modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 00:41:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 00:40:24
card
stringlengths
11
1.01M
yangwang825/ssast-audioset-librispeech-16-16
yangwang825
2023-08-20T13:53:05Z
162
1
transformers
[ "transformers", "pytorch", "audio-spectrogram-transformer", "feature-extraction", "audio-classification", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-20T10:15:46Z
--- pipeline_tag: audio-classification ---
smcmurtrey/Nous-Hermes-Llama2-13b-oasst1
smcmurtrey
2023-08-20T13:46:07Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-20T10:34:24Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
alokedeep/xlm-roberta-base-finetuned-panx-de-fr
alokedeep
2023-08-20T13:41:29Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-20T13:25:55Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1603 - F1: 0.8595 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2865 | 1.0 | 715 | 0.1777 | 0.8240 | | 0.1463 | 2.0 | 1430 | 0.1603 | 0.8420 | | 0.0937 | 3.0 | 2145 | 0.1603 | 0.8595 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
satanicmangoes/ppo-LunarLander-v2
satanicmangoes
2023-08-20T13:31:50Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-20T13:31:29Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.36 +/- 27.96 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Edmon02/distilbert-base-uncased-distilled-clinc
Edmon02
2023-08-20T13:19:56Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-20T13:05:36Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - name: Accuracy type: accuracy value: 0.9480645161290323 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2931 - Accuracy: 0.9481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 1.7836 | 0.7290 | | 2.1522 | 2.0 | 636 | 0.8985 | 0.8613 | | 2.1522 | 3.0 | 954 | 0.5248 | 0.9165 | | 0.813 | 4.0 | 1272 | 0.3889 | 0.9394 | | 0.3827 | 5.0 | 1590 | 0.3362 | 0.9426 | | 0.3827 | 6.0 | 1908 | 0.3144 | 0.9461 | | 0.2719 | 7.0 | 2226 | 0.3053 | 0.9481 | | 0.2367 | 8.0 | 2544 | 0.2967 | 0.9477 | | 0.2367 | 9.0 | 2862 | 0.2948 | 0.9474 | | 0.223 | 10.0 | 3180 | 0.2931 | 0.9481 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
VicBeltran/poca-SoccerTwos
VicBeltran
2023-08-20T13:15:40Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-08-20T01:00:20Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: VicBeltran/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Maxph2211/dqn-SpaceInvadersNoFrameskip-v4
Maxph2211
2023-08-20T13:13:55Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-20T13:13:25Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 257.00 +/- 38.81 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Maxph2211 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Maxph2211 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Maxph2211 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 100000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
FZH1996/fed-lora
FZH1996
2023-08-20T13:00:16Z
0
0
null
[ "arxiv:2106.09685", "arxiv:1907.11692", "arxiv:2006.03654", "arxiv:1902.00751", "arxiv:2101.00190", "region:us" ]
null
2023-08-17T08:16:23Z
# LoRA: Low-Rank Adaptation of Large Language Models *(For the radio communication technique, see [LoRa](https://lora-alliance.org/).)* This repo contains the source code of the Python package `loralib` and several examples of how to integrate it with PyTorch models, such as those in HuggingFace. We only support PyTorch for now. See our paper for a detailed description of LoRA. **LoRA: Low-Rank Adaptation of Large Language Models** <br> *Edward J. Hu\*, Yelong Shen\*, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen* <br> Paper: https://arxiv.org/abs/2106.09685 <br> *Update 2/2023: LoRA is now supported by the [State-of-the-art Parameter-Efficient Fine-Tuning (PEFT)](https://github.com/huggingface/peft) library by HuggingFace.* LoRA reduces the number of trainable parameters by learning pairs of rank-decompostion matrices while freezing the original weights. This vastly reduces the storage requirement for large language models adapted to specific tasks and enables efficient task-switching during deployment all without introducing inference latency. LoRA also outperforms several other adaptation methods including adapter, prefix-tuning, and fine-tuning. We obtain result comparable or superior to full finetuning on the GLUE benchmark using [RoBERTa (Liu et al., 2019)](https://arxiv.org/abs/1907.11692) base and large and [DeBERTa (He et al., 2020)](https://arxiv.org/abs/2006.03654) XXL 1.5B, while only training and storing a fraction of the parameters. Click the numbers below to download the RoBERTa and DeBERTa LoRA checkpoints. | | | RoBERTa base <br> Fine-tune | RoBERTa base <br> LoRA | DeBERTa XXL <br> Fine-tune | DeBERTa XXL <br> LoRA | |---|-------------------------|----------------|--------------------------|-----------------|-----------------| | | # of Trainable Params. | 125M | 0.8M | 1.5B | 4.7M | | | MNLI (m-Acc/mm-Acc) | <b>87.6</b> | [<b>87.5</b>±.3/86.9±.3](https://github.com/microsoft/LoRA/releases/download/RoBERTa-base/roberta_base_lora_mnli.bin) |91.7/<b>91.9</b>| [<b>91.9</b>±.1/<b>91.9</b>±.2](https://github.com/microsoft/LoRA/releases/download/DeBERTa/deberta_v2_xxlarge_lora_mnli.bin) | | | SST2 (Acc) | 94.8 | [<b>95.1</b>±.2](https://github.com/microsoft/LoRA/releases/download/RoBERTa-base/roberta_base_lora_sst2.bin) | <b>97.2</b> | [96.9±.2](https://github.com/microsoft/LoRA/releases/download/DeBERTa/deberta_v2_xxlarge_lora_sst2.bin) | | | MRPC (Acc) | <b>90.2</b> | [<b>89.7</b>±.7](https://github.com/microsoft/LoRA/releases/download/RoBERTa-base/roberta_base_lora_mrpc.bin) | 92.0 | [<b>92.6</b>±.6](https://github.com/microsoft/LoRA/releases/download/DeBERTa/deberta_v2_xxlarge_lora_mrpc.bin) | | | CoLA (Matthew's Corr) | <b>63.6</b> | [<b>63.4</b>±1.2](https://github.com/microsoft/LoRA/releases/download/RoBERTa-base/roberta_base_lora_cola.bin) | <b>72.0</b> | [<b>72.4</b>±1.1](https://github.com/microsoft/LoRA/releases/download/DeBERTa/deberta_v2_xxlarge_lora_cola.bin) | | | QNLI (Acc) | 92.8 | [<b>93.3</b>±.3](https://github.com/microsoft/LoRA/releases/download/RoBERTa-base/roberta_base_lora_qnli.bin) | <b>96.0</b> | [<b>96.0</b>±.1](https://github.com/microsoft/LoRA/releases/download/DeBERTa/deberta_v2_xxlarge_lora_qnli.bin) | | | QQP (Acc) | <b>91.9</b> | [90.8±.1](https://github.com/microsoft/LoRA/releases/download/RoBERTa-base/roberta_base_lora_qqp.bin) | 92.7 | [<b>92.9</b>±.1](https://github.com/microsoft/LoRA/releases/download/DeBERTa/deberta_v2_xxlarge_lora_qqp.bin) | | | RTE (Acc) | 78.7 | [<b>86.6</b>±.7](https://github.com/microsoft/LoRA/releases/download/RoBERTa-base/roberta_base_lora_rte.bin) | 93.9 | [<b>94.9</b>±.4](https://github.com/microsoft/LoRA/releases/download/DeBERTa/deberta_v2_xxlarge_lora_rte.bin) | | | STSB (Pearson/Spearman Corr) | 91.2 | [<b>91.5</b>±.2/<b>91.3</b>±.2](https://github.com/microsoft/LoRA/releases/download/RoBERTa-base/roberta_base_lora_stsb.bin) |<b>92.9</b>/92.6| [<b>93.0</b>±.2/<b>92.9</b>±.3](https://github.com/microsoft/LoRA/releases/download/DeBERTa/deberta_v2_xxlarge_lora_stsb.bin) | | | Average | 86.40 | <b>87.24</b> | 91.06 | <b>91.32</b> | <i>Note: You still need the original pre-trained checkpoint from [HuggingFace](https://huggingface.co/) to use the LoRA checkpoints.</i> Fine-tuning numbers are taken from [Liu et al. (2019)](https://arxiv.org/abs/1907.11692) and [He et al. (2020)](https://arxiv.org/abs/2006.03654). We include confidence intervals on results from our experiments. Please follow the instructions in `examples/NLU/` to reproduce our results. On GPT-2, LoRA compares favorably to both full finetuning and other efficient tuning methods, such as [adapter (Houlsby et al., 2019)](https://arxiv.org/abs/1902.00751) and [prefix tuning (Li and Liang, 2021)](https://arxiv.org/abs/2101.00190). We evaluated on E2E NLG Challenge, DART, and WebNLG: | | Method | # of Trainable Params | E2E (BLEU) | DART (BLEU) | WebNLG (BLEU-U/S/A) | |---|---------------------|-----------------------|--------------|--------------|--------------------------------| | | GPT-2 M (Fine-Tune) | 354.92M | 68.2 | 46.0 | 30.4/<b>63.2</b>/47.6 | | | GPT-2 M (Adapter) | 0.37M | 66.3 | 42.4 | 45.1/54.5/50.2 | | | GPT-2 M (Prefix) | 0.35M | 69.7 | 45.7 | 44.1/63.1/54.4 | | | GPT-2 M (LoRA) | 0.35M |<b>70.4</b>±.1|<b>47.1</b>±.2| <b>46.7</b>±.4/62.1±.2/<b>55.3</b>±.2 | | | GPT-2 L (Fine-Tune) | 774.03M | 68.5 | 46.5 | 41.7/<b>64.6</b>/54.2 | | | GPT-2 L (Adapter) | 0.88M | 69.1±.1 | 45.7±.1 | <b>49.8</b>±.0/61.1±.0/56.0±.0 | | | GPT-2 L (Prefix) | 0.77M | 70.3 | 46.5 | 47.0/64.2/56.4 | | | GPT-2 L (LoRA) | 0.77M |<b>70.4</b>±.1|<b>47.5</b>±.1| 48.4±.3/<b>64.0</b>±.3/<b>57.0</b>±.1 | Non-LoRA baselines, except for adapter on GPT-2 large, are taken from [Li and Liang (2021)](https://arxiv.org/abs/2101.00190). We include confidence intervals on results from our experiments. Download the GPT-2 LoRA checkpoints: * [GPT-2 Medium E2E](https://github.com/microsoft/LoRA/releases/download/GPT-2/gpt2_md_lora_e2e.pt) (1.5 MB) * [GPT-2 Medium DART](https://github.com/microsoft/LoRA/releases/download/GPT-2/gpt2_md_lora_dart.pt) (1.5 MB) * [GPT-2 Medium WebNLG](https://github.com/microsoft/LoRA/releases/download/GPT-2/gpt2_md_lora_webnlg.pt) (1.5 MB) * [GPT-2 Large E2E](https://github.com/microsoft/LoRA/releases/download/GPT-2/gpt2_lg_lora_e2e.pt) (2.3 MB) * [GPT-2 Large DART](https://github.com/microsoft/LoRA/releases/download/GPT-2/gpt2_lg_lora_dart.pt) (2.3 MB) * [GPT-2 Large WebNLG](https://github.com/microsoft/LoRA/releases/download/GPT-2/gpt2_lg_lora_webnlg.pt) (2.3 MB) Please follow the instructions in `examples/NLG/` to reproduce our result. ## Repository Overview <i>(The initial release of this repo has been archived in the branch "snapshot-9-15-2021")</i> There are several directories in this repo: * [loralib/](loralib) contains the source code for the package `loralib`, which needs to be installed to run the examples we provide; * [examples/NLG/](examples/NLG) contains an example implementation of LoRA in GPT-2 using our package, which can be used to reproduce the result in our paper; * [examples/NLU/](examples/NLU) contains an example implementation of LoRA in RoBERTa and DeBERTa using our package, which produces competitive results on the GLUE benchmark; * See how we use `loralib` in [GPT-2](examples/NLG/src/model.py), [RoBERTa](examples/NLU/src/transformers/models/roberta/modeling_roberta.py), and [DeBERTa v2](examples/NLU/src/transformers/models/deberta_v2/modeling_deberta_v2.py) ## Quickstart 1. Installing `loralib` is simply ``` pip install loralib # Alternatively # pip install git+https://github.com/microsoft/LoRA ``` 2. You can choose to adapt some layers by replacing them with counterparts implemented in `loralib`. We only support `nn.Linear`, `nn.Embedding`, and `nn.Conv2d` for now. We also support a `MergedLinear` for cases where a single `nn.Linear` represents more than one layers, such as in some implementations of the attention `qkv` projection (see Additional Notes for more). ``` # ===== Before ===== # layer = nn.Linear(in_features, out_features) # ===== After ====== import loralib as lora # Add a pair of low-rank adaptation matrices with rank r=16 layer = lora.Linear(in_features, out_features, r=16) ``` 3. Before the training loop begins, mark only LoRA parameters as trainable. ``` import loralib as lora model = BigModel() # This sets requires_grad to False for all parameters without the string "lora_" in their names lora.mark_only_lora_as_trainable(model) # Training loop for batch in dataloader: ... ``` 4. When saving a checkpoint, generate a `state_dict` that only contains LoRA parameters. ``` # ===== Before ===== # torch.save(model.state_dict(), checkpoint_path) # ===== After ===== torch.save(lora.lora_state_dict(model), checkpoint_path) ``` 5. When loading a checkpoint using `load_state_dict`, be sure to set `strict=False`. ``` # Load the pretrained checkpoint first model.load_state_dict(torch.load('ckpt_pretrained.pt'), strict=False) # Then load the LoRA checkpoint model.load_state_dict(torch.load('ckpt_lora.pt'), strict=False) ``` #### Now training can proceed as usual. ## Additional Notes 1. While we focus on a simple yet effect setup, namely adapting only the `q` and `v` projection in a Transformer, in our examples, LoRA can be apply to any subsets of pre-trained weights. We encourage you to explore different configurations, such as adapting the embedding layer by replacing `nn.Embedding` with `lora.Embedding` and/or adapting the MLP layers. It's very likely that the optimal configuration varies for different model architectures and tasks. 2. Some Transformer implementation uses a single `nn.Linear` for the projection matrices for query, key, and value. If one wishes to constrain the rank of the updates to the individual matrices, one has to either break it up into three separate matrices or use `lora.MergedLinear`. Make sure to modify the checkpoint accordingly if you choose to break up the layer. ``` # ===== Before ===== # qkv_proj = nn.Linear(d_model, 3*d_model) # ===== After ===== # Break it up (remember to modify the pretrained checkpoint accordingly) q_proj = lora.Linear(d_model, d_model, r=8) k_proj = nn.Linear(d_model, d_model) v_proj = lora.Linear(d_model, d_model, r=8) # Alternatively, use lora.MergedLinear (recommended) qkv_proj = lora.MergedLinear(d_model, 3*d_model, r=8, enable_lora=[True, False, True]) ``` 3. Training bias vectors in tandem with LoRA might be a cost-efficient way to squeeze out extra task performance (if you tune the learning rate carefully). While we did not study its effect thoroughly in our paper, we make it easy to try in `lora`. You can mark some biases as trainable by passing "all" or "lora_only" to `bias=` when calling `mark_only_lora_as_trainable`. Remember to pass the corresponding `bias=` argument to `lora_state_dict` when saving a checkpoint. ``` # ===== Before ===== # lora.mark_only_lora_as_trainable(model) # Not training any bias vectors # ===== After ===== # Training all bias vectors associated with modules we apply LoRA to lora.mark_only_lora_as_trainable(model, bias='lora_only') # Alternatively, we can train *all* bias vectors in the model, including LayerNorm biases lora.mark_only_lora_as_trainable(model, bias='all') # When saving a checkpoint, use the same bias= ('all' or 'lora_only') torch.save(lora.lora_state_dict(model, bias='all'), checkpoint_path) ``` 4. Calling `model.eval()` will trigger the merging of LoRA parameters with the corresponding pretrained ones, which eliminates additional latency for subsequent forward passes. Calling `model.train()` again will undo the merge. This can be disabled by passing `merge_weights=False` to LoRA layers. ## Contact Please contact us or post an issue if you have any questions. For questions related to the package `loralib`: * Edward Hu (edward@edwardjhu.com) * Phillip Wallis (phwallis@microsoft.com) * Weizhu Chen (wzchen@microsoft.com) The GPT-2 example: * Phillip Wallis (phwallis@microsoft.com) * Yelong Shen (yeshe@microsoft.com) The RoBERTa/DeBERTa example: * Lu Wang (luw@microsoft.com) ## Acknowledgements We thank in alphabetical order Jianfeng Gao, Jade Huang, Jiayuan Huang, Lisa Xiang Li, Xiaodong Liu, Yabin Liu, Benjamin Van Durme, Luis Vargas, Haoran Wei, Peter Welinder, and Greg Yang for providing valuable feedback. ## Citation ``` @inproceedings{ hu2022lora, title={Lo{RA}: Low-Rank Adaptation of Large Language Models}, author={Edward J Hu and Yelong Shen and Phillip Wallis and Zeyuan Allen-Zhu and Yuanzhi Li and Shean Wang and Lu Wang and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2022}, url={https://openreview.net/forum?id=nZeVKeeFYf9} } ``` ## Contributing This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com. When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA. This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
nagupv/Stable13B_contextLLMExam_18kv2_15k3k_f0
nagupv
2023-08-20T12:29:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-20T12:28:53Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
nolanoAI/lordcoder-v0-14-9B
nolanoAI
2023-08-20T12:29:01Z
13
0
transformers
[ "transformers", "pytorch", "lordcoder", "text-generation", "custom_code", "license:bigcode-openrail-m", "autotrain_compatible", "region:us" ]
text-generation
2023-08-18T09:52:27Z
--- license: bigcode-openrail-m --- ## LoRDCoder v0 14.9B Usage: ``` from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" model = AutoModelForCausalLM.from_pretrained("nolanoAI/lordcoder-v0-14-9B", trust_remote_code=True).to(device) tokenizer = AutoTokenizer.from_pretrained("nolanoAI/lordcoder-v0-14-9B", trust_remote_code=True) inputs = {k: v.to(device) for k,v in tokenizer('# PyTorch CNN on MNIST\nimport torch\n', return_tensors='pt').items()} generated_ids = model.generate( **inputs, use_cache=True, max_new_tokens=500, temperature=0.1, top_p=0.95, do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, ) ```
nolanoAI/lordcoder-v0-13-2B
nolanoAI
2023-08-20T12:27:49Z
18
0
transformers
[ "transformers", "pytorch", "lordcoder", "text-generation", "custom_code", "license:bigcode-openrail-m", "autotrain_compatible", "region:us" ]
text-generation
2023-08-18T09:19:26Z
--- license: bigcode-openrail-m --- ## LoRDCoder v0 13.2B Usage: ``` from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" model = AutoModelForCausalLM.from_pretrained("nolanoAI/lordcoder-v0-13-2B", trust_remote_code=True).to(device) tokenizer = AutoTokenizer.from_pretrained("nolanoAI/lordcoder-v0-13-2B", trust_remote_code=True) inputs = {k: v.to(device) for k,v in tokenizer('# PyTorch CNN on MNIST\nimport torch\n', return_tensors='pt').items()} generated_ids = model.generate( **inputs, use_cache=True, max_new_tokens=500, temperature=0.1, top_p=0.95, do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, ) ```
nolanoAI/lordcoder-v0-12-6B
nolanoAI
2023-08-20T12:27:41Z
16
0
transformers
[ "transformers", "pytorch", "lordcoder", "text-generation", "custom_code", "license:bigcode-openrail-m", "autotrain_compatible", "region:us" ]
text-generation
2023-08-18T09:06:18Z
--- license: bigcode-openrail-m --- ## LoRDCoder v0 12.6B Usage: ``` from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" model = AutoModelForCausalLM.from_pretrained("nolanoAI/lordcoder-v0-12-6B", trust_remote_code=True).to(device) tokenizer = AutoTokenizer.from_pretrained("nolanoAI/lordcoder-v0-12-6B", trust_remote_code=True) inputs = {k: v.to(device) for k,v in tokenizer('# PyTorch CNN on MNIST\nimport torch\n', return_tensors='pt').items()} generated_ids = model.generate( **inputs, use_cache=True, max_new_tokens=500, temperature=0.1, top_p=0.95, do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, ) ```
edwardjjj/a2c-PandaReachDense-v3
edwardjjj
2023-08-20T12:23:08Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-20T12:21:06Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.19 +/- 0.10 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mkuntz/a2c-PandaReachDense-v2
mkuntz
2023-08-20T12:18:50Z
2
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "arxiv:2106.13687", "model-index", "region:us" ]
reinforcement-learning
2023-02-15T21:59:56Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -3.75 +/- 2.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ``` Panda Gym environments: [arxiv.org/abs/2106.13687](https://arxiv.org/abs/2106.13687)
kawinduwijewardhane/text-summarization-AI
kawinduwijewardhane
2023-08-20T12:12:45Z
0
0
transformers
[ "transformers", "summarization", "endpoints_compatible", "region:us" ]
summarization
2023-08-20T12:12:05Z
--- library_name: transformers pipeline_tag: summarization ---
GuillermoSC/Whisper_SM_EN_GS
GuillermoSC
2023-08-20T12:07:37Z
21
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "en", "dataset:speechcolab/gigaspeech", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-11T18:56:15Z
--- language: - en license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - speechcolab/gigaspeech model-index: - name: Whisper_SM_EN_GS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper_SM_EN_GS This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the gigaspeech dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 9 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 40 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3
alexeynoskov/Reinforce-Pixelcopter-PLE-v0
alexeynoskov
2023-08-20T11:57:36Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-14T13:52:53Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 68.30 +/- 54.85 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
rhythmsaparia/llama2_finetuned_chatbot
rhythmsaparia
2023-08-20T11:50:10Z
0
0
null
[ "tensorboard", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2023-08-19T10:41:36Z
--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer model-index: - name: llama2_finetuned_chatbot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama2_finetuned_chatbot This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 ### Training results ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
jncraton/bge-small-en-ct2-int8
jncraton
2023-08-20T11:47:29Z
13
0
transformers
[ "transformers", "mteb", "sentence transformers", "sentence-similarity", "en", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-08-20T11:37:33Z
--- tags: - mteb - sentence transformers model-index: - name: bge-small-en results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 74.34328358208955 - type: ap value: 37.59947775195661 - type: f1 value: 68.548415491933 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 93.04527499999999 - type: ap value: 89.60696356772135 - type: f1 value: 93.03361469382438 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 46.08 - type: f1 value: 45.66249835363254 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 35.205999999999996 - type: map_at_10 value: 50.782000000000004 - type: map_at_100 value: 51.547 - type: map_at_1000 value: 51.554 - type: map_at_3 value: 46.515 - type: map_at_5 value: 49.296 - type: mrr_at_1 value: 35.632999999999996 - type: mrr_at_10 value: 50.958999999999996 - type: mrr_at_100 value: 51.724000000000004 - type: mrr_at_1000 value: 51.731 - type: mrr_at_3 value: 46.669 - type: mrr_at_5 value: 49.439 - type: ndcg_at_1 value: 35.205999999999996 - type: ndcg_at_10 value: 58.835 - type: ndcg_at_100 value: 62.095 - type: ndcg_at_1000 value: 62.255 - type: ndcg_at_3 value: 50.255 - type: ndcg_at_5 value: 55.296 - type: precision_at_1 value: 35.205999999999996 - type: precision_at_10 value: 8.421 - type: precision_at_100 value: 0.984 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 20.365 - type: precision_at_5 value: 14.680000000000001 - type: recall_at_1 value: 35.205999999999996 - type: recall_at_10 value: 84.211 - type: recall_at_100 value: 98.43499999999999 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 61.095 - type: recall_at_5 value: 73.4 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 47.52644476278646 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 39.973045724188964 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.28285314871488 - type: mrr value: 74.52743701358659 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 80.09041909160327 - type: cos_sim_spearman value: 79.96266537706944 - type: euclidean_pearson value: 79.50774978162241 - type: euclidean_spearman value: 79.9144715078551 - type: manhattan_pearson value: 79.2062139879302 - type: manhattan_spearman value: 79.35000081468212 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 85.31493506493506 - type: f1 value: 85.2704557977762 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 39.6837242810816 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 35.38881249555897 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.884999999999998 - type: map_at_10 value: 39.574 - type: map_at_100 value: 40.993 - type: map_at_1000 value: 41.129 - type: map_at_3 value: 36.089 - type: map_at_5 value: 38.191 - type: mrr_at_1 value: 34.477999999999994 - type: mrr_at_10 value: 45.411 - type: mrr_at_100 value: 46.089999999999996 - type: mrr_at_1000 value: 46.147 - type: mrr_at_3 value: 42.346000000000004 - type: mrr_at_5 value: 44.292 - type: ndcg_at_1 value: 34.477999999999994 - type: ndcg_at_10 value: 46.123999999999995 - type: ndcg_at_100 value: 51.349999999999994 - type: ndcg_at_1000 value: 53.578 - type: ndcg_at_3 value: 40.824 - type: ndcg_at_5 value: 43.571 - type: precision_at_1 value: 34.477999999999994 - type: precision_at_10 value: 8.841000000000001 - type: precision_at_100 value: 1.4460000000000002 - type: precision_at_1000 value: 0.192 - type: precision_at_3 value: 19.742 - type: precision_at_5 value: 14.421000000000001 - type: recall_at_1 value: 27.884999999999998 - type: recall_at_10 value: 59.087 - type: recall_at_100 value: 80.609 - type: recall_at_1000 value: 95.054 - type: recall_at_3 value: 44.082 - type: recall_at_5 value: 51.593999999999994 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 30.639 - type: map_at_10 value: 40.047 - type: map_at_100 value: 41.302 - type: map_at_1000 value: 41.425 - type: map_at_3 value: 37.406 - type: map_at_5 value: 38.934000000000005 - type: mrr_at_1 value: 37.707 - type: mrr_at_10 value: 46.082 - type: mrr_at_100 value: 46.745 - type: mrr_at_1000 value: 46.786 - type: mrr_at_3 value: 43.980999999999995 - type: mrr_at_5 value: 45.287 - type: ndcg_at_1 value: 37.707 - type: ndcg_at_10 value: 45.525 - type: ndcg_at_100 value: 49.976 - type: ndcg_at_1000 value: 51.94499999999999 - type: ndcg_at_3 value: 41.704 - type: ndcg_at_5 value: 43.596000000000004 - type: precision_at_1 value: 37.707 - type: precision_at_10 value: 8.465 - type: precision_at_100 value: 1.375 - type: precision_at_1000 value: 0.183 - type: precision_at_3 value: 19.979 - type: precision_at_5 value: 14.115 - type: recall_at_1 value: 30.639 - type: recall_at_10 value: 54.775 - type: recall_at_100 value: 73.678 - type: recall_at_1000 value: 86.142 - type: recall_at_3 value: 43.230000000000004 - type: recall_at_5 value: 48.622 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 38.038 - type: map_at_10 value: 49.922 - type: map_at_100 value: 51.032 - type: map_at_1000 value: 51.085 - type: map_at_3 value: 46.664 - type: map_at_5 value: 48.588 - type: mrr_at_1 value: 43.95 - type: mrr_at_10 value: 53.566 - type: mrr_at_100 value: 54.318999999999996 - type: mrr_at_1000 value: 54.348 - type: mrr_at_3 value: 51.066 - type: mrr_at_5 value: 52.649 - type: ndcg_at_1 value: 43.95 - type: ndcg_at_10 value: 55.676 - type: ndcg_at_100 value: 60.126000000000005 - type: ndcg_at_1000 value: 61.208 - type: ndcg_at_3 value: 50.20400000000001 - type: ndcg_at_5 value: 53.038 - type: precision_at_1 value: 43.95 - type: precision_at_10 value: 8.953 - type: precision_at_100 value: 1.2109999999999999 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 22.256999999999998 - type: precision_at_5 value: 15.524 - type: recall_at_1 value: 38.038 - type: recall_at_10 value: 69.15 - type: recall_at_100 value: 88.31599999999999 - type: recall_at_1000 value: 95.993 - type: recall_at_3 value: 54.663 - type: recall_at_5 value: 61.373 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.872 - type: map_at_10 value: 32.912 - type: map_at_100 value: 33.972 - type: map_at_1000 value: 34.046 - type: map_at_3 value: 30.361 - type: map_at_5 value: 31.704 - type: mrr_at_1 value: 26.779999999999998 - type: mrr_at_10 value: 34.812 - type: mrr_at_100 value: 35.754999999999995 - type: mrr_at_1000 value: 35.809000000000005 - type: mrr_at_3 value: 32.335 - type: mrr_at_5 value: 33.64 - type: ndcg_at_1 value: 26.779999999999998 - type: ndcg_at_10 value: 37.623 - type: ndcg_at_100 value: 42.924 - type: ndcg_at_1000 value: 44.856 - type: ndcg_at_3 value: 32.574 - type: ndcg_at_5 value: 34.842 - type: precision_at_1 value: 26.779999999999998 - type: precision_at_10 value: 5.729 - type: precision_at_100 value: 0.886 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 13.559 - type: precision_at_5 value: 9.469 - type: recall_at_1 value: 24.872 - type: recall_at_10 value: 50.400999999999996 - type: recall_at_100 value: 74.954 - type: recall_at_1000 value: 89.56 - type: recall_at_3 value: 36.726 - type: recall_at_5 value: 42.138999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 16.803 - type: map_at_10 value: 24.348 - type: map_at_100 value: 25.56 - type: map_at_1000 value: 25.668000000000003 - type: map_at_3 value: 21.811 - type: map_at_5 value: 23.287 - type: mrr_at_1 value: 20.771 - type: mrr_at_10 value: 28.961 - type: mrr_at_100 value: 29.979 - type: mrr_at_1000 value: 30.046 - type: mrr_at_3 value: 26.555 - type: mrr_at_5 value: 28.060000000000002 - type: ndcg_at_1 value: 20.771 - type: ndcg_at_10 value: 29.335 - type: ndcg_at_100 value: 35.188 - type: ndcg_at_1000 value: 37.812 - type: ndcg_at_3 value: 24.83 - type: ndcg_at_5 value: 27.119 - type: precision_at_1 value: 20.771 - type: precision_at_10 value: 5.4350000000000005 - type: precision_at_100 value: 0.9480000000000001 - type: precision_at_1000 value: 0.13 - type: precision_at_3 value: 11.982 - type: precision_at_5 value: 8.831 - type: recall_at_1 value: 16.803 - type: recall_at_10 value: 40.039 - type: recall_at_100 value: 65.83200000000001 - type: recall_at_1000 value: 84.478 - type: recall_at_3 value: 27.682000000000002 - type: recall_at_5 value: 33.535 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.345 - type: map_at_10 value: 37.757000000000005 - type: map_at_100 value: 39.141 - type: map_at_1000 value: 39.262 - type: map_at_3 value: 35.183 - type: map_at_5 value: 36.592 - type: mrr_at_1 value: 34.649 - type: mrr_at_10 value: 43.586999999999996 - type: mrr_at_100 value: 44.481 - type: mrr_at_1000 value: 44.542 - type: mrr_at_3 value: 41.29 - type: mrr_at_5 value: 42.642 - type: ndcg_at_1 value: 34.649 - type: ndcg_at_10 value: 43.161 - type: ndcg_at_100 value: 48.734 - type: ndcg_at_1000 value: 51.046 - type: ndcg_at_3 value: 39.118 - type: ndcg_at_5 value: 41.022 - type: precision_at_1 value: 34.649 - type: precision_at_10 value: 7.603 - type: precision_at_100 value: 1.209 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 18.319 - type: precision_at_5 value: 12.839 - type: recall_at_1 value: 28.345 - type: recall_at_10 value: 53.367 - type: recall_at_100 value: 76.453 - type: recall_at_1000 value: 91.82000000000001 - type: recall_at_3 value: 41.636 - type: recall_at_5 value: 46.760000000000005 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.419 - type: map_at_10 value: 31.716 - type: map_at_100 value: 33.152 - type: map_at_1000 value: 33.267 - type: map_at_3 value: 28.74 - type: map_at_5 value: 30.48 - type: mrr_at_1 value: 28.310999999999996 - type: mrr_at_10 value: 37.039 - type: mrr_at_100 value: 38.09 - type: mrr_at_1000 value: 38.145 - type: mrr_at_3 value: 34.437 - type: mrr_at_5 value: 36.024 - type: ndcg_at_1 value: 28.310999999999996 - type: ndcg_at_10 value: 37.41 - type: ndcg_at_100 value: 43.647999999999996 - type: ndcg_at_1000 value: 46.007 - type: ndcg_at_3 value: 32.509 - type: ndcg_at_5 value: 34.943999999999996 - type: precision_at_1 value: 28.310999999999996 - type: precision_at_10 value: 6.963 - type: precision_at_100 value: 1.1860000000000002 - type: precision_at_1000 value: 0.154 - type: precision_at_3 value: 15.867999999999999 - type: precision_at_5 value: 11.507000000000001 - type: recall_at_1 value: 22.419 - type: recall_at_10 value: 49.28 - type: recall_at_100 value: 75.802 - type: recall_at_1000 value: 92.032 - type: recall_at_3 value: 35.399 - type: recall_at_5 value: 42.027 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.669249999999998 - type: map_at_10 value: 33.332583333333325 - type: map_at_100 value: 34.557833333333335 - type: map_at_1000 value: 34.67141666666666 - type: map_at_3 value: 30.663166666666662 - type: map_at_5 value: 32.14883333333333 - type: mrr_at_1 value: 29.193833333333334 - type: mrr_at_10 value: 37.47625 - type: mrr_at_100 value: 38.3545 - type: mrr_at_1000 value: 38.413166666666676 - type: mrr_at_3 value: 35.06741666666667 - type: mrr_at_5 value: 36.450666666666656 - type: ndcg_at_1 value: 29.193833333333334 - type: ndcg_at_10 value: 38.505416666666676 - type: ndcg_at_100 value: 43.81125 - type: ndcg_at_1000 value: 46.09558333333333 - type: ndcg_at_3 value: 33.90916666666667 - type: ndcg_at_5 value: 36.07666666666666 - type: precision_at_1 value: 29.193833333333334 - type: precision_at_10 value: 6.7251666666666665 - type: precision_at_100 value: 1.1058333333333332 - type: precision_at_1000 value: 0.14833333333333332 - type: precision_at_3 value: 15.554166666666665 - type: precision_at_5 value: 11.079250000000002 - type: recall_at_1 value: 24.669249999999998 - type: recall_at_10 value: 49.75583333333332 - type: recall_at_100 value: 73.06908333333332 - type: recall_at_1000 value: 88.91316666666667 - type: recall_at_3 value: 36.913250000000005 - type: recall_at_5 value: 42.48641666666666 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.044999999999998 - type: map_at_10 value: 30.349999999999998 - type: map_at_100 value: 31.273 - type: map_at_1000 value: 31.362000000000002 - type: map_at_3 value: 28.508 - type: map_at_5 value: 29.369 - type: mrr_at_1 value: 26.994 - type: mrr_at_10 value: 33.12 - type: mrr_at_100 value: 33.904 - type: mrr_at_1000 value: 33.967000000000006 - type: mrr_at_3 value: 31.365 - type: mrr_at_5 value: 32.124 - type: ndcg_at_1 value: 26.994 - type: ndcg_at_10 value: 34.214 - type: ndcg_at_100 value: 38.681 - type: ndcg_at_1000 value: 40.926 - type: ndcg_at_3 value: 30.725 - type: ndcg_at_5 value: 31.967000000000002 - type: precision_at_1 value: 26.994 - type: precision_at_10 value: 5.215 - type: precision_at_100 value: 0.807 - type: precision_at_1000 value: 0.108 - type: precision_at_3 value: 12.986 - type: precision_at_5 value: 8.712 - type: recall_at_1 value: 24.044999999999998 - type: recall_at_10 value: 43.456 - type: recall_at_100 value: 63.675000000000004 - type: recall_at_1000 value: 80.05499999999999 - type: recall_at_3 value: 33.561 - type: recall_at_5 value: 36.767 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 15.672 - type: map_at_10 value: 22.641 - type: map_at_100 value: 23.75 - type: map_at_1000 value: 23.877000000000002 - type: map_at_3 value: 20.219 - type: map_at_5 value: 21.648 - type: mrr_at_1 value: 18.823 - type: mrr_at_10 value: 26.101999999999997 - type: mrr_at_100 value: 27.038 - type: mrr_at_1000 value: 27.118 - type: mrr_at_3 value: 23.669 - type: mrr_at_5 value: 25.173000000000002 - type: ndcg_at_1 value: 18.823 - type: ndcg_at_10 value: 27.176000000000002 - type: ndcg_at_100 value: 32.42 - type: ndcg_at_1000 value: 35.413 - type: ndcg_at_3 value: 22.756999999999998 - type: ndcg_at_5 value: 25.032 - type: precision_at_1 value: 18.823 - type: precision_at_10 value: 5.034000000000001 - type: precision_at_100 value: 0.895 - type: precision_at_1000 value: 0.132 - type: precision_at_3 value: 10.771 - type: precision_at_5 value: 8.1 - type: recall_at_1 value: 15.672 - type: recall_at_10 value: 37.296 - type: recall_at_100 value: 60.863 - type: recall_at_1000 value: 82.234 - type: recall_at_3 value: 25.330000000000002 - type: recall_at_5 value: 30.964000000000002 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.633 - type: map_at_10 value: 32.858 - type: map_at_100 value: 34.038000000000004 - type: map_at_1000 value: 34.141 - type: map_at_3 value: 30.209000000000003 - type: map_at_5 value: 31.567 - type: mrr_at_1 value: 28.358 - type: mrr_at_10 value: 36.433 - type: mrr_at_100 value: 37.352000000000004 - type: mrr_at_1000 value: 37.41 - type: mrr_at_3 value: 34.033 - type: mrr_at_5 value: 35.246 - type: ndcg_at_1 value: 28.358 - type: ndcg_at_10 value: 37.973 - type: ndcg_at_100 value: 43.411 - type: ndcg_at_1000 value: 45.747 - type: ndcg_at_3 value: 32.934999999999995 - type: ndcg_at_5 value: 35.013 - type: precision_at_1 value: 28.358 - type: precision_at_10 value: 6.418 - type: precision_at_100 value: 1.02 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 14.677000000000001 - type: precision_at_5 value: 10.335999999999999 - type: recall_at_1 value: 24.633 - type: recall_at_10 value: 50.048 - type: recall_at_100 value: 73.821 - type: recall_at_1000 value: 90.046 - type: recall_at_3 value: 36.284 - type: recall_at_5 value: 41.370000000000005 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.133 - type: map_at_10 value: 31.491999999999997 - type: map_at_100 value: 33.062000000000005 - type: map_at_1000 value: 33.256 - type: map_at_3 value: 28.886 - type: map_at_5 value: 30.262 - type: mrr_at_1 value: 28.063 - type: mrr_at_10 value: 36.144 - type: mrr_at_100 value: 37.14 - type: mrr_at_1000 value: 37.191 - type: mrr_at_3 value: 33.762 - type: mrr_at_5 value: 34.997 - type: ndcg_at_1 value: 28.063 - type: ndcg_at_10 value: 36.951 - type: ndcg_at_100 value: 43.287 - type: ndcg_at_1000 value: 45.777 - type: ndcg_at_3 value: 32.786 - type: ndcg_at_5 value: 34.65 - type: precision_at_1 value: 28.063 - type: precision_at_10 value: 7.055 - type: precision_at_100 value: 1.476 - type: precision_at_1000 value: 0.22899999999999998 - type: precision_at_3 value: 15.481 - type: precision_at_5 value: 11.186 - type: recall_at_1 value: 23.133 - type: recall_at_10 value: 47.285 - type: recall_at_100 value: 76.176 - type: recall_at_1000 value: 92.176 - type: recall_at_3 value: 35.223 - type: recall_at_5 value: 40.142 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 19.547 - type: map_at_10 value: 26.374 - type: map_at_100 value: 27.419 - type: map_at_1000 value: 27.539 - type: map_at_3 value: 23.882 - type: map_at_5 value: 25.163999999999998 - type: mrr_at_1 value: 21.442 - type: mrr_at_10 value: 28.458 - type: mrr_at_100 value: 29.360999999999997 - type: mrr_at_1000 value: 29.448999999999998 - type: mrr_at_3 value: 25.97 - type: mrr_at_5 value: 27.273999999999997 - type: ndcg_at_1 value: 21.442 - type: ndcg_at_10 value: 30.897000000000002 - type: ndcg_at_100 value: 35.99 - type: ndcg_at_1000 value: 38.832 - type: ndcg_at_3 value: 25.944 - type: ndcg_at_5 value: 28.126 - type: precision_at_1 value: 21.442 - type: precision_at_10 value: 4.9910000000000005 - type: precision_at_100 value: 0.8109999999999999 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_3 value: 11.029 - type: precision_at_5 value: 7.911 - type: recall_at_1 value: 19.547 - type: recall_at_10 value: 42.886 - type: recall_at_100 value: 66.64999999999999 - type: recall_at_1000 value: 87.368 - type: recall_at_3 value: 29.143 - type: recall_at_5 value: 34.544000000000004 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 15.572 - type: map_at_10 value: 25.312 - type: map_at_100 value: 27.062 - type: map_at_1000 value: 27.253 - type: map_at_3 value: 21.601 - type: map_at_5 value: 23.473 - type: mrr_at_1 value: 34.984 - type: mrr_at_10 value: 46.406 - type: mrr_at_100 value: 47.179 - type: mrr_at_1000 value: 47.21 - type: mrr_at_3 value: 43.485 - type: mrr_at_5 value: 45.322 - type: ndcg_at_1 value: 34.984 - type: ndcg_at_10 value: 34.344 - type: ndcg_at_100 value: 41.015 - type: ndcg_at_1000 value: 44.366 - type: ndcg_at_3 value: 29.119 - type: ndcg_at_5 value: 30.825999999999997 - type: precision_at_1 value: 34.984 - type: precision_at_10 value: 10.358 - type: precision_at_100 value: 1.762 - type: precision_at_1000 value: 0.23900000000000002 - type: precision_at_3 value: 21.368000000000002 - type: precision_at_5 value: 15.948 - type: recall_at_1 value: 15.572 - type: recall_at_10 value: 39.367999999999995 - type: recall_at_100 value: 62.183 - type: recall_at_1000 