model: KETI-AIR/ke-t5-base
tags:
- translation
- generated_from_trainer
datasets:
- kde4
model-index:
- name: keti-air-ke-t5-base-en-to-ko
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# keti-air-ke-t5-base-en-to-ko
This model is a fine-tuned version of [KETI-AIR/ke-t5-base](https://huggingface.co/KETI-AIR/ke-t5-base) on the kde4 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
nomad-ai/speecht5_finetuned_voxpopuli_nl
|
nomad-ai
| 2023-08-10T03:58:14Z | 82 | 0 |
transformers
|
[
"transformers",
"pytorch",
"speecht5",
"text-to-audio",
"generated_from_trainer",
"text-to-speech",
"dataset:facebook/voxpopuli",
"base_model:microsoft/speecht5_tts",
"base_model:finetune:microsoft/speecht5_tts",
"license:mit",
"endpoints_compatible",
"region:us"
] |
text-to-speech
| 2023-08-10T03:06:59Z |
---
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
- text-to-speech
datasets:
- facebook/voxpopuli
model-index:
- name: speecht5_finetuned_voxpopuli_nl
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speecht5_finetuned_voxpopuli_nl
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the facebook/voxpopuli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4919
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.7222 | 1.62 | 100 | 0.6410 |
| 0.6791 | 3.25 | 200 | 0.6024 |
| 0.6059 | 4.87 | 300 | 0.5363 |
| 0.564 | 6.49 | 400 | 0.5185 |
| 0.5481 | 8.11 | 500 | 0.5092 |
| 0.5463 | 9.74 | 600 | 0.4998 |
| 0.537 | 11.36 | 700 | 0.4968 |
| 0.5312 | 12.98 | 800 | 0.4913 |
| 0.5275 | 14.6 | 900 | 0.4917 |
| 0.5202 | 16.23 | 1000 | 0.4919 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
debjxt/tlx-bzx-btz
|
debjxt
| 2023-08-10T03:45:14Z | 1 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-08-10T03:32:22Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### tlx_bzx_btz Dreambooth model trained by debjxt with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
Pixel390/NEWKUA
|
Pixel390
| 2023-08-10T03:27:24Z | 5 | 1 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"lora",
"base_model:Meina/MeinaMix_V10",
"base_model:adapter:Meina/MeinaMix_V10",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-08-10T03:07:57Z |
---
license: creativeml-openrail-m
base_model: Meina/MeinaMix_V10
instance_prompt: a uxz man
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - Pixel390/NEWKUA
These are LoRA adaption weights for Meina/MeinaMix_V10. The weights were trained on a uxz man using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.
LoRA for the text encoder was enabled: True.
|
Rihong/dqn-SpaceInvadersNoFrameskip-v4
|
Rihong
| 2023-08-10T02:35:36Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T02:05:02Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 431.00 +/- 177.51
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Rihong -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Rihong -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Rihong
```
## Hyperparameters
```python
OrderedDict([('batch_size', 64),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 3000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
rriverar75/vit-model
|
rriverar75
| 2023-08-10T02:34:32Z | 193 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:beans",
"base_model:google/vit-base-patch16-224-in21k",
"base_model:finetune:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-08-10T02:08:37Z |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
datasets:
- beans
metrics:
- accuracy
widget:
- src: >-
https://huggingface.co/rriverar75/vit-model/resolve/main/healthy.jpeg
example_title: Healthy
- src: >-
https://huggingface.co/rriverar75/vit-model/resolve/main/bean_rust.jpeg
example_title: Bean Rust
model-index:
- name: vit-model
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: beans
type: beans
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-model
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0189
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1527 | 3.85 | 500 | 0.0189 | 1.0 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
wangxso/q-taxi-v3
|
wangxso
| 2023-08-10T02:28:47Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T02:28:44Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.70
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="wangxso/q-taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
dtthanh/llama-2-7b-und-lora-2.7
|
dtthanh
| 2023-08-10T02:20:10Z | 3 | 1 |
peft
|
[
"peft",
"vi",
"license:cc-by-sa-4.0",
"region:us"
] | null | 2023-08-06T10:41:24Z |
---
library_name: peft
license: cc-by-sa-4.0
language:
- vi
---
### Adapter info
-
This is an Lora adapter using dataset contains only 360 Vietnamese sentences and the "text" column in a format like:
-
```python
> \<s\>\[INST\] "Bạn bè có phúc cùng chia."\[\/INST\] Bạn bè có phúc cùng chia. Có họa trốn sạch chạy đi phương nào? Tay trắng làm nên… mấy chục ngàn bạc nợ. \<\/s\>
or
> \<s\>\[INST\] Ai bảo chăn trâu là khổ. \[\/INST\] Ai bảo chăn trâu là khổ. Tôi chăn chồng còn khổ hơn trâu. Trâu đi trâu biêt đường về. Chồng đi không biết dường về như trâu. \<\/s\>
## Training procedure
-
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Usage
-
```python
import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
model_name = "NousResearch/llama-2-7b-chat-hf"
adapters_name = "dtthanh/llama-2-7b-und-lora-2.7"
print(f"Starting to load the model {model_name} into memory")
m = AutoModelForCausalLM.from_pretrained(
model_name,
# base_model_name_or_path # NousResearch/llama-2-7b-chat-hf
#load_in_4bit=True,
torch_dtype=torch.bfloat16,
device_map={"": 0}
)
m = PeftModel.from_pretrained(m, adapters_name)
m = m.merge_and_unload()
tok = AutoTokenizer.from_pretrained(model_name)
tok.pad_token_id = 18610 # _***
print(f"Successfully loaded the model {model_name} into memory")
- PEFT 0.4.0
|
nomad-ai/whisper-tiny
|
nomad-ai
| 2023-08-10T02:03:05Z | 75 | 0 |
transformers
|
[
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:PolyAI/minds14",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-10T02:02:50Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train[450:]
args: en-US
metrics:
- name: Wer
type: wer
value: 0.22434915773353753
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5913
- Wer Ortho: 0.2340
- Wer: 0.2243
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 1.7357 | 2.0 | 50 | 0.7179 | 0.2947 | 0.2412 |
| 0.2772 | 4.0 | 100 | 0.4758 | 0.2404 | 0.2113 |
| 0.081 | 6.0 | 150 | 0.5069 | 0.2628 | 0.2282 |
| 0.02 | 8.0 | 200 | 0.5289 | 0.2564 | 0.2297 |
| 0.0044 | 10.0 | 250 | 0.5366 | 0.2452 | 0.2251 |
| 0.0018 | 12.0 | 300 | 0.5565 | 0.2404 | 0.2251 |
| 0.0011 | 14.0 | 350 | 0.5668 | 0.2388 | 0.2259 |
| 0.0009 | 16.0 | 400 | 0.5762 | 0.2364 | 0.2251 |
| 0.0007 | 18.0 | 450 | 0.5847 | 0.2348 | 0.2243 |
| 0.0006 | 20.0 | 500 | 0.5913 | 0.2340 | 0.2243 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
TheTravellingEngineer/bloom-1b1-RLHF-v2
|
TheTravellingEngineer
| 2023-08-10T01:39:33Z | 1,662 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bloom",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-10T01:30:21Z |
The base model is bigscience/bloom-1b1. It was finetuned using RLHF and the dataset and the model prompt is similar to the original model.
This repo contains the merged fp16 model.
