modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 12:31:00
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 12:28:53
card
stringlengths
11
1.01M
redstonehero/epicphotogasm_v1
redstonehero
2023-08-23T20:47:36Z
32
1
diffusers
[ "diffusers", "safetensors", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-23T19:35:58Z
--- license: creativeml-openrail-m library_name: diffusers ---
ushnahabbasi99/distilhubert-finetuned-gtzan
ushnahabbasi99
2023-08-23T20:46:01Z
162
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-18T22:26:54Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.79 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6405 - Accuracy: 0.79 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9208 | 1.0 | 150 | 1.7528 | 0.52 | | 1.0745 | 2.0 | 300 | 1.2385 | 0.6 | | 0.8249 | 3.0 | 450 | 0.8622 | 0.79 | | 0.6652 | 4.0 | 600 | 0.9211 | 0.72 | | 0.4782 | 5.0 | 750 | 0.6200 | 0.8 | | 0.2865 | 6.0 | 900 | 0.6526 | 0.76 | | 0.1781 | 7.0 | 1050 | 0.5741 | 0.82 | | 0.1675 | 8.0 | 1200 | 0.5487 | 0.82 | | 0.0497 | 9.0 | 1350 | 0.6100 | 0.8 | | 0.0813 | 10.0 | 1500 | 0.6405 | 0.79 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ardt-multipart/ardt-multipart-combo_train_walker2d_v2-2308_1950-33
ardt-multipart
2023-08-23T20:38:08Z
34
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-23T18:51:36Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-combo_train_walker2d_v2-2308_1950-33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-combo_train_walker2d_v2-2308_1950-33 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
JJinBBangMan/bert-finetuned-ner
JJinBBangMan
2023-08-23T20:36:27Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-23T19:36:40Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9341386728446136 - name: Recall type: recall value: 0.9500168293503871 - name: F1 type: f1 value: 0.9420108468919483 - name: Accuracy type: accuracy value: 0.9867398598928593 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0606 - Precision: 0.9341 - Recall: 0.9500 - F1: 0.9420 - Accuracy: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0801 | 1.0 | 1756 | 0.0727 | 0.9047 | 0.9325 | 0.9184 | 0.9814 | | 0.0403 | 2.0 | 3512 | 0.0574 | 0.9293 | 0.9483 | 0.9387 | 0.9860 | | 0.0245 | 3.0 | 5268 | 0.0606 | 0.9341 | 0.9500 | 0.9420 | 0.9867 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
wjbmattingly/dnaBERT-k07-w10
wjbmattingly
2023-08-23T20:35:09Z
164
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-15T08:21:31Z
--- license: mit widget: - TTGGGAT TGGGATG GGGATGA GGATGAT GATGATA ATGATAT TGATATT GATATTG ATATTGA <mask> - ATTGATG TTGATGT TGATGTT GATGTTG ATGTTGG TGTTGGA GTTGGAG TTGGAGT TGGAGTT <mask> - GAGTTGT AGTTGTG GTTGTGT TTGTGTG TGTGTGT GTGTGTA TGTGTAG GTGTAGA TGTAGAT <mask> - TAGATAA AGATAAT GATAATT ATAATTA TAATTAG AATTAGG ATTAGGA TTAGGAT TAGGATT <mask> ---
arpan-das-astrophysics/a2c-PandaReachDense-v2
arpan-das-astrophysics
2023-08-23T20:10:30Z
3
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "arxiv:2106.13687", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T20:44:27Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.51 +/- 0.48 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ``` Panda Gym environments: [arxiv.org/abs/2106.13687](https://arxiv.org/abs/2106.13687)
Zmu/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
Zmu
2023-08-23T20:03:06Z
165
0
transformers
[ "transformers", "pytorch", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:MIT/ast-finetuned-audioset-10-10-0.4593", "base_model:finetune:MIT/ast-finetuned-audioset-10-10-0.4593", "license:bsd-3-clause", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-23T18:38:15Z
--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.91 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.2797 - Accuracy: 0.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7205 | 1.0 | 56 | 0.7984 | 0.77 | | 0.3329 | 1.99 | 112 | 0.5558 | 0.83 | | 0.1958 | 2.99 | 168 | 0.5639 | 0.81 | | 0.0955 | 4.0 | 225 | 0.4130 | 0.85 | | 0.0683 | 5.0 | 281 | 0.4681 | 0.87 | | 0.0012 | 5.99 | 337 | 0.3278 | 0.89 | | 0.0016 | 6.99 | 393 | 0.3064 | 0.92 | | 0.0005 | 8.0 | 450 | 0.2827 | 0.91 | | 0.0533 | 9.0 | 506 | 0.2788 | 0.91 | | 0.0002 | 9.96 | 560 | 0.2797 | 0.91 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
liadraz/ppo-PyramidsRND1
liadraz
2023-08-23T19:59:46Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-23T19:57:53Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: liadraz/ppo-PyramidsRND1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kejolong/adawong
kejolong
2023-08-23T19:58:29Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-23T19:55:00Z
--- license: creativeml-openrail-m ---
juancopi81/whisper-small-dv
juancopi81
2023-08-23T19:49:33Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dv", "dataset:mozilla-foundation/common_voice_13_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-17T22:28:57Z
--- language: - dv license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Dv - Juan Carlos Pineros HF Class results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: dv split: test args: dv metrics: - name: Wer type: wer value: 11.119031887888166 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Dv - Juan Carlos Pineros HF Class This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.2937 - Wer Ortho: 56.7101 - Wer: 11.1190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.1203 | 1.63 | 500 | 0.1687 | 62.7551 | 13.3724 | | 0.0464 | 3.26 | 1000 | 0.1757 | 58.8899 | 12.0997 | | 0.0327 | 4.89 | 1500 | 0.1931 | 59.0919 | 11.8510 | | 0.0118 | 6.51 | 2000 | 0.2349 | 58.2492 | 11.4042 | | 0.007 | 8.14 | 2500 | 0.2606 | 57.7408 | 11.5259 | | 0.0056 | 9.77 | 3000 | 0.2759 | 57.4413 | 11.0564 | | 0.0038 | 11.4 | 3500 | 0.2785 | 57.2185 | 10.9956 | | 0.0039 | 13.03 | 4000 | 0.2937 | 56.7101 | 11.1190 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
mrkusypl/EwaIvona
mrkusypl
2023-08-23T19:48:54Z
0
0
null
[ "pl", "region:us" ]
null
2023-08-23T19:21:30Z
--- language: - pl --- <center> <img src="https://www.pcworld.pl/g1/ftp/thumbnails/pc/1/0/ivona_jpg_80_adaptiveresize_750x420.webp"></img> <h1>Syntezator mowy Ivona - Ewa (RVC v2) (Harvest) (675 Epochs)</h1> **Model by:** kusy <br/> **Voice Actor:** Syntezator mowy Ivona - Ewa <br/> **Dataset:** 00:28:37 <br/> <audio controls> <source src="https://cdn.discordapp.com/attachments/1143991454868459550/1143991606941339648/example.mp3" type="audio/mpeg"> </audio><br /> <audio controls> <source src="https://cdn.discordapp.com/attachments/1143991454868459550/1143991643440160881/gadanie.wav" type="audio/wav"> </audio> <a href="https://huggingface.co/mrkusypl/EwaIvona/resolve/main/Ewa%20Ivona%20%5B675%20epoch%20%2B%20RVC%20v2%5D.zip">Download or copy the link</a> </center>
strombergnlp/dant5-small
strombergnlp
2023-08-23T19:48:36Z
177
4
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "t5", "text2text-generation", "arxiv:2208.12097", "doi:10.57967/hf/0012", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-23T14:36:37Z
# dant5-small --- language: - da language_bcp47: - da - da-bornholm - da-synnejyl tags: - t5 license: cc-by-4.0 datasets: - dagw widget: - text: "Aarhus er Danmarks <extra_id_0>.<extra_id_2>" co2_eq_emissions: training_type: "pretraining" geographical_location: "Copenhagen, Denmark" hardware_used: "4 A100 GPUs, 91 training hours" emissions: 23660 --- `dant5-small` is a 60M parameter model with architecture identical to `t5-small`. Training details are given in the paper [Training a T5 Using Lab-sized Resources](https://arxiv.org/abs/2208.12097). It was trained for 10 epochs on the Danigh GigaWord Corpus ([official website](https://gigaword.dk), [paper](https://aclanthology.org/2021.nodalida-main.46/)). ## To use the model ```python from transformers import AutoTokenizer, T5ForConditionalGeneration model_name = "strombergnlp/dant5-small" tokenizer = AutoTokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) original_text = "Aarhus er Danmarks <extra_id_0> landets ældste. Under navnet Aros, som betyder å-munding, optræder den i skriftlige kilder i 900-tallet, men <extra_id_1> historie tilbage til 700-tallet.<extra_id_2>" original_label = "<extra_id_0> næststørste by og en af <extra_id_1> arkæologiske fund fører dens <extra_id_2>" input_ids = tokenizer(original_text, return_tensors="pt").input_ids labels = tokenizer(original_label, return_tensors="pt").input_ids loss = model(input_ids=input_ids, labels=labels).loss print(f"Original text: {original_text}") print(f"Original label: {original_label}") print(f"Loss for the original label is {loss.item()}") sequence_ids = model.generate(input_ids) sequences = tokenizer.batch_decode(sequence_ids) print(f"A sample generated continuation: ") print(sequences[0]) ``` You should see output similar to: ``` Original text: Aarhus er Danmarks <extra_id_0> landets ældste. Under navnet Aros, som betyder å-munding, optræder den i skriftlige kilder i 900-tallet, men <extra_id_1> historie tilbage til 700-tallet.<extra_id_2> Original label: <extra_id_0> næststørste by og en af <extra_id_1> arkæologiske fund fører dens <extra_id_2> Loss for the original label is 3.383681297302246 A sample generated continuation: <pad><extra_id_0> ældste og<extra_id_1> har sin<extra_id_2> Aarhus er Danmarks ældste<extra_id_3></s> ```
zerophinx/minor_empire
