modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 00:42:47
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
553 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 00:42:38
card
stringlengths
11
1.01M
CyberHarem/yulha_nikke
CyberHarem
2023-08-06T02:37:54Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/yulha_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-06T02:32:32Z
--- license: mit datasets: - CyberHarem/yulha_nikke pipeline_tag: text-to-image tags: - art --- # Lora of yulha_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/yulha_nikke.pt` as the embedding and `1500/yulha_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `yulha_nikke`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:---------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | [<NSFW, click to see>](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/yulha_nikke.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | [<NSFW, click to see>](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/yulha_nikke.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | [<NSFW, click to see>](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/yulha_nikke.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | [<NSFW, click to see>](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/yulha_nikke.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | [<NSFW, click to see>](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/yulha_nikke.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | [<NSFW, click to see>](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/yulha_nikke.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | [<NSFW, click to see>](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/yulha_nikke.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | [<NSFW, click to see>](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/yulha_nikke.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | [<NSFW, click to see>](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/yulha_nikke.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | [<NSFW, click to see>](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/yulha_nikke.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | [<NSFW, click to see>](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/yulha_nikke.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | [<NSFW, click to see>](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/yulha_nikke.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | [<NSFW, click to see>](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/yulha_nikke.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | [<NSFW, click to see>](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/yulha_nikke.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | [<NSFW, click to see>](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/yulha_nikke.zip) |
frncscp/patacoswin_v2
frncscp
2023-08-06T02:25:14Z
152
0
transformers
[ "transformers", "pytorch", "tensorboard", "swinv2", "image-classification", "generated_from_trainer", "base_model:microsoft/swinv2-tiny-patch4-window16-256", "base_model:finetune:microsoft/swinv2-tiny-patch4-window16-256", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-06T01:18:22Z
--- license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window16-256 tags: - generated_from_trainer metrics: - accuracy model-index: - name: patacoswin_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # patacoswin_v2 This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window16-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window16-256) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0328 - Accuracy: 0.9910 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6055 | 0.95 | 13 | 0.2709 | 0.9615 | | 0.2812 | 1.96 | 27 | 0.0866 | 0.9683 | | 0.1426 | 2.98 | 41 | 0.0584 | 0.9796 | | 0.07 | 4.0 | 55 | 0.0268 | 0.9932 | | 0.0579 | 4.95 | 68 | 0.0451 | 0.9864 | | 0.091 | 5.96 | 82 | 0.0300 | 0.9887 | | 0.0247 | 6.98 | 96 | 0.0387 | 0.9864 | | 0.0323 | 8.0 | 110 | 0.0456 | 0.9887 | | 0.032 | 8.95 | 123 | 0.0475 | 0.9864 | | 0.0187 | 9.45 | 130 | 0.0328 | 0.9910 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
fromhell01/dqn-SpaceInvadersNoFrameskip-v4
fromhell01
2023-08-06T02:17:50Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T00:53:43Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 473.50 +/- 181.08 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga fromhell01 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga fromhell01 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga fromhell01 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
CyberHarem/laplace_nikke
CyberHarem
2023-08-06T01:53:06Z
0
1
null
[ "art", "text-to-image", "dataset:CyberHarem/laplace_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-06T01:49:33Z
--- license: mit datasets: - CyberHarem/laplace_nikke pipeline_tag: text-to-image tags: - art --- # Lora of laplace_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/laplace_nikke.pt` as the embedding and `1500/laplace_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `laplace_nikke`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:-----------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/laplace_nikke.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/laplace_nikke.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/laplace_nikke.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/laplace_nikke.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/laplace_nikke.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/laplace_nikke.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/laplace_nikke.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/laplace_nikke.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/laplace_nikke.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/laplace_nikke.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/laplace_nikke.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/laplace_nikke.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/laplace_nikke.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/laplace_nikke.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/laplace_nikke.zip) |
thisiskeithkwan/whisper-small-canto
thisiskeithkwan
2023-08-06T01:41:31Z
85
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "zh", "dataset:thisiskeithkwan/canto", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-05T05:41:08Z
--- language: - zh license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - thisiskeithkwan/canto model-index: - name: whisper-small-canto results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-canto This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the thisiskeithkwan/canto dataset. It achieves the following results on the evaluation set: - Loss: 1.5061 - Cer: 0.4485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.5909 | 0.76 | 500 | 1.6890 | 0.7769 | | 1.2636 | 1.52 | 1000 | 1.4067 | 0.7641 | | 0.7889 | 2.27 | 1500 | 1.3118 | 0.5474 | | 0.6929 | 3.03 | 2000 | 1.2825 | 0.5516 | | 0.4827 | 3.79 | 2500 | 1.2360 | 0.5446 | | 0.236 | 4.55 | 3000 | 1.3457 | 0.5044 | | 0.0982 | 5.31 | 3500 | 1.4736 | 0.4841 | | 0.064 | 6.07 | 4000 | 1.5103 | 0.4809 | | 0.035 | 6.82 | 4500 | 1.5110 | 0.4563 | | 0.0103 | 7.58 | 5000 | 1.5061 | 0.4485 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
Angry-Wizard/map-training
Angry-Wizard
2023-08-06T01:21:52Z
40
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-06T01:18:35Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Map_Training Dreambooth model trained by Angry-Wizard with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
CyberHarem/jackal_nikke
CyberHarem
2023-08-06T01:11:06Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/jackal_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-06T01:06:58Z
--- license: mit datasets: - CyberHarem/jackal_nikke pipeline_tag: text-to-image tags: - art --- # Lora of jackal_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/jackal_nikke.pt` as the embedding and `1500/jackal_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `jackal_nikke`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:----------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/jackal_nikke.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/jackal_nikke.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/jackal_nikke.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/jackal_nikke.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/jackal_nikke.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/jackal_nikke.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/jackal_nikke.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/jackal_nikke.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/jackal_nikke.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/jackal_nikke.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/jackal_nikke.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/jackal_nikke.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/jackal_nikke.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/jackal_nikke.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/jackal_nikke.zip) |
ymkgr/Ichikishima_Mizuha_Re_Stage
ymkgr
2023-08-06T00:33:01Z
0
0
null
[ "anime", "game character", "license:wtfpl", "region:us" ]
null
2023-08-06T00:17:07Z
--- license: wtfpl tags: - anime - game character metrics: - character --- 模型类型/Model type: LoRA --- 模型信息/Model Details: - from Japanese multimedia project: Re:Stage! - Unit: KiRaRe - character name: Ichikishima Mizuha./来自 日本多媒体企划:Re:Stage! - 组合:KiRaRe - 角色名:市杵岛瑞叶。 - 建议权重/Recommended weight:0.8~0.9 - 触发词/Trigger Words * 请自行在"("和")"的前面添加\符号,这个页面似乎不能将\符号与其它符号连在一起显示/Please add the \ symbol before "(" and ")" yourself. It seems that the Model card cannot display the \ symbol together with other symbols: ichikishima mizuha \(re:stage!\), black hair, very long hair, darkmagenta eyes, kimono \(mizuha seifuku\), 示例/Example:![133906-203606660-1girl, solo, ichikishima mizuha _(re_stage!_), black hair, very long hair, darkmagenta eyes, kimono _(mizuha seifuku_), smile, c.png](https://cdn-uploads.huggingface.co/production/uploads/647c4972d2da33779cb77652/FEBDFjRyqlKy1HWcUQNga.png) ![133894-3583443662-1girl, solo, ichikishima mizuha _(re_stage!_), black hair, very long hair, darkmagenta eyes, kimono _(mizuha seifuku_), hands on.png](https://cdn-uploads.huggingface.co/production/uploads/647c4972d2da33779cb77652/_TPql6HOzEnR8ZVk0AITA.png) ![133868-2776750699-1girl, solo, ichikishima mizuha _(re_stage!_), black hair, very long hair, darkmagenta eyes, kimono _(mizuha seifuku_), _lora_ic.png](https://cdn-uploads.huggingface.co/production/uploads/647c4972d2da33779cb77652/h6IODXl2gDc8gKVVXPaC2.png) ![133880-955349040-1girl, solo, ichikishima mizuha _(re_stage!_), black hair, very long hair, darkmagenta eyes, (sundress, sun hat_1), (heart hands.png](https://cdn-uploads.huggingface.co/production/uploads/647c4972d2da33779cb77652/SCys17sStKhqODnu0NAOy.png) 闭关修炼了一段时间,得出结论:舞台服暂时不练了。\(--)/
jrzhang/CSKG_Roberta_large
jrzhang
2023-08-06T00:32:26Z
0
1
null
[ "en", "license:openrail++", "region:us" ]
null
2023-08-06T00:31:35Z
--- license: openrail++ language: - en ---
CyberHarem/liter_nikke
CyberHarem
2023-08-06T00:28:52Z
0
1
null
[ "art", "text-to-image", "dataset:CyberHarem/liter_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-06T00:25:10Z