**Legal Disclaimer: This model is bound by the usage restrictions of the original BLOOM model. And comes with no warranty or gurantees of any kind.**
---
- license:
- bigscience-bloom-rail-1.0 <br>
- datasets:
- Anthropic/hh-rlhf <br>
- language:
- en <br>
- reference: https://github.com/hiyouga/LLaMA-Efficient-Tuning/tree/main
---
|
jaykei/Zuko
|
jaykei
| 2023-08-10T01:17:21Z | 0 | 1 | null |
[
"en",
"license:openrail",
"region:us"
] | null | 2023-07-05T05:16:36Z |
---
license: openrail
language:
- en
---
|
dana11235/ppo-Huggy
|
dana11235
| 2023-08-10T01:16:01Z | 1 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-08-10T01:15:51Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: dana11235/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
mani05/q-FrozenLake-v1-4x4-noSlippery
|
mani05
| 2023-08-10T01:06:06Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T01:06:02Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="mani05/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
rriverar75/bert-base-multilingual-cased-mrpc-glue
|
rriverar75
| 2023-08-10T00:50:24Z | 109 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"base_model:google-bert/bert-base-multilingual-cased",
"base_model:finetune:google-bert/bert-base-multilingual-cased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-10T00:39:59Z |
---
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
- text-classification
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
widget:
- text:
- >-
Yucaipa owned Dominick 's before selling the chain to Safeway in 1998
for $ 2.5 billion.
- >-
Yucaipa bought Dominick's in 1995 for $ 693 million and sold it to
Safeway for $ 1.8 billion in 1998.
example_title: Not Equivalent
- text:
- >-
Revenue in the first quarter of the year dropped 15 percent from the
same period a year earlier.
- >-
With the scandal hanging over Stewart's company revenue the first
quarter of the year dropped 15 percent from the same period a year
earlier.
example_title: Equivalent
model-index:
- name: bert-base-multilingual-cased-mrpc-glue
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: datasetX
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.7426470588235294
- name: F1
type: f1
value: 0.8059149722735676
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-multilingual-cased-mrpc-glue
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the datasetX dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5185
- Accuracy: 0.7426
- F1: 0.8059
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.604 | 1.09 | 500 | 0.5185 | 0.7426 | 0.8059 |
| 0.4834 | 2.18 | 1000 | 0.5550 | 0.7770 | 0.8544 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
Notespeak/ariadnetestn
|
Notespeak
| 2023-08-10T00:35:42Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"gpt",
"llm",
"large language model",
"h2o-llmstudio",
"en",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-08-10T00:28:25Z |
---
language:
- en
library_name: transformers
tags:
- gpt
- llm
- large language model
- h2o-llmstudio
inference: false
thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
---
# Model Card
## Summary
This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
- Base model: [ai-forever/ruGPT-3.5-13B](https://huggingface.co/ai-forever/ruGPT-3.5-13B)
## Usage
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` library installed.
```bash
pip install transformers==4.31.0
```
Also make sure you are providing your huggingface token to the pipeline if the model is lying in a private repo.
- Either leave `token=True` in the `pipeline` and login to hugginface_hub by running
```python
import huggingface_hub
huggingface_hub.login(<ACCES_TOKEN>)
```
- Or directly pass your <ACCES_TOKEN> to `token` in the `pipeline`
```python
from transformers import pipeline
generate_text = pipeline(
model="Notespeak/ariadnetestn",
torch_dtype="auto",
trust_remote_code=True,
use_fast=True,
device_map={"": "cuda:0"},
token=True,
)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)
print(res[0]["generated_text"])
```
You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer:
```python
print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"])
```
```bash
<|prompt|>Why is drinking water so healthy?</s><|answer|>
```
Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`.
```python
from h2oai_pipeline import H2OTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"Notespeak/ariadnetestn",
use_fast=True,
padding_side="left",
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
"Notespeak/ariadnetestn",
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=True,
)
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)
print(res[0]["generated_text"])
```
You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Notespeak/ariadnetestn" # either local folder or huggingface model name
# Important: The prompt needs to be in the same format the model was trained with.
# You can find an example prompt in the experiment logs.
prompt = "<|prompt|>How are you?</s><|answer|>"
tokenizer = AutoTokenizer.from_pretrained(
model_name,
use_fast=True,
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=True,
)
model.cuda().eval()
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
# generate configuration can be modified to your needs
tokens = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)[0]
tokens = tokens[inputs["input_ids"].shape[1]:]
answer = tokenizer.decode(tokens, skip_special_tokens=True)
print(answer)
```
## Quantization and sharding
You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```.
## Model Architecture
```
GPT2LMHeadModel(
(transformer): GPT2Model(
(wte): Embedding(50272, 5120)
(wpe): Embedding(2048, 5120)
(drop): Dropout(p=0.1, inplace=False)
(h): ModuleList(
(0-39): 40 x GPT2Block(
(ln_1): LayerNorm((5120,), eps=1e-05, elementwise_affine=True)
(attn): GPT2Attention(
(c_attn): Conv1D()
(c_proj): Conv1D()
(attn_dropout): Dropout(p=0.1, inplace=False)
(resid_dropout): Dropout(p=0.1, inplace=False)
)
(ln_2): LayerNorm((5120,), eps=1e-05, elementwise_affine=True)
(mlp): GPT2MLP(
(c_fc): Conv1D()
(c_proj): Conv1D()
(act): NewGELUActivation()
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
(ln_f): LayerNorm((5120,), eps=1e-05, elementwise_affine=True)
)
(lm_head): Linear(in_features=5120, out_features=50272, bias=False)
)
```
## Model Configuration
This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
## Disclaimer
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
- Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
- Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
- Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
- Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
- Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
- Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.
By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
|
rriverar75/distilroberta-base-mrpc-glue
|
rriverar75
| 2023-08-10T00:13:17Z | 109 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"base_model:distilbert/distilroberta-base",
"base_model:finetune:distilbert/distilroberta-base",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-10T00:06:32Z |
---
license: apache-2.0
base_model: distilroberta-base
tags:
- text-classification
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
widget:
- text:
- >-
Yucaipa owned Dominick 's before selling the chain to Safeway in 1998
for $ 2.5 billion.
- >-
Yucaipa bought Dominick's in 1995 for $ 693 million and sold it to
Safeway for $ 1.8 billion in 1998.
example_title: Not Equivalent
- text:
- >-
Revenue in the first quarter of the year dropped 15 percent from the
same period a year earlier.
- >-
With the scandal hanging over Stewart's company revenue the first
quarter of the year dropped 15 percent from the same period a year
earlier.
example_title: Equivalent
model-index:
- name: distilroberta-base-mrpc-glue
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: datasetX
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8333333333333334
- name: F1
type: f1
value: 0.8794326241134752
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-mrpc-glue
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the datasetX dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3874
- Accuracy: 0.8333
- F1: 0.8794
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.5523 | 1.09 | 500 | 0.3874 | 0.8333 | 0.8794 |
| 0.3421 | 2.18 | 1000 | 0.5895 | 0.8529 | 0.8969 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
vluz/toxmodel20
|
vluz
| 2023-08-10T00:06:47Z | 4 | 0 |
keras
|
[
"keras",
"license:cc0-1.0",
"region:us"
] | null | 2023-08-07T11:52:01Z |
---
license: cc0-1.0
---
**Note:** Due to nature of toxic comments data and code contain explicit language.
Data is from kaggle, the *Toxic Comment Classification Challenge*
<br>
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data?select=train.csv.zip
A copy of the data exists on the `data` directory.
Trained over 20 epoch in a runpod
### 🤗 Running demo here:
https://huggingface.co/spaces/vluz/Tox
<hr>
Code requires pandas, tensorflow, and streamlit. All can be installed via `pip`.