zerophinx
2023-08-23T19:48:10Z
0
0
null
[ "region:us" ]
null
2023-08-23T19:44:28Z
Minor Empire Model 200 Epochs V2
s-nlp/bert-base-uncased-stsb-TTM
s-nlp
2023-08-23T19:37:26Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "custom_code", "autotrain_compatible", "region:us" ]
text-classification
2023-08-22T14:03:57Z
--- metrics: - spearmanr - pearsonr --- ## Model Overview It is a TT-compressed model of bert-base-uncased stsb model. Model was trained on STSB corpus with 0.87 combined score, and TTM-compressed with additional finetuning up to 58% (64 mln params) of original size with 0.843 score. ## How to use ```python tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") model = AutoModelForSequenceClassification.from_pretrained("s-nlp/bert-base-uncased-stsb-TTM", trust_remote_code=True) ``` --- license: other ---
dkqjrm/20230824023615
dkqjrm
2023-08-23T19:36:36Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-23T17:36:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230824023615' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230824023615 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.0725 - Accuracy: 0.7365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 1.0 | 312 | 0.6124 | 0.5271 | | 0.3459 | 2.0 | 624 | 0.2937 | 0.4729 | | 0.3459 | 3.0 | 936 | 0.4930 | 0.4693 | | 0.2482 | 4.0 | 1248 | 0.1965 | 0.4693 | | 0.2242 | 5.0 | 1560 | 0.2537 | 0.4693 | | 0.2242 | 6.0 | 1872 | 0.1661 | 0.5632 | | 0.2359 | 7.0 | 2184 | 0.1414 | 0.6570 | | 0.2359 | 8.0 | 2496 | 0.1893 | 0.5018 | | 0.2404 | 9.0 | 2808 | 0.1265 | 0.6173 | | 0.2198 | 10.0 | 3120 | 0.1214 | 0.6679 | | 0.2198 | 11.0 | 3432 | 0.1352 | 0.6029 | | 0.1657 | 12.0 | 3744 | 0.1030 | 0.7040 | | 0.1472 | 13.0 | 4056 | 0.1043 | 0.6931 | | 0.1472 | 14.0 | 4368 | 0.1011 | 0.7004 | | 0.1408 | 15.0 | 4680 | 0.1111 | 0.7148 | | 0.1408 | 16.0 | 4992 | 0.1046 | 0.6931 | | 0.1321 | 17.0 | 5304 | 0.0964 | 0.7004 | | 0.1285 | 18.0 | 5616 | 0.1019 | 0.7220 | | 0.1285 | 19.0 | 5928 | 0.0927 | 0.7256 | | 0.1244 | 20.0 | 6240 | 0.0972 | 0.7004 | | 0.1191 | 21.0 | 6552 | 0.0947 | 0.7076 | | 0.1191 | 22.0 | 6864 | 0.0983 | 0.7184 | | 0.1129 | 23.0 | 7176 | 0.1029 | 0.7040 | | 0.1129 | 24.0 | 7488 | 0.0993 | 0.7112 | | 0.1115 | 25.0 | 7800 | 0.0933 | 0.7076 | | 0.1079 | 26.0 | 8112 | 0.1092 | 0.6931 | | 0.1079 | 27.0 | 8424 | 0.0837 | 0.7437 | | 0.105 | 28.0 | 8736 | 0.0825 | 0.7256 | | 0.1049 | 29.0 | 9048 | 0.0809 | 0.7148 | | 0.1049 | 30.0 | 9360 | 0.0924 | 0.7256 | | 0.1021 | 31.0 | 9672 | 0.0820 | 0.7292 | | 0.1021 | 32.0 | 9984 | 0.0793 | 0.7256 | | 0.099 | 33.0 | 10296 | 0.0820 | 0.7365 | | 0.0966 | 34.0 | 10608 | 0.0831 | 0.7184 | | 0.0966 | 35.0 | 10920 | 0.0796 | 0.7256 | | 0.0928 | 36.0 | 11232 | 0.0790 | 0.7292 | | 0.0888 | 37.0 | 11544 | 0.0953 | 0.7256 | | 0.0888 | 38.0 | 11856 | 0.0791 | 0.7437 | | 0.0905 | 39.0 | 12168 | 0.0849 | 0.7473 | | 0.0905 | 40.0 | 12480 | 0.0782 | 0.7401 | | 0.0872 | 41.0 | 12792 | 0.0754 | 0.7292 | | 0.0853 | 42.0 | 13104 | 0.0770 | 0.7365 | | 0.0853 | 43.0 | 13416 | 0.0742 | 0.7473 | | 0.0843 | 44.0 | 13728 | 0.0764 | 0.7220 | | 0.0826 | 45.0 | 14040 | 0.0765 | 0.7256 | | 0.0826 | 46.0 | 14352 | 0.0746 | 0.7365 | | 0.0811 | 47.0 | 14664 | 0.0736 | 0.7292 | | 0.0811 | 48.0 | 14976 | 0.0824 | 0.7292 | | 0.079 | 49.0 | 15288 | 0.0749 | 0.7401 | | 0.0783 | 50.0 | 15600 | 0.0734 | 0.7401 | | 0.0783 | 51.0 | 15912 | 0.0740 | 0.7401 | | 0.0806 | 52.0 | 16224 | 0.0749 | 0.7365 | | 0.078 | 53.0 | 16536 | 0.0729 | 0.7365 | | 0.078 | 54.0 | 16848 | 0.0728 | 0.7401 | | 0.0764 | 55.0 | 17160 | 0.0722 | 0.7437 | | 0.0764 | 56.0 | 17472 | 0.0745 | 0.7365 | | 0.0766 | 57.0 | 17784 | 0.0730 | 0.7329 | | 0.0751 | 58.0 | 18096 | 0.0725 | 0.7401 | | 0.0751 | 59.0 | 18408 | 0.0730 | 0.7365 | | 0.0765 | 60.0 | 18720 | 0.0725 | 0.7365 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
MattStammers/ppo-QbertNoFrameskip-v4
MattStammers
2023-08-23T19:30:13Z
0
0
stable-baselines3
[ "stable-baselines3", "QbertNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-23T19:28:48Z
--- library_name: stable-baselines3 tags: - QbertNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: QbertNoFrameskip-v4 type: QbertNoFrameskip-v4 metrics: - type: mean_reward value: 16300.00 +/- 1892.09 name: mean_reward verified: false --- # **PPO** Agent playing **QbertNoFrameskip-v4** This is a trained model of a **PPO** agent playing **QbertNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo ppo --env QbertNoFrameskip-v4 -orga MattStammers -f logs/ python -m rl_zoo3.enjoy --algo ppo --env QbertNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo ppo --env QbertNoFrameskip-v4 -orga MattStammers -f logs/ python -m rl_zoo3.enjoy --algo ppo --env QbertNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo ppo --env QbertNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo ppo --env QbertNoFrameskip-v4 -f logs/ -orga MattStammers ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 'lin_0.1'), ('ent_coef', 0.01), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('frame_stack', 4), ('learning_rate', 'lin_2.5e-4'), ('n_envs', 8), ('n_epochs', 4), ('n_steps', 128), ('n_timesteps', 10000000.0), ('normalize', False), ('policy', 'CnnPolicy'), ('vf_coef', 0.5)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
asenella/ms_config_1_alpha_90_beta_50_seed_2
asenella
2023-08-23T19:19:42Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-08-23T19:19:40Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
Akibub/jennysmith3
Akibub
2023-08-23T19:07:14Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-23T18:53:43Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### jennysmith3 Dreambooth model trained by Akibub with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
ardt-multipart/ardt-multipart-robust_train_walker2d_v3-2308_1824-99
ardt-multipart
2023-08-23T18:49:44Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-23T17:26:25Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-robust_train_walker2d_v3-2308_1824-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-robust_train_walker2d_v3-2308_1824-99 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
artyomboyko/whisper-tiny-finetuned-minds14
artyomboyko
2023-08-23T18:43:37Z
83
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-23T16:53:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-finetuned-minds14 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.33884297520661155 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-finetuned-minds14 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.7159 - Wer Ortho: 0.3461 - Wer: 0.3388 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0011 | 17.86 | 500 | 0.7159 | 0.3461 | 0.3388 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
fp16-guy/Sweet-mix_fp16_cleaned
fp16-guy
2023-08-23T18:40:50Z
0
0
null
[ "text-to-image", "region:us" ]
text-to-image
2023-08-11T14:13:24Z
--- pipeline_tag: text-to-image --- Sweet-mix, but fp16/cleaned - smaller size, same result. ======== /// **[**original checkpoint link**](https://civitai.com/models/18927/sweet-mix)** *(all rights to the model belong to Manseo)* --- *[*grid 01*](https://huggingface.co/datasets/fp16-guy/grids/blob/main/sweet-mix%2001%2020230811104443-111-sweetMix_v21-Euler%20a-6.png) *(1.99gb 2.1 version)* *[*grid 02*](https://huggingface.co/datasets/fp16-guy/grids/blob/main/sweet-mix%2002%2020230811104555-111-sweetMix_v21-Euler%20a-6.png) *(1.83gb 2.1 version - no vae)* *[*grid 03*](https://huggingface.co/datasets/fp16-guy/grids/blob/main/sweet-mix%2020-flat%2001%2020230812175855-111-sweetMix_v20Flat-Euler%20a-6.png) *(1.99gb 2.0-flat version)* *[*grid 04*](https://huggingface.co/datasets/fp16-guy/grids/blob/main/sweet-mix%2020-flat%2002%2020230812180157-111-sweetMix_v20Flat-Euler%20a-6.png) *(1.83gb 2.0-flat version - no vae)*
922-CA/kacpdw-gfl-rvc2-tests
922-CA
2023-08-23T18:31:14Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-08-22T09:37:49Z
--- license: openrail --- Test RVC2 models on the GFL character KACPDW, via various hyperparams and datasets. # kacpdw-test-1/1a/1b (~07/2023) * Trained on dataset of ~30 items, dialogue from game * Trained for ~100/150/50 epochs * First attempts # kacpdw-test-2, various (08/23/2023) * Trained on dataset of ~30 items, dialogue from game * Second attempts (45 epochs/495 steps seems to be best)
RajuEEE/RewardModelForQuestionAnswering_LLama2_RevisedData
RajuEEE
2023-08-23T18:27:58Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-23T18:27:54Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
am-infoweb/QA_SYNTH_DATA_WITH_UNANSWERABLE_23_AUG_xlm_FNETUNE_1.0
am-infoweb
2023-08-23T18:24:35Z
102
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "generated_from_trainer", "base_model:am-infoweb/QA_SYNTH_DATA_WITH_UNANSWERABLE_23_AUG_xlm_roberta-base", "base_model:finetune:am-infoweb/QA_SYNTH_DATA_WITH_UNANSWERABLE_23_AUG_xlm_roberta-base", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-08-23T18:15:10Z