--- license: mit datasets: - CyberHarem/liter_nikke pipeline_tag: text-to-image tags: - art --- # Lora of liter_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/liter_nikke.pt` as the embedding and `1500/liter_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `liter_nikke`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:---------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | [<NSFW, click to see>](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/liter_nikke.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | [<NSFW, click to see>](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/liter_nikke.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | [<NSFW, click to see>](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/liter_nikke.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | [<NSFW, click to see>](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/liter_nikke.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | [<NSFW, click to see>](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/liter_nikke.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | [<NSFW, click to see>](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/liter_nikke.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | [<NSFW, click to see>](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/liter_nikke.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | [<NSFW, click to see>](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/liter_nikke.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | [<NSFW, click to see>](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/liter_nikke.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | [<NSFW, click to see>](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/liter_nikke.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | [<NSFW, click to see>](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/liter_nikke.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | [<NSFW, click to see>](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/liter_nikke.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | [<NSFW, click to see>](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/liter_nikke.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | [<NSFW, click to see>](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/liter_nikke.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | [<NSFW, click to see>](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/liter_nikke.zip) |
mikful/llama-v2-7b-8bit-mmlu-finetune-no-calib
mikful
2023-08-06T00:18:00Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-06T00:17:53Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
sandeep12345/Biofilm_LLAMA_Finetune
sandeep12345
2023-08-06T00:15:06Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-06T00:01:47Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
CyberHarem/drake_nikke
CyberHarem
2023-08-06T00:06:07Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/drake_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-06T00:02:28Z
--- license: mit datasets: - CyberHarem/drake_nikke pipeline_tag: text-to-image tags: - art --- # Lora of drake_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/drake_nikke.pt` as the embedding and `1500/drake_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `drake_nikke`.** These are available steps: | Steps | pattern_1 | bikini | free | nude | Download | |--------:|:-----------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:---------------------------------| | 1500 | ![pattern_1-1500](1500/previews/pattern_1.png) | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/drake_nikke.zip) | | 1400 | ![pattern_1-1400](1400/previews/pattern_1.png) | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/drake_nikke.zip) | | 1300 | ![pattern_1-1300](1300/previews/pattern_1.png) | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/drake_nikke.zip) | | 1200 | ![pattern_1-1200](1200/previews/pattern_1.png) | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/drake_nikke.zip) | | 1100 | ![pattern_1-1100](1100/previews/pattern_1.png) | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/drake_nikke.zip) | | 1000 | ![pattern_1-1000](1000/previews/pattern_1.png) | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/drake_nikke.zip) | | 900 | ![pattern_1-900](900/previews/pattern_1.png) | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/drake_nikke.zip) | | 800 | ![pattern_1-800](800/previews/pattern_1.png) | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/drake_nikke.zip) | | 700 | ![pattern_1-700](700/previews/pattern_1.png) | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/drake_nikke.zip) | | 600 | ![pattern_1-600](600/previews/pattern_1.png) | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/drake_nikke.zip) | | 500 | ![pattern_1-500](500/previews/pattern_1.png) | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/drake_nikke.zip) | | 400 | ![pattern_1-400](400/previews/pattern_1.png) | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/drake_nikke.zip) | | 300 | ![pattern_1-300](300/previews/pattern_1.png) | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/drake_nikke.zip) | | 200 | ![pattern_1-200](200/previews/pattern_1.png) | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/drake_nikke.zip) | | 100 | ![pattern_1-100](100/previews/pattern_1.png) | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/drake_nikke.zip) |
RichBro/squad_gpt2
RichBro
2023-08-05T23:46:13Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-05T04:24:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
CyberHarem/snow_white_nikke
CyberHarem
2023-08-05T23:43:58Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/snow_white_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-05T23:39:49Z
--- license: mit datasets: - CyberHarem/snow_white_nikke pipeline_tag: text-to-image tags: - art --- # Lora of snow_white_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/snow_white_nikke.pt` as the embedding and `1500/snow_white_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `snow_white_nikke`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:--------------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/snow_white_nikke.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/snow_white_nikke.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/snow_white_nikke.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/snow_white_nikke.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/snow_white_nikke.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/snow_white_nikke.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/snow_white_nikke.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/snow_white_nikke.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/snow_white_nikke.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/snow_white_nikke.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/snow_white_nikke.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/snow_white_nikke.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/snow_white_nikke.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/snow_white_nikke.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/snow_white_nikke.zip) |
timjwhite/whisper-tiny-dv
timjwhite
2023-08-05T23:43:44Z
86
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-05T11:31:30Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-dv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[-19%:] args: en-US metrics: - name: Wer type: wer value: 0.3484562066792691 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-dv This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.7263 - Wer Ortho: 0.3483 - Wer: 0.3485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0008 | 17.24 | 500 | 0.6662 | 0.3483 | 0.3491 | | 0.0002 | 34.48 | 1000 | 0.7263 | 0.3483 | 0.3485 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
sandeep12345/new_biofilm_LLM
sandeep12345
2023-08-05T23:39:11Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-05T23:38:30Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
sandeep1chataut/biofilm_custom_llama_finetune
sandeep1chataut
2023-08-05T23:25:17Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-05T23:24:39Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
Za88yes/Ri5
Za88yes
2023-08-05T23:18:05Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-05T18:10:21Z
--- license: creativeml-openrail-m ---
CyberHarem/privaty_nikke
CyberHarem
2023-08-05T22:38:56Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/privaty_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-05T22:35:19Z
--- license: mit datasets: - CyberHarem/privaty_nikke pipeline_tag: text-to-image tags: - art --- # Lora of privaty_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/privaty_nikke.pt` as the embedding and `1500/privaty_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `privaty_nikke`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:-----------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/privaty_nikke.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/privaty_nikke.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/privaty_nikke.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/privaty_nikke.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/privaty_nikke.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/privaty_nikke.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/privaty_nikke.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/privaty_nikke.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/privaty_nikke.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/privaty_nikke.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/privaty_nikke.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/privaty_nikke.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/privaty_nikke.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/privaty_nikke.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/privaty_nikke.zip) |
breadlicker45/MuseNeo
breadlicker45
2023-08-05T22:28:40Z
125
3
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neo", "text-generation", "dataset:breadlicker45/midi-music-codes", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-12-23T19:56:48Z
--- license: mit datasets: - breadlicker45/midi-music-codes --- use https://mrcheeze.github.io/musenet-midi/ to make the midi file from the musenet encoding. --- --- this is a 84k step model of MuseNeo. MuseNeo is trained on 393 midi songs. here is a python 3.9 ui to run it. https://github.com/breadbrowser/MuseNeo-ui --- this will not be trained any more. MusePy will be trained now. ---
eliorcohen/ppo-Huggy
eliorcohen
2023-08-05T22:22:03Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-05T22:21:59Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: eliorcohen/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
aphi/poca-SoccerTwos
aphi
2023-08-05T22:21:45Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-08-05T22:20:20Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: aphi/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
CyberHarem/modernia_nikke
CyberHarem
2023-08-05T22:18:28Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/modernia_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-05T22:15:16Z
--- license: mit datasets: - CyberHarem/modernia_nikke pipeline_tag: text-to-image tags: - art --- # Lora of modernia_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/modernia_nikke.pt` as the embedding and `1500/modernia_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `modernia_nikke`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/modernia_nikke.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/modernia_nikke.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/modernia_nikke.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/modernia_nikke.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/modernia_nikke.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/modernia_nikke.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/modernia_nikke.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/modernia_nikke.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/modernia_nikke.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/modernia_nikke.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/modernia_nikke.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/modernia_nikke.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/modernia_nikke.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/modernia_nikke.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/modernia_nikke.zip) |
salohnana2018/ABSA-SentencePair-corrected-domainAdapt-Stack-HARD50-Adapter-pfeiffer-run2
salohnana2018
2023-08-05T22:07:34Z
0
0
adapter-transformers
[ "adapter-transformers", "pytorch", "tensorboard", "bert", "adapterhub:Arabic ABSA/SemEvalHotelReview", "dataset:Hotel", "region:us" ]
null
2023-08-05T21:24:15Z
--- tags: - adapterhub:Arabic ABSA/SemEvalHotelReview - adapter-transformers - bert datasets: - Hotel --- # Adapter `salohnana2018/ABSA-SentencePair-corrected-domainAdapt-Stack-HARD50-Adapter-pfeiffer-run2` for CAMeL-Lab/bert-base-arabic-camelbert-msa An [adapter](https://adapterhub.ml) for the `CAMeL-Lab/bert-base-arabic-camelbert-msa` model that was trained on the [Arabic ABSA/SemEvalHotelReview](https://adapterhub.ml/explore/Arabic ABSA/SemEvalHotelReview/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa") adapter_name = model.load_adapter("salohnana2018/ABSA-SentencePair-corrected-domainAdapt-Stack-HARD50-Adapter-pfeiffer-run2", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
CyberHarem/noir_nikke
CyberHarem
2023-08-05T21:36:48Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/noir_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-05T21:33:15Z