value: 80.92200000000001 - type: recall_at_3 value: 26.131999999999998 - type: recall_at_5 value: 31.635999999999996 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 8.848 - type: map_at_10 value: 19.25 - type: map_at_100 value: 27.193 - type: map_at_1000 value: 28.721999999999998 - type: map_at_3 value: 13.968 - type: map_at_5 value: 16.283 - type: mrr_at_1 value: 68.75 - type: mrr_at_10 value: 76.25 - type: mrr_at_100 value: 76.534 - type: mrr_at_1000 value: 76.53999999999999 - type: mrr_at_3 value: 74.667 - type: mrr_at_5 value: 75.86699999999999 - type: ndcg_at_1 value: 56.00000000000001 - type: ndcg_at_10 value: 41.426 - type: ndcg_at_100 value: 45.660000000000004 - type: ndcg_at_1000 value: 53.02 - type: ndcg_at_3 value: 46.581 - type: ndcg_at_5 value: 43.836999999999996 - type: precision_at_1 value: 68.75 - type: precision_at_10 value: 32.800000000000004 - type: precision_at_100 value: 10.440000000000001 - type: precision_at_1000 value: 1.9980000000000002 - type: precision_at_3 value: 49.667 - type: precision_at_5 value: 42.25 - type: recall_at_1 value: 8.848 - type: recall_at_10 value: 24.467 - type: recall_at_100 value: 51.344 - type: recall_at_1000 value: 75.235 - type: recall_at_3 value: 15.329 - type: recall_at_5 value: 18.892999999999997 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 48.95 - type: f1 value: 43.44563593360779 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 78.036 - type: map_at_10 value: 85.639 - type: map_at_100 value: 85.815 - type: map_at_1000 value: 85.829 - type: map_at_3 value: 84.795 - type: map_at_5 value: 85.336 - type: mrr_at_1 value: 84.353 - type: mrr_at_10 value: 90.582 - type: mrr_at_100 value: 90.617 - type: mrr_at_1000 value: 90.617 - type: mrr_at_3 value: 90.132 - type: mrr_at_5 value: 90.447 - type: ndcg_at_1 value: 84.353 - type: ndcg_at_10 value: 89.003 - type: ndcg_at_100 value: 89.60000000000001 - type: ndcg_at_1000 value: 89.836 - type: ndcg_at_3 value: 87.81400000000001 - type: ndcg_at_5 value: 88.478 - type: precision_at_1 value: 84.353 - type: precision_at_10 value: 10.482 - type: precision_at_100 value: 1.099 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_3 value: 33.257999999999996 - type: precision_at_5 value: 20.465 - type: recall_at_1 value: 78.036 - type: recall_at_10 value: 94.517 - type: recall_at_100 value: 96.828 - type: recall_at_1000 value: 98.261 - type: recall_at_3 value: 91.12 - type: recall_at_5 value: 92.946 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 20.191 - type: map_at_10 value: 32.369 - type: map_at_100 value: 34.123999999999995 - type: map_at_1000 value: 34.317 - type: map_at_3 value: 28.71 - type: map_at_5 value: 30.607 - type: mrr_at_1 value: 40.894999999999996 - type: mrr_at_10 value: 48.842 - type: mrr_at_100 value: 49.599 - type: mrr_at_1000 value: 49.647000000000006 - type: mrr_at_3 value: 46.785 - type: mrr_at_5 value: 47.672 - type: ndcg_at_1 value: 40.894999999999996 - type: ndcg_at_10 value: 39.872 - type: ndcg_at_100 value: 46.126 - type: ndcg_at_1000 value: 49.476 - type: ndcg_at_3 value: 37.153000000000006 - type: ndcg_at_5 value: 37.433 - type: precision_at_1 value: 40.894999999999996 - type: precision_at_10 value: 10.818 - type: precision_at_100 value: 1.73 - type: precision_at_1000 value: 0.231 - type: precision_at_3 value: 25.051000000000002 - type: precision_at_5 value: 17.531 - type: recall_at_1 value: 20.191 - type: recall_at_10 value: 45.768 - type: recall_at_100 value: 68.82000000000001 - type: recall_at_1000 value: 89.133 - type: recall_at_3 value: 33.296 - type: recall_at_5 value: 38.022 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 39.257 - type: map_at_10 value: 61.467000000000006 - type: map_at_100 value: 62.364 - type: map_at_1000 value: 62.424 - type: map_at_3 value: 58.228 - type: map_at_5 value: 60.283 - type: mrr_at_1 value: 78.515 - type: mrr_at_10 value: 84.191 - type: mrr_at_100 value: 84.378 - type: mrr_at_1000 value: 84.385 - type: mrr_at_3 value: 83.284 - type: mrr_at_5 value: 83.856 - type: ndcg_at_1 value: 78.515 - type: ndcg_at_10 value: 69.78999999999999 - type: ndcg_at_100 value: 72.886 - type: ndcg_at_1000 value: 74.015 - type: ndcg_at_3 value: 65.23 - type: ndcg_at_5 value: 67.80199999999999 - type: precision_at_1 value: 78.515 - type: precision_at_10 value: 14.519000000000002 - type: precision_at_100 value: 1.694 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 41.702 - type: precision_at_5 value: 27.046999999999997 - type: recall_at_1 value: 39.257 - type: recall_at_10 value: 72.59299999999999 - type: recall_at_100 value: 84.679 - type: recall_at_1000 value: 92.12 - type: recall_at_3 value: 62.552 - type: recall_at_5 value: 67.616 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 91.5152 - type: ap value: 87.64584669595709 - type: f1 value: 91.50605576428437 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 21.926000000000002 - type: map_at_10 value: 34.049 - type: map_at_100 value: 35.213 - type: map_at_1000 value: 35.265 - type: map_at_3 value: 30.309 - type: map_at_5 value: 32.407000000000004 - type: mrr_at_1 value: 22.55 - type: mrr_at_10 value: 34.657 - type: mrr_at_100 value: 35.760999999999996 - type: mrr_at_1000 value: 35.807 - type: mrr_at_3 value: 30.989 - type: mrr_at_5 value: 33.039 - type: ndcg_at_1 value: 22.55 - type: ndcg_at_10 value: 40.842 - type: ndcg_at_100 value: 46.436 - type: ndcg_at_1000 value: 47.721999999999994 - type: ndcg_at_3 value: 33.209 - type: ndcg_at_5 value: 36.943 - type: precision_at_1 value: 22.55 - type: precision_at_10 value: 6.447 - type: precision_at_100 value: 0.9249999999999999 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.136000000000001 - type: precision_at_5 value: 10.381 - type: recall_at_1 value: 21.926000000000002 - type: recall_at_10 value: 61.724999999999994 - type: recall_at_100 value: 87.604 - type: recall_at_1000 value: 97.421 - type: recall_at_3 value: 40.944 - type: recall_at_5 value: 49.915 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.54765161878704 - type: f1 value: 93.3298945415573 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 75.71591427268582 - type: f1 value: 59.32113870474471 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 75.83053127101547 - type: f1 value: 73.60757944876475 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 78.72562205783457 - type: f1 value: 78.63761662505502 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 33.37935633767996 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 31.55270546130387 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.462692753143834 - type: mrr value: 31.497569753511563 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.646 - type: map_at_10 value: 12.498 - type: map_at_100 value: 15.486 - type: map_at_1000 value: 16.805999999999997 - type: map_at_3 value: 9.325 - type: map_at_5 value: 10.751 - type: mrr_at_1 value: 43.034 - type: mrr_at_10 value: 52.662 - type: mrr_at_100 value: 53.189 - type: mrr_at_1000 value: 53.25 - type: mrr_at_3 value: 50.929 - type: mrr_at_5 value: 51.92 - type: ndcg_at_1 value: 41.796 - type: ndcg_at_10 value: 33.477000000000004 - type: ndcg_at_100 value: 29.996000000000002 - type: ndcg_at_1000 value: 38.864 - type: ndcg_at_3 value: 38.940000000000005 - type: ndcg_at_5 value: 36.689 - type: precision_at_1 value: 43.034 - type: precision_at_10 value: 24.799 - type: precision_at_100 value: 7.432999999999999 - type: precision_at_1000 value: 1.9929999999999999 - type: precision_at_3 value: 36.842000000000006 - type: precision_at_5 value: 32.135999999999996 - type: recall_at_1 value: 5.646 - type: recall_at_10 value: 15.963 - type: recall_at_100 value: 29.492 - type: recall_at_1000 value: 61.711000000000006 - type: recall_at_3 value: 10.585 - type: recall_at_5 value: 12.753999999999998 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 27.602 - type: map_at_10 value: 41.545 - type: map_at_100 value: 42.644999999999996 - type: map_at_1000 value: 42.685 - type: map_at_3 value: 37.261 - type: map_at_5 value: 39.706 - type: mrr_at_1 value: 31.141000000000002 - type: mrr_at_10 value: 44.139 - type: mrr_at_100 value: 44.997 - type: mrr_at_1000 value: 45.025999999999996 - type: mrr_at_3 value: 40.503 - type: mrr_at_5 value: 42.64 - type: ndcg_at_1 value: 31.141000000000002 - type: ndcg_at_10 value: 48.995 - type: ndcg_at_100 value: 53.788000000000004 - type: ndcg_at_1000 value: 54.730000000000004 - type: ndcg_at_3 value: 40.844 - type: ndcg_at_5 value: 44.955 - type: precision_at_1 value: 31.141000000000002 - type: precision_at_10 value: 8.233 - type: precision_at_100 value: 1.093 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_3 value: 18.579 - type: precision_at_5 value: 13.533999999999999 - type: recall_at_1 value: 27.602 - type: recall_at_10 value: 69.216 - type: recall_at_100 value: 90.252 - type: recall_at_1000 value: 97.27 - type: recall_at_3 value: 47.987 - type: recall_at_5 value: 57.438 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 70.949 - type: map_at_10 value: 84.89999999999999 - type: map_at_100 value: 85.531 - type: map_at_1000 value: 85.548 - type: map_at_3 value: 82.027 - type: map_at_5 value: 83.853 - type: mrr_at_1 value: 81.69999999999999 - type: mrr_at_10 value: 87.813 - type: mrr_at_100 value: 87.917 - type: mrr_at_1000 value: 87.91799999999999 - type: mrr_at_3 value: 86.938 - type: mrr_at_5 value: 87.53999999999999 - type: ndcg_at_1 value: 81.75 - type: ndcg_at_10 value: 88.55499999999999 - type: ndcg_at_100 value: 89.765 - type: ndcg_at_1000 value: 89.871 - type: ndcg_at_3 value: 85.905 - type: ndcg_at_5 value: 87.41 - type: precision_at_1 value: 81.75 - type: precision_at_10 value: 13.403 - type: precision_at_100 value: 1.528 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.597 - type: precision_at_5 value: 24.69 - type: recall_at_1 value: 70.949 - type: recall_at_10 value: 95.423 - type: recall_at_100 value: 99.509 - type: recall_at_1000 value: 99.982 - type: recall_at_3 value: 87.717 - type: recall_at_5 value: 92.032 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 51.76962893449579 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 62.32897690686379 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.478 - type: map_at_10 value: 11.994 - type: map_at_100 value: 13.977 - type: map_at_1000 value: 14.295 - type: map_at_3 value: 8.408999999999999 - type: map_at_5 value: 10.024 - type: mrr_at_1 value: 22.1 - type: mrr_at_10 value: 33.526 - type: mrr_at_100 value: 34.577000000000005 - type: mrr_at_1000 value: 34.632000000000005 - type: mrr_at_3 value: 30.217 - type: mrr_at_5 value: 31.962000000000003 - type: ndcg_at_1 value: 22.1 - type: ndcg_at_10 value: 20.191 - type: ndcg_at_100 value: 27.954 - type: ndcg_at_1000 value: 33.491 - type: ndcg_at_3 value: 18.787000000000003 - type: ndcg_at_5 value: 16.378999999999998 - type: precision_at_1 value: 22.1 - type: precision_at_10 value: 10.69 - type: precision_at_100 value: 2.1919999999999997 - type: precision_at_1000 value: 0.35200000000000004 - type: precision_at_3 value: 17.732999999999997 - type: precision_at_5 value: 14.499999999999998 - type: recall_at_1 value: 4.478 - type: recall_at_10 value: 21.657 - type: recall_at_100 value: 44.54 - type: recall_at_1000 value: 71.542 - type: recall_at_3 value: 10.778 - type: recall_at_5 value: 14.687 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 82.82325259156718 - type: cos_sim_spearman value: 79.2463589100662 - type: euclidean_pearson value: 80.48318380496771 - type: euclidean_spearman value: 79.34451935199979 - type: manhattan_pearson value: 80.39041824178759 - type: manhattan_spearman value: 79.23002892700211 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 85.74130231431258 - type: cos_sim_spearman value: 78.36856568042397 - type: euclidean_pearson value: 82.48301631890303 - type: euclidean_spearman value: 78.28376980722732 - type: manhattan_pearson value: 82.43552075450525 - type: manhattan_spearman value: 78.22702443947126 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 79.96138619461459 - type: cos_sim_spearman value: 81.85436343502379 - type: euclidean_pearson value: 81.82895226665367 - type: euclidean_spearman value: 82.22707349602916 - type: manhattan_pearson value: 81.66303369445873 - type: manhattan_spearman value: 82.05030197179455 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 80.05481244198648 - type: cos_sim_spearman value: 80.85052504637808 - type: euclidean_pearson value: 80.86728419744497 - type: euclidean_spearman value: 81.033786401512 - type: manhattan_pearson value: 80.90107531061103 - type: manhattan_spearman value: 81.11374116827795 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 84.615220756399 - type: cos_sim_spearman value: 86.46858500002092 - type: euclidean_pearson value: 86.08307800247586 - type: euclidean_spearman value: 86.72691443870013 - type: manhattan_pearson value: 85.96155594487269 - type: manhattan_spearman value: 86.605909505275 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 82.14363913634436 - type: cos_sim_spearman value: 84.48430226487102 - type: euclidean_pearson value: 83.75303424801902 - type: euclidean_spearman value: 84.56762380734538 - type: manhattan_pearson value: 83.6135447165928 - type: manhattan_spearman value: 84.39898212616731 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 85.09909252554525 - type: cos_sim_spearman value: 85.70951402743276 - type: euclidean_pearson value: 87.1991936239908 - type: euclidean_spearman value: 86.07745840612071 - type: manhattan_pearson value: 87.25039137549952 - type: manhattan_spearman value: 85.99938746659761 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 63.529332093413615 - type: cos_sim_spearman value: 65.38177340147439 - type: euclidean_pearson value: 66.35278011412136 - type: euclidean_spearman value: 65.47147267032997 - type: manhattan_pearson value: 66.71804682408693 - type: manhattan_spearman value: 65.67406521423597 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 82.45802942885662 - type: cos_sim_spearman value: 84.8853341842566 - type: euclidean_pearson value: 84.60915021096707 - type: euclidean_spearman value: 85.11181242913666 - type: manhattan_pearson value: 84.38600521210364 - type: manhattan_spearman value: 84.89045417981723 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 85.92793380635129 - type: mrr value: 95.85834191226348 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 55.74400000000001 - type: map_at_10 value: 65.455 - type: map_at_100 value: 66.106 - type: map_at_1000 value: 66.129 - type: map_at_3 value: 62.719 - type: map_at_5 value: 64.441 - type: mrr_at_1 value: 58.667 - type: mrr_at_10 value: 66.776 - type: mrr_at_100 value: 67.363 - type: mrr_at_1000 value: 67.384 - type: mrr_at_3 value: 64.889 - type: mrr_at_5 value: 66.122 - type: ndcg_at_1 value: 58.667 - type: ndcg_at_10 value: 69.904 - type: ndcg_at_100 value: 72.807 - type: ndcg_at_1000 value: 73.423 - type: ndcg_at_3 value: 65.405 - type: ndcg_at_5 value: 67.86999999999999 - type: precision_at_1 value: 58.667 - type: precision_at_10 value: 9.3 - type: precision_at_100 value: 1.08 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 25.444 - type: precision_at_5 value: 17 - type: recall_at_1 value: 55.74400000000001 - type: recall_at_10 value: 82.122 - type: recall_at_100 value: 95.167 - type: recall_at_1000 value: 100 - type: recall_at_3 value: 70.14399999999999 - type: recall_at_5 value: 76.417 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.86534653465347 - type: cos_sim_ap value: 96.54142419791388 - type: cos_sim_f1 value: 93.07535641547861 - type: cos_sim_precision value: 94.81327800829875 - type: cos_sim_recall value: 91.4 - type: dot_accuracy value: 99.86435643564356 - type: dot_ap value: 96.53682260449868 - type: dot_f1 value: 92.98515104966718 - type: dot_precision value: 95.27806925498426 - type: dot_recall value: 90.8 - type: euclidean_accuracy value: 99.86336633663366 - type: euclidean_ap value: 96.5228676185697 - type: euclidean_f1 value: 92.9735234215886 - type: euclidean_precision value: 94.70954356846472 - type: euclidean_recall value: 91.3 - type: manhattan_accuracy value: 99.85841584158416 - type: manhattan_ap value: 96.50392760934032 - type: manhattan_f1 value: 92.84642321160581 - type: manhattan_precision value: 92.8928928928929 - type: manhattan_recall value: 92.80000000000001 - type: max_accuracy value: 99.86534653465347 - type: max_ap value: 96.54142419791388 - type: max_f1 value: 93.07535641547861 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 61.08285408766616 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 35.640675309010604 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 53.20333913710715 - type: mrr value: 54.088813555725324 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.79465221925075 - type: cos_sim_spearman value: 30.530816059163634 - type: dot_pearson value: 31.364837244718043 - type: dot_spearman value: 30.79726823684003 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.22599999999999998 - type: map_at_10 value: 1.735 - type: map_at_100 value: 8.978 - type: map_at_1000 value: 20.851 - type: map_at_3 value: 0.613 - type: map_at_5 value: 0.964 - type: mrr_at_1 value: 88 - type: mrr_at_10 value: 92.867 - type: mrr_at_100 value: 92.867 - type: mrr_at_1000 value: 92.867 - type: mrr_at_3 value: 92.667 - type: mrr_at_5 value: 92.667 - type: ndcg_at_1 value: 82 - type: ndcg_at_10 value: 73.164 - type: ndcg_at_100 value: 51.878 - type: ndcg_at_1000 value: 44.864 - type: ndcg_at_3 value: 79.184 - type: ndcg_at_5 value: 76.39 - type: precision_at_1 value: 88 - type: precision_at_10 value: 76.2 - type: precision_at_100 value: 52.459999999999994 - type: precision_at_1000 value: 19.692 - type: precision_at_3 value: 82.667 - type: precision_at_5 value: 80 - type: recall_at_1 value: 0.22599999999999998 - type: recall_at_10 value: 1.942 - type: recall_at_100 value: 12.342 - type: recall_at_1000 value: 41.42 - type: recall_at_3 value: 0.637 - type: recall_at_5 value: 1.034 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 3.567 - type: map_at_10 value: 13.116 - type: map_at_100 value: 19.39 - type: map_at_1000 value: 20.988 - type: map_at_3 value: 7.109 - type: map_at_5 value: 9.950000000000001 - type: mrr_at_1 value: 42.857 - type: mrr_at_10 value: 57.404999999999994 - type: mrr_at_100 value: 58.021 - type: mrr_at_1000 value: 58.021 - type: mrr_at_3 value: 54.762 - type: mrr_at_5 value: 56.19 - type: ndcg_at_1 value: 38.775999999999996 - type: ndcg_at_10 value: 30.359 - type: ndcg_at_100 value: 41.284 - type: ndcg_at_1000 value: 52.30200000000001 - type: ndcg_at_3 value: 36.744 - type: ndcg_at_5 value: 34.326 - type: precision_at_1 value: 42.857 - type: precision_at_10 value: 26.122 - type: precision_at_100 value: 8.082 - type: precision_at_1000 value: 1.559 - type: precision_at_3 value: 40.136 - type: precision_at_5 value: 35.510000000000005 - type: recall_at_1 value: 3.567 - type: recall_at_10 value: 19.045 - type: recall_at_100 value: 49.979 - type: recall_at_1000 value: 84.206 - type: recall_at_3 value: 8.52 - type: recall_at_5 value: 13.103000000000002 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 68.8394 - type: ap value: 13.454399712443099 - type: f1 value: 53.04963076364322 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 60.546123372948514 - type: f1 value: 60.86952793277713 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 49.10042955060234 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 85.03308100375514 - type: cos_sim_ap value: 71.08284605869684 - type: cos_sim_f1 value: 65.42539436255494 - type: cos_sim_precision value: 64.14807302231237 - type: cos_sim_recall value: 66.75461741424802 - type: dot_accuracy value: 84.68736961316088 - type: dot_ap value: 69.20524036530992 - type: dot_f1 value: 63.54893953365829 - type: dot_precision value: 63.45698500394633 - type: dot_recall value: 63.641160949868066 - type: euclidean_accuracy value: 85.07480479227513 - type: euclidean_ap value: 71.14592761009864 - type: euclidean_f1 value: 65.43814432989691 - type: euclidean_precision value: 63.95465994962216 - type: euclidean_recall value: 66.99208443271768 - type: manhattan_accuracy value: 85.06288370984085 - type: manhattan_ap value: 71.07289742593868 - type: manhattan_f1 value: 65.37585421412301 - type: manhattan_precision value: 62.816147859922175 - type: manhattan_recall value: 68.15303430079156 - type: max_accuracy value: 85.07480479227513 - type: max_ap value: 71.14592761009864 - type: max_f1 value: 65.43814432989691 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 87.79058485659952 - type: cos_sim_ap value: 83.7183187008759 - type: cos_sim_f1 value: 75.86921142180798 - type: cos_sim_precision value: 73.00683371298405 - type: cos_sim_recall value: 78.96519864490298 - type: dot_accuracy value: 87.0085768618776 - type: dot_ap value: 81.87467488474279 - type: dot_f1 value: 74.04188363990559 - type: dot_precision value: 72.10507114191901 - type: dot_recall value: 76.08561749307053 - type: euclidean_accuracy value: 87.8332751193387 - type: euclidean_ap value: 83.83585648120315 - type: euclidean_f1 value: 76.02582177042369 - type: euclidean_precision value: 73.36388371759989 - type: euclidean_recall value: 78.88820449645827 - type: manhattan_accuracy value: 87.87208444910156 - type: manhattan_ap value: 83.8101950642973 - type: manhattan_f1 value: 75.90454195535027 - type: manhattan_precision value: 72.44419564761039 - type: manhattan_recall value: 79.71204188481676 - type: max_accuracy value: 87.87208444910156 - type: max_ap value: 83.83585648120315 - type: max_f1 value: 76.02582177042369 license: mit language: - en pipeline_tag: sentence-similarity --- <h1 align="center">FlagEmbedding</h1> <h4 align="center"> <p> <a href=#model-list>Model List</a> | <a href=#usage>Usage</a> | <a href="#evaluation">Evaluation</a> | <a href="#train">Train</a> | <a href="#contact">Contact</a> | <a href="#license">License</a> <p> </h4> More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding). [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md) FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search. And it also can be used in vector database for LLMs. ************* 🌟**Updates**🌟 ************* - 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [**this**](#using-langchain); C-MTEB **leaderboard** is [avaliable](https://huggingface.co/spaces/mteb/leaderboard). - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗** - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset. ## Model List `bge` is short for `BAAI general embedding`. | Model | Language | Description | query instruction for retrieval\* | |:-------------------------------|:--------:| :--------:| :--------:| | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | rank **2nd** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | Chinese | This model is trained without instruction, and rank **2nd** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | a base-scale model but has similar ability with `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` | \*: If you need to search the **long** relevant passages to a **short** query (s2p retrieval task), you need to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** need to be added to passages. ## Usage Here are some examples to use `bge` models with [FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers). #### Using FlagEmbedding ``` pip install -U FlagEmbedding ``` If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding. ```python from FlagEmbedding import FlagModel sentences = ["样例数据-1", "样例数据-2"] model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:") embeddings_1 = model.encode(sentences) embeddings_2 = model.encode(sentences) similarity = embeddings_1 @ embeddings_2.T print(similarity) # for s2p(short query to long passage) retrieval task, please use encode_queries() which will automatically add the instruction to each query # corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction queries = ['query_1', 'query_2'] passages = ["样例文档-1", "样例文档-2"] q_embeddings = model.encode_queries(queries) p_embeddings = model.encode(passages) scores = q_embeddings @ p_embeddings.T ``` The value of argument `query_instruction_for_retrieval` see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list). FlagModel will use all available GPUs when encoding, please set `os.environ["CUDA_VISIBLE_DEVICES"]` to choose GPU. #### Using Sentence-Transformers Using this model also is easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` ```python from sentence_transformers import SentenceTransformer sentences = ["样例数据-1", "样例数据-2"] model = SentenceTransformer('BAAI/bge-large-zh') embeddings_1 = model.encode(sentences, normalize_embeddings=True) embeddings_2 = model.encode(sentences, normalize_embeddings=True) similarity = embeddings_1 @ embeddings_2.T print(similarity) ``` For s2p(short query to long passage) retrieval task, each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)). But the instruction is not needed for passages. ```python from sentence_transformers import SentenceTransformer queries = ['query_1', 'query_2'] passages = ["样例文档-1", "样例文档-2"] instruction = "为这个句子生成表示以用于检索相关文章:" model = SentenceTransformer('BAAI/bge-large-zh') q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True) p_embeddings = model.encode(passages, normalize_embeddings=True) scores = q_embeddings @ p_embeddings.T ``` #### Using Langchain You can use `bge` in langchain like this: ```python from langchain.embeddings import HuggingFaceBgeEmbeddings model_name = "BAAI/bge-small-en" model_kwargs = {'device': 'cuda'} encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity model_norm = HuggingFaceBgeEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) ``` #### Using HuggingFace Transformers With transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of first token (i.e., [CLS]) as the sentence embedding. ```python from transformers import AutoTokenizer, AutoModel import torch # Sentences we want sentence embeddings for sentences = ["样例数据-1", "样例数据-2"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh') model = AutoModel.from_pretrained('BAAI/bge-large-zh') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages) # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = model_output[0][:, 0] # normalize embeddings sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:", sentence_embeddings) ``` ## Evaluation `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!** More details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md). - **MTEB**: | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) | |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | [**bge-large-en**](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | **63.98** | **53.9** | **46.98** | 85.8 | **59.48** | 81.56 | 32.06 | **76.21** | | [**bge-base-en**](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 | | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 | | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 | | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 | | [**bge-small-en**](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 | | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 | | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 | | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 | | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 | | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 | | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 | | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 | | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 | | [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 384 | 512 | 56.53 | 42.69 | 41.81 | 82.41 | 58.44 | 79.8 | 27.9 | 63.21 | | [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 384 | 512 | 56.26 | 41.95 | 42.35 | 82.37 | 58.04 | 78.9 | 30.81 | 63.05 | | [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 768 | 512 | 56.00 | 41.88 | 41.1 | 82.54 | 53.14 | 76.51 | 30.36 | 66.68 | | [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 768 | 512 | 55.27 | 33.63 | 40.21 | 85.18 | 53.09 | 81.14 | 31.39 | 69.81 | - **C-MTEB**: We create a benchmark C-MTEB for chinese text embedding which consists of 31 datasets from 6 tasks. Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction. | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | [**bge-large-zh**](https://huggingface.co/BAAI/bge-large-zh) | 1024 | **64.20** | **71.53** | **53.23** | **78.94** | 72.26 | **65.11** | 48.39 | | [**bge-large-zh-noinstruct**](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 50.98 | 76.77 | **72.49** | 64.91 | **50.01** | | [**BAAI/bge-base-zh**](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 52.05 | 77.5 | 70.98 | 64.91 | 47.63 | | [**BAAI/bge-small-zh**](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 46.87 | 70.35 | 67.78 | 61.48 | 45.09 | | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 |56.91 | 48.15 | 63.99 | 70.28 | 59.34 | 47.68 | | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 |54.75 | 48.64 | 64.3 | 71.22 | 59.66 | 48.88 | | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 40.61 | 69.56 | 67.38 | 54.28 | 45.68 | | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 39.41 | 66.62 | 65.29 | 49.25 | 44.39 | | [text2vec](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 41.71 | 67.41 | 65.18 | 49.45 | 37.66 | | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 41.98 | 70.86 | 63.42 | 49.16 | 30.02 | ## Train This section will introduce the way we used to train the general embedding. The training scripts are in [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md), and we provide some examples to do [pre-train](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/pretrain/README.md) and [fine-tune](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/finetune/README.md). **1. RetroMAE Pre-train** We pre-train the model following the method [retromae](https://github.com/staoxiao/RetroMAE), which shows promising improvement in retrieval task ([paper](https://aclanthology.org/2022.emnlp-main.35.pdf)). The pre-training was conducted on 24 A100(40G) GPUs with a batch size of 720. In retromae, the mask ratio of encoder and decoder are 0.3, 0.5 respectively. We used the AdamW optimizer and the learning rate is 2e-5. **Pre-training data**: - English: - [Pile](https://pile.eleuther.ai/) - [wikipedia](https://huggingface.co/datasets/wikipedia) - [msmarco](https://huggingface.co/datasets/Tevatron/msmarco-passage-corpus) - Chinese: - [wudao](https://github.com/BAAI-WuDao/Data) **2. Finetune** We fine-tune the model using a contrastive objective. The format of input data is a triple`(query, positive, negative)`. Besides the negative in the triple, we also adopt in-batch negatives strategy. We employ the cross-device negatives sharing method to share negatives among different GPUs, which can dramatically **increase the number of negatives**. We trained our model on 48 A100(40G) GPUs with a large batch size of 32,768 (so there are **65,535** negatives for each query in a batch). We used the AdamW optimizer and the learning rate is 1e-5. The temperature for contrastive loss is 0.01. Besides, we add instruction to the query for s2p(short query to long passage) retrieval task in the training (add nothing to passages). For English, the instruction is `Represent this sentence for searching relevant passages: `; For Chinese, the instruction is `为这个句子生成表示以用于检索相关文章:`. In the evaluation, the instruction should be added for queries in retrieval task, not be added for other tasks. Noted that the instruction is not needed for passages. The finetune script is accessible in this repository: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md). You can easily finetune your model with it. **Training data**: - For English, we collect 230M text pairs from [wikipedia](https://huggingface.co/datasets/wikipedia), [cc-net](https://github.com/facebookresearch/cc_net), and so on. - For chinese, we collect 120M text pairs from [wudao](https://github.com/BAAI-WuDao/Data), [simclue](https://github.com/CLUEbenchmark/SimCLUE) and so on. **The data collection is to be released in the future.** We will continually update the embedding models and training codes, hoping to promote the development of the embedding model community. ## License FlagEmbedding is licensed under [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
thinkermode/jennaortega-sdxl-db
thinkermode
2023-08-20T11:38:46Z
3
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-20T11:38:43Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: jennaortega tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
Agneev/distilhubert-finetuned-gtzan
Agneev
2023-08-20T11:03:55Z
6
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-17T14:34:53Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.81 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5746 - Accuracy: 0.89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0253 | 0.99 | 28 | 1.8206 | 0.38 | | 1.3127 | 1.98 | 56 | 1.1930 | 0.64 | | 0.9726 | 2.97 | 84 | 0.9269 | 0.69 | | 1.2272 | 4.0 | 113 | 1.1682 | 0.66 | | 0.6441 | 4.99 | 141 | 0.9781 | 0.71 | | 0.5447 | 5.98 | 169 | 0.8603 | 0.74 | | 0.3067 | 6.97 | 197 | 0.6313 | 0.86 | | 0.1481 | 8.0 | 226 | 0.5746 | 0.89 | | 0.0599 | 8.99 | 254 | 0.7602 | 0.84 | | 0.0306 | 9.91 | 280 | 0.8119 | 0.81 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
Muhammadreza/mann-e-dark-fantasy
Muhammadreza
2023-08-20T11:02:38Z
8
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-20T10:50:00Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### mann-e_dark_fantasy Dreambooth model trained by Muhammadreza with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
beaugogh/Llama2-7b-openorca-mc-v1
beaugogh
2023-08-20T10:56:58Z
1,500
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-20T10:51:52Z
--- license: apache-2.0 --- Llama2-7b finetuned on a 10k subset of OpenOrca focusing on multiple choice questions.
abdelhamidmalki/a2c-PandaReachDense-v3
abdelhamidmalki
2023-08-20T10:42:34Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-20T10:37:45Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.26 +/- 0.13 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BanUrsus/Reinforce-CartPole-v1
BanUrsus
2023-08-20T10:34:03Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-20T10:33:51Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 482.50 +/- 52.50 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
hub-bla/ppo-Huggy
hub-bla
2023-08-20T10:32:03Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-20T10:16:39Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: hub-bla/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
rafay/q-Taxi-v3
rafay
2023-08-20T10:30:50Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-20T10:30:32Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="rafay/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bhavyagiri/roberta-base-finetuned-imdb-spoilers
bhavyagiri
2023-08-20T10:20:16Z
14
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "imdb", "spoilers", "en", "dataset:bhavyagiri/imdb-spoiler", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-18T09:01:48Z
--- license: mit datasets: - bhavyagiri/imdb-spoiler language: - en metrics: - accuracy - f1 pipeline_tag: text-classification tags: - text-classification - pytorch - roberta - imdb - spoilers widget: - text: Jack Ryan is so amazing --- The model trained from [roberta-base](https://huggingface.co/roberta-base) on the [imdb-spoiler](https://huggingface.co/datasets/bhavyagiri/imdb-spoiler) dataset for classification. [imdb-spoiler](https://huggingface.co/datasets/bhavyagiri/imdb-spoiler) is a subset of a [large-dataset](https://www.kaggle.com/datasets/rmisra/imdb-spoiler-dataset) for classifying whether a movie review is a spoiler or not. The model was trained using `AutoModelForSequenceClassification.from_pretrained` for 3 epochs with a learning rate of 2e-5 and weight decay of 0.01. Evaluation using the dataset validation split gives: - F1 0.773021 - Accuracy 0.783275 Labels: - 0 - Not Spoiler - 1 - Spoiler
Verdiola/Tosho
Verdiola
2023-08-20T10:13:19Z
196
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:eli5", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-19T17:24:33Z
--- license: apache-2.0 base_model: distilgpt2 tags: - generated_from_trainer datasets: - eli5 model-index: - name: Tosho results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tosho This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 3.7548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.8718 | 1.0 | 1135 | 3.7708 | | 3.7688 | 2.0 | 2270 | 3.7576 | | 3.7376 | 3.0 | 3405 | 3.7548 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cpu - Datasets 2.14.4 - Tokenizers 0.13.3
Adrianosoprano/LunarLander-v2
Adrianosoprano
2023-08-20T10:11:36Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-20T09:46:11Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 272.72 +/- 19.41 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
anubhav100rao/flipkart-grid-asi
anubhav100rao
2023-08-20T10:04:04Z
0
0
null
[ "region:us" ]
null
2023-08-20T09:50:36Z
# StyleForge This project is built to revolutionize the fashion and e-commerce industries, allowing users to choose and generate images as required by passing in the requirements as text prompts. Chat with images as often as you like, allowing flexible modification. ## Authors - [@anubhav](https://www.github.com/anubhav100rao) - [@isha](https://www.github.com/isharawat) - [@sachin](https://www.github.com/sachin-raghuwanshi) ## Badges badges addressing the dependencies and licenses for the project discussed below: Badges added from : [shields.io](https://shields.io/) [![MIT License](https://img.shields.io/badge/License-MIT-green.svg)](https://choosealicense.com/licenses/mit/) [![GPLv3 License](https://img.shields.io/badge/License-GPL%20v3-yellow.svg)](https://opensource.org/licenses/) [![AGPL License](https://img.shields.io/badge/license-AGPL-blue.svg)](http://www.gnu.org/licenses/agpl-3.0) ## Contributing Contributions are always welcome! See `contributing.md` for ways to get started. Please adhere to this project's `code of conduct`. ## Deployment this project is deployed on huggingfaces using the free architecture : ``` https://huggingface.co/spaces/Sambhavnoobcoder/StyleForge ``` the hardware that is used to run this project is ``` - CPU Basic - 2 vCPU - 16 GB RAM ``` ## Screenshots certain prompt samples and their respective outputs : <img width="1246" alt="Screenshot 2023-08-19 at 1 39 28 PM" src="https://github.com/sambhavnoobcoder/StyleForge/assets/94298612/b5b4befa-3d12-47cd-812d-ef70f26189a8"> <img width="455" alt="Screenshot 2023-08-19 at 6 11 25 PM" src="https://github.com/sambhavnoobcoder/StyleForge/assets/94298612/713fb884-f2d8-4482-9798-f70290e23220"> <img width="1316" alt="Screenshot 2023-08-19 at 2 30 12 PM" src="https://github.com/sambhavnoobcoder/StyleForge/assets/94298612/c9eee045-417b-4a79-80c4-b450f2a7898c"> <img width="900" alt="Screenshot 2023-08-19 at 5 52 06 PM" src="https://github.com/sambhavnoobcoder/StyleForge/assets/94298612/6c128826-b776-45d7-a59d-007450cc98da"> ## Note: - this is a deterministic model, so it can potentially generate different outputs for the same prompts . try this to generate more items matching the same description. - the model is a highly resource-expensive model requiring GPU for good inference. Since the hosted inference is actually CPU, it can take more time than expected to run the prompts . kindly wait patiently for the generation interval of the prompt.