--- license: mit base_model: am-infoweb/QA_SYNTH_DATA_WITH_UNANSWERABLE_23_AUG_xlm_roberta-base tags: - generated_from_trainer model-index: - name: QA_SYNTH_DATA_WITH_UNANSWERABLE_23_AUG_xlm_FNETUNE_1.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # QA_SYNTH_DATA_WITH_UNANSWERABLE_23_AUG_xlm_FNETUNE_1.0 This model is a fine-tuned version of [am-infoweb/QA_SYNTH_DATA_WITH_UNANSWERABLE_23_AUG_xlm_roberta-base](https://huggingface.co/am-infoweb/QA_SYNTH_DATA_WITH_UNANSWERABLE_23_AUG_xlm_roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 188 | 0.0000 | | No log | 2.0 | 376 | 0.0000 | | 0.2453 | 3.0 | 564 | 0.0000 | | 0.2453 | 4.0 | 752 | 0.0000 | | 0.2453 | 5.0 | 940 | 0.0000 | | 0.0002 | 6.0 | 1128 | 0.0000 | | 0.0002 | 7.0 | 1316 | 0.0000 | | 0.0 | 8.0 | 1504 | 0.0000 | | 0.0 | 9.0 | 1692 | 0.0000 | | 0.0 | 10.0 | 1880 | 0.0000 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
vuminhtue/bert-finetuned-ner
vuminhtue
2023-08-23T18:23:24Z
61
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-23T18:17:21Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: vuminhtue/bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vuminhtue/bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0279 - Validation Loss: 0.0510 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1780 | 0.0630 | 0 | | 0.0487 | 0.0506 | 1 | | 0.0279 | 0.0510 | 2 | ### Framework versions - Transformers 4.32.0 - TensorFlow 2.9.1 - Datasets 2.14.4 - Tokenizers 0.13.3
asenella/ms_config_1_alpha_90_beta_50_seed_1
asenella
2023-08-23T18:20:16Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-08-23T18:20:14Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
May-Si/MyFineAlpaca
May-Si
2023-08-23T18:16:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-23T18:11:37Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
JiemingYou/Reinforce-CartPole-v1-policy
JiemingYou
2023-08-23T18:10:38Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-23T17:46:51Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1-policy results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
HeinrichWirth/whisper-tiny_en
HeinrichWirth
2023-08-23T17:48:44Z
75
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-23T15:16:40Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny_en results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.36304909560723514 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny_en This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6349 - Wer Ortho: 0.3964 - Wer: 0.3630 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 3.8643 | 1.79 | 50 | 3.5786 | 0.5114 | 0.3714 | | 2.4042 | 3.57 | 100 | 2.3266 | 0.4657 | 0.3689 | | 1.4319 | 5.36 | 150 | 1.3619 | 0.4367 | 0.3702 | | 0.7558 | 7.14 | 200 | 0.7935 | 0.4213 | 0.3721 | | 0.524 | 8.93 | 250 | 0.6820 | 0.4078 | 0.3721 | | 0.4702 | 10.71 | 300 | 0.6349 | 0.3964 | 0.3630 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
dkqjrm/20230824002458
dkqjrm
2023-08-23T17:36:02Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-23T15:25:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230824002458' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230824002458 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.0768 - Accuracy: 0.7112 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4042 | 1.0 | 623 | 0.3862 | 0.5271 | | 0.3203 | 2.0 | 1246 | 1.0958 | 0.4729 | | 0.3087 | 3.0 | 1869 | 0.5979 | 0.4729 | | 0.2723 | 4.0 | 2492 | 0.1618 | 0.5271 | | 0.2635 | 5.0 | 3115 | 0.2704 | 0.5343 | | 0.2826 | 6.0 | 3738 | 0.3245 | 0.4729 | | 0.2663 | 7.0 | 4361 | 0.2230 | 0.5957 | | 0.2562 | 8.0 | 4984 | 0.1453 | 0.6390 | | 0.2259 | 9.0 | 5607 | 0.1312 | 0.6282 | | 0.1806 | 10.0 | 6230 | 0.1118 | 0.7148 | | 0.1525 | 11.0 | 6853 | 0.1076 | 0.6787 | | 0.1509 | 12.0 | 7476 | 0.1241 | 0.6643 | | 0.149 | 13.0 | 8099 | 0.1158 | 0.6931 | | 0.1509 | 14.0 | 8722 | 0.1154 | 0.7040 | | 0.1397 | 15.0 | 9345 | 0.1096 | 0.6823 | | 0.1311 | 16.0 | 9968 | 0.0999 | 0.6751 | | 0.13 | 17.0 | 10591 | 0.0986 | 0.6968 | | 0.1244 | 18.0 | 11214 | 0.1063 | 0.6895 | | 0.1278 | 19.0 | 11837 | 0.1229 | 0.6931 | | 0.1228 | 20.0 | 12460 | 0.0905 | 0.7112 | | 0.1153 | 21.0 | 13083 | 0.0916 | 0.7004 | | 0.1171 | 22.0 | 13706 | 0.1085 | 0.7148 | | 0.1179 | 23.0 | 14329 | 0.1101 | 0.7256 | | 0.1069 | 24.0 | 14952 | 0.0917 | 0.6895 | | 0.1019 | 25.0 | 15575 | 0.0837 | 0.7112 | | 0.1017 | 26.0 | 16198 | 0.0832 | 0.7148 | | 0.1034 | 27.0 | 16821 | 0.0847 | 0.7220 | | 0.0989 | 28.0 | 17444 | 0.0830 | 0.7256 | | 0.0969 | 29.0 | 18067 | 0.0817 | 0.7148 | | 0.0964 | 30.0 | 18690 | 0.0835 | 0.7112 | | 0.0957 | 31.0 | 19313 | 0.0846 | 0.7148 | | 0.0937 | 32.0 | 19936 | 0.0827 | 0.7112 | | 0.0895 | 33.0 | 20559 | 0.0860 | 0.7220 | | 0.0905 | 34.0 | 21182 | 0.0830 | 0.7220 | | 0.0875 | 35.0 | 21805 | 0.0796 | 0.7184 | | 0.0895 | 36.0 | 22428 | 0.0811 | 0.7076 | | 0.0861 | 37.0 | 23051 | 0.0805 | 0.7112 | | 0.0868 | 38.0 | 23674 | 0.0786 | 0.7040 | | 0.0798 | 39.0 | 24297 | 0.0787 | 0.7148 | | 0.0827 | 40.0 | 24920 | 0.0815 | 0.7112 | | 0.0798 | 41.0 | 25543 | 0.0790 | 0.7184 | | 0.079 | 42.0 | 26166 | 0.0813 | 0.7220 | | 0.0794 | 43.0 | 26789 | 0.0802 | 0.7112 | | 0.0766 | 44.0 | 27412 | 0.0796 | 0.7076 | | 0.0766 | 45.0 | 28035 | 0.0813 | 0.7329 | | 0.0765 | 46.0 | 28658 | 0.0810 | 0.7112 | | 0.0744 | 47.0 | 29281 | 0.0781 | 0.7148 | | 0.076 | 48.0 | 29904 | 0.0794 | 0.7148 | | 0.0728 | 49.0 | 30527 | 0.0780 | 0.7112 | | 0.0745 | 50.0 | 31150 | 0.0767 | 0.7256 | | 0.0711 | 51.0 | 31773 | 0.0771 | 0.7220 | | 0.0726 | 52.0 | 32396 | 0.0772 | 0.7256 | | 0.0747 | 53.0 | 33019 | 0.0772 | 0.7184 | | 0.0711 | 54.0 | 33642 | 0.0772 | 0.7256 | | 0.0676 | 55.0 | 34265 | 0.0767 | 0.7329 | | 0.0697 | 56.0 | 34888 | 0.0783 | 0.7220 | | 0.0692 | 57.0 | 35511 | 0.0766 | 0.7184 | | 0.067 | 58.0 | 36134 | 0.0773 | 0.7148 | | 0.0676 | 59.0 | 36757 | 0.0774 | 0.7112 | | 0.0678 | 60.0 | 37380 | 0.0768 | 0.7112 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
dkqjrm/20230824002455
dkqjrm
2023-08-23T17:35:04Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-23T15:25:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230824002455' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230824002455 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7440 - Accuracy: 0.7473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0306 | 1.0 | 623 | 0.6949 | 0.4729 | | 0.8552 | 2.0 | 1246 | 0.7454 | 0.5596 | | 0.9623 | 3.0 | 1869 | 0.8165 | 0.4874 | | 0.8291 | 4.0 | 2492 | 1.1894 | 0.5704 | | 0.8201 | 5.0 | 3115 | 0.6677 | 0.6823 | | 0.8297 | 6.0 | 3738 | 0.6379 | 0.7256 | | 0.7792 | 7.0 | 4361 | 0.6572 | 0.6931 | | 0.6925 | 8.0 | 4984 | 0.6975 | 0.6498 | | 0.7243 | 9.0 | 5607 | 0.7871 | 0.6679 | | 0.69 | 10.0 | 6230 | 0.7707 | 0.7148 | | 0.6492 | 11.0 | 6853 | 0.7202 | 0.7004 | | 0.6448 | 12.0 | 7476 | 0.6862 | 0.7329 | | 0.6571 | 13.0 | 8099 | 0.6079 | 0.7256 | | 0.6558 | 14.0 | 8722 | 0.8183 | 0.7329 | | 0.5996 | 15.0 | 9345 | 0.5783 | 0.7256 | | 0.5494 | 16.0 | 9968 | 0.5463 | 0.7473 | | 0.4964 | 17.0 | 10591 | 0.7906 | 0.7040 | | 0.4914 | 18.0 | 11214 | 0.5334 | 0.7220 | | 0.4933 | 19.0 | 11837 | 0.6681 | 0.7329 | | 0.4655 | 20.0 | 12460 | 0.8837 | 0.7401 | | 0.4432 | 21.0 | 13083 | 0.7407 | 0.7473 | | 0.4051 | 22.0 | 13706 | 0.7213 | 0.7509 | | 0.4018 | 23.0 | 14329 | 0.8420 | 0.7365 | | 0.3745 | 24.0 | 14952 | 0.6421 | 0.7365 | | 0.3558 | 25.0 | 15575 | 0.5727 | 0.7437 | | 0.3325 | 26.0 | 16198 | 0.6941 | 0.7545 | | 0.3471 | 27.0 | 16821 | 0.8213 | 0.7545 | | 0.3405 | 28.0 | 17444 | 0.7249 | 0.7292 | | 0.3079 | 29.0 | 18067 | 0.5829 | 0.7545 | | 0.3136 | 30.0 | 18690 | 0.7057 | 0.7617 | | 0.3152 | 31.0 | 19313 | 0.7746 | 0.7509 | | 0.2989 | 32.0 | 19936 | 0.6028 | 0.7617 | | 0.2657 | 33.0 | 20559 | 0.8212 | 0.7509 | | 0.2703 | 34.0 | 21182 | 0.7015 | 0.7401 | | 0.2562 | 35.0 | 21805 | 0.5706 | 0.7581 | | 0.2738 | 36.0 | 22428 | 0.7036 | 0.7690 | | 0.2404 | 37.0 | 23051 | 0.6888 | 0.7545 | | 0.2595 | 38.0 | 23674 | 0.7086 | 0.7437 | | 0.245 | 39.0 | 24297 | 0.7283 | 0.7401 | | 0.2279 | 40.0 | 24920 | 0.7231 | 0.7401 | | 0.2288 | 41.0 | 25543 | 0.6915 | 0.7365 | | 0.2166 | 42.0 | 26166 | 0.8110 | 0.7329 | | 0.219 | 43.0 | 26789 | 0.7984 | 0.7437 | | 0.1935 | 44.0 | 27412 | 0.8829 | 0.7401 | | 0.2105 | 45.0 | 28035 | 0.7270 | 0.7545 | | 0.2079 | 46.0 | 28658 | 0.8026 | 0.7365 | | 0.1859 | 47.0 | 29281 | 0.6536 | 0.7617 | | 0.2211 | 48.0 | 29904 | 0.7410 | 0.7401 | | 0.1862 | 49.0 | 30527 | 0.8433 | 0.7401 | | 0.2015 | 50.0 | 31150 | 0.6761 | 0.7437 | | 0.1921 | 51.0 | 31773 | 0.7471 | 0.7545 | | 0.1899 | 52.0 | 32396 | 0.8135 | 0.7437 | | 0.188 | 53.0 | 33019 | 0.7556 | 0.7365 | | 0.1771 | 54.0 | 33642 | 0.7566 | 0.7365 | | 0.1697 | 55.0 | 34265 | 0.7515 | 0.7509 | | 0.185 | 56.0 | 34888 | 0.7795 | 0.7437 | | 0.177 | 57.0 | 35511 | 0.7455 | 0.7509 | | 0.1663 | 58.0 | 36134 | 0.7345 | 0.7509 | | 0.1722 | 59.0 | 36757 | 0.7430 | 0.7509 | | 0.1696 | 60.0 | 37380 | 0.7440 | 0.7473 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Frorozcol/llama_7b_recetas
Frorozcol
2023-08-23T17:24:10Z
3
0
peft
[ "peft", "region:us" ]
null
2023-08-23T15:04:03Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
ardt-multipart/ardt-multipart-robust_train_walker2d_v3-2308_1656-66
ardt-multipart
2023-08-23T17:23:09Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-23T15:57:56Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-robust_train_walker2d_v3-2308_1656-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-robust_train_walker2d_v3-2308_1656-66 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
agarc15/mega-base-wikitext-finetuned-INCIBE
agarc15
2023-08-23T17:09:23Z
104
0
transformers
