modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 00:42:47
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
553 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 00:42:38
card
stringlengths
11
1.01M
Dytorch/textual_inversion_cat
Dytorch
2023-08-10T08:50:46Z
3
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-09T02:43:24Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - Dytorch/textual_inversion_cat These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
taehoon1lee/Reinforce-unit4-11
taehoon1lee
2023-08-10T08:49:20Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T08:48:53Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-unit4-11 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 50.60 +/- 41.57 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
NickTheSickDick/David-Draiman-V1-RVC
NickTheSickDick
2023-08-10T08:44:36Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-08-06T18:30:29Z
--- license: openrail --- The first version of my David Draiman model. Trained in RVC on a custom dataset, 220 Epochs, mangio-crepe
Norquinal/llama-2-7b-claude-instruct
Norquinal
2023-08-10T08:23:03Z
18
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:Norquinal/claude_multi_instruct_1k", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T03:40:43Z
--- datasets: - Norquinal/claude_multi_instruct_1k --- This is a [LLaMA-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) model fine-tuned using QLoRA (4-bit precision) on my [claude_multi_instruct_1k](https://huggingface.co/datasets/Norquinal/claude_multi_instruct_1k) dataset. Do not take this model very seriously, it is probably not very good. I haven't a clue of what I'm doing. I just thought it was a fun thing to make. ## Prompt Format The model was finetuned with the following prompt format: ``` Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response: ``` ## Example Usage >\### Instruction: >Deconstruct five major technological innovations in 20th and 21st centuries—Internet, personal computing, mobile phones, artificial intelligence, and electric vehicles. For each innovation, provide information on their early origins, key inventors or pioneers, important milestones and breakthroughs, adoption and proliferation into mainstream use, economic effects, societal impact, ethical considerations, and potential future developments. Discuss how these innovations reshaped the way people work, communicate, and live, and explore the synergies or connections among these technologies and the potential for future transformative advancements. >\### Response: >The Internet has revolutionized communication, commerce, education, entertainment, and more since its commercialization in the late 1980s. It was initially developed by researchers at universities like Stanford University's ARPANET project in the 1960s. Tim Berners-Lee created the World Wide Web in 1989 as part of his PhD thesis. The first web browser Mosaic launched in 1993 popularizing the concept of surfing the internet. In 1995, Netscape released the first widely used graphical web browser which accelerated growth. By 1997, there were over 1 million websites online. Today, billions of users access the global network daily through devices like smartphones and tablets. > >Personal computers have transformed productivity, creativity, and knowledge sharing since the Apple II computer debuted in 1977. Steve Jobs founded Apple Computer Inc. in 1976 to sell the Apple I computer designed by Steve Wozniak. IBM introduced the first commercially successful PC in 1981. Microsoft Windows operating system launched in 1985 cemented the dominance of the x86 architecture. Personal computers democratize technology allowing individuals to create content, run businesses, and participate in digital culture. They also enable remote working and telecommuting. > >Mobile phones have become ubiquitous due to rapid improvements in battery life, processing power, connectivity speeds, and user interface design. Martin Cooper made the world's first handheld cellular phone call from Motorola DynaTAC 800x in April 1973. However, it took decades before mass market adoption due to high cost and limited coverage area. With the introduction of GSM standard in Europe in 1991, prices dropped significantly making them affordable for consumers. Smartphone revolution began around 2007 when iPhone and Android platforms emerged. Mobile apps became prevalent after App Store launch in 2008. As of 2020, nearly 4 billion people own a mobile phone globally. Mobile phones allow instantaneous communication anytime anywhere enabling new forms of social interaction and commerce. > >Artificial Intelligence (AI) systems are becoming increasingly sophisticated leveraging machine learning algorithms trained on vast amounts of data. AI research dates back to the 1950s but only recently achieved human level performance in tasks such as image recognition, speech transcription, and game playing. DeepMind's AlphaGo program defeated Lee Sedol in Go match in 2016 demonstrating superhuman capabilities. Google Brain team published papers on neural networks in 2012 paving the way for modern deep learning models. Companies like Facebook, Amazon, Netflix, Uber rely heavily on AI to improve customer experience, optimize operations, and automate decision making. While AI holds great promise for solving complex problems, concerns remain about job displacement, bias in training datasets, and lack of transparency in model predictions. > >Electric cars represent one of the most promising clean energy solutions to reduce carbon emissions and dependence on fossil fuels. Electric motors have been used in trains and boats since mid-19th century. But it wasn't until Tesla Model S debut in 2012 that EVs gained widespread attention. Elon Musk's vision of sustainability and zero emission transportation helped propel industry forward. China leads the world in EV sales followed closely by Norway. Cost parity between gasoline and electric vehicles will likely occur within next decade. Once this happens, EVs could displace up to half of all passenger vehicle miles traveled by 2030 according to BloombergNEF analysis. Challenges include range anxiety, charging infrastructure, and higher initial purchase price compared to internal combustion engine vehicles. Nevertheless, EVs offer significant environmental benefits if deployed rapidly enough to meet climate goals. > >In summary, these technologies share common characteristics of exponential progress driven by Moore's Law, network effects, and feedback loops. Their interconnectedness creates powerful synergy amplifying their collective impact. Technologists must balance risks versus rewards while ensuring equitable distribution of benefits across society. Future innovations may build upon these foundational building blocks to unlock even greater possibilities yet unknown. We stand at the dawn of another technological era where imagination meets reality to shape our shared destiny. How we choose to navigate this journey together remains the ultimate test of human ingenuity and wisdom.
MochaPixel/Lia
MochaPixel
2023-08-10T08:19:50Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-18T11:55:18Z
--- license: creativeml-openrail-m ---
TheTravellingEngineer/llama2-7b-chat-hf-v4
TheTravellingEngineer
2023-08-10T08:18:44Z
1,547
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T07:28:43Z
The base model is meta's Llama-2-7b-chat-hf. It was finetuned using SFT and the openassistant/oasst1 dataset and the model prompt is similar to the original Guanaco model. This repo contains the merged fp16 model. **Legal Disclaimer: This model is bound by the usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.** --- - license: - llama2 <br> - datasets: - openassistant/oasst1 <br> - language: - en <br> - reference: https://gist.github.com/younesbelkada/9f7f75c94bdc1981c8ca5cc937d4a4da ---
ThuyNT03/distilbert-base-uncased-multil-cls-legal
ThuyNT03
2023-08-10T08:05:47Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-10T00:09:04Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-multil-cls-legal results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-multil-cls-legal This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5448 - Accuracy: 0.9022 - F1: 0.9015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 2.67 | 1.0 | 396 | 1.9327 | 0.5209 | 0.4806 | | 1.5362 | 2.0 | 792 | 1.0998 | 0.7061 | 0.6869 | | 0.8991 | 3.0 | 1188 | 0.7546 | 0.8013 | 0.7975 | | 0.5899 | 4.0 | 1584 | 0.6136 | 0.8403 | 0.8392 | | 0.4082 | 5.0 | 1980 | 0.5527 | 0.8601 | 0.8589 | | 0.2874 | 6.0 | 2376 | 0.5200 | 0.8736 | 0.8731 | | 0.2136 | 7.0 | 2772 | 0.4991 | 0.8831 | 0.8815 | | 0.1564 | 8.0 | 3168 | 0.4946 | 0.8853 | 0.8843 | | 0.1123 | 9.0 | 3564 | 0.4814 | 0.8928 | 0.8920 | | 0.0866 | 10.0 | 3960 | 0.4959 | 0.8912 | 0.8908 | | 0.0685 | 11.0 | 4356 | 0.5060 | 0.8928 | 0.8923 | | 0.0508 | 12.0 | 4752 | 0.5114 | 0.8997 | 0.8989 | | 0.037 | 13.0 | 5148 | 0.5199 | 0.8978 | 0.8971 | | 0.0316 | 14.0 | 5544 | 0.5236 | 0.9003 | 0.8993 | | 0.0243 | 15.0 | 5940 | 0.5253 | 0.9022 | 0.9015 | | 0.021 | 16.0 | 6336 | 0.5385 | 0.9025 | 0.9019 | | 0.0177 | 17.0 | 6732 | 0.5396 | 0.9038 | 0.9032 | | 0.014 | 18.0 | 7128 | 0.5449 | 0.9025 | 0.9018 | | 0.014 | 19.0 | 7524 | 0.5467 | 0.9010 | 0.9002 | | 0.0103 | 20.0 | 7920 | 0.5448 | 0.9022 | 0.9015 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
mertege/llama-2-finance
mertege
2023-08-10T08:02:48Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T08:02:31Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
Rida06/bert-finetuned-ner
Rida06
2023-08-10T07:57:30Z
61
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-08T08:29:16Z
--- license: apache-2.0 base_model: Bert-base-cased tags: - generated_from_keras_callback model-index: - name: Rida06/bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Rida06/bert-finetuned-ner This model is a fine-tuned version of [Bert-base-cased](https://huggingface.co/Bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1762 - Validation Loss: 0.0705 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.1} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1762 | 0.0705 | 0 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.13.0 - Datasets 2.14.2 - Tokenizers 0.11.0
Stevross/Astrid-LLama-3B-CPU
Stevross
2023-08-10T07:56:30Z
35