--- license: mit datasets: - CyberHarem/noir_nikke pipeline_tag: text-to-image tags: - art --- # Lora of noir_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/noir_nikke.pt` as the embedding and `1500/noir_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `noir_nikke`.** These are available steps: | Steps | pattern_1 | bikini | free | nude | Download | |--------:|:-----------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:--------------------------------| | 1500 | ![pattern_1-1500](1500/previews/pattern_1.png) | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/noir_nikke.zip) | | 1400 | ![pattern_1-1400](1400/previews/pattern_1.png) | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/noir_nikke.zip) | | 1300 | ![pattern_1-1300](1300/previews/pattern_1.png) | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/noir_nikke.zip) | | 1200 | ![pattern_1-1200](1200/previews/pattern_1.png) | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/noir_nikke.zip) | | 1100 | ![pattern_1-1100](1100/previews/pattern_1.png) | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/noir_nikke.zip) | | 1000 | ![pattern_1-1000](1000/previews/pattern_1.png) | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/noir_nikke.zip) | | 900 | ![pattern_1-900](900/previews/pattern_1.png) | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/noir_nikke.zip) | | 800 | ![pattern_1-800](800/previews/pattern_1.png) | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/noir_nikke.zip) | | 700 | ![pattern_1-700](700/previews/pattern_1.png) | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/noir_nikke.zip) | | 600 | ![pattern_1-600](600/previews/pattern_1.png) | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/noir_nikke.zip) | | 500 | ![pattern_1-500](500/previews/pattern_1.png) | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/noir_nikke.zip) | | 400 | ![pattern_1-400](400/previews/pattern_1.png) | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/noir_nikke.zip) | | 300 | ![pattern_1-300](300/previews/pattern_1.png) | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/noir_nikke.zip) | | 200 | ![pattern_1-200](200/previews/pattern_1.png) | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/noir_nikke.zip) | | 100 | ![pattern_1-100](100/previews/pattern_1.png) | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/noir_nikke.zip) |
YieldInc/cacti-7b-1k
YieldInc
2023-08-05T21:23:04Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-05T21:22:40Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
CyberHarem/soda_nikke
CyberHarem
2023-08-05T21:17:03Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/soda_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-05T21:13:26Z
--- license: mit datasets: - CyberHarem/soda_nikke pipeline_tag: text-to-image tags: - art --- # Lora of soda_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/soda_nikke.pt` as the embedding and `1500/soda_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `soda_nikke`.** These are available steps: | Steps | pattern_1 | bikini | free | nude | Download | |--------:|:----------------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:--------------------------------| | 1500 | [<NSFW, click to see>](1500/previews/pattern_1.png) | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/soda_nikke.zip) | | 1400 | [<NSFW, click to see>](1400/previews/pattern_1.png) | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/soda_nikke.zip) | | 1300 | [<NSFW, click to see>](1300/previews/pattern_1.png) | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/soda_nikke.zip) | | 1200 | [<NSFW, click to see>](1200/previews/pattern_1.png) | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/soda_nikke.zip) | | 1100 | [<NSFW, click to see>](1100/previews/pattern_1.png) | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/soda_nikke.zip) | | 1000 | [<NSFW, click to see>](1000/previews/pattern_1.png) | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/soda_nikke.zip) | | 900 | [<NSFW, click to see>](900/previews/pattern_1.png) | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/soda_nikke.zip) | | 800 | [<NSFW, click to see>](800/previews/pattern_1.png) | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/soda_nikke.zip) | | 700 | [<NSFW, click to see>](700/previews/pattern_1.png) | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/soda_nikke.zip) | | 600 | [<NSFW, click to see>](600/previews/pattern_1.png) | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/soda_nikke.zip) | | 500 | [<NSFW, click to see>](500/previews/pattern_1.png) | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/soda_nikke.zip) | | 400 | [<NSFW, click to see>](400/previews/pattern_1.png) | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/soda_nikke.zip) | | 300 | [<NSFW, click to see>](300/previews/pattern_1.png) | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/soda_nikke.zip) | | 200 | [<NSFW, click to see>](200/previews/pattern_1.png) | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/soda_nikke.zip) | | 100 | [<NSFW, click to see>](100/previews/pattern_1.png) | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/soda_nikke.zip) |
Henk717/spring-dragon-qlora
Henk717
2023-08-05T21:06:52Z
6
7
peft
[ "peft", "tensorboard", "region:us" ]
null
2023-08-05T20:59:57Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
ClementXie/whisper-tiny
ClementXie
2023-08-05T20:58:22Z
87
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-05T17:07:54Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.3504106374657802 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6037 - Wer Ortho: 0.3514 - Wer: 0.3504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0236 | 5.0 | 500 | 0.6037 | 0.3514 | 0.3504 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 1.13.1 - Datasets 2.14.3 - Tokenizers 0.13.2
pillocode/LunaLander-vGOD
pillocode
2023-08-05T20:40:07Z
0
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T20:39:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.60 +/- 17.30 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CyberHarem/blanc_nikke
CyberHarem
2023-08-05T20:37:48Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/blanc_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-05T20:34:33Z
--- license: mit datasets: - CyberHarem/blanc_nikke pipeline_tag: text-to-image tags: - art --- # Lora of blanc_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/blanc_nikke.pt` as the embedding and `1500/blanc_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `blanc_nikke`.** These are available steps: | Steps | pattern_1 | bikini | free | nude | Download | |--------:|:-----------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:---------------------------------| | 1500 | ![pattern_1-1500](1500/previews/pattern_1.png) | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/blanc_nikke.zip) | | 1400 | ![pattern_1-1400](1400/previews/pattern_1.png) | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/blanc_nikke.zip) | | 1300 | ![pattern_1-1300](1300/previews/pattern_1.png) | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/blanc_nikke.zip) | | 1200 | ![pattern_1-1200](1200/previews/pattern_1.png) | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/blanc_nikke.zip) | | 1100 | ![pattern_1-1100](1100/previews/pattern_1.png) | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/blanc_nikke.zip) | | 1000 | ![pattern_1-1000](1000/previews/pattern_1.png) | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/blanc_nikke.zip) | | 900 | ![pattern_1-900](900/previews/pattern_1.png) | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/blanc_nikke.zip) | | 800 | ![pattern_1-800](800/previews/pattern_1.png) | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/blanc_nikke.zip) | | 700 | ![pattern_1-700](700/previews/pattern_1.png) | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/blanc_nikke.zip) | | 600 | ![pattern_1-600](600/previews/pattern_1.png) | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/blanc_nikke.zip) | | 500 | ![pattern_1-500](500/previews/pattern_1.png) | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/blanc_nikke.zip) | | 400 | ![pattern_1-400](400/previews/pattern_1.png) | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/blanc_nikke.zip) | | 300 | ![pattern_1-300](300/previews/pattern_1.png) | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/blanc_nikke.zip) | | 200 | ![pattern_1-200](200/previews/pattern_1.png) | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/blanc_nikke.zip) | | 100 | ![pattern_1-100](100/previews/pattern_1.png) | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/blanc_nikke.zip) |
TransformerTales/llama-2-7b-8bit-nested
TransformerTales
2023-08-05T20:31:25Z
22
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "region:us" ]
text-generation
2023-07-31T01:20:44Z
--- license: mit --- I used Google Colab to quantize/nest the Llama 2 7B model. Should help out those who wish to use Llama 2 7B on a low-end computer. GPU is still recomended...
SargeZT/controlnet-v1e-sdxl-depth
SargeZT
2023-08-05T20:10:22Z
76
36
diffusers
[ "diffusers", "safetensors", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "controlnet", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-29T10:16:56Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-xl-base-1.0 tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - controlnet inference: true --- # controlnet-SargeZT/controlnet-v1e-sdxl-depth These are controlnet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with depth maps. Note that the input depth maps are perceptually mapped from ZoeDepth. You can find some example images below. prompt: nightmare construction worker, unsettling ![images_0)](./images_0.png) prompt: android warrior, unsettling ![images_1)](./images_1.png) ## License [SDXL 1.0 License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md)
arpan-das-astrophysics/a2c-AntBulletEnv-v0
arpan-das-astrophysics
2023-08-05T19:51:45Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T19:50:35Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1294.48 +/- 215.33 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
o33iemars/Gpt
o33iemars
2023-08-05T19:44:14Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-08-05T19:41:46Z
--- license: bigscience-openrail-m ---
Surya-Teja-Menta/PPO-LunarLander-v2
Surya-Teja-Menta
2023-08-05T19:41:57Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T19:05:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: MLPpolicy results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.64 +/- 14.87 name: mean_reward verified: false --- # **MLPpolicy** Agent playing **LunarLander-v2** This is a trained model of a **MLPpolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kejolong/police
kejolong
2023-08-05T19:35:46Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-05T19:30:51Z
--- license: creativeml-openrail-m ---
arhamk/a2c-AntBulletEnv-v0
arhamk
2023-08-05T19:27:40Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T19:26:33Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 925.76 +/- 168.74 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CyberHarem/brid_nikke
CyberHarem
2023-08-05T19:19:38Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/brid_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-05T19:15:31Z
--- license: mit datasets: - CyberHarem/brid_nikke pipeline_tag: text-to-image tags: - art --- # Lora of brid_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/brid_nikke.pt` as the embedding and `1500/brid_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `brid_nikke`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:--------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/brid_nikke.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/brid_nikke.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/brid_nikke.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/brid_nikke.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/brid_nikke.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/brid_nikke.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/brid_nikke.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/brid_nikke.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/brid_nikke.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/brid_nikke.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/brid_nikke.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/brid_nikke.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/brid_nikke.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/brid_nikke.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/brid_nikke.zip) |