[ "transformers", "pytorch", "mega", "text-classification", "generated_from_trainer", "base_model:mnaylor/mega-base-wikitext", "base_model:finetune:mnaylor/mega-base-wikitext", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-23T08:16:25Z
--- license: apache-2.0 base_model: mnaylor/mega-base-wikitext tags: - generated_from_trainer metrics: - accuracy model-index: - name: mega-base-wikitext-finetuned-INCIBE results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mega-base-wikitext-finetuned-INCIBE This model is a fine-tuned version of [mnaylor/mega-base-wikitext](https://huggingface.co/mnaylor/mega-base-wikitext) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5169 - Accuracy: 0.3850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 196 | 1.5359 | 0.3742 | | No log | 2.0 | 392 | 1.5257 | 0.3753 | | 1.5035 | 3.0 | 588 | 1.5320 | 0.3719 | | 1.5035 | 4.0 | 784 | 1.5231 | 0.3715 | | 1.5035 | 5.0 | 980 | 1.5203 | 0.3745 | | 1.4755 | 6.0 | 1176 | 1.5217 | 0.3742 | | 1.4755 | 7.0 | 1372 | 1.5301 | 0.3719 | | 1.4531 | 8.0 | 1568 | 1.5131 | 0.3805 | | 1.4531 | 9.0 | 1764 | 1.5212 | 0.3783 | | 1.4531 | 10.0 | 1960 | 1.5173 | 0.3771 | | 1.4426 | 11.0 | 2156 | 1.5190 | 0.3809 | | 1.4426 | 12.0 | 2352 | 1.5122 | 0.3794 | | 1.4238 | 13.0 | 2548 | 1.5129 | 0.3794 | | 1.4238 | 14.0 | 2744 | 1.5176 | 0.3783 | | 1.4238 | 15.0 | 2940 | 1.5139 | 0.3783 | | 1.4161 | 16.0 | 3136 | 1.5235 | 0.3805 | | 1.4161 | 17.0 | 3332 | 1.5125 | 0.3846 | | 1.4115 | 18.0 | 3528 | 1.5171 | 0.3827 | | 1.4115 | 19.0 | 3724 | 1.5112 | 0.3827 | | 1.4115 | 20.0 | 3920 | 1.5123 | 0.3816 | | 1.4052 | 21.0 | 4116 | 1.5126 | 0.3827 | | 1.4052 | 22.0 | 4312 | 1.5170 | 0.3850 | | 1.4004 | 23.0 | 4508 | 1.5135 | 0.3805 | | 1.4004 | 24.0 | 4704 | 1.5157 | 0.3809 | | 1.4004 | 25.0 | 4900 | 1.5160 | 0.3824 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
alexandre-co/ppo-Huggy
alexandre-co
2023-08-23T17:07:59Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-23T17:07:53Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: alexandre-co/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
akashmaggon/distilbert-base-uncased-finetuned-imdb
akashmaggon
2023-08-23T17:00:58Z
124
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-23T14:15:29Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4140 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6959 | 1.0 | 157 | 2.5440 | | 2.5692 | 2.0 | 314 | 2.4636 | | 2.5434 | 3.0 | 471 | 2.4249 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
rossevine/Model_S_D_Wav2Vec2
rossevine
2023-08-23T16:55:13Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-21T07:33:43Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer metrics: - wer model-index: - name: Model_S_D_Wav2Vec2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Model_S_D_Wav2Vec2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0464 - Wer: 0.2319 - Cer: 0.0598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 3.5768 | 0.85 | 400 | 0.6152 | 0.5812 | 0.1905 | | 0.3226 | 1.71 | 800 | 0.1026 | 0.3195 | 0.0722 | | 0.1827 | 2.56 | 1200 | 0.0725 | 0.2048 | 0.0454 | | 0.129 | 3.41 | 1600 | 0.0671 | 0.2393 | 0.0525 | | 0.1075 | 4.26 | 2000 | 0.0556 | 0.2312 | 0.0497 | | 0.0924 | 5.12 | 2400 | 0.0572 | 0.2040 | 0.0478 | | 0.076 | 5.97 | 2800 | 0.0596 | 0.1472 | 0.0346 | | 0.0695 | 6.82 | 3200 | 0.0608 | 0.2274 | 0.0510 | | 0.0707 | 7.68 | 3600 | 0.0490 | 0.2665 | 0.0660 | | 0.0597 | 8.53 | 4000 | 0.0509 | 0.2442 | 0.0593 | | 0.0557 | 9.38 | 4400 | 0.0501 | 0.2533 | 0.0610 | | 0.0503 | 10.23 | 4800 | 0.0519 | 0.2534 | 0.0622 | | 0.0471 | 11.09 | 5200 | 0.0512 | 0.2585 | 0.0638 | | 0.0417 | 11.94 | 5600 | 0.0497 | 0.2522 | 0.0610 | | 0.0415 | 12.79 | 6000 | 0.0508 | 0.2547 | 0.0629 | | 0.0372 | 13.65 | 6400 | 0.0497 | 0.2580 | 0.0643 | | 0.0364 | 14.5 | 6800 | 0.0448 | 0.2498 | 0.0600 | | 0.034 | 15.35 | 7200 | 0.0522 | 0.2419 | 0.0593 | | 0.0306 | 16.2 | 7600 | 0.0510 | 0.2433 | 0.0560 | | 0.0345 | 17.06 | 8000 | 0.0503 | 0.2610 | 0.0657 | | 0.0266 | 17.91 | 8400 | 0.0462 | 0.2434 | 0.0620 | | 0.0273 | 18.76 | 8800 | 0.0507 | 0.2456 | 0.0622 | | 0.0216 | 19.62 | 9200 | 0.0466 | 0.2214 | 0.0531 | | 0.0208 | 20.47 | 9600 | 0.0497 | 0.2396 | 0.0598 | | 0.0201 | 21.32 | 10000 | 0.0470 | 0.2332 | 0.0559 | | 0.0174 | 22.17 | 10400 | 0.0418 | 0.2346 | 0.0590 | | 0.0198 | 23.03 | 10800 | 0.0472 | 0.2386 | 0.0602 | | 0.0149 | 23.88 | 11200 | 0.0490 | 0.2446 | 0.0638 | | 0.0133 | 24.73 | 11600 | 0.0497 | 0.2430 | 0.0632 | | 0.0118 | 25.59 | 12000 | 0.0498 | 0.2368 | 0.0620 | | 0.0106 | 26.44 | 12400 | 0.0453 | 0.2309 | 0.0590 | | 0.0104 | 27.29 | 12800 | 0.0452 | 0.2296 | 0.0583 | | 0.0085 | 28.14 | 13200 | 0.0467 | 0.2352 | 0.0604 | | 0.0081 | 29.0 | 13600 | 0.0470 | 0.2310 | 0.0592 | | 0.0079 | 29.85 | 14000 | 0.0464 | 0.2319 | 0.0598 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 1.18.3 - Tokenizers 0.13.3
kadir0/my_awesome_model
kadir0
2023-08-23T16:53:17Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-23T13:37:14Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: my_awesome_model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.93152 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2223 - Accuracy: 0.9315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2261 | 1.0 | 1563 | 0.2259 | 0.9174 | | 0.154 | 2.0 | 3126 | 0.2223 | 0.9315 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
reginaboateng/preffier_BERT_adapter_ner_pico_for_classification_task
reginaboateng
2023-08-23T16:40:37Z
0
0
adapter-transformers
[ "adapter-transformers", "bert", "adapterhub:pico_ner", "dataset:reginaboateng/cleaned_ebmnlp_pico", "region:us" ]
null
2023-08-23T16:40:33Z
--- tags: - bert - adapter-transformers - adapterhub:pico_ner datasets: - reginaboateng/cleaned_ebmnlp_pico --- # Adapter `reginaboateng/preffier_BERT_adapter_ner_pico_for_classification_task` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [pico_ner](https://adapterhub.ml/explore/pico_ner/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("reginaboateng/preffier_BERT_adapter_ner_pico_for_classification_task", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
nagupv/llama30B_contextLLMExam_18kv2_f0
nagupv
2023-08-23T16:39:42Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-23T13:28:30Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
vargr/yt-grader-model
vargr
2023-08-23T16:36:20Z
238
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-23T16:35:42Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: yt-grader-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # yt-grader-model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the yt-thumbnail-dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.4270 - Accuracy: 0.8431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4166 | 1.0 | 442 | 0.4169 | 0.8079 | | 0.2478 | 2.0 | 884 | 0.3685 | 0.8395 | | 0.1407 | 3.0 | 1326 | 0.4270 | 0.8431 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.13.3
AnnaMats/ppo-Pyramids-Training
AnnaMats
2023-08-23T16:32:17Z
21
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-22T09:21:12Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: AnnaMats/ppo-Pyramids-Training 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
karimasbar/resultss
karimasbar
2023-08-23T16:27:16Z
0
0
null
[ "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:finetune:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2023-08-23T16:26:58Z
--- base_model: meta-llama/Llama-2-7b-chat-hf tags: - generated_from_trainer model-index: - name: resultss results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resultss This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 5000 ### Training results ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
zarakiquemparte/zaraxe-l2-7b
zarakiquemparte
2023-08-23T16:22:35Z
1,474
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "llama2", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-23T15:38:10Z
--- license: other tags: - llama2 --- # Model Card: ZaraXE L2 7b This model uses [Zarafusionex L2 7b without LimaRP](https://huggingface.co/zarakiquemparte/zarafusionex-l2-7b) (71%) as a base with [Airoboros L2 7B GPT4 2.0](https://huggingface.co/jondurbin/airoboros-l2-7b-gpt4-2.0) (29%) and the result of this merge was merged with [LimaRP LLama2 7B Lora](https://huggingface.co/lemonilia/limarp-llama2). This merge of models(Zarafusionex w/o LimaRP and Airoboros) was done with this [script](https://github.com/zarakiquemparte/zaraki-tools/blob/main/merge-cli.py) This merge of Lora with Model was done with this [script](https://github.com/zarakiquemparte/zaraki-tools/blob/main/apply-lora.py) Merge illustration: ![illustration](zaraxe-merge-illustration.png) ## Usage: Since this is a merge between Zarafusionex, Airoboros and LimaRP, the following instruction formats should work: Alpaca 2: ``` ### Instruction: <prompt> ### Response: <leave a newline blank for model to respond> ``` LimaRP instruction format: ``` <<SYSTEM>> <character card and system prompt> <<USER>> <prompt> <<AIBOT>> <leave a newline blank for model to respond> ``` ## Bias, Risks, and Limitations This model is not intended for supplying factual information or advice in any form ## Training Details This model is merged and can be reproduced using the tools mentioned above. Please refer to all provided links for extra model-specific details.