```python
import os
import pickle
import streamlit as st
import tensorflow as tf
from tensorflow.keras.layers import TextVectorization
@st.cache_resource
def load_model():
model = tf.keras.models.load_model(os.path.join("model", "toxmodel.keras"))
return model
@st.cache_resource
def load_vectorizer():
from_disk = pickle.load(open(os.path.join("model", "vectorizer.pkl"), "rb"))
new_v = TextVectorization.from_config(from_disk['config'])
new_v.adapt(tf.data.Dataset.from_tensor_slices(["xyz"])) # fix for Keras bug
new_v.set_weights(from_disk['weights'])
return new_v
st.title("Toxic Comment Test")
st.divider()
model = load_model()
vectorizer = load_vectorizer()
default_prompt = "i love you man, but fuck you!"
input_text = st.text_area("Comment:", default_prompt, height=150).lower()
if st.button("Test"):
if not input_text:
st.write("⚠ Warning: Empty prompt.")
elif len(input_text) < 15:
st.write("⚠ Warning: Model is far less accurate with a small prompt.")
if input_text == default_prompt:
st.write("Expected results from default prompt are positive for 0 and 2")
with st.spinner("Testing..."):
inputv = vectorizer([input_text])
output = model.predict(inputv)
res = (output > 0.5)
st.write(["toxic","severe toxic","obscene","threat","insult","identity hate"], res)
st.write(output)
```
Put `toxmodel.keras` and `vectorizer.pkl` into the `model` dir.
Then do:
```
stramlit run toxtest.py
```
Expected result from default prompt is 0 and 2
<hr>
Full code can be found here:
<br>
https://github.com/vluz/ToxTest/
<br>
|
asenella/mhd_config_1_MMVAE_beta_5_scale_True_seed_1
|
asenella
| 2023-08-10T00:03:06Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-08-10T00:02:56Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
patonw/a2c-PandaReachDense-v3
|
patonw
| 2023-08-09T23:52:13Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-09T23:49:30Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v3
type: PandaReachDense-v3
metrics:
- type: mean_reward
value: -0.20 +/- 0.12
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v3**
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
tingchih/pretrain_doc_concat
|
tingchih
| 2023-08-09T23:38:40Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-07-31T05:04:43Z |
This is a pre-train baseline model for summarization. Input is to concatenate all articles in one cluster.
the example.json is the example result.
pipeline:
input -> sum tokenizer -> perceiver -> sum model -> summary
|
cjohlmacher/ppo-Pyramids
|
cjohlmacher
| 2023-08-09T23:30:56Z | 1 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Pyramids",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-08-09T21:01:25Z |
---
library_name: ml-agents
tags:
- Pyramids
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: cjohlmacher/ppo-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
good-gaming/distilbert-base-uncased-finetuned-emotion
|
good-gaming
| 2023-08-09T23:21:58Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-09T22:48:26Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.927
- name: F1
type: f1
value: 0.9272353554627635
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2133
- Accuracy: 0.927
- F1: 0.9272
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8118 | 1.0 | 250 | 0.3108 | 0.905 | 0.9056 |
| 0.2485 | 2.0 | 500 | 0.2133 | 0.927 | 0.9272 |
### Framework versions
- Transformers 4.31.0
- Pytorch 1.12.1
- Datasets 1.16.1
- Tokenizers 0.13.3
|
gang21/llama2-icd10
|
gang21
| 2023-08-09T23:12:41Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-09T23:12:34Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.5.0.dev0
|
knvarad/t5
|
knvarad
| 2023-08-09T22:41:08Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"t5",
"text2text-generation",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-08-08T23:29:01Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: dummy-model-varad1
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# dummy-model-varad1
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 3.8679
- Validation Loss: 3.5523
- Train Rougel: tf.Tensor(0.11994212, shape=(), dtype=float32)
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Rougel | Epoch |
|:----------:|:---------------:|:----------------------------------------------:|:-----:|
| 3.8679 | 3.5523 | tf.Tensor(0.11994212, shape=(), dtype=float32) | 0 |
### Framework versions
- Transformers 4.26.1
- TensorFlow 2.10.1
- Datasets 2.13.1
- Tokenizers 0.12.1
|
theojolliffe/flan-recipes
|
theojolliffe
| 2023-08-09T22:39:32Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-08-09T22:03:11Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-recipes
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-recipes
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 71.0741
- Rouge2: 34.937
- Rougel: 71.129
- Rougelsum: 71.0758
- Gen Len: 4.0103
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:|
| 0.0 | 1.0 | 873 | nan | 71.0741 | 34.937 | 71.129 | 71.0758 | 4.0103 |
| 0.0 | 2.0 | 1746 | nan | 71.0741 | 34.937 | 71.129 | 71.0758 | 4.0103 |
| 0.0 | 3.0 | 2619 | nan | 71.0741 | 34.937 | 71.129 | 71.0758 | 4.0103 |
| 0.0 | 4.0 | 3492 | nan | 71.0741 | 34.937 | 71.129 | 71.0758 | 4.0103 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
gang21/llama2-icd10-peft
|
gang21
| 2023-08-09T22:33:20Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-09T22:05:35Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.5.0.dev0
|
sergeindamix/anciano_pendejo
|
sergeindamix
| 2023-08-09T22:11:22Z | 2 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"autotrain",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"region:us"
] |
text-to-image
| 2023-08-09T22:11:17Z |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: photo of a sks person
tags:
- text-to-image
- diffusers
- autotrain
inference: true
---
# DreamBooth trained by AutoTrain
Test enoder was not trained.