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T00:38:47Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: true thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed. ```bash pip install transformers==4.30.1 pip install accelerate==0.20.3 pip install torch==2.0.0 ``` ```python import torch from transformers import pipeline generate_text = pipeline( model="Stevross/Astrid-LLama-3B-CPU", torch_dtype="auto", trust_remote_code=True, use_fast=False, device_map={"": "cuda:0"}, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?</s><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "Stevross/Astrid-LLama-3B-CPU", use_fast=False, padding_side="left", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "Stevross/Astrid-LLama-3B-CPU", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Stevross/Astrid-LLama-3B-CPU" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?</s><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=False, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( **inputs, min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Model Architecture ``` LlamaForCausalLM( (model): LlamaModel( (embed_tokens): Embedding(32000, 3200, padding_idx=0) (layers): ModuleList( (0-25): 26 x LlamaDecoderLayer( (self_attn): LlamaAttention( (q_proj): Linear(in_features=3200, out_features=3200, bias=False) (k_proj): Linear(in_features=3200, out_features=3200, bias=False) (v_proj): Linear(in_features=3200, out_features=3200, bias=False) (o_proj): Linear(in_features=3200, out_features=3200, bias=False) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): Linear(in_features=3200, out_features=8640, bias=False) (down_proj): Linear(in_features=8640, out_features=3200, bias=False) (up_proj): Linear(in_features=3200, out_features=8640, bias=False) (act_fn): SiLUActivation() ) (input_layernorm): LlamaRMSNorm() (post_attention_layernorm): LlamaRMSNorm() ) ) (norm): LlamaRMSNorm() ) (lm_head): Linear(in_features=3200, out_features=32000, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Model Validation Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). ```bash CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=Stevross/Astrid-LLama-3B-CPU --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log ``` ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
jakezou/rl_course_vizdoom_health_gathering_supreme
jakezou
2023-08-10T07:41:19Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T07:41:13Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.63 +/- 5.23 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r jakezou/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
newronai/llama-2-7b-Chat-QLoRA-Trial1
newronai
2023-08-10T07:32:04Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T07:31:16Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
kuangyebinbaba/sd
kuangyebinbaba
2023-08-10T07:21:30Z
0
0
null
[ "region:us" ]
null
2023-08-10T07:20:57Z
https://50f27352367144b604.gradio.live
hashu/my-pet-cat-xyz
hashu
2023-08-10T07:12:37Z
0
0
null
[ "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-10T07:09:43Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Cat-xyz Dreambooth model trained by hashu following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: VJCET527 Sample pictures of this concept: ![0](https://huggingface.co/hashu/my-pet-cat-xyz/resolve/main/sample_images/xyz_(2).jpg)
Minggu/ismi
Minggu
2023-08-10T07:04:15Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-09T12:42:43Z
--- license: creativeml-openrail-m ---
yyyy1992/my_awesome_wnut_model
yyyy1992
2023-08-10T06:58:22Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:wnut_17", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-10T06:51:33Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.5096660808435852 - name: Recall type: recall value: 0.26876737720111216 - name: F1 type: f1 value: 0.35194174757281554 - name: Accuracy type: accuracy value: 0.9392501389423282 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.0772 - Precision: 0.5097 - Recall: 0.2688 - F1: 0.3519 - Accuracy: 0.9393 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.0816 | 0.4192 | 0.1779 | 0.2498 | 0.9351 | | No log | 2.0 | 426 | 0.0772 | 0.5097 | 0.2688 | 0.3519 | 0.9393 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.11.0 - Tokenizers 0.13.3
reinhardfr/bloomz-560m_PROMPT_TUNING_CAUSAL_LM
reinhardfr
2023-08-10T06:53:25Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T05:52:22Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
bjfxs/llama2-7b-200steps-finetunined-sxl
bjfxs
2023-08-10T06:49:06Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T06:49:02Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
huang0624/LegalBERT_tuned_DRCD_and_LegalQA
huang0624
2023-08-10T06:45:22Z
115
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2023-08-10T06:21:27Z
* pretrained by legal corpus * tuned on DRCD * tuned on LegalQA
tanviraumi/q-FrozenLake-v1-4x4-noSlippery
tanviraumi
2023-08-10T06:40:11Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T06:40:08Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="tanviraumi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kasperchen/q-Taxi-v3
kasperchen
2023-08-10T06:36:12Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T06:36:10Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.79 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="kasperchen/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
openerotica/mpt-7b-8k-GPTQ
openerotica
2023-08-10T06:30:59Z
5
0
transformers
[ "transformers", "pytorch", "mpt", "text-generation", "Composer", "MosaicML", "llm-foundry", "StreamingDatasets", "custom_code", "dataset:mc4", "dataset:c4", "dataset:togethercomputer/RedPajama-Data-1T", "dataset:bigcode/the-stack", "dataset:allenai/s2orc", "arxiv:2108.12409", "arxiv:2302.13971", "arxiv:2205.14135", "arxiv:2010.04245", "arxiv:1909.08053", "arxiv:2302.06675", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-08-10T06:08:21Z
--- license: apache-2.0 tags: - Composer - MosaicML - llm-foundry - StreamingDatasets datasets: - mc4 - c4 - togethercomputer/RedPajama-Data-1T - bigcode/the-stack - allenai/s2orc inference: false --- # MPT-7B-8k MPT-7B-8k is a decoder-style transformer pretrained starting from MPT-7B, but updating the sequence length to 8k and training for an additional 500B tokens, resulting in a total of 1.5T tokens of text and code. This model was trained by [MosaicML](https://www.mosaicml.com). MPT-7B-8k is part of the family of Mosaic Pretrained Transformer (MPT) models, which use a modified transformer architecture optimized for efficient training and inference. These architectural changes include performance-optimized layer implementations and the elimination of context length limits by replacing positional embeddings with Attention with Linear Biases ([ALiBi](https://arxiv.org/abs/2108.12409)). Thanks to these modifications, MPT models can be trained with high throughput efficiency and stable convergence. MPT models can also be served efficiently with both standard HuggingFace pipelines and NVIDIA's [FasterTransformer](https://github.com/NVIDIA/FasterTransformer). This model uses the MosaicML LLM codebase, which can be found in the [llm-foundry repository](https://github.com/mosaicml/llm-foundry). It was trained by MosaicML’s NLP team on the [MosaicML platform](https://www.mosaicml.com/training) for LLM pretraining, finetuning, and inference. ### How is this model different? MPT-7B-8k is * **Licensed for the possibility of commercial use.** * **Trained on a large amount of data** (1.5T tokens like [XGen](https://huggingface.co/Salesforce/xgen-7b-8k-base) vs. 1T for [LLaMA](https://arxiv.org/abs/2302.13971), 1T for [MPT-7B](https://www.mosaicml.com/blog/mpt-7b), 300B for [Pythia](https://github.com/EleutherAI/pythia), 300B for [OpenLLaMA](https://github.com/openlm-research/open_llama), and 800B for [StableLM](https://github.com/Stability-AI/StableLM)). * **Prepared to handle long inputs** thanks to [ALiBi](https://arxiv.org/abs/2108.12409). With ALiBi, the model can extrapolate beyond the 8k training sequence length to up to 10k, and with a few million tokens it can be finetuned to extrapolate much further. * **Capable of fast training and inference** via [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) and [FasterTransformer](https://github.com/NVIDIA/FasterTransformer) * **Equipped with highly efficient open-source training code** via the [llm-foundry repository](https://github.com/mosaicml/llm-foundry) ### Models finetuned off MPT-7B-8k: The following models are finetuned on MPT-7B-8k: * [MPT-7B-8k-Instruct](https://huggingface.co/mosaicml/mpt-7b-8k-instruct): a model for long-form instruction following (especially summarization and question-answering). Built by finetuning MPT-7B-8k on several carefully curated datasets. * License: _CC-BY-SA-3.0_ * [MPT-7B-8k-Chat](https://huggingface.co/mosaicml/mpt-7b-8k-chat): a chatbot-like model for dialogue generation. Built by finetuning MPT-7B-8k on approximately 1.5B tokens of chat data. * License: _CC-By-NC-SA-4.0_ ## Model Date July 18, 2023 ## Model License Apache-2.0 ## Documentation * [Blog post: MPT-7B-8k](https://www.mosaicml.com/blog/long-context-mpt-7b-8k) * [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/) * Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)! ## How to Use This model is best used with the MosaicML [llm-foundry repository](https://github.com/mosaicml/llm-foundry) for training and finetuning. ```python import transformers model = transformers.AutoModelForCausalLM.from_pretrained( 'mosaicml/mpt-7b-8k', trust_remote_code=True ) ``` Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package. `MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more. To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision: ```python import torch import transformers name = 'mosaicml/mpt-7b-8k' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.attn_config['attn_impl'] = 'triton' config.init_device = 'cuda:0' # For fast initialization directly on GPU! model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, torch_dtype=torch.bfloat16, # Load model weights in bfloat16 trust_remote_code=True ) ``` Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example: ```python import transformers name = 'mosaicml/mpt-7b-8k' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.max_seq_len = 10000 # (input + output) tokens can now be up to 10000 model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, trust_remote_code=True ) ``` This model was trained with the MPT-7B-8k tokenizer which is identical to the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('mosaicml/mpt-7b-8k') ``` The model can then be used, for example, within a text-generation pipeline. Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html). ```python from transformers import pipeline with torch.autocast('cuda', dtype=torch.bfloat16): inputs = tokenizer('Here is a recipe for vegan banana bread:\n', return_tensors="pt").to('cuda') outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # or using the HF pipeline pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0') with torch.autocast('cuda', dtype=torch.bfloat16): print( pipe('Here is a recipe for vegan banana bread:\n', max_new_tokens=100, do_sample=True, use_cache=True)) ``` ## Model Description The architecture is a modification of a standard decoder-only transformer. The model has been modified from a standard transformer in the following ways: * It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) * It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings * It does not use biases | Hyperparameter | Value | |----------------|-------| |n_parameters | 6.7B | |n_layers | 32 | | n_heads | 32 | | d_model | 4096 | | vocab size | 50432 | | sequence length | 2048 | ## Training Data ### Streaming Datasets Data was formatted using the MosaicML [StreamingDataset](https://github.com/mosaicml/streaming) library to host our data in object storage and efficiently stream it to our compute cluster during training. StreamingDataset obviates the need to download the whole dataset before starting training, and allows instant resumption of training from any point in the dataset. ### Data Mix The model was trained for ___T tokens. First it was trained for 1T tokens (with batch size 1760 and sequence length 2048) on the following data mix: #### Data Mix for Original 1T Tokens Used to Train MPT-7B | Data Source | Number of Tokens in Source | Proportion | Effective Number of Tokens | Epochs | |-------------|----------------------------|------------|----------------------------|--------| | mC4 3.1.0 - English | 417.99 B | 0.33 | 330 B | 0.14 | | C4 - English - SemDedup 80% | 100.42 B | 0.299 | 299 B | 2.98 | | RedPajama - CommonCrawl | 878.45 B | 0.1 | 100 B | 0.11 | | The Stack - Selected Languages | 463.78 B | 0.1 | 100 B | 0.22 | | RedPajama - Wikipedia - En | 4.87 B | 0.04 | 40 B | 8.21 | | The Stack - Markdown | 107.07 B | 0.035 | 35 B | 0.33 | | S2ORC | 48.85 B | 0.033 | 33 B | 0.68 | | RedPajama - Books | 26.02 B | 0.03 | 30B | 1.15 | | RedPajama - arXiv | 28.10 B | 0.019 | 19 B | 0.68 | | RedPajama - StackExchange | 20.54 B | 0.014 | 14 B |0.68 | #### Data Mix for Additional 500B Tokens Used to Further Train MPT-7B-8k We took 80B tokens from document samples that were longer than 4096 tokens, and 120B tokens with varying document sample lengths that matched the "baseline" length distribution for a total of 200B tokens in a single dataset. We then trained MPT-7B for 500B tokens with a maximum sequence length of 8192, resulting in MPT-7B-8k. Since we trained for 500B tokens using 200B tokens, nearly every subset was trained on for exactly 2.5 epochs. | Sequence Length Distribution | Number of Tokens in Source (Billion) | Proportion | Effective Number of Tokens (Billion) | Epochs | |---|---|---|---|---| | mC4 3.1.0 - English (200+ words) - Baseline | 33.60 | 16.80% | 84.00 | 2.50 | | mC4 3.1.0 - English (200+ words) - ≥4096 tokens | 23.04 | 11.52% | 57.60 | 2.50 | | c4 - English - SemDedup 80% - Baseline | 30.12 | 15.06% | 75.30 | 2.50 | | c4 - English - SemDedup 80% - ≥4096 tokens | 0.92 | 0.46% | 2.30 | 2.50 | | RedPajama - CommonCrawl - Baseline | 8.52 | 4.26% | 21.30 | 2.50 | | RedPajama - CommonCrawl - ≥4096 tokens | 12.80 | 6.40% | 32.00 | 2.50 | | The Stack - Selected Languages - Baseline | 30.00 | 15.00% | 75.00 | 2.50 | | The Stack - Selected Languages - ≥4096 tokens | 10.00 | 5.00% | 25.00 | 2.50 | | RedPajama - Wikipedia - Baseline | 3.60 | 1.80% | 9.00 | 2.50 | | RedPajama - Wikipedia - ≥4096 tokens | 1.04 | 0.52% | 2.60 | 2.50 | | The Stack - Markdown - Baseline | 4.50 | 2.25% | 11.25 | 2.50 | | The Stack - Markdown - ≥4096 tokens | 8.00 | 4.00% | 20.00 | 2.50 | | Semantic Scholar ORC - Baseline | 3.30 | 1.65% | 8.25 | 2.50 | | Semantic Scholar ORC - ≥4096 tokens | 8.00 | 4.00% | 20.00 | 2.50 | | RedPajama - Books - Baseline | 3.00 | 1.50% | 7.50 | 2.50 | | RedPajama - Books - ≥4096 tokens | 8.00 | 4.00% | 20.00 | 2.50 | | RedPajama - arXiv - Baseline | 1.92 | 0.96% | 4.80 | 2.50 | | RedPajama - arXiv - ≥4096 tokens | 5.40 | 2.70% | 13.50 | 2.50 | | RedPajama - StackExchange - Baseline | 1.44 | 0.72% | 3.60 | 2.50 | | RedPajama - StackExchange - ≥4096 tokens | 1.52 | 1.40% | 7.00 | 4.60 | | N Training Tokens | 200 | 100.00% | | 2.5 epochs * 200B = 500B tokens | Samples for each batch were selected from one of the datasets with the probability specified above. The examples were shuffled within each dataset, and each example was constructed from as many sequences from that dataset as were necessary to fill the 2048 sequence length. The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. This BPE tokenizer has a number of desirable characteristics, most of which are relevant for tokenizing code: (1) It was trained on a diverse mix of data that includes code (The Pile) (2) It applies consistent space delimitation, unlike the GPT2 tokenizer which tokenizes inconsistently depending on the presence of prefix spaces (3) It contains tokens for repeated space characters, which allows superior compression of text with large amounts of repeated space characters. The model vocabulary size of 50432 was set to be a multiple of 128 (as in [MEGATRON-LM](https://arxiv.org/abs/1909.08053)), model flop utilization (MFU) increased by up to four percentage points. ### Training Configuration This model was trained on 440 A100-40GBs for about 9.5 days using the [MosaicML Platform](https://www.mosaicml.com/platform). The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the [LION](https://arxiv.org/abs/2302.06675) optimizer. ## Limitations and Biases _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_ MPT-7B-8k is **not** intended for deployment without finetuning. It should not be used for human-facing interactions without further guardrails and user consent. MPT-7B-8k can produce factually incorrect output, and should not be relied on to produce factually accurate information. MPT-7B-8k was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. ## MosaicML Platform If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://www.mosaicml.com/get-started?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b-8k). ## Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes. ## Citation Please cite this model using the following format: ``` @online{MosaicML2023Introducing, author = {MosaicML NLP Team}, title = {Introducing MPT-7B: A New Standard for Open-Source, ly Usable LLMs}, year = {2023}, url = {www.mosaicml.com/blog/mpt-7b}, note = {Accessed: 2023-03-28}, % change this date urldate = {2023-03-28} % change this date } ```
TheTravellingEngineer/llama2-7b-chat-hf-v3
TheTravellingEngineer
2023-08-10T06:21:28Z
1,536
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T06:03:25Z
The base model is meta's Llama-2-7b-chat-hf. It was finetuned using SFT and the Anthropic/hh-rlhf dataset and the model prompt is similar to the original Guanaco model. This repo contains the merged fp16 model. **Legal Disclaimer: This model is bound by the usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.** --- - license: - llama2 <br> - datasets: - Anthropic/hh-rlhf <br> - language: - en <br> - reference: https://gist.github.com/younesbelkada/9f7f75c94bdc1981c8ca5cc937d4a4da ---
deepvk/deberta-v1-base
deepvk
2023-08-10T06:20:15Z
522
7
transformers
[ "transformers", "pytorch", "safetensors", "deberta", "feature-extraction", "ru", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2023-02-07T14:56:44Z
--- license: apache-2.0 language: - ru - en library_name: transformers pipeline_tag: feature-extraction --- # DeBERTa-base <!-- Provide a quick summary of what the model is/does. --> Pretrained bidirectional encoder for russian language. The model was trained using standard MLM objective on large text corpora including open social data. See `Training Details` section for more information. ⚠️ This model contains only the encoder part without any pretrained head. - **Developed by:** [deepvk](https://vk.com/deepvk) - **Model type:** DeBERTa - **Languages:** Mostly russian and small fraction of other languages - **License:** Apache 2.0 ## How to Get Started with the Model ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("deepvk/deberta-v1-base") model = AutoModel.from_pretrained("deepvk/deberta-v1-base") text = "Привет, мир!" inputs = tokenizer(text, return_tensors='pt') predictions = model(**inputs) ``` ## Training Details ### Training Data 400 GB of filtered and deduplicated texts in total. A mix of the following data: Wikipedia, Books, Twitter comments, Pikabu, Proza.ru, Film subtitles, News websites, and Social corpus. #### Deduplication procedure 1. Calculate shingles with size of 5 2. Calculate MinHash with 100 seeds → for every sample (text) have a hash of size 100 3. Split every hash into 10 buckets → every bucket, which contains (100 / 10) = 10 numbers, get hashed into 1 hash → we have 10 hashes for every sample 4. For each bucket find duplicates: find samples which have the same hash → calculate pair-wise jaccard similarity → if the similarity is >0.7 than it's a duplicate 5. Gather duplicates from all the buckets and filter ### Training Hyperparameters | Argument | Value | |--------------------|----------------------| | Training regime | fp16 mixed precision | | Optimizer | AdamW | | Adam betas | 0.9,0.98 | | Adam eps | 1e-6 | | Weight decay | 1e-2 | | Batch size | 2240 | | Num training steps | 1kk | | Num warm-up steps | 10k | | LR scheduler | Linear | | LR | 2e-5 | | Gradient norm | 1.0 | The model was trained on a machine with 8xA100 for approximately 30 days. ### Architecture details | Argument | Value | |-------------------------|----------------| |Encoder layers | 12 | |Encoder attention heads | 12 | |Encoder embed dim | 768 | |Encoder ffn embed dim | 3,072 | |Activation function | GeLU | |Attention dropout | 0.1 | |Dropout | 0.1 | |Max positions | 512 | |Vocab size | 50266 | |Tokenizer type | Byte-level BPE | ## Evaluation We evaluated the model on [Russian Super Glue](https://russiansuperglue.com/) dev set. The best result in each task is marked in bold. All models have the same size except the distilled version of DeBERTa. | Model | RCB | PARus | MuSeRC | TERRa | RUSSE | RWSD | DaNetQA | Score | |------------------------------------------------------------------------|-----------|--------|---------|-------|---------|---------|---------|-----------| | [vk-deberta-distill](https://huggingface.co/deepvk/deberta-v1-distill) | 0.433 | 0.56 | 0.625 | 0.59 | 0.943 | 0.569 | 0.726 | 0.635 | | [vk-roberta-base](https://huggingface.co/deepvk/roberta-base) | 0.46 | 0.56 | 0.679 | 0.769 | 0.960 | 0.569 | 0.658 | 0.665 | | [vk-deberta-base](https://huggingface.co/deepvk/deberta-v1-base) | 0.450 |**0.61**|**0.722**| 0.704 | 0.948 | 0.578 |**0.76** |**0.682** | | [vk-bert-base](https://huggingface.co/deepvk/bert-base-uncased) | 0.467 | 0.57 | 0.587 | 0.704 | 0.953 |**0.583**| 0.737 | 0.657 | | [sber-bert-base](https://huggingface.co/ai-forever/ruBert-base) | **0.491** |**0.61**| 0.663 | 0.769 |**0.962**| 0.574 | 0.678 | 0.678 |
AshutoshShrivastava/sdxl-db-lionelmessi
AshutoshShrivastava
2023-08-10T06:17:43Z
2
3
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-10T06:17:36Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of a sks leoandresmessi tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Test enoder was not trained.