asenella/ms_config_1_alpha_90_beta_50_seed_0
asenella
2023-08-23T16:19:14Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-08-23T16:19:12Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
Stepa/sd-class-butterflies-128-first-unit
Stepa
2023-08-23T16:17:47Z
44
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-08-23T16:17:37Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Stepa/sd-class-butterflies-128-first-unit') image = pipeline().images[0] image ```
arnavagrawal/BLOOMZ
arnavagrawal
2023-08-23T16:12:25Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-23T16:12:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
yasmineelabbar/marian-finetuned-kde4-en-to-fr
yasmineelabbar
2023-08-23T16:00:05Z
103
1
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-08-21T11:34:21Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-fr tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 52.88529894542656 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8556 - Bleu: 52.8853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
daochf/Lora-Opt6_7b-PuceDS-v03x50
daochf
2023-08-23T15:57:35Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-23T15:56:09Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
usvsnsp/pythia-6.9b-sft
usvsnsp
2023-08-23T15:53:41Z
13
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-08T17:42:17Z
wandb run: https://wandb.ai/usvsnsp/trlx/runs/llxa7qkl Model evals: | Task |Version|Filter| Metric |Value | |Stderr| |-------------|-------|------|--------|-----:|---|-----:| |arc_challenge|Yaml |none |acc |0.3387|± |0.0138| | | |none |acc_norm|0.3532|± |0.0140| |arc_easy |Yaml |none |acc |0.6936|± |0.0095| | | |none |acc_norm|0.6187|± |0.0100| |logiqa |Yaml |none |acc |0.2335|± |0.0166| | | |none |acc_norm|0.2734|± |0.0175| |piqa |Yaml |none |acc |0.7535|± |0.0101| | | |none |acc_norm|0.7693|± |0.0098| |sciq |Yaml |none |acc |0.9020|± |0.0094| | | |none |acc_norm|0.8320|± |0.0118| |winogrande |Yaml |none |acc |0.6267|± |0.0136|
abhijithyess/chandrayaan-LunarLander
abhijithyess
2023-08-23T15:52:36Z
0
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-23T15:51:06Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.74 +/- 19.12 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
yinde/en-ha
yinde
2023-08-23T15:44:47Z
105
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-08-23T14:30:34Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: saad-finetuned-NLP-opus-mt-en-ha results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # saad-finetuned-NLP-opus-mt-en-ha This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ha](https://huggingface.co/Helsinki-NLP/opus-mt-en-ha) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5787 - Bleu: 68.0524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
julien-c/bert-base-uncased-duplicate
julien-c
2023-08-23T15:42:41Z
105
0
transformers
[ "transformers", "pytorch", "tf", "jax", "rust", "coreml", "onnx", "safetensors", "bert", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-23T15:42:41Z
--- language: en tags: - exbert license: apache-2.0 datasets: - bookcorpus - wikipedia duplicated_from: bert-base-uncased --- # BERT base model (uncased) Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally masks the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Model variations BERT has originally been released in base and large variations, for cased and uncased input text. The uncased models also strips out an accent markers. Chinese and multilingual uncased and cased versions followed shortly after. Modified preprocessing with whole word masking has replaced subpiece masking in a following work, with the release of two models. Other 24 smaller models are released afterward. The detailed release history can be found on the [google-research/bert readme](https://github.com/google-research/bert/blob/master/README.md) on github. | Model | #params | Language | |------------------------|--------------------------------|-------| | [`bert-base-uncased`](https://huggingface.co/bert-base-uncased) | 110M | English | | [`bert-large-uncased`](https://huggingface.co/bert-large-uncased) | 340M | English | sub | [`bert-base-cased`](https://huggingface.co/bert-base-cased) | 110M | English | | [`bert-large-cased`](https://huggingface.co/bert-large-cased) | 340M | English | | [`bert-base-chinese`](https://huggingface.co/bert-base-chinese) | 110M | Chinese | | [`bert-base-multilingual-cased`](https://huggingface.co/bert-base-multilingual-cased) | 110M | Multiple | | [`bert-large-uncased-whole-word-masking`](https://huggingface.co/bert-large-uncased-whole-word-masking) | 340M | English | | [`bert-large-cased-whole-word-masking`](https://huggingface.co/bert-large-cased-whole-word-masking) | 340M | English | ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions of a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] hello i'm a fashion model. [SEP]", 'score': 0.1073106899857521, 'token': 4827, 'token_str': 'fashion'}, {'sequence': "[CLS] hello i'm a role model. [SEP]", 'score': 0.08774490654468536, 'token': 2535, 'token_str': 'role'}, {'sequence': "[CLS] hello i'm a new model. [SEP]", 'score': 0.05338378623127937, 'token': 2047, 'token_str': 'new'}, {'sequence': "[CLS] hello i'm a super model. [SEP]", 'score': 0.04667217284440994, 'token': 3565, 'token_str': 'super'}, {'sequence': "[CLS] hello i'm a fine model. [SEP]", 'score': 0.027095865458250046, 'token': 2986, 'token_str': 'fine'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("The man worked as a [MASK].") [{'sequence': '[CLS] the man worked as a carpenter. [SEP]', 'score': 0.09747550636529922, 'token': 10533, 'token_str': 'carpenter'}, {'sequence': '[CLS] the man worked as a waiter. [SEP]', 'score': 0.0523831807076931, 'token': 15610, 'token_str': 'waiter'}, {'sequence': '[CLS] the man worked as a barber. [SEP]', 'score': 0.04962705448269844, 'token': 13362, 'token_str': 'barber'}, {'sequence': '[CLS] the man worked as a mechanic. [SEP]', 'score': 0.03788609802722931, 'token': 15893, 'token_str': 'mechanic'}, {'sequence': '[CLS] the man worked as a salesman. [SEP]', 'score': 0.037680890411138535, 'token': 18968, 'token_str': 'salesman'}] >>> unmasker("The woman worked as a [MASK].") [{'sequence': '[CLS] the woman worked as a nurse. [SEP]', 'score': 0.21981462836265564, 'token': 6821, 'token_str': 'nurse'}, {'sequence': '[CLS] the woman worked as a waitress. [SEP]', 'score': 0.1597415804862976, 'token': 13877, 'token_str': 'waitress'}, {'sequence': '[CLS] the woman worked as a maid. [SEP]', 'score': 0.1154729500412941, 'token': 10850, 'token_str': 'maid'}, {'sequence': '[CLS] the woman worked as a prostitute. [SEP]', 'score': 0.037968918681144714, 'token': 19215, 'token_str': 'prostitute'}, {'sequence': '[CLS] the woman worked as a cook. [SEP]', 'score': 0.03042375110089779, 'token': 5660, 'token_str': 'cook'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus, and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average | |:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:| | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
Sarthak04/bloom_train_v1
Sarthak04
2023-08-23T15:41:50Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-23T15:41:44Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
reginaboateng/pferrier_umls_relational_extraction_adapter_BERT
reginaboateng
2023-08-23T15:39:54Z
1
1
adapter-transformers
[ "adapter-transformers", "adapterhub:umls", "bert", "dataset:umls", "region:us" ]
null
2023-08-23T15:39:51Z
--- tags: - adapterhub:umls - adapter-transformers - bert datasets: - umls --- # Adapter `reginaboateng/pferrier_umls_relational_extraction_adapter_BERT` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [umls](https://adapterhub.ml/explore/umls/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("reginaboateng/pferrier_umls_relational_extraction_adapter_BERT", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
reginaboateng/compacter_umls_relational_extraction_adapter_BERT
reginaboateng
2023-08-23T15:39:46Z
0
1
adapter-transformers
[ "adapter-transformers", "bert", "adapterhub:umls", "dataset:umls", "region:us" ]
null
2023-08-23T15:39:43Z
--- tags: - bert - adapterhub:umls - adapter-transformers datasets: - umls --- # Adapter `reginaboateng/compacter_umls_relational_extraction_adapter_BERT` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [umls](https://adapterhub.ml/explore/umls/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("reginaboateng/compacter_umls_relational_extraction_adapter_BERT", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
ThuyNT03/xlm-roberta-base-VietNam-aug_replace_vi
ThuyNT03
2023-08-23T15:33:44Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-23T15:29:54Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-VietNam-aug_replace_vi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-VietNam-aug_replace_vi This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4570 - Accuracy: 0.81 - F1: 0.7899 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.996 | 1.0 | 76 | 0.8824 | 0.58 | 0.4258 | | 0.8331 | 2.0 | 152 | 0.6596 | 0.8 | 0.7466 | | 0.6019 | 3.0 | 228 | 0.6321 | 0.8 | 0.7465 | | 0.4534 | 4.0 | 304 | 0.4265 | 0.82 | 0.8108 | | 0.3936 | 5.0 | 380 | 0.4570 | 0.81 | 0.7899 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
shuvom/llama-midjourney-FT
shuvom
2023-08-23T15:11:45Z
1
0
transformers
[ "transformers", "art", "text2text-generation", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-29T03:54:25Z
--- license: apache-2.0 language: - en library_name: transformers tags: - art pipeline_tag: text2text-generation ---
daochf/Lora-Opt2_7b-PuceDS-v03x50
daochf
2023-08-23T15:06:59Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-23T15:06:57Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
eliept1/deepqn-SpaceInvadersNoFrameskip-v4
eliept1
2023-08-23T14:59:56Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-23T14:58:06Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 757.00 +/- 223.06 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga eliept1 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga eliept1 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga eliept1 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
pig4431/xlm-roberta-HeQ-v1
pig4431
2023-08-23T14:59:47Z
120
0
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "question-answering", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-08-23T13:00:11Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlm-roberta-HeQ-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-HeQ-v1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5099 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 425 | 1.3360 | | 1.0299 | 2.0 | 850 | 1.3235 | | 0.8198 | 3.0 | 1275 | 1.3101 | | 0.7801 | 4.0 | 1700 | 1.3679 | | 0.6767 | 5.0 | 2125 | 1.4158 | | 0.5853 | 6.0 | 2550 | 1.4657 | | 0.5853 | 7.0 | 2975 | 1.5099 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Hamzaabbas77/distilbert-base-uncased-finetuned-cola
Hamzaabbas77
2023-08-23T14:55:44Z
61