EdJ1234/finetuned_llama
EdJ1234
2023-08-05T18:58:57Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-05T18:57:14Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
tilyupo/t5-base-trivia-ca2q
tilyupo
2023-08-05T18:45:13Z
60
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-04T08:15:43Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_keras_callback model-index: - name: t5-base-trivia-v2-ca2q results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-trivia-v2-ca2q This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2541 - Validation Loss: 0.3480 - Epoch: 2 <pre> {'eval_loss': 1.2103511095046997, 'eval_bleu': 19.63270019311908, 'eval_rouge1': 57.01, 'eval_rouge2': 33.76, 'eval_rougeL': 49.73, 'eval_rougeLsum': 49.74, 'eval_exact': 0.022446798173161014, 'eval_runtime': 224.6161, 'eval_samples_per_second': 45.816, 'eval_steps_per_second': 1.434} </pre> ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adafactor', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_2_decay': -0.8, 'epsilon_1': 1e-30, 'epsilon_2': 0.001, 'clip_threshold': 1.0, 'relative_step': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.5159 | 0.3420 | 0 | | 0.3061 | 0.3373 | 1 | | 0.2541 | 0.3480 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.3 - Tokenizers 0.13.3
VicBeltran/dqn-SpaceInvadersNoFrameskip-v4
VicBeltran
2023-08-05T18:44:33Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T18:41:04Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 332.50 +/- 92.99 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga VicBeltran -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga VicBeltran -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga VicBeltran ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
TheRains/yt-special-batch88
TheRains
2023-08-05T18:31:52Z
118
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:mozilla-foundation/common_voice_9_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-05T01:35:26Z
--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_9_0 metrics: - wer model-index: - name: yt-special-batch88 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_9_0 id type: mozilla-foundation/common_voice_9_0 config: id split: train args: id metrics: - name: Wer type: wer value: 5.357219480798112 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # yt-special-batch88 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_9_0 id dataset. It achieves the following results on the evaluation set: - Loss: 0.2602 - Wer: 5.3572 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 37.1656 | 1.58 | 1000 | 31.4152 | 569.1440 | | 15.0344 | 3.17 | 2000 | 13.2072 | 144.3489 | | 7.6075 | 4.75 | 3000 | 5.8946 | 42.3836 | | 2.5225 | 6.34 | 4000 | 2.0158 | 19.5430 | | 0.5364 | 7.92 | 5000 | 0.2602 | 5.3572 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
EdJ1234/lora-peft-v1
EdJ1234
2023-08-05T18:31:10Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-04T18:52:01Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
openflamingo/OpenFlamingo-9B-vitl-mpt7b
openflamingo
2023-08-05T18:27:50Z
0
41
null
[ "en", "dataset:laion2b", "arxiv:2308.01390", "arxiv:2210.08402", "arxiv:2304.06939", "region:us" ]
null
2023-06-13T21:22:51Z
--- language: en datasets: - laion2b --- # OpenFlamingo-9B (CLIP ViT-L/14, MPT-7B) [Paper](https://arxiv.org/abs/2308.01390) | [Blog post](https://laion.ai/blog/open-flamingo-v2/) | [Code](https://github.com/mlfoundations/open_flamingo) | [Demo](https://huggingface.co/spaces/openflamingo/OpenFlamingo) OpenFlamingo is an open source implementation of DeepMind's [Flamingo](https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model) models. This 9B-parameter model uses a [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14) vision encoder and [MPT-7B](https://huggingface.co/mosaicml/mpt-7b) language model. ## Model Details We follow the Flamingo modeling paradigm, outfitting the layers of a pretrained, frozen language model such that they cross-attend to visual features when decoding. Following Flamingo, we freeze the vision encoder and language model but train the connecting modules on web-scraped image-text sequences. Specifically, we trained this model on a mixture of [LAION-2B](https://arxiv.org/abs/2210.08402) and [Multimodal C4](https://arxiv.org/abs/2304.06939). This model has cross-attention modules inserted in *every fourth* decoder block. It was trained using DistributedDataParallel across 64 A100 80GB GPUs at automatic BF16 mixed precision. To use these MPT weights, OpenFlamingo must be initialized using revision `68e1a8e0ebb9b30f3c45c1ef6195980f29063ae2` of the MPT-7B modeling code. We suggest using [this copy of the model](https://huggingface.co/anas-awadalla/mpt-7b) to ensure the code is loaded at that commit. ## Uses OpenFlamingo models process arbitrarily interleaved sequences of images and text to output text. This allows the models to accept in-context examples and undertake tasks like captioning, visual question answering, and image classification. ### Initialization ``` python from open_flamingo import create_model_and_transforms model, image_processor, tokenizer = create_model_and_transforms( clip_vision_encoder_path="ViT-L-14", clip_vision_encoder_pretrained="openai", lang_encoder_path="anas-awadalla/mpt-7b", tokenizer_path="anas-awadalla/mpt-7b", cross_attn_every_n_layers=4 ) # grab model checkpoint from huggingface hub from huggingface_hub import hf_hub_download import torch checkpoint_path = hf_hub_download("openflamingo/OpenFlamingo-9B-vitl-mpt7b", "checkpoint.pt") model.load_state_dict(torch.load(checkpoint_path), strict=False) ``` ### Generation example Below is an example of generating text conditioned on interleaved images/text. In particular, let's try few-shot image captioning. ``` python from PIL import Image import requests """ Step 1: Load images """ demo_image_one = Image.open( requests.get( "http://images.cocodataset.org/val2017/000000039769.jpg", stream=True ).raw ) demo_image_two = Image.open( requests.get( "http://images.cocodataset.org/test-stuff2017/000000028137.jpg", stream=True ).raw ) query_image = Image.open( requests.get( "http://images.cocodataset.org/test-stuff2017/000000028352.jpg", stream=True ).raw ) """ Step 2: Preprocessing images Details: For OpenFlamingo, we expect the image to be a torch tensor of shape batch_size x num_media x num_frames x channels x height x width. In this case batch_size = 1, num_media = 3, num_frames = 1, channels = 3, height = 224, width = 224. """ vision_x = [image_processor(demo_image_one).unsqueeze(0), image_processor(demo_image_two).unsqueeze(0), image_processor(query_image).unsqueeze(0)] vision_x = torch.cat(vision_x, dim=0) vision_x = vision_x.unsqueeze(1).unsqueeze(0) """ Step 3: Preprocessing text Details: In the text we expect an <image> special token to indicate where an image is. We also expect an <|endofchunk|> special token to indicate the end of the text portion associated with an image. """ tokenizer.padding_side = "left" # For generation padding tokens should be on the left lang_x = tokenizer( ["<image>An image of two cats.<|endofchunk|><image>An image of a bathroom sink.<|endofchunk|><image>An image of"], return_tensors="pt", ) """ Step 4: Generate text """ generated_text = model.generate( vision_x=vision_x, lang_x=lang_x["input_ids"], attention_mask=lang_x["attention_mask"], max_new_tokens=20, num_beams=3, ) print("Generated text: ", tokenizer.decode(generated_text[0])) ``` ### Bias, Risks, and Limitations OpenFlamingo models inherit the risks of their parent models, especially the language model. As an open-source research effort, we highly value open, accessible, reproducible multimodal model research; however, it is crucial to be aware that these models are trained on web data, have not been finetuned for safety, and thus may produce unintended, inappropriate, unreliable, and/or inaccurate outputs. Please use caution before deploying OpenFlamingo models in real applications. We also hope that OpenFlamingo enables further safety and reliability research to address these issues. In an effort to mitigate current potential biases and harms, we have deployed a text content filter on model outputs in the OpenFlamingo demo. We continue to red-team the model to understand and improve its safety. ## Evaluation <table> <tr> <th></th> <th>0-shot</th> <th>4-shot</th> <th>8-shot</th> <th>16-shot</th> <th>32-shot</th> </tr> <tr> <th>COCO (CIDEr)</th> <td>79.5 (0.2)</td> <td>89.0 (0.3)</td> <td>96.3 (0.1)</td> <td>98.8 (0.7)</td> <td>99.5 (0.1)</td> </tr> <tr> <th>VQAv2 (Accuracy)</th> <td>50.3 (0.7)</td> <td>50.5 (0.5)</td> <td>52.8 (0.3)</td> <td>52.3 (0.3)</td> <td>50.5 (0.0)</td> </tr> <tr> <th>Flickr-30K (CIDEr)</th> <td>59.5 (1.0)</td> <td>65.8 (0.6)</td> <td>62.9 (1.0)</td> <td>62.8 (1.0)</td> <td>61.3 (0.7)</td> </tr> <tr> <th>OK-VQA (Accuracy)</th> <td>34.7 (0.1)</td> <td>34.3 (0.1)</td> <td>38.4 (0.0)</td> <td>39.5 (0.1)</td> <td>38.1 (0.0)</td> </tr> <tr> <th>TextVQA (Accuracy)</th> <td>24.2 (0.5)</td> <td>28.2 (0.4)</td> <td>29.1 (0.1)</td> <td>27.3 (0.1)</td> <td>23.8 (0.2)</td> </tr> <tr> <th>Vizwiz (Accuracy)</th> <td>17.7 (0.7)</td> <td>23.1 (0.9)</td> <td>31.6 (1.5)</td> <td>38.0 (1.1)</td> <td>40.2 (0.7)</td> </tr> <tr> <th>Hateful Memes (ROC AUC)</th> <td>50.8 (4.7)</td> <td>47.5 (2.2)</td> <td>45.2 (2.7)</td> <td>46.9 (3.8)</td> <td>52.0 (2.1)</td> </tr> </table
openflamingo/OpenFlamingo-3B-vitl-mpt1b
openflamingo
2023-08-05T18:27:20Z
0
11
null
[ "en", "dataset:laion2b", "arxiv:2308.01390", "arxiv:2210.08402", "arxiv:2304.06939", "region:us" ]
null
2023-06-13T21:22:05Z
--- language: en datasets: - laion2b --- # OpenFlamingo-3B (CLIP ViT-L/14, MPT-1B) [Paper](https://arxiv.org/abs/2308.01390) | [Blog post](https://laion.ai/blog/open-flamingo-v2/) | [Code](https://github.com/mlfoundations/open_flamingo) | [Demo](https://huggingface.co/spaces/openflamingo/OpenFlamingo) OpenFlamingo is an open source implementation of DeepMind's [Flamingo](https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model) models. This 3B-parameter model uses a [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14) vision encoder and [MPT-1B](https://huggingface.co/mosaicml/mpt-1b-redpajama-200b) language model. ## Model Details We follow the Flamingo modeling paradigm, outfitting the layers of a pretrained, frozen language model such that they cross-attend to visual features when decoding. Following Flamingo, we freeze the vision encoder and language model but train the connecting modules on web-scraped image-text sequences. Specifically, we trained this model on a mixture of [LAION-2B](https://arxiv.org/abs/2210.08402) and [Multimodal C4](https://arxiv.org/abs/2304.06939). This model has cross-attention modules inserted in *every* decoder block. It was trained using DistributedDataParallel across 64 A100 80GB GPUs at FP32 precision. The [MPT-1B](https://huggingface.co/mosaicml/mpt-1b-redpajama-200b) modeling code does not accept the `labels` kwarg and compute cross-entropy loss within `forward()`. To train with the OpenFlamingo codebase, we suggest a version with the `labels` kwarg [here](https://huggingface.co/anas-awadalla/mpt-1b-redpajama-200b). ## Uses OpenFlamingo models process arbitrarily interleaved sequences of images and text to output text. This allows the models to accept in-context examples and undertake tasks like captioning, visual question answering, and image classification. ### Initialization ``` python from open_flamingo import create_model_and_transforms model, image_processor, tokenizer = create_model_and_transforms( clip_vision_encoder_path="ViT-L-14", clip_vision_encoder_pretrained="openai", lang_encoder_path="anas-awadalla/mpt-1b-redpajama-200b", tokenizer_path="anas-awadalla/mpt-1b-redpajama-200b", cross_attn_every_n_layers=1 ) # grab model checkpoint from huggingface hub from huggingface_hub import hf_hub_download import torch checkpoint_path = hf_hub_download("openflamingo/OpenFlamingo-3B-vitl-mpt1b", "checkpoint.pt") model.load_state_dict(torch.load(checkpoint_path), strict=False) ``` ### Generation example Below is an example of generating text conditioned on interleaved images/text. In particular, let's try few-shot image captioning. ``` python from PIL import Image import requests """ Step 1: Load images """ demo_image_one = Image.open( requests.get( "http://images.cocodataset.org/val2017/000000039769.jpg", stream=True ).raw ) demo_image_two = Image.open( requests.get( "http://images.cocodataset.org/test-stuff2017/000000028137.jpg", stream=True ).raw ) query_image = Image.open( requests.get( "http://images.cocodataset.org/test-stuff2017/000000028352.jpg", stream=True ).raw ) """ Step 2: Preprocessing images Details: For OpenFlamingo, we expect the image to be a torch tensor of shape batch_size x num_media x num_frames x channels x height x width. In this case batch_size = 1, num_media = 3, num_frames = 1, channels = 3, height = 224, width = 224. """ vision_x = [image_processor(demo_image_one).unsqueeze(0), image_processor(demo_image_two).unsqueeze(0), image_processor(query_image).unsqueeze(0)] vision_x = torch.cat(vision_x, dim=0) vision_x = vision_x.unsqueeze(1).unsqueeze(0) """ Step 3: Preprocessing text Details: In the text we expect an <image> special token to indicate where an image is. We also expect an <|endofchunk|> special token to indicate the end of the text portion associated with an image. """ tokenizer.padding_side = "left" # For generation padding tokens should be on the left lang_x = tokenizer( ["<image>An image of two cats.