HG7/ReQLoRA_QKVO8
HG7
2023-08-10T06:01:24Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-10T06:01:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
mchablani/Llama-2-7b-chat-hf-mini-lawyer-chat
mchablani
2023-08-10T05:36:12Z
2
0
peft
[ "peft", "pytorch", "llama", "region:us" ]
null
2023-08-05T03:54:19Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
jonalkw/Reinforce-pixelcopter
jonalkw
2023-08-10T05:25:14Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T05:25:11Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 9.60 +/- 12.56 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
nanirudh/qa_model_v3
nanirudh
2023-08-10T05:23:57Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T05:23:48Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
calvpang/distilhubert-finetuned-gtzan-finetuned-gtzan
calvpang
2023-08-10T05:04:13Z
160
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:VinayHajare/distilhubert-finetuned-gtzan", "base_model:finetune:VinayHajare/distilhubert-finetuned-gtzan", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-10T03:51:48Z
--- license: apache-2.0 base_model: VinayHajare/distilhubert-finetuned-gtzan tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.89 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan-finetuned-gtzan This model is a fine-tuned version of [VinayHajare/distilhubert-finetuned-gtzan](https://huggingface.co/VinayHajare/distilhubert-finetuned-gtzan) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5147 - Accuracy: 0.89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4687 | 1.0 | 113 | 0.5210 | 0.89 | | 0.5003 | 2.0 | 226 | 0.5186 | 0.89 | | 0.3839 | 3.0 | 339 | 0.5186 | 0.89 | | 0.4082 | 4.0 | 452 | 0.5183 | 0.89 | | 0.4479 | 5.0 | 565 | 0.5183 | 0.89 | | 0.4078 | 6.0 | 678 | 0.5171 | 0.89 | | 0.3089 | 7.0 | 791 | 0.5156 | 0.89 | | 0.3432 | 8.0 | 904 | 0.5152 | 0.89 | | 0.4122 | 9.0 | 1017 | 0.5148 | 0.89 | | 0.4231 | 10.0 | 1130 | 0.5147 | 0.89 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.13.3
kasperchen/q-FrozenLake-v1-4x4-noSlippery
kasperchen
2023-08-10T05:00:06Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T04:11:41Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="kasperchen/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Abhi5ingh/model_dresscode
Abhi5ingh
2023-08-10T04:45:23Z
2
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "controlnet", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-09T01:43:22Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet inference: true --- # controlnet-Abhi5ingh/model_dresscode These are controlnet weights trained on runwayml/stable-diffusion-v1-5 with new type of conditioning. You can find some example images below. prompt: hem shoulder top in navy blue ![images_0)](./images_0.png) prompt: beautiful floral gown ![images_1)](./images_1.png) prompt: one-shoulder textured dress one long draping sleeve one sleeved mini purple evening dress ![images_2)](./images_2.png)
KallistiTMR/llama-2-7b-chat-wiz-k16-8
KallistiTMR
2023-08-10T04:04:30Z
12
0
peft
[ "peft", "region:us" ]
null
2023-08-02T02:24:03Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0
chunwoolee0/keti-air-ke-t5-base-en-to-ko
chunwoolee0
2023-08-10T04:00:42Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:KETI-AIR/ke-t5-base", "base_model:finetune:KETI-AIR/ke-t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2023-08-10T03:27:30Z
--- license: apache-2.0 base_model: KETI-AIR/ke-t5-base tags: - translation - generated_from_trainer datasets: - kde4 model-index: - name: keti-air-ke-t5-base-en-to-ko results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # keti-air-ke-t5-base-en-to-ko This model is a fine-tuned version of [KETI-AIR/ke-t5-base](https://huggingface.co/KETI-AIR/ke-t5-base) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
nomad-ai/speecht5_finetuned_voxpopuli_nl
nomad-ai
2023-08-10T03:58:14Z
82
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "dataset:facebook/voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-08-10T03:06:59Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer - text-to-speech datasets: - facebook/voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the facebook/voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4919 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7222 | 1.62 | 100 | 0.6410 | | 0.6791 | 3.25 | 200 | 0.6024 | | 0.6059 | 4.87 | 300 | 0.5363 | | 0.564 | 6.49 | 400 | 0.5185 | | 0.5481 | 8.11 | 500 | 0.5092 | | 0.5463 | 9.74 | 600 | 0.4998 | | 0.537 | 11.36 | 700 | 0.4968 | | 0.5312 | 12.98 | 800 | 0.4913 | | 0.5275 | 14.6 | 900 | 0.4917 | | 0.5202 | 16.23 | 1000 | 0.4919 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
debjxt/tlx-bzx-btz
debjxt
2023-08-10T03:45:14Z
1
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-10T03:32:22Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### tlx_bzx_btz Dreambooth model trained by debjxt with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Pixel390/NEWKUA
Pixel390
2023-08-10T03:27:24Z
5
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:Meina/MeinaMix_V10", "base_model:adapter:Meina/MeinaMix_V10", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-10T03:07:57Z
--- license: creativeml-openrail-m base_model: Meina/MeinaMix_V10 instance_prompt: a uxz man tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Pixel390/NEWKUA These are LoRA adaption weights for Meina/MeinaMix_V10. The weights were trained on a uxz man using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: True.
Rihong/dqn-SpaceInvadersNoFrameskip-v4
Rihong
2023-08-10T02:35:36Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T02:05:02Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 431.00 +/- 177.51 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Rihong -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Rihong -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Rihong ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 3000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
rriverar75/vit-model
rriverar75
2023-08-10T02:34:32Z
193
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-10T02:08:37Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - beans metrics: - accuracy widget: - src: >- https://huggingface.co/rriverar75/vit-model/resolve/main/healthy.jpeg example_title: Healthy - src: >- https://huggingface.co/rriverar75/vit-model/resolve/main/bean_rust.jpeg example_title: Bean Rust model-index: - name: vit-model results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0189 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1527 | 3.85 | 500 | 0.0189 | 1.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
wangxso/q-taxi-v3
wangxso
2023-08-10T02:28:47Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T02:28:44Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.70 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="wangxso/q-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dtthanh/llama-2-7b-und-lora-2.7
dtthanh
2023-08-10T02:20:10Z
3
1
peft
[ "peft", "vi", "license:cc-by-sa-4.0", "region:us" ]
null
2023-08-06T10:41:24Z
--- library_name: peft license: cc-by-sa-4.0 language: - vi --- ### Adapter info - This is an Lora adapter using dataset contains only 360 Vietnamese sentences and the "text" column in a format like: - ```python > \<s\>\[INST\] "Bạn bè có phúc cùng chia."\[\/INST\] Bạn bè có phúc cùng chia. Có họa trốn sạch chạy đi phương nào? Tay trắng làm nên… mấy chục ngàn bạc nợ. \<\/s\> or > \<s\>\[INST\] Ai bảo chăn trâu là khổ. \[\/INST\] Ai bảo chăn trâu là khổ. Tôi chăn chồng còn khổ hơn trâu. Trâu đi trâu biêt đường về. Chồng đi không biết dường về như trâu. \<\/s\> ## Training procedure - The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Usage - ```python import torch from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer model_name = "NousResearch/llama-2-7b-chat-hf" adapters_name = "dtthanh/llama-2-7b-und-lora-2.7" print(f"Starting to load the model {model_name} into memory") m = AutoModelForCausalLM.from_pretrained( model_name, # base_model_name_or_path # NousResearch/llama-2-7b-chat-hf #load_in_4bit=True, torch_dtype=torch.bfloat16, device_map={"": 0} ) m = PeftModel.from_pretrained(m, adapters_name) m = m.merge_and_unload() tok = AutoTokenizer.from_pretrained(model_name) tok.pad_token_id = 18610 # _*** print(f"Successfully loaded the model {model_name} into memory") - PEFT 0.4.0
nomad-ai/whisper-tiny
nomad-ai
2023-08-10T02:03:05Z
75
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-10T02:02:50Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.22434915773353753 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.5913 - Wer Ortho: 0.2340 - Wer: 0.2243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 1.7357 | 2.0 | 50 | 0.7179 | 0.2947 | 0.2412 | | 0.2772 | 4.0 | 100 | 0.4758 | 0.2404 | 0.2113 | | 0.081 | 6.0 | 150 | 0.5069 | 0.2628 | 0.2282 | | 0.02 | 8.0 | 200 | 0.5289 | 0.2564 | 0.2297 | | 0.0044 | 10.0 | 250 | 0.5366 | 0.2452 | 0.2251 | | 0.0018 | 12.0 | 300 | 0.5565 | 0.2404 | 0.2251 | | 0.0011 | 14.0 | 350 | 0.5668 | 0.2388 | 0.2259 | | 0.0009 | 16.0 | 400 | 0.5762 | 0.2364 | 0.2251 | | 0.0007 | 18.0 | 450 | 0.5847 | 0.2348 | 0.2243 | | 0.0006 | 20.0 | 500 | 0.5913 | 0.2340 | 0.2243 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
TheTravellingEngineer/bloom-1b1-RLHF-v2
TheTravellingEngineer
2023-08-10T01:39:33Z
1,662
0
transformers
[ "transformers", "pytorch", "bloom", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T01:30:21Z
The base model is bigscience/bloom-1b1. It was finetuned using RLHF and the dataset and the model prompt is similar to the original model. This repo contains the merged fp16 model. **Legal Disclaimer: This model is bound by the usage restrictions of the original BLOOM model. And comes with no warranty or gurantees of any kind.** --- - license: - bigscience-bloom-rail-1.0 <br> - datasets: - Anthropic/hh-rlhf <br> - language: - en <br> - reference: https://github.com/hiyouga/LLaMA-Efficient-Tuning/tree/main ---
jaykei/Zuko
jaykei
2023-08-10T01:17:21Z
0
1
null
[ "en", "license:openrail", "region:us" ]
null
2023-07-05T05:16:36Z
--- license: openrail language: - en ---
dana11235/ppo-Huggy
dana11235
2023-08-10T01:16:01Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-10T01:15:51Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: dana11235/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mani05/q-FrozenLake-v1-4x4-noSlippery
mani05
2023-08-10T01:06:06Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T01:06:02Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="mani05/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
rriverar75/bert-base-multilingual-cased-mrpc-glue
rriverar75
2023-08-10T00:50:24Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-10T00:39:59Z