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-22T13:34:54Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: Hamzaabbas77/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Hamzaabbas77/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6757 - Validation Loss: 0.6809 - Train Matthews Correlation: 0.0 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 324, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.6832 | 0.6809 | 0.0 | 0 | | 0.6758 | 0.6809 | 0.0 | 1 | | 0.6757 | 0.6809 | 0.0 | 2 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.13.0 - Datasets 2.14.4 - Tokenizers 0.13.3
larabe/test
larabe
2023-08-23T14:44:25Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-08-23T10:09:21Z
--- license: mit tags: - generated_from_trainer model-index: - name: test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3
Wishwa98/ASRForCommonVoice
Wishwa98
2023-08-23T14:41:55Z
79
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "en", "dataset:DTU54DL/common-accent", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-22T21:40:17Z
--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - DTU54DL/common-accent metrics: - wer model-index: - name: Whisper Small for Common Accent results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Accent type: DTU54DL/common-accent metrics: - name: Wer type: wer value: 13.060479666319083 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small for Common Accent This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Accent dataset. It achieves the following results on the evaluation set: - Loss: 0.4234 - Wer Ortho: 17.9229 - Wer: 13.0605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.1012 | 1.14 | 500 | 0.3215 | 16.3784 | 11.5941 | | 0.0345 | 2.28 | 1000 | 0.3483 | 16.6496 | 11.8450 | | 0.018 | 3.42 | 1500 | 0.3829 | 17.1622 | 12.4707 | | 0.0075 | 4.57 | 2000 | 0.4069 | 17.8667 | 13.0116 | | 0.0059 | 5.71 | 2500 | 0.4234 | 17.9229 | 13.0605 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
dkqjrm/20230823213639
dkqjrm
2023-08-23T14:27:39Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-23T12:36:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230823213639' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230823213639 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 1.3551 - Accuracy: 0.7545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 1.0 | 312 | 1.1031 | 0.5307 | | 0.9187 | 2.0 | 624 | 0.7935 | 0.4874 | | 0.9187 | 3.0 | 936 | 0.7082 | 0.5704 | | 0.8508 | 4.0 | 1248 | 0.6713 | 0.6065 | | 0.8272 | 5.0 | 1560 | 0.6997 | 0.6390 | | 0.8272 | 6.0 | 1872 | 0.8815 | 0.6426 | | 0.722 | 7.0 | 2184 | 1.0092 | 0.6318 | | 0.722 | 8.0 | 2496 | 0.7370 | 0.6751 | | 0.7377 | 9.0 | 2808 | 0.6362 | 0.7076 | | 0.6952 | 10.0 | 3120 | 0.9842 | 0.6570 | | 0.6952 | 11.0 | 3432 | 0.7133 | 0.7040 | | 0.672 | 12.0 | 3744 | 0.7288 | 0.6823 | | 0.6344 | 13.0 | 4056 | 0.7260 | 0.7220 | | 0.6344 | 14.0 | 4368 | 0.6437 | 0.7112 | | 0.6039 | 15.0 | 4680 | 0.7529 | 0.7184 | | 0.6039 | 16.0 | 4992 | 1.0284 | 0.6787 | | 0.5952 | 17.0 | 5304 | 0.8757 | 0.7256 | | 0.5371 | 18.0 | 5616 | 0.6932 | 0.7329 | | 0.5371 | 19.0 | 5928 | 0.7127 | 0.7148 | | 0.5411 | 20.0 | 6240 | 1.0835 | 0.6823 | | 0.4985 | 21.0 | 6552 | 0.9109 | 0.7292 | | 0.4985 | 22.0 | 6864 | 1.4054 | 0.6643 | | 0.4897 | 23.0 | 7176 | 1.0748 | 0.7112 | | 0.4897 | 24.0 | 7488 | 1.1041 | 0.7256 | | 0.4498 | 25.0 | 7800 | 1.0205 | 0.7040 | | 0.4208 | 26.0 | 8112 | 1.0637 | 0.7148 | | 0.4208 | 27.0 | 8424 | 0.8231 | 0.7329 | | 0.4024 | 28.0 | 8736 | 0.7506 | 0.7401 | | 0.4083 | 29.0 | 9048 | 1.1923 | 0.7184 | | 0.4083 | 30.0 | 9360 | 1.2166 | 0.7184 | | 0.3497 | 31.0 | 9672 | 1.2273 | 0.7220 | | 0.3497 | 32.0 | 9984 | 0.9219 | 0.7437 | | 0.3188 | 33.0 | 10296 | 1.1009 | 0.7401 | | 0.2923 | 34.0 | 10608 | 0.8986 | 0.7545 | | 0.2923 | 35.0 | 10920 | 1.2732 | 0.7509 | | 0.2876 | 36.0 | 11232 | 1.0246 | 0.7437 | | 0.2751 | 37.0 | 11544 | 1.0842 | 0.7545 | | 0.2751 | 38.0 | 11856 | 1.3797 | 0.7401 | | 0.2807 | 39.0 | 12168 | 1.2845 | 0.7401 | | 0.2807 | 40.0 | 12480 | 1.0588 | 0.7473 | | 0.2524 | 41.0 | 12792 | 1.3290 | 0.7365 | | 0.2353 | 42.0 | 13104 | 1.1838 | 0.7509 | | 0.2353 | 43.0 | 13416 | 1.6934 | 0.7292 | | 0.2221 | 44.0 | 13728 | 1.4884 | 0.7437 | | 0.222 | 45.0 | 14040 | 1.4472 | 0.7292 | | 0.222 | 46.0 | 14352 | 1.6685 | 0.7365 | | 0.2124 | 47.0 | 14664 | 1.2194 | 0.7545 | | 0.2124 | 48.0 | 14976 | 1.4803 | 0.7437 | | 0.1923 | 49.0 | 15288 | 1.3954 | 0.7509 | | 0.1717 | 50.0 | 15600 | 1.4008 | 0.7401 | | 0.1717 | 51.0 | 15912 | 1.2478 | 0.7545 | | 0.1775 | 52.0 | 16224 | 1.2562 | 0.7545 | | 0.1599 | 53.0 | 16536 | 1.4865 | 0.7545 | | 0.1599 | 54.0 | 16848 | 1.3985 | 0.7473 | | 0.1518 | 55.0 | 17160 | 1.3492 | 0.7437 | | 0.1518 | 56.0 | 17472 | 1.3659 | 0.7437 | | 0.1481 | 57.0 | 17784 | 1.2743 | 0.7545 | | 0.1461 | 58.0 | 18096 | 1.3666 | 0.7509 | | 0.1461 | 59.0 | 18408 | 1.3473 | 0.7509 | | 0.1449 | 60.0 | 18720 | 1.3551 | 0.7545 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
ThuyNT03/xlm-roberta-base-VietNam-aug_delete
ThuyNT03
2023-08-23T14:25:19Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-23T14:19:31Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-VietNam-aug_delete results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-VietNam-aug_delete This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4111 - Accuracy: 0.83 - F1: 0.8197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9299 | 1.0 | 85 | 0.8008 | 0.58 | 0.4258 | | 0.7524 | 2.0 | 170 | 0.4923 | 0.83 | 0.7846 | | 0.5724 | 3.0 | 255 | 0.3849 | 0.88 | 0.8600 | | 0.47 | 4.0 | 340 | 0.4657 | 0.8 | 0.7669 | | 0.3942 | 5.0 | 425 | 0.4111 | 0.83 | 0.8197 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ardt-multipart/ardt-multipart-arrl_sgld_train_hopper_high-2308_1449-99
ardt-multipart
2023-08-23T14:23:26Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-23T13:50:46Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-arrl_sgld_train_hopper_high-2308_1449-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-arrl_sgld_train_hopper_high-2308_1449-99 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
ArneJa/ppo-LunarLander-v2
ArneJa
2023-08-23T14:21:04Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-23T14:20:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 254.51 +/- 23.99 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
hanifmz0711/my_awesome_model
hanifmz0711
2023-08-23T14:19:08Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-23T13:38:00Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: hanifmz0711/my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # hanifmz0711/my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2467 - Validation Loss: 0.1880 - Train Accuracy: 0.9264 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1562, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.2467 | 0.1880 | 0.9264 | 0 | ### Framework versions - Transformers 4.32.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
seungkim1313/qa_model
seungkim1313
2023-08-23T14:15:12Z
116
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad_kor_v1", "base_model:deepset/minilm-uncased-squad2", "base_model:finetune:deepset/minilm-uncased-squad2", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-23T13:52:12Z
--- license: cc-by-4.0 base_model: deepset/minilm-uncased-squad2 tags: - generated_from_trainer datasets: - squad_kor_v1 model-index: - name: qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qa_model This model is a fine-tuned version of [deepset/minilm-uncased-squad2](https://huggingface.co/deepset/minilm-uncased-squad2) on the squad_kor_v1 dataset. It achieves the following results on the evaluation set: - Loss: 3.2803 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.4482 | 1.0 | 25 | 3.8476 | | 4.1886 | 2.0 | 50 | 3.3495 | | 2.8781 | 3.0 | 75 | 3.2032 | | 3.5417 | 4.0 | 100 | 3.3601 | | 2.1682 | 5.0 | 125 | 3.2218 | | 3.1787 | 6.0 | 150 | 3.3264 | | 2.814 | 7.0 | 175 | 3.3053 | | 2.7755 | 8.0 | 200 | 3.2801 | | 1.9859 | 9.0 | 225 | 3.4267 | | 2.1119 | 10.0 | 250 | 3.2803 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
aehrm/redewiedergabe-reported
aehrm
2023-08-23T14:12:28Z
7
0
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "de", "region:us" ]
token-classification
2023-05-16T21:57:22Z
--- tags: - flair - token-classification - sequence-tagger-model language: de --- # REDEWIEDERGABE Tagger: reported STWR This model is part of an ensemble of binary taggers that recognize German speech, thought and writing representation (STWR), that is being used in [LLpro](https://github.com/cophi-wue/LLpro). They can be used to automatically detect and annotate the following 4 types of speech, thought and writing representation in German texts: | STWR type | Example | Translation | |--------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------| | direct | Dann sagte er: **"Ich habe Hunger."** | Then he said: **"I'm hungry."** | | free indirect ('erlebte Rede') | Er war ratlos. **Woher sollte er denn hier bloß ein Mittagessen bekommen?** | He was at a loss. **Where should he ever find lunch here?** | | indirect | Sie fragte, **wo das Essen sei.** | She asked **where the food was.** | | reported (**this tagger**) | **Sie sprachen über das Mittagessen.** | **They talked about lunch.** | The ensemble is trained on the [REDEWIEDERGABE corpus](https://github.com/redewiedergabe/corpus) ([Annotation guidelines](http://redewiedergabe.de/richtlinien/richtlinien.html)), fine-tuning each tagger on the domain-adapted [lkonle/fiction-gbert-large](https://huggingface.co/lkonle/fiction-gbert-large). ([Training Code](https://github.com/cophi-wue/LLpro/blob/main/contrib/train_redewiedergabe.py)) **F1-Scores:** | STWR type | F1-Score | |-----------|-----------| | direct | 90.76 | | indirect | 79.16 | | free indirect | 58.00 | | **reported (this tagger)** | **70.47** | ---- **Demo Usage:** ```python from flair.data import Sentence from flair.models import SequenceTagger sentence = Sentence('Sie sprachen über das Mittagessen. Sie fragte, wo das Essen sei. Woher sollte er das wissen? Dann sagte er: "Ich habe Hunger."') rwtypes = ['direct', 'indirect', 'freeindirect', 'reported'] for rwtype in rwtypes: model = SequenceTagger.load(f'aehrm/redewiedergabe-{rwtype}') model.predict(sentence) print(rwtype, [ x.data_point.text for x in sentence.get_labels() ]) # >>> direct ['"', 'Ich', 'habe', 'Hunger', '.', '"'] # >>> indirect ['wo', 'das', 'Essen', 'sei', '.'] # >>> freeindirect ['Woher', 'sollte', 'er', 'das', 'wissen', '?'] # >>> reported ['Sie', 'sprachen', 'über', 'das', 'Mittagessen', '.', 'Woher', 'sollte', 'er', 'das', 'wissen', '?'] ``` **Cite**: Please cite the following paper when using this model. ``` @inproceedings{ehrmanntraut-et-al-llpro-2023, address = {Ingolstadt, Germany}, title = {{LLpro}: A Literary Language Processing Pipeline for {German} Narrative Text}, booktitle = {Proceedings of the 10th Conference on Natural Language Processing ({KONVENS} 2022)}, publisher = {{KONVENS} 2023 Organizers}, author = {Ehrmanntraut, Anton and Konle, Leonard and Jannidis, Fotis}, year = {2023}, } ```
aehrm/redewiedergabe-indirect
aehrm
2023-08-23T14:12:11Z
5
0
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "de", "region:us" ]
token-classification
2023-05-16T21:57:14Z