|
grace-pro/wandb_v4_5e-5
|
grace-pro
| 2023-08-09T22:09:47Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"base_model:Davlan/afro-xlmr-base",
"base_model:finetune:Davlan/afro-xlmr-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-08-09T21:34:53Z |
---
license: mit
base_model: Davlan/afro-xlmr-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: wandb_v4_5e-5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wandb_v4_5e-5
This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1647
- Precision: 0.3544
- Recall: 0.2986
- F1: 0.3241
- Accuracy: 0.9519
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1942 | 0.54 | 500 | 0.1416 | 0.3913 | 0.1885 | 0.2544 | 0.9571 |
| 0.1761 | 1.07 | 1000 | 0.1391 | 0.3919 | 0.1800 | 0.2467 | 0.9574 |
| 0.1561 | 1.61 | 1500 | 0.1362 | 0.4214 | 0.2081 | 0.2786 | 0.9582 |
| 0.1538 | 2.15 | 2000 | 0.1436 | 0.3513 | 0.2747 | 0.3083 | 0.9529 |
| 0.1327 | 2.68 | 2500 | 0.1453 | 0.3424 | 0.2984 | 0.3189 | 0.9510 |
| 0.1218 | 3.22 | 3000 | 0.1467 | 0.3726 | 0.2862 | 0.3237 | 0.9540 |
| 0.1068 | 3.76 | 3500 | 0.1583 | 0.3466 | 0.3004 | 0.3218 | 0.9513 |
| 0.0978 | 4.29 | 4000 | 0.1658 | 0.3413 | 0.3021 | 0.3205 | 0.9505 |
| 0.0891 | 4.83 | 4500 | 0.1647 | 0.3544 | 0.2986 | 0.3241 | 0.9519 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
jordyvl/vit-base_rvl-cdip-tiny_rvl_cdip-NK1000_og_simkd_rand
|
jordyvl
| 2023-08-09T22:04:24Z | 163 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-08-09T10:49:28Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-base_rvl-cdip-tiny_rvl_cdip-NK1000_og_simkd_rand
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base_rvl-cdip-tiny_rvl_cdip-NK1000_og_simkd_rand
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 267.6730
- Accuracy: 0.6705
- Brier Loss: 0.6262
- Nll: 2.7104
- F1 Micro: 0.6705
- F1 Macro: 0.6721
- Ece: 0.3087
- Aurc: 0.1976
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
| 286.7271 | 1.0 | 1000 | 285.5399 | 0.2112 | 1.1285 | 5.2382 | 0.2112 | 0.1362 | 0.4400 | 0.6668 |
| 284.6535 | 2.0 | 2000 | 284.8639 | 0.2365 | 1.1876 | 6.1414 | 0.2365 | 0.1846 | 0.5026 | 0.6043 |
| 283.982 | 3.0 | 3000 | 284.8751 | 0.2555 | 1.2913 | 6.7626 | 0.2555 | 0.2072 | 0.5840 | 0.6111 |
| 283.8947 | 4.0 | 4000 | 283.0353 | 0.3585 | 1.0748 | 4.2918 | 0.3585 | 0.3100 | 0.4921 | 0.4239 |
| 282.5615 | 5.0 | 5000 | 282.0369 | 0.3852 | 1.0142 | 4.7413 | 0.3852 | 0.3432 | 0.4558 | 0.3983 |
| 281.6467 | 6.0 | 6000 | 280.8857 | 0.428 | 0.9539 | 4.1971 | 0.428 | 0.3797 | 0.4329 | 0.3427 |
| 280.8835 | 7.0 | 7000 | 279.7836 | 0.4288 | 1.0391 | 3.9288 | 0.4288 | 0.4012 | 0.4994 | 0.3565 |
| 279.5518 | 8.0 | 8000 | 278.7849 | 0.5198 | 0.8045 | 3.0811 | 0.5198 | 0.4977 | 0.3699 | 0.2454 |
| 278.6091 | 9.0 | 9000 | 278.3536 | 0.5155 | 0.8487 | 3.1204 | 0.5155 | 0.4977 | 0.4004 | 0.2587 |
| 277.9435 | 10.0 | 10000 | 277.6002 | 0.5258 | 0.8346 | 3.3232 | 0.5258 | 0.4899 | 0.3923 | 0.2693 |
| 277.646 | 11.0 | 11000 | 276.9034 | 0.5285 | 0.8510 | 3.1019 | 0.5285 | 0.5010 | 0.4079 | 0.2804 |
| 276.6211 | 12.0 | 12000 | 276.8536 | 0.5555 | 0.7899 | 3.0560 | 0.5555 | 0.5446 | 0.3760 | 0.2266 |
| 276.1643 | 13.0 | 13000 | 275.8300 | 0.5685 | 0.7767 | 3.1275 | 0.5685 | 0.5412 | 0.3730 | 0.2267 |
| 275.7773 | 14.0 | 14000 | 275.0154 | 0.5833 | 0.7536 | 2.9981 | 0.5833 | 0.5645 | 0.3603 | 0.2357 |
| 274.971 | 15.0 | 15000 | 275.1284 | 0.6008 | 0.7210 | 2.8953 | 0.6008 | 0.5920 | 0.3414 | 0.2059 |
| 274.6605 | 16.0 | 16000 | 273.9564 | 0.6132 | 0.7168 | 2.8476 | 0.6132 | 0.5968 | 0.3479 | 0.2272 |
| 273.7713 | 17.0 | 17000 | 273.3493 | 0.5995 | 0.7409 | 2.8991 | 0.5995 | 0.5901 | 0.3607 | 0.2272 |
| 272.7905 | 18.0 | 18000 | 273.5748 | 0.598 | 0.7367 | 2.7778 | 0.598 | 0.5858 | 0.3565 | 0.2102 |
| 273.134 | 19.0 | 19000 | 272.6561 | 0.6158 | 0.7128 | 2.8084 | 0.6158 | 0.6023 | 0.3494 | 0.2132 |
| 271.8558 | 20.0 | 20000 | 272.4530 | 0.618 | 0.7139 | 2.9767 | 0.618 | 0.6077 | 0.3480 | 0.2177 |
| 271.9448 | 21.0 | 21000 | 272.1698 | 0.619 | 0.7164 | 2.9459 | 0.619 | 0.6133 | 0.3510 | 0.2256 |
| 270.9343 | 22.0 | 22000 | 272.2906 | 0.6235 | 0.7087 | 2.9843 | 0.6235 | 0.6181 | 0.3452 | 0.2248 |
| 270.6012 | 23.0 | 23000 | 271.5266 | 0.6382 | 0.6781 | 2.9158 | 0.6382 | 0.6352 | 0.3324 | 0.2110 |
| 270.3184 | 24.0 | 24000 | 271.1095 | 0.634 | 0.6922 | 2.9734 | 0.634 | 0.6287 | 0.3348 | 0.2162 |
| 269.5019 | 25.0 | 25000 | 270.8806 | 0.644 | 0.6683 | 2.8735 | 0.644 | 0.6359 | 0.3258 | 0.2123 |
| 269.5113 | 26.0 | 26000 | 270.6180 | 0.6445 | 0.6650 | 2.6933 | 0.6445 | 0.6418 | 0.3271 | 0.2032 |
| 269.1238 | 27.0 | 27000 | 270.1308 | 0.6445 | 0.6712 | 2.8097 | 0.6445 | 0.6462 | 0.3290 | 0.2128 |
| 268.424 | 28.0 | 28000 | 269.7667 | 0.6352 | 0.6872 | 2.9166 | 0.6352 | 0.6314 | 0.3371 | 0.2231 |
| 268.4034 | 29.0 | 29000 | 270.0039 | 0.6455 | 0.6685 | 2.7765 | 0.6455 | 0.6459 | 0.3273 | 0.2097 |
| 268.3632 | 30.0 | 30000 | 270.0340 | 0.6448 | 0.6741 | 2.8602 | 0.6448 | 0.6455 | 0.3291 | 0.2178 |
| 268.1831 | 31.0 | 31000 | 269.3010 | 0.6597 | 0.6467 | 2.7502 | 0.6597 | 0.6571 | 0.3176 | 0.2053 |
| 268.0006 | 32.0 | 32000 | 269.4335 | 0.652 | 0.6583 | 2.8213 | 0.652 | 0.6457 | 0.3236 | 0.2081 |
| 267.5016 | 33.0 | 33000 | 269.2711 | 0.654 | 0.6530 | 2.8720 | 0.654 | 0.6517 | 0.3199 | 0.2090 |
| 267.177 | 34.0 | 34000 | 268.7774 | 0.661 | 0.6402 | 2.7718 | 0.661 | 0.6589 | 0.3137 | 0.1979 |
| 266.8408 | 35.0 | 35000 | 268.8279 | 0.6478 | 0.6640 | 2.8626 | 0.6478 | 0.6472 | 0.3271 | 0.2204 |
| 266.1984 | 36.0 | 36000 | 268.3442 | 0.6635 | 0.6378 | 2.7999 | 0.6635 | 0.6611 | 0.3128 | 0.2079 |
| 266.1338 | 37.0 | 37000 | 268.5704 | 0.66 | 0.6430 | 2.8314 | 0.66 | 0.6576 | 0.3165 | 0.2039 |
| 266.6958 | 38.0 | 38000 | 268.1453 | 0.6635 | 0.6415 | 2.7881 | 0.6635 | 0.6627 | 0.3147 | 0.2106 |
| 265.6171 | 39.0 | 39000 | 268.1818 | 0.6635 | 0.6398 | 2.7602 | 0.6635 | 0.6641 | 0.3142 | 0.2025 |
| 265.8238 | 40.0 | 40000 | 268.1265 | 0.6637 | 0.6390 | 2.8178 | 0.6637 | 0.6648 | 0.3151 | 0.2016 |
| 265.4164 | 41.0 | 41000 | 267.8777 | 0.6663 | 0.6304 | 2.7649 | 0.6663 | 0.6664 | 0.3113 | 0.2012 |
| 265.6293 | 42.0 | 42000 | 267.8370 | 0.6683 | 0.6285 | 2.7730 | 0.6683 | 0.6677 | 0.3108 | 0.2023 |
| 265.6068 | 43.0 | 43000 | 267.7586 | 0.665 | 0.6348 | 2.7612 | 0.665 | 0.6649 | 0.3126 | 0.1992 |
| 265.2131 | 44.0 | 44000 | 268.0432 | 0.667 | 0.6293 | 2.7217 | 0.667 | 0.6669 | 0.3094 | 0.1885 |
| 265.1312 | 45.0 | 45000 | 267.6967 | 0.6653 | 0.6316 | 2.6899 | 0.6653 | 0.6637 | 0.3127 | 0.2000 |
| 265.371 | 46.0 | 46000 | 267.5307 | 0.668 | 0.6317 | 2.7472 | 0.668 | 0.6684 | 0.3105 | 0.2000 |
| 264.9213 | 47.0 | 47000 | 267.5887 | 0.672 | 0.6214 | 2.6635 | 0.672 | 0.6720 | 0.3063 | 0.1935 |