--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - text-classification - generated_from_trainer datasets: - glue metrics: - accuracy - f1 widget: - text: - >- Yucaipa owned Dominick 's before selling the chain to Safeway in 1998 for $ 2.5 billion. - >- Yucaipa bought Dominick's in 1995 for $ 693 million and sold it to Safeway for $ 1.8 billion in 1998. example_title: Not Equivalent - text: - >- Revenue in the first quarter of the year dropped 15 percent from the same period a year earlier. - >- With the scandal hanging over Stewart's company revenue the first quarter of the year dropped 15 percent from the same period a year earlier. example_title: Equivalent model-index: - name: bert-base-multilingual-cased-mrpc-glue results: - task: name: Text Classification type: text-classification dataset: name: datasetX type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7426470588235294 - name: F1 type: f1 value: 0.8059149722735676 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-mrpc-glue This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the datasetX dataset. It achieves the following results on the evaluation set: - Loss: 0.5185 - Accuracy: 0.7426 - F1: 0.8059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.604 | 1.09 | 500 | 0.5185 | 0.7426 | 0.8059 | | 0.4834 | 2.18 | 1000 | 0.5550 | 0.7770 | 0.8544 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Notespeak/ariadnetestn
Notespeak
2023-08-10T00:35:42Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-08-10T00:28:25Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [ai-forever/ruGPT-3.5-13B](https://huggingface.co/ai-forever/ruGPT-3.5-13B) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` library installed. ```bash pip install transformers==4.31.0 ``` Also make sure you are providing your huggingface token to the pipeline if the model is lying in a private repo. - Either leave `token=True` in the `pipeline` and login to hugginface_hub by running ```python import huggingface_hub huggingface_hub.login(<ACCES_TOKEN>) ``` - Or directly pass your <ACCES_TOKEN> to `token` in the `pipeline` ```python from transformers import pipeline generate_text = pipeline( model="Notespeak/ariadnetestn", torch_dtype="auto", trust_remote_code=True, use_fast=True, device_map={"": "cuda:0"}, token=True, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?</s><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "Notespeak/ariadnetestn", use_fast=True, padding_side="left", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "Notespeak/ariadnetestn", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Notespeak/ariadnetestn" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?</s><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=True, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Quantization and sharding You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```. ## Model Architecture ``` GPT2LMHeadModel( (transformer): GPT2Model( (wte): Embedding(50272, 5120) (wpe): Embedding(2048, 5120) (drop): Dropout(p=0.1, inplace=False) (h): ModuleList( (0-39): 40 x GPT2Block( (ln_1): LayerNorm((5120,), eps=1e-05, elementwise_affine=True) (attn): GPT2Attention( (c_attn): Conv1D() (c_proj): Conv1D() (attn_dropout): Dropout(p=0.1, inplace=False) (resid_dropout): Dropout(p=0.1, inplace=False) ) (ln_2): LayerNorm((5120,), eps=1e-05, elementwise_affine=True) (mlp): GPT2MLP( (c_fc): Conv1D() (c_proj): Conv1D() (act): NewGELUActivation() (dropout): Dropout(p=0.1, inplace=False) ) ) ) (ln_f): LayerNorm((5120,), eps=1e-05, elementwise_affine=True) ) (lm_head): Linear(in_features=5120, out_features=50272, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
rriverar75/distilroberta-base-mrpc-glue
rriverar75
2023-08-10T00:13:17Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-10T00:06:32Z
--- license: apache-2.0 base_model: distilroberta-base tags: - text-classification - generated_from_trainer datasets: - glue metrics: - accuracy - f1 widget: - text: - >- Yucaipa owned Dominick 's before selling the chain to Safeway in 1998 for $ 2.5 billion. - >- Yucaipa bought Dominick's in 1995 for $ 693 million and sold it to Safeway for $ 1.8 billion in 1998. example_title: Not Equivalent - text: - >- Revenue in the first quarter of the year dropped 15 percent from the same period a year earlier. - >- With the scandal hanging over Stewart's company revenue the first quarter of the year dropped 15 percent from the same period a year earlier. example_title: Equivalent model-index: - name: distilroberta-base-mrpc-glue results: - task: name: Text Classification type: text-classification dataset: name: datasetX type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8333333333333334 - name: F1 type: f1 value: 0.8794326241134752 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-mrpc-glue This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the datasetX dataset. It achieves the following results on the evaluation set: - Loss: 0.3874 - Accuracy: 0.8333 - F1: 0.8794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5523 | 1.09 | 500 | 0.3874 | 0.8333 | 0.8794 | | 0.3421 | 2.18 | 1000 | 0.5895 | 0.8529 | 0.8969 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
vluz/toxmodel20
vluz
2023-08-10T00:06:47Z
4
0
keras
[ "keras", "license:cc0-1.0", "region:us" ]
null
2023-08-07T11:52:01Z
--- license: cc0-1.0 --- **Note:** Due to nature of toxic comments data and code contain explicit language. Data is from kaggle, the *Toxic Comment Classification Challenge* <br> https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data?select=train.csv.zip A copy of the data exists on the `data` directory. Trained over 20 epoch in a runpod ### 🤗 Running demo here: https://huggingface.co/spaces/vluz/Tox <hr> Code requires pandas, tensorflow, and streamlit. All can be installed via `pip`. ```python import os import pickle import streamlit as st import tensorflow as tf from tensorflow.keras.layers import TextVectorization @st.cache_resource def load_model(): model = tf.keras.models.load_model(os.path.join("model", "toxmodel.keras")) return model @st.cache_resource def load_vectorizer(): from_disk = pickle.load(open(os.path.join("model", "vectorizer.pkl"), "rb")) new_v = TextVectorization.from_config(from_disk['config']) new_v.adapt(tf.data.Dataset.from_tensor_slices(["xyz"])) # fix for Keras bug new_v.set_weights(from_disk['weights']) return new_v st.title("Toxic Comment Test") st.divider() model = load_model() vectorizer = load_vectorizer() default_prompt = "i love you man, but fuck you!" input_text = st.text_area("Comment:", default_prompt, height=150).lower() if st.button("Test"): if not input_text: st.write("⚠ Warning: Empty prompt.") elif len(input_text) < 15: st.write("⚠ Warning: Model is far less accurate with a small prompt.") if input_text == default_prompt: st.write("Expected results from default prompt are positive for 0 and 2") with st.spinner("Testing..."): inputv = vectorizer([input_text]) output = model.predict(inputv) res = (output > 0.5) st.write(["toxic","severe toxic","obscene","threat","insult","identity hate"], res) st.write(output) ``` Put `toxmodel.keras` and `vectorizer.pkl` into the `model` dir. Then do: ``` stramlit run toxtest.py ``` Expected result from default prompt is 0 and 2 <hr> Full code can be found here: <br> https://github.com/vluz/ToxTest/ <br>
asenella/mhd_config_1_MMVAE_beta_5_scale_True_seed_1
asenella
2023-08-10T00:03:06Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-08-10T00:02:56Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
patonw/a2c-PandaReachDense-v3
patonw
2023-08-09T23:52:13Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T23:49:30Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.20 +/- 0.12 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tingchih/pretrain_doc_concat
tingchih
2023-08-09T23:38:40Z
105
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-31T05:04:43Z
This is a pre-train baseline model for summarization. Input is to concatenate all articles in one cluster. the example.json is the example result. pipeline: input -> sum tokenizer -> perceiver -> sum model -> summary
cjohlmacher/ppo-Pyramids
cjohlmacher
2023-08-09T23:30:56Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-09T21:01:25Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: cjohlmacher/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
good-gaming/distilbert-base-uncased-finetuned-emotion
good-gaming
2023-08-09T23:21:58Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-09T22:48:26Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.927 - name: F1 type: f1 value: 0.9272353554627635 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2133 - Accuracy: 0.927 - F1: 0.9272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8118 | 1.0 | 250 | 0.3108 | 0.905 | 0.9056 | | 0.2485 | 2.0 | 500 | 0.2133 | 0.927 | 0.9272 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.13.3
gang21/llama2-icd10
gang21
2023-08-09T23:12:41Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T23:12:34Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
knvarad/t5
knvarad
2023-08-09T22:41:08Z
59
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-08T23:29:01Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: dummy-model-varad1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dummy-model-varad1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.8679 - Validation Loss: 3.5523 - Train Rougel: tf.Tensor(0.11994212, shape=(), dtype=float32) - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rougel | Epoch | |:----------:|:---------------:|:----------------------------------------------:|:-----:| | 3.8679 | 3.5523 | tf.Tensor(0.11994212, shape=(), dtype=float32) | 0 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.10.1 - Datasets 2.13.1 - Tokenizers 0.12.1
theojolliffe/flan-recipes
theojolliffe
2023-08-09T22:39:32Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-09T22:03:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: flan-recipes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-recipes This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 71.0741 - Rouge2: 34.937 - Rougel: 71.129 - Rougelsum: 71.0758 - Gen Len: 4.0103 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 873 | nan | 71.0741 | 34.937 | 71.129 | 71.0758 | 4.0103 | | 0.0 | 2.0 | 1746 | nan | 71.0741 | 34.937 | 71.129 | 71.0758 | 4.0103 | | 0.0 | 3.0 | 2619 | nan | 71.0741 | 34.937 | 71.129 | 71.0758 | 4.0103 | | 0.0 | 4.0 | 3492 | nan | 71.0741 | 34.937 | 71.129 | 71.0758 | 4.0103 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
gang21/llama2-icd10-peft
gang21
2023-08-09T22:33:20Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T22:05:35Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
sergeindamix/anciano_pendejo
sergeindamix
2023-08-09T22:11:22Z
2
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-09T22:11:17Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of a sks person tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Test enoder was not trained.
grace-pro/wandb_v4_5e-5
grace-pro
2023-08-09T22:09:47Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:Davlan/afro-xlmr-base", "base_model:finetune:Davlan/afro-xlmr-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-09T21:34:53Z