<|endofchunk|><image>An image of a bathroom sink.<|endofchunk|><image>An image of"], return_tensors="pt", ) """ Step 4: Generate text """ generated_text = model.generate( vision_x=vision_x, lang_x=lang_x["input_ids"], attention_mask=lang_x["attention_mask"], max_new_tokens=20, num_beams=3, ) print("Generated text: ", tokenizer.decode(generated_text[0])) ``` ### Bias, Risks, and Limitations OpenFlamingo models inherit the risks of their parent models, especially the language model. As an open-source research effort, we highly value open, accessible, reproducible multimodal model research; however, it is crucial to be aware that these models are trained on web data, have not been finetuned for safety, and thus may produce unintended, inappropriate, unreliable, and/or inaccurate outputs. Please use caution before deploying OpenFlamingo models in real applications. We also hope that OpenFlamingo enables further safety and reliability research to address these issues. In an effort to mitigate current potential biases and harms, we have deployed a text content filter on model outputs in the OpenFlamingo demo. We continue to red-team the model to understand and improve its safety. ## Evaluation <table> <tr> <th></th> <th>0-shot</th> <th>4-shot</th> <th>8-shot</th> <th>16-shot</th> <th>32-shot</th> </tr> <tr> <th>COCO (CIDEr)</th> <td>74.9 (0.2)</td> <td>77.3 (0.3)</td> <td>85.9 (0.6)</td> <td>89.8 (0.2)</td> <td>93.0 (0.6)</td> </tr> <tr> <th>Flickr-30K (CIDEr)</th> <td>52.3 (1.0)</td> <td>57.2 (0.4)</td> <td>58.6 (1.1)</td> <td>59.2 (0.5)</td> <td>61.1 (1.3)</td> </tr> <tr> <th>VQAv2 (Accuracy)</th> <td>44.6 (0.7)</td> <td>45.9 (0.7)</td> <td>45.8 (0.5)</td> <td>45.5 (0.2)</td> <td>45.8 (0.4)</td> </tr> <tr> <th>OK-VQA (Accuracy)</th> <td>26.8 (0.3)</td> <td>27.6 (0.2)</td> <td>27.7 (0.1)</td> <td>28.4 (0.1)</td> <td>29.3 (0.2)</td> </tr> <tr> <th>TextVQA (Accuracy)</th> <td>22.8 (0.2)</td> <td>25.8 (0.2)</td> <td>24.7 (0.1)</td> <td>25.2 (0.2)</td> <td>26.3 (0.2)</td> </tr> <tr> <th>Vizwiz (Accuracy)</th> <td>18.3 (0.6)</td> <td>23.3 (1.1)</td> <td>31.8 (0.7)</td> <td>38.4 (1.1)</td> <td>42.1 (0.6)</td> </td> </tr> <tr> <th>Hateful Memes (ROC AUC)</th> <td>51.4 (3.3)</td> <td>51.4 (0.6)</td> <td>52.1 (0.7)</td> <td>51.6 (1.1)</td> <td>51.6 (1.6)</td> </tr> </table>
psxjp5/mt5-small_mid_lr_mid_decay
psxjp5
2023-08-05T18:08:37Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-05T15:21:02Z
--- license: apache-2.0 base_model: google/mt5-small tags: - generated_from_trainer metrics: - rouge - bleu model-index: - name: mt5-small_mid_lr_mid_decay results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small_mid_lr_mid_decay This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7428 - Rouge1: 43.12 - Rouge2: 37.6639 - Rougel: 41.8367 - Rougelsum: 41.904 - Bleu: 31.957 - Gen Len: 12.1285 - Meteor: 0.3936 - No ans accuracy: 22.29 - Av cosine sim: 0.7406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 9 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len | Meteor | No ans accuracy | Av cosine sim | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-------:|:------:|:---------------:|:-------------:| | 3.1455 | 1.0 | 175 | 0.9832 | 18.7107 | 15.4897 | 18.1977 | 18.2212 | 7.0634 | 7.6229 | 0.1626 | 22.4000 | 0.3949 | | 1.1623 | 1.99 | 350 | 0.8542 | 38.7675 | 32.704 | 37.3557 | 37.3949 | 27.4323 | 12.5135 | 0.3487 | 17.9900 | 0.6992 | | 0.9431 | 2.99 | 525 | 0.8017 | 41.6216 | 35.6002 | 40.2386 | 40.2881 | 30.7994 | 12.8117 | 0.3755 | 18.37 | 0.7304 | | 0.8119 | 3.98 | 700 | 0.7787 | 43.5805 | 37.4117 | 42.1059 | 42.155 | 32.9646 | 13.2176 | 0.3947 | 17.7400 | 0.7582 | | 0.7235 | 4.98 | 875 | 0.7477 | 43.4124 | 37.2017 | 41.8468 | 41.9097 | 32.9345 | 13.116 | 0.3946 | 18.92 | 0.7561 | | 0.6493 | 5.97 | 1050 | 0.7266 | 40.4764 | 34.9927 | 39.0999 | 39.1711 | 29.0601 | 11.748 | 0.3687 | 22.6500 | 0.7071 | | 0.5871 | 6.97 | 1225 | 0.7284 | 43.3812 | 37.5544 | 42.0405 | 42.0865 | 32.8345 | 12.6063 | 0.3949 | 21.05 | 0.7485 | | 0.5453 | 7.96 | 1400 | 0.7389 | 43.4549 | 37.76 | 42.1025 | 42.215 | 32.6726 | 12.4537 | 0.3965 | 21.44 | 0.7496 | | 0.5038 | 8.96 | 1575 | 0.7428 | 43.12 | 37.6639 | 41.8367 | 41.904 | 31.957 | 12.1285 | 0.3936 | 22.29 | 0.7406 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
xzuyn/Pygmalion-V3-6B-GGML
xzuyn
2023-08-05T18:08:10Z
0
7
null
[ "gptj", "gpt-j", "region:us" ]
null
2023-05-23T00:55:19Z
--- tags: - gptj - gpt-j --- # For use with [KoboldCPP](https://github.com/LostRuins/koboldcpp) Original Model: https://huggingface.co/PygmalionAI/pygmalion-6b
CyberHarem/rapi_nikke
CyberHarem
2023-08-05T18:00:29Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/rapi_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-05T17:56:30Z
--- license: mit datasets: - CyberHarem/rapi_nikke pipeline_tag: text-to-image tags: - art --- # Lora of rapi_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/rapi_nikke.pt` as the embedding and `1500/rapi_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `rapi_nikke`.** These are available steps: | Steps | pattern_1 | pattern_2 | pattern_3 | bikini | free | nude | Download | |--------:|:-----------------------------------------------|:----------------------------------------------------|:-----------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:--------------------------------| | 1500 | ![pattern_1-1500](1500/previews/pattern_1.png) | [<NSFW, click to see>](1500/previews/pattern_2.png) | ![pattern_3-1500](1500/previews/pattern_3.png) | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/rapi_nikke.zip) | | 1400 | ![pattern_1-1400](1400/previews/pattern_1.png) | [<NSFW, click to see>](1400/previews/pattern_2.png) | ![pattern_3-1400](1400/previews/pattern_3.png) | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/rapi_nikke.zip) | | 1300 | ![pattern_1-1300](1300/previews/pattern_1.png) | [<NSFW, click to see>](1300/previews/pattern_2.png) | ![pattern_3-1300](1300/previews/pattern_3.png) | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/rapi_nikke.zip) | | 1200 | ![pattern_1-1200](1200/previews/pattern_1.png) | [<NSFW, click to see>](1200/previews/pattern_2.png) | ![pattern_3-1200](1200/previews/pattern_3.png) | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/rapi_nikke.zip) | | 1100 | ![pattern_1-1100](1100/previews/pattern_1.png) | [<NSFW, click to see>](1100/previews/pattern_2.png) | ![pattern_3-1100](1100/previews/pattern_3.png) | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/rapi_nikke.zip) | | 1000 | ![pattern_1-1000](1000/previews/pattern_1.png) | [<NSFW, click to see>](1000/previews/pattern_2.png) | ![pattern_3-1000](1000/previews/pattern_3.png) | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/rapi_nikke.zip) | | 900 | ![pattern_1-900](900/previews/pattern_1.png) | [<NSFW, click to see>](900/previews/pattern_2.png) | ![pattern_3-900](900/previews/pattern_3.png) | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/rapi_nikke.zip) | | 800 | ![pattern_1-800](800/previews/pattern_1.png) | [<NSFW, click to see>](800/previews/pattern_2.png) | ![pattern_3-800](800/previews/pattern_3.png) | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/rapi_nikke.zip) | | 700 | ![pattern_1-700](700/previews/pattern_1.png) | [<NSFW, click to see>](700/previews/pattern_2.png) | ![pattern_3-700](700/previews/pattern_3.png) | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/rapi_nikke.zip) | | 600 | ![pattern_1-600](600/previews/pattern_1.png) | [<NSFW, click to see>](600/previews/pattern_2.png) | ![pattern_3-600](600/previews/pattern_3.png) | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/rapi_nikke.zip) | | 500 | ![pattern_1-500](500/previews/pattern_1.png) | [<NSFW, click to see>](500/previews/pattern_2.png) | ![pattern_3-500](500/previews/pattern_3.png) | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/rapi_nikke.zip) | | 400 | ![pattern_1-400](400/previews/pattern_1.png) | [<NSFW, click to see>](400/previews/pattern_2.png) | ![pattern_3-400](400/previews/pattern_3.png) | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/rapi_nikke.zip) | | 300 | ![pattern_1-300](300/previews/pattern_1.png) | [<NSFW, click to see>](300/previews/pattern_2.png) | ![pattern_3-300](300/previews/pattern_3.png) | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/rapi_nikke.zip) | | 200 | ![pattern_1-200](200/previews/pattern_1.png) | [<NSFW, click to see>](200/previews/pattern_2.png) | ![pattern_3-200](200/previews/pattern_3.png) | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/rapi_nikke.zip) | | 100 | ![pattern_1-100](100/previews/pattern_1.png) | [<NSFW, click to see>](100/previews/pattern_2.png) | ![pattern_3-100](100/previews/pattern_3.png) | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/rapi_nikke.zip) |
SujitShelar/bloom-1b1-lora-tagger
SujitShelar
2023-08-05T17:53:05Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-05T17:46:47Z
--- library_name: peft --- Followed the Sam Witteveen on Youtube for this --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
arhamk/ppo-Pyramids
arhamk
2023-08-05T17:50:26Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-05T17:38:13Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: arhamk/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Indra99-01/food_semeval_bigscience_bloomz-560m_PROMPT_TUNING_CAUSAL_LM_v1_50.pt
Indra99-01
2023-08-05T17:48:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-05T17:48:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
Indra99-01/food_semeval_bigscience_bloomz-560m_PROMPT_TUNING_CAUSAL_LM_v1.pt50
Indra99-01
2023-08-05T17:46:53Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-05T17:46:52Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
asparius/my_new_modelasd
asparius
2023-08-05T17:43:14Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-08-05T17:43:03Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # asparius/my_new_modelasd This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('asparius/my_new_modelasd') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('asparius/my_new_modelasd') model = AutoModel.from_pretrained('asparius/my_new_modelasd') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=asparius/my_new_modelasd) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
MattStammers/a2c-PandaReachDense-v2-take2
MattStammers
2023-08-05T17:41:29Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T14:31:08Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -3.97 +/- 0.71 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CyberHarem/anis_nikke
CyberHarem
2023-08-05T17:41:09Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/anis_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-05T17:36:33Z