| 265.1304 | 48.0 | 48000 | 267.4995 | 0.6735 | 0.6220 | 2.7437 | 0.6735 | 0.6730 | 0.3049 | 0.1958 |
| 264.6242 | 49.0 | 49000 | 267.2600 | 0.6723 | 0.6236 | 2.8222 | 0.6723 | 0.6713 | 0.3074 | 0.1974 |
| 265.1563 | 50.0 | 50000 | 267.6730 | 0.6705 | 0.6262 | 2.7104 | 0.6705 | 0.6721 | 0.3087 | 0.1976 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2
|
rizquuula/RoBERTa-IndoSQuADv2_1691592486-16-2e-05-0.01-5
|
rizquuula
| 2023-08-09T22:04:20Z | 101 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-08-09T14:51:09Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: RoBERTa-IndoSQuADv2_1691592486-16-2e-05-0.01-5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RoBERTa-IndoSQuADv2_1691592486-16-2e-05-0.01-5
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1516
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.2457 | 1.0 | 8145 | 2.1159 |
| 1.7442 | 2.0 | 16290 | 2.0275 |
| 1.4963 | 3.0 | 24435 | 2.0147 |
| 1.301 | 4.0 | 32580 | 2.0607 |
| 1.1569 | 5.0 | 40725 | 2.1516 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|
omersen/path-to-save-model
|
omersen
| 2023-08-09T21:29:59Z | 3 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"dreambooth",
"base_model:CompVis/stable-diffusion-v1-4",
"base_model:finetune:CompVis/stable-diffusion-v1-4",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-08-09T20:58:14Z |
---
license: creativeml-openrail-m
base_model: CompVis/stable-diffusion-v1-4
instance_prompt: a photo of sks dog
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- dreambooth
inference: true
---
# DreamBooth - omersen/path-to-save-model
This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following.
DreamBooth for the text encoder was enabled: False.
|
badokorach/bert-finetuned-squad-8
|
badokorach
| 2023-08-09T21:28:50Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"question-answering",
"generated_from_keras_callback",
"base_model:badokorach/bert-finetuned-squad-5",
"base_model:finetune:badokorach/bert-finetuned-squad-5",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-08-09T21:08:52Z |
---
license: apache-2.0
base_model: badokorach/bert-finetuned-squad-5
tags:
- generated_from_keras_callback
model-index:
- name: badokorach/bert-finetuned-squad-8
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# badokorach/bert-finetuned-squad-8
This model is a fine-tuned version of [badokorach/bert-finetuned-squad-5](https://huggingface.co/badokorach/bert-finetuned-squad-5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0002
- Epoch: 18
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 1300, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.03}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
### Training results
| Train Loss | Epoch |
|:----------:|:-----:|
| 0.0011 | 0 |
| 0.0040 | 1 |
| 0.0021 | 2 |
| 0.0008 | 3 |
| 0.0008 | 4 |
| 0.0005 | 5 |
| 0.0005 | 6 |
| 0.0003 | 7 |
| 0.0001 | 8 |
| 0.0001 | 9 |
| 0.0002 | 10 |
| 0.0002 | 11 |
| 0.0001 | 12 |
| 0.0002 | 13 |
| 0.0002 | 14 |
| 0.0001 | 15 |
| 0.0005 | 16 |
| 0.0001 | 17 |
| 0.0002 | 18 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3
|
jannikseus/aspect_extraction_restaurant_reviews
|
jannikseus
| 2023-08-09T21:16:05Z | 25 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"distilbert",
"token-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-08-06T20:58:35Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: aspect_extraction_restaurant_reviews
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# aspect_extraction_restaurant_reviews
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1048
- Precision: 0.7375
- Recall: 0.8194
- F1: 0.7763
- Accuracy: 0.9650
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 232 | 0.1149 | 0.6062 | 0.8125 | 0.6944 | 0.9500 |
| No log | 2.0 | 464 | 0.0942 | 0.7267 | 0.8125 | 0.7672 | 0.9630 |
| 0.1371 | 3.0 | 696 | 0.0981 | 0.7152 | 0.8194 | 0.7638 | 0.9638 |
| 0.1371 | 4.0 | 928 | 0.1048 | 0.7375 | 0.8194 | 0.7763 | 0.9650 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.2
- Tokenizers 0.13.3
|
szymonrucinski/good-mood
|
szymonrucinski
| 2023-08-09T21:09:47Z | 0 | 0 | null |
[
"license:cc-by-nc-sa-3.0",
"region:us"
] | null | 2023-08-09T16:17:39Z |
---
license: cc-by-nc-sa-3.0
---
|
azhang1212/angela_shuffle_untranslated_eval
|
azhang1212
| 2023-08-09T21:09:36Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"base_model:Davlan/afro-xlmr-base",
"base_model:finetune:Davlan/afro-xlmr-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-08-09T19:49:01Z |
---
license: mit
base_model: Davlan/afro-xlmr-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: angela_shuffle_untranslated_eval
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# angela_shuffle_untranslated_eval
This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1761
- Precision: 0.3900
- Recall: 0.2591
- F1: 0.3114
- Accuracy: 0.9516
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1703 | 1.0 | 1283 | 0.1568 | 0.4177 | 0.1200 | 0.1864 | 0.9548 |
| 0.1434 | 2.0 | 2566 | 0.1517 | 0.4226 | 0.1849 | 0.2573 | 0.9549 |
| 0.1264 | 3.0 | 3849 | 0.1612 | 0.4263 | 0.1915 | 0.2643 | 0.9551 |
| 0.1064 | 4.0 | 5132 | 0.1632 | 0.3769 | 0.2759 | 0.3186 | 0.9505 |
| 0.0888 | 5.0 | 6415 | 0.1761 | 0.3900 | 0.2591 | 0.3114 | 0.9516 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
Gabesantos1007/lunar_lander
|
Gabesantos1007
| 2023-08-09T21:00:00Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-09T20:59:39Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 256.79 +/- 14.97
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
chronopt-research/vietnamese-gpt2-base
|
chronopt-research
| 2023-08-09T20:58:46Z | 147 | 1 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"tensorboard",
"gpt2",
"text-generation",
"vi",
"dataset:duongttr/vi-dataset-for-pretrain",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-09T20:29:15Z |
---
license: apache-2.0
datasets:
- duongttr/vi-dataset-for-pretrain
language:
- vi
metrics:
- perplexity
pipeline_tag: text-generation
widget:
- text: Hôm nay tôi rất vui vì
- text: Hoàng Sa, Trường Sa là của Việt
model-index:
- name: chronopt-research/vietnamese-gpt2-base
results:
- task:
type: text-generation
metrics:
- type: perplexity
value: 51.35
verified: true
---
# Vietnamese `gpt2-base`
<!-- Provide a quick summary of what the model is/does. -->
This is a pretrained `gpt2-base` for Vietnamese language using casual language modeling (CLM) objective. It was introduced in
[this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
and first released at [this page](https://openai.com/blog/better-language-models/).