jmig-costa/attributes_concept_t5_xl
jmig-costa
2023-08-20T09:45:35Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-20T09:45:33Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
Maxph2211/q-Taxi-v3
Maxph2211
2023-08-20T09:41:58Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-20T09:41:55Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Maxph2211/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dkimds/ppo-Pyramids-Training
dkimds
2023-08-20T09:39:00Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-20T09:38:58Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: dkimds/ppo-Pyramids-Training 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
pasto2003/ppo-SnowballTarget
pasto2003
2023-08-20T09:09:41Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-08-20T09:09:37Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: pasto2003/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
lycnight/roberta-large-peft-p-tuning
lycnight
2023-08-20T08:56:59Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-20T08:56:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
nagupv/Stable13B_contextLLMExam_18kv2_f1
nagupv
2023-08-20T08:53:12Z
3
0
peft
[ "peft", "region:us" ]
null
2023-08-20T08:52:27Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
polejowska/deta-cd45rb-4ah-4l
polejowska
2023-08-20T08:51:48Z
52
0
transformers
[ "transformers", "pytorch", "deta", "object-detection", "generated_from_trainer", "dataset:cd45rb_nan_xywh", "endpoints_compatible", "region:us" ]
object-detection
2023-08-19T07:03:39Z
--- tags: - generated_from_trainer datasets: - cd45rb_nan_xywh model-index: - name: deta-cd45rb-4ah-4l results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deta-cd45rb-4ah-4l This model is a fine-tuned version of [jozhang97/deta-swin-large](https://huggingface.co/jozhang97/deta-swin-large) on the cd45rb_nan_xywh dataset. It achieves the following results on the evaluation set: - Loss: 4.3723 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.8838 | 1.0 | 4606 | 5.5818 | | 4.3326 | 2.0 | 9212 | 5.5327 | | 4.3118 | 3.0 | 13818 | 5.3539 | | 4.1978 | 4.0 | 18424 | 5.1552 | | 4.0235 | 5.0 | 23030 | 4.9679 | | 3.9038 | 6.0 | 27636 | 4.7824 | | 3.8628 | 7.0 | 32242 | 4.5919 | | 3.7967 | 8.0 | 36848 | 4.4415 | | 3.7638 | 9.0 | 41454 | 4.4006 | | 3.7538 | 10.0 | 46060 | 4.3723 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
DaniyalMufti/Reinforce-Cartpole-V1
DaniyalMufti
2023-08-20T08:49:30Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-20T08:49:21Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole-V1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Cchychen/marian-finetuned-kde4-en-to-fr
Cchychen
2023-08-20T08:40:02Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-08-19T12:20:40Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-fr tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 52.88529894542656 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8556 - Bleu: 52.8853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ruisp/hubert-base-ls960-finetuned-gtzan
ruisp
2023-08-20T08:08:06Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:facebook/hubert-base-ls960", "base_model:finetune:facebook/hubert-base-ls960", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-20T05:27:13Z
--- license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: hubert-base-ls960-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.87 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-base-ls960-finetuned-gtzan This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7810 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9364 | 1.0 | 450 | 1.2781 | 0.61 | | 1.0205 | 2.0 | 900 | 1.2654 | 0.63 | | 0.7681 | 3.0 | 1350 | 1.6762 | 0.62 | | 0.6968 | 4.0 | 1800 | 0.9113 | 0.78 | | 0.0467 | 5.0 | 2250 | 1.0105 | 0.82 | | 0.1238 | 6.0 | 2700 | 0.7810 | 0.87 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
KrisPi/Wizard-Coder-0.66-Redmond-Hermes-0.33-ct2fast
KrisPi
2023-08-20T08:07:25Z
4
3
transformers
[ "transformers", "license:openrail", "endpoints_compatible", "region:us" ]
null
2023-08-17T23:10:27Z
--- license: openrail --- **This model is a merge between 66% of Wizard Coder and 33% of Redmond Hermes Coder (which is Wizard Coder fine-tune):** https://huggingface.co/NousResearch/Redmond-Hermes-Coder https://huggingface.co/WizardLM/WizardCoder-15B-V1.0 Merger done by the most basic value average. Using CTranslate2 for quantization and inference achieving as much as 37 tokens /s on RTX 3090 GPU. Inference is done by using text-generation-webui: Added this code and ran an update on requirements.txt: https://github.com/oobabooga/text-generation-webui/pull/2828 There is one thing extra to be changed in the code: reply = apply_extensions('output', reply) to: reply = apply_extensions('output', reply, state) The idea was to get some of the coding abilities back that were lost in fine-tune but retain at least basic capabilities to summarize text and work with context. This experiment was also focused on using CT2 for its speed. **I believe the presented approach is the best available compromise between speed, coding accuracy, and a little of general LLM use.** **Please note that CT2 8bit quant seems to have better HumanEval scores than load-in-8bit** The community now mostly focuses on making non-coding models - code as making coding models be more general seems near impossible. However, my daily use is focused on DevOps questions, summarizing content, and script development. Further development will be around intent analysis for integration with TODO lists and calendar extracting actions and notes from my voice transcription. This model doesn't seem to work well enough on those tasks so next time will attempt actual fine-tunes of Wizard Coder or just run two models at the same time. I hope to fit under 24GB VRAM which would mean I will also evaluate 4 bit quantization. My initial testing was checking if the model finds: Overflow: `"what is mistake in following C++ code: int a = 1e9+7; int b = 1e9+9; int c = a*b; cout << c;"` Out of bounds: `"what is bug in the following C++ code: int a = 100; vector <int> b(a); b[a] = 20; cout << b[a] << '\n';"` and propose using "docker update" for `"how to stop docker container so it doesnt start every reboot"` I have run those prompts in the loop, with different presets and ended up picking this preset: `['temperature'] = 1.31` `['top_p'] = 0.29` `['top_k'] = 72` `['repetition_penalty'] = 1.09` Testing of the above prompts has shown that Hermes Coder CT2 was not able to answer correctly most of the time while Wizard Coder and this merge did. The merged model seems to retain the ability to use "### Input:" in the prompt and became more sensitive to non-coding instruction. (Wizard Coder almost completely disregards it) In the bottom you can see EvalPlus benchmarks of three mentioned models - seems they all performed in a similar way with the default preset. I'm not sure if I'm not doing the benchmark right or if those quants are not working properly with default preset. As I noticed custom preset considerably improved the result. **I would greatly appreciate if anyone can confirm how good this model is with proposed preset as the result I got really positively suprised me.(seems better than any other Wizard Coder 8bit quant** **CT2 int8_float16 merge, custom preset:** `Base` `{'pass@1': 0.47560975609756095}` `Base + Extra` `{'pass@1': 0.45121951219512196}` **For summarization I propose following prompt:** `Below is an instruction that describes a task. Write a response that appropriately completes the request.` `### Instruction:` `Please provide a concise, summary for each topic presented in the input below. Ensure clarity, coherence, and avoid redundant information.` `### Input:` `[CONTENT TO SUMMARIZE]` `### Response:The summary for each topic presented in the input is as follows:` **Optionally iterate over the output with following prompt:** `Below is an instruction that describes a task. Write a response that appropriately completes the request.` `### Instruction:` `Rewrite summary from Input. Fix typos, add missing spaces. Ensure clarity, coherence, and remove redundant information.` `### Input:` `[OUTPUT FROM PREVIOUS PROMPT]` `### Response:` **HumanEval** run using: https://github.com/my-other-github-account/llm-humaneval-benchmarks/ and `sudo docker run -v $(pwd):/app ganler/evalplus:latest --dataset humaneval --samples results/{model_name}.jsonl` **Custom preset:** `['temperature'] = 1.31` `['top_p'] = 0.29` `['top_k'] = 72` `['repetition_penalty'] = 1.09` **CT2 int8_float16 merge, custom preset:** `Base` `{'pass@1': 0.47560975609756095}` `Base + Extra` `{'pass@1': 0.45121951219512196}` **one of the worse reruns:** {'pass@1': 0.4573170731707317} Base + Extra {'pass@1': 0.4146341463414634} **CT2 int8_float16 Wizard Coder:** `Base` `{'pass@1': 0.43902439024390244}` `Base + Extra` `{'pass@1': 0.3597560975609756}` **Retry:** `Base` `{'pass@1': 0.42073170731707316}` `Base + Extra` `{'pass@1': 0.3475609756097561}` **Full-weight Wizard Coder loaded with --load-in-8bit, custom preset:** `Base` `{'pass@1': 0.3475609756097561}` `Base + Extra` `{'pass@1': 0.3170731707317073}` --- **Default llm-humaneval-benchmarks preset:** `['temperature'] = 1` `['top_p'] = 1` `['top_k'] = 0` `['repetition_penalty'] = 1` **CT2 int8_float16 - this model:** `Base` `{'pass@1': 0.4634146341463415}` `Base + Extra` `{'pass@1': 0.4024390243902439}` **CT2 int8_float16 Redmond Hermes Coder:** `Base` `{'pass@1': 0.4695121951219512}` `Base + Extra` `{'pass@1': 0.4146341463414634}` **CT2 int8_float16 Wizard Coder:** `Base` `{'pass@1': 0.4695121951219512}` `Base + Extra` `{'pass@1': 0.3902439024390244}` **Full-weight Wizard Coder loaded with --load-in-8bit, default preset:** `Base` `{'pass@1': 0.43902439024390244}` `Base + Extra` `{'pass@1': 0.3719512195121951}` **Full-weight merged model loaded with --load-in-8bit, default preset:** Base {'pass@1': 0.43902439024390244} Base + Extra {'pass@1': 0.3902439024390244} **Full-weight Hermes Coder model loaded with --load-in-8bit, default preset:** Base {'pass@1': 0.4451219512195122} Base + Extra {'pass@1': 0.4146341463414634} --------------
Yeatee/ppo-LunarLander-v2
Yeatee
2023-08-20T07:59:04Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-19T07:20:26Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.47 +/- 17.50 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
IAMNawaf/SA-Hisroty-9
IAMNawaf
2023-08-20T07:22:40Z
105
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "ar", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "endpoints_compatible", "region:us" ]
question-answering
2023-08-18T23:38:22Z
--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: Naseej-SA-History-QA results: [] language: - ar library_name: transformers pipeline_tag: question-answering widget: - text: "من تولى الإمارة بعـد وفـاة سـعود بـن محمـد بـن مقـرن" context: "بعـد وفـاة سـعود بـن محمـد بـن مقـرن تولـى الإمـارة زيـد بـن مرخـان بـن وطبـان، وكان الأكبـر سـناً مـن آل سـعود، ولكـن حكمـه لـم يمتـد طويـ ًا لكبـر سـنه، ممـا دعـا مقـرن بـن محمـد بـن مقـرن إلـى انتـزاع الإمـارة منـه، لكـن الأمـور لـم تسـتمر طويـ ًا لمقـرن، وذلـك عندمـا حـاول الغـدر بزيـد بـن مرخـان الـذي كان يحكـم قبلـه، ممـا دعـا محمـد بـن سـعود ومقـرن بـن عبداللـه إلـى قتلـه، وكان ذلـك سـنة 1139 هــ 1727/ م.\n\nبعـد ذلـك عـاد إلـى الإمـارة زيـد بـن مرخـان، إلا أنـه عندمـا هجـم علـى إمـارة العيينـة سـعت - بعـد ذلـك - إلـى التحايـل عليـه وطلبـت التفـاوض معـه، وعندمـا ذهـب تم قتلـه، وبعـد قتـل زيـد بـن مرخـان تولـى محمـد بـن سـعود بـن مقـرن الإمـارة فـي الدرعيـة سـنة 1139 هــ 1727/ م ، وظـل حكمـه حتـى سـنة 1179 هـ 1765/ م." example_title: "تاريخ المملكة العربية السعودية" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Naseej-SA-History-QA This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0791 ## Model description The Naseej-SA-History-QA model is a fine-tuned version of the aubmindlab/bert-base-arabertv02 pre-trained BERT model. It has been tailored and optimized for question answering tasks related to the history of Saudi Arabia. The model is designed to comprehend historical context and provide accurate answers to questions in Arabic language. ## Intended uses & limitations The Naseej-SA-History-QA model is intended to be used for answering historical questions specifically related to the history of Saudi Arabia. It can be employed in educational and research settings to assist students, scholars, and researchers in obtaining information about Saudi Arabian history. The model can also be utilized in various NLP applications where historical context is a key factor, such as building educational platforms, historical archives, and language translation tools. The model's performance is contingent upon the quality and accuracy of the training and evaluation data it has been fine-tuned on. It may struggle with questions that deviate significantly from the training data distribution. The model's understanding of historical events and context is based on the data it has been trained on. It may not perform well on questions involving more recent or less documented historical events. The model may not fully comprehend nuanced or highly specific historical inquiries that require deep contextual understanding beyond the scope of its training data. ## Training and evaluation data The Naseej-SA-History-QA model was trained using a custom dataset comprising historical questions and corresponding context passages related to the history of Saudi Arabia. The dataset covers various historical periods and events, providing the model with a wide range of historical context to learn from. The evaluation set used during training was designed to assess the model's performance on question answering tasks. The evaluation set includes a variety of questions and context passages that challenge the model's ability to accurately answer questions about Saudi Arabian history. ## Training procedure The Naseej-SA-History-QA model was fine-tuned using the aubmindlab/bert-base-arabertv02 pre-trained BERT model. The training process involved several key steps: Dataset Preparation: A custom dataset was curated for training the model. The dataset consisted of pairs of historical questions and corresponding context passages, both in Arabic language. The context passages provided the necessary historical context for answering the questions. Tokenization: The dataset was tokenized using the Tokenizers library, which converts text into a format that the model can understand. Tokenization converts words and subwords into numerical tokens that the model can process. Model Fine-Tuning: The tokenized dataset was used to fine-tune the aubmindlab/bert-base-arabertv02 base model using the Transformers library. During fine-tuning, the model was adjusted to perform well on the specific task of question answering related to Saudi Arabian history. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 11 | 4.4161 | | No log | 2.0 | 22 | 4.1722 | | No log | 3.0 | 33 | 3.7147 | | No log | 4.0 | 44 | 3.4012 | | No log | 5.0 | 55 | 3.2906 | | No log | 6.0 | 66 | 3.2351 | | No log | 7.0 | 77 | 3.0865 | | No log | 8.0 | 88 | 3.1011 | | No log | 9.0 | 99 | 3.0791 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.13.3
Yeatee/Taxi-v3
Yeatee
2023-08-20T07:07:50Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-20T07:07:49Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Yeatee/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
namphan1999/results3
namphan1999
2023-08-20T07:04:18Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-20T05:32:46Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: results3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results3 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1390 - Rouge1: 0.4949 - Rouge2: 0.4142 - Rougel: 0.4567 - Rougelsum: 0.4681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 221 | 0.1354 | 0.4748 | 0.3694 | 0.4220 | 0.4369 | | No log | 2.0 | 442 | 0.1342 | 0.4809 | 0.3809 | 0.4309 | 0.4458 | | 0.1539 | 3.0 | 663 | 0.1327 | 0.4837 | 0.3900 | 0.4410 | 0.4530 | | 0.1539 | 4.0 | 884 | 0.1347 | 0.4813 | 0.3876 | 0.4374 | 0.4502 | | 0.1013 | 5.0 | 1105 | 0.1344 | 0.4897 | 0.4001 | 0.4466 | 0.4579 | | 0.1013 | 6.0 | 1326 | 0.1376 | 0.4901 | 0.4054 | 0.4520 | 0.4632 | | 0.0691 | 7.0 | 1547 | 0.1355 | 0.4914 | 0.4068 | 0.4497 | 0.4622 | | 0.0691 | 8.0 | 1768 | 0.1383 | 0.4959 | 0.4153 | 0.4562 | 0.4679 | | 0.0691 | 9.0 | 1989 | 0.1389 | 0.4952 | 0.4147 | 0.4580 | 0.4690 | | 0.0533 | 10.0 | 2210 | 0.1390 | 0.4949 | 0.4142 | 0.4567 | 0.4681 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
sarwarbeing/Reinforce-cartpole
sarwarbeing
2023-08-20T06:52:32Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-20T06:52:23Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ai4bharat/indicwav2vec-odia
ai4bharat
2023-08-20T06:29:42Z
167
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "asr", "or", "arxiv:2006.11477", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-20T06:10:25Z
--- language: or metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - wav2vec2 - asr license: apache-2.0 --- # IndicWav2Vec-Hindi This is a [Wav2Vec2](https://arxiv.org/abs/2006.11477) style ASR model trained in [fairseq](https://github.com/facebookresearch/fairseq) and ported to Hugging Face. More details on datasets, training-setup and conversion to HuggingFace format can be found in the [IndicWav2Vec](https://github.com/AI4Bharat/IndicWav2Vec) repo. ## Script to Run Inference ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F DEVICE_ID = "cuda" if torch.cuda.is_available() else "cpu" MODEL_ID = "ai4bharat/indicwav2vec-odia" sample = next(iter(load_dataset("common_voice", "or", split="test", streaming=True))) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48000, 16000).numpy() model = AutoModelForCTC.from_pretrained(MODEL_ID).to(DEVICE_ID) processor = AutoProcessor.from_pretrained(MODEL_ID) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values.to(DEVICE_ID)).logits.cpu() prediction_ids = torch.argmax(logits, dim=-1) output_str = processor.batch_decode(prediction_ids)[0] print(f"Greedy Decoding: {output_str}") ``` # **About AI4Bharat** - Website: https://ai4bharat.org/ - Code: https://github.com/AI4Bharat - HuggingFace: https://huggingface.co/ai4bharat
tum-nlp/IDMGSP-RoBERTa-TRAIN_GPT3-CONCLUSION
tum-nlp
2023-08-20T06:23:55Z
109
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "dataset:tum-nlp/IDMGSP", "license:openrail++", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-11T13:35:21Z
--- datasets: - tum-nlp/IDMGSP license: openrail++ ---
Cchychen/distilbert-base-uncased-finetuned-imdb
Cchychen
2023-08-20T06:18:24Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-19T12:57:25Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7026 | 1.0 | 157 | 2.4957 | | 2.581 | 2.0 | 314 | 2.4286 | | 2.5363 | 3.0 | 471 | 2.4515 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
timm/ghostnetv2_130.in1k
timm
2023-08-20T06:13:25Z
285
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:2211.12905", "license:apache-2.0", "region:us" ]
image-classification
2023-08-20T06:13:14Z
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for ghostnetv2_130.in1k A GhostNetV2 image classification model. Trained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 9.0 - GMACs: 0.3 - Activations (M): 5.9 - Image size: 224 x 224 - **Papers:** - GhostNetV2: Enhance Cheap Operation with Long-Range Attention: https://arxiv.org/abs/2211.12905 - **Original:** https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/ghostnetv2_pytorch - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('ghostnetv2_130.in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'ghostnetv2_130.in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 20, 112, 112]) # torch.Size([1, 32, 56, 56]) # torch.Size([1, 52, 28, 28]) # torch.Size([1, 104, 14, 14]) # torch.Size([1, 208, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'ghostnetv2_130.in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1248, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Citation ```bibtex @article{tang2022ghostnetv2, title={GhostNetv2: enhance cheap operation with long-range attention}, author={Tang, Yehui and Han, Kai and Guo, Jianyuan and Xu, Chang and Xu, Chao and Wang, Yunhe}, journal={Advances in Neural Information Processing Systems}, volume={35}, pages={9969--9982}, year={2022} } ```
HimashaJ96/falcon-7b-chat-oasst1
HimashaJ96
2023-08-20T05:48:50Z
5
0
peft
[ "peft", "region:us" ]
null
2023-08-20T05:48:48Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
tabbit/ppo-LunarLander-v2
tabbit
2023-08-20T05:45:47Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-20T05:45:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 261.65 +/- 19.18 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CyberHarem/athena_asamiya_thekingoffighters
CyberHarem
2023-08-20T05:45:19Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/athena_asamiya_thekingoffighters", "license:mit", "region:us" ]
text-to-image
2023-08-20T05:39:27Z
--- license: mit datasets: - CyberHarem/athena_asamiya_thekingoffighters pipeline_tag: text-to-image tags: - art --- # Lora of athena_asamiya_thekingoffighters This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/athena_asamiya_thekingoffighters.pt` as the embedding and `1500/athena_asamiya_thekingoffighters.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `athena_asamiya_thekingoffighters`.** These are available steps: | Steps | pattern_1 | pattern_2 | pattern_3 | pattern_4 | bikini | free | nude | Download | |--------:|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------------| | 1500 | ![pattern_1-1500](1500/previews/pattern_1.png) | ![pattern_2-1500](1500/previews/pattern_2.png) | ![pattern_3-1500](1500/previews/pattern_3.png) | ![pattern_4-1500](1500/previews/pattern_4.png) | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/athena_asamiya_thekingoffighters.zip) | | 1400 | ![pattern_1-1400](1400/previews/pattern_1.png) | ![pattern_2-1400](1400/previews/pattern_2.png) | ![pattern_3-1400](1400/previews/pattern_3.png) | ![pattern_4-1400](1400/previews/pattern_4.png) | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/athena_asamiya_thekingoffighters.zip) | | 1300 | ![pattern_1-1300](1300/previews/pattern_1.png) | ![pattern_2-1300](1300/previews/pattern_2.png) | ![pattern_3-1300](1300/previews/pattern_3.png) | ![pattern_4-1300](1300/previews/pattern_4.png) | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/athena_asamiya_thekingoffighters.zip) | | 1200 | ![pattern_1-1200](1200/previews/pattern_1.png) | ![pattern_2-1200](1200/previews/pattern_2.png) | ![pattern_3-1200](1200/previews/pattern_3.png) | ![pattern_4-1200](1200/previews/pattern_4.png) | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/athena_asamiya_thekingoffighters.zip) | | 1100 | ![pattern_1-1100](1100/previews/pattern_1.png) | ![pattern_2-1100](1100/previews/pattern_2.png) | ![pattern_3-1100](1100/previews/pattern_3.png) | ![pattern_4-1100](1100/previews/pattern_4.png) | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/athena_asamiya_thekingoffighters.zip) | | 1000 | ![pattern_1-1000](1000/previews/pattern_1.png) | ![pattern_2-1000](1000/previews/pattern_2.png) | ![pattern_3-1000](1000/previews/pattern_3.png) | ![pattern_4-1000](1000/previews/pattern_4.png) | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/athena_asamiya_thekingoffighters.zip) | | 900 | ![pattern_1-900](900/previews/pattern_1.png) | ![pattern_2-900](900/previews/pattern_2.png) | ![pattern_3-900](900/previews/pattern_3.png) | ![pattern_4-900](900/previews/pattern_4.png) | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/athena_asamiya_thekingoffighters.zip) | | 800 | ![pattern_1-800](800/previews/pattern_1.png) | ![pattern_2-800](800/previews/pattern_2.png) | ![pattern_3-800](800/previews/pattern_3.png) | ![pattern_4-800](800/previews/pattern_4.png) | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/athena_asamiya_thekingoffighters.zip) | | 700 | ![pattern_1-700](700/previews/pattern_1.png) | ![pattern_2-700](700/previews/pattern_2.png) | ![pattern_3-700](700/previews/pattern_3.png) | ![pattern_4-700](700/previews/pattern_4.png) | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/athena_asamiya_thekingoffighters.zip) | | 600 | ![pattern_1-600](600/previews/pattern_1.png) | ![pattern_2-600](600/previews/pattern_2.png) | ![pattern_3-600](600/previews/pattern_3.png) | ![pattern_4-600](600/previews/pattern_4.png) | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/athena_asamiya_thekingoffighters.zip) | | 500 | ![pattern_1-500](500/previews/pattern_1.png) | ![pattern_2-500](500/previews/pattern_2.png) | ![pattern_3-500](500/previews/pattern_3.png) | ![pattern_4-500](500/previews/pattern_4.png) | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/athena_asamiya_thekingoffighters.zip) | | 400 | ![pattern_1-400](400/previews/pattern_1.png) | ![pattern_2-400](400/previews/pattern_2.png) | ![pattern_3-400](400/previews/pattern_3.png) | ![pattern_4-400](400/previews/pattern_4.png) | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/athena_asamiya_thekingoffighters.zip) | | 300 | ![pattern_1-300](300/previews/pattern_1.png) | ![pattern_2-300](300/previews/pattern_2.png) | ![pattern_3-300](300/previews/pattern_3.png) | ![pattern_4-300](300/previews/pattern_4.png) | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/athena_asamiya_thekingoffighters.zip) | | 200 | ![pattern_1-200](200/previews/pattern_1.png) | ![pattern_2-200](200/previews/pattern_2.png) | ![pattern_3-200](200/previews/pattern_3.png) | ![pattern_4-200](200/previews/pattern_4.png) | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/athena_asamiya_thekingoffighters.zip) | | 100 | ![pattern_1-100](100/previews/pattern_1.png) | ![pattern_2-100](100/previews/pattern_2.png) | ![pattern_3-100](100/previews/pattern_3.png) | ![pattern_4-100](100/previews/pattern_4.png) | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/athena_asamiya_thekingoffighters.zip) |
hhs8746/book_test
hhs8746
2023-08-20T05:23:03Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-20T05:22:52Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
YuqiChen/model
YuqiChen
2023-08-20T05:16:20Z
1
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-16T22:09:33Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: quanguomeizhan oil painting art tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - YuqiChen/model This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on quanguomeizhan oil painting art using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
swl-models/Nordrin_little-v2.0
swl-models
2023-08-20T05:15:38Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-20T04:42:12Z
--- license: creativeml-openrail-m ---
ericalt/a2c-PandaReachDense-v2
ericalt
2023-08-20T05:08:11Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "arxiv:2106.13687", "model-index", "region:us" ]
reinforcement-learning
2023-05-28T04:38:13Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.46 +/- 0.37 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ``` Panda Gym environments: [arxiv.org/abs/2106.13687](https://arxiv.org/abs/2106.13687)
DeepBird/my_custom_ddpm_train
DeepBird
2023-08-20T05:01:57Z
30
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-model-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-08-20T04:46:16Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-model-class --- # 这个模型用于生成蝴蝶图像 ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('DeepBird/my_custom_ddpm_train') image = pipeline().images[0] image ```
alokedeep/xlm-roberta-base-finetuned-panx-de
alokedeep
2023-08-20T04:57:16Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-18T12:34:49Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8638609643891634 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1352 - F1: 0.8639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2656 | 1.0 | 525 | 0.1535 | 0.8263 | | 0.1257 | 2.0 | 1050 | 0.1436 | 0.8457 | | 0.0818 | 3.0 | 1575 | 0.1352 | 0.8639 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
swl-models/Nordrin_little-v1.0
swl-models
2023-08-20T04:55:29Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-20T04:42:01Z
--- license: creativeml-openrail-m ---
hhs8746/ttest2
hhs8746
2023-08-20T04:51:29Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-20T04:51:21Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
KhaZix0827/test_trainer2
KhaZix0827
2023-08-20T04:32:38Z
182
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-20T04:01:49Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: test_trainer2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer2 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1032 - Accuracy: 0.9767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 306 | 0.1599 | 0.9558 | | 0.1259 | 2.0 | 612 | 0.1144 | 0.9779 | | 0.1259 | 3.0 | 918 | 0.1032 | 0.9767 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.12.0+cu116 - Datasets 2.12.0 - Tokenizers 0.13.3
Thesnowic/Models
Thesnowic
2023-08-20T04:28:14Z
0
0
null
[ "region:us" ]
null
2023-08-12T04:21:31Z
Welcome! This is where I upload my AI models!