--- license: mit base_model: Davlan/afro-xlmr-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: wandb_v4_5e-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wandb_v4_5e-5 This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1647 - Precision: 0.3544 - Recall: 0.2986 - F1: 0.3241 - Accuracy: 0.9519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1942 | 0.54 | 500 | 0.1416 | 0.3913 | 0.1885 | 0.2544 | 0.9571 | | 0.1761 | 1.07 | 1000 | 0.1391 | 0.3919 | 0.1800 | 0.2467 | 0.9574 | | 0.1561 | 1.61 | 1500 | 0.1362 | 0.4214 | 0.2081 | 0.2786 | 0.9582 | | 0.1538 | 2.15 | 2000 | 0.1436 | 0.3513 | 0.2747 | 0.3083 | 0.9529 | | 0.1327 | 2.68 | 2500 | 0.1453 | 0.3424 | 0.2984 | 0.3189 | 0.9510 | | 0.1218 | 3.22 | 3000 | 0.1467 | 0.3726 | 0.2862 | 0.3237 | 0.9540 | | 0.1068 | 3.76 | 3500 | 0.1583 | 0.3466 | 0.3004 | 0.3218 | 0.9513 | | 0.0978 | 4.29 | 4000 | 0.1658 | 0.3413 | 0.3021 | 0.3205 | 0.9505 | | 0.0891 | 4.83 | 4500 | 0.1647 | 0.3544 | 0.2986 | 0.3241 | 0.9519 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
jordyvl/vit-base_rvl-cdip-tiny_rvl_cdip-NK1000_og_simkd_rand
jordyvl
2023-08-09T22:04:24Z
163
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-09T10:49:28Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base_rvl-cdip-tiny_rvl_cdip-NK1000_og_simkd_rand results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base_rvl-cdip-tiny_rvl_cdip-NK1000_og_simkd_rand This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 267.6730 - Accuracy: 0.6705 - Brier Loss: 0.6262 - Nll: 2.7104 - F1 Micro: 0.6705 - F1 Macro: 0.6721 - Ece: 0.3087 - Aurc: 0.1976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | 286.7271 | 1.0 | 1000 | 285.5399 | 0.2112 | 1.1285 | 5.2382 | 0.2112 | 0.1362 | 0.4400 | 0.6668 | | 284.6535 | 2.0 | 2000 | 284.8639 | 0.2365 | 1.1876 | 6.1414 | 0.2365 | 0.1846 | 0.5026 | 0.6043 | | 283.982 | 3.0 | 3000 | 284.8751 | 0.2555 | 1.2913 | 6.7626 | 0.2555 | 0.2072 | 0.5840 | 0.6111 | | 283.8947 | 4.0 | 4000 | 283.0353 | 0.3585 | 1.0748 | 4.2918 | 0.3585 | 0.3100 | 0.4921 | 0.4239 | | 282.5615 | 5.0 | 5000 | 282.0369 | 0.3852 | 1.0142 | 4.7413 | 0.3852 | 0.3432 | 0.4558 | 0.3983 | | 281.6467 | 6.0 | 6000 | 280.8857 | 0.428 | 0.9539 | 4.1971 | 0.428 | 0.3797 | 0.4329 | 0.3427 | | 280.8835 | 7.0 | 7000 | 279.7836 | 0.4288 | 1.0391 | 3.9288 | 0.4288 | 0.4012 | 0.4994 | 0.3565 | | 279.5518 | 8.0 | 8000 | 278.7849 | 0.5198 | 0.8045 | 3.0811 | 0.5198 | 0.4977 | 0.3699 | 0.2454 | | 278.6091 | 9.0 | 9000 | 278.3536 | 0.5155 | 0.8487 | 3.1204 | 0.5155 | 0.4977 | 0.4004 | 0.2587 | | 277.9435 | 10.0 | 10000 | 277.6002 | 0.5258 | 0.8346 | 3.3232 | 0.5258 | 0.4899 | 0.3923 | 0.2693 | | 277.646 | 11.0 | 11000 | 276.9034 | 0.5285 | 0.8510 | 3.1019 | 0.5285 | 0.5010 | 0.4079 | 0.2804 | | 276.6211 | 12.0 | 12000 | 276.8536 | 0.5555 | 0.7899 | 3.0560 | 0.5555 | 0.5446 | 0.3760 | 0.2266 | | 276.1643 | 13.0 | 13000 | 275.8300 | 0.5685 | 0.7767 | 3.1275 | 0.5685 | 0.5412 | 0.3730 | 0.2267 | | 275.7773 | 14.0 | 14000 | 275.0154 | 0.5833 | 0.7536 | 2.9981 | 0.5833 | 0.5645 | 0.3603 | 0.2357 | | 274.971 | 15.0 | 15000 | 275.1284 | 0.6008 | 0.7210 | 2.8953 | 0.6008 | 0.5920 | 0.3414 | 0.2059 | | 274.6605 | 16.0 | 16000 | 273.9564 | 0.6132 | 0.7168 | 2.8476 | 0.6132 | 0.5968 | 0.3479 | 0.2272 | | 273.7713 | 17.0 | 17000 | 273.3493 | 0.5995 | 0.7409 | 2.8991 | 0.5995 | 0.5901 | 0.3607 | 0.2272 | | 272.7905 | 18.0 | 18000 | 273.5748 | 0.598 | 0.7367 | 2.7778 | 0.598 | 0.5858 | 0.3565 | 0.2102 | | 273.134 | 19.0 | 19000 | 272.6561 | 0.6158 | 0.7128 | 2.8084 | 0.6158 | 0.6023 | 0.3494 | 0.2132 | | 271.8558 | 20.0 | 20000 | 272.4530 | 0.618 | 0.7139 | 2.9767 | 0.618 | 0.6077 | 0.3480 | 0.2177 | | 271.9448 | 21.0 | 21000 | 272.1698 | 0.619 | 0.7164 | 2.9459 | 0.619 | 0.6133 | 0.3510 | 0.2256 | | 270.9343 | 22.0 | 22000 | 272.2906 | 0.6235 | 0.7087 | 2.9843 | 0.6235 | 0.6181 | 0.3452 | 0.2248 | | 270.6012 | 23.0 | 23000 | 271.5266 | 0.6382 | 0.6781 | 2.9158 | 0.6382 | 0.6352 | 0.3324 | 0.2110 | | 270.3184 | 24.0 | 24000 | 271.1095 | 0.634 | 0.6922 | 2.9734 | 0.634 | 0.6287 | 0.3348 | 0.2162 | | 269.5019 | 25.0 | 25000 | 270.8806 | 0.644 | 0.6683 | 2.8735 | 0.644 | 0.6359 | 0.3258 | 0.2123 | | 269.5113 | 26.0 | 26000 | 270.6180 | 0.6445 | 0.6650 | 2.6933 | 0.6445 | 0.6418 | 0.3271 | 0.2032 | | 269.1238 | 27.0 | 27000 | 270.1308 | 0.6445 | 0.6712 | 2.8097 | 0.6445 | 0.6462 | 0.3290 | 0.2128 | | 268.424 | 28.0 | 28000 | 269.7667 | 0.6352 | 0.6872 | 2.9166 | 0.6352 | 0.6314 | 0.3371 | 0.2231 | | 268.4034 | 29.0 | 29000 | 270.0039 | 0.6455 | 0.6685 | 2.7765 | 0.6455 | 0.6459 | 0.3273 | 0.2097 | | 268.3632 | 30.0 | 30000 | 270.0340 | 0.6448 | 0.6741 | 2.8602 | 0.6448 | 0.6455 | 0.3291 | 0.2178 | | 268.1831 | 31.0 | 31000 | 269.3010 | 0.6597 | 0.6467 | 2.7502 | 0.6597 | 0.6571 | 0.3176 | 0.2053 | | 268.0006 | 32.0 | 32000 | 269.4335 | 0.652 | 0.6583 | 2.8213 | 0.652 | 0.6457 | 0.3236 | 0.2081 | | 267.5016 | 33.0 | 33000 | 269.2711 | 0.654 | 0.6530 | 2.8720 | 0.654 | 0.6517 | 0.3199 | 0.2090 | | 267.177 | 34.0 | 34000 | 268.7774 | 0.661 | 0.6402 | 2.7718 | 0.661 | 0.6589 | 0.3137 | 0.1979 | | 266.8408 | 35.0 | 35000 | 268.8279 | 0.6478 | 0.6640 | 2.8626 | 0.6478 | 0.6472 | 0.3271 | 0.2204 | | 266.1984 | 36.0 | 36000 | 268.3442 | 0.6635 | 0.6378 | 2.7999 | 0.6635 | 0.6611 | 0.3128 | 0.2079 | | 266.1338 | 37.0 | 37000 | 268.5704 | 0.66 | 0.6430 | 2.8314 | 0.66 | 0.6576 | 0.3165 | 0.2039 | | 266.6958 | 38.0 | 38000 | 268.1453 | 0.6635 | 0.6415 | 2.7881 | 0.6635 | 0.6627 | 0.3147 | 0.2106 | | 265.6171 | 39.0 | 39000 | 268.1818 | 0.6635 | 0.6398 | 2.7602 | 0.6635 | 0.6641 | 0.3142 | 0.2025 | | 265.8238 | 40.0 | 40000 | 268.1265 | 0.6637 | 0.6390 | 2.8178 | 0.6637 | 0.6648 | 0.3151 | 0.2016 | | 265.4164 | 41.0 | 41000 | 267.8777 | 0.6663 | 0.6304 | 2.7649 | 0.6663 | 0.6664 | 0.3113 | 0.2012 | | 265.6293 | 42.0 | 42000 | 267.8370 | 0.6683 | 0.6285 | 2.7730 | 0.6683 | 0.6677 | 0.3108 | 0.2023 | | 265.6068 | 43.0 | 43000 | 267.7586 | 0.665 | 0.6348 | 2.7612 | 0.665 | 0.6649 | 0.3126 | 0.1992 | | 265.2131 | 44.0 | 44000 | 268.0432 | 0.667 | 0.6293 | 2.7217 | 0.667 | 0.6669 | 0.3094 | 0.1885 | | 265.1312 | 45.0 | 45000 | 267.6967 | 0.6653 | 0.6316 | 2.6899 | 0.6653 | 0.6637 | 0.3127 | 0.2000 | | 265.371 | 46.0 | 46000 | 267.5307 | 0.668 | 0.6317 | 2.7472 | 0.668 | 0.6684 | 0.3105 | 0.2000 | | 264.9213 | 47.0 | 47000 | 267.5887 | 0.672 | 0.6214 | 2.6635 | 0.672 | 0.6720 | 0.3063 | 0.1935 | | 265.1304 | 48.0 | 48000 | 267.4995 | 0.6735 | 0.6220 | 2.7437 | 0.6735 | 0.6730 | 0.3049 | 0.1958 | | 264.6242 | 49.0 | 49000 | 267.2600 | 0.6723 | 0.6236 | 2.8222 | 0.6723 | 0.6713 | 0.3074 | 0.1974 | | 265.1563 | 50.0 | 50000 | 267.6730 | 0.6705 | 0.6262 | 2.7104 | 0.6705 | 0.6721 | 0.3087 | 0.1976 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
rizquuula/RoBERTa-IndoSQuADv2_1691592486-16-2e-05-0.01-5
rizquuula
2023-08-09T22:04:20Z
101
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-08-09T14:51:09Z
--- license: mit tags: - generated_from_trainer model-index: - name: RoBERTa-IndoSQuADv2_1691592486-16-2e-05-0.01-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RoBERTa-IndoSQuADv2_1691592486-16-2e-05-0.01-5 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2457 | 1.0 | 8145 | 2.1159 | | 1.7442 | 2.0 | 16290 | 2.0275 | | 1.4963 | 3.0 | 24435 | 2.0147 | | 1.301 | 4.0 | 32580 | 2.0607 | | 1.1569 | 5.0 | 40725 | 2.1516 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
omersen/path-to-save-model
omersen
2023-08-09T21:29:59Z
3
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-09T20:58:14Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - omersen/path-to-save-model This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
badokorach/bert-finetuned-squad-8
badokorach
2023-08-09T21:28:50Z
61
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "base_model:badokorach/bert-finetuned-squad-5", "base_model:finetune:badokorach/bert-finetuned-squad-5", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-09T21:08:52Z
--- license: apache-2.0 base_model: badokorach/bert-finetuned-squad-5 tags: - generated_from_keras_callback model-index: - name: badokorach/bert-finetuned-squad-8 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # badokorach/bert-finetuned-squad-8 This model is a fine-tuned version of [badokorach/bert-finetuned-squad-5](https://huggingface.co/badokorach/bert-finetuned-squad-5) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0002 - Epoch: 18 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 1300, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.03}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.0011 | 0 | | 0.0040 | 1 | | 0.0021 | 2 | | 0.0008 | 3 | | 0.0008 | 4 | | 0.0005 | 5 | | 0.0005 | 6 | | 0.0003 | 7 | | 0.0001 | 8 | | 0.0001 | 9 | | 0.0002 | 10 | | 0.0002 | 11 | | 0.0001 | 12 | | 0.0002 | 13 | | 0.0002 | 14 | | 0.0001 | 15 | | 0.0005 | 16 | | 0.0001 | 17 | | 0.0002 | 18 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
jannikseus/aspect_extraction_restaurant_reviews
jannikseus
2023-08-09T21:16:05Z
25
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-06T20:58:35Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: aspect_extraction_restaurant_reviews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aspect_extraction_restaurant_reviews This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1048 - Precision: 0.7375 - Recall: 0.8194 - F1: 0.7763 - Accuracy: 0.9650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 232 | 0.1149 | 0.6062 | 0.8125 | 0.6944 | 0.9500 | | No log | 2.0 | 464 | 0.0942 | 0.7267 | 0.8125 | 0.7672 | 0.9630 | | 0.1371 | 3.0 | 696 | 0.0981 | 0.7152 | 0.8194 | 0.7638 | 0.9638 | | 0.1371 | 4.0 | 928 | 0.1048 | 0.7375 | 0.8194 | 0.7763 | 0.9650 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.2 - Tokenizers 0.13.3
szymonrucinski/good-mood
szymonrucinski
2023-08-09T21:09:47Z
0
0
null
[ "license:cc-by-nc-sa-3.0", "region:us" ]
null
2023-08-09T16:17:39Z
--- license: cc-by-nc-sa-3.0 ---
azhang1212/angela_shuffle_untranslated_eval
azhang1212
2023-08-09T21:09:36Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:Davlan/afro-xlmr-base", "base_model:finetune:Davlan/afro-xlmr-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-09T19:49:01Z
--- license: mit base_model: Davlan/afro-xlmr-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: angela_shuffle_untranslated_eval results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # angela_shuffle_untranslated_eval This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1761 - Precision: 0.3900 - Recall: 0.2591 - F1: 0.3114 - Accuracy: 0.9516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1703 | 1.0 | 1283 | 0.1568 | 0.4177 | 0.1200 | 0.1864 | 0.9548 | | 0.1434 | 2.0 | 2566 | 0.1517 | 0.4226 | 0.1849 | 0.2573 | 0.9549 | | 0.1264 | 3.0 | 3849 | 0.1612 | 0.4263 | 0.1915 | 0.2643 | 0.9551 | | 0.1064 | 4.0 | 5132 | 0.1632 | 0.3769 | 0.2759 | 0.3186 | 0.9505 | | 0.0888 | 5.0 | 6415 | 0.1761 | 0.3900 | 0.2591 | 0.3114 | 0.9516 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Gabesantos1007/lunar_lander
Gabesantos1007