--- license: mit datasets: - CyberHarem/anis_nikke pipeline_tag: text-to-image tags: - art --- # Lora of anis_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/anis_nikke.pt` as the embedding and `1500/anis_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `anis_nikke`.** These are available steps: | Steps | pattern_1 | pattern_2 | pattern_3 | bikini | free | nude | Download | |--------:|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-------------------------------------|:-----------------------------------------------|:--------------------------------| | 1500 | ![pattern_1-1500](1500/previews/pattern_1.png) | ![pattern_2-1500](1500/previews/pattern_2.png) | ![pattern_3-1500](1500/previews/pattern_3.png) | [<NSFW, click to see>](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/anis_nikke.zip) | | 1400 | ![pattern_1-1400](1400/previews/pattern_1.png) | ![pattern_2-1400](1400/previews/pattern_2.png) | ![pattern_3-1400](1400/previews/pattern_3.png) | [<NSFW, click to see>](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/anis_nikke.zip) | | 1300 | ![pattern_1-1300](1300/previews/pattern_1.png) | ![pattern_2-1300](1300/previews/pattern_2.png) | ![pattern_3-1300](1300/previews/pattern_3.png) | [<NSFW, click to see>](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/anis_nikke.zip) | | 1200 | ![pattern_1-1200](1200/previews/pattern_1.png) | ![pattern_2-1200](1200/previews/pattern_2.png) | ![pattern_3-1200](1200/previews/pattern_3.png) | [<NSFW, click to see>](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/anis_nikke.zip) | | 1100 | ![pattern_1-1100](1100/previews/pattern_1.png) | ![pattern_2-1100](1100/previews/pattern_2.png) | ![pattern_3-1100](1100/previews/pattern_3.png) | [<NSFW, click to see>](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/anis_nikke.zip) | | 1000 | ![pattern_1-1000](1000/previews/pattern_1.png) | ![pattern_2-1000](1000/previews/pattern_2.png) | ![pattern_3-1000](1000/previews/pattern_3.png) | [<NSFW, click to see>](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/anis_nikke.zip) | | 900 | ![pattern_1-900](900/previews/pattern_1.png) | ![pattern_2-900](900/previews/pattern_2.png) | ![pattern_3-900](900/previews/pattern_3.png) | [<NSFW, click to see>](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/anis_nikke.zip) | | 800 | ![pattern_1-800](800/previews/pattern_1.png) | ![pattern_2-800](800/previews/pattern_2.png) | ![pattern_3-800](800/previews/pattern_3.png) | [<NSFW, click to see>](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/anis_nikke.zip) | | 700 | ![pattern_1-700](700/previews/pattern_1.png) | ![pattern_2-700](700/previews/pattern_2.png) | ![pattern_3-700](700/previews/pattern_3.png) | [<NSFW, click to see>](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/anis_nikke.zip) | | 600 | ![pattern_1-600](600/previews/pattern_1.png) | ![pattern_2-600](600/previews/pattern_2.png) | ![pattern_3-600](600/previews/pattern_3.png) | [<NSFW, click to see>](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/anis_nikke.zip) | | 500 | ![pattern_1-500](500/previews/pattern_1.png) | ![pattern_2-500](500/previews/pattern_2.png) | ![pattern_3-500](500/previews/pattern_3.png) | [<NSFW, click to see>](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/anis_nikke.zip) | | 400 | ![pattern_1-400](400/previews/pattern_1.png) | ![pattern_2-400](400/previews/pattern_2.png) | ![pattern_3-400](400/previews/pattern_3.png) | [<NSFW, click to see>](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/anis_nikke.zip) | | 300 | ![pattern_1-300](300/previews/pattern_1.png) | ![pattern_2-300](300/previews/pattern_2.png) | ![pattern_3-300](300/previews/pattern_3.png) | [<NSFW, click to see>](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/anis_nikke.zip) | | 200 | ![pattern_1-200](200/previews/pattern_1.png) | ![pattern_2-200](200/previews/pattern_2.png) | ![pattern_3-200](200/previews/pattern_3.png) | [<NSFW, click to see>](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/anis_nikke.zip) | | 100 | ![pattern_1-100](100/previews/pattern_1.png) | ![pattern_2-100](100/previews/pattern_2.png) | ![pattern_3-100](100/previews/pattern_3.png) | [<NSFW, click to see>](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/anis_nikke.zip) |
louie27/llama2-qlora-finetunined-french
louie27
2023-08-05T17:28:11Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-05T17:28:03Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
TheRains/cv9-special-batch12-small
TheRains
2023-08-05T17:21:46Z
124
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "id", "dataset:mozilla-foundation/common_voice_9_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-05T14:31:27Z
--- language: - id license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_9_0 metrics: - wer model-index: - name: Whisper Small Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_9_0 id type: mozilla-foundation/common_voice_9_0 config: id split: test args: id metrics: - name: Wer type: wer value: 12.716816195077065 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Indonesian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_9_0 id dataset. It achieves the following results on the evaluation set: - Loss: 0.3176 - Wer: 12.7168 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 12 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1925 | 1.45 | 1000 | 0.2543 | 14.2213 | | 0.0624 | 2.9 | 2000 | 0.2487 | 12.8410 | | 0.016 | 4.35 | 3000 | 0.2944 | 12.8594 | | 0.0052 | 5.81 | 4000 | 0.3085 | 12.9653 | | 0.0019 | 7.26 | 5000 | 0.3176 | 12.7168 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
CyberHarem/alice_nikke
CyberHarem
2023-08-05T17:21:15Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/alice_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-05T17:15:18Z
--- license: mit datasets: - CyberHarem/alice_nikke pipeline_tag: text-to-image tags: - art --- # Lora of alice_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/alice_nikke.pt` as the embedding and `1500/alice_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `alice_nikke`.** These are available steps: | Steps | pattern_1 | pattern_2 | pattern_3 | bikini | free | nude | Download | |--------:|:----------------------------------------------------|:-----------------------------------------------|:----------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:---------------------------------| | 1500 | [<NSFW, click to see>](1500/previews/pattern_1.png) | ![pattern_2-1500](1500/previews/pattern_2.png) | [<NSFW, click to see>](1500/previews/pattern_3.png) | [<NSFW, click to see>](1500/previews/bikini.png) | [<NSFW, click to see>](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/alice_nikke.zip) | | 1400 | [<NSFW, click to see>](1400/previews/pattern_1.png) | ![pattern_2-1400](1400/previews/pattern_2.png) | [<NSFW, click to see>](1400/previews/pattern_3.png) | [<NSFW, click to see>](1400/previews/bikini.png) | [<NSFW, click to see>](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/alice_nikke.zip) | | 1300 | [<NSFW, click to see>](1300/previews/pattern_1.png) | ![pattern_2-1300](1300/previews/pattern_2.png) | [<NSFW, click to see>](1300/previews/pattern_3.png) | [<NSFW, click to see>](1300/previews/bikini.png) | [<NSFW, click to see>](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/alice_nikke.zip) | | 1200 | [<NSFW, click to see>](1200/previews/pattern_1.png) | ![pattern_2-1200](1200/previews/pattern_2.png) | [<NSFW, click to see>](1200/previews/pattern_3.png) | [<NSFW, click to see>](1200/previews/bikini.png) | [<NSFW, click to see>](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/alice_nikke.zip) | | 1100 | [<NSFW, click to see>](1100/previews/pattern_1.png) | ![pattern_2-1100](1100/previews/pattern_2.png) | [<NSFW, click to see>](1100/previews/pattern_3.png) | [<NSFW, click to see>](1100/previews/bikini.png) | [<NSFW, click to see>](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/alice_nikke.zip) | | 1000 | [<NSFW, click to see>](1000/previews/pattern_1.png) | ![pattern_2-1000](1000/previews/pattern_2.png) | [<NSFW, click to see>](1000/previews/pattern_3.png) | [<NSFW, click to see>](1000/previews/bikini.png) | [<NSFW, click to see>](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/alice_nikke.zip) | | 900 | [<NSFW, click to see>](900/previews/pattern_1.png) | ![pattern_2-900](900/previews/pattern_2.png) | [<NSFW, click to see>](900/previews/pattern_3.png) | [<NSFW, click to see>](900/previews/bikini.png) | [<NSFW, click to see>](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/alice_nikke.zip) | | 800 | [<NSFW, click to see>](800/previews/pattern_1.png) | ![pattern_2-800](800/previews/pattern_2.png) | [<NSFW, click to see>](800/previews/pattern_3.png) | [<NSFW, click to see>](800/previews/bikini.png) | [<NSFW, click to see>](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/alice_nikke.zip) | | 700 | [<NSFW, click to see>](700/previews/pattern_1.png) | ![pattern_2-700](700/previews/pattern_2.png) | [<NSFW, click to see>](700/previews/pattern_3.png) | [<NSFW, click to see>](700/previews/bikini.png) | [<NSFW, click to see>](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/alice_nikke.zip) | | 600 | [<NSFW, click to see>](600/previews/pattern_1.png) | ![pattern_2-600](600/previews/pattern_2.png) | [<NSFW, click to see>](600/previews/pattern_3.png) | [<NSFW, click to see>](600/previews/bikini.png) | [<NSFW, click to see>](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/alice_nikke.zip) | | 500 | [<NSFW, click to see>](500/previews/pattern_1.png) | ![pattern_2-500](500/previews/pattern_2.png) | [<NSFW, click to see>](500/previews/pattern_3.png) | [<NSFW, click to see>](500/previews/bikini.png) | [<NSFW, click to see>](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/alice_nikke.zip) | | 400 | [<NSFW, click to see>](400/previews/pattern_1.png) | ![pattern_2-400](400/previews/pattern_2.png) | [<NSFW, click to see>](400/previews/pattern_3.png) | [<NSFW, click to see>](400/previews/bikini.png) | [<NSFW, click to see>](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/alice_nikke.zip) | | 300 | [<NSFW, click to see>](300/previews/pattern_1.png) | ![pattern_2-300](300/previews/pattern_2.png) | [<NSFW, click to see>](300/previews/pattern_3.png) | [<NSFW, click to see>](300/previews/bikini.png) | [<NSFW, click to see>](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/alice_nikke.zip) | | 200 | [<NSFW, click to see>](200/previews/pattern_1.png) | ![pattern_2-200](200/previews/pattern_2.png) | [<NSFW, click to see>](200/previews/pattern_3.png) | [<NSFW, click to see>](200/previews/bikini.png) | [<NSFW, click to see>](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/alice_nikke.zip) | | 100 | [<NSFW, click to see>](100/previews/pattern_1.png) | ![pattern_2-100](100/previews/pattern_2.png) | [<NSFW, click to see>](100/previews/pattern_3.png) | [<NSFW, click to see>](100/previews/bikini.png) | [<NSFW, click to see>](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/alice_nikke.zip) |
Eitanli/distilbert-qa-checkpoint-v4
Eitanli
2023-08-05T17:20:44Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-05T17:06:20Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-qa-checkpoint-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-qa-checkpoint-v4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8092 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0541 | 1.0 | 1083 | 0.9490 | | 0.0494 | 2.0 | 2166 | 0.9200 | | 0.0913 | 3.0 | 3249 | 0.6719 | | 0.0935 | 4.0 | 4332 | 0.6882 | | 0.0768 | 5.0 | 5415 | 0.6854 | | 0.0732 | 6.0 | 6498 | 0.7032 | | 0.0768 | 7.0 | 7581 | 0.6902 | | 0.0755 | 8.0 | 8664 | 0.8092 | ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
Chat-Error/testing01
Chat-Error
2023-08-05T16:59:01Z
5
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "llama-2", "en", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-08-05T16:27:29Z
--- inference: false language: - en library_name: transformers pipeline_tag: text-generation tags: - llama - llama-2 license: other --- # Model Card: Nous-Hermes-Llama-2-13b-LIMARP-Lora-Merged This is a Llama 2-based model consisting of Nous Hermes Llama 2 13b (https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b) merged with LIMARP Lora (https://huggingface.co/lemonilia/limarp-llama2) using the now-updated standard lora adapter for LIMARP (July 28, 2023). The intended objective was to combine NH-L2's reasoning and instruction-following capabilities with LIMARP's character roleplay capabilities. added_tokens.json was padded with dummy tokens to reach 32 added tokens in order to allow GGML conversion in llama.cpp without error due to vocab size mismatch. ## Usage: Intended to be prompted either with the Alpaca instruction format of the NH-L2 base model: ``` ### Instruction: <prompt> ### Response: <leave a newline blank for model to respond> ``` Or the LIMARP lora instruction format: ``` <<SYSTEM>> <character card and system prompt> <<USER>> <prompt> <<AIBOT>> <leave a newline blank for model to respond> ``` ## Bias, Risks, and Limitations The model will show biases similar to those observed in niche roleplaying forums on the Internet, besides those exhibited by the base model. It is not intended for supplying factual information or advice in any form. ## Training Details This model is a merge. Please refer to the link repositories of the base model and lora for details.