devscion/pakhistoricalplaces
devscion
2023-08-20T04:18:08Z
47
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-20T04:06:04Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### PakHistoricalPlaces Dreambooth model trained by devscion with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
aiplanet/effi-13b
aiplanet
2023-08-20T04:16:56Z
1,338
10
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:kaist-ai/CoT-Collection", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-18T13:59:35Z
--- license: apache-2.0 datasets: - kaist-ai/CoT-Collection metrics: - accuracy pipeline_tag: text-generation --- # Model card for aiplanet/effi-13b effi-13B parameters is a causal decoder-only model built by AI Planet based on Llama-2-13b-chat-hf and fine tuned using the 1.8 Million coversations from CoT dataset available in huggingface datasets. The model is made available under the Apache 2.0 license. ## Why use effi-13B-Instruct? - This is a ready to use chat/instruct model based on Llama-2-13b-chat-hf, which provides a rationale for the context provided. - Llama-2 is the best open-source model available. This is an instruct model, which may not be ideal for further finetuning. If you are interested in building your own instruct/chat model, we recommend starting from **Llama-2-13b-chat-hf** You will need at least **85-100GB of memory to swiftly run inference with effi-13b**. ## Model Details ### Model Description This model has been fine-tuned on Chain of Thought datasets, which has context from mixed sources with corresponding rationale. The final finetuned Large Language Model(LLM) have shown enhanced capabilities of solving novel tasks by providing a reasoning. - **Developed by:** AI Planet - **Model type:** Casual Decoder only - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Finetuned from model:** Llama-2-13b-chat-hf ### Direct Use effi-13b has been finetuned on a Chain of Thought dataset. ### Out-of-Scope Use Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful. ## Bias, Risks, and Limitations This model has been majorly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online. ### Recommendations We recommend users of effi-13b to develop guardrails and take appropriate precautions for any production use. Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information is needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ``` from transformers import (AutoModelForCausalLM, AutoTokenizer, pipeline) model_card = "aiplanet/effi-13b" # model = AutoModelForCausalLM.from_pretrained(model_card) tokenizer = AutoTokenizer.from_pretrained(model_card) # generate_text = transformers.pipeline( model=model, tokenizer=tokenizer, return_full_text=True, # langchain expects the full text task='text-generation', # we pass model parameters here too temperature=0.4, # 'randomness' of outputs, 0.0 is the min and 1.0 the max max_new_tokens=512, # mex number of tokens to generate in the output repetition_penalty=1.1 # without this output begins repeating ) # promt = """ Can you explain this code in detail? def generate_stream(tokenizer, model, params, device, context_len=2048, stream_interval=2): prompt = params["prompt"] l_prompt = len(prompt) temperature = float(params.get("temperature", 1.0)) max_new_tokens = int(params.get("max_new_tokens", 256)) stop_str = params.get("stop", None) input_ids = tokenizer(prompt).input_ids output_ids = list(input_ids) max_src_len = context_len - max_new_tokens - 8 input_ids = input_ids[-max_src_len:] for i in range(max_new_tokens): if i == 0: out = model( torch.as_tensor([input_ids], device=device), use_cache=True) logits = out.logits past_key_values = out.past_key_values else: attention_mask = torch.ones( 1, past_key_values[0][0].shape[-2] + 1, device=device) out = model(input_ids=torch.as_tensor([[token]], device=device), use_cache=True, attention_mask=attention_mask, past_key_values=past_key_values) logits = out.logits past_key_values = out.past_key_values last_token_logits = logits[0][-1] if device == "mps": # Switch to CPU by avoiding some bugs in mps backend. last_token_logits = last_token_logits.float().to("cpu") if temperature < 1e-4: token = int(torch.argmax(last_token_logits)) else: probs = torch.softmax(last_token_logits / temperature, dim=-1) token = int(torch.multinomial(probs, num_samples=1)) output_ids.append(token) if token == tokenizer.eos_token_id: stopped = True else: stopped = False if i % stream_interval == 0 or i == max_new_tokens - 1 or stopped: output = tokenizer.decode(output_ids, skip_special_tokens=True) pos = output.rfind(stop_str, l_prompt) if pos != -1: output = output[:pos] stopped = True yield output if stopped: break del past_key_values """ # system_message = "Given your chain of thought reasoning, provide a rationale for the context in the source." prompt = f"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n{prompt}. [/INST]" # replace the command here with something relevant to your task # result = generate_text(prompt) print(result[0]['generated_text'].strip().split("[/INST]")[-1]) ``` ## Training Details ### Training Data effi-13b has been finetuned on https://huggingface.co/datasets/kaist-ai/CoT-Collection The data was tokenized with the **meta-llama/Llama-2-13b-chat-hf** tokenizer. ### Training Procedure Fine-tuning approach using PefT and Qlora(https://huggingface.co/blog/4bit-transformers-bitsandbytes) #### Training Hyperparameters - **Training regime:** - lora_alpha=32, - lora_dropout=0.05, - r=8, - bias="none", - task_type="CAUSAL_LM" # - load_in_4bit=True, - bnb_4bit_quant_type = "nf4", - bnb_4bit_use_double_quant=True, - bnb_4bit_compute_dtype=torch.bfloat16 # - num_train_epochs = 1 - fp16 = False - bf16 = False - per_device_train_batch_size = 1 - per_device_eval_batch_size = 1 - gradient_accumulation_steps = 4 - gradient_checkpointing = True - max_grad_norm = 0.3 - learning_rate = 2e-4 - weight_decay = 0.001 - optim = "paged_adamw_32bit" - lr_scheduler_type = "constant" - max_steps = 500 - warmup_ratio = 0.03 - group_by_length = True - save_steps = 25 - logging_steps = 5 - max_seq_length = 2048 - packing = False - device_map = {"": 0} ## Evaluation Paper coming soon. See the OpenLLM Leaderboard(https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for early results. ## Citation @article{effi-13b, title={{effi-13b}: an open large language model with state-of-the-art performance}, author={aiplanet}, year={2023} } ## Model Card Contact community@aiplanet.com
Chattiori/BismuthMix
Chattiori
2023-08-20T03:15:01Z
0
6
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-03-24T02:15:58Z
--- license: bigscience-openrail-m --- # **Chattiori ElementMixes-83:BismuthMix** BismuthMix is checkpoint merge of ChilloutMix, DDosMix, El Zipang, Deliberate and RetMix. V2: Change some merge ratio, update RetMix to V2 and add real-max-v3.4 and majicMIX realistic into merges. V3: Change some merge ratio, update majicMIX realistic, change ChilloutMix to ChillyMix and add Shampoo Mix, AIbijoModel, GeminiX Mix, LEAU, CosplayMix, epiCRealism, Lyriel, fantasticmix and XXMix 9realistic into merges. V4: Change every merge ratios and add many models All models and merge ratios are written in [HERE](https://civitai.com/articles/654) For V3 and V4, I used [my own model merger](https://github.com/Faildes/merge-models). [**CivitAI**](https://civitai.com/models/23629/bismuthmix) ## Merge Source: v1: ((Chilloutmix-Ni-pruned-fp32-fix (0.4) + DDosMix_v2 (0.6) Weighted Sum) (0.5) + (El Zipang:v1.0 (0.7) + Deliberate v2 (0.3) Weighted Sum) (0.5) Weighted Sum) (0.7) + RetMix (0.3) Weighted Sum v2: real-max-v3.4 + majicMIX realistic v2 0.6 Weighted Sum >> (1) (1) + ChilloutMix-Ni-pruned-fp32-fix 0.65 Weighted Sum >> (2) (2) + DDosMix V2 0.45 Weighted Sum >> (3a) El Zipang + Deliberate V2 0.3 Weighted Sum >> (3b) (3a) + (3b) 0.5 Weighted Sum >> (4) (4) + RetMix V2 0.25 Weighted Sum >> BismuthMix V2 v3: real-max v3.4 + GeminiX Mix v1.0 0.45 Weighted Sum >> (00a) Shampoo Mix v3.0 + majicMIX realistic v4 0.5 Weighted Sum >> (00b) (00a) + (00b) 0.4 Weighted Sum >> (0a) CosplayMix v2.0 + LEAU v1.0 0.35 Weighted Sum >> (0b) (0b) + (0a) 0.65 Weighted Sum >> (1a) epiCRealism new Era + XXMix_9realistic v2.6 0.45 Weighted Sum >> (1b) ChillyMix v1.0 + AIbijoModel no47p22 0.55 Weighted Sum >> (1c) (1a) + (1c) 0.65 Weighted Sum >> (2) (2) + (1b) 0.35 Weighted Sum >> (3a) DDosMix V2 + fantasticmix v5.5 0.25 Weighted Sum >> (3b) (3a) + (3b) 0.45 Weighted Sum >> (4a) El Zipang + Deliberate V2 0.35 Weighted Sum >> (4b) (4a) + (4b) 0.25 Weighted Sum >> (5) (5) + RetMix V2 0.2 Weighted Sum >> BismuthMix V3
churumusco/whyblock
churumusco
2023-08-20T02:55:37Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-08-20T02:53:55Z
--- license: openrail --- MADE BY deltascheme ON DISCORD ALL CREDITS TO HIM IM JUST REUPLOADING IT
LarryAIDraw/Nightingale
LarryAIDraw
2023-08-20T02:24:17Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-19T21:00:49Z
--- license: creativeml-openrail-m --- https://civitai.com/models/5651/arknights-nightingale
LarryAIDraw/Arknights-Specter_the_Unchained-SOFT
LarryAIDraw
2023-08-20T02:24:04Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-19T21:00:06Z
--- license: creativeml-openrail-m --- https://civitai.com/models/14458/pramanix-arknights-freefit-lora
ademola277/bert-base-uncased-finetuned-squad
ademola277
2023-08-20T02:14:30Z
63
0
transformers
[ "transformers", "tf", "tensorboard", "bert", "question-answering", "generated_from_keras_callback", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-18T03:11:17Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_keras_callback model-index: - name: ademola277/bert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ademola277/bert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on FEVER dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train End Logits Accuracy: 1.0 - Train Start Logits Accuracy: 1.0 - Validation Loss: 0.0011 - Validation End Logits Accuracy: 0.9995 - Validation Start Logits Accuracy: 1.0 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 13587, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: mixed_float16 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.0302 | 0.9944 | 0.9963 | 0.0024 | 0.9988 | 1.0 | 0 | | 0.0002 | 0.9999 | 1.0000 | 0.0009 | 0.9998 | 1.0 | 1 | | 0.0000 | 1.0 | 1.0 | 0.0011 | 0.9995 | 1.0 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.13.0 - Datasets 2.12.0 - Tokenizers 0.13.2
thinkermode/sdxl-db-appu
thinkermode
2023-08-20T02:00:05Z
1
3
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-20T02:00:02Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: appu tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
edwsiew/setfit-finetuned-tech-sentiment-setfit-32-20-1
edwsiew
2023-08-20T01:48:21Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-20T01:48:01Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # edwsiew/setfit-finetuned-tech-sentiment-setfit-32-20-1 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("edwsiew/setfit-finetuned-tech-sentiment-setfit-32-20-1") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
pabloyesteb/ppo-PyramidsRND
pabloyesteb
2023-08-20T01:14:38Z
8
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-19T20:23:04Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: pabloyesteb/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
akar49/Segformer-MRIseg_model
akar49
2023-08-20T01:04:55Z
32
0
transformers
[ "transformers", "tf", "segformer", "generated_from_keras_callback", "base_model:nvidia/segformer-b0-finetuned-ade-512-512", "base_model:finetune:nvidia/segformer-b0-finetuned-ade-512-512", "license:other", "endpoints_compatible", "region:us" ]
null
2023-08-20T01:04:37Z
--- license: other base_model: nvidia/segformer-b0-finetuned-ade-512-512 tags: - generated_from_keras_callback model-index: - name: Segformer-MRIseg_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Segformer-MRIseg_model This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0049 - Validation Loss: 0.0133 - Epoch: 59 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.2537 | 0.0685 | 0 | | 0.0849 | 0.0639 | 1 | | 0.0664 | 0.0532 | 2 | | 0.0580 | 0.0503 | 3 | | 0.0536 | 0.0497 | 4 | | 0.0476 | 0.0396 | 5 | | 0.0437 | 0.0477 | 6 | | 0.0359 | 0.0397 | 7 | | 0.0312 | 0.0289 | 8 | | 0.0256 | 0.0322 | 9 | | 0.0241 | 0.0279 | 10 | | 0.0220 | 0.0229 | 11 | | 0.0180 | 0.0226 | 12 | | 0.0160 | 0.0192 | 13 | | 0.0165 | 0.0227 | 14 | | 0.0151 | 0.0194 | 15 | | 0.0146 | 0.0184 | 16 | | 0.0132 | 0.0177 | 17 | | 0.0121 | 0.0211 | 18 | | 0.0111 | 0.0197 | 19 | | 0.0107 | 0.0175 | 20 | | 0.0116 | 0.0131 | 21 | | 0.0115 | 0.0181 | 22 | | 0.0094 | 0.0153 | 23 | | 0.0099 | 0.0140 | 24 | | 0.0098 | 0.0151 | 25 | | 0.0084 | 0.0126 | 26 | | 0.0080 | 0.0140 | 27 | | 0.0071 | 0.0128 | 28 | | 0.0067 | 0.0169 | 29 | | 0.0061 | 0.0131 | 30 | | 0.0063 | 0.0207 | 31 | | 0.0067 | 0.0129 | 32 | | 0.0062 | 0.0152 | 33 | | 0.0056 | 0.0148 | 34 | | 0.0056 | 0.0171 | 35 | | 0.0051 | 0.0154 | 36 | | 0.0049 | 0.0172 | 37 | | 0.0049 | 0.0180 | 38 | | 0.0056 | 0.0168 | 39 | | 0.0050 | 0.0142 | 40 | | 0.0048 | 0.0165 | 41 | | 0.0051 | 0.0195 | 42 | | 0.0048 | 0.0232 | 43 | | 0.0042 | 0.0208 | 44 | | 0.0041 | 0.0249 | 45 | | 0.0044 | 0.0220 | 46 | | 0.0041 | 0.0234 | 47 | | 0.0042 | 0.0198 | 48 | | 0.0040 | 0.0282 | 49 | | 0.0039 | 0.0251 | 50 | | 0.0039 | 0.0302 | 51 | | 0.0041 | 0.0219 | 52 | | 0.0040 | 0.0187 | 53 | | 0.0039 | 0.0203 | 54 | | 0.0043 | 0.0180 | 55 | | 0.0051 | 0.0150 | 56 | | 0.0079 | 0.0205 | 57 | | 0.0052 | 0.0152 | 58 | | 0.0049 | 0.0133 | 59 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
sehiro/LINE-ct2-jp
sehiro
2023-08-20T01:03:27Z
0
2
null
[ "ja", "license:apache-2.0", "region:us" ]
null
2023-08-20T00:46:02Z
--- license: apache-2.0 language: - ja --- https://huggingface.co/line-corporation/japanese-large-lm-3.6b-instruction-sft をctranslate2で使用するための変換済データセットです。
pssubitha/llama2_sf_v01
pssubitha
2023-08-20T00:11:46Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-20T00:11:29Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
Daniel2tio/ppo-LunarLander-v2
Daniel2tio
2023-08-20T00:03:16Z
0
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-19T12:58:34Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 267.37 +/- 18.40 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
TuringRM/stable-diffusion-v1-5
TuringRM
2023-08-20T00:01:32Z
35
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "arxiv:2207.12598", "arxiv:2112.10752", "arxiv:2103.00020", "arxiv:2205.11487", "arxiv:1910.09700", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-20T00:00:45Z
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image inference: true extra_gated_prompt: >- This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. CompVis claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license carefully here: https://huggingface.co/spaces/CompVis/stable-diffusion-license extra_gated_heading: Please read the LICENSE to access this model duplicated_from: runwayml/stable-diffusion-v1-5 --- # Stable Diffusion v1-5 Model Card Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. For more information about how Stable Diffusion functions, please have a look at [🤗's Stable Diffusion blog](https://huggingface.co/blog/stable_diffusion). The **Stable-Diffusion-v1-5** checkpoint was initialized with the weights of the [Stable-Diffusion-v1-2](https:/steps/huggingface.co/CompVis/stable-diffusion-v1-2) checkpoint and subsequently fine-tuned on 595k steps at resolution 512x512 on "laion-aesthetics v2 5+" and 10% dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). You can use this both with the [🧨Diffusers library](https://github.com/huggingface/diffusers) and the [RunwayML GitHub repository](https://github.com/runwayml/stable-diffusion). ### Diffusers ```py from diffusers import StableDiffusionPipeline import torch model_id = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` For more detailed instructions, use-cases and examples in JAX follow the instructions [here](https://github.com/huggingface/diffusers#text-to-image-generation-with-stable-diffusion) ### Original GitHub Repository 1. Download the weights - [v1-5-pruned-emaonly.ckpt](https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt) - 4.27GB, ema-only weight. uses less VRAM - suitable for inference - [v1-5-pruned.ckpt](https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned.ckpt) - 7.7GB, ema+non-ema weights. uses more VRAM - suitable for fine-tuning 2. Follow instructions [here](https://github.com/runwayml/stable-diffusion). ## Model Details - **Developed by:** Robin Rombach, Patrick Esser - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based. - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([CLIP ViT-L/14](https://arxiv.org/abs/2103.00020)) as suggested in the [Imagen paper](https://arxiv.org/abs/2205.11487). - **Resources for more information:** [GitHub Repository](https://github.com/CompVis/stable-diffusion), [Paper](https://arxiv.org/abs/2112.10752). - **Cite as:** @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } # Uses ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), but applies in the same way to Stable Diffusion v1_. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/) which contains adult material and is not fit for product use without additional safety mechanisms and considerations. - No additional measures were used to deduplicate the dataset. As a result, we observe some degree of memorization for images that are duplicated in the training data. The training data can be searched at [https://rom1504.github.io/clip-retrieval/](https://rom1504.github.io/clip-retrieval/) to possibly assist in the detection of memorized images. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion v1 was trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are primarily limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. ### Safety Module The intended use of this model is with the [Safety Checker](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) in Diffusers. This checker works by checking model outputs against known hard-coded NSFW concepts. The concepts are intentionally hidden to reduce the likelihood of reverse-engineering this filter. Specifically, the checker compares the class probability of harmful concepts in the embedding space of the `CLIPTextModel` *after generation* of the images. The concepts are passed into the model with the generated image and compared to a hand-engineered weight for each NSFW concept. ## Training **Training Data** The model developers used the following dataset for training the model: - LAION-2B (en) and subsets thereof (see next section) **Training Procedure** Stable Diffusion v1-5 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training, - Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4 - Text prompts are encoded through a ViT-L/14 text-encoder. - The non-pooled output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention. - The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet. Currently six Stable Diffusion checkpoints are provided, which were trained as follows. - [`stable-diffusion-v1-1`](https://huggingface.co/CompVis/stable-diffusion-v1-1): 237,000 steps at resolution `256x256` on [laion2B-en](https://huggingface.co/datasets/laion/laion2B-en). 194,000 steps at resolution `512x512` on [laion-high-resolution](https://huggingface.co/datasets/laion/laion-high-resolution) (170M examples from LAION-5B with resolution `>= 1024x1024`). - [`stable-diffusion-v1-2`](https://huggingface.co/CompVis/stable-diffusion-v1-2): Resumed from `stable-diffusion-v1-1`. 515,000 steps at resolution `512x512` on "laion-improved-aesthetics" (a subset of laion2B-en, filtered to images with an original size `>= 512x512`, estimated aesthetics score `> 5.0`, and an estimated watermark probability `< 0.5`. The watermark estimate is from the LAION-5B metadata, the aesthetics score is estimated using an [improved aesthetics estimator](https://github.com/christophschuhmann/improved-aesthetic-predictor)). - [`stable-diffusion-v1-3`](https://huggingface.co/CompVis/stable-diffusion-v1-3): Resumed from `stable-diffusion-v1-2` - 195,000 steps at resolution `512x512` on "laion-improved-aesthetics" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). - [`stable-diffusion-v1-4`](https://huggingface.co/CompVis/stable-diffusion-v1-4) Resumed from `stable-diffusion-v1-2` - 225,000 steps at resolution `512x512` on "laion-aesthetics v2 5+" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). - [`stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) Resumed from `stable-diffusion-v1-2` - 595,000 steps at resolution `512x512` on "laion-aesthetics v2 5+" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). - [`stable-diffusion-inpainting`](https://huggingface.co/runwayml/stable-diffusion-inpainting) Resumed from `stable-diffusion-v1-5` - then 440,000 steps of inpainting training at resolution 512x512 on “laion-aesthetics v2 5+” and 10% dropping of the text-conditioning. For inpainting, the UNet has 5 additional input channels (4 for the encoded masked-image and 1 for the mask itself) whose weights were zero-initialized after restoring the non-inpainting checkpoint. During training, we generate synthetic masks and in 25% mask everything. - **Hardware:** 32 x 8 x A100 GPUs - **Optimizer:** AdamW - **Gradient Accumulations**: 2 - **Batch:** 32 x 8 x 2 x 4 = 2048 - **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant ## Evaluation Results Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and 50 PNDM/PLMS sampling steps show the relative improvements of the checkpoints: ![pareto](https://huggingface.co/CompVis/stable-diffusion/resolve/main/v1-1-to-v1-5.png) Evaluated using 50 PLMS steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores. ## Environmental Impact **Stable Diffusion v1** **Estimated Emissions** Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact. - **Hardware Type:** A100 PCIe 40GB - **Hours used:** 150000 - **Cloud Provider:** AWS - **Compute Region:** US-east - **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 11250 kg CO2 eq. ## Citation ```bibtex @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ``` *This model card was written by: Robin Rombach and Patrick Esser and is based on the [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
linyangnyc/finetuning-sentiment-model-3000-samples
linyangnyc
2023-08-19T23:59:55Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-19T23:29:42Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8633333333333333 - name: F1 type: f1 value: 0.8637873754152824 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3334 - Accuracy: 0.8633 - F1: 0.8638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.3
smangrul/peft-lora-DeciCoder1b-personal-copilot-A100-40GB-colab
smangrul
2023-08-19T23:36:06Z
5
0
peft
[ "peft", "generated_from_trainer", "base_model:Deci/DeciCoder-1b", "base_model:adapter:Deci/DeciCoder-1b", "license:apache-2.0", "region:us" ]
null
2023-08-19T19:59:05Z
--- license: apache-2.0 base_model: Deci/DeciCoder-1b tags: - generated_from_trainer model-index: - name: peft-lora-DeciCoder1b-personal-copilot-A100-40GB-colab results: [] library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # peft-lora-DeciCoder1b-personal-copilot-A100-40GB-colab This model is a fine-tuned version of [Deci/DeciCoder-1b](https://huggingface.co/Deci/DeciCoder-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.831 | 0.05 | 100 | 0.7074 | | 0.7092 | 0.1 | 200 | 0.5904 | | 0.6971 | 0.15 | 300 | 0.5637 | | 0.8405 | 0.2 | 400 | 0.5363 | | 0.6548 | 0.25 | 500 | 0.5126 | | 0.6022 | 0.3 | 600 | 0.4634 | | 0.6568 | 0.35 | 700 | 0.4529 | | 0.87 | 0.4 | 800 | 0.4491 | | 0.4818 | 0.45 | 900 | 0.4438 | | 0.5067 | 0.5 | 1000 | 0.4117 | | 0.4578 | 0.55 | 1100 | 0.4044 | | 0.5909 | 0.6 | 1200 | 0.4041 | | 0.3646 | 0.65 | 1300 | 0.4027 | | 0.4597 | 0.7 | 1400 | 0.3963 | | 0.3385 | 0.75 | 1500 | 0.3935 | | 0.2696 | 0.8 | 1600 | 0.3955 | | 0.3011 | 0.85 | 1700 | 0.3966 | | 0.2931 | 0.9 | 1800 | 0.3980 | | 0.2904 | 0.95 | 1900 | 0.3978 | | 0.2669 | 1.0 | 2000 | 0.3977 | ### Framework versions - PEFT 0.5.0.dev0 - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
thinkermode/sdxl-db-powerstar
thinkermode
2023-08-19T23:36:05Z
1
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-19T23:35:59Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: powerstar tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
AlexWortega/blip2-opt-2.7b-db_sasha
AlexWortega
2023-08-19T23:28:51Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-19T23:28:42Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
yangwang825/mert-base
yangwang825
2023-08-19T22:55:03Z
104
0
transformers
[ "transformers", "pytorch", "mert_model", "feature-extraction", "audio", "music", "audio-classification", "custom_code", "region:us" ]
audio-classification
2023-08-06T12:21:42Z
--- pipeline_tag: audio-classification tags: - audio - music --- # MERT MERT (Acoustic Music Understanding Model with Large-Scale Self-supervised Training) incorporates teacher models to provide pseudo labels in the masked language modelling (MLM) style acoustic pre-training. The pre-trained weights of MERT came from [m-a-p/MERT-v1-95M](https://huggingface.co/m-a-p/MERT-v1-95M). In this repository, we registered MERT for [AutoModelForAudioClassification](https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModelForAudioClassification) auto class. ## Usage ```python import numpy as np from transformers import AutoFeatureExtractor, AutoModelForAudioClassification # Some configurations model_id = 'yangwang825/mert-base' batch_size = 4 num_classes = 10 max_duration = 1.0 # Initialise the extractor and model feature_extractor = AutoFeatureExtractor.from_pretrained( model_id, trust_remote_code=True ) mert = AutoModelForAudioClassification.from_pretrained( model_id, num_labels=num_classes, ignore_mismatched_sizes=True, trust_remote_code=True ) # Simulate a list of waveforms (e.g. four audio clips) audio_arrays = [ np.random.rand(16000, ), np.random.rand(24000, ), np.random.rand(22050, ), np.random.rand(44100, ) ] inputs = feature_extractor( audio_arrays, # List of waveforms in numpy array format sampling_rate=feature_extractor.sampling_rate, max_length=int(feature_extractor.sampling_rate * max_duration), padding='max_length', truncation=True, return_tensors='pt' ) # The shape of `input_values` is (batch_size, sample_rate * max_duration) input_values = inputs['input_values'] outputs = mert(**inputs) # The shape of `logits` is (batch_size, num_classes) logits = outputs['logits'] ```
Felipe474/distilhubert-finetuned-gtzan
Felipe474
2023-08-19T22:54:30Z
165
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-23T19:05:47Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.81 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.9492 - Accuracy: 0.81 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1278 | 1.0 | 113 | 1.9945 | 0.46 | | 1.422 | 2.0 | 226 | 1.3210 | 0.63 | | 1.0769 | 3.0 | 339 | 0.9838 | 0.77 | | 0.8781 | 4.0 | 452 | 0.8076 | 0.75 | | 0.6584 | 5.0 | 565 | 0.6962 | 0.79 | | 0.4766 | 6.0 | 678 | 0.5555 | 0.84 | | 0.3916 | 7.0 | 791 | 0.5909 | 0.84 | | 0.1187 | 8.0 | 904 | 0.6129 | 0.81 | | 0.1442 | 9.0 | 1017 | 0.7126 | 0.79 | | 0.1238 | 10.0 | 1130 | 0.8089 | 0.8 | | 0.0291 | 11.0 | 1243 | 0.8908 | 0.79 | | 0.0821 | 12.0 | 1356 | 0.8962 | 0.81 | | 0.0104 | 13.0 | 1469 | 0.8957 | 0.81 | | 0.0311 | 14.0 | 1582 | 0.9264 | 0.81 | | 0.0107 | 15.0 | 1695 | 0.9492 | 0.81 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
edwsiew/setfit-finetuned-tech-sentiment-setfit-16-20-2
edwsiew
2023-08-19T22:19:34Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-19T22:19:14Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # edwsiew/setfit-finetuned-tech-sentiment-setfit-16-20-2 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("edwsiew/setfit-finetuned-tech-sentiment-setfit-16-20-2") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
KingKazma/xsum_6789_5000000_2500000_v1_train
KingKazma
2023-08-19T22:14:00Z
5
0
bertopic
[ "bertopic", "text-classification", "region:us" ]
text-classification
2023-08-19T22:13:56Z
--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # xsum_6789_5000000_2500000_v1_train This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("KingKazma/xsum_6789_5000000_2500000_v1_train") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 1005 * Number of training documents: 204045 <details> <summary>Click here for an overview of all topics.</summary> | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | said - league - one - police - also | 5 | -1_said_league_one_police | | 0 | labour - eu - referendum - brexit - vote | 120934 | 0_labour_eu_referendum_brexit | | 1 | cricket - wicket - batsman - test - bowler | 4809 | 1_cricket_wicket_batsman_test | | 2 | murder - det - man - police - insp | 3540 | 2_murder_det_man_police | | 3 | rugby - scarlets - lions - ospreys - coach | 2550 | 3_rugby_scarlets_lions_ospreys | | 4 | school - education - pupil - teacher - schools | 1713 | 4_school_education_pupil_teacher | | 5 | rail - train - transport - rmt - bridge | 1694 | 5_rail_train_transport_rmt | | 6 | celtic - dundee - rangers - thistle - aberdeen | 1642 | 6_celtic_dundee_rangers_thistle | | 7 | syrian - syria - turkey - kurdish - iraqi | 1310 | 7_syrian_syria_turkey_kurdish | | 8 | nhs - patient - hospital - care - health | 1296 | 8_nhs_patient_hospital_care | | 9 | fire - blaze - firefighter - smoke - rescue | 1086 | 9_fire_blaze_firefighter_smoke | | 10 | foul - footed - kick - box - town | 1015 | 10_foul_footed_kick_box | | 11 | fight - boxing - mayweather - fury - wba | 995 | 11_fight_boxing_mayweather_fury | | 12 | mercedes - f1 - hamilton - rosberg - race | 995 | 12_mercedes_f1_hamilton_rosberg | | 13 | space - earth - planet - mission - spacecraft | 989 | 13_space_earth_planet_mission | | 14 | murray - tennis - wimbledon - slam - djokovic | 966 | 14_murray_tennis_wimbledon_slam | | 15 | cancer - disease - cell - brain - patient | 961 | 15_cancer_disease_cell_brain | | 16 | collision - crash - road - driver - junction | 954 | 16_collision_crash_road_driver | | 17 | coastguard - lifeboat - rnli - rescue - search | 948 | 17_coastguard_lifeboat_rnli_rescue | | 18 | dog - animal - rspca - cat - dogs | 824 | 18_dog_animal_rspca_cat | | 19 | indecent - sexual - rape - assault - sex | 796 | 19_indecent_sexual_rape_assault | | 20 | trump - clinton - republican - trumps - hillary | 795 | 20_trump_clinton_republican_trumps | | 21 | film - actor - star - movie - drama | 771 | 21_film_actor_star_movie | | 22 | golf - mcilroy - birdie - pga - par | 752 | 22_golf_mcilroy_birdie_pga | | 23 | ukraine - russian - russia - ukrainian - putin | 707 | 23_ukraine_russian_russia_ukrainian | | 24 | dedicated - transfer - appearance - page - latest | 702 | 24_dedicated_transfer_appearance_page | | 25 | boko - haram - sudan - nigeria - rwanda | 685 | 25_boko_haram_sudan_nigeria | | 26 | data - security - password - hacker - malware | 651 | 26_data_security_password_hacker | | 27 | maduro - venezuela - venezuelan - gang - mexico | 647 | 27_maduro_venezuela_venezuelan_gang | | 28 | album - song - band - music - chart | 647 | 28_album_song_band_music | | 29 | medal - gold - olympic - rio - championships | 616 | 29_medal_gold_olympic_rio | | 30 | yn - ar - wedi - ei - bod | 612 | 30_yn_ar_wedi_ei | | 31 | taliban - pakistan - afghan - afghanistan - pakistani | 560 | 31_taliban_pakistan_afghan_afghanistan | | 32 | gun - shooting - officer - police - black | 507 | 32_gun_shooting_officer_police | | 33 | snooker - frame - osullivan - selby - ding | 481 | 33_snooker_frame_osullivan_selby | | 34 | ghana - african - cameroon - burkina - nations | 468 | 34_ghana_african_cameroon_burkina | | 35 | flood - flooding - rain - warning - water | 467 | 35_flood_flooding_rain_warning | | 36 | korea - korean - north - kim - missile | 458 | 36_korea_korean_north_kim | | 37 | zoo - elephant - animal - rhino - lion | 448 | 37_zoo_elephant_animal_rhino | | 38 | dup - sinn - fin - unionist - stormont | 444 | 38_dup_sinn_fin_unionist | | 39 | chelsea - tottenham - manchester - arsenal - hotspur | 437 | 39_chelsea_tottenham_manchester_arsenal | | 40 | zuma - anc - mandela - kenyatta - mugabe | 429 | 40_zuma_anc_mandela_kenyatta | | 41 | tax - wage - pension - chancellor - osborne | 408 | 41_tax_wage_pension_chancellor | | 42 | quake - earthquake - nepal - rain - kathmandu | 398 | 42_quake_earthquake_nepal_rain | | 43 | airport - heathrow - runway - airports - gatwick | 383 | 43_airport_heathrow_runway_airports | | 44 | jockey - horse - stakes - trainer - racing | 382 | 44_jockey_horse_stakes_trainer | | 45 | prison - prisoner - prisons - inmate - hmp | 380 | 45_prison_prisoner_prisons_inmate | | 46 | planning - development - council - site - housing | 365 | 46_planning_development_council_site | | 47 | delhi - modi - india - bjp - indias | 363 | 47_delhi_modi_india_bjp | | 48 | derry - donegal - dundalk - tyrone - monaghan | 337 | 48_derry_donegal_dundalk_tyrone | | 49 | migrant - asylum - refugee - migrants - greece | 323 | 49_migrant_asylum_refugee_migrants | | 50 | wigan - replacements - super - castleford - warrington | 320 | 50_wigan_replacements_super_castleford | | 51 | tesco - store - sale - retailer - morrisons | 299 | 51_tesco_store_sale_retailer | | 52 | madrid - barcelona - bayern - mnchen - fc | 298 | 52_madrid_barcelona_bayern_mnchen | | 53 | art - painting - gallery - artist - exhibition | 297 | 53_art_painting_gallery_artist | | 54 | doping - iaaf - athlete - antidoping - wada | 290 | 54_doping_iaaf_athlete_antidoping | | 55 | israel - palestinian - israeli - palestinians - gaza | 288 | 55_israel_palestinian_israeli_palestinians | | 56 | paris - french - attack - brussels - abdeslam | 278 | 56_paris_french_attack_brussels | | 57 | samsung - apple - iphone - phone - smartphone | 277 | 57_samsung_apple_iphone_phone | | 58 | unsupported - updated - playback - device - media | 271 | 58_unsupported_updated_playback_device | | 59 | roman - archaeologist - coin - hoard - museum | 270 | 59_roman_archaeologist_coin_hoard | | 60 | macron - pen - fillon - sarkozy - fn | 269 | 60_macron_pen_fillon_sarkozy | | 61 | wind - energy - turbine - lagoon - tidal | 269 | 61_wind_energy_turbine_lagoon | | 62 | fraud - crown - money - court - false | 267 | 62_fraud_crown_money_court | | 63 | council - budget - tax - councils - local | 261 | 63_council_budget_tax_councils | | 64 | bird - rspb - wildlife - birds - eagle | 258 | 64_bird_rspb_wildlife_birds | | 65 | prince - duchess - duke - princess - queen | 250 | 65_prince_duchess_duke_princess | | 66 | ftse - pound - shares - share - index | 240 | 66_ftse_pound_shares_share | | 67 | syria - terrorism - terrorist - emwazi - islamic | 239 | 67_syria_terrorism_terrorist_emwazi | | 68 | somme - memorial - war - battle - soldier | 239 | 68_somme_memorial_war_battle | | 69 | suu - kyi - rohingya - thailand - thai | 237 | 69_suu_kyi_rohingya_thailand | | 70 | bank - rbs - banking - lloyds - barclays | 237 | 70_bank_rbs_banking_lloyds | | 71 | hong - kong - china - chinese - bo | 236 | 71_hong_kong_china_chinese | | 72 | fish - fishing - salmon - marine - fishery | 230 | 72_fish_fishing_salmon_marine | | 73 | google - ad - facebook - user - advertising | 221 | 73_google_ad_facebook_user | | 74 | hillsborough - disaster - 1989 - 96 - inquest | 221 | 74_hillsborough_disaster_1989_96 | | 75 | inflation - rate - growth - economist - manufacturing | 220 | 75_inflation_rate_growth_economist | | 76 | updated - gmt - bst - 2017 - 2016 | 219 | 76_updated_gmt_bst_2017 | | 77 | bromley - replaces - substitution - barrow - ferriby | 210 | 77_bromley_replaces_substitution_barrow | | 78 | dunlop - tt - superbike - race - supersport | 206 | 78_dunlop_tt_superbike_race | | 79 | smoking - tobacco - ecigarettes - smoker - cigarette | 196 | 79_smoking_tobacco_ecigarettes_smoker | | 80 | bishop - church - archbishop - diocese - marriage | 194 | 80_bishop_church_archbishop_diocese | | 81 | froome - rider - stage - 1min - sky | 194 | 81_froome_rider_stage_1min | | 82 | fifa - blatter - platini - fifas - sepp | 187 | 82_fifa_blatter_platini_fifas | | 83 | broadband - bt - ofcom - openreach - superfast | 183 | 83_broadband_bt_ofcom_openreach | | 84 | console - vr - nintendo - oculus - xbox | 183 | 84_console_vr_nintendo_oculus | | 85 | ebola - sierra - leone - liberia - outbreak | 182 | 85_ebola_sierra_leone_liberia | | 86 | book - novel - author - prize - writer | 182 | 86_book_novel_author_prize | | 87 | drug - cocaine - cannabis - drugs - supply | 181 | 87_drug_cocaine_cannabis_drugs | | 88 | drug - cannabis - heroin - psychoactive - substance | 178 | 88_drug_cannabis_heroin_psychoactive | | 89 | train - tram - rail - railway - raib | 175 | 89_train_tram_rail_railway | | 90 | steel - tata - talbot - plant - industry | 174 | 90_steel_tata_talbot_plant | | 91 | nasdaq - sp - dow - 500 - index | 173 | 91_nasdaq_sp_dow_500 | | 92 | alshabab - somalia - somali - mogadishu - kenya | 171 | 92_alshabab_somalia_somali_mogadishu | | 93 | greece - greek - eurozone - bailout - greeces | 164 | 93_greece_greek_eurozone_bailout | | 94 | policing - crime - constable - police - force | 161 | 94_policing_crime_constable_police | | 95 | bombardier - cseries - manufacturing - job - jti | 160 | 95_bombardier_cseries_manufacturing_job | | 96 | stadium - club - cardoza - northampton - sixfields | 156 | 96_stadium_club_cardoza_northampton | | 97 | ticket - stadium - fan - ham - cheapest | 154 | 97_ticket_stadium_fan_ham | | 98 | bomb - disposal - evacuated - explosive - object | 152 | 98_bomb_disposal_evacuated_explosive | | 99 | price - mortgage - property - buyer - rics | 151 | 99_price_mortgage_property_buyer | | 100 | index - benchmark - nikkei - composite - seng | 150 | 100_index_benchmark_nikkei_composite | | 101 | iran - irans - nuclear - iranian - rouhani | 150 | 101_iran_irans_nuclear_iranian | | 102 | housing - affordable - rent - circuit - tenant | 150 | 102_housing_affordable_rent_circuit | | 103 | flight - passenger - airport - plane - aircraft | 150 | 103_flight_passenger_airport_plane | | 104 | ira - psni - ombudsman - ruc - finucane | 149 | 104_ira_psni_ombudsman_ruc | | 105 | abedi - ariana - grande - concert - manchester | 142 | 105_abedi_ariana_grande_concert | | 106 | festival - event - festivals - strathallan - edinburghs | 141 | 106_festival_event_festivals_strathallan | | 107 | rousseff - petrobras - lula - temer - impeachment | 136 | 107_rousseff_petrobras_lula_temer | | 108 | eurozone - ecb - inflation - draghi - qe | 136 | 108_eurozone_ecb_inflation_draghi | | 109 | drone - drones - aircraft - unmanned - dji | 133 | 109_drone_drones_aircraft_unmanned | | 110 | calais - eurotunnel - migrant - tunnel - camp | 131 | 110_calais_eurotunnel_migrant_tunnel | | 111 | hodgson - rooney - england - southgate - wayne | 130 | 111_hodgson_rooney_england_southgate | | 112 | pilot - aaib - aircraft - crash - accidents | 130 | 112_pilot_aaib_aircraft_crash | | 113 | waste - recycling - bin - rubbish - flytipping | 128 | 113_waste_recycling_bin_rubbish | | 114 | cuba - cuban - castro - cubans - fidel | 128 | 114_cuba_cuban_castro_cubans | | 115 | oil - gas - decommissioning - industry - barrel | 127 | 115_oil_gas_decommissioning_industry | | 116 | whisky - scotch - distillery - beer - wine | 127 | 116_whisky_scotch_distillery_beer | | 117 | energy - supplier - ofgem - meter - customer | 126 | 117_energy_supplier_ofgem_meter | | 118 | pope - vatican - francis - cardinal - church | 124 | 118_pope_vatican_francis_cardinal | | 119 | pp - catalan - catalonia - rajoy - podemos | 123 | 119_pp_catalan_catalonia_rajoy | | 120 | coleman - u21 - wales - bale - tournament | 123 | 120_coleman_u21_wales_bale | | 121 | climate - warming - temperature - carbon - co2 | 122 | 121_climate_warming_temperature_carbon | | 122 | ireland - northern - strachan - lafferty - oneill | 122 | 122_ireland_northern_strachan_lafferty | | 123 | transfer - premier - appearance - club - koeman | 121 | 123_transfer_premier_appearance_club | | 124 | kosovo - bosnian - serbia - serb - serbs | 121 | 124_kosovo_bosnian_serbia_serb | | 125 | libya - gaddafi - libyan - tripoli - libyas | 121 | 125_libya_gaddafi_libyan_tripoli | | 126 | abortion - termination - foetal - abnormality - pregnancy | 120 | 126_abortion_termination_foetal_abnormality | | 127 | whale - dolphin - strandings - marine - whales | 120 | 127_whale_dolphin_strandings_marine | | 128 | pollution - air - diesel - no2 - nitrogen | 119 | 128_pollution_air_diesel_no2 | | 129 | auschwitz - nazi - holocaust - jews - camp | 118 | 129_auschwitz_nazi_holocaust_jews | | 130 | hms - ship - navy - shipbuilding - carrier | 115 | 130_hms_ship_navy_shipbuilding | | 131 | farc - peace - santos - eln - colombian | 115 | 131_farc_peace_santos_eln | | 132 | morsi - cairo - mubarak - brotherhood - egypt | 113 | 132_morsi_cairo_mubarak_brotherhood | | 133 | parade - parades - orange - flag - belfast | 112 | 133_parade_parades_orange_flag | | 134 | everest - climber - mountain - climbing - avalanche | 111 | 134_everest_climber_mountain_climbing | | 135 | abuse - bennell - football - sfa - fa | 106 | 135_abuse_bennell_football_sfa | | 136 | fracking - shale - gas - cuadrilla - drilling | 106 | 136_fracking_shale_gas_cuadrilla | | 137 | vw - emission - volkswagen - diesel - scandal | 106 | 137_vw_emission_volkswagen_diesel | | 138 | airline - ryanair - aer - lingus - iag | 105 | 138_airline_ryanair_aer_lingus | | 139 | robot - ai - computer - machine - robots | 104 | 139_robot_ai_computer_machine | | 140 | raf - bomber - squadron - aircraft - lancaster | 104 | 140_raf_bomber_squadron_aircraft | | 141 | fossil - dinosaur - homo - specie - bone | 103 | 141_fossil_dinosaur_homo_specie | | 142 | border - ireland - northern - irish - brexit | 103 | 142_border_ireland_northern_irish | | 143 | ferry - calmac - ferries - mv - vessel | 102 | 143_ferry_calmac_ferries_mv | | 144 | inquiry - abuse - inquirys - kincora - survivor | 102 | 144_inquiry_abuse_inquirys_kincora | | 145 | airbus - boeing - airline - qantas - aircraft | 102 | 145_airbus_boeing_airline_qantas | | 146 | climate - paris - emission - carbon - agreement | 102 | 146_climate_paris_emission_carbon | | 147 | nama - cushnahan - cerberus - portfolio - pimco | 101 | 147_nama_cushnahan_cerberus_portfolio | | 148 | labor - turnbull - abbott - shorten - rudd | 100 | 148_labor_turnbull_abbott_shorten | | 149 | yemen - houthis - hadi - houthi - sanaa | 99 | 149_yemen_houthis_hadi_houthi | | 150 | milk - dairy - farmer - farmers - farm | 98 | 150_milk_dairy_farmer_farmers | | 151 | fed - rate - yellen - feds - growth | 98 | 151_fed_rate_yellen_feds | | 152 | selfdriving - driverless - autonomous - car - vehicle | 97 | 152_selfdriving_driverless_autonomous_car | | 153 | nauru - asylum - seeker - australia - manus | 96 | 153_nauru_asylum_seeker_australia | | 154 | terrorism - arrested - counter - suspicion - instigation | 95 | 154_terrorism_arrested_counter_suspicion | | 155 | cox - jo - mair - birstall - coxs | 93 | 155_cox_jo_mair_birstall | | 156 | levien - club - kaplan - takeover - bolton | 93 | 156_levien_club_kaplan_takeover | | 157 | vaccine - meningitis - vaccination - measles - flu | 92 | 157_vaccine_meningitis_vaccination_measles | | 158 | refugee - asylum - refugees - syrian - resettlement | 92 | 158_refugee_asylum_refugees_syrian | | 159 | mali - malian - aqim - tuareg - bamako | 91 | 159_mali_malian_aqim_tuareg | | 160 | oil - barrel - opec - price - crude | 89 | 160_oil_barrel_opec_price | | 161 | button - live - bbc - sport - highlights | 88 | 161_button_live_bbc_sport | | 162 | driving - driver - speed - speeding - road | 88 | 162_driving_driver_speed_speeding | | 163 | zika - virus - microcephaly - mosquito - pregnant | 87 | 163_zika_virus_microcephaly_mosquito | | 164 | marathon - runner - running - race - mile | 86 | 164_marathon_runner_running_race | | 165 | childrens - ofsted - child - inadequate - improvement | 86 | 165_childrens_ofsted_child_inadequate | | 166 | circulation - scotsman - print - newspaper - herald | 86 | 166_circulation_scotsman_print_newspaper | | 167 | china - sea - philippines - chinas - island | 84 | 167_china_sea_philippines_chinas | | 168 | lottery - jackpot - ticket - camelot - prize | 82 | 168_lottery_jackpot_ticket_camelot | | 169 | tax - hmrc - avoidance - apple - google | 82 | 169_tax_hmrc_avoidance_apple | | 170 | pollution - delhi - smog - air - beijing | 81 | 170_pollution_delhi_smog_air | | 171 | charity - kids - batmanghelidjh - fundraising - yentob | 81 | 171_charity_kids_batmanghelidjh_fundraising | | 172 | ride - smiler - alton - towers - merlin | 80 | 172_ride_smiler_alton_towers | | 173 | mh370 - plane - debris - search - malaysian | 79 | 173_mh370_plane_debris_search | | 174 | organ - transplant - donor - donation - kidney | 79 | 174_organ_transplant_donor_donation | | 175 | smmt - car - psa - nissan - vauxhall | 79 | 175_smmt_car_psa_nissan | | 176 | pistorius - steenkamp - dewani - reeva - masipa | 77 | 176_pistorius_steenkamp_dewani_reeva | | 177 | nuclear - reactor - radiation - fukushima - plant | 77 | 177_nuclear_reactor_radiation_fukushima | | 178 | music - spotify - streaming - album - apple | 76 | 178_music_spotify_streaming_album | | 179 | iraq - blair - chilcot - inquiry - saddam | 76 | 179_iraq_blair_chilcot_inquiry | | 180 | gap - gender - pay - maternity - woman | 76 | 180_gap_gender_pay_maternity | | 181 | antisemitism - jewish - jews - israel - antisemitic | 76 | 181_antisemitism_jewish_jews_israel | | 182 | strictly - dance - dancing - show - dancer | 76 | 182_strictly_dance_dancing_show | | 183 | childcare - nursery - fouryearolds - parent - hour | 75 | 183_childcare_nursery_fouryearolds_parent | | 184 | nba - lakers - cavaliers - warriors - curry | 75 | 184_nba_lakers_cavaliers_warriors | | 185 | plane - sharm - elsheikh - egyptian - sinai | 74 | 185_plane_sharm_elsheikh_egyptian | | 186 | norovirus - vomiting - ward - diarrhoea - bug | 74 | 186_norovirus_vomiting_ward_diarrhoea | | 187 | mayor - devolution - combined - council - elected | 74 | 187_mayor_devolution_combined_council | | 188 | fire - blaze - wildfire - fires - firefighter | 73 | 188_fire_blaze_wildfire_fires | | 189 | berlusconi - renzi - berlusconis - italys - italian | 73 | 189_berlusconi_renzi_berlusconis_italys | | 190 | yamaha - ducati - marquez - rossi - lorenzo | 73 | 190_yamaha_ducati_marquez_rossi | | 191 | ice - antarctic - glacier - shelf - arctic | 71 | 191_ice_antarctic_glacier_shelf | | 192 | giants - steelers - devils - panthers - desmarais | 70 | 192_giants_steelers_devils_panthers | | 193 | disabled - disability - claimant - pip - benefit | 69 | 193_disabled_disability_claimant_pip | | 194 | fan - marseille - france - stade - french | 68 | 194_fan_marseille_france_stade | | 195 | pension - annuity - pot - pensions - retirement | 67 | 195_pension_annuity_pot_pensions | | 196 | bangladesh - dhaka - jamaateislami - secular - bangladeshi | 67 | 196_bangladesh_dhaka_jamaateislami_secular | | 197 | snow - avalanche - sais - ski - cairngorms | 66 | 197_snow_avalanche_sais_ski | | 198 | afghanistan - helmand - lcpl - regiment - battalion | 66 | 198_afghanistan_helmand_lcpl_regiment | | 199 | christmas - santa - halloween - toy - festive | 66 | 199_christmas_santa_halloween_toy | | 200 | australian - australians - sharrouf - australia - sydney | 66 | 200_australian_australians_sharrouf_australia | | 201 | assange - wikileaks - embassy - ecuador - assanges | 66 | 201_assange_wikileaks_embassy_ecuador | | 202 | tv - fm - internetlivestatscom - medium - radio | 65 | 202_tv_fm_internetlivestatscom_medium | | 203 | blast - explosion - tianjin - firework - fire | 65 | 203_blast_explosion_tianjin_firework | | 204 | bee - bees - insect - honey - bumblebee | 64 | 204_bee_bees_insect_honey | | 205 | pte - deepcut - inquest - jamess - 1995 | 64 | 205_pte_deepcut_inquest_jamess | | 206 | driving - crash - causing - lorry - car | 64 | 206_driving_crash_causing_lorry | | 207 | afd - cdu - merkels - merkel - kohl | 63 | 207_afd_cdu_merkels_merkel | | 208 | cladding - tower - grenfell - fire - sprinkler | 63 | 208_cladding_tower_grenfell_fire | | 209 | antibiotic - bacteria - antibiotics - resistance - infection | 62 | 209_antibiotic_bacteria_antibiotics_resistance | | 210 | hibs - rangers - pitch - fan - sfa | 62 | 210_hibs_rangers_pitch_fan | | 211 | abuse - exploitation - sexual - child - domestic | 61 | 211_abuse_exploitation_sexual_child | | 212 | choi - park - ms - soonsil - parks | 61 | 212_choi_park_ms_soonsil | | 213 | uber - driver - ubers - kalanick - drivers | 61 | 213_uber_driver_ubers_kalanick | | 214 | alcohol - drinking - drink - liver - wine | 61 | 214_alcohol_drinking_drink_liver | | 215 | transgender - marriage - samesex - gay - law | 60 | 215_transgender_marriage_samesex_gay | | 216 | armstrong - wiggins - uci - cycling - tues | 60 | 216_armstrong_wiggins_uci_cycling | | 217 | argentina - brazil - netherlands - rica - messi | 59 | 217_argentina_brazil_netherlands_rica | | 218 | unite - oca - offshore - union - industrial | 59 | 218_unite_oca_offshore_union | | 219 | trudeau - harper - canadian - canada - ndp | 59 | 219_trudeau_harper_canadian_canada | | 220 | bullying - turing - sexual - harassment - antibullying | 59 | 220_bullying_turing_sexual_harassment | | 221 | mine - miner - fyfield - mining - underground | 58 | 221_mine_miner_fyfield_mining | | 222 | hiv - prep - antiretroviral - virus - aids | 58 | 222_hiv_prep_antiretroviral_virus | | 223 | care - carers - social - wage - nhs | 57 | 223_care_carers_social_wage | | 224 | graphene - prize - nobel - prof - material | 57 | 224_graphene_prize_nobel_prof | | 225 | education - aid - unesco - school - primary | 57 | 225_education_aid_unesco_school | | 226 | execution - lethal - injection - inmate - drug | 56 | 226_execution_lethal_injection_inmate | | 227 | raf - concorde - aircraft - f35 - mildenhall | 56 | 227_raf_concorde_aircraft_f35 | | 228 | fashion - vogue - designer - dress - playboy | 56 | 228_fashion_vogue_designer_dress | | 229 | wrexham - keates - substitution - ormerod - morrell | 56 | 229_wrexham_keates_substitution_ormerod | | 230 | limit - alcohol - drinkdrive - driving - drinkdriving | 55 | 230_limit_alcohol_drinkdrive_driving | | 231 | orchestra - music - concert - musician - proms | 55 | 231_orchestra_music_concert_musician | | 232 | nfl - patriots - quarterback - brady - touchdown | 54 | 232_nfl_patriots_quarterback_brady | | 233 | uefa - cardiff - faw - ticket - stadium | 54 | 233_uefa_cardiff_faw_ticket | | 234 | pier - piers - structure - conwy - colwyn | 53 | 234_pier_piers_structure_conwy | | 235 | productivity - ons - unemployment - wage - growth | 52 | 235_productivity_ons_unemployment_wage | | 236 | swim - swimming - severn - swimmer - mile | 52 | 236_swim_swimming_severn_swimmer | | 237 | pupil - panel - teacher - teaching - conduct | 52 | 237_pupil_panel_teacher_teaching | | 238 | energy - solar - renewables - renewable - climate | 52 | 238_energy_solar_renewables_renewable | | 239 | prediction - lawros - lawro - correct - score | 52 | 239_prediction_lawros_lawro_correct | | 240 | turnberry - golf - trump - menie - beyts | 52 | 240_turnberry_golf_trump_menie | | 241 | trafficking - slavery - trafficked - victim - exploitation | 51 | 241_trafficking_slavery_trafficked_victim | | 242 | contactless - payment - card - customer - cash | 51 | 242_contactless_payment_card_customer | | 243 | school - pupil - pupils - teacher - police | 51 | 243_school_pupil_pupils_teacher | | 244 | trident - nuclear - submarine - renewal - deterrent | 50 | 244_trident_nuclear_submarine_renewal | | 245 | licence - bbc - charter - fee - bbcs | 50 | 245_licence_bbc_charter_fee | | 246 | malaria - parasite - mosquito - vaccine - artemisinin | 50 | 246_malaria_parasite_mosquito_vaccine | | 247 | burkini - veil - ban - burka - muslim | 50 | 247_burkini_veil_ban_burka | | 248 | chinas - growth - yuan - china - currency | 50 | 248_chinas_growth_yuan_china | | 249 | poverty - income - child - household - living | 49 | 249_poverty_income_child_household | | 250 | science - research - ukri - funding - scientific | 49 | 250_science_research_ukri_funding | | 251 | eurovision - song - contest - entry - ballad | 49 | 251_eurovision_song_contest_entry | | 252 | library - libraries - council - book - bookless | 48 | 252_library_libraries_council_book | | 253 | copyright - dotcom - piracy - content - pirated | 48 | 253_copyright_dotcom_piracy_content | | 254 | bbcscotlandpics - scotlandpicturesbbccouk - selection - photo - instagram | 48 | 254_bbcscotlandpics_scotlandpicturesbbccouk_selection_photo | | 255 | ira - disappeared - megraw - buried - iclvr | 47 | 255_ira_disappeared_megraw_buried | | 256 | juventus - napoli - roma - lazio - genoa | 47 | 256_juventus_napoli_roma_lazio | | 257 | cosby - constand - cosbys - deposition - comedian | 47 | 257_cosby_constand_cosbys_deposition | | 258 | women - woman - 100women - feminist - 100 | 47 | 258_women_woman_100women_feminist | | 259 | parking - badge - council - car - 20mph | 47 | 259_parking_badge_council_car | | 260 | concussion - rugby - head - injury - protocol | 47 | 260_concussion_rugby_head_injury | | 261 | bhs - philip - chappell - pension - sir | 47 | 261_bhs_philip_chappell_pension | | 262 | aluko - uefa - terry - fa - ferdinand | 47 | 262_aluko_uefa_terry_fa | | 263 | hutch - feud - dublin - garda - regency | 46 | 263_hutch_feud_dublin_garda | | 264 | bradley - neuroblastoma - lowery - bradleys - blackhall | 46 | 264_bradley_neuroblastoma_lowery_bradleys | | 265 | legal - aid - justice - magistrates - court | 46 | 265_legal_aid_justice_magistrates | | 266 | unison - pay - cordia - strike - janitor | 46 | 266_unison_pay_cordia_strike | | 267 | indonesia - bali - sukumaran - execution - indonesian | 46 | 267_indonesia_bali_sukumaran_execution | | 268 | suicide - dying - nicklinson - terminally - law | 46 | 268_suicide_dying_nicklinson_terminally | | 269 | balloon - helium - konyukhov - nightglow - balloons | 46 | 269_balloon_helium_konyukhov_nightglow | | 270 | volcano - eruption - ash - volcanic - lava | 46 | 270_volcano_eruption_ash_volcanic | | 271 | wanda - chinese - disney - hollywood - movie | 46 | 271_wanda_chinese_disney_hollywood | | 272 | duterte - philippines - davao - marcos - dutertes | 46 | 272_duterte_philippines_davao_marcos | | 273 | yorkshire - tour - depart - cycling - de | 45 | 273_yorkshire_tour_depart_cycling | | 274 | note - polymer - banknote - bank - notes | 45 | 274_note_polymer_banknote_bank | | 275 | xinjiang - uighur - uighurs - chinese - kashgar | 45 | 275_xinjiang_uighur_uighurs_chinese | | 276 | foster - carers - mental - child - care | 45 | 276_foster_carers_mental_child | | 277 | bitcoin - bitcoins - mtgox - currency - virtual | 45 | 277_bitcoin_bitcoins_mtgox_currency | | 278 | mortgage - lending - cml - lender - buytolet | 45 | 278_mortgage_lending_cml_lender | | 279 | campus - college - university - student - building | 45 | 279_campus_college_university_student | | 280 | depression - breastfeeding - baby - birth - infant | 44 | 280_depression_breastfeeding_baby_birth | | 281 | unaccompanied - dubs - child - refugee - calais | 44 | 281_unaccompanied_dubs_child_refugee | | 282 | charlies - charlie - gard - ormond - yates | 44 | 282_charlies_charlie_gard_ormond | | 283 | inquest - coroner - hospital - embolism - mrs | 44 | 283_inquest_coroner_hospital_embolism | | 284 | swans - swansea - clement - guidolin - swanseas | 44 | 284_swans_swansea_clement_guidolin | | 285 | defence - army - reservist - nato - spending | 44 | 285_defence_army_reservist_nato | | 286 | language - welsh - huws - meri - bilingual | 44 | 286_language_welsh_huws_meri | | 287 | content - facebook - reddit - video - user | 44 | 287_content_facebook_reddit_video | | 288 | race - yacht - thomson - cleach - sailing | 44 | 288_race_yacht_thomson_cleach | | 289 | growth - sector - scottish - quarter - output | 44 | 289_growth_sector_scottish_quarter | | 290 | queensland - cyclone - snow - weather - storm | 44 | 290_queensland_cyclone_snow_weather | | 291 | witheridge - thai - koh - tao - zaw | 44 | 291_witheridge_thai_koh_tao | | 292 | firearm - shooting - incident - jeffers - man | 43 | 292_firearm_shooting_incident_jeffers | | 293 | breivik - utoeya - breiviks - oslo - norway | 43 | 293_breivik_utoeya_breiviks_oslo | | 294 | castle - heritage - building - riba - ruffer | 43 | 294_castle_heritage_building_riba | | 295 | chapecoense - medellin - sudamericana - plane - brazilian | 43 | 295_chapecoense_medellin_sudamericana_plane | | 296 | whyte - rangers - ticketus - whytes - withey | 43 | 296_whyte_rangers_ticketus_whytes | | 297 | bird - poultry - avian - flu - h5n8 | 43 | 297_bird_poultry_avian_flu | | 298 | crematorium - ash - cremation - mortonhall - cremated | 43 | 298_crematorium_ash_cremation_mortonhall | | 299 | bike - cycling - cycle - cyclist - hire | 43 | 299_bike_cycling_cycle_cyclist | | 300 | syria - iraq - air - strike - military | 43 | 300_syria_iraq_air_strike | | 301 | sykes - funeral - sister - fr - nell | 43 | 301_sykes_funeral_sister_fr | | 302 | glazer - revenue - deloitte - premier - glazers | 43 | 302_glazer_revenue_deloitte_premier | | 303 | dam - samarco - bhp - mud - mining | 43 | 303_dam_samarco_bhp_mud | | 304 | fgm - genital - girl - mutilation - female | 43 | 304_fgm_genital_girl_mutilation | | 305 | bonfire - bonfires - injunction - lit - effigy | 42 | 305_bonfire_bonfires_injunction_lit | | 306 | madeleine - mccann - madeleines - portuguese - praia | 42 | 306_madeleine_mccann_madeleines_portuguese | | 307 | ant - robot - ants - insect - robots | 42 | 307_ant_robot_ants_insect | | 308 | badger - tb - cull - cattle - culling | 42 | 308_badger_tb_cull_cattle | | 309 | coal - colliery - kellingley - mine - pit | 42 | 309_coal_colliery_kellingley_mine | | 310 | ferry - ship - sewol - boat - sank | 42 | 310_ferry_ship_sewol_boat | | 311 | cheese - coli - errington - outbreak - o157 | 42 | 311_cheese_coli_errington_outbreak | | 312 | borrowing - obr - forecast - deficit - budget | 42 | 312_borrowing_obr_forecast_deficit | | 313 | twitter - account - propaganda - isis - content | 41 | 313_twitter_account_propaganda_isis | | 314 | mental - health - camhs - disorder - nhs | 41 | 314_mental_health_camhs_disorder | | 315 | casement - gaa - dcal - stadium - ni | 41 | 315_casement_gaa_dcal_stadium | | 316 | fraud - scam - fraudsters - cifas - bank | 41 | 316_fraud_scam_fraudsters_cifas | | 317 | ew - ewa - cricket - guptill - surrey | 41 | 317_ew_ewa_cricket_guptill | | 318 | reid - hewett - peifer - houdet - whiley | 41 | 318_reid_hewett_peifer_houdet | | 319 | 1916 - irish - dublin - rising - easter | 41 | 319_1916_irish_dublin_rising | | 320 | mossack - fonseca - panama - offshore - papers | 41 | 320_mossack_fonseca_panama_offshore | | 321 | ico - nuisance - call - calls - tps | 40 | 321_ico_nuisance_call_calls | | 322 | rupee - cash - note - india - indians | 40 | 322_rupee_cash_note_india | | 323 | tamil - sri - rajapaksa - sirisena - lankan | 40 | 323_tamil_sri_rajapaksa_sirisena | | 324 | inquest - hospital - seans - care - ward | 39 | 324_inquest_hospital_seans_care | | 325 | nafta - trade - lumber - mexico - canada | 39 | 325_nafta_trade_lumber_mexico | | 326 | mafia - rancadore - ndrangheta - italian - riina | 39 | 326_mafia_rancadore_ndrangheta_italian | | 327 | food - trussell - bank - welfare - gurr | 38 | 327_food_trussell_bank_welfare | | 328 | tree - oak - trees - woodland - aspen | 38 | 328_tree_oak_trees_woodland | | 329 | falklands - falkland - argentine - argentina - islands | 38 | 329_falklands_falkland_argentine_argentina | | 330 | linfield - crusaders - cliftonville - glenavon - ballymena | 38 | 330_linfield_crusaders_cliftonville_glenavon | | 331 | storm - texas - houston - tornado - hurricane | 38 | 331_storm_texas_houston_tornado | | 332 | mh17 - buk - missile - ukraine - dutch | 38 | 332_mh17_buk_missile_ukraine | | 333 | wigan - wolverhampton - league - wanderers - club | 38 | 333_wigan_wolverhampton_league_wanderers | | 334 | injunction - hacking - mirror - privacy - phonehacking | 38 | 334_injunction_hacking_mirror_privacy | | 335 | ecstasy - drug - mdma - heroin - drugs | 37 | 335_ecstasy_drug_mdma_heroin | | 336 | pool - lido - swimming - leisure - afan | 37 | 336_pool_lido_swimming_leisure | | 337 | shahid - shahids - shakeel - chaudhry - samia | 37 | 337_shahid_shahids_shakeel_chaudhry | | 338 | gambling - betting - casino - fobts - machine | 37 | 338_gambling_betting_casino_fobts | | 339 | pay - shareholder - remuneration - executive - wpp | 37 | 339_pay_shareholder_remuneration_executive | | 340 | bell - minster - imber - bellringers - ringer | 37 | 340_bell_minster_imber_bellringers | | 341 | 1500 - gmt - city - albion - middlesbrough | 37 | 341_1500_gmt_city_albion | | 342 | iii - richard - king - bosworth - 1485 | 37 | 342_iii_richard_king_bosworth | | 343 | sayyaf - philippines - mindanao - abu - marawi | 36 | 343_sayyaf_philippines_mindanao_abu | | 344 | clarkson - gear - hammond - tymon - leblanc | 36 | 344_clarkson_gear_hammond_tymon | | 345 | horsemeat - beef - meat - findus - product | 36 | 345_horsemeat_beef_meat_findus | | 346 | gb - richardsonwalsh - hinch - hockey - gbs | 36 | 346_gb_richardsonwalsh_hinch_hockey | | 347 | obamacare - republicans - insurance - senate - healthcare | 35 | 347_obamacare_republicans_insurance_senate | | 348 | meldonium - sharapova - sharapovas - itf - tennis | 35 | 348_meldonium_sharapova_sharapovas_itf | | 349 | hickey - oci - thg - mallon - olympic | 35 | 349_hickey_oci_thg_mallon | | 350 | javeed - murder - mistry - zarif - aamir | 35 | 350_javeed_murder_mistry_zarif | | 351 | takata - airbags - inflator - airbag - recall | 35 | 351_takata_airbags_inflator_airbag | | 352 | lubitz - cockpit - germanwings - lufthansa - copilot | 35 | 352_lubitz_cockpit_germanwings_lufthansa | | 353 | percy - trust - sparrowhawk - connor - southern | 35 | 353_percy_trust_sparrowhawk_connor | | 354 | martelly - haiti - moise - haitis - celestin | 35 | 354_martelly_haiti_moise_haitis | | 355 | fox - murdoch - rupert - murdochs - sky | 35 | 355_fox_murdoch_rupert_murdochs | | 356 | pirate - piracy - somali - pirates - vessel | 35 | 356_pirate_piracy_somali_pirates | | 357 | rea - sykes - kawasaki - rider - chaz | 35 | 357_rea_sykes_kawasaki_rider | | 358 | mbe - honorary - service - honour - obe | 35 | 358_mbe_honorary_service_honour | | 359 | dementia - alzheimers - diagnosis - disease - care | 34 | 359_dementia_alzheimers_diagnosis_disease | | 360 | hate - crime - disability - racist - victim | 34 | 360_hate_crime_disability_racist | | 361 | lcpl - cpl - dunsby - maher - mod | 34 | 361_lcpl_cpl_dunsby_maher | | 362 | cologne - asylum - german - germany - merkel | 34 | 362_cologne_asylum_german_germany | | 363 | toshiba - toshibas - foxconn - westinghouse - yen | 34 | 363_toshiba_toshibas_foxconn_westinghouse | | 364 | poland - pis - polands - polish - duda | 34 | 364_poland_pis_polands_polish | | 365 | ban - visa - trumps - order - refugee | 34 | 365_ban_visa_trumps_order | | 366 | gmb - unite - ucatt - union - refuse | 34 | 366_gmb_unite_ucatt_union | | 367 | uber - taxi - hire - tfl - cab | 34 | 367_uber_taxi_hire_tfl | | 368 | ladies - chelsea - birmingham - manchester - women | 34 | 368_ladies_chelsea_birmingham_manchester | | 369 | rig - transocean - dalmore - salvage - towed | 34 | 369_rig_transocean_dalmore_salvage | | 370 | s4c - s4cs - language - welsh - channel | 34 | 370_s4c_s4cs_language_welsh | | 371 | clown - clowns - craze - creepy - dressed | 34 | 371_clown_clowns_craze_creepy | | 372 | garda - mccabe - sochna - callinan - osullivan | 34 | 372_garda_mccabe_sochna_callinan | | 373 | pogba - juventus - mendy - matic - club | 33 | 373_pogba_juventus_mendy_matic | | 374 | funeral - cremation - burial - cost - crematorium | 33 | 374_funeral_cremation_burial_cost | | 375 | qatar - uae - saudi - qatars - qatari | 33 | 375_qatar_uae_saudi_qatars | | 376 | rhi - foster - scheme - renewable - arlene | 33 | 376_rhi_foster_scheme_renewable | | 377 | ford - sale - motors - toyota - gm | 33 | 377_ford_sale_motors_toyota | | 378 | fire - fbu - firefighter - brigades - brigade | 33 | 378_fire_fbu_firefighter_brigades | | 379 | dvla - taxi - driver - licence - licensing | 33 | 379_dvla_taxi_driver_licence | | 380 | bale - bales - madrid - belgium - zidane | 33 | 380_bale_bales_madrid_belgium | | 381 | condor - ferry - poole - guernsey - liberation | 32 | 381_condor_ferry_poole_guernsey | | 382 | massaro - willstrop - 115 - 117 - matthew | 32 | 382_massaro_willstrop_115_117 | | 383 | ilott - judge - mother - haringey - boy | 32 | 383_ilott_judge_mother_haringey | | 384 | mckeague - corrie - edmunds - suffolk - urquhart | 32 | 384_mckeague_corrie_edmunds_suffolk | | 385 | tpp - trade - wto - agreement - deal | 32 | 385_tpp_trade_wto_agreement | | 386 | fake - facebook - trending - news - facebooks | 32 | 386_fake_facebook_trending_news | | 387 | lighting - light - leap - clock - bulb | 32 | 387_lighting_light_leap_clock | | 388 | wilders - rutte - vvd - dutch - pvv | 32 | 388_wilders_rutte_vvd_dutch | | 389 | temperature - weather - rainfall - rain - recorded | 32 | 389_temperature_weather_rainfall_rain | | 390 | palmyra - ancient - antiquity - syrian - ruin | 32 | 390_palmyra_ancient_antiquity_syrian | | 391 | tesla - musk - electric - teslas - model | 32 | 391_tesla_musk_electric_teslas | | 392 | evans - johnson - sexual - sunderland - mcdonald | 31 | 392_evans_johnson_sexual_sunderland | | 393 | halawa - halawas - egyptian - ibrahim - alfath | 31 | 393_halawa_halawas_egyptian_ibrahim | | 394 | rahman - hamlets - lutfur - tower - mawrey | 31 | 394_rahman_hamlets_lutfur_tower | | 395 | ashley - sports - shirebrook - direct - hellawell | 31 | 395_ashley_sports_shirebrook_direct | | 396 | submarine - trident - nuclear - submarines - faslane | 31 | 396_submarine_trident_nuclear_submarines | | 397 | africa - african - africas - china - chinese | 31 | 397_africa_african_africas_china | | 398 | hepatitis - blood - infected - hiv - transfusion | 31 | 398_hepatitis_blood_infected_hiv | | 399 | charlottesville - supremacist - white - statue - confederate | 31 | 399_charlottesville_supremacist_white_statue | | 400 | scam - fraud - scams - scammer - victim | 31 | 400_scam_fraud_scams_scammer | | 401 | water - dee - trent - severn - customer | 30 | 401_water_dee_trent_severn | | 402 | meal - school - lunch - meals - child | 30 | 402_meal_school_lunch_meals | | 403 | mexico - mexican - trump - immigration - immigrant | 30 | 403_mexico_mexican_trump_immigration | | 404 | piccard - impulse - leg - borschberg - solar | 30 | 404_piccard_impulse_leg_borschberg | | 405 | alcohol - liquor - bihar - drinking - methanol | 30 | 405_alcohol_liquor_bihar_drinking | | 406 | thailand - myanmar - rohingya - migrant - malaysia | 30 | 406_thailand_myanmar_rohingya_migrant | | 407 | ash - tree - dieback - fungus - juniper | 30 | 407_ash_tree_dieback_fungus | | 408 | apprenticeship - apprenticeships - employer - apprentice - skills | 30 | 408_apprenticeship_apprenticeships_employer_apprentice | | 409 | mers - virus - camel - coronavirus - respiratory | 30 | 409_mers_virus_camel_coronavirus | | 410 | howard - arlene - arkinson - castlederg - arlenes | 30 | 410_howard_arlene_arkinson_castlederg | | 411 | spying - nsa - intelligence - spy - merkel | 30 | 411_spying_nsa_intelligence_spy | | 412 | gay - homosexuality - homosexual - samesex - lgbt | 29 | 412_gay_homosexuality_homosexual_samesex | | 413 | rio - olympic - games - olympics - brazil | 29 | 413_rio_olympic_games_olympics | | 414 | evans - sheffield - ched - oldham - club | 29 | 414_evans_sheffield_ched_oldham | | 415 | poppy - fifa - armband - wear - fifas | 29 | 415_poppy_fifa_armband_wear | | 416 | cow - beef - slaughter - hindu - meat | 29 | 416_cow_beef_slaughter_hindu | | 417 | mcevoy - adjudication - plaid - councillor - tribunal | 28 | 417_mcevoy_adjudication_plaid_councillor | | 418 | bag - 5p - waste - pig - plastic | 28 | 418_bag_5p_waste_pig | | 419 | insurance - premium - whiplash - insurer - abi | 28 | 419_insurance_premium_whiplash_insurer | | 420 | hut - camping - loch - park - mooring | 28 | 420_hut_camping_loch_park | | 421 | boaty - ocean - sub - mcboatface - polar | 28 | 421_boaty_ocean_sub_mcboatface | | 422 | teff - farmer - crop - agriculture - meat | 28 | 422_teff_farmer_crop_agriculture | | 423 | homeless - homelessness - rough - housing - shelter | 28 | 423_homeless_homelessness_rough_housing | | 424 | crofting - crofter - grazing - crofters - commission | 28 | 424_crofting_crofter_grazing_crofters | | 425 | muamba - fabrice - cardiac - defibrillator - muambas | 27 | 425_muamba_fabrice_cardiac_defibrillator | | 426 | ariana - concert - grande - manchester - arena | 27 | 426_ariana_concert_grande_manchester | | 427 | tick - rabies - lyme - disease - dog | 27 | 427_tick_rabies_lyme_disease | | 428 | begley - taser - adunbi - hegarty - curnow | 27 | 428_begley_taser_adunbi_hegarty | | 429 | museum - gallery - visitor - tate - exhibition | 27 | 429_museum_gallery_visitor_tate | | 430 | woman - gender - science - stem - female | 27 | 430_woman_gender_science_stem | | 431 | pokemon - niantic - augmented - gos - pokestops | 27 | 431_pokemon_niantic_augmented_gos | | 432 | tech - specialisms - foreignowned - headquartered - logo | 27 | 432_tech_specialisms_foreignowned_headquartered | | 433 | bp - spill - deepwater - oil - rig | 27 | 433_bp_spill_deepwater_oil | | 434 | poppi - worthington - poppis - cumbria - inquest | 27 | 434_poppi_worthington_poppis_cumbria | | 435 | cqc - care - inspection - resident - inspectorate | 26 | 435_cqc_care_inspection_resident | | 436 | zika - golf - mcilroy - olympics - virus | 26 | 436_zika_golf_mcilroy_olympics | | 437 | mine - platinum - marikana - halo - mines | 26 | 437_mine_platinum_marikana_halo | | 438 | shark - beach - sharks - fanning - surfer | 26 | 438_shark_beach_sharks_fanning | | 439 | fitbit - watch - wearable - smartwatch - apple | 26 | 439_fitbit_watch_wearable_smartwatch | | 440 | lego - legos - toy - wars - brick | 26 | 440_lego_legos_toy_wars | | 441 | japans - abenomics - yen - japan - stimulus | 26 | 441_japans_abenomics_yen_japan | | 442 | butterfly - specie - frog - fungus - species | 26 | 442_butterfly_specie_frog_fungus | | 443 | gay - fashanu - hitzlsperger - footballer - homophobia | 26 | 443_gay_fashanu_hitzlsperger_footballer | | 444 | paterson - spire - mastectomy - breast - lump | 25 | 444_paterson_spire_mastectomy_breast | | 445 | visit - trump - petition - trumps - ban | 25 | 445_visit_trump_petition_trumps | | 446 | famine - drought - sudan - somalia - aid | 25 | 446_famine_drought_sudan_somalia | | 447 | expectancy - mortality - ageing - age - ons | 25 | 447_expectancy_mortality_ageing_age | | 448 | anglo - irish - fitzpatrick - bank - bailout | 25 | 448_anglo_irish_fitzpatrick_bank | | 449 | coulter - chhokar - ronnie - ebrahimi - chhokars | 25 | 449_coulter_chhokar_ronnie_ebrahimi | | 450 | brittan - abuse - allegation - lord - dickens | 25 | 450_brittan_abuse_allegation_lord | | 451 | pharmacy - patient - nhs - dental - dentistry | 25 | 451_pharmacy_patient_nhs_dental | | 452 | pipeline - keystone - xl - oil - alberta | 25 | 452_pipeline_keystone_xl_oil | | 453 | employment - unemployment - rate - permanent - temporary | 25 | 453_employment_unemployment_rate_permanent | | 454 | seal - pup - horsey - seals - grey | 25 | 454_seal_pup_horsey_seals | | 455 | rally - snowman - spectator - provan - clark | 25 | 455_rally_snowman_spectator_provan | | 456 | nasheed - maldives - yameen - adeeb - nasheeds | 25 | 456_nasheed_maldives_yameen_adeeb | | 457 | picture - please - submit - pictures - publish | 25 | 457_picture_please_submit_pictures | | 458 | refugee - syrians - jordan - jordanian - camp | 25 | 458_refugee_syrians_jordan_jordanian | | 459 | abortion - clinic - texas - abortions - parenthood | 25 | 459_abortion_clinic_texas_abortions | | 460 | orban - ceu - soros - hungarian - hungary | 25 | 460_orban_ceu_soros_hungarian | | 461 | qatar - worker - qatars - workers - amnesty | 25 | 461_qatar_worker_qatars_workers | | 462 | coulson - mulcaire - hacking - wallis - goodman | 24 | 462_coulson_mulcaire_hacking_wallis | | 463 | pitch - fixture - postponed - rain - unplayable | 24 | 463_pitch_fixture_postponed_rain | | 464 | sinkhole - hole - fontmell - floridas - crater | 24 | 464_sinkhole_hole_fontmell_floridas | | 465 | didcot - demolition - huxtable - rwe - npower | 24 | 465_didcot_demolition_huxtable_rwe | | 466 | argentina - hedge - defaulted - argentinas - bondholder | 24 | 466_argentina_hedge_defaulted_argentinas | | 467 | caf - hayatou - ahmad - nff - pinnick | 24 | 467_caf_hayatou_ahmad_nff | | 468 | pipeline - dakota - sioux - tribe - native | 24 | 468_pipeline_dakota_sioux_tribe | | 469 | ceta - wallonia - trade - ttip - walloon | 24 | 469_ceta_wallonia_trade_ttip | | 470 | screen - internet - online - parent - tablet | 24 | 470_screen_internet_online_parent | | 471 | extremism - extremist - muslim - prevent - radicalisation | 24 | 471_extremism_extremist_muslim_prevent | | 472 | blackman - marine - blackmans - marines - martial | 24 | 472_blackman_marine_blackmans_marines | | 473 | cubs - baseball - curse - pitcher - series | 24 | 473_cubs_baseball_curse_pitcher | | 474 | ira - sinn - mcguigan - fin - provisional | 24 | 474_ira_sinn_mcguigan_fin | | 475 | cocaine - makayabella - hamal - nca - drug | 24 | 475_cocaine_makayabella_hamal_nca | | 476 | mask - edl - protester - protest - shenstone | 24 | 476_mask_edl_protester_protest | | 477 | crime - recorded - rape - offence - shoplifting | 24 | 477_crime_recorded_rape_offence | | 478 | sex - prostitution - prostitute - trafficking - morrow | 24 | 478_sex_prostitution_prostitute_trafficking | | 479 | shepherd - christi - cook - thomas - fankhauser | 24 | 479_shepherd_christi_cook_thomas | | 480 | ipsa - mps - expense - mp - salary | 23 | 480_ipsa_mps_expense_mp | | 481 | bake - channel - baking - cake - toksvig | 23 | 481_bake_channel_baking_cake | | 482 | church - abuse - bishop - archbishop - safeguarding | 23 | 482_church_abuse_bishop_archbishop | | 483 | expedition - antarctic - polar - arctic - ice | 23 | 483_expedition_antarctic_polar_arctic | | 484 | warnock - bluebirds - cardiff - manga - trollope | 23 | 484_warnock_bluebirds_cardiff_manga | | 485 | islands - island - bougainville - palau - tuvalu | 23 | 485_islands_island_bougainville_palau | | 486 | airline - flight - ban - laptop - airlines | 23 | 486_airline_flight_ban_laptop | | 487 | ponta - decree - romania - bucharest - romanian | 23 | 487_ponta_decree_romania_bucharest | | 488 | manning - pte - mannings - wikileaks - leavenworth | 23 | 488_manning_pte_mannings_wikileaks | | 489 | hmrc - rangers - tax - ebts - ebt | 23 | 489_hmrc_rangers_tax_ebts | | 490 | car - vehicle - remotely - cars - valasek | 23 | 490_car_vehicle_remotely_cars | | 491 | thistle - ayr - hearts - dundee - rangers | 23 | 491_thistle_ayr_hearts_dundee | | 492 | mail - parcel - mails - royal - whistl | 23 | 492_mail_parcel_mails_royal | | 493 | villa - aston - newcastle - kodjia - bromwich | 22 | 493_villa_aston_newcastle_kodjia | | 494 | tree - felling - trees - diseased - sheffield | 22 | 494_tree_felling_trees_diseased | | 495 | book - amazon - ebook - nook - kindle | 22 | 495_book_amazon_ebook_nook | | 496 | utilities - cryptosporidium - water - parasite - ribble | 22 | 496_utilities_cryptosporidium_water_parasite | | 497 | foi - information - request - cabinet - commissioners | 22 | 497_foi_information_request_cabinet | | 498 | cyclist - hgvs - cycling - road - lorry | 22 | 498_cyclist_hgvs_cycling_road | | 499 | happiness - wellbeing - happier - happiest - satisfaction | 22 | 499_happiness_wellbeing_happier_happiest | | 500 | baby - born - twin - birth - twins | 22 | 500_baby_born_twin_birth | | 501 | camper - indycamp - camp - parliament - spcb | 22 | 501_camper_indycamp_camp_parliament | | 502 | malala - malalas - yousafzai - pakistan - swat | 22 | 502_malala_malalas_yousafzai_pakistan | | 503 | parking - beavis - parkingeye - car - motorist | 22 | 503_parking_beavis_parkingeye_car | | 504 | polio - vaccine - vaccination - virus - leprosy | 22 | 504_polio_vaccine_vaccination_virus | | 505 | yuill - lamara - m9 - bell - pirc | 22 | 505_yuill_lamara_m9_bell | | 506 | libor - hayes - trader - rate - ubs | 22 | 506_libor_hayes_trader_rate | | 507 | bismarck - jutland - hms - battle - fleet | 22 | 507_bismarck_jutland_hms_battle | | 508 | baby - blane - towel - mother - babys | 22 | 508_baby_blane_towel_mother | | 509 | abortion - pregnancy - salvador - foetus - el | 22 | 509_abortion_pregnancy_salvador_foetus | | 510 | cardinal - pell - ridsdale - ballarat - priest | 21 | 510_cardinal_pell_ridsdale_ballarat | | 511 | campus - amherst - university - student - mascot | 21 | 511_campus_amherst_university_student | | 512 | ashers - cake - mcarthur - equality - bakery | 21 | 512_ashers_cake_mcarthur_equality | | 513 | bull - bullfighting - jallikattu - gored - tamil | 21 | 513_bull_bullfighting_jallikattu_gored | | 514 | quantum - qubits - photon - computing - computer | 21 | 514_quantum_qubits_photon_computing | | 515 | hinkley - edf - nuclear - energy - cgn | 21 | 515_hinkley_edf_nuclear_energy | | 516 | sectarianism - legislation - repeal - act - behaviour | 21 | 516_sectarianism_legislation_repeal_act | | 517 | tsarnaev - tamerlan - dzhokhar - boston - tsarnaevs | 21 | 517_tsarnaev_tamerlan_dzhokhar_boston | | 518 | gay - samesex - marriage - uruguay - legalised | 21 | 518_gay_samesex_marriage_uruguay | | 519 | gaal - slegers - wenger - van - psv | 21 | 519_gaal_slegers_wenger_van | | 520 | barclays - bank - sfo - libor - ubs | 21 | 520_barclays_bank_sfo_libor | | 521 | gender - transgender - trans - intersex - hormone | 21 | 521_gender_transgender_trans_intersex | | 522 | crompton - billings - hillsborough - cromptons - inquest | 21 | 522_crompton_billings_hillsborough_cromptons | | 523 | jewellery - kardashian - robbery - jewel - container | 21 | 523_jewellery_kardashian_robbery_jewel | | 524 | dryer - whirlpool - indesit - tumble - hotpoint | 21 | 524_dryer_whirlpool_indesit_tumble | | 525 | unite - ba - cabin - airline - fleet | 21 | 525_unite_ba_cabin_airline | | 526 | samsung - lotte - lee - choi - kunhee | 21 | 526_samsung_lotte_lee_choi | | 527 | alsweady - ihat - iraqi - detainee - inquiry | 21 | 527_alsweady_ihat_iraqi_detainee | | 528 | cholera - outbreak - gorongosa - haiti - sanitation | 20 | 528_cholera_outbreak_gorongosa_haiti | | 529 | skirt - uniform - trouser - school - wear | 20 | 529_skirt_uniform_trouser_school | | 530 | emojis - emoji - unicode - burge - emojipedia | 20 | 530_emojis_emoji_unicode_burge | | 531 | alcohol - pricing - minimum - alcoholrelated - drink | 20 | 531_alcohol_pricing_minimum_alcoholrelated | | 532 | 2022 - durban - games - commonwealth - cgf | 20 | 532_2022_durban_games_commonwealth | | 533 | rhodes - statue - cape - student - uct | 20 | 533_rhodes_statue_cape_student | | 534 | sleep - clock - mattress - sleeping - light | 20 | 534_sleep_clock_mattress_sleeping | | 535 | bayoh - pirc - sheku - bayohs - anwar | 20 | 535_bayoh_pirc_sheku_bayohs | | 536 | reef - coral - bleaching - reefs - unesco | 20 | 536_reef_coral_bleaching_reefs | | 537 | simpsonkent - blake - amon - zachary - eastenders | 20 | 537_simpsonkent_blake_amon_zachary | | 538 | sky - dark - lighting - light - pollution | 20 | 538_sky_dark_lighting_light | | 539 | cav - safety - gutaj - hse - sofa | 20 | 539_cav_safety_gutaj_hse | | 540 | kaepernick - anthem - 49ers - yall - kaepernicks | 20 | 540_kaepernick_anthem_49ers_yall | | 541 | asylum - migrant - germany - seeker - german | 20 | 541_asylum_migrant_germany_seeker | | 542 | cypriots - cyprus - cypriot - turkish - greek | 20 | 542_cypriots_cyprus_cypriot_turkish | | 543 | 1mdb - najib - malaysia - malaysias - malaysian | 20 | 543_1mdb_najib_malaysia_malaysias | | 544 | cardiff - street - arriva - queuing - stadium | 20 | 544_cardiff_street_arriva_queuing | | 545 | dominica - grenada - kitts - jamaica - trinidad | 20 | 545_dominica_grenada_kitts_jamaica | | 546 | divorce - chai - sharland - khoo - marriage | 20 | 546_divorce_chai_sharland_khoo | | 547 | gladon - transfer - hornets - dedicated - page | 19 | 547_gladon_transfer_hornets_dedicated | | 548 | megrahi - lockerbie - megrahis - libyan - bombing | 19 | 548_megrahi_lockerbie_megrahis_libyan | | 549 | transgender - gay - military - scouts - erectile | 19 | 549_transgender_gay_military_scouts | | 550 | janner - savile - cliff - allegation - jaconelli | 19 | 550_janner_savile_cliff_allegation | | 551 | mueller - swift - swifts - muellers - skirt | 19 | 551_mueller_swift_swifts_muellers | | 552 | payment - farmer - crofter - rural - nfu | 19 | 552_payment_farmer_crofter_rural | | 553 | messi - messis - tax - defrauding - barcelona | 19 | 553_messi_messis_tax_defrauding | | 554 | water - sewage - pollution - river - flushable | 19 | 554_water_sewage_pollution_river | | 555 | bollywood - film - rajinikanth - kabali - indian | 19 | 555_bollywood_film_rajinikanth_kabali | | 556 | gambling - betting - bet - barton - fa | 19 | 556_gambling_betting_bet_barton | | 557 | alibaba - alibabas - taobao - ecommerce - online | 19 | 557_alibaba_alibabas_taobao_ecommerce | | 558 | indian - antipiracy - machugh - advanfort - ship | 19 | 558_indian_antipiracy_machugh_advanfort | | 559 | puma - helicopter - super - gearbox - grounded | 19 | 559_puma_helicopter_super_gearbox | | 560 | astle - brain - nfl - concussion - cte | 19 | 560_astle_brain_nfl_concussion | | 561 | bite - homeless - littlejohn - social - clooney | 19 | 561_bite_homeless_littlejohn_social | | 562 | kyles - oban - newtonmore - camanachd - kingussie | 19 | 562_kyles_oban_newtonmore_camanachd | | 563 | pspo - antisocial - pspos - highs - legal | 18 | 563_pspo_antisocial_pspos_highs | | 564 | marriage - samesex - gay - civil - partnership | 18 | 564_marriage_samesex_gay_civil | | 565 | kingsway - sgt - foss - lucas - bus | 18 | 565_kingsway_sgt_foss_lucas | | 566 | mcareavey - michaela - masood - mauritius - cochran | 18 | 566_mcareavey_michaela_masood_mauritius | | 567 | zerohours - contracts - contract - ons - flexibility | 18 | 567_zerohours_contracts_contract_ons | | 568 | hanjin - shipping - cargo - container - ship | 18 | 568_hanjin_shipping_cargo_container | | 569 | eurovision - jamala - ukraine - samoilova - crimea | 18 | 569_eurovision_jamala_ukraine_samoilova | | 570 | clarke - shapps - cchq - bullying - feldman | 18 | 570_clarke_shapps_cchq_bullying | | 571 | hie - enterprise - highlands - hies - islands | 18 | 571_hie_enterprise_highlands_hies | | 572 | coin - mint - coins - design - circulation | 18 | 572_coin_mint_coins_design | | 573 | port - kovari - whitworth - walgate - ports | 18 | 573_port_kovari_whitworth_walgate | | 574 | depp - joyce - boo - pistol - quarantine | 18 | 574_depp_joyce_boo_pistol | | 575 | indigenous - aboriginal - australians - australia - australian | 18 | 575_indigenous_aboriginal_australians_australia | | 576 | universal - credit - benefit - claimant - duncan | 18 | 576_universal_credit_benefit_claimant | | 577 | wemba - music - papa - congolese - musician | 18 | 577_wemba_music_papa_congolese | | 578 | stephanie - inglis - vietnam - judo - daviot | 18 | 578_stephanie_inglis_vietnam_judo | | 579 | bataclan - concert - band - paris - eagles | 18 | 579_bataclan_concert_band_paris | | 580 | asa - advert - ad - advertising - adverts | 18 | 580_asa_advert_ad_advertising | | 581 | daily - scotsman - courier - scottish - mail | 18 | 581_daily_scotsman_courier_scottish | | 582 | leveson - press - charter - regulator - ipso | 18 | 582_leveson_press_charter_regulator | | 583 | post - cwu - mail - branch - delungra | 17 | 583_post_cwu_mail_branch | | 584 | diamond - carat - sapphire - sothebys - jewellery | 17 | 584_diamond_carat_sapphire_sothebys | | 585 | robot - updated - robocup - robots - bst | 17 | 585_robot_updated_robocup_robots | | 586 | laser - pilot - pilots - aircraft - cockpit | 17 | 586_laser_pilot_pilots_aircraft | | 587 | indonesia - jakarta - indonesian - militant - naim | 17 | 587_indonesia_jakarta_indonesian_militant | | 588 | chocolate - cadbury - nestle - toblerone - bar | 17 | 588_chocolate_cadbury_nestle_toblerone | | 589 | burgess - rabbitohs - sydney - bath - nrl | 17 | 589_burgess_rabbitohs_sydney_bath | | 590 | africans - selection - photo - elsewhere - africa | 17 | 590_africans_selection_photo_elsewhere | | 591 | tax - avoidance - cameron - fink - blairmore | 17 | 591_tax_avoidance_cameron_fink | | 592 | paper - belfast - telegraph - irish - primark | 17 | 592_paper_belfast_telegraph_irish | | 593 | visa - 457 - h1b - budget - australia | 17 | 593_visa_457_h1b_budget | | 594 | leaguebyleague - managerial - below - list - appear | 17 | 594_leaguebyleague_managerial_below_list | | 595 | flag - fern - zealanders - design - zealand | 17 | 595_flag_fern_zealanders_design | | 596 | driving - speeding - winn - speed - gibb | 17 | 596_driving_speeding_winn_speed | | 597 | seeger - trump - song - trumps - springsteen | 17 | 597_seeger_trump_song_trumps | | 598 | warrior - unmanned - joint - exercise - navy | 17 | 598_warrior_unmanned_joint_exercise | | 599 | milk - fonterra - formula - infant - daigou | 17 | 599_milk_fonterra_formula_infant | | 600 | flag - confederate - charleston - carolina - mississippi | 17 | 600_flag_confederate_charleston_carolina | | 601 | regeni - egyptian - regenis - cairo - giulio | 17 | 601_regeni_egyptian_regenis_cairo | | 602 | misconduct - pc - ipcc - munns - gross | 17 | 602_misconduct_pc_ipcc_munns | | 603 | garment - factory - rana - plaza - bangladesh | 17 | 603_garment_factory_rana_plaza | | 604 | nsi - bond - bonds - saver - rate | 17 | 604_nsi_bond_bonds_saver | | 605 | sweat - escape - cuomo - prison - dannemora | 17 | 605_sweat_escape_cuomo_prison | | 606 | maggi - noodle - nestle - noodles - instant | 17 | 606_maggi_noodle_nestle_noodles | | 607 | orange - hall - strawletterdallon - attack - graffiti | 17 | 607_orange_hall_strawletterdallon_attack | | 608 | named - person - swinney - supreme - no2np | 17 | 608_named_person_swinney_supreme | | 609 | slade - bluebirds - cardiff - trollope - sheffield | 16 | 609_slade_bluebirds_cardiff_trollope | | 610 | fog - airport - flight - heathrow - cancelled | 16 | 610_fog_airport_flight_heathrow | | 611 | newport - rfc - dragons - rodney - wru | 16 | 611_newport_rfc_dragons_rodney | | 612 | russian - jet - baltic - airspace - kuznetsov | 16 | 612_russian_jet_baltic_airspace | | 613 | plainmoor - club - gulls - torquay - speedway | 16 | 613_plainmoor_club_gulls_torquay | | 614 | odegaard - liga - atletico - rey - copa | 16 | 614_odegaard_liga_atletico_rey | | 615 | cheating - bihar - exam - europol - rai | 16 | 615_cheating_bihar_exam_europol | | 616 | americas - race - ainslie - 18002000 - oracle | 16 | 616_americas_race_ainslie_18002000 | | 617 | gorsuch - garland - scalia - senate - republicans | 16 | 617_gorsuch_garland_scalia_senate | | 618 | ford - toronto - fords - mayor - doug | 16 | 618_ford_toronto_fords_mayor | | 619 | polanski - extradition - geimer - polish - polanskis | 16 | 619_polanski_extradition_geimer_polish | | 620 | hpv - vaccination - vaccine - cervical - jcvi | 16 | 620_hpv_vaccination_vaccine_cervical | | 621 | snowden - kong - hong - snowdens - asylum | 16 | 621_snowden_kong_hong_snowdens | | 622 | japan - japanese - japans - abe - korea | 16 | 622_japan_japanese_japans_abe | | 623 | seren - serens - pollock - inquest - coroner | 16 | 623_seren_serens_pollock_inquest | | 624 | parryjones - severance - halsall - lieu - lcc | 16 | 624_parryjones_severance_halsall_lieu | | 625 | plague - leprosy - disease - bubonic - rat | 16 | 625_plague_leprosy_disease_bubonic | | 626 | hfea - embryo - jefferies - egg - loeb | 16 | 626_hfea_embryo_jefferies_egg | | 627 | selfemployed - deliveroo - gig - courier - uber | 16 | 627_selfemployed_deliveroo_gig_courier | | 628 | jewish - antisemitism - antisemitic - cst - hate | 16 | 628_jewish_antisemitism_antisemitic_cst | | 629 | cake - gingerbread - baker - gebhart - icing | 16 | 629_cake_gingerbread_baker_gebhart | | 630 | mcquire - sousse - rezgui - silence - tunisian | 16 | 630_mcquire_sousse_rezgui_silence | | 631 | shkreli - daraprim - turing - pharmaceuticals - retrophin | 16 | 631_shkreli_daraprim_turing_pharmaceuticals | | 632 | coventry - ricoh - acl - otium - sisu | 16 | 632_coventry_ricoh_acl_otium | | 633 | radio - presenter - purves - breakfast - show | 16 | 633_radio_presenter_purves_breakfast | | 634 | pricing - minimum - alcohol - swa - whisky | 16 | 634_pricing_minimum_alcohol_swa | | 635 | quiz - quizzes - brainteaser - beatles - caldwell | 16 | 635_quiz_quizzes_brainteaser_beatles | | 636 | muntari - racist - cagliari - serie - sarri | 15 | 636_muntari_racist_cagliari_serie | | 637 | bomb - unexploded - evacuation - blitz - koblenz | 15 | 637_bomb_unexploded_evacuation_blitz | | 638 | citigroup - revenue - jp - bank - fargo | 15 | 638_citigroup_revenue_jp_bank | | 639 | infantino - fifa - eca - cup - tournament | 15 | 639_infantino_fifa_eca_cup | | 640 | ansley - republic - danson - argentina - giselle | 15 | 640_ansley_republic_danson_argentina | | 641 | bishop - ball - lewes - carey - church | 15 | 641_bishop_ball_lewes_carey | | 642 | cpr - defibrillator - cardiac - compression - resuscitation | 15 | 642_cpr_defibrillator_cardiac_compression | | 643 | guardiola - kompany - valenti - barcelona - pellegrini | 15 | 643_guardiola_kompany_valenti_barcelona | | 644 | wreck - woolsgrove - cannon - ship - heritage | 15 | 644_wreck_woolsgrove_cannon_ship | | 645 | heel - dress - wear - thorp - code | 15 | 645_heel_dress_wear_thorp | | 646 | tomb - mummy - pyramid - tutankhamuns - scan | 15 | 646_tomb_mummy_pyramid_tutankhamuns | | 647 | doddfrank - financial - volcker - banking - bank | 15 | 647_doddfrank_financial_volcker_banking | | 648 | rateable - revaluation - rate - business - value | 15 | 648_rateable_revaluation_rate_business | | 649 | - - - - | 15 | 649____ | | 650 | poppy - 888246 - weeping - cummins - armistice | 15 | 650_poppy_888246_weeping_cummins | | 651 | indigenous - aboriginal - trudeau - canadian - nations | 15 | 651_indigenous_aboriginal_trudeau_canadian | | 652 | trump - farage - relationship - trumps - presidentelect | 15 | 652_trump_farage_relationship_trumps | | 653 | grainger - culcheth - teague - gmp - graingers | 15 | 653_grainger_culcheth_teague_gmp | | 654 | cathedral - seminary - hinterland - chapel - peters | 15 | 654_cathedral_seminary_hinterland_chapel | | 655 | arran - ayrshire - crosshouse - maternity - review | 15 | 655_arran_ayrshire_crosshouse_maternity | | 656 | bailey - cults - knife - gwynne - duguid | 15 | 656_bailey_cults_knife_gwynne | | 657 | cloud - microsoft - yahoo - skype - nadella | 15 | 657_cloud_microsoft_yahoo_skype | | 658 | deaf - bsl - language - sign - skelding | 15 | 658_deaf_bsl_language_sign | | 659 | name - girls - boys - boy - popular | 15 | 659_name_girls_boys_boy | | 660 | winterbourne - panorama - care - deanery - oesophageal | 15 | 660_winterbourne_panorama_care_deanery | | 661 | satoshi - bitcoin - nakamoto - wright - bitcoins | 14 | 661_satoshi_bitcoin_nakamoto_wright | | 662 | image - body - cosmetic - selfesteem - beresford | 14 | 662_image_body_cosmetic_selfesteem | | 663 | pte - beasting - punishment - sgt - williams | 14 | 663_pte_beasting_punishment_sgt | | 664 | knox - sollecito - kercher - perugia - guede | 14 | 664_knox_sollecito_kercher_perugia | | 665 | ladies - hockey - johannesburg - ranked - harte | 14 | 665_ladies_hockey_johannesburg_ranked | | 666 | suicide - suicides - samaritans - mental - suicidal | 14 | 666_suicide_suicides_samaritans_mental | | 667 | bridge - lorry - southbound - sudbrook - lecco | 14 | 667_bridge_lorry_southbound_sudbrook | | 668 | youth - ncs - ea - unison - young | 14 | 668_youth_ncs_ea_unison | | 669 | rezaian - iran - iranian - namazi - bahais | 14 | 669_rezaian_iran_iranian_namazi | | 670 | orgreave - miner - miners - rudd - inquiry | 14 | 670_orgreave_miner_miners_rudd | | 671 | earthquake - bgs - tremor - magnitude - seismologist | 14 | 671_earthquake_bgs_tremor_magnitude | | 672 | sport - baumgardt - wales - board - chair | 14 | 672_sport_baumgardt_wales_board | | 673 | follow - - - - | 14 | 673_follow___ | | 674 | cyber - chinese - hacking - china - ip | 14 | 674_cyber_chinese_hacking_china | | 675 | onion - dosa - indian - schezwan - masala | 14 | 675_onion_dosa_indian_schezwan | | 676 | g4s - medway - panorama - rainsbrook - staff | 14 | 676_g4s_medway_panorama_rainsbrook | | 677 | afc - wimbledon - lyle - bury - dean | 14 | 677_afc_wimbledon_lyle_bury | | 678 | dog - meat - yulin - animal - festival | 14 | 678_dog_meat_yulin_animal | | 679 | haigh - gfh - dubai - uae - haighs | 14 | 679_haigh_gfh_dubai_uae | | 680 | parking - hospital - charge - car - nhs | 14 | 680_parking_hospital_charge_car | | 681 | airbnb - chesky - rent - airbnbs - botsman | 14 | 681_airbnb_chesky_rent_airbnbs | | 682 | wall - keane - liberton - wallisbennett - keanes | 14 | 682_wall_keane_liberton_wallisbennett | | 683 | tree - christmas - wassail - switchon - festive | 14 | 683_tree_christmas_wassail_switchon | | 684 | call - 999 - caller - handler - calls | 14 | 684_call_999_caller_handler | | 685 | ship - faro - tote - cruises - crew | 14 | 685_ship_faro_tote_cruises | | 686 | prince - princes - letter - veto - charles | 14 | 686_prince_princes_letter_veto | | 687 | cliff - coast - dorset - jurassic - rock | 14 | 687_cliff_coast_dorset_jurassic | | 688 | purnama - jakarta - widodo - indonesia - rizieq | 14 | 688_purnama_jakarta_widodo_indonesia | | 689 | pregnancy - abortion - rakh - termination - girl | 13 | 689_pregnancy_abortion_rakh_termination | | 690 | dnar - maddisons - trust - baby - hospital | 13 | 690_dnar_maddisons_trust_baby | | 691 | mallya - kingfisher - mallyas - businessman - ram | 13 | 691_mallya_kingfisher_mallyas_businessman | | 692 | sampson - twickenham - rugby - england - maafu | 13 | 692_sampson_twickenham_rugby_england | | 693 | hiroshima - nagasaki - bomb - atomic - kyoto | 13 | 693_hiroshima_nagasaki_bomb_atomic | | 694 | ecclestone - gribkowsky - constantin - ecclestones - f1 | 13 | 694_ecclestone_gribkowsky_constantin_ecclestones | | 695 | growth - construction - rd - nicei - output | 13 | 695_growth_construction_rd_nicei | | 696 | bt - sky - premier - 4k - tv | 13 | 696_bt_sky_premier_4k | | 697 | cardiff - region - bay - metro - swansea | 13 | 697_cardiff_region_bay_metro | | 698 | munoz - airlines - airline - aviation - continental | 13 | 698_munoz_airlines_airline_aviation | | 699 | nrl - widnes - super - purtell - rhinos | 13 | 699_nrl_widnes_super_purtell | | 700 | mckeown - trolley - guinness - speed - record | 13 | 700_mckeown_trolley_guinness_speed | | 701 | ethiopia - oromo - oromia - ethiopian - pankhurst | 13 | 701_ethiopia_oromo_oromia_ethiopian | | 702 | weapon - airgun - firearm - licensing - licence | 13 | 702_weapon_airgun_firearm_licensing | | 703 | mcdonalds - jollibee - restaurant - panera - fastfood | 13 | 703_mcdonalds_jollibee_restaurant_panera | | 704 | listener - rajar - listeners - weekly - radio | 13 | 704_listener_rajar_listeners_weekly | | 705 | santos - angola - mpla - unita - angolas | 13 | 705_santos_angola_mpla_unita | | 706 | train - glenfinnan - viaduct - fasting - railway | 13 | 706_train_glenfinnan_viaduct_fasting | | 707 | tattoo - tattooists - tattooing - piercing - tattooist | 13 | 707_tattoo_tattooists_tattooing_piercing | | 708 | brizzi - semple - semples - pc - meth | 13 | 708_brizzi_semple_semples_pc | | 709 | india - indian - china - chinese - border | 13 | 709_india_indian_china_chinese | | 710 | saudi - arabia - king - camel - prince | 13 | 710_saudi_arabia_king_camel | | 711 | balakrishnan - balakrishnans - commune - aravindan - cult | 13 | 711_balakrishnan_balakrishnans_commune_aravindan | | 712 | turkington - smiley - race - shedden - btcc | 13 | 712_turkington_smiley_race_shedden | | 713 | grenfell - kensington - pagetbrown - tower - aghlani | 13 | 713_grenfell_kensington_pagetbrown_tower | | 714 | apd - passenger - tax - airport - duty | 13 | 714_apd_passenger_tax_airport | | 715 | chua - insulin - saline - poisoning - nurse | 13 | 715_chua_insulin_saline_poisoning | | 716 | extremism - radicalisation - teachers - teacher - extremist | 13 | 716_extremism_radicalisation_teachers_teacher | | 717 | loan - undisclosed - unattached - free - qpr | 13 | 717_loan_undisclosed_unattached_free | | 718 | gst - tax - jaitley - indias - mexico | 12 | 718_gst_tax_jaitley_indias | | 719 | 888 - william - hill - bwin - gvc | 12 | 719_888_william_hill_bwin | | 720 | nyomi - liam - rachel - fee - liams | 12 | 720_nyomi_liam_rachel_fee | | 721 | stopandsearch - search - consensual - stop - searched | 12 | 721_stopandsearch_search_consensual_stop | | 722 | keane - oneill - republic - oshea - squad | 12 | 722_keane_oneill_republic_oshea | | 723 | marriage - samesex - abbott - gay - labor | 12 | 723_marriage_samesex_abbott_gay | | 724 | expedition - pole - curie - luke - trek | 12 | 724_expedition_pole_curie_luke | | 725 | eritrea - eritrean - seun - alhacen - migrant | 12 | 725_eritrea_eritrean_seun_alhacen | | 726 | bg - shell - shells - oil - beurden | 12 | 726_bg_shell_shells_oil | | 727 | monthbymonth - peachey - tip - calendar - finance | 12 | 727_monthbymonth_peachey_tip_calendar | | 728 | 150000 - salary - 199999 - 249999 - talent | 12 | 728_150000_salary_199999_249999 | | 729 | deutsche - bank - mortgagebacked - banks - 14bn | 12 | 729_deutsche_bank_mortgagebacked_banks | | 730 | handstand - handy - makeyourmove - triceps - toning | 12 | 730_handstand_handy_makeyourmove_triceps | | 731 | merkel - trump - wulff - german - angela | 12 | 731_merkel_trump_wulff_german | | 732 | farook - marquez - mateen - malik - fbi | 12 | 732_farook_marquez_mateen_malik | | 733 | agm - nonvoting - dumfries - directors - palmerston | 12 | 733_agm_nonvoting_dumfries_directors | | 734 | notebook - poem - dylan - makars - thomas | 12 | 734_notebook_poem_dylan_makars | | 735 | rating - hygiene - food - display - ratings | 12 | 735_rating_hygiene_food_display | | 736 | arches - licensing - venue - licence - cromer | 12 | 736_arches_licensing_venue_licence | | 737 | putin - trump - russia - dugin - russian | 12 | 737_putin_trump_russia_dugin | | 738 | transfer - lukaku - hasenhuttl - naby - pele | 12 | 738_transfer_lukaku_hasenhuttl_naby | | 739 | acid - madasani - potes - saa - grillot | 12 | 739_acid_madasani_potes_saa | | 740 | unemployment - wales - rate - welsh - employment | 12 | 740_unemployment_wales_rate_welsh | | 741 | hawkeye - goalline - goalref - fifa - technology | 12 | 741_hawkeye_goalline_goalref_fifa | | 742 | claudia - lawrence - malyn - lawrences - disappearance | 12 | 742_claudia_lawrence_malyn_lawrences | | 743 | whiter - abbs - newmarket - whiters - adamec | 12 | 743_whiter_abbs_newmarket_whiters | | 744 | opm - cyber - hacker - china - clapper | 12 | 744_opm_cyber_hacker_china | | 745 | swansea - sigurdsson - swans - llorente - jenkins | 12 | 745_swansea_sigurdsson_swans_llorente | | 746 | forbes - wealth - richest - billionaire - maggard | 12 | 746_forbes_wealth_richest_billionaire | | 747 | battery - batteries - lithium - lithiumair - lithiumion | 12 | 747_battery_batteries_lithium_lithiumair | | 748 | osprey - nest - chick - ej - garten | 12 | 748_osprey_nest_chick_ej | | 749 | occupation - guernsey - fumero - memorial - rushen | 11 | 749_occupation_guernsey_fumero_memorial | | 750 | rollsroyce - engine - aerospace - rollsroyces - rolls | 11 | 750_rollsroyce_engine_aerospace_rollsroyces | | 751 | imf - forecast - imfs - growth - economy | 11 | 751_imf_forecast_imfs_growth | | 752 | ship - yangtze - eastern - cao - capsized | 11 | 752_ship_yangtze_eastern_cao | | 753 | emperor - akihito - throne - imperial - naruhito | 11 | 753_emperor_akihito_throne_imperial | | 754 | wsl - tynan - ladies - notts - womens | 11 | 754_wsl_tynan_ladies_notts | | 755 | dog - personality - wolf - animal - horse | 11 | 755_dog_personality_wolf_animal | | 756 | singapore - singapores - lee - singaporeans - pap | 11 | 756_singapore_singapores_lee_singaporeans | | 757 | bawagarba - sepsis - amaro - hadiza - jack | 11 | 757_bawagarba_sepsis_amaro_hadiza | | 758 | brooks - pincher - hacking - murdoch - pharo | 11 | 758_brooks_pincher_hacking_murdoch | | 759 | camera - coppergate - lendal - a9 - lane | 11 | 759_camera_coppergate_lendal_a9 | | 760 | coffee - fruit - grains - banana - avocado | 11 | 760_coffee_fruit_grains_banana | | 761 | india - modi - modis - nuclear - indias | 11 | 761_india_modi_modis_nuclear | | 762 | massey - salford - masseys - feud - shooting | 11 | 762_massey_salford_masseys_feud | | 763 | climate - lowcarbon - energy - emission - change | 11 | 763_climate_lowcarbon_energy_emission | | 764 | wilks - harehills - mallik - chapeltown - leeds | 11 | 764_wilks_harehills_mallik_chapeltown | | 765 | hav - airlander - cardington - hangar - aircraft | 11 | 765_hav_airlander_cardington_hangar | | 766 | fentanyl - drug - heroin - prescription - painkiller | 11 | 766_fentanyl_drug_heroin_prescription | | 767 | pfizer - astrazeneca - akzo - ppg - takeover | 11 | 767_pfizer_astrazeneca_akzo_ppg | | 768 | bloodhound - ssc - thrust - rocket - 800mph | 11 | 768_bloodhound_ssc_thrust_rocket | | 769 | belfast - lacuna - scheme - watkin - courthouse | 11 | 769_belfast_lacuna_scheme_watkin | | 770 | badminton - gilmour - sindhu - kirsty - medal | 11 | 770_badminton_gilmour_sindhu_kirsty | | 771 | ring - wedding - ariel - sherrington - paahlsson | 11 | 771_ring_wedding_ariel_sherrington | | 772 | stack - m20 - lorry - kent - crosschannel | 11 | 772_stack_m20_lorry_kent | | 773 | mesh - incontinence - implant - prolapse - essure | 11 | 773_mesh_incontinence_implant_prolapse | | 774 | flint - water - snyder - bottled - leached | 11 | 774_flint_water_snyder_bottled | | 775 | lough - dredging - sand - durkan - notice | 11 | 775_lough_dredging_sand_durkan | | 776 | playback - supported - device - media - weirarcher | 11 | 776_playback_supported_device_media | | 777 | weibo - qin - chinese - mizuhara - dalai | 11 | 777_weibo_qin_chinese_mizuhara | | 778 | cycling - event - galloway - dumfries - tour | 11 | 778_cycling_event_galloway_dumfries | | 779 | wheelchair - bus - paulley - pushchair - disabled | 11 | 779_wheelchair_bus_paulley_pushchair | | 780 | welsh - dems - lib - plaid - budget | 11 | 780_welsh_dems_lib_plaid | | 781 | mirza - abertillery - blackmail - farhan - woman | 11 | 781_mirza_abertillery_blackmail_farhan | | 782 | dress - wore - burlesque - costume - underwear | 11 | 782_dress_wore_burlesque_costume | | 783 | neymar - psg - neymars - barcelona - brazilian | 11 | 783_neymar_psg_neymars_barcelona | | 784 | sarao - saraos - navinder - sell - flash | 10 | 784_sarao_saraos_navinder_sell | | 785 | nato - juncker - defence - eu - mattis | 10 | 785_nato_juncker_defence_eu | | 786 | mobile - aws - amazon - computing - cloud | 10 | 786_mobile_aws_amazon_computing | | 787 | transgender - vikki - prison - gender - hmp | 10 | 787_transgender_vikki_prison_gender | | 788 | puerto - urdangarin - princess - cristina - rico | 10 | 788_puerto_urdangarin_princess_cristina | | 789 | turkey - turkish - russian - russia - putin | 10 | 789_turkey_turkish_russian_russia | | 790 | michelin - chef - restaurant - violier - hawker | 10 | 790_michelin_chef_restaurant_violier | | 791 | mcgarry - thomson - snp - whip - plumbly | 10 | 791_mcgarry_thomson_snp_whip | | 792 | pegida - dresden - bachmann - german - rally | 10 | 792_pegida_dresden_bachmann_german | | 793 | ai - alphago - chess - sedol - deepmind | 10 | 793_ai_alphago_chess_sedol | | 794 | bath - busker - parkandride - somerset - quays | 10 | 794_bath_busker_parkandride_somerset | | 795 | clock - tower - chime - bell - bong | 10 | 795_clock_tower_chime_bell | | 796 | decay - dental - tooth - teeth - oral | 10 | 796_decay_dental_tooth_teeth | | 797 | tillerson - putin - trump - russian - russia | 10 | 797_tillerson_putin_trump_russian | | 798 | roma - genoa - totti - serie - landonio | 10 | 798_roma_genoa_totti_serie | | 799 | gb - womens - olympics - team - football | 10 | 799_gb_womens_olympics_team | | 800 | hyperloop - musk - pod - elon - transportation | 10 | 800_hyperloop_musk_pod_elon | | 801 | xi - buckingham - chinese - visit - banquet | 10 | 801_xi_buckingham_chinese_visit | | 802 | hajj - pilgrim - stampede - saudi - mina | 10 | 802_hajj_pilgrim_stampede_saudi | | 803 | dj - serpellmorris - derek - glastonbury - thornbury | 10 | 803_dj_serpellmorris_derek_glastonbury | | 804 | burton - derby - albion - ince - barnsley | 10 | 804_burton_derby_albion_ince | | 805 | wheat - crop - harvest - food - yield | 10 | 805_wheat_crop_harvest_food | | 806 | kaufman - latham - leyonhjelm - streeter - bew | 10 | 806_kaufman_latham_leyonhjelm_streeter | | 807 | ofcom - belo - itv - broadcast - contestant | 10 | 807_ofcom_belo_itv_broadcast | | 808 | cassano - bayern - passi - verona - bielsa | 9 | 808_cassano_bayern_passi_verona | | 809 | egg - fipronil - eggs - fsa - dutch | 9 | 809_egg_fipronil_eggs_fsa | | 810 | g4s - serco - tagging - sfo - overcharged | 9 | 810_g4s_serco_tagging_sfo | | 811 | tapie - lagarde - lyonnais - lagardes - 404m | 9 | 811_tapie_lagarde_lyonnais_lagardes | | 812 | iwf - image - hash - images - abuse | 9 | 812_iwf_image_hash_images | | 813 | larne - maxwell - ciarn - psni - antipersonnel | 9 | 813_larne_maxwell_ciarn_psni | | 814 | wettlaufer - cappuccini - azeez - anaesthetist - tunbridge | 9 | 814_wettlaufer_cappuccini_azeez_anaesthetist | | 815 | ifa - portadown - elebert - carrick - warrenpoint | 9 | 815_ifa_portadown_elebert_carrick | | 816 | turkey - erdogan - turkeys - visafree - eu | 9 | 816_turkey_erdogan_turkeys_visafree | | 817 | daniels - krezolek - luczak - pathan - daniel | 9 | 817_daniels_krezolek_luczak_pathan | | 818 | shoreham - airshow - caa - display - hawker | 9 | 818_shoreham_airshow_caa_display | | 819 | tuam - secours - galway - bon - baby | 9 | 819_tuam_secours_galway_bon | | 820 | forensic - fss - forensics - science - dna | 9 | 820_forensic_fss_forensics_science | | 821 | violence - women - mexico - mabel - woman | 9 | 821_violence_women_mexico_mabel | | 822 | brownhill - tomlin - raynor - clough - campbellryce | 9 | 822_brownhill_tomlin_raynor_clough | | 823 | breastfeeding - claridges - breastfeed - baby - frangou | 9 | 823_breastfeeding_claridges_breastfeed_baby | | 824 | theatre - arts - venue - henley - guild | 9 | 824_theatre_arts_venue_henley | | 825 | saudi - arabia - iran - shia - bahrain | 9 | 825_saudi_arabia_iran_shia | | 826 | corporation - tax - stormont - ireland - northern | 9 | 826_corporation_tax_stormont_ireland | | 827 | adani - mine - coal - galilee - queensland | 9 | 827_adani_mine_coal_galilee | | 828 | bridgend - ford - engine - plant - mini | 9 | 828_bridgend_ford_engine_plant | | 829 | ets - exam - toeic - cscs - sia | 9 | 829_ets_exam_toeic_cscs | | 830 | guiana - cgt - french - paris - strike | 9 | 830_guiana_cgt_french_paris | | 831 | ntw - music - wno - mcgrath - cleo | 9 | 831_ntw_music_wno_mcgrath | | 832 | laden - bin - zawahiri - ladens - alqaeda | 9 | 832_laden_bin_zawahiri_ladens | | 833 | dizaei - uae - badawi - lash - alislah | 9 | 833_dizaei_uae_badawi_lash | | 834 | amazon - aws - amazons - boutline - cloud | 9 | 834_amazon_aws_amazons_boutline | | 835 | plane - turbulence - passenger - medan - crashed | 9 | 835_plane_turbulence_passenger_medan | | 836 | firearm - defraine - shilling - gun - skorpion | 9 | 836_firearm_defraine_shilling_gun | | 837 | dalai - tibet - tibetan - lama - tibetans | 9 | 837_dalai_tibet_tibetan_lama | | 838 | robot - dynamics - robotics - raibert - robots | 9 | 838_robot_dynamics_robotics_raibert | | 839 | itv - crozier - revenue - talpa - advertising | 9 | 839_itv_crozier_revenue_talpa | | 840 | gay - samesex - marriage - italy - grech | 9 | 840_gay_samesex_marriage_italy | | 841 | sweden - norway - switzerland - finland - denmark | 9 | 841_sweden_norway_switzerland_finland | | 842 | pitt - jolie - paltrow - divorce - married | 9 | 842_pitt_jolie_paltrow_divorce | | 843 | netflix - hbo - svod - subscriber - cable | 8 | 843_netflix_hbo_svod_subscriber | | 844 | taiwan - china - taiwans - taiwanese - beijing | 8 | 844_taiwan_china_taiwans_taiwanese | | 845 | bundy - rancher - refuge - federal - oregon | 8 | 845_bundy_rancher_refuge_federal | | 846 | methamphetamine - drug - ice - australian - seizure | 8 | 846_methamphetamine_drug_ice_australian | | 847 | thomson - hales - snp - whip - thomsons | 8 | 847_thomson_hales_snp_whip | | 848 | mail - postman - postcode - dog - delivery | 8 | 848_mail_postman_postcode_dog | | 849 | powell - gibbons - judo - judoka - rio | 8 | 849_powell_gibbons_judo_judoka | | 850 | fa - rabbatts - reform - governance - fas | 8 | 850_fa_rabbatts_reform_governance | | 851 | gezi - taksim - istanbul - erdogan - protester | 8 | 851_gezi_taksim_istanbul_erdogan | | 852 | thompson - llanwrda - countersued - brewster - lenny | 8 | 852_thompson_llanwrda_countersued_brewster | | 853 | exeter - stevenage - mansfield - doncaster - luton | 8 | 853_exeter_stevenage_mansfield_doncaster | | 854 | burntwood - stephens - stephen - cancer - keech | 8 | 854_burntwood_stephens_stephen_cancer | | 855 | coptic - tawadros - church - monastery - christians | 8 | 855_coptic_tawadros_church_monastery | | 856 | ramblers - path - peak - trail - backpack | 8 | 856_ramblers_path_peak_trail | | 857 | hmrc - purplebricks - dwp - jobcentre - agent | 8 | 857_hmrc_purplebricks_dwp_jobcentre | | 858 | equality - discrimination - lgbti - bisson - tatchell | 8 | 858_equality_discrimination_lgbti_bisson | | 859 | moira - gartshore - moiras - coatbridge - 1957 | 8 | 859_moira_gartshore_moiras_coatbridge | | 860 | anbang - marriott - starwood - blackstone - waldorf | 8 | 860_anbang_marriott_starwood_blackstone | | 861 | visa - poststudy - brains - brain - laggan | 8 | 861_visa_poststudy_brains_brain | | 862 | minnock - ethan - wildblood - minnocks - ethans | 8 | 862_minnock_ethan_wildblood_minnocks | | 863 | badminton - basketball - sport - achara - funding | 8 | 863_badminton_basketball_sport_achara | | 864 | visitor - attraction - museum - visited - heritage | 8 | 864_visitor_attraction_museum_visited | | 865 | hmic - child - exploitation - constabulary - protection | 8 | 865_hmic_child_exploitation_constabulary | | 866 | pride - bisexual - event - festival - lesbian | 8 | 866_pride_bisexual_event_festival | | 867 | baton - relay - torch - commonwealth - games | 8 | 867_baton_relay_torch_commonwealth | | 868 | holbrook - leigh - keiron - helens - saints | 8 | 868_holbrook_leigh_keiron_helens | | 869 | curling - rink - muirhead - gold - freestyle | 8 | 869_curling_rink_muirhead_gold | | 870 | miffy - pooh - winniethepooh - rabbit - potter | 8 | 870_miffy_pooh_winniethepooh_rabbit | | 871 | gaal - lampard - mourinho - van - gaals | 8 | 871_gaal_lampard_mourinho_van | | 872 | pcs - nmw - museum - museums - weekend | 8 | 872_pcs_nmw_museum_museums | | 873 | alexa - amazon - cerf - google - limp | 8 | 873_alexa_amazon_cerf_google | | 874 | rio - landless - pitanguy - temer - brazils | 8 | 874_rio_landless_pitanguy_temer | | 875 | coleman - colemans - gunter - euro - wales | 7 | 875_coleman_colemans_gunter_euro | | 876 | tower - grenfell - fire - kensington - 24storey | 7 | 876_tower_grenfell_fire_kensington | | 877 | asylum - quebec - canada - refugee - manitoba | 7 | 877_asylum_quebec_canada_refugee | | 878 | s4c - carmarthen - egin - trinity - welsh | 7 | 878_s4c_carmarthen_egin_trinity | | 879 | grimsby - crawley - town - shrewsbury - argyle | 7 | 879_grimsby_crawley_town_shrewsbury | | 880 | jonesbishop - quins - trinity - pulver - sardis | 7 | 880_jonesbishop_quins_trinity_pulver | | 881 | lerner - villa - garde - villas - manager | 7 | 881_lerner_villa_garde_villas | | 882 | ivf - fertility - ccgs - cycle - treatment | 7 | 882_ivf_fertility_ccgs_cycle | | 883 | allotment - lochee - uckfield - weymouth - pub | 7 | 883_allotment_lochee_uckfield_weymouth | | 884 | toilet - harleston - twinning - urinating - apgid | 7 | 884_toilet_harleston_twinning_urinating | | 885 | breast - cancer - mastectomy - knockers - knitted | 7 | 885_breast_cancer_mastectomy_knockers | | 886 | rubbish - beirut - lebanon - salam - fenianos | 7 | 886_rubbish_beirut_lebanon_salam | | 887 | rfl - bulls - super - bradford - club | 7 | 887_rfl_bulls_super_bradford | | 888 | csl - evergrande - china - chadwick - chinese | 7 | 888_csl_evergrande_china_chadwick | | 889 | snowden - nsa - intelligence - surveillance - spy | 7 | 889_snowden_nsa_intelligence_surveillance | | 890 | pshe - sre - education - sex - bullying | 7 | 890_pshe_sre_education_sex | | 891 | sexual - nspcc - sexting - abuse - child | 7 | 891_sexual_nspcc_sexting_abuse | | 892 | titanic - hichens - nilsson - ship - aldridge | 7 | 892_titanic_hichens_nilsson_ship | | 893 | hampstead - blackening - injuries - hgv - blairingone | 7 | 893_hampstead_blackening_injuries_hgv | | 894 | bbcbreaking - fullest - breaking - refresh - alerts | 7 | 894_bbcbreaking_fullest_breaking_refresh | | 895 | meeke - citroen - breen - ogier - rally | 7 | 895_meeke_citroen_breen_ogier | | 896 | czech - havel - polish - vaclav - havels | 7 | 896_czech_havel_polish_vaclav | | 897 | shia - mosque - adhamiya - kuwait - saudi | 7 | 897_shia_mosque_adhamiya_kuwait | | 898 | strachan - chipolina - mcrae - brown - slovakia | 7 | 898_strachan_chipolina_mcrae_brown | | 899 | tax - republicans - democrats - congress - senate | 7 | 899_tax_republicans_democrats_congress | | 900 | cyprus - cypriot - levy - bank - bailout | 7 | 900_cyprus_cypriot_levy_bank | | 901 | carnival - notting - hill - event - carnivals | 7 | 901_carnival_notting_hill_event | | 902 | noakes - shep - jupp - daliso - quiz | 7 | 902_noakes_shep_jupp_daliso | | 903 | watford - taylor - graham - villa - elton | 7 | 903_watford_taylor_graham_villa | | 904 | rally - rallying - kextreme - nrw - denbighshire | 7 | 904_rally_rallying_kextreme_nrw | | 905 | fca - saver - lending - rate - arrears | 7 | 905_fca_saver_lending_rate | | 906 | bbl - paternostro - riders - cowan - trophy | 6 | 906_bbl_paternostro_riders_cowan | | 907 | extinction - capitanian - carbon - spherule - anthropocene | 6 | 907_extinction_capitanian_carbon_spherule | | 908 | greer - broadfoot - midfielder - signing - mckee | 6 | 908_greer_broadfoot_midfielder_signing | | 909 | hull - tanks - coliseum - culture - ferens | 6 | 909_hull_tanks_coliseum_culture | | 910 | rat - pest - coombs - pub - property | 6 | 910_rat_pest_coombs_pub | | 911 | sale - ons - retail - dfs - volume | 6 | 911_sale_ons_retail_dfs | | 912 | wallasey - pc - czyz - phillips - ojedarodriguez | 6 | 912_wallasey_pc_czyz_phillips | | 913 | buy - mortgage - renting - deposit - property | 6 | 913_buy_mortgage_renting_deposit | | 914 | vinicius - cavani - bayern - transfer - boateng | 6 | 914_vinicius_cavani_bayern_transfer | | 915 | ireland - trade - esri - iem - northern | 6 | 915_ireland_trade_esri_iem | | 916 | music - orchestra - instrument - endowment - teaching | 6 | 916_music_orchestra_instrument_endowment | | 917 | mental - triage - health - custody - kent | 6 | 917_mental_triage_health_custody | | 918 | citizenship - dual - senator - citizen - ludlam | 6 | 918_citizenship_dual_senator_citizen | | 919 | flower - flowered - garden - arum - botanic | 6 | 919_flower_flowered_garden_arum | | 920 | rainsy - hun - sen - cambodia - penh | 6 | 920_rainsy_hun_sen_cambodia | | 921 | boxer - boxing - bout - taylor - olympic | 6 | 921_boxer_boxing_bout_taylor | | 922 | zabel - sketch - courtroom - artist - elveden | 6 | 922_zabel_sketch_courtroom_artist | | 923 | westley - bentley - baraclough - gregory - club | 6 | 923_westley_bentley_baraclough_gregory | | 924 | lochte - feigen - olympic - bentz - swimmer | 6 | 924_lochte_feigen_olympic_bentz | | 925 | ticket - ticketmaster - resale - ticketing - tout | 6 | 925_ticket_ticketmaster_resale_ticketing | | 926 | merger - boerses - ao - rentokil - deutsche | 6 | 926_merger_boerses_ao_rentokil | | 927 | restoration - peer - mps - westminster - palace | 6 | 927_restoration_peer_mps_westminster | | 928 | payphones - bt - kiosk - phone - payphone | 6 | 928_payphones_bt_kiosk_phone | | 929 | brady - hindley - rhattigan - ashworth - bradys | 6 | 929_brady_hindley_rhattigan_ashworth | | 930 | turnerconn - midwife - pip - childbirth - maternity | 6 | 930_turnerconn_midwife_pip_childbirth | | 931 | mayoral - liverpool - rotheram - mayor - region | 6 | 931_mayoral_liverpool_rotheram_mayor | | 932 | balcony - berkeley - donohoe - lorcn - irish | 6 | 932_balcony_berkeley_donohoe_lorcn | | 933 | sheriff - driving - goto - kozlowski - duncan | 6 | 933_sheriff_driving_goto_kozlowski | | 934 | utv - stv - itv - channel - pitts | 6 | 934_utv_stv_itv_channel | | 935 | bonar - prostasia - steroid - adderall - ukad | 6 | 935_bonar_prostasia_steroid_adderall | | 936 | worcester - kuper - stourbridge - promotion - football | 6 | 936_worcester_kuper_stourbridge_promotion | | 937 | cellino - fun88 - marinakis - rosler - leeds | 6 | 937_cellino_fun88_marinakis_rosler | | 938 | alamgir - terrorism - arranging - istiak - ziaur | 6 | 938_alamgir_terrorism_arranging_istiak | | 939 | aqap - mukalla - yemen - alqaeda - zinjibar | 6 | 939_aqap_mukalla_yemen_alqaeda | | 940 | mysportingsoundtrack - stanford - live - inverdale - 060009005 | 6 | 940_mysportingsoundtrack_stanford_live_inverdale | | 941 | ramsey - moldova - coleman - arsenals - arsenal | 6 | 941_ramsey_moldova_coleman_arsenals | | 942 | water - antiwater - irish - billing - euro | 6 | 942_water_antiwater_irish_billing | | 943 | mackintosh - gsa - projector - pagepark - restoration | 6 | 943_mackintosh_gsa_projector_pagepark | | 944 | trump - waterboarding - republican - gorka - cpac | 6 | 944_trump_waterboarding_republican_gorka | | 945 | pendle - witches - museum - dorchester - spooks | 6 | 945_pendle_witches_museum_dorchester | | 946 | bloomfield - melanoma - sun - colin - uv | 6 | 946_bloomfield_melanoma_sun_colin | | 947 | sinai - morsi - elarish - cairo - militant | 6 | 947_sinai_morsi_elarish_cairo | | 948 | nfl - rams - raiders - chargers - jaguars | 6 | 948_nfl_rams_raiders_chargers | | 949 | chile - peru - bolivia - chilean - peruvian | 6 | 949_chile_peru_bolivia_chilean | | 950 | sony - sonys - pascal - rudin - lizard | 6 | 950_sony_sonys_pascal_rudin | | 951 | xi - china - li - communist - chinas | 6 | 951_xi_china_li_communist | | 952 | tunny - lobban - puzzle - whetter - turing | 6 | 952_tunny_lobban_puzzle_whetter | | 953 | beeks - quigley - tozer - oli - twoyear | 5 | 953_beeks_quigley_tozer_oli | | 954 | bach - olympics - athlete - olympic - floorball | 5 | 954_bach_olympics_athlete_olympic | | 955 | marriage - samesex - gay - equality - ireland | 5 | 955_marriage_samesex_gay_equality | | 956 | ennismore - hotel - apex - gleneagles - oswestry | 5 | 956_ennismore_hotel_apex_gleneagles | | 957 | sabre - engine - skylon - rel - precooler | 5 | 957_sabre_engine_skylon_rel | | 958 | lukaku - mourinho - jese - everton - trafford | 5 | 958_lukaku_mourinho_jese_everton | | 959 | mccollum - peru - cocaine - reid - peruvian | 5 | 959_mccollum_peru_cocaine_reid | | 960 | internet - cac - firewall - cyberspace - gateway | 5 | 960_internet_cac_firewall_cyberspace | | 961 | jailed - hobbs - m5 - burmantofts - driver | 5 | 961_jailed_hobbs_m5_burmantofts | | 962 | grindelwald - beasts - dumbledore - potter - wizard | 5 | 962_grindelwald_beasts_dumbledore_potter | | 963 | carta - magna - 1215 - charter - copy | 5 | 963_carta_magna_1215_charter | | 964 | pope - francis - easter - urbi - orbi | 5 | 964_pope_francis_easter_urbi | | 965 | unionist - paramilitary - ira - sinn - loyalist | 5 | 965_unionist_paramilitary_ira_sinn | | 966 | seawright - gloag - hoonjan - sloane - martin | 5 | 966_seawright_gloag_hoonjan_sloane | | 967 | 2024 - ioc - budapest - bid - 2028 | 5 | 967_2024_ioc_budapest_bid | | 968 | vat - calbee - soba - pasty - bgf | 5 | 968_vat_calbee_soba_pasty | | 969 | child - crichton - referral - nspcc - parent | 5 | 969_child_crichton_referral_nspcc | | 970 | eurozone - esm - bailouts - bailout - efsm | 5 | 970_eurozone_esm_bailouts_bailout | | 971 | skeoch - avivas - swip - outflow - pitheavlis | 5 | 971_skeoch_avivas_swip_outflow | | 972 | sky - skys - cable - settop - channel | 5 | 972_sky_skys_cable_settop | | 973 | interrogation - cia - torture - waterboarding - zubaydah | 5 | 973_interrogation_cia_torture_waterboarding | | 974 | hatherley - lda - brutalust - dandara - postwar | 5 | 974_hatherley_lda_brutalust_dandara | | 975 | khmer - rouge - chea - nuon - cambodia | 5 | 975_khmer_rouge_chea_nuon | | 976 | tenby - cheruiyot - marathon - hawkins - ironman | 5 | 976_tenby_cheruiyot_marathon_hawkins | | 977 | zaidi - wolfpack - burnett - melville - grading | 5 | 977_zaidi_wolfpack_burnett_melville | | 978 | cothill - nel - clennel - irene - mrs | 5 | 978_cothill_nel_clennel_irene | | 979 | chelsea - demichelis - pellegrini - martn - bertrand | 5 | 979_chelsea_demichelis_pellegrini_martn | | 980 | gamergate - sarkeesian - harassment - online - feminist | 5 | 980_gamergate_sarkeesian_harassment_online | | 981 | model - catwalk - frankum - obese - roxane | 5 | 981_model_catwalk_frankum_obese | | 982 | hoy - kennaugh - manx - cycling - mans | 5 | 982_hoy_kennaugh_manx_cycling | | 983 | racism - frimpong - racist - zenit - russian | 5 | 983_racism_frimpong_racist_zenit | | 984 | ballas - fidler - bankstown - wokingham - marion | 5 | 984_ballas_fidler_bankstown_wokingham | | 985 | canal - waterway - oakham - towpath - lock | 5 | 985_canal_waterway_oakham_towpath | | 986 | refugee - displaced - asylum - francken - migrant | 5 | 986_refugee_displaced_asylum_francken | | 987 | merger - flintshire - andrews - wlga - wrexham | 5 | 987_merger_flintshire_andrews_wlga | | 988 | vat - sanitary - rate - tampon - eu | 5 | 988_vat_sanitary_rate_tampon | | 989 | tunisian - muhammad - hijab - tunisians - tunisias | 5 | 989_tunisian_muhammad_hijab_tunisians | | 990 | sophies - microcephaly - laney - screening - abiageal | 5 | 990_sophies_microcephaly_laney_screening | | 991 | zika - virus - rio - verrill - halep | 5 | 991_zika_virus_rio_verrill | | 992 | adebolajo - lapshyn - conington - rigby - mosque | 5 | 992_adebolajo_lapshyn_conington_rigby | | 993 | glenfield - surgery - heart - openheart - caithness | 5 | 993_glenfield_surgery_heart_openheart | | 994 | wsl - pfa - chambers - stoney - passmoor | 5 | 994_wsl_pfa_chambers_stoney | | 995 | efl - competition - invitation - under21 - sattelmaier | 5 | 995_efl_competition_invitation_under21 | | 996 | hinds - helicopter - tandragee - tvaa - ambulance | 5 | 996_hinds_helicopter_tandragee_tvaa | | 997 | mental - nsft - norfolk - health - trust | 5 | 997_mental_nsft_norfolk_health | | 998 | un - syrians - syria - humanitarian - syrian | 5 | 998_un_syrians_syria_humanitarian | | 999 | super - segeyaro - mcdermott - rhinos - leeds | 5 | 999_super_segeyaro_mcdermott_rhinos | | 1000 | climate - emission - carbon - hulot - indcs | 5 | 1000_climate_emission_carbon_hulot | | 1001 | homelessness - accommodation - homeless - temporary - household | 5 | 1001_homelessness_accommodation_homeless_temporary | | 1002 | pyrgos - sharks - horne - coetzee - schmidt | 5 | 1002_pyrgos_sharks_horne_coetzee | | 1003 | outlander - film - visitscotland - movie - filming | 5 | 1003_outlander_film_visitscotland_movie | </details> ## Training hyperparameters * calculate_probabilities: True * language: english * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False ## Framework versions * Numpy: 1.23.5 * HDBSCAN: 0.8.33 * UMAP: 0.5.3 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.31.0 * Numba: 0.57.1 * Plotly: 5.15.0 * Python: 3.10.12
AY00/dqn-SpaceInvadersNoFrameskip-v4
AY00
2023-08-19T22:07:10Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-19T22:06:38Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 545.50 +/- 107.62 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga AY00 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga AY00 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga AY00 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 150000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.00011), ('learning_starts', 100000), ('n_timesteps', 1200000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
KingKazma/xsum_6789_50000_25000_v1_train
KingKazma
2023-08-19T21:44:55Z
3
1
bertopic
[ "bertopic", "text-classification", "region:us" ]
text-classification
2023-08-19T21:44:54Z
--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # xsum_6789_50000_25000_v1_train This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("KingKazma/xsum_6789_50000_25000_v1_train") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 255 * Number of training documents: 50000 <details> <summary>Click here for an overview of all topics.</summary> | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | said - mr - police - people - would | 5 | -1_said_mr_police_people | | 0 | league - goal - win - game - foul | 24458 | 0_league_goal_win_game | | 1 | labour - eu - party - vote - referendum | 7343 | 1_labour_eu_party_vote | | 2 | olympic - athlete - race - sport - gold | 1358 | 2_olympic_athlete_race_sport | | 3 | cricket - wicket - england - test - batsman | 1144 | 3_cricket_wicket_england_test | | 4 | school - education - teacher - pupil - student | 781 | 4_school_education_teacher_pupil | | 5 | rail - transport - rmt - train - bridge | 482 | 5_rail_transport_rmt_train | | 6 | nhs - care - health - patient - hospital | 477 | 6_nhs_care_health_patient | | 7 | boko - haram - president - african - africa | 471 | 7_boko_haram_president_african | | 8 | syrian - syria - assad - rebel - iraq | 448 | 8_syrian_syria_assad_rebel | | 9 | fire - blaze - smoke - firefighter - rescue | 345 | 9_fire_blaze_smoke_firefighter | | 10 | murray - wimbledon - tennis - slam - seed | 290 | 10_murray_wimbledon_tennis_slam | | 11 | film - actor - star - movie - award | 266 | 11_film_actor_star_movie | | 12 | dup - sinn - fin - ireland - northern | 258 | 12_dup_sinn_fin_ireland | | 13 | fight - boxing - champion - title - fury | 257 | 13_fight_boxing_champion_title | | 14 | crash - road - collision - driver - car | 247 | 14_crash_road_collision_driver | | 15 | mercedes - hamilton - f1 - race - rosberg | 238 | 15_mercedes_hamilton_f1_race | | 16 | coastguard - lifeboat - rescue - boat - rnli | 235 | 16_coastguard_lifeboat_rescue_boat | | 17 | china - chinese - hong - kong - chinas | 230 | 17_china_chinese_hong_kong | | 18 | ukraine - russian - russia - ukrainian - putin | 221 | 18_ukraine_russian_russia_ukrainian | | 19 | taliban - pakistan - afghan - pakistani - afghanistan | 218 | 19_taliban_pakistan_afghan_pakistani | | 20 | mcilroy - golf - birdie - open - par | 218 | 20_mcilroy_golf_birdie_open | | 21 | dog - animal - dogs - cat - rspca | 208 | 21_dog_animal_dogs_cat | | 22 | data - security - nsa - computer - malware | 207 | 22_data_security_nsa_computer | | 23 | cancer - patient - treatment - disease - cell | 198 | 23_cancer_patient_treatment_disease | | 24 | maduro - venezuela - mexico - morales - president | 198 | 24_maduro_venezuela_mexico_morales | | 25 | energy - climate - gas - wind - carbon | 197 | 25_energy_climate_gas_wind | | 26 | sexual - indecent - court - assault - victim | 182 | 26_sexual_indecent_court_assault | | 27 | sale - store - retail - tesco - retailer | 174 | 27_sale_store_retail_tesco | | 28 | marriage - church - bishop - samesex - cardinal | 172 | 28_marriage_church_bishop_samesex | | 29 | album - song - music - band - chart | 170 | 29_album_song_music_band | | 30 | apple - samsung - phone - technology - mobile | 163 | 30_apple_samsung_phone_technology | | 31 | trump - republican - clinton - republicans - mr | 156 | 31_trump_republican_clinton_republicans | | 32 | yn - ar - wedi - ei - mae | 148 | 32_yn_ar_wedi_ei | | 33 | ebola - virus - vaccine - outbreak - zika | 148 | 33_ebola_virus_vaccine_outbreak | | 34 | planet - particle - earth - space - universe | 143 | 34_planet_particle_earth_space | | 35 | flood - flooding - water - weather - rain | 139 | 35_flood_flooding_water_weather | | 36 | migrant - refugee - asylum - hungary - migrants | 138 | 36_migrant_refugee_asylum_hungary | | 37 | korea - north - korean - kim - missile | 130 | 37_korea_north_korean_kim | | 38 | paris - french - attack - france - police | 122 | 38_paris_french_attack_france | | 39 | memorial - war - battle - soldier - regiment | 120 | 39_memorial_war_battle_soldier | | 40 | plane - flight - aircraft - pilot - airport | 112 | 40_plane_flight_aircraft_pilot | | 41 | man - det - incident - wearing - police | 111 | 41_man_det_incident_wearing | | 42 | art - painting - artist - exhibition - gallery | 109 | 42_art_painting_artist_exhibition | | 43 | growth - rate - economy - inflation - bank | 106 | 43_growth_rate_economy_inflation | | 44 | prison - prisoner - prisons - offender - prisoners | 104 | 44_prison_prisoner_prisons_offender | | 45 | bank - banking - barclays - hsbc - rbs | 103 | 45_bank_banking_barclays_hsbc | | 46 | earthquake - quake - nepal - magnitude - hurricane | 101 | 46_earthquake_quake_nepal_magnitude | | 47 | shooting - police - officer - black - gun | 100 | 47_shooting_police_officer_black | | 48 | greece - greek - eurozone - bailout - greeces | 99 | 48_greece_greek_eurozone_bailout | | 49 | housing - price - property - house - home | 94 | 49_housing_price_property_house | | 50 | morsi - egypt - brotherhood - egyptian - cairo | 93 | 50_morsi_egypt_brotherhood_egyptian | | 51 | airport - heathrow - runway - flight - gatwick | 92 | 51_airport_heathrow_runway_flight | | 52 | murder - arrested - suspicion - custody - postmortem | 92 | 52_murder_arrested_suspicion_custody | | 53 | zoo - tiger - animal - elephant - rhino | 90 | 53_zoo_tiger_animal_elephant | | 54 | festival - event - music - edinburgh - organiser | 90 | 54_festival_event_music_edinburgh | | 55 | book - novel - author - prize - writer | 89 | 55_book_novel_author_prize | | 56 | snooker - osullivan - frame - world - gerwen | 88 | 56_snooker_osullivan_frame_world | | 57 | unsupported - updated - playback - device - media | 87 | 57_unsupported_updated_playback_device | | 58 | india - indias - delhi - indian - woman | 86 | 58_india_indias_delhi_indian | | 59 | trust - death - care - hospital - baby | 86 | 59_trust_death_care_hospital | | 60 | bbc - licence - s4c - fee - wales | 84 | 60_bbc_licence_s4c_fee | | 61 | prince - queen - royal - duchess - duke | 78 | 61_prince_queen_royal_duchess | | 62 | index - benchmark - nikkei - chinas - growth | 78 | 62_index_benchmark_nikkei_chinas | | 63 | abuse - police - child - sexual - exploitation | 77 | 63_abuse_police_child_sexual | | 64 | belfast - ira - finucane - murder - family | 76 | 64_belfast_ira_finucane_murder | | 65 | council - site - development - building - regeneration | 74 | 65_council_site_development_building | | 66 | obesity - sugar - food - obese - drink | 73 | 66_obesity_sugar_food_obese | | 67 | murder - court - heard - knife - trial | 72 | 67_murder_court_heard_knife | | 68 | steel - tata - talbot - plant - port | 71 | 68_steel_tata_talbot_plant | | 69 | bird - wildlife - birds - rspb - conservation | 67 | 69_bird_wildlife_birds_rspb | | 70 | drug - cannabis - heroin - drugs - marijuana | 64 | 70_drug_cannabis_heroin_drugs | | 71 | pen - macron - fillon - le - french | 61 | 71_pen_macron_fillon_le | | 72 | sp - nasdaq - dow - rose - index | 61 | 72_sp_nasdaq_dow_rose | | 73 | israel - israeli - palestinian - palestinians - hamas | 59 | 73_israel_israeli_palestinian_palestinians | | 74 | ftse - shares - share - pound - index | 59 | 74_ftse_shares_share_pound | | 75 | updated - gmt - 2017 - bst - last | 57 | 75_updated_gmt_2017_bst | | 76 | broadband - bt - ofcom - openreach - customer | 57 | 76_broadband_bt_ofcom_openreach | | 77 | vw - emission - car - volkswagen - diesel | 57 | 77_vw_emission_car_volkswagen | | 78 | iran - nuclear - irans - iranian - rouhani | 56 | 78_iran_nuclear_irans_iranian | | 79 | cushnahan - nama - ireland - northern - ni | 55 | 79_cushnahan_nama_ireland_northern | | 80 | alcohol - drinking - drink - wine - minimum | 53 | 80_alcohol_drinking_drink_wine | | 81 | fraud - money - court - judge - account | 53 | 81_fraud_money_court_judge | | 82 | pope - vatican - francis - church - catholic | 53 | 82_pope_vatican_francis_church | | 83 | pollution - air - emission - nitrogen - no2 | 52 | 83_pollution_air_emission_nitrogen | | 84 | pokemon - game - console - nintendo - vr | 52 | 84_pokemon_game_console_nintendo | | 85 | driver - road - camera - driving - speed | 52 | 85_driver_road_camera_driving | | 86 | waste - recycling - bag - plastic - food | 52 | 86_waste_recycling_bag_plastic | | 87 | farc - peace - eln - rebel - colombian | 50 | 87_farc_peace_eln_rebel | | 88 | berlusconi - pp - rajoy - spains - catalan | 50 | 88_berlusconi_pp_rajoy_spains | | 89 | thailand - thai - king - yingluck - thailands | 49 | 89_thailand_thai_king_yingluck | | 90 | quantum - computer - machine - computing - ai | 46 | 90_quantum_computer_machine_computing | | 91 | kosovo - bosnian - serbia - serb - srebrenica | 45 | 91_kosovo_bosnian_serbia_serb | | 92 | drug - cannabis - cocaine - drugs - court | 45 | 92_drug_cannabis_cocaine_drugs | | 93 | rousseff - petrobras - temer - brazils - corruption | 45 | 93_rousseff_petrobras_temer_brazils | | 94 | yemen - houthis - hadi - houthi - saudi | 44 | 94_yemen_houthis_hadi_houthi | | 95 | tax - budget - chancellor - cut - spending | 44 | 95_tax_budget_chancellor_cut | | 96 | train - tram - driver - raib - rail | 44 | 96_train_tram_driver_raib | | 97 | fbi - comey - trump - clinton - email | 44 | 97_fbi_comey_trump_clinton | | 98 | drone - aircraft - drones - aviation - unmanned | 43 | 98_drone_aircraft_drones_aviation | | 99 | smoking - tobacco - cigarette - ecigarettes - smoker | 42 | 99_smoking_tobacco_cigarette_ecigarettes | | 100 | hillsborough - disaster - liverpool - 1989 - crush | 41 | 100_hillsborough_disaster_liverpool_1989 | | 101 | council - local - cut - budget - tax | 40 | 101_council_local_cut_budget | | 102 | google - facebook - user - video - search | 40 | 102_google_facebook_user_video | | 103 | syria - islamic - family - son - iraq | 39 | 103_syria_islamic_family_son | | 104 | missing - search - body - police - seen | 38 | 104_missing_search_body_police | | 105 | airline - airbus - airlines - aer - boeing | 38 | 105_airline_airbus_airlines_aer | | 106 | car - psa - vehicle - gm - battery | 36 | 106_car_psa_vehicle_gm | | 107 | fish - salmon - fishing - water - fishery | 36 | 107_fish_salmon_fishing_water | | 108 | oil - gas - decommissioning - field - sea | 36 | 108_oil_gas_decommissioning_field | | 109 | policing - police - constable - officer - spa | 35 | 109_policing_police_constable_officer | | 110 | fire - cladding - grenfell - tower - block | 34 | 110_fire_cladding_grenfell_tower | | 111 | nuclear - reactor - fukushima - plant - radiation | 33 | 111_nuclear_reactor_fukushima_plant | | 112 | tree - woodland - trees - oak - forest | 32 | 112_tree_woodland_trees_oak | | 113 | milk - dairy - farmer - farmers - farming | 32 | 113_milk_dairy_farmer_farmers | | 114 | abortion - woman - termination - ireland - northern | 32 | 114_abortion_woman_termination_ireland | | 115 | whale - dolphin - whales - sperm - orca | 32 | 115_whale_dolphin_whales_sperm | | 116 | nauru - australia - asylum - australian - seeker | 31 | 116_nauru_australia_asylum_australian | | 117 | driving - clarke - car - causing - crash | 31 | 117_driving_clarke_car_causing | | 118 | stolen - police - bike - haldane - robbery | 31 | 118_stolen_police_bike_haldane | | 119 | meat - horsemeat - milk - food - product | 31 | 119_meat_horsemeat_milk_food | | 120 | wage - living - pay - minimum - worker | 30 | 120_wage_living_pay_minimum | | 121 | belfast - flag - parade - parades - loyalist | 30 | 121_belfast_flag_parade_parades | | 122 | terrorism - arrested - arrest - suspicion - police | 29 | 122_terrorism_arrested_arrest_suspicion | | 123 | manchester - protest - ford - police - london | 29 | 123_manchester_protest_ford_police | | 124 | uber - driver - taxi - ubers - kalanick | 28 | 124_uber_driver_taxi_ubers | | 125 | calais - camp - migrant - jungle - asylum | 28 | 125_calais_camp_migrant_jungle | | 126 | music - streaming - spotify - album - artist | 28 | 126_music_streaming_spotify_album | | 127 | childrens - ofsted - child - council - improvement | 28 | 127_childrens_ofsted_child_council | | 128 | erdogan - turkish - turkey - coup - istanbul | 28 | 128_erdogan_turkish_turkey_coup | | 129 | cuba - cuban - castro - cubans - havana | 28 | 129_cuba_cuban_castro_cubans | | 130 | libya - gaddafi - libyan - tripoli - gaddafis | 27 | 130_libya_gaddafi_libyan_tripoli | | 131 | oil - barrel - opec - price - saudi | 26 | 131_oil_barrel_opec_price | | 132 | trident - nuclear - submarine - renewal - defence | 26 | 132_trident_nuclear_submarine_renewal | | 133 | pistorius - steenkamp - reeva - toilet - intruder | 26 | 133_pistorius_steenkamp_reeva_toilet | | 134 | transgender - gay - marriage - law - samesex | 26 | 134_transgender_gay_marriage_law | | 135 | space - astronaut - peake - tim - iss | 25 | 135_space_astronaut_peake_tim | | 136 | pte - inquest - lcpl - cpl - soldier | 25 | 136_pte_inquest_lcpl_cpl | | 137 | cox - jo - mp - batley - mrs | 24 | 137_cox_jo_mp_batley | | 138 | jackpot - lottery - ticket - camelot - prize | 24 | 138_jackpot_lottery_ticket_camelot | | 139 | pottery - roman - excavation - stone - site | 24 | 139_pottery_roman_excavation_stone | | 140 | wikipedia - woman - women - makeup - female | 24 | 140_wikipedia_woman_women_makeup | | 141 | energy - price - supplier - customer - gas | 23 | 141_energy_price_supplier_customer | | 142 | dinosaur - specimen - fossil - neanderthals - museum | 23 | 142_dinosaur_specimen_fossil_neanderthals | | 143 | yamaha - rossi - marquez - lorenzo - ducati | 23 | 143_yamaha_rossi_marquez_lorenzo | | 144 | execution - death - drug - lethal - executions | 22 | 144_execution_death_drug_lethal | | 145 | tesla - car - selfdriving - vehicle - autonomous | 22 | 145_tesla_car_selfdriving_vehicle | | 146 | famine - drought - somalia - food - aid | 22 | 146_famine_drought_somalia_food | | 147 | inquiry - abuse - survivor - goddard - inquirys | 21 | 147_inquiry_abuse_survivor_goddard | | 148 | mh370 - plane - search - flight - ocean | 21 | 148_mh370_plane_search_flight | | 149 | coin - museum - hoard - treasure - ring | 21 | 149_coin_museum_hoard_treasure | | 150 | assange - wikileaks - extradition - embassy - assanges | 21 | 150_assange_wikileaks_extradition_embassy | | 151 | ride - alton - smiler - towers - merlin | 20 | 151_ride_alton_smiler_towers | | 152 | fm - radio - tv - freedom - medium | 19 | 152_fm_radio_tv_freedom | | 153 | pension - annuity - retirement - income - pensions | 19 | 153_pension_annuity_retirement_income | | 154 | homelessness - homeless - housing - rough - council | 19 | 154_homelessness_homeless_housing_rough | | 155 | facebook - news - fake - medium - social | 19 | 155_facebook_news_fake_medium | | 156 | trade - tpp - nafta - us - mexico | 19 | 156_trade_tpp_nafta_us | | 157 | whisky - distillery - beer - scotch - bottle | 19 | 157_whisky_distillery_beer_scotch | | 158 | court - trigg - heard - ms - eli | 19 | 158_court_trigg_heard_ms | | 159 | nba - curry - lebron - warriors - cleveland | 19 | 159_nba_curry_lebron_warriors | | 160 | ferry - calmac - serco - ferries - contract | 18 | 160_ferry_calmac_serco_ferries | | 161 | hms - ship - navy - shipbuilding - warship | 18 | 161_hms_ship_navy_shipbuilding | | 162 | syria - strike - iraq - mps - military | 18 | 162_syria_strike_iraq_mps | | 163 | childcare - child - parent - inheritance - meal | 18 | 163_childcare_child_parent_inheritance | | 164 | junior - doctor - bma - contract - doctors | 18 | 164_junior_doctor_bma_contract | | 165 | 1916 - rising - irish - easter - ireland | 18 | 165_1916_rising_irish_easter | | 166 | condor - guernsey - ship - poole - port | 17 | 166_condor_guernsey_ship_poole | | 167 | hussain - terrorism - terrorist - heard - court | 17 | 167_hussain_terrorism_terrorist_heard | | 168 | unemployment - ons - rate - employment - growth | 17 | 168_unemployment_ons_rate_employment | | 169 | suu - kyi - nld - aung - thein | 16 | 169_suu_kyi_nld_aung | | 170 | eurotunnel - calais - french - eurostar - train | 16 | 170_eurotunnel_calais_french_eurostar | | 171 | bike - cycling - cycle - cyclist - parking | 15 | 171_bike_cycling_cycle_cyclist | | 172 | breath - driving - drinkdriving - limit - driver | 15 | 172_breath_driving_drinkdriving_limit | | 173 | everest - avalanche - mountain - sherpa - icefall | 15 | 173_everest_avalanche_mountain_sherpa | | 174 | reef - coral - vent - seabed - marine | 15 | 174_reef_coral_vent_seabed | | 175 | army - defence - mod - reserve - recruitment | 15 | 175_army_defence_mod_reserve | | 176 | explosion - tianjin - bomb - blast - bethnal | 15 | 176_explosion_tianjin_bomb_blast | | 177 | mayor - devolution - combined - greater - region | 15 | 177_mayor_devolution_combined_greater | | 178 | tax - company - uk - cayman - profit | 15 | 178_tax_company_uk_cayman | | 179 | muslims - ban - muslim - us - order | 15 | 179_muslims_ban_muslim_us | | 180 | growth - output - sector - scotlands - scottish | 15 | 180_growth_output_sector_scotlands | | 181 | suicide - acne - judith - life - mental | 14 | 181_suicide_acne_judith_life | | 182 | bp - spill - oil - rig - deepwater | 14 | 182_bp_spill_oil_rig | | 183 | xinjiang - uighur - uighurs - urumqi - chinese | 14 | 183_xinjiang_uighur_uighurs_urumqi | | 184 | refugee - syrians - syria - syrian - refugees | 14 | 184_refugee_syrians_syria_syrian | | 185 | rea - sykes - davies - fish - race | 14 | 185_rea_sykes_davies_fish | | 186 | mortgage - lending - debt - insolvency - lender | 13 | 186_mortgage_lending_debt_insolvency | | 187 | barnes - pilot - helicopter - crash - fog | 13 | 187_barnes_pilot_helicopter_crash | | 188 | rhodes - statue - igbo - college - oriel | 13 | 188_rhodes_statue_igbo_college | | 189 | edf - hinkley - nuclear - plant - reactor | 13 | 189_edf_hinkley_nuclear_plant | | 190 | sweeney - church - leonard - alder - megans | 13 | 190_sweeney_church_leonard_alder | | 191 | duterte - philippines - mindanao - dutertes - martial | 13 | 191_duterte_philippines_mindanao_dutertes | | 192 | ferry - ship - yoo - sank - sewol | 13 | 192_ferry_ship_yoo_sank | | 193 | norovirus - diarrhoea - hospital - virus - patient | 13 | 193_norovirus_diarrhoea_hospital_virus | | 194 | art - arts - culture - theatre - funding | 13 | 194_art_arts_culture_theatre | | 195 | pipeline - dakota - oil - sioux - project | 13 | 195_pipeline_dakota_oil_sioux | | 196 | climate - temperature - warming - global - ocean | 13 | 196_climate_temperature_warming_global | | 197 | leg - solar - piccard - impulse - borschberg | 12 | 197_leg_solar_piccard_impulse | | 198 | gun - zimmerman - roof - fbi - shooting | 12 | 198_gun_zimmerman_roof_fbi | | 199 | copyright - infringement - megaupload - pirated - piracy | 12 | 199_copyright_infringement_megaupload_pirated | | 200 | bee - hive - beekeeper - honey - tunibee | 12 | 200_bee_hive_beekeeper_honey | | 201 | bombardier - cseries - belfast - bombardiers - learjet | 11 | 201_bombardier_cseries_belfast_bombardiers | | 202 | trudeau - canada - canadian - harper - prentice | 11 | 202_trudeau_canada_canadian_harper | | 203 | object - reopened - evacuated - bomb - street | 11 | 203_object_reopened_evacuated_bomb | | 204 | autism - mental - child - health - autistic | 11 | 204_autism_mental_child_health | | 205 | regiment - lcpl - helmand - afghanistan - soldier | 11 | 205_regiment_lcpl_helmand_afghanistan | | 206 | tunisia - attack - sousse - hotel - essid | 11 | 206_tunisia_attack_sousse_hotel | | 207 | press - leveson - foi - ipso - newspaper | 11 | 207_press_leveson_foi_ipso | | 208 | raf - aircraft - base - mildenhall - squadron | 11 | 208_raf_aircraft_base_mildenhall | | 209 | language - welsh - literature - huws - meri | 11 | 209_language_welsh_literature_huws | | 210 | concert - manchester - grande - ariana - arena | 11 | 210_concert_manchester_grande_ariana | | 211 | lubitz - cockpit - lufthansa - copilot - germanwings | 11 | 211_lubitz_cockpit_lufthansa_copilot | | 212 | facebook - tweet - gamergate - content - user | 10 | 212_facebook_tweet_gamergate_content | | 213 | mine - miner - underground - fyfield - mining | 10 | 213_mine_miner_underground_fyfield | | 214 | ira - sinn - fin - cahill - ireland | 10 | 214_ira_sinn_fin_cahill | | 215 | gear - clarkson - hammond - show - clarksons | 10 | 215_gear_clarkson_hammond_show | | 216 | tree - trees - felling - sheffield - diseased | 10 | 216_tree_trees_felling_sheffield | | 217 | forbes - richest - billionaire - list - billionaires | 9 | 217_forbes_richest_billionaire_list | | 218 | pier - structure - bewl - birnbeck - restore | 9 | 218_pier_structure_bewl_birnbeck | | 219 | bbcscotlandpics - scotlandpicturesbbccouk - picture - selection - instagram | 9 | 219_bbcscotlandpics_scotlandpicturesbbccouk_picture_selection | | 220 | chemical - tianjin - blast - cyanide - sodium | 9 | 220_chemical_tianjin_blast_cyanide | | 221 | lever - ranganathan - gray - spinal - mire | 9 | 221_lever_ranganathan_gray_spinal | | 222 | internet - icann - cac - user - china | 9 | 222_internet_icann_cac_user | | 223 | chandelier - museum - bute - museums - abmu | 8 | 223_chandelier_museum_bute_museums | | 224 | poultry - bird - flu - outbreak - avian | 8 | 224_poultry_bird_flu_outbreak | | 225 | school - parent - thot - dress - circus | 8 | 225_school_parent_thot_dress | | 226 | gambling - casino - machine - betting - machines | 8 | 226_gambling_casino_machine_betting | | 227 | ticket - venue - theatre - ticketing - tickets | 8 | 227_ticket_venue_theatre_ticketing | | 228 | cardiff - solstice - arriva - train - station | 8 | 228_cardiff_solstice_arriva_train | | 229 | hacking - brooks - editor - sun - news | 7 | 229_hacking_brooks_editor_sun | | 230 | sats - gnome - 11 - santa - cam | 7 | 230_sats_gnome_11_santa | | 231 | robot - biomimicry - benyus - robots - robotics | 7 | 231_robot_biomimicry_benyus_robots | | 232 | parkrun - parking - park - laugharne - charge | 7 | 232_parkrun_parking_park_laugharne | | 233 | organ - transplant - donor - donation - optout | 7 | 233_organ_transplant_donor_donation | | 234 | cav - bowers - ramadhan - aerospace - grills | 7 | 234_cav_bowers_ramadhan_aerospace | | 235 | call - scotland - bilston - police - hmics | 6 | 235_call_scotland_bilston_police | | 236 | sao - water - munduruku - tapajos - paulo | 6 | 236_sao_water_munduruku_tapajos | | 237 | eurovision - song - contest - redzepova - entry | 6 | 237_eurovision_song_contest_redzepova | | 238 | livingstone - antisemitism - labour - mann - comment | 6 | 238_livingstone_antisemitism_labour_mann | | 239 | book - publishing - ebook - asi - digital | 6 | 239_book_publishing_ebook_asi | | 240 | befriending - elaine - frsb - older - fundraising | 6 | 240_befriending_elaine_frsb_older | | 241 | strathaven - tipper - scene - police - humbie | 6 | 241_strathaven_tipper_scene_police | | 242 | bay - cardiff - swansea - region - investment | 5 | 242_bay_cardiff_swansea_region | | 243 | cheese - food - outbreak - coli - flicks | 5 | 243_cheese_food_outbreak_coli | | 244 | witheridge - miller - thai - koh - tao | 5 | 244_witheridge_miller_thai_koh | | 245 | yorkshire - tour - depart - cycling - verity | 5 | 245_yorkshire_tour_depart_cycling | | 246 | airline - lufthansa - franceklm - air - flight | 5 | 246_airline_lufthansa_franceklm_air | | 247 | caffel - honourbased - forensic - warning - gill | 5 | 247_caffel_honourbased_forensic_warning | | 248 | torreele - quebec - bissonnette - polish - boissoneault | 5 | 248_torreele_quebec_bissonnette_polish | | 249 | lash - advert - ad - skin - asa | 5 | 249_lash_advert_ad_skin | | 250 | fgm - girl - practice - subjected - woman | 5 | 250_fgm_girl_practice_subjected | | 251 | parkland - wepre - heritage - margam - arnold | 5 | 251_parkland_wepre_heritage_margam | | 252 | coal - aberfan - colliery - gedling - thoresby | 5 | 252_coal_aberfan_colliery_gedling | | 253 | exoffenders - pupil - gwynne - yemms - school | 5 | 253_exoffenders_pupil_gwynne_yemms | </details> ## Training hyperparameters * calculate_probabilities: True * language: english * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False ## Framework versions * Numpy: 1.23.5 * HDBSCAN: 0.8.33 * UMAP: 0.5.3 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.31.0 * Numba: 0.57.1 * Plotly: 5.15.0 * Python: 3.10.12