## Model Description
GPT-2 (*at first*) is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences.
This is the **base version** of GPT-2, with 137M parameters.
You could've found other pretrained version from here: [gpt2-medium](https://huggingface.co/chronopt-research/vietnamese-gpt2-medium), [gpt2-large]()
## Dataset used for pretraining
This is a combination of multiple Vietnamese dataset for pretraining CLMs such as GPT, GPT2, etc.
The dataset consists of:
- [`vietgpt/covid_19_news_vi`](https://huggingface.co/datasets/vietgpt/covid_19_news_vi)
- [`hieunguyen1053/binhvq-news-corpus`](https://huggingface.co/datasets/hieunguyen1053/binhvq-news-corpus)
- [`oscar (unshuffled_deduplicated_vi)`](https://huggingface.co/datasets/oscar)
- [`vietgpt/wikipedia_vi`](https://huggingface.co/datasets/vietgpt/wikipedia_vi)
You can find out the combined version here: [duongttr/vi-dataset-for-pretrain](https://huggingface.co/datasets/duongttr/vi-dataset-for-pretrain)
## Hyperparamters & Results
We trained the model ~100k steps, with `lr=1e-4`, `bs=2560` (`single_batch_size=32` * `num_core=8` * `grad_cum=10`), `optimizer=adamw` on TPU-VM-3.8 from [TRC Program](https://sites.research.google/trc/about/). The training costs around **1 day**.
|Model|Eval Loss|Eval Perplexity|
|---|---|---|
|**gpt2-base**|**3.939**|**51.35**|
|gpt2-medium|2.8676|17.5948|
|gpt2-large|-|-|
## Contacts
Feel free to contact us via: [email]()
|
Jbrophy/falcon-7B-Instruct-Romance
|
Jbrophy
| 2023-08-09T20:58:15Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-08T00:39:51Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
chronopt-research/vietnamese-gpt2-medium
|
chronopt-research
| 2023-08-09T20:54:47Z | 146 | 2 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"tensorboard",
"gpt2",
"text-generation",
"vi",
"dataset:duongttr/vi-dataset-for-pretrain",
"doi:10.57967/hf/3874",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-06T11:34:08Z |
---
license: apache-2.0
datasets:
- duongttr/vi-dataset-for-pretrain
language:
- vi
metrics:
- perplexity
pipeline_tag: text-generation
widget:
- text: Việt Nam là quốc gia có
- text: Hoàng Sa, Trường Sa là của
model-index:
- name: chronopt-research/vietnamese-gpt2-medium
results:
- task:
type: text-generation
metrics:
- type: perplexity
value: 17.5948
verified: true
---
# Vietnamese `gpt2-medium`
<!-- Provide a quick summary of what the model is/does. -->
This is a pretrained `gpt2-medium` for Vietnamese language using casual language modeling (CLM) objective. It was introduced in
[this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
and first released at [this page](https://openai.com/blog/better-language-models/).
## Model Description
GPT-2 (*at first*) is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences.
This is the **medium version** of GPT-2, with 380M parameters.
You could've found other pretrained version from here: [gpt2-base](https://huggingface.co/chronopt-research/vietnamese-gpt2-base), [gpt2-large]()
## Dataset used for pretraining
This is a combination of multiple Vietnamese dataset for pretraining CLMs such as GPT, GPT2, etc.
The dataset consists of:
- [`vietgpt/covid_19_news_vi`](https://huggingface.co/datasets/vietgpt/covid_19_news_vi)
- [`hieunguyen1053/binhvq-news-corpus`](https://huggingface.co/datasets/hieunguyen1053/binhvq-news-corpus)
- [`oscar (unshuffled_deduplicated_vi)`](https://huggingface.co/datasets/oscar)
- [`vietgpt/wikipedia_vi`](https://huggingface.co/datasets/vietgpt/wikipedia_vi)
You can find out the combined version here: [duongttr/vi-dataset-for-pretrain](https://huggingface.co/datasets/duongttr/vi-dataset-for-pretrain)
## Hyperparamters & Results
We trained the model ~100k steps, with `lr=1e-4`, `bs=1920`, `optimizer=adamw` on TPU-VM-3.8 from [TRC Program](https://sites.research.google/trc/about/). The training costs around **2.5 days**.
|Model|Eval Loss|Eval Perplexity|
|---|---|---|
|gpt2-base|3.939|51.35|
|**gpt2-medium**|**2.8676**|**17.5948**|
|gpt2-large|-|-|
## Contacts
Feel free to contact us via: [email]()
|
TotoLefo/Sheirlou500Epoch
|
TotoLefo
| 2023-08-09T20:33:56Z | 0 | 0 | null |
[
"AI VOICE",
"fr",
"region:us"
] | null | 2023-08-09T20:31:07Z |
---
language:
- fr
tags:
- AI VOICE
---
# Model Card for Model ID
- **Developed by:** TOTO
|
FredericProtat/dqn-SpaceInvadersNoFrameskip-v4
|
FredericProtat
| 2023-08-09T20:24:42Z | 7 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-09T20:24:06Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 691.00 +/- 253.51
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga FredericProtat -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga FredericProtat -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga FredericProtat
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
Josrf/a2c-PandaPickAndPlace-v3
|
Josrf
| 2023-08-09T20:24:20Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaPickAndPlace-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-09T20:18:17Z |
---
library_name: stable-baselines3
tags:
- PandaPickAndPlace-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaPickAndPlace-v3
type: PandaPickAndPlace-v3
metrics:
- type: mean_reward
value: -50.00 +/- 0.00
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaPickAndPlace-v3**
This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
SaudxInu/dqn-SpaceInvadersNoFrameskip-v4
|
SaudxInu
| 2023-08-09T20:18:20Z | 7 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-09T20:17:42Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 607.50 +/- 360.77
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SaudxInu -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SaudxInu -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga SaudxInu
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
JabrilJacobs/poca-SoccerTwos
|
JabrilJacobs
| 2023-08-09T20:13:59Z | 12 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"SoccerTwos",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-08-09T20:11:14Z |
---
library_name: ml-agents
tags:
- SoccerTwos
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: JabrilJacobs/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Josrf/a2c-PandaReachDense-v3
|
Josrf
| 2023-08-09T20:03:20Z | 6 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-09T19:57:18Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v3
type: PandaReachDense-v3
metrics:
- type: mean_reward
value: -0.23 +/- 0.13
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v3**
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
MIDSCapstoneTeam/ContrailSentinel
|
MIDSCapstoneTeam
| 2023-08-09T19:45:01Z | 6 | 0 |
keras
|
[
"keras",
"tf-keras",
"arxiv:2304.02122",
"region:us"
] | null | 2023-07-15T23:58:03Z |
---
library_name: keras
---
## Model description
This TransUNet model identifies contrails in satellite images. It takes pre-processed .npy files (images) from the OpenContrails dataset [here](https://arxiv.org/abs/2304.02122) as its inputs, and returns a "mask" image showing only the contrails overlayed on the same area.