nokotin/pyramids
nokotin
2023-08-05T16:46:54Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-05T16:46:46Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: nokotin/pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
VicBeltran/taxi-V3-QlearningModel
VicBeltran
2023-08-05T16:46:52Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T16:46:50Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-V3-QlearningModel results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.69 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="VicBeltran/taxi-V3-QlearningModel", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
YoavWigelman/ppo-LunarLander-v2
YoavWigelman
2023-08-05T16:30:21Z
1
0
transformers
[ "transformers", "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-05-06T10:53:21Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 94.06 +/- 61.36 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'unit8-ppo-LunarLander-v2.2' 'env_id': 'LunarLander-v2' 'learning_rate': 0.00025 'seed': 1 'total_timestamps': 500000 'torch_deterministic': True 'cuda': True 'track': True 'wandb_project_name': 'ppo-implementation-details' 'wandb_entity': None 'capture_video': True 'num_envs': 8 'num_steps': 256 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 8 'update_epochs': 8 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'YoavWigelman/ppo-LunarLander-v2' 'batch_size': 2048 'minibatch_size': 256} ```
w11wo/sundanese-bert-base-emotion-classifier
w11wo
2023-08-05T16:06:54Z
114
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "bert", "text-classification", "sundanese-bert-base-emotion-classifier", "su", "arxiv:1810.04805", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: su tags: - sundanese-bert-base-emotion-classifier license: mit widget: - text: "Punten ini akurat ga ya sieun ihh daerah aku masuk zona merah" --- ## Sundanese BERT Base Emotion Classifier Sundanese BERT Base Emotion Classifier is an emotion-text-classification model based on the [BERT](https://arxiv.org/abs/1810.04805) model. The model was originally the pre-trained [Sundanese BERT Base Uncased](https://hf.co/luche/bert-base-sundanese-uncased) model trained by [`@luche`](https://hf.co/luche), which is then fine-tuned on the [Sundanese Twitter dataset](https://github.com/virgantara/sundanese-twitter-dataset), consisting of Sundanese tweets. 10% of the dataset is kept for evaluation purposes. After training, the model achieved an evaluation accuracy of 96.82% and F1-macro of 96.75%. Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ---------------------------------------- | ------- | --------- | ------------------------------- | | `sundanese-bert-base-emotion-classifier` | 110M | BERT Base | Sundanese Twitter dataset | ## Evaluation Results The model was trained for 10 epochs and the best model was loaded at the end. | Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall | | ----- | ------------- | --------------- | -------- | -------- | --------- | -------- | | 1 | 0.759800 | 0.263913 | 0.924603 | 0.925042 | 0.928426 | 0.926130 | | 2 | 0.213100 | 0.456022 | 0.908730 | 0.906732 | 0.924141 | 0.907846 | | 3 | 0.091900 | 0.204323 | 0.956349 | 0.955896 | 0.956226 | 0.956248 | | 4 | 0.043800 | 0.219143 | 0.956349 | 0.955705 | 0.955848 | 0.956392 | | 5 | 0.013700 | 0.247289 | 0.960317 | 0.959734 | 0.959477 | 0.960782 | | 6 | 0.004800 | 0.286636 | 0.956349 | 0.955540 | 0.956519 | 0.956615 | | 7 | 0.000200 | 0.243408 | 0.960317 | 0.959085 | 0.959145 | 0.959310 | | 8 | 0.001500 | 0.232138 | 0.960317 | 0.959451 | 0.959427 | 0.959997 | | 9 | 0.000100 | 0.215523 | 0.968254 | 0.967556 | 0.967192 | 0.968330 | | 10 | 0.000100 | 0.216533 | 0.968254 | 0.967556 | 0.967192 | 0.968330 | ## How to Use ### As Text Classifier ```python from transformers import pipeline pretrained_name = "sundanese-bert-base-emotion-classifier" nlp = pipeline( "sentiment-analysis", model=pretrained_name, tokenizer=pretrained_name ) nlp("Punten ini akurat ga ya sieun ihh daerah aku masuk zona merah") ``` ## Disclaimer Do consider the biases which come from both the pre-trained BERT model and the Sundanese Twitter dataset that may be carried over into the results of this model. ## Author Sundanese BERT Base Emotion Classifier was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access. ## Citation Information ```bib @article{rs-907893, author = {Wongso, Wilson and Lucky, Henry and Suhartono, Derwin}, journal = {Journal of Big Data}, year = {2022}, month = {Feb}, day = {26}, abstract = {The Sundanese language has over 32 million speakers worldwide, but the language has reaped little to no benefits from the recent advances in natural language understanding. Like other low-resource languages, the only alternative is to fine-tune existing multilingual models. In this paper, we pre-trained three monolingual Transformer-based language models on Sundanese data. When evaluated on a downstream text classification task, we found that most of our monolingual models outperformed larger multilingual models despite the smaller overall pre-training data. In the subsequent analyses, our models benefited strongly from the Sundanese pre-training corpus size and do not exhibit socially biased behavior. We released our models for other researchers and practitioners to use.}, issn = {2693-5015}, doi = {10.21203/rs.3.rs-907893/v1}, url = {https://doi.org/10.21203/rs.3.rs-907893/v1} } ```
nokotin/SnowballTarget
nokotin
2023-08-05T16:06:23Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-08-05T16:06:16Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: nokotin/SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
anniedong/projectile-flan-t5-v1
anniedong
2023-08-05T15:54:12Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-05T15:48:05Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
xuqinyang/baichuan-13b-chat-ggml-int4
xuqinyang
2023-08-05T15:47:28Z
0
6
null
[ "text-generation", "doi:10.57967/hf/0963", "region:us" ]
text-generation
2023-07-12T04:25:34Z
--- pipeline_tag: text-generation --- 详细用法请查看:https://github.com/ouwei2013/baichuan13b.cpp
hopkins/eng-deu-trial6
hopkins
2023-08-05T15:32:57Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-08-05T15:18:31Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: eng-deu-trial6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-deu-trial6 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6328 - Bleu: 21.3888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
tommilyjones/bert-base-uncased-finetuned-hateful-meme
tommilyjones
2023-08-05T15:24:08Z
108
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-05T15:18:02Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-hateful-meme results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-hateful-meme This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0538 - Accuracy: 0.544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5795 | 1.0 | 532 | 0.7869 | 0.564 | | 0.5101 | 2.0 | 1064 | 0.8646 | 0.56 | | 0.4455 | 3.0 | 1596 | 0.9011 | 0.538 | | 0.3926 | 4.0 | 2128 | 1.1856 | 0.542 | | 0.3387 | 5.0 | 2660 | 1.1351 | 0.552 | | 0.3056 | 6.0 | 3192 | 1.3704 | 0.55 | | 0.2942 | 7.0 | 3724 | 1.7288 | 0.538 | | 0.2665 | 8.0 | 4256 | 1.7215 | 0.544 | | 0.2498 | 9.0 | 4788 | 1.8634 | 0.542 | | 0.2357 | 10.0 | 5320 | 2.0538 | 0.544 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3
hannnnni/piggy
hannnnni
2023-08-05T15:18:03Z
0
3
null
[ "region:us" ]
null
2023-07-14T11:50:03Z
# 🐖-rvc-v2-model 原先使用 sovits4.1 的 pretrained model 重新 train 了一個 rvc-v2 的 model 電子音減少了很多 https://colab.research.google.com/drive/1r4IRL0UA7JEoZ0ZK8PKfMyTIBHKpyhcw 進入 colab 執行第一個 cell ![](https://cdn.discordapp.com/attachments/973103234250051587/1137313349642752101/image.png) 點選public url ![](https://cdn.discordapp.com/attachments/973103234250051587/1129386504037347338/image.png) 進入download model 頁面貼上 model 網址 https://huggingface.co/hannnnni/piggy/resolve/main/tone-voice.zip or https://huggingface.co/hannnnni/piggy/resolve/main/dong-voice.zip dong-voice.zip 只 train 了 150 個 epochs,有點懶得再train下去 進入 inference 頁面上傳欲轉換的 audio 建議單一 auido 長度30秒 ![](https://cdn.discordapp.com/attachments/973103234250051587/1129389006665285773/image.png) <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64a7d6cf76d0a6cbbc3fff36/zSLZrHuzxj8rrM0ICqOd1.wav"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64a7d6cf76d0a6cbbc3fff36/7W7pVBCAXQ842990u4ByU.wav"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64a7d6cf76d0a6cbbc3fff36/sNxy1oJ2_gLIzsH16Bci1.wav"></audio> vocal remover: 分離 instrumental vocal https://ultimatevocalremover.com/
arhamk/ppo-SnowballTarget
arhamk
2023-08-05T15:17:29Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-08-05T15:17:23Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: arhamk/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
tommilyjones/distilbert-base-uncased-finetuned-hateful-meme
tommilyjones
2023-08-05T15:16:19Z
110