--- tags: - flair - token-classification - sequence-tagger-model language: de --- # REDEWIEDERGABE Tagger: indirect STWR This model is part of an ensemble of binary taggers that recognize German speech, thought and writing representation, that is being used in [LLpro](https://github.com/cophi-wue/LLpro). They can be used to automatically detect and annotate the following 4 types of speech, thought and writing representation in German texts: | STWR type | Example | Translation | |--------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------| | direct | Dann sagte er: **"Ich habe Hunger."** | Then he said: **"I'm hungry."** | | free indirect ('erlebte Rede') | Er war ratlos. **Woher sollte er denn hier bloß ein Mittagessen bekommen?** | He was at a loss. **Where should he ever find lunch here?** | | indirect (**this tagger**) | Sie fragte, **wo das Essen sei.** | She asked **where the food was.** | | reported | **Sie sprachen über das Mittagessen.** | **They talked about lunch.** | The ensemble is trained on the [REDEWIEDERGABE corpus](https://github.com/redewiedergabe/corpus) ([Annotation guidelines](http://redewiedergabe.de/richtlinien/richtlinien.html)), fine-tuning each tagger on the domain-adapted [lkonle/fiction-gbert-large](https://huggingface.co/lkonle/fiction-gbert-large). ([Training Code](https://github.com/cophi-wue/LLpro/blob/main/contrib/train_redewiedergabe.py)) **F1-Scores:** | STWR type | F1-Score | |-----------|-----------| | direct | 90.76 | | **indirect (this tagger)** | **79.16** | | free indirect | 58.00 | | reported | 70.47 | ---- **Demo Usage:** ```python from flair.data import Sentence from flair.models import SequenceTagger sentence = Sentence('Sie sprachen über das Mittagessen. Sie fragte, wo das Essen sei. Woher sollte er das wissen? Dann sagte er: "Ich habe Hunger."') rwtypes = ['direct', 'indirect', 'freeindirect', 'reported'] for rwtype in rwtypes: model = SequenceTagger.load(f'aehrm/redewiedergabe-{rwtype}') model.predict(sentence) print(rwtype, [ x.data_point.text for x in sentence.get_labels() ]) # >>> direct ['"', 'Ich', 'habe', 'Hunger', '.', '"'] # >>> indirect ['wo', 'das', 'Essen', 'sei', '.'] # >>> freeindirect ['Woher', 'sollte', 'er', 'das', 'wissen', '?'] # >>> reported ['Sie', 'sprachen', 'über', 'das', 'Mittagessen', '.', 'Woher', 'sollte', 'er', 'das', 'wissen', '?'] ``` **Cite**: Please cite the following paper when using this model. ``` @inproceedings{ehrmanntraut-et-al-llpro-2023, address = {Ingolstadt, Germany}, title = {{LLpro}: A Literary Language Processing Pipeline for {German} Narrative Text}, booktitle = {Proceedings of the 10th Conference on Natural Language Processing ({KONVENS} 2022)}, publisher = {{KONVENS} 2023 Organizers}, author = {Ehrmanntraut, Anton and Konle, Leonard and Jannidis, Fotis}, year = {2023}, } ```
ThuyNT03/xlm-roberta-base-VietNam-train
ThuyNT03
2023-08-23T14:04:37Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-23T13:59:03Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-VietNam-train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-VietNam-train This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4360 - Accuracy: 0.84 - F1: 0.7909 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9668 | 1.0 | 44 | 0.8894 | 0.58 | 0.4258 | | 0.8302 | 2.0 | 88 | 0.6932 | 0.59 | 0.4479 | | 0.6805 | 3.0 | 132 | 0.5111 | 0.84 | 0.7875 | | 0.5672 | 4.0 | 176 | 0.4705 | 0.85 | 0.7981 | | 0.5517 | 5.0 | 220 | 0.4360 | 0.84 | 0.7909 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
daochf/Ludwig-Opt2_7b-PuceDS-v02
daochf
2023-08-23T13:54:21Z
3
0
peft
[ "peft", "region:us" ]
null
2023-08-23T13:54:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
ardt-multipart/ardt-multipart-arrl_sgld_train_hopper_high-2308_1414-66
ardt-multipart
2023-08-23T13:49:23Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-23T13:15:48Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-arrl_sgld_train_hopper_high-2308_1414-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-arrl_sgld_train_hopper_high-2308_1414-66 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
hanifmz0711/online_shop_rating2
hanifmz0711
2023-08-23T13:48:33Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-23T13:45:01Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: hanifmz0711/online_shop_rating2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # hanifmz0711/online_shop_rating2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: nan - Validation Loss: nan - Train Accuracy: 0.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 808, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | nan | nan | 0.0 | 0 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.1.0 - Tokenizers 0.13.3
ardt-multipart/ardt-multipart-arrl_sgld_train_halfcheetah_high-2308_1230-99
ardt-multipart
2023-08-23T13:47:19Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-23T11:32:01Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-arrl_sgld_train_halfcheetah_high-2308_1230-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-arrl_sgld_train_halfcheetah_high-2308_1230-99 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
nishant-glance/path-to-save-model-diffusion-2-1
nishant-glance
2023-08-23T13:19:14Z
33
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-23T12:56:23Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - nishant-glance/path-to-save-model-diffusion-2-1 This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
Stomper10/textual_inversion_CXR_card
Stomper10
2023-08-23T13:17:28Z
12
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-23T11:10:46Z
--- license: creativeml-openrail-m base_model: /shared/s1/lab06/wonyoung/diffusers/textual_inversion_CXR tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - Stomper10/textual_inversion_CXR_card These are textual inversion adaption weights for /shared/s1/lab06/wonyoung/diffusers/textual_inversion_CXR. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) ![img_4](./image_4.png) ![img_5](./image_5.png) ![img_6](./image_6.png) ![img_7](./image_7.png) ![img_8](./image_8.png) ![img_9](./image_9.png) ![img_10](./image_10.png) ![img_11](./image_11.png) ![img_12](./image_12.png) ![img_13](./image_13.png) ![img_14](./image_14.png) ![img_15](./image_15.png) ![img_16](./image_16.png) ![img_17](./image_17.png) ![img_18](./image_18.png) ![img_19](./image_19.png)
dheerajnarne/my-luffy
dheerajnarne
2023-08-23T13:03:54Z
3
1
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-23T12:59:53Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-LUFFY Dreambooth model trained by dheerajnarne following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: SNU-109 Sample pictures of this concept: ![0](https://huggingface.co/dheerajnarne/my-luffy/resolve/main/sample_images/luffu_relaxing.jpeg) ![1](https://huggingface.co/dheerajnarne/my-luffy/resolve/main/sample_images/luffu_relaxing3.jpeg) ![2](https://huggingface.co/dheerajnarne/my-luffy/resolve/main/sample_images/luffu_relaxing1.jpeg)
gabrielgme/results
gabrielgme
2023-08-23T12:46:36Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T21:39:56Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
wcfr/wav2vec2-conformer-rel-pos-base-cantonese
wcfr
2023-08-23T12:42:15Z
51
1
transformers
[ "transformers", "pytorch", "wav2vec2-conformer", "pretraining", "yue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-06-23T11:17:05Z
--- license: apache-2.0 language: - yue library_name: transformers --- # Cantonese Wav2Vec2-Conformer-Base with Relative Position Embeddings wav2vec 2.0 Conformer with relative position embeddings, pretrained on 2.8K hours of Cantonese spontaneous speech data sampled at 16kHz. Note: This model has not been fine-tuned on labeled text data. ## Alternative Version An alternative version of the model which was pre-trained on the same dataset but with setting `layer_norm_first` to `false` is available [here](https://drive.google.com/file/d/1rbP-6pZfR5ieqAwd5_X2KzipLuKpXSsQ/view?usp=sharing) as a fairseq checkpoint and may give better downstream results. ## Citation Please cite the following paper if you use the model. ``` @inproceedings{huang23h_interspeech, author={Ranzo Huang and Brian Mak}, title={{wav2vec 2.0 ASR for Cantonese-Speaking Older Adults in a Clinical Setting}}, year=2023, booktitle={Proc. INTERSPEECH 2023}, pages={4958--4962}, doi={10.21437/Interspeech.2023-2470} } ```
red1xe/Llama-2-7B-codeGPT-v2
red1xe
2023-08-23T12:42:01Z
0
0
null
[ "generated_from_trainer", "base_model:TokenBender/llama2-7b-chat-hf-codeCherryPop-qLoRA-merged", "base_model:finetune:TokenBender/llama2-7b-chat-hf-codeCherryPop-qLoRA-merged", "region:us" ]
null
2023-08-23T12:20:02Z
--- base_model: TokenBender/llama2-7b-chat-hf-codeCherryPop-qLoRA-merged tags: - generated_from_trainer model-index: - name: Llama-2-7B-codeGPT-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7B-codeGPT-v2 This model is a fine-tuned version of [TokenBender/llama2-7b-chat-hf-codeCherryPop-qLoRA-merged](https://huggingface.co/TokenBender/llama2-7b-chat-hf-codeCherryPop-qLoRA-merged) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 150 ### Training results ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
mastergyp/llama2-qlora-finetunined-french
mastergyp
2023-08-23T12:30:50Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-23T12:30:33Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
newbking/miaokaRealityMIX_miaokaRealityMixV10
newbking
2023-08-23T12:25:31Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-23T12:25:31Z
--- license: creativeml-openrail-m ---
ThuyNT03/xlm-roberta-base-Mixed-aug_insert_vi
ThuyNT03
2023-08-23T12:19:24Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-23T12:09:04Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Mixed-aug_insert_vi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Mixed-aug_insert_vi This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5693 - Accuracy: 0.81 - F1: 0.7858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9098 | 1.0 | 82 | 0.6306 | 0.75 | 0.7083 | | 0.6867 | 2.0 | 164 | 0.7511 | 0.77 | 0.7175 | | 0.5754 | 3.0 | 246 | 0.5041 | 0.82 | 0.7719 | | 0.4309 | 4.0 | 328 | 0.5971 | 0.8 | 0.7754 | | 0.3739 | 5.0 | 410 | 0.5693 | 0.81 | 0.7858 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
jjyaoao/Echotune_clean_test
jjyaoao
2023-08-23T12:10:19Z
25
0
transformers
[ "transformers", "pytorch", "tensorboard", "data2vec-audio", "automatic-speech-recognition", "generated_from_trainer", "dataset:librispeech_asr", "base_model:facebook/data2vec-audio-base-960h", "base_model:finetune:facebook/data2vec-audio-base-960h", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-07T10:45:44Z