We achieve a Mean IOU of 0.6997 on the validation set.
## Intended uses
Contrails (vapor trails from airplanes) are the [number one](https://www.science.org/content/article/aviation-s-dirty-secret-airplane-contrails-are-surprisingly-potent-cause-global-warming) contributor to global warming from the aviation industry.
We hope that data scientists and researchers focused on reducing contrails will use this model to improve their work.
There are current efforts underway to develop models that predict contrails, but one major limiting factor for these efforts is that image labeling is still done by humans (labeled images are needed in order to validate contrail prediction models).
Labeling contrails in images is a difficult and expensive task - our model helps researchers efficiently segment satellite images so they can validate and improve contrail prediction models.
To learn more about our work, visit [our website](http://contrailsentinel.pythonanywhere.com/).
## How to Get Started with the Model
Use the code below to get started with the model.
```
#Required imports and Huggingface authentication
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
os.environ["SM_FRAMEWORK"] = "tf.keras"
import segmentation_models as sm
import tensorflow as tf
from huggingface_hub import from_pretrained_keras
from huggingface_hub import notebook_login
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
weights = [0.5,0.5] # hyper parameter
dice_loss = sm.losses.DiceLoss(class_weights = weights)
focal_loss = sm.losses.CategoricalFocalLoss()
TOTAL_LOSS_FACTOR = 5
total_loss = dice_loss + (TOTAL_LOSS_FACTOR * focal_loss)
def jaccard_coef(y_true, y_pred):
"""
Defines custom jaccard coefficient metric
"""
y_true_flatten = K.flatten(y_true)
y_pred_flatten = K.flatten(y_pred)
intersection = K.sum(y_true_flatten * y_pred_flatten)
final_coef_value = (intersection + 1.0) / (K.sum(y_true_flatten) + K.sum(y_pred_flatten) - intersection + 1.0)
return final_coef_value
metrics = [tf.keras.metrics.MeanIoU(num_classes=2, sparse_y_true= False, sparse_y_pred=False, name="Mean IOU")]
notebook_login()
# Load model from Huggingface Hub
model = from_pretrained_keras("MIDSCapstoneTeam/ContrailSentinel", custom_objects={'dice_loss_plus_5focal_loss': total_loss, 'jaccard_coef': jaccard_coef, 'IOU score' : sm.metrics.IOUScore(threshold=0.9, name="IOU score"), 'Dice Coeficient' : sm.metrics.FScore(threshold=0.6, name="Dice Coeficient")}, compile=False)
model.compile(metrics=metrics)
# Inference -- User needs to specify the image path where label and ash images are stored
label = np.load({Image path} + 'human_pixel_masks.npy')
ash_image = np.load({Image path} + 'ash_image.npy')[...,4]
y_pred = model.predict(ash_image.reshape(1,256, 256, 3))
prediction = np.argmax(y_pred[0], axis=2).reshape(256,256,1)
fig, ax = plt.subplots(1, 2, figsize=(9, 5))
fig.tight_layout(pad=5.0)
ax[1].set_title("Contrail prediction")
ax[1].imshow(ash_image)
ax[1].imshow(prediction)
ax[1].axis('off')
ax[0].set_title("False colored satellite image")
ax[0].imshow(ash_image)
ax[0].axis('off')
```
|
azhang1212/angela_untranslated_shuffle_eval
|
azhang1212
| 2023-08-09T19:40:35Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"base_model:Davlan/afro-xlmr-base",
"base_model:finetune:Davlan/afro-xlmr-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-08-09T18:20:57Z |
---
license: mit
base_model: Davlan/afro-xlmr-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: angela_untranslated_shuffle_eval
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# angela_untranslated_shuffle_eval
This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3091
- Precision: 0.4310
- Recall: 0.2192
- F1: 0.2906
- Accuracy: 0.9226
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1519 | 1.0 | 1283 | 0.2417 | 0.4089 | 0.1276 | 0.1945 | 0.9203 |
| 0.1302 | 2.0 | 2566 | 0.2321 | 0.4342 | 0.1198 | 0.1878 | 0.9215 |
| 0.1082 | 3.0 | 3849 | 0.2712 | 0.4270 | 0.1816 | 0.2548 | 0.9215 |
| 0.0883 | 4.0 | 5132 | 0.2998 | 0.4480 | 0.2006 | 0.2771 | 0.9233 |
| 0.0715 | 5.0 | 6415 | 0.3091 | 0.4310 | 0.2192 | 0.2906 | 0.9226 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
drewglass/results
|
drewglass
| 2023-08-09T19:39:08Z | 216 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:food101",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-08-09T16:58:29Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- food101
metrics:
- accuracy
model-index:
- name: results
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: food101
type: food101
config: default
split: train[:5000]
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.894
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5746
- Accuracy: 0.894
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.6455 | 0.99 | 62 | 2.4448 | 0.841 |
| 1.751 | 2.0 | 125 | 1.7416 | 0.879 |
| 1.5345 | 2.98 | 186 | 1.5746 | 0.894 |
### Framework versions
- Transformers 4.28.1
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1
|
HG7/ReQLoRA_all8
|
HG7
| 2023-08-09T19:34:28Z | 2 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-09T19:34:07Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
MattStammers/ppo-Car_Racing_v2-take1
|
MattStammers
| 2023-08-09T19:24:35Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"CarRacing-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-09T19:17:38Z |
---
library_name: stable-baselines3
tags:
- CarRacing-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CarRacing-v2
type: CarRacing-v2
metrics:
- type: mean_reward
value: -74.49 +/- 23.67
name: mean_reward
verified: false
---
# **PPO** Agent playing **CarRacing-v2**
This is a trained model of a **PPO** agent playing **CarRacing-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
A mess :D
|
526christian/526mix-v1.5
|
526christian
| 2023-08-09T19:18:04Z | 24 | 2 |
diffusers
|
[
"diffusers",
"safetensors",
"stable-diffusion",
"text-to-image",
"en",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-08-02T20:47:05Z |
---
language:
- en
tags:
- stable-diffusion
- text-to-image
license: creativeml-openrail-m
inference: true
---
High saturation is much less frequently an issue in this version at 7 CFG than the last. But if it happens again, it helps to pull back to 6.
`<neg-sketch-2>` negative embedding highly recommended for realism and 3D style images (among others). It can be found here: https://huggingface.co/JPPhoto/neg-sketch-2
When prompting for paintings, I suggest using "framed, borders, photo" as your negative prompt to get fullscreen images and cut out any weird 3D-like people.
When prompting for illustrations, I like to use "photo" or "realistic" as my negative prompt.
When prompting for realism, I normally use a negative prompt of `<neg-sketch-2>` at 1.1 weight and "(anime, render, pixar, illustration, sketch)" at 1.2 weight.
[Garbage-bin concepts LoRA](https://civitai.com/models/95391?modelVersionId=101827) recommended for any intense silliness.