2023-08-09T21:00:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T20:59:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.79 +/- 14.97 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
chronopt-research/vietnamese-gpt2-base
chronopt-research
2023-08-09T20:58:46Z
147
1
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "vi", "dataset:duongttr/vi-dataset-for-pretrain", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-09T20:29:15Z
--- license: apache-2.0 datasets: - duongttr/vi-dataset-for-pretrain language: - vi metrics: - perplexity pipeline_tag: text-generation widget: - text: Hôm nay tôi rất vui vì - text: Hoàng Sa, Trường Sa là của Việt model-index: - name: chronopt-research/vietnamese-gpt2-base results: - task: type: text-generation metrics: - type: perplexity value: 51.35 verified: true --- # Vietnamese `gpt2-base` <!-- Provide a quick summary of what the model is/does. --> This is a pretrained `gpt2-base` for Vietnamese language using casual language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). ## Model Description GPT-2 (*at first*) is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. This is the **base version** of GPT-2, with 137M parameters. You could've found other pretrained version from here: [gpt2-medium](https://huggingface.co/chronopt-research/vietnamese-gpt2-medium), [gpt2-large]() ## Dataset used for pretraining This is a combination of multiple Vietnamese dataset for pretraining CLMs such as GPT, GPT2, etc. The dataset consists of: - [`vietgpt/covid_19_news_vi`](https://huggingface.co/datasets/vietgpt/covid_19_news_vi) - [`hieunguyen1053/binhvq-news-corpus`](https://huggingface.co/datasets/hieunguyen1053/binhvq-news-corpus) - [`oscar (unshuffled_deduplicated_vi)`](https://huggingface.co/datasets/oscar) - [`vietgpt/wikipedia_vi`](https://huggingface.co/datasets/vietgpt/wikipedia_vi) You can find out the combined version here: [duongttr/vi-dataset-for-pretrain](https://huggingface.co/datasets/duongttr/vi-dataset-for-pretrain) ## Hyperparamters & Results We trained the model ~100k steps, with `lr=1e-4`, `bs=2560` (`single_batch_size=32` * `num_core=8` * `grad_cum=10`), `optimizer=adamw` on TPU-VM-3.8 from [TRC Program](https://sites.research.google/trc/about/). The training costs around **1 day**. |Model|Eval Loss|Eval Perplexity| |---|---|---| |**gpt2-base**|**3.939**|**51.35**| |gpt2-medium|2.8676|17.5948| |gpt2-large|-|-| ## Contacts Feel free to contact us via: [email]()
Jbrophy/falcon-7B-Instruct-Romance
Jbrophy
2023-08-09T20:58:15Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-08T00:39:51Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
chronopt-research/vietnamese-gpt2-medium
chronopt-research
2023-08-09T20:54:47Z
146
2
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "vi", "dataset:duongttr/vi-dataset-for-pretrain", "doi:10.57967/hf/3874", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-06T11:34:08Z
--- license: apache-2.0 datasets: - duongttr/vi-dataset-for-pretrain language: - vi metrics: - perplexity pipeline_tag: text-generation widget: - text: Việt Nam là quốc gia có - text: Hoàng Sa, Trường Sa là của model-index: - name: chronopt-research/vietnamese-gpt2-medium results: - task: type: text-generation metrics: - type: perplexity value: 17.5948 verified: true --- # Vietnamese `gpt2-medium` <!-- Provide a quick summary of what the model is/does. --> This is a pretrained `gpt2-medium` for Vietnamese language using casual language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). ## Model Description GPT-2 (*at first*) is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. This is the **medium version** of GPT-2, with 380M parameters. You could've found other pretrained version from here: [gpt2-base](https://huggingface.co/chronopt-research/vietnamese-gpt2-base), [gpt2-large]() ## Dataset used for pretraining This is a combination of multiple Vietnamese dataset for pretraining CLMs such as GPT, GPT2, etc. The dataset consists of: - [`vietgpt/covid_19_news_vi`](https://huggingface.co/datasets/vietgpt/covid_19_news_vi) - [`hieunguyen1053/binhvq-news-corpus`](https://huggingface.co/datasets/hieunguyen1053/binhvq-news-corpus) - [`oscar (unshuffled_deduplicated_vi)`](https://huggingface.co/datasets/oscar) - [`vietgpt/wikipedia_vi`](https://huggingface.co/datasets/vietgpt/wikipedia_vi) You can find out the combined version here: [duongttr/vi-dataset-for-pretrain](https://huggingface.co/datasets/duongttr/vi-dataset-for-pretrain) ## Hyperparamters & Results We trained the model ~100k steps, with `lr=1e-4`, `bs=1920`, `optimizer=adamw` on TPU-VM-3.8 from [TRC Program](https://sites.research.google/trc/about/). The training costs around **2.5 days**. |Model|Eval Loss|Eval Perplexity| |---|---|---| |gpt2-base|3.939|51.35| |**gpt2-medium**|**2.8676**|**17.5948**| |gpt2-large|-|-| ## Contacts Feel free to contact us via: [email]()
TotoLefo/Sheirlou500Epoch
TotoLefo
2023-08-09T20:33:56Z
0
0
null
[ "AI VOICE", "fr", "region:us" ]
null
2023-08-09T20:31:07Z
--- language: - fr tags: - AI VOICE --- # Model Card for Model ID - **Developed by:** TOTO
FredericProtat/dqn-SpaceInvadersNoFrameskip-v4
FredericProtat
2023-08-09T20:24:42Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T20:24:06Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 691.00 +/- 253.51 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga FredericProtat -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga FredericProtat -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga FredericProtat ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Josrf/a2c-PandaPickAndPlace-v3
Josrf
2023-08-09T20:24:20Z
4
0
stable-baselines3
[ "stable-baselines3", "PandaPickAndPlace-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T20:18:17Z
--- library_name: stable-baselines3 tags: - PandaPickAndPlace-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaPickAndPlace-v3 type: PandaPickAndPlace-v3 metrics: - type: mean_reward value: -50.00 +/- 0.00 name: mean_reward verified: false --- # **A2C** Agent playing **PandaPickAndPlace-v3** This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
SaudxInu/dqn-SpaceInvadersNoFrameskip-v4
SaudxInu
2023-08-09T20:18:20Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T20:17:42Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 607.50 +/- 360.77 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SaudxInu -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SaudxInu -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga SaudxInu ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
JabrilJacobs/poca-SoccerTwos
JabrilJacobs
2023-08-09T20:13:59Z
12
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-08-09T20:11:14Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: JabrilJacobs/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Josrf/a2c-PandaReachDense-v3
Josrf
2023-08-09T20:03:20Z
6
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T19:57:18Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.23 +/- 0.13 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
MIDSCapstoneTeam/ContrailSentinel
MIDSCapstoneTeam
2023-08-09T19:45:01Z
6
0
keras
[ "keras", "tf-keras", "arxiv:2304.02122", "region:us" ]
null
2023-07-15T23:58:03Z
--- library_name: keras --- ## Model description This TransUNet model identifies contrails in satellite images. It takes pre-processed .npy files (images) from the OpenContrails dataset [here](https://arxiv.org/abs/2304.02122) as its inputs, and returns a "mask" image showing only the contrails overlayed on the same area. We achieve a Mean IOU of 0.6997 on the validation set. ## Intended uses Contrails (vapor trails from airplanes) are the [number one](https://www.science.org/content/article/aviation-s-dirty-secret-airplane-contrails-are-surprisingly-potent-cause-global-warming) contributor to global warming from the aviation industry. We hope that data scientists and researchers focused on reducing contrails will use this model to improve their work. There are current efforts underway to develop models that predict contrails, but one major limiting factor for these efforts is that image labeling is still done by humans (labeled images are needed in order to validate contrail prediction models). Labeling contrails in images is a difficult and expensive task - our model helps researchers efficiently segment satellite images so they can validate and improve contrail prediction models. To learn more about our work, visit [our website](http://contrailsentinel.pythonanywhere.com/). ## How to Get Started with the Model Use the code below to get started with the model. ``` #Required imports and Huggingface authentication import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" os.environ["SM_FRAMEWORK"] = "tf.keras" import segmentation_models as sm import tensorflow as tf from huggingface_hub import from_pretrained_keras from huggingface_hub import notebook_login from PIL import Image import numpy as np import matplotlib.pyplot as plt weights = [0.5,0.5] # hyper parameter dice_loss = sm.losses.DiceLoss(class_weights = weights) focal_loss = sm.losses.CategoricalFocalLoss() TOTAL_LOSS_FACTOR = 5 total_loss = dice_loss + (TOTAL_LOSS_FACTOR * focal_loss) def jaccard_coef(y_true, y_pred): """ Defines custom jaccard coefficient metric """ y_true_flatten = K.flatten(y_true) y_pred_flatten = K.flatten(y_pred) intersection = K.sum(y_true_flatten * y_pred_flatten) final_coef_value = (intersection + 1.0) / (K.sum(y_true_flatten) + K.sum(y_pred_flatten) - intersection + 1.0) return final_coef_value metrics = [tf.keras.metrics.MeanIoU(num_classes=2, sparse_y_true= False, sparse_y_pred=False, name="Mean IOU")] notebook_login() # Load model from Huggingface Hub model = from_pretrained_keras("MIDSCapstoneTeam/ContrailSentinel", custom_objects={'dice_loss_plus_5focal_loss': total_loss, 'jaccard_coef': jaccard_coef, 'IOU score' : sm.metrics.IOUScore(threshold=0.9, name="IOU score"), 'Dice Coeficient' : sm.metrics.FScore(threshold=0.6, name="Dice Coeficient")}, compile=False) model.compile(metrics=metrics) # Inference -- User needs to specify the image path where label and ash images are stored label = np.load({Image path} + 'human_pixel_masks.npy') ash_image = np.load({Image path} + 'ash_image.npy')[...,4] y_pred = model.predict(ash_image.reshape(1,256, 256, 3)) prediction = np.argmax(y_pred[0], axis=2).reshape(256,256,1) fig, ax = plt.subplots(1, 2, figsize=(9, 5)) fig.tight_layout(pad=5.0) ax[1].set_title("Contrail prediction") ax[1].imshow(ash_image) ax[1].imshow(prediction) ax[1].axis('off') ax[0].set_title("False colored satellite image") ax[0].imshow(ash_image) ax[0].axis('off') ```
azhang1212/angela_untranslated_shuffle_eval
azhang1212
2023-08-09T19:40:35Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:Davlan/afro-xlmr-base", "base_model:finetune:Davlan/afro-xlmr-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-09T18:20:57Z