--- license: apache-2.0 base_model: facebook/data2vec-audio-base-960h tags: - generated_from_trainer datasets: - librispeech_asr metrics: - wer model-index: - name: jjyaoao/Echotune_clean_test results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: librispeech_asr type: librispeech_asr config: clean split: test args: clean metrics: - name: Wer type: wer value: 0.037368222891566265 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # jjyaoao/Echotune_clean_test This model is a fine-tuned version of [facebook/data2vec-audio-base-960h](https://huggingface.co/facebook/data2vec-audio-base-960h) on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.0679 - Wer Ortho: 0.0369 - Wer: 0.0374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 34246.8 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:| | 0.0602 | 0.21 | 500 | 0.0476 | 0.0435 | 0.0439 | | 0.0478 | 0.42 | 1000 | 0.0436 | 0.0411 | 0.0414 | | 0.0492 | 0.63 | 1500 | 0.0443 | 0.0412 | 0.0415 | | 0.0426 | 0.84 | 2000 | 0.0439 | 0.0401 | 0.0403 | | 0.0386 | 1.05 | 2500 | 0.0445 | 0.0391 | 0.0395 | | 0.0409 | 1.26 | 3000 | 0.0438 | 0.0394 | 0.0399 | | 0.0437 | 1.47 | 3500 | 0.0444 | 0.0389 | 0.0393 | | 0.0349 | 1.68 | 4000 | 0.0450 | 0.0392 | 0.0396 | | 0.0469 | 1.89 | 4500 | 0.0442 | 0.0374 | 0.0378 | | 0.033 | 2.1 | 5000 | 0.0454 | 0.0359 | 0.0363 | | 0.0395 | 2.31 | 5500 | 0.0462 | 0.0363 | 0.0367 | | 0.0321 | 2.52 | 6000 | 0.0457 | 0.0365 | 0.0369 | | 0.0385 | 2.73 | 6500 | 0.0455 | 0.0355 | 0.0358 | | 0.0378 | 2.94 | 7000 | 0.0449 | 0.0361 | 0.0366 | | 0.0435 | 3.15 | 7500 | 0.0440 | 0.0355 | 0.0360 | | 0.0436 | 3.36 | 8000 | 0.0466 | 0.0339 | 0.0344 | | 0.0394 | 3.57 | 8500 | 0.0480 | 0.0345 | 0.0350 | | 0.0448 | 3.78 | 9000 | 0.0478 | 0.0338 | 0.0342 | | 0.0451 | 3.99 | 9500 | 0.0460 | 0.0355 | 0.0361 | | 0.035 | 4.2 | 10000 | 0.0485 | 0.0369 | 0.0374 | | 0.0387 | 4.41 | 10500 | 0.0487 | 0.0358 | 0.0362 | | 0.0479 | 4.62 | 11000 | 0.0496 | 0.0363 | 0.0368 | | 0.0456 | 4.83 | 11500 | 0.0491 | 0.0359 | 0.0365 | | 0.0372 | 5.04 | 12000 | 0.0507 | 0.0355 | 0.0360 | | 0.0395 | 5.25 | 12500 | 0.0526 | 0.0353 | 0.0356 | | 0.0323 | 5.46 | 13000 | 0.0515 | 0.0368 | 0.0373 | | 0.0354 | 5.67 | 13500 | 0.0524 | 0.0338 | 0.0343 | | 0.031 | 5.88 | 14000 | 0.0531 | 0.0349 | 0.0357 | | 0.0295 | 6.09 | 14500 | 0.0560 | 0.0344 | 0.0349 | | 0.032 | 6.31 | 15000 | 0.0564 | 0.0364 | 0.0369 | | 0.0462 | 6.52 | 15500 | 0.0548 | 0.0358 | 0.0365 | | 0.0467 | 6.73 | 16000 | 0.0562 | 0.0347 | 0.0352 | | 0.0437 | 6.94 | 16500 | 0.0573 | 0.0354 | 0.0359 | | 0.0357 | 7.15 | 17000 | 0.0561 | 0.0359 | 0.0362 | | 0.0297 | 7.36 | 17500 | 0.0602 | 0.0347 | 0.0351 | | 0.0388 | 7.57 | 18000 | 0.0552 | 0.0341 | 0.0345 | | 0.0392 | 7.78 | 18500 | 0.0533 | 0.0326 | 0.0331 | | 0.0419 | 7.99 | 19000 | 0.0535 | 0.0343 | 0.0349 | | 0.0326 | 8.2 | 19500 | 0.0614 | 0.0374 | 0.0378 | | 0.0423 | 8.41 | 20000 | 0.0585 | 0.0341 | 0.0346 | | 0.0326 | 8.62 | 20500 | 0.0586 | 0.0356 | 0.0362 | | 0.0448 | 8.83 | 21000 | 0.0637 | 0.0371 | 0.0375 | | 0.0763 | 9.04 | 21500 | 0.0607 | 0.0359 | 0.0364 | | 0.0317 | 9.25 | 22000 | 0.0635 | 0.0400 | 0.0405 | | 0.0326 | 9.46 | 22500 | 0.0603 | 0.0368 | 0.0372 | | 0.0393 | 9.67 | 23000 | 0.0665 | 0.0380 | 0.0385 | | 0.0341 | 9.88 | 23500 | 0.0664 | 0.0408 | 0.0413 | | 0.0351 | 10.09 | 24000 | 0.0638 | 0.0384 | 0.0388 | | 0.0412 | 10.3 | 24500 | 0.0687 | 0.0380 | 0.0384 | | 0.0359 | 10.51 | 25000 | 0.0634 | 0.0379 | 0.0385 | | 0.047 | 10.72 | 25500 | 0.0652 | 0.0373 | 0.0378 | | 0.0346 | 10.93 | 26000 | 0.0671 | 0.0390 | 0.0396 | | 0.0366 | 11.14 | 26500 | 0.0664 | 0.0387 | 0.0393 | | 0.0359 | 11.35 | 27000 | 0.0669 | 0.0369 | 0.0374 | | 0.0366 | 11.56 | 27500 | 0.0705 | 0.0358 | 0.0364 | | 0.054 | 11.77 | 28000 | 0.0659 | 0.0383 | 0.0390 | | 0.0335 | 11.98 | 28500 | 0.0679 | 0.0369 | 0.0374 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.0+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
makande/llama2-qlora-finetunined-french
makande
2023-08-23T12:03:12Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-23T11:52:48Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
ardt-multipart/ardt-multipart-arrl_train_hopper_high-2308_1216-66
ardt-multipart
2023-08-23T11:57:12Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-23T11:17:57Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-arrl_train_hopper_high-2308_1216-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-arrl_train_hopper_high-2308_1216-66 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
CiroN2022/retro-rocket
CiroN2022
2023-08-23T11:52:25Z
6
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-08-23T11:52:21Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: retro_rocket widget: - text: retro_rocket --- # Retro Rocket ![Image 0](2149221.jpeg) None ## Image examples for the model: ![Image 1](2149220.jpeg) ![Image 2](2149217.jpeg) ![Image 3](2149222.jpeg) ![Image 4](2149223.jpeg) ![Image 5](2149219.jpeg) ![Image 6](2149230.jpeg) ![Image 7](2149229.jpeg) ![Image 8](2149232.jpeg) ![Image 9](2149236.jpeg)
CiroN2022/alchemy
CiroN2022
2023-08-23T11:52:10Z
1
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-08-23T11:52:02Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: alchemy widget: - text: alchemy --- # Alchemy ![Image 0](2164124.jpeg) <p>Introducing Alchemy Model: Unleashing the Art of Alchemy</p><p>Alchemy Model, driven through 15 epochs and 2480 steps, is an AI model inspired by the captivating world of alchemy art. Drawing from the rich symbolism and mystical aesthetics of alchemy, this model possesses the ability to generate mesmerizing and enchanting images. By harnessing the intricate patterns, esoteric symbols, and vibrant color palettes associated with alchemical art, Alchemy Model empowers users to unlock their creative potential and explore the realms of artistic transformation.</p> ## Image examples for the model: ![Image 1](2164159.jpeg) ![Image 2](2164152.jpeg) ![Image 3](2164138.jpeg) ![Image 4](2164132.jpeg) ![Image 5](2164125.jpeg) ![Image 6](2164127.jpeg) ![Image 7](2164133.jpeg) ![Image 8](2164126.jpeg) ![Image 9](2164137.jpeg)
CiroN2022/echoes
CiroN2022
2023-08-23T11:51:48Z
14
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-08-23T11:51:45Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: Echoes widget: - text: Echoes --- # Echoes ![Image 0](2112746.jpeg) None ## Image examples for the model: ![Image 1](2112741.jpeg) ![Image 2](2112739.jpeg) ![Image 3](2112742.jpeg) ![Image 4](2112882.jpeg) ![Image 5](2112745.jpeg) ![Image 6](2112744.jpeg) ![Image 7](2112767.jpeg) ![Image 8](2113042.jpeg) ![Image 9](2112801.jpeg)
CiroN2022/anipunks
CiroN2022
2023-08-23T11:50:59Z
2
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-08-23T11:50:56Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: anipunks widget: - text: anipunks --- # AniPunks ![Image 0](2124742.jpeg) None ## Image examples for the model: ![Image 1](2124744.jpeg) ![Image 2](2124741.jpeg) ![Image 3](2124739.jpeg) ![Image 4](2124740.jpeg) ![Image 5](2124748.jpeg) ![Image 6](2124743.jpeg) ![Image 7](2124750.jpeg) ![Image 8](2124749.jpeg) ![Image 9](2124753.jpeg)
CiroN2022/ascii-art
CiroN2022
2023-08-23T11:50:21Z
768
12
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-08-23T11:50:18Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: ascii_art widget: - text: ascii_art --- # Ascii Art ![Image 0](2080723.jpeg) None ## Image examples for the model: ![Image 1](2080769.jpeg) ![Image 2](2080755.jpeg) ![Image 3](2080754.jpeg) ![Image 4](2080739.jpeg) ![Image 5](2080747.jpeg) ![Image 6](2080751.jpeg) ![Image 7](2080728.jpeg) ![Image 8](2080771.jpeg) ![Image 9](2080773.jpeg)
CiroN2022/ouija
CiroN2022
2023-08-23T11:48:56Z
3
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-08-23T11:48:50Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: ouija widget: - text: ouija --- # Ouija ![Image 0](2064657.jpeg) None ## Image examples for the model: ![Image 1](2064652.jpeg) ![Image 2](2064654.jpeg) ![Image 3](2064659.jpeg) ![Image 4](2064656.jpeg) ![Image 5](2064660.jpeg) ![Image 6](2064824.jpeg) ![Image 7](2064839.jpeg) ![Image 8](2064900.jpeg) ![Image 9](2064899.jpeg)
CiroN2022/face-robotics
CiroN2022
2023-08-23T11:47:09Z
5
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-08-23T11:47:06Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: widget: - text: --- # Face Robotics ![Image 0](2046448.jpeg) None ## Image examples for the model: ![Image 1](2046417.jpeg) ![Image 2](2046421.jpeg) ![Image 3](2046409.jpeg) ![Image 4](2046416.jpeg) ![Image 5](2046408.jpeg) ![Image 6](2046410.jpeg) ![Image 7](2046420.jpeg) ![Image 8](2046411.jpeg) ![Image 9](2046414.jpeg)
CiroN2022/xenomorph-book
CiroN2022
2023-08-23T11:46:24Z
1
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-08-23T11:46:21Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: widget: - text: --- # Xenomorph Book ![Image 0](2057115.jpeg) None ## Image examples for the model: ![Image 1](2057355.jpeg) ![Image 2](2057113.jpeg) ![Image 3](2057109.jpeg) ![Image 4](2057110.jpeg) ![Image 5](2057118.jpeg) ![Image 6](2057106.jpeg) ![Image 7](2057111.jpeg) ![Image 8](2057112.jpeg) ![Image 9](2057108.jpeg)
CiroN2022/alien-god
CiroN2022
2023-08-23T11:43:37Z
5
2
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-08-23T11:43:34Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: widget: - text: --- # Alien God ![Image 0](2019075.jpeg) None ## Image examples for the model: ![Image 1](2019074.jpeg) ![Image 2](2019076.jpeg) ![Image 3](2019101.jpeg) ![Image 4](2019107.jpeg) ![Image 5](2019100.jpeg) ![Image 6](2019102.jpeg) ![Image 7](2019103.jpeg) ![Image 8](2019105.jpeg) ![Image 9](2019106.jpeg)
CiroN2022/cyber-graphic
CiroN2022
2023-08-23T11:42:35Z
4
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-08-23T11:42:31Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: widget: - text: --- # Cyber Graphic ![Image 0](1992667.jpeg) <p>Introducing Cyber Graphic Model: An AI Model for Cyberpunk and Graphic Art</p><p>Cyber Graphic Model is designed to generate captivating computer art, poster art, and cyberpunk-inspired visuals.</p><p><strong><span style="color:#fa5252">the SDXL version works on its own without any other loRAs</span></strong></p><p><strong><span style="color:#fa5252">only for 1.5 versions :</span><span style="color:rgb(250, 176, 5)"> To achieve the best results in your creative endeavors, a winning combination involves utilizing both the "fine-tuned" version and the "general style" models. Each model plays a specific and complementary role, enhancing the overall output and providing a powerful toolset to unlock your creative potential.</span></strong></p><p>The training of Cyber Graphic Model utilized a carefully curated dataset, consisting of a wide range of computer art, poster art, and cyberpunk-themed images. The dataset encompassed various styles, compositions, color palettes, and artistic techniques prevalent in the cyberpunk and graphic art genres.</p> ## Image examples for the model: ![Image 1](1991945.jpeg) ![Image 2](1991953.jpeg) ![Image 3](1992648.jpeg) ![Image 4](1991900.jpeg) ![Image 5](1991991.jpeg) ![Image 6](1991918.jpeg) ![Image 7](1991946.jpeg) ![Image 8](1991956.jpeg) ![Image 9](1991906.jpeg)
CiroN2022/skeleton-toy
CiroN2022
2023-08-23T11:42:14Z
11
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-08-23T11:42:10Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: widget: - text: --- # Skeleton Toy ![Image 0](2000463.jpeg) None ## Image examples for the model: ![Image 1](2000556.jpeg) ![Image 2](2000437.jpeg) ![Image 3](2000438.jpeg) ![Image 4](2000598.jpeg) ![Image 5](2000439.jpeg) ![Image 6](2000436.jpeg) ![Image 7](2000442.jpeg) ![Image 8](2000447.jpeg) ![Image 9](2000457.jpeg)