[Example images hosted on Civitai](https://civitai.com/models/15022?modelVersionId=132011) were generated in InvokeAI's Nodes using latent upscaling from close to ~512x resolution up a few hundred pixels each side at 0.55-0.65 strength w/ DDIM. This was followed up with an ESRGAN model upscale, then converting the image to latents and using ControlNet Tile in a latent to latent stage at 0.2-0.4 strength w/ DDIM.
|
huggingnft-app/milady
|
huggingnft-app
| 2023-08-09T19:17:48Z | 2 | 0 |
transformers
|
[
"transformers",
"huggingnft",
"nft",
"huggan",
"gan",
"image",
"images",
"unconditional-image-generation",
"dataset:huggingnft/milady",
"license:mit",
"endpoints_compatible",
"region:us"
] |
unconditional-image-generation
| 2023-08-09T19:17:21Z |
---
tags:
- huggingnft
- nft
- huggan
- gan
- image
- images
- unconditional-image-generation
datasets:
- huggingnft/milady
license: mit
---
# Hugging NFT: milady
## Disclaimer
All rights belong to their owners. Models and datasets can be removed from the site at the request of the copyright
holder.
## Model description
LightWeight GAN model for unconditional generation.
NFT collection available [here](https://opensea.io/collection/milady).
Dataset is available [here](https://huggingface.co/datasets/huggingnft/milady).
Check Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft).
Project repository: [link](https://github.com/AlekseyKorshuk/huggingnft).
[](https://github.com/AlekseyKorshuk/huggingnft)
## Intended uses & limitations
#### How to use
Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft).
#### Limitations and bias
Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft).
## Training data
Dataset is available [here](https://huggingface.co/datasets/huggingnft/milady).
## Training procedure
Training script is available [here](https://github.com/AlekseyKorshuk/huggingnft).
## Generated Images
Check results with Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft).
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingnft)
### BibTeX entry and citation info
```bibtex
@InProceedings{huggingnft,
author={Aleksey Korshuk}
year=2022
}
```
|
rizquuula/RoBERTa-IndoSQuADv2_1691593432-16-2e-06-0.01-5
|
rizquuula
| 2023-08-09T19:14:37Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"base_model:FacebookAI/roberta-base",
"base_model:finetune:FacebookAI/roberta-base",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-08-09T15:05:45Z |
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
model-index:
- name: RoBERTa-IndoSQuADv2_1691593432-16-2e-06-0.01-5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RoBERTa-IndoSQuADv2_1691593432-16-2e-06-0.01-5
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2352
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.9255 | 1.0 | 8145 | 2.5500 |
| 2.3227 | 2.0 | 16290 | 2.3388 |
| 2.1706 | 3.0 | 24435 | 2.2679 |
| 2.0939 | 4.0 | 32580 | 2.2414 |
| 2.0546 | 5.0 | 40725 | 2.2352 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
HG7/ReQLoRA_GUD8
|
HG7
| 2023-08-09T19:04:43Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-09T19:04:35Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
utahnlp/robertabase-structured-tuning-srl-conll2012
|
utahnlp
| 2023-08-09T18:57:20Z | 35 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
To run the model, you would need dependencies (e.g., vocab extracted from CoNLL corpus). For details, please refer to our [repo](https://github.com/utahnlp/structured_tuning_srl).
|
HG7/ReQLoRA_QV8
|
HG7
| 2023-08-09T18:45:26Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-09T18:44:24Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e9_s6789_v3_l5_v50
|
KingKazma
| 2023-08-09T18:45:20Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-09T18:45:19Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e6_s6789_v3_l5_v100
|
KingKazma
| 2023-08-09T18:43:16Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-09T18:43:15Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
stoyky/ppo-Huggy
|
stoyky
| 2023-08-09T18:40:35Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-08-09T18:40:27Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: stoyky/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e8_s6789_v3_l5_v50
|
KingKazma
| 2023-08-09T18:38:35Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-09T18:38:33Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KreativeHash/Gravur
|
KreativeHash
| 2023-08-09T18:38:26Z | 3 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"autotrain",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"region:us"
] |
text-to-image
| 2023-08-09T18:38:25Z |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: gravur
tags:
- text-to-image
- diffusers
- autotrain
inference: true
---
# DreamBooth trained by AutoTrain
Test enoder was not trained.
|
cgpotts/pipp-finder-bert-base-cased
|
cgpotts
| 2023-08-09T18:37:52Z | 113 | 3 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"linguistics",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-07T20:13:00Z |
---
license: apache-2.0
language:
- en
tags:
- linguistics
---
# Model Card for pipp-finder-bert-base-cased
This highly idiosyncratic and specific binary classifier is designed for the sole purpose of helping linguists find instances of the English Preposing in PP (PiPPs) construction in corpora. PiPPs are unbounded dependency constructions like "_Happy though we were with the idea_, we decided not to pursue it". This model does a good job of classifying sentences for whether or not they contain an instance of the construction.
The model is used as an investigative tool in this paper:
* Potts, Christopher. 2023. [Characterizing English Preposing in PP constructions](https://lingbuzz.net/lingbuzz/007495). Ms., Stanford.
## Model Details
The model is a fine-tuned `bert-base-cased` model. The fine-tuning data are available as `annotated/pipp-labels.csv` in [this project repository](https://github.com/cgpotts/pipps). All the annotations were done by Christopher Potts for the project "Characterizing English Preposing in PP constructions".
The model outputs `1` if it predicts the input contains a PiPP, else `0`.
### Model Description
- **Developed by:** Christopher Potts
- **Shared by:** Christopher Potts
- **Model type:** Binary classifier
- **Language(s):** English
- **License:** Apache 2.0
- **Finetuned from model:** `bert-base-cased`
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/cgpotts/pipps
- **Paper:** https://lingbuzz.net/lingbuzz/007495
## Uses
The sole purpose of the model is to try to identify sentences containing PiPPs. I assume that one is first filtering sentences using very general regexs, and then this model helps you find the gems as you go through examples by hand.
The model is useless for really anything except this linguistically motivated for task. And, even from the perspective of theoretical linguistics, this is a highly niche application!
## How to Get Started with the Model
See https://github.com/cgpotts/pipps/blob/main/classifiers_usage.ipynb
## Training Details
See https://github.com/cgpotts/pipps/blob/main/classifier_training.ipynb
## Evaluation
See https://github.com/cgpotts/pipps/blob/main/classifiers_usage.ipynb
## Citation
See https://github.com/cgpotts/pipps
a
## Model Card Authors
[Christopher Potts](https://web.stanford.edu/~cgpotts/)
## Model Card Contact
[Christopher Potts](https://web.stanford.edu/~cgpotts/) Christopher Potts
|
AEJaspan/ppo-LunarLander-v2
|
AEJaspan
| 2023-08-09T18:37:08Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-09T18:36:49Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 279.39 +/- 20.53
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e5_s6789_v3_l5_v100
|
KingKazma
| 2023-08-09T18:36:20Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-09T18:36:19Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e7_s6789_v3_l5_v50
|
KingKazma
| 2023-08-09T18:31:49Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-09T18:31:48Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e4_s6789_v3_l5_v100
|
KingKazma
| 2023-08-09T18:29:24Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-09T18:29:22Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
GabrielLogspace/lora-trained-xl-colab
|
GabrielLogspace
| 2023-08-09T18:26:08Z | 4 | 1 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2023-08-09T15:17:18Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of sks dog
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - GabrielLogspace/lora-trained-xl-colab
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.