KingKazma/cnn_dailymail_6789_50000_25000_v1_train
KingKazma
2023-08-19T21:43:33Z
4
0
bertopic
[ "bertopic", "text-classification", "region:us" ]
text-classification
2023-08-15T20:37:58Z
--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # cnn_dailymail_6789_50000_25000_v1_train This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("KingKazma/cnn_dailymail_6789_50000_25000_v1_train") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 295 * Number of training documents: 50000 <details> <summary>Click here for an overview of all topics.</summary> | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | said - one - year - people - mr | 5 | -1_said_one_year_people | | 0 | league - player - cup - goal - club | 25951 | 0_league_player_cup_goal | | 1 | police - murder - shooting - shot - county | 4658 | 1_police_murder_shooting_shot | | 2 | apple - iphone - google - user - facebook | 1101 | 2_apple_iphone_google_user | | 3 | fashion - hair - look - dress - model | 739 | 3_fashion_hair_look_dress | | 4 | syria - isis - syrian - iraq - islamic | 651 | 4_syria_isis_syrian_iraq | | 5 | flight - plane - passenger - airport - aircraft | 555 | 5_flight_plane_passenger_airport | | 6 | space - earth - mars - nasa - planet | 553 | 6_space_earth_mars_nasa | | 7 | sex - sexual - school - victim - girl | 424 | 7_sex_sexual_school_victim | | 8 | obama - republicans - republican - president - democrats | 420 | 8_obama_republicans_republican_president | | 9 | hospital - cancer - baby - doctor - heart | 416 | 9_hospital_cancer_baby_doctor | | 10 | murray - wimbledon - tennis - djokovic - federer | 362 | 10_murray_wimbledon_tennis_djokovic | | 11 | film - movie - show - million - actor | 359 | 11_film_movie_show_million | | 12 | china - chinese - hong - chinas - kong | 337 | 12_china_chinese_hong_chinas | | 13 | prince - royal - duchess - queen - princess | 303 | 13_prince_royal_duchess_queen | | 14 | property - house - price - home - estate | 299 | 14_property_house_price_home | | 15 | ukraine - russian - russia - putin - ukrainian | 293 | 15_ukraine_russian_russia_putin | | 16 | hamilton - rosberg - race - prix - mercedes | 279 | 16_hamilton_rosberg_race_prix | | 17 | bear - animal - zoo - elephant - gorilla | 253 | 17_bear_animal_zoo_elephant | | 18 | dog - animal - cat - pet - owner | 243 | 18_dog_animal_cat_pet | | 19 | food - restaurant - drink - sugar - chef | 243 | 19_food_restaurant_drink_sugar | | 20 | korea - north - korean - kim - koreas | 239 | 20_korea_north_korean_kim | | 21 | mcilroy - golf - woods - pga - ryder | 229 | 21_mcilroy_golf_woods_pga | | 22 | painting - art - artist - auction - work | 229 | 22_painting_art_artist_auction | | 23 | weight - diet - fat - eating - size | 215 | 23_weight_diet_fat_eating | | 24 | labour - miliband - ukip - mr - party | 198 | 24_labour_miliband_ukip_mr | | 25 | olympic - gold - medal - games - olympics | 191 | 25_olympic_gold_medal_games | | 26 | ship - cruise - boat - coast - crew | 188 | 26_ship_cruise_boat_coast | | 27 | murder - stabbed - knife - police - mr | 178 | 27_murder_stabbed_knife_police | | 28 | sudan - alshabaab - somalia - kenya - kenyan | 176 | 28_sudan_alshabaab_somalia_kenya | | 29 | mexico - mexican - cartel - drug - border | 161 | 29_mexico_mexican_cartel_drug | | 30 | fraud - money - court - cash - bank | 161 | 30_fraud_money_court_cash | | 31 | iran - iranian - irans - nuclear - tehran | 158 | 31_iran_iranian_irans_nuclear | | 32 | snow - storm - weather - tornado - inch | 153 | 32_snow_storm_weather_tornado | | 33 | mayweather - fight - boxing - pacquiao - floyd | 153 | 33_mayweather_fight_boxing_pacquiao | | 34 | school - education - pupil - exam - ofsted | 148 | 34_school_education_pupil_exam | | 35 | ebola - virus - liberia - outbreak - leone | 141 | 35_ebola_virus_liberia_outbreak | | 36 | woman - men - partner - relationship - women | 134 | 36_woman_men_partner_relationship | | 37 | pakistan - pakistani - taliban - malala - pakistans | 132 | 37_pakistan_pakistani_taliban_malala | | 38 | shark - whale - dolphin - fish - sea | 130 | 38_shark_whale_dolphin_fish | | 39 | music - song - album - elvis - band | 129 | 39_music_song_album_elvis | | 40 | israeli - israel - gaza - palestinian - hamas | 125 | 40_israeli_israel_gaza_palestinian | | 41 | hacker - data - cyber - computer - sony | 125 | 41_hacker_data_cyber_computer | | 42 | hotel - resort - guest - room - suite | 118 | 42_hotel_resort_guest_room | | 43 | nhs - patient - hospital - care - patients | 112 | 43_nhs_patient_hospital_care | | 44 | fire - blaze - smoke - firefighter - flame | 109 | 44_fire_blaze_smoke_firefighter | | 45 | weather - rain - temperature - flood - flooding | 108 | 45_weather_rain_temperature_flood | | 46 | mountain - climber - avalanche - climb - ski | 105 | 46_mountain_climber_avalanche_climb | | 47 | car - vehicle - motor - engine - speed | 100 | 47_car_vehicle_motor_engine | | 48 | nfl - rice - quarterback - goodell - patriots | 100 | 48_nfl_rice_quarterback_goodell | | 49 | jackson - jacksons - bobbi - aeg - houston | 97 | 49_jackson_jacksons_bobbi_aeg | | 50 | tesco - christmas - shopper - shopping - sale | 93 | 50_tesco_christmas_shopper_shopping | | 51 | pope - vatican - francis - church - cardinal | 92 | 51_pope_vatican_francis_church | | 52 | thailand - thai - myanmar - bangkok - cambodia | 91 | 52_thailand_thai_myanmar_bangkok | | 53 | energy - price - gas - electricity - wind | 91 | 53_energy_price_gas_electricity | | 54 | horse - stakes - race - racing - jockey | 90 | 54_horse_stakes_race_racing | | 55 | chavez - venezuela - maduro - venezuelan - zelaya | 90 | 55_chavez_venezuela_maduro_venezuelan | | 56 | snowden - nsa - intelligence - surveillance - edward | 89 | 56_snowden_nsa_intelligence_surveillance | | 57 | lottery - jackpot - ticket - powerball - casino | 86 | 57_lottery_jackpot_ticket_powerball | | 58 | mammoth - fossil - neanderthals - bone - human | 83 | 58_mammoth_fossil_neanderthals_bone | | 59 | egyptian - egypt - cairo - egypts - brotherhood | 80 | 59_egyptian_egypt_cairo_egypts | | 60 | flu - virus - vaccine - measles - strain | 80 | 60_flu_virus_vaccine_measles | | 61 | lohan - probation - brown - lindsay - angeles | 76 | 61_lohan_probation_brown_lindsay | | 62 | greece - greek - eurozone - euro - bailout | 76 | 62_greece_greek_eurozone_euro | | 63 | gun - nra - newtown - background - mental | 75 | 63_gun_nra_newtown_background | | 64 | car - driver - road - lorry - vehicle | 74 | 64_car_driver_road_lorry | | 65 | ferguson - brown - wilson - louis - police | 73 | 65_ferguson_brown_wilson_louis | | 66 | tsarnaev - boston - dzhokhar - marathon - bombing | 72 | 66_tsarnaev_boston_dzhokhar_marathon | | 67 | hacking - brooks - news - coulson - murdoch | 71 | 67_hacking_brooks_news_coulson | | 68 | saudi - arabia - dubai - arab - woman | 71 | 68_saudi_arabia_dubai_arab | | 69 | bank - barclays - rbs - libor - bonus | 70 | 69_bank_barclays_rbs_libor | | 70 | nazi - camp - jews - auschwitz - hitler | 70 | 70_nazi_camp_jews_auschwitz | | 71 | afghan - afghanistan - taliban - kabul - province | 69 | 71_afghan_afghanistan_taliban_kabul | | 72 | marriage - samesex - gay - state - couple | 67 | 72_marriage_samesex_gay_state | | 73 | africa - african - continent - africas - kenya | 65 | 73_africa_african_continent_africas | | 74 | libya - gadhafi - libyan - tripoli - gadhafis | 65 | 74_libya_gadhafi_libyan_tripoli | | 75 | india - delhi - indian - rape - indias | 63 | 75_india_delhi_indian_rape | | 76 | cuba - cuban - castro - havana - cubans | 63 | 76_cuba_cuban_castro_havana | | 77 | roman - ancient - tomb - archaeologist - bc | 61 | 77_roman_ancient_tomb_archaeologist | | 78 | bali - sukumaran - chan - indonesia - indonesian | 58 | 78_bali_sukumaran_chan_indonesia | | 79 | christmas - toy - santa - tree - lego | 58 | 79_christmas_toy_santa_tree | | 80 | train - amtrak - crash - passenger - track | 57 | 80_train_amtrak_crash_passenger | | 81 | xbox - console - game - playstation - gaming | 55 | 81_xbox_console_game_playstation | | 82 | tsa - airport - security - screening - passenger | 55 | 82_tsa_airport_security_screening | | 83 | fire - wildfire - blaze - firefighter - forest | 55 | 83_fire_wildfire_blaze_firefighter | | 84 | cancer - breast - drug - lung - prostate | 54 | 84_cancer_breast_drug_lung | | 85 | boko - haram - nigeria - nigerian - nigerias | 52 | 85_boko_haram_nigeria_nigerian | | 86 | turkish - turkey - erdogan - turkeys - pkk | 52 | 86_turkish_turkey_erdogan_turkeys | | 87 | haiti - portauprince - haitian - earthquake - haitis | 51 | 87_haiti_portauprince_haitian_earthquake | | 88 | scotland - scottish - independence - salmond - vote | 50 | 88_scotland_scottish_independence_salmond | | 89 | rio - brazil - sao - paulo - janeiro | 50 | 89_rio_brazil_sao_paulo | | 90 | meat - food - beef - horse - halal | 48 | 90_meat_food_beef_horse | | 91 | zimmerman - zimmermans - trayvon - martin - george | 48 | 91_zimmerman_zimmermans_trayvon_martin | | 92 | pirate - ship - somali - somalia - vessel | 47 | 92_pirate_ship_somali_somalia | | 93 | eu - migrant - benefit - migration - uk | 47 | 93_eu_migrant_benefit_migration | | 94 | soldier - corporal - helmand - afghanistan - army | 46 | 94_soldier_corporal_helmand_afghanistan | | 95 | mandela - mandelas - south - nelson - african | 46 | 95_mandela_mandelas_south_nelson | | 96 | pistorius - steenkamp - reeva - oscar - nel | 46 | 96_pistorius_steenkamp_reeva_oscar | | 97 | immigration - immigrant - border - arizona - arpaio | 46 | 97_immigration_immigrant_border_arizona | | 98 | book - novel - author - lee - mockingbird | 46 | 98_book_novel_author_lee | | 99 | mugabe - zimbabwe - tsvangirai - zimbabwes - mugabes | 46 | 99_mugabe_zimbabwe_tsvangirai_zimbabwes | | 100 | smoking - tobacco - cigarette - ecigarettes - smoker | 46 | 100_smoking_tobacco_cigarette_ecigarettes | | 101 | plant - reactor - nuclear - fukushima - radiation | 46 | 101_plant_reactor_nuclear_fukushima | | 102 | nba - lin - lebron - james - cavaliers | 44 | 102_nba_lin_lebron_james | | 103 | guantanamo - cia - detainee - interrogation - torture | 44 | 103_guantanamo_cia_detainee_interrogation | | 104 | curriculum - todays - transcript - feedback - student | 43 | 104_curriculum_todays_transcript_feedback | | 105 | eu - cameron - european - referendum - brussels | 42 | 105_eu_cameron_european_referendum | | 106 | insurance - obamacare - health - care - coverage | 42 | 106_insurance_obamacare_health_care | | 107 | volcano - lava - eruption - ash - pahoa | 41 | 107_volcano_lava_eruption_ash | | 108 | china - japan - chinese - japanese - japans | 41 | 108_china_japan_chinese_japanese | | 109 | tower - trade - memorial - 911 - center | 41 | 109_tower_trade_memorial_911 | | 110 | marijuana - cannabis - pot - drug - colorado | 41 | 110_marijuana_cannabis_pot_drug | | 111 | war - dday - normandy - german - soldier | 40 | 111_war_dday_normandy_german | | 112 | typhoon - manila - philippines - storm - landslide | 40 | 112_typhoon_manila_philippines_storm | | 113 | yemen - sanaa - yemeni - drone - houthis | 39 | 113_yemen_sanaa_yemeni_drone | | 114 | skin - sunscreen - tanning - cancer - sun | 39 | 114_skin_sunscreen_tanning_cancer | | 115 | hasan - bales - fort - hood - soldier | 38 | 115_hasan_bales_fort_hood | | 116 | transcript - student - news - todays - cnn | 38 | 116_transcript_student_news_todays | | 117 | raf - pilot - aircraft - war - squadron | 37 | 117_raf_pilot_aircraft_war | | 118 | baseball - yankees - rodriguez - mlb - pitcher | 37 | 118_baseball_yankees_rodriguez_mlb | | 119 | earthquake - quake - magnitude - tsunami - tremor | 37 | 119_earthquake_quake_magnitude_tsunami | | 120 | bird - squirrel - serama - duck - fox | 36 | 120_bird_squirrel_serama_duck | | 121 | adebolajo - rigby - woolwich - lee - adebowale | 36 | 121_adebolajo_rigby_woolwich_lee | | 122 | hernandez - hernandezs - lloyd - odin - patriots | 36 | 122_hernandez_hernandezs_lloyd_odin | | 123 | cannabis - drug - cocaine - jailed - birmingham | 35 | 123_cannabis_drug_cocaine_jailed | | 124 | benghazi - attack - committee - libya - ambassador | 35 | 124_benghazi_attack_committee_libya | | 125 | abbott - gillard - minister - prime - tony | 34 | 125_abbott_gillard_minister_prime | | 126 | weiner - leathers - black - abedin - colagiovanni | 34 | 126_weiner_leathers_black_abedin | | 127 | oil - bp - spill - gulf - dispersants | 33 | 127_oil_bp_spill_gulf | | 128 | crime - police - force - officer - policing | 33 | 128_crime_police_force_officer | | 129 | miss - pageant - universe - beauty - contestant | 32 | 129_miss_pageant_universe_beauty | | 130 | kennedy - oswald - assassination - kennedys - 1963 | 32 | 130_kennedy_oswald_assassination_kennedys | | 131 | lanza - hook - sandy - school - newtown | 32 | 131_lanza_hook_sandy_school | | 132 | crash - driver - driving - car - adenhart | 31 | 132_crash_driver_driving_car | | 133 | spains - eta - spanish - madrid - spain | 31 | 133_spains_eta_spanish_madrid | | 134 | burglary - jailed - burglar - court - crown | 30 | 134_burglary_jailed_burglar_court | | 135 | bieber - justin - biebers - selena - singer | 30 | 135_bieber_justin_biebers_selena | | 136 | mccann - madeleine - mccanns - madeleines - gerry | 30 | 136_mccann_madeleine_mccanns_madeleines | | 137 | brain - anxiety - researcher - fmri - neuron | 30 | 137_brain_anxiety_researcher_fmri | | 138 | bbc - presenter - radio - clarkson - programme | 29 | 138_bbc_presenter_radio_clarkson | | 139 | knox - sollecito - kercher - meredith - knoxs | 29 | 139_knox_sollecito_kercher_meredith | | 140 | cosby - drugged - cosbys - comedian - bill | 28 | 140_cosby_drugged_cosbys_comedian | | 141 | fraternity - university - campus - student - smu | 28 | 141_fraternity_university_campus_student | | 142 | mafia - roma - italian - italy - rancadore | 27 | 142_mafia_roma_italian_italy | | 143 | hiv - aids - virus - infection - antiretroviral | 27 | 143_hiv_aids_virus_infection | | 144 | berlusconi - silvio - italian - berlusconis - bunga | 27 | 144_berlusconi_silvio_italian_berlusconis | | 145 | drone - unmanned - drones - aircraft - faa | 26 | 145_drone_unmanned_drones_aircraft | | 146 | paris - french - hebdo - dekhar - charlie | 26 | 146_paris_french_hebdo_dekhar | | 147 | antibiotic - infection - bacteria - antibiotics - necc | 26 | 147_antibiotic_infection_bacteria_antibiotics | | 148 | assange - wikileaks - embassy - sweden - julian | 26 | 148_assange_wikileaks_embassy_sweden | | 149 | twitter - abuse - online - criadoperez - bullying | 25 | 149_twitter_abuse_online_criadoperez | | 150 | veil - blair - france - burqa - ban | 25 | 150_veil_blair_france_burqa | | 151 | parking - yellow - council - motorist - line | 25 | 151_parking_yellow_council_motorist | | 152 | katie - married - wedding - demi - marriage | 24 | 152_katie_married_wedding_demi | | 153 | falklands - falkland - islands - argentina - argentine | 24 | 153_falklands_falkland_islands_argentina | | 154 | evans - ched - sheffield - club - rape | 24 | 154_evans_ched_sheffield_club | | 155 | branch - ambulance - died - skye - milligan | 24 | 155_branch_ambulance_died_skye | | 156 | ford - toronto - mayor - crack - rob | 24 | 156_ford_toronto_mayor_crack | | 157 | wedding - bride - bridesmaid - dress - couple | 24 | 157_wedding_bride_bridesmaid_dress | | 158 | salmonella - outbreak - bacteria - contaminated - food | 24 | 158_salmonella_outbreak_bacteria_contaminated | | 159 | climate - change - global - emission - warming | 23 | 159_climate_change_global_emission | | 160 | anthony - caylee - anthonys - casey - baez | 23 | 160_anthony_caylee_anthonys_casey | | 161 | philippines - philippine - ampatuan - mindanao - maguindanao | 23 | 161_philippines_philippine_ampatuan_mindanao | | 162 | scientology - church - pastor - driscoll - miscavige | 23 | 162_scientology_church_pastor_driscoll | | 163 | blasio - mayor - officer - batkid - nypd | 23 | 163_blasio_mayor_officer_batkid | | 164 | froome - tour - contador - stage - cavendish | 22 | 164_froome_tour_contador_stage | | 165 | irs - committee - issa - holder - lerner | 22 | 165_irs_committee_issa_holder | | 166 | bergdahl - bergdahls - taliban - bowe - army | 22 | 166_bergdahl_bergdahls_taliban_bowe | | 167 | monis - siege - cafe - lindt - haron | 22 | 167_monis_siege_cafe_lindt | | 168 | bulger - bulgers - flemmi - martorano - whitey | 22 | 168_bulger_bulgers_flemmi_martorano | | 169 | sri - tamil - lankan - lanka - tigers | 22 | 169_sri_tamil_lankan_lanka | | 170 | holiday - cent - per - brits - traveller | 22 | 170_holiday_cent_per_brits | | 171 | plant - gm - crop - food - space | 22 | 171_plant_gm_crop_food | | 172 | paedophile - cyril - nccl - abuse - inquiry | 22 | 172_paedophile_cyril_nccl_abuse | | 173 | sloot - der - peru - lima - peruvian | 21 | 173_sloot_der_peru_lima | | 174 | sterling - stiviano - nba - clippers - sterlings | 21 | 174_sterling_stiviano_nba_clippers | | 175 | breivik - utoya - oslo - breiviks - norway | 21 | 175_breivik_utoya_oslo_breiviks | | 176 | alcohol - drinking - liver - drink - gastroenterologist | 21 | 176_alcohol_drinking_liver_drink | | 177 | asylum - seeker - nauru - refugee - manus | 20 | 177_asylum_seeker_nauru_refugee | | 178 | kennedy - kennedys - mary - robert - jr | 20 | 178_kennedy_kennedys_mary_robert | | 179 | gascoigne - aiden - ghost - school - poole | 20 | 179_gascoigne_aiden_ghost_school | | 180 | russian - adoption - russia - child - adopted | 20 | 180_russian_adoption_russia_child | | 181 | reveller - event - night - carnage - drinking | 20 | 181_reveller_event_night_carnage | | 182 | armstrong - doping - armstrongs - usada - antidoping | 19 | 182_armstrong_doping_armstrongs_usada | | 183 | derick - birth - zoey - bianca - steph | 19 | 183_derick_birth_zoey_bianca | | 184 | strike - union - unite - rmt - tube | 19 | 184_strike_union_unite_rmt | | 185 | va - veteran - veterans - shinseki - phoenix | 19 | 185_va_veteran_veterans_shinseki | | 186 | immigration - reform - immigrant - obama - republicans | 19 | 186_immigration_reform_immigrant_obama | | 187 | ira - belfast - ireland - northern - bomb | 18 | 187_ira_belfast_ireland_northern | | 188 | council - garden - rubbish - neighbour - knotweed | 18 | 188_council_garden_rubbish_neighbour | | 189 | sinclair - sexual - assault - military - sinclairs | 18 | 189_sinclair_sexual_assault_military | | 190 | sandusky - penn - paterno - sanduskys - state | 18 | 190_sandusky_penn_paterno_sanduskys | | 191 | gay - russia - russian - sochi - propaganda | 18 | 191_gay_russia_russian_sochi | | 192 | trierweiler - hollande - gayet - valerie - hollandes | 18 | 192_trierweiler_hollande_gayet_valerie | | 193 | bosnian - srebrenica - mladic - serb - serbian | 18 | 193_bosnian_srebrenica_mladic_serb | | 194 | calais - migrant - lorry - port - illegal | 18 | 194_calais_migrant_lorry_port | | 195 | drug - ecstasy - wyvell - methadone - death | 17 | 195_drug_ecstasy_wyvell_methadone | | 196 | circumcision - fgm - genital - mutilation - circumcised | 17 | 196_circumcision_fgm_genital_mutilation | | 197 | mine - miner - coal - rescue - mining | 17 | 197_mine_miner_coal_rescue | | 198 | christie - christies - wildstein - jersey - governor | 17 | 198_christie_christies_wildstein_jersey | | 199 | rice - coach - rutgers - basketball - ware | 17 | 199_rice_coach_rutgers_basketball | | 200 | breach - card - credit - data - target | 17 | 200_breach_card_credit_data | | 201 | alzheimers - brain - study - stress - disease | 17 | 201_alzheimers_brain_study_stress | | 202 | hurricane - storm - parish - tropical - rain | 17 | 202_hurricane_storm_parish_tropical | | 203 | indias - india - delhi - modi - hazare | 17 | 203_indias_india_delhi_modi | | 204 | robot - asimo - robotics - robots - daler | 16 | 204_robot_asimo_robotics_robots | | 205 | tree - trees - cherry - bonsai - ash | 16 | 205_tree_trees_cherry_bonsai | | 206 | tattoo - tattooing - tattoos - tattooed - inked | 16 | 206_tattoo_tattooing_tattoos_tattooed | | 207 | tax - osborne - 40p - rate - chancellor | 16 | 207_tax_osborne_40p_rate | | 208 | mieses - bikers - crash - driver - lien | 16 | 208_mieses_bikers_crash_driver | | 209 | petraeus - broadwell - kelley - humphries - affair | 16 | 209_petraeus_broadwell_kelley_humphries | | 210 | wars - star - scifi - darth - film | 16 | 210_wars_star_scifi_darth | | 211 | dancing - ballet - pole - dance - dancer | 16 | 211_dancing_ballet_pole_dance | | 212 | church - archbishop - bishop - anglican - sentamu | 16 | 212_church_archbishop_bishop_anglican | | 213 | sotomayor - justice - ginsburg - voter - supreme | 15 | 213_sotomayor_justice_ginsburg_voter | | 214 | statin - aspirin - yeast - supplement - risk | 15 | 214_statin_aspirin_yeast_supplement | | 215 | road - driver - cent - traffic - aa | 15 | 215_road_driver_cent_traffic | | 216 | dewani - anni - shrien - dewanis - mngeni | 15 | 216_dewani_anni_shrien_dewanis | | 217 | poverty - income - homeless - homelessness - poor | 15 | 217_poverty_income_homeless_homelessness | | 218 | sharper - kolstad - stallworth - nfl - mcnabb | 15 | 218_sharper_kolstad_stallworth_nfl | | 219 | ice - climate - antarctic - greenland - warming | 15 | 219_ice_climate_antarctic_greenland | | 220 | jerusalem - temple - ancient - hebrew - jewish | 14 | 220_jerusalem_temple_ancient_hebrew | | 221 | veteran - veterans - cemetery - memorial - war | 14 | 221_veteran_veterans_cemetery_memorial | | 222 | li - teacher - school - china - province | 14 | 222_li_teacher_school_china | | 223 | postal - mail - tnt - royal - stamp | 14 | 223_postal_mail_tnt_royal | | 224 | spanish - spain - gibraltar - morocco - spains | 14 | 224_spanish_spain_gibraltar_morocco | | 225 | gonzalez - white - secret - fence - house | 14 | 225_gonzalez_white_secret_fence | | 226 | raid - store - shop - cash - theft | 13 | 226_raid_store_shop_cash | | 227 | laden - bin - al - qaeda - attack | 13 | 227_laden_bin_al_qaeda | | 228 | strausskahn - diallo - dominique - imf - strausskahns | 13 | 228_strausskahn_diallo_dominique_imf | | 229 | konrardy - nygaard - olsen - berk - marine | 13 | 229_konrardy_nygaard_olsen_berk | | 230 | adoption - gammy - gebregeorgis - surrogacy - thai | 13 | 230_adoption_gammy_gebregeorgis_surrogacy | | 231 | cruise - illness - ill - outbreak - sickness | 13 | 231_cruise_illness_ill_outbreak | | 232 | robertson - duck - dynasty - ae - phil | 12 | 232_robertson_duck_dynasty_ae | | 233 | occupy - protester - wall - protest - demonstrator | 12 | 233_occupy_protester_wall_protest | | 234 | rate - abortion - pregnancy - birth - teen | 12 | 234_rate_abortion_pregnancy_birth | | 235 | alhilli - saad - mollier - alhillis - zaid | 12 | 235_alhilli_saad_mollier_alhillis | | 236 | crash - scene - minibus - accident - davies | 12 | 236_crash_scene_minibus_accident | | 237 | hollande - sarkozy - hollandes - socialist - pen | 12 | 237_hollande_sarkozy_hollandes_socialist | | 238 | porn - filter - pornography - internet - iplayer | 12 | 238_porn_filter_pornography_internet | | 239 | 3d - printer - printing - thermomix - print | 12 | 239_3d_printer_printing_thermomix | | 240 | penguin - ness - loch - nessie - wildlife | 12 | 240_penguin_ness_loch_nessie | | 241 | reef - coral - marine - stoupin - corals | 11 | 241_reef_coral_marine_stoupin | | 242 | spider - insect - beetle - frog - spiders | 11 | 242_spider_insect_beetle_frog | | 243 | bletchley - enigma - war - turing - code | 11 | 243_bletchley_enigma_war_turing | | 244 | pollution - air - smog - beijing - quality | 11 | 244_pollution_air_smog_beijing | | 245 | parachute - dause - ernie - ebbrell - jump | 10 | 245_parachute_dause_ernie_ebbrell | | 246 | immigration - deportation - sham - iwueke - tate | 10 | 246_immigration_deportation_sham_iwueke | | 247 | harris - rolf - indecent - 5480 - 4481 | 10 | 247_harris_rolf_indecent_5480 | | 248 | factory - garment - bangladesh - dhaka - bangladeshi | 10 | 248_factory_garment_bangladesh_dhaka | | 249 | nobel - prize - peace - karman - gbowee | 10 | 249_nobel_prize_peace_karman | | 250 | ferry - sewol - jeju - ship - yoo | 10 | 250_ferry_sewol_jeju_ship | | 251 | manson - atkins - tate - parole - statman | 10 | 251_manson_atkins_tate_parole | | 252 | toyota - recall - toyotas - vehicle - acceleration | 9 | 252_toyota_recall_toyotas_vehicle | | 253 | mortgage - rate - bank - cent - per | 9 | 253_mortgage_rate_bank_cent | | 254 | smedley - rigby - ruth - coit - quesada | 9 | 254_smedley_rigby_ruth_coit | | 255 | afghanistan - afghan - troop - karzai - abdullah | 9 | 255_afghanistan_afghan_troop_karzai | | 256 | frozen - disney - elsa - cinderella - princess | 9 | 256_frozen_disney_elsa_cinderella | | 257 | driving - wilkins - waller - magistrates - drinkdriving | 9 | 257_driving_wilkins_waller_magistrates | | 258 | olympic - games - olympics - ceremony - london | 9 | 258_olympic_games_olympics_ceremony | | 259 | neolithic - skull - timber - reitan - buried | 8 | 259_neolithic_skull_timber_reitan | | 260 | philpott - mairead - willis - mick - fire | 8 | 260_philpott_mairead_willis_mick | | 261 | holmes - clements - theater - colorado - aurora | 8 | 261_holmes_clements_theater_colorado | | 262 | explosion - plant - fire - blast - fertilizer | 8 | 262_explosion_plant_fire_blast | | 263 | tokyo - games - olympic - ioc - sochi | 8 | 263_tokyo_games_olympic_ioc | | 264 | abortion - lobby - hobby - religious - supreme | 8 | 264_abortion_lobby_hobby_religious | | 265 | cece - tulisa - cheryl - elimination - lakoda | 8 | 265_cece_tulisa_cheryl_elimination | | 266 | dubai - mme - sheikh - uae - maktoum | 7 | 266_dubai_mme_sheikh_uae | | 267 | space - virgin - galactic - spaceshiptwo - branson | 7 | 267_space_virgin_galactic_spaceshiptwo | | 268 | oshie - hockey - shootout - russia - wagner | 7 | 268_oshie_hockey_shootout_russia | | 269 | moghadam - avalos - image - chaney - nude | 7 | 269_moghadam_avalos_image_chaney | | 270 | vell - roache - stuartcole - coronation - soap | 7 | 270_vell_roache_stuartcole_coronation | | 271 | uber - taxi - hailo - driver - company | 7 | 271_uber_taxi_hailo_driver | | 272 | mcdaniel - boo - mama - anna - honey | 6 | 272_mcdaniel_boo_mama_anna | | 273 | rail - crossing - badauskas - train - minnis | 6 | 273_rail_crossing_badauskas_train | | 274 | belghar - shafi - mevish - munir - ahmed | 6 | 274_belghar_shafi_mevish_munir | | 275 | fred - knapke - hodgkins - carole - liam | 6 | 275_fred_knapke_hodgkins_carole | | 276 | poppy - tower - war - memorial - ceramic | 6 | 276_poppy_tower_war_memorial | | 277 | chiquita - colombia - colombian - cabral - marijuana | 6 | 277_chiquita_colombia_colombian_cabral | | 278 | tb - virus - infection - measles - kalis | 6 | 278_tb_virus_infection_measles | | 279 | sloan - saldanha - care - alvarez - saldanhas | 6 | 279_sloan_saldanha_care_alvarez | | 280 | airboard - skyflash - hoverbike - catapult - skyprowler | 6 | 280_airboard_skyflash_hoverbike_catapult | | 281 | ciancia - tsa - airport - hernandez - gerardo | 6 | 281_ciancia_tsa_airport_hernandez | | 282 | heroin - addiction - opioids - addict - drug | 6 | 282_heroin_addiction_opioids_addict | | 283 | euthanasia - pathway - assisted - die - suicide | 6 | 283_euthanasia_pathway_assisted_die | | 284 | tower - elevator - lagoon - dubai - skyscraper | 6 | 284_tower_elevator_lagoon_dubai | | 285 | firouzian - bus - tan - king - luther | 6 | 285_firouzian_bus_tan_king | | 286 | carolyn - ian - fleming - morpurgo - couple | 5 | 286_carolyn_ian_fleming_morpurgo | | 287 | tunisia - arab - egypt - tunisian - friaa | 5 | 287_tunisia_arab_egypt_tunisian | | 288 | al - qaeda - libi - bin - laden | 5 | 288_al_qaeda_libi_bin | | 289 | ear - keim - hear - implant - charlotte | 5 | 289_ear_keim_hear_implant | | 290 | busch - driscoll - nascar - stewart - ward | 5 | 290_busch_driscoll_nascar_stewart | | 291 | driscoll - masked - auckland - mortar - facebook | 5 | 291_driscoll_masked_auckland_mortar | | 292 | drawer - bevan - avon - rothwell - leake | 5 | 292_drawer_bevan_avon_rothwell | | 293 | breastfeeding - milk - clowes - breast - pump | 5 | 293_breastfeeding_milk_clowes_breast | </details> ## Training hyperparameters * calculate_probabilities: True * language: english * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False ## Framework versions * Numpy: 1.23.5 * HDBSCAN: 0.8.33 * UMAP: 0.5.3 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.31.0 * Numba: 0.57.1 * Plotly: 5.15.0 * Python: 3.10.12
MattStammers/dqn-BreakoutNoFrameskip-v4
MattStammers
2023-08-19T21:25:35Z
0
0
stable-baselines3
[ "stable-baselines3", "BreakoutNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-19T21:24:12Z
--- library_name: stable-baselines3 tags: - BreakoutNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BreakoutNoFrameskip-v4 type: BreakoutNoFrameskip-v4 metrics: - type: mean_reward value: 220.60 +/- 71.53 name: mean_reward verified: false --- # **DQN** Agent playing **BreakoutNoFrameskip-v4** This is a trained model of a **DQN** agent playing **BreakoutNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env BreakoutNoFrameskip-v4 -orga MattStammers -f logs/ python -m rl_zoo3.enjoy --algo dqn --env BreakoutNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env BreakoutNoFrameskip-v4 -orga MattStammers -f logs/ python -m rl_zoo3.enjoy --algo dqn --env BreakoutNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env BreakoutNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env BreakoutNoFrameskip-v4 -f logs/ -orga MattStammers ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 100000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
SuaveDesciple/Phoneguyfnaf
SuaveDesciple
2023-08-19T21:19:25Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-08-19T21:18:31Z
--- license: bigscience-openrail-m ---
YCHuang2112/poca-SoccerTwos
YCHuang2112
2023-08-19T21:06:18Z
50
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "ML-Agents-SoccerTwos", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "region:us" ]
reinforcement-learning
2023-08-17T19:25:25Z
--- library_name: ml-agents tags: - ML-Agents-SoccerTwos - SoccerTwos - deep-reinforcement-learning - reinforcement-learning --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: YCHuang2112/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
aratshimyanga/dqn-SpaceInvadersNoFrameskip-v4
aratshimyanga
2023-08-19T20:52:59Z
3
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-19T20:52:26Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 624.00 +/- 266.61 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga aratshimyanga -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga aratshimyanga -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga aratshimyanga ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
SuaveDesciple/Jojo
SuaveDesciple
2023-08-19T20:45:01Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-08-19T20:39:34Z
--- license: bigscience-openrail-m ---
VicBeltran/a2c-PandaReachDense-v3
VicBeltran
2023-08-19T20:33:13Z
4
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-19T19:43:35Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.25 +/- 0.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
edwsiew/setfit-finetuned-tech-sentiment-setfit-16-30-1
edwsiew
2023-08-19T20:30:33Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-19T20:30:13Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # edwsiew/setfit-finetuned-tech-sentiment-setfit-16-30-1 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("edwsiew/setfit-finetuned-tech-sentiment-setfit-16-30-1") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Henil1/mt5-small-hindi-summary-hindi-summary
Henil1
2023-08-19T20:23:50Z
66
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-19T19:59:11Z
--- tags: - generated_from_keras_callback model-index: - name: Henil1/mt5-small-hindi-summary-hindi-summary results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Henil1/mt5-small-hindi-summary-hindi-summary This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: nan - Validation Loss: nan - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 13806, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | nan | nan | 0 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
Viktoria1178/Jasmine
Viktoria1178
2023-08-19T20:17:38Z
0
0
adapter-transformers
[ "adapter-transformers", "dataset:fka/awesome-chatgpt-prompts", "dataset:roneneldan/TinyStories", "license:bigscience-openrail-m", "region:us" ]
null
2023-08-19T19:57:23Z
--- license: bigscience-openrail-m datasets: - fka/awesome-chatgpt-prompts - roneneldan/TinyStories metrics: - code_eval library_name: adapter-transformers ---
amirhamza11/mBart-large_nwp_finetuning_test3
amirhamza11
2023-08-19T20:13:53Z
18
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text-generation", "generated_from_trainer", "base_model:facebook/mbart-large-cc25", "base_model:finetune:facebook/mbart-large-cc25", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-08-19T19:34:05Z
--- base_model: facebook/mbart-large-cc25 tags: - generated_from_trainer model-index: - name: mBart-large_nwp_finetuning_test3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mBart-large_nwp_finetuning_test3 This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0028 - eval_runtime: 2.4878 - eval_samples_per_second: 209.418 - eval_steps_per_second: 26.529 - epoch: 5.0 - step: 2980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3