--- license: mit base_model: Davlan/afro-xlmr-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: angela_untranslated_shuffle_eval results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # angela_untranslated_shuffle_eval This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3091 - Precision: 0.4310 - Recall: 0.2192 - F1: 0.2906 - Accuracy: 0.9226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1519 | 1.0 | 1283 | 0.2417 | 0.4089 | 0.1276 | 0.1945 | 0.9203 | | 0.1302 | 2.0 | 2566 | 0.2321 | 0.4342 | 0.1198 | 0.1878 | 0.9215 | | 0.1082 | 3.0 | 3849 | 0.2712 | 0.4270 | 0.1816 | 0.2548 | 0.9215 | | 0.0883 | 4.0 | 5132 | 0.2998 | 0.4480 | 0.2006 | 0.2771 | 0.9233 | | 0.0715 | 5.0 | 6415 | 0.3091 | 0.4310 | 0.2192 | 0.2906 | 0.9226 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
drewglass/results
drewglass
2023-08-09T19:39:08Z
216
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:food101", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-09T16:58:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: results results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 1.5746 - Accuracy: 0.894 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6455 | 0.99 | 62 | 2.4448 | 0.841 | | 1.751 | 2.0 | 125 | 1.7416 | 0.879 | | 1.5345 | 2.98 | 186 | 1.5746 | 0.894 | ### Framework versions - Transformers 4.28.1 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
HG7/ReQLoRA_all8
HG7
2023-08-09T19:34:28Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-09T19:34:07Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
MattStammers/ppo-Car_Racing_v2-take1
MattStammers
2023-08-09T19:24:35Z
0
0
stable-baselines3
[ "stable-baselines3", "CarRacing-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T19:17:38Z
--- library_name: stable-baselines3 tags: - CarRacing-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v2 type: CarRacing-v2 metrics: - type: mean_reward value: -74.49 +/- 23.67 name: mean_reward verified: false --- # **PPO** Agent playing **CarRacing-v2** This is a trained model of a **PPO** agent playing **CarRacing-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ``` A mess :D
526christian/526mix-v1.5
526christian
2023-08-09T19:18:04Z
24
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-02T20:47:05Z
--- language: - en tags: - stable-diffusion - text-to-image license: creativeml-openrail-m inference: true --- High saturation is much less frequently an issue in this version at 7 CFG than the last. But if it happens again, it helps to pull back to 6. `<neg-sketch-2>` negative embedding highly recommended for realism and 3D style images (among others). It can be found here: https://huggingface.co/JPPhoto/neg-sketch-2 When prompting for paintings, I suggest using "framed, borders, photo" as your negative prompt to get fullscreen images and cut out any weird 3D-like people. When prompting for illustrations, I like to use "photo" or "realistic" as my negative prompt. When prompting for realism, I normally use a negative prompt of `<neg-sketch-2>` at 1.1 weight and "(anime, render, pixar, illustration, sketch)" at 1.2 weight. [Garbage-bin concepts LoRA](https://civitai.com/models/95391?modelVersionId=101827) recommended for any intense silliness. [Example images hosted on Civitai](https://civitai.com/models/15022?modelVersionId=132011) were generated in InvokeAI's Nodes using latent upscaling from close to ~512x resolution up a few hundred pixels each side at 0.55-0.65 strength w/ DDIM. This was followed up with an ESRGAN model upscale, then converting the image to latents and using ControlNet Tile in a latent to latent stage at 0.2-0.4 strength w/ DDIM.
huggingnft-app/milady
huggingnft-app
2023-08-09T19:17:48Z
2
0
transformers
[ "transformers", "huggingnft", "nft", "huggan", "gan", "image", "images", "unconditional-image-generation", "dataset:huggingnft/milady", "license:mit", "endpoints_compatible", "region:us" ]
unconditional-image-generation
2023-08-09T19:17:21Z
--- tags: - huggingnft - nft - huggan - gan - image - images - unconditional-image-generation datasets: - huggingnft/milady license: mit --- # Hugging NFT: milady ## Disclaimer All rights belong to their owners. Models and datasets can be removed from the site at the request of the copyright holder. ## Model description LightWeight GAN model for unconditional generation. NFT collection available [here](https://opensea.io/collection/milady). Dataset is available [here](https://huggingface.co/datasets/huggingnft/milady). Check Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). Project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ## Intended uses & limitations #### How to use Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). #### Limitations and bias Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). ## Training data Dataset is available [here](https://huggingface.co/datasets/huggingnft/milady). ## Training procedure Training script is available [here](https://github.com/AlekseyKorshuk/huggingnft). ## Generated Images Check results with Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ### BibTeX entry and citation info ```bibtex @InProceedings{huggingnft, author={Aleksey Korshuk} year=2022 } ```
rizquuula/RoBERTa-IndoSQuADv2_1691593432-16-2e-06-0.01-5
rizquuula
2023-08-09T19:14:37Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-08-09T15:05:45Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: RoBERTa-IndoSQuADv2_1691593432-16-2e-06-0.01-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RoBERTa-IndoSQuADv2_1691593432-16-2e-06-0.01-5 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.9255 | 1.0 | 8145 | 2.5500 | | 2.3227 | 2.0 | 16290 | 2.3388 | | 2.1706 | 3.0 | 24435 | 2.2679 | | 2.0939 | 4.0 | 32580 | 2.2414 | | 2.0546 | 5.0 | 40725 | 2.2352 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
HG7/ReQLoRA_GUD8
HG7
2023-08-09T19:04:43Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T19:04:35Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
utahnlp/robertabase-structured-tuning-srl-conll2012
utahnlp
2023-08-09T18:57:20Z
35
0
transformers
[ "transformers", "pytorch", "roberta", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
To run the model, you would need dependencies (e.g., vocab extracted from CoNLL corpus). For details, please refer to our [repo](https://github.com/utahnlp/structured_tuning_srl).
HG7/ReQLoRA_QV8
HG7
2023-08-09T18:45:26Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T18:44:24Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e9_s6789_v3_l5_v50
KingKazma
2023-08-09T18:45:20Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T18:45:19Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e6_s6789_v3_l5_v100
KingKazma
2023-08-09T18:43:16Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T18:43:15Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
stoyky/ppo-Huggy
stoyky
2023-08-09T18:40:35Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-09T18:40:27Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: stoyky/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e8_s6789_v3_l5_v50
KingKazma
2023-08-09T18:38:35Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T18:38:33Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KreativeHash/Gravur
KreativeHash
2023-08-09T18:38:26Z
3
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-09T18:38:25Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: gravur tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Test enoder was not trained.
cgpotts/pipp-finder-bert-base-cased
cgpotts
2023-08-09T18:37:52Z
113
3
transformers
[ "transformers", "pytorch", "bert", "text-classification", "linguistics", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-07T20:13:00Z
--- license: apache-2.0 language: - en tags: - linguistics --- # Model Card for pipp-finder-bert-base-cased This highly idiosyncratic and specific binary classifier is designed for the sole purpose of helping linguists find instances of the English Preposing in PP (PiPPs) construction in corpora. PiPPs are unbounded dependency constructions like "_Happy though we were with the idea_, we decided not to pursue it". This model does a good job of classifying sentences for whether or not they contain an instance of the construction. The model is used as an investigative tool in this paper: * Potts, Christopher. 2023. [Characterizing English Preposing in PP constructions](https://lingbuzz.net/lingbuzz/007495). Ms., Stanford. ## Model Details The model is a fine-tuned `bert-base-cased` model. The fine-tuning data are available as `annotated/pipp-labels.csv` in [this project repository](https://github.com/cgpotts/pipps). All the annotations were done by Christopher Potts for the project "Characterizing English Preposing in PP constructions". The model outputs `1` if it predicts the input contains a PiPP, else `0`. ### Model Description - **Developed by:** Christopher Potts - **Shared by:** Christopher Potts - **Model type:** Binary classifier - **Language(s):** English - **License:** Apache 2.0 - **Finetuned from model:** `bert-base-cased` ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/cgpotts/pipps - **Paper:** https://lingbuzz.net/lingbuzz/007495 ## Uses The sole purpose of the model is to try to identify sentences containing PiPPs. I assume that one is first filtering sentences using very general regexs, and then this model helps you find the gems as you go through examples by hand. The model is useless for really anything except this linguistically motivated for task. And, even from the perspective of theoretical linguistics, this is a highly niche application! ## How to Get Started with the Model See https://github.com/cgpotts/pipps/blob/main/classifiers_usage.ipynb ## Training Details See https://github.com/cgpotts/pipps/blob/main/classifier_training.ipynb ## Evaluation See https://github.com/cgpotts/pipps/blob/main/classifiers_usage.ipynb ## Citation See https://github.com/cgpotts/pipps a ## Model Card Authors [Christopher Potts](https://web.stanford.edu/~cgpotts/) ## Model Card Contact [Christopher Potts](https://web.stanford.edu/~cgpotts/) Christopher Potts
AEJaspan/ppo-LunarLander-v2
AEJaspan
2023-08-09T18:37:08Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T18:36:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 279.39 +/- 20.53 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e5_s6789_v3_l5_v100
KingKazma
2023-08-09T18:36:20Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T18:36:19Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e7_s6789_v3_l5_v50
KingKazma
2023-08-09T18:31:49Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-09T18:31:48Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e4_s6789_v3_l5_v100
KingKazma
2023-08-09T18:29:24Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T18:29:22Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
GabrielLogspace/lora-trained-xl-colab
GabrielLogspace
2023-08-09T18:26:08Z
4
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-09T15:17:18Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - GabrielLogspace/lora-trained-xl-colab These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.