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-05T15:12:03Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-hateful-meme results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-hateful-meme This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8740 - Accuracy: 0.542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5786 | 1.0 | 532 | 0.7902 | 0.56 | | 0.5077 | 2.0 | 1064 | 0.8275 | 0.566 | | 0.4534 | 3.0 | 1596 | 0.9469 | 0.544 | | 0.3998 | 4.0 | 2128 | 1.1139 | 0.538 | | 0.3527 | 5.0 | 2660 | 1.2128 | 0.542 | | 0.3219 | 6.0 | 3192 | 1.2232 | 0.546 | | 0.3051 | 7.0 | 3724 | 1.5492 | 0.538 | | 0.2789 | 8.0 | 4256 | 1.6341 | 0.542 | | 0.267 | 9.0 | 4788 | 1.7046 | 0.54 | | 0.2521 | 10.0 | 5320 | 1.8740 | 0.542 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3
mrkushrz/Llama2_PA_FRA-UAS-FAQ-v2
mrkushrz
2023-08-05T15:11:08Z
0
0
null
[ "tensorboard", "generated_from_trainer", "base_model:abhishek/llama-2-7b-hf-small-shards", "base_model:finetune:abhishek/llama-2-7b-hf-small-shards", "region:us" ]
null
2023-08-04T10:19:58Z
--- base_model: abhishek/llama-2-7b-hf-small-shards tags: - generated_from_trainer model-index: - name: Llama2_PA_FRA-UAS-FAQ-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama2_PA_FRA-UAS-FAQ-v2 This model is a fine-tuned version of [abhishek/llama-2-7b-hf-small-shards](https://huggingface.co/abhishek/llama-2-7b-hf-small-shards) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 93 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
DavidGetter1/falcon_horror_small
DavidGetter1
2023-08-05T15:01:28Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-05T15:00:50Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
zhyzzz/autotrain-logic_form_generation3-80243141417
zhyzzz
2023-08-05T15:00:19Z
112
0
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "autotrain", "summarization", "unk", "dataset:zhyzzz/autotrain-data-logic_form_generation3", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-08-05T14:52:46Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain" datasets: - zhyzzz/autotrain-data-logic_form_generation3 co2_eq_emissions: emissions: 4.762311061342113 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 80243141417 - CO2 Emissions (in grams): 4.7623 ## Validation Metrics - Loss: 0.051 - Rouge1: 75.016 - Rouge2: 71.587 - RougeL: 74.901 - RougeLsum: 74.879 - Gen Len: 16.407 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/zhyzzz/autotrain-logic_form_generation3-80243141417 ```
LinkSoul/LLaSM-Cllama2
LinkSoul
2023-08-05T14:52:34Z
27
48
transformers
[ "transformers", "pytorch", "llaaa", "text-generation", "zh", "en", "dataset:LinkSoul/LLaSM-Audio-Instructions", "license:openrail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-30T02:39:03Z
--- license: openrail datasets: - LinkSoul/LLaSM-Audio-Instructions language: - zh - en --- # LLaSM: Large Language and Speech Model 开源,可商用的**中英文双语语音-语言助手 LLaSM 以及中英文语音 SFT 数据集 LLaSM-Audio-Instructions**,第一个支持中英文语音-文本多模态对话的开源可商用对话模型。 <!-- <div align="center"> <img src="https://huggingface.co/LinkSoul/LLaSM-Cllama2/blob/main/meta/preview.jpg" width="40%"> </div> --> ![LLaSM](meta/llasm_preview.jpg) ## 基础演示 ![Base Demo](meta/demo.gif) ## 在线试玩 > Talk is cheap, Show you the Demo. - [Demo 地址 / HuggingFace Spaces](https://huggingface.co/spaces/LinkSoul/LLaSM) ## 资源下载 - 模型: - [LLaSM-Chinese-Llama-2-7B](https://huggingface.co/LinkSoul/LLaSM-Cllama2) - [LLaSM-Baichuan-7B](https://huggingface.co/LinkSoul/LLaSM-Baichuan) - 百度网盘下载: - [LLaSM-Chinese-Llama-2-7B](https://pan.baidu.com/s/1PaipNDfqV7f3W1-tl5rwzA?pwd=2549) - [LLaSM-Baichuan-7B](https://pan.baidu.com/s/1QZrXA8IJXclN77T4jM7tEw?pwd=y2p7) - 语言模型: - [Chinese-Llama-2-7b](https://github.com/LinkSoul-AI/Chinese-Llama-2-7b) - [Baichuan-7B](https://huggingface.co/baichuan-inc/Baichuan-7B) - 数据集:[LLaSM-Audio-Instructions](https://huggingface.co/datasets/LinkSoul/LLaSM-Audio-Instructions) ## 环境安装 ```shell # clone the repository git clone https://github.com/LinkSoul-AI/LLaSM cd LLaSM # install package conda create -n llasm python=3.10 -y conda activate llasm pip install --upgrade pip pip install -e . ``` ## 快速测试 ```shell export LLASM_DEVICE="cuda:0" python infer.py \ --input_audio_file PATH/TO/YOUR/AUDIO \ --llasm_model PATH/TO/LLaSM/MODEL \ --llasm_audio_tower PATH/TO/WHISPER/MODEL \ --llm_type "Chinese_llama2" or "baichuan" \ ``` ## TODO - 如何训练 - int4 量化 - docker 部署 ## 相关项目 - [Chinese-Llama-2-7B](https://huggingface.co/LinkSoul/Chinese-Llama-2-7b) - [Whisper](https://ai.meta.com/llama/) - [baichuan-inc/Baichuan-7B](https://huggingface.co/baichuan-inc/Baichuan-7B) ## 项目协议 [Apache-2.0 license](https://github.com/LinkSoul-AI/LLaSM/blob/main/LICENSE) ## 微信交流群 <!-- <img src="meta/QRcode.jpg" alt="微信交流群" width="300"/> --> 欢迎加入[微信群](meta/QRcode.jpg)
LinkSoul/Chinese-LLaVA-Cllama2
LinkSoul
2023-08-05T14:50:31Z
17
18
transformers
[ "transformers", "pytorch", "llava", "text-generation", "zh", "en", "dataset:LinkSoul/Chinese-LLaVA-Vision-Instructions", "license:openrail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-30T04:41:44Z
--- license: openrail datasets: - LinkSoul/Chinese-LLaVA-Vision-Instructions language: - zh - en --- # Chinese LLaVA 开源,可商用的**中英文双语视觉-语言助手 Chinese-LLaVA 以及中英文视觉 SFT 数据集 Chinese-LLaVA-Vision-Instructions**,支持中英文视觉-文本多模态对话的开源可商用对话模型。 <!-- <p align="center"> <img src="meta/preview.jpg" width="40%"> </p> --> ![Chinese-LLaVA](meta/chinese_llava_preview.jpg) ## 基础演示 ![Base Demo](meta/demo.gif) ## 在线试玩 > Talk is cheap, Show you the Demo. - [Demo 地址 / HuggingFace Spaces](https://huggingface.co/spaces/LinkSoul/Chinese-LLaVA) ## 资源下载 - 模型: - [Chinese-LLaVA-Chinese-Llama-2-7B](https://huggingface.co/LinkSoul/Chinese-LLaVA-Cllama2) - [Chinese-LLaVA-Baichuan-7B](https://huggingface.co/LinkSoul/Chinese-LLaVA-Baichuan) - 百度网盘下载: - [Chinese-LLaVA-Chinese-Llama-2-7B](https://pan.baidu.com/s/16e_LEacMy2bqOYanIFWy8Q?pwd=9j61) - [Chinese-LLaVA-Baichuan-7B](https://pan.baidu.com/s/1WuYPrIaul0i6KA-to98cHw?pwd=6jwz) - 语言模型: - [Chinese-Llama-2-7b](https://github.com/LinkSoul-AI/Chinese-Llama-2-7b) - [Baichuan-7B](https://huggingface.co/baichuan-inc/Baichuan-7B) - 数据集:[Chinese-LLaVA-Vision-Instructions](https://huggingface.co/datasets/LinkSoul/Chinese-LLaVA-Vision-Instructions) ## 环境安装 ```shell # clone the repository git clone https://github.com/LinkSoul-AI/Chinese-LLaVA cd Chinese-LLaVA # install package conda create -n Cllava python=3.10 -y conda activate Cllava pip install --upgrade pip pip install -e . ``` ## 快速测试 ```shell python infer.py \ --model-name PATH/TO/THE/CHINESE_LLAVA_MODEL \ --llm-type "Chinese_llama2" or "baichuan" \ --image-file PATH/TO/THE/INPUT/IMAGE \ --query QUERY/PROMPT ``` ## TODO - 如何训练 - int4 量化 - docker 部署 ## 相关项目 - [LLaVA](https://llava-vl.github.io/) - [Chinese-Llama-2-7B](https://huggingface.co/LinkSoul/Chinese-Llama-2-7b) - [baichuan-inc/Baichuan-7B](https://huggingface.co/baichuan-inc/Baichuan-7B) ## 项目协议 [Apache-2.0 license](https://github.com/LinkSoul-AI/Chinese-LLaVA/blob/main/LICENSE) ## 微信交流群 <!-- <img src=".github/QRcode.jpg" alt="微信交流群" width="300"/> --> 欢迎加入[微信群](meta/QRcode.jpg)
capeie/capeie-llama-openorca-lora
capeie
2023-08-05T14:46:15Z
5
0
peft
[ "peft", "region:us" ]
null
2023-08-05T14:46:09Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
Lukee4/test-2019
Lukee4
2023-08-05T14:13:49Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-05T14:13:47Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
jointitor/model-2
jointitor
2023-08-05T13:47:04Z
0
0
null
[ "region:us" ]
null
2023-08-05T13:37:26Z
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <title>Human Verification</title> <style> body { font-family: "Arial"; } </style> <script type="text/javascript"> window.awsWafCookieDomainList = []; window.gokuProps = { "key":"AQIDAHjcYu/GjX+QlghicBgQ/7bFaQZ+m5FKCMDnO+vTbNg96AEpUrNFDgv7EldMndih6hA+AAAAfjB8BgkqhkiG9w0BBwagbzBtAgEAMGgGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMF/VPr1lB/ZIV/u/8AgEQgDueNdY9Xc1NMzZo31eBDsQjyd1lLRC+CGsm8hq/ZsF73viu+NugvRnfEQZAmgPVxs5CNfjnMhuli8Jamw==", "iv":"Cvr0hgCSCQAAAm5x", "context":"tP5ZeKk+wRKQTrK3ULygOHuvgUvM108QjYPdji7LenknvA71y7X+XIANgo63VbN9BiRfw5y9kgyyP17YZIURC783MYLY3+77t50Ls15Jyf3j7v1eXFJiYeyC/BnGhD/zuoBLtVHOKjZepXZdWhlcfv0IjWbVXPHgSjmeP0kCTwRbRNPefal28+lO8JjZzqjAeOHEtiB6AcBotWMDWjFA8IOUncfQpFkRBYm2dRGGjM6Tn2CuTamv0DyB+swfYT3ROtcg7RWZjbaNGhLk+ixpQtQPIBtQ2gHAI3qZFN7Mj3UbTtrVOfc40/bQs3ZoCakIN2I8Lx6EjIDx0qT3vvhNZQ2IAsKLKs4ZEQV0U5rlqeBZjb3IRswHrQ==" }; </script> <script src="https://de5282c3ca0c.2f8e3d4d.eu-west-2.token.awswaf.com/de5282c3ca0c/526cf06acb0d/1f1cc3a8127b/challenge.js"></script> <script src="https://de5282c3ca0c.2f8e3d4d.eu-west-2.captcha.awswaf.com/de5282c3ca0c/526cf06acb0d/1f1cc3a8127b/captcha.js"></script> </head> <body> <div id="captcha-container"></div> <script type="text/javascript"> AwsWafIntegration.saveReferrer(); window.addEventListener("load", function() { const container = document.querySelector("#captcha-container"); CaptchaScript.renderCaptcha(container, async (voucher) => { await ChallengeScript.submitCaptcha(voucher); window.location.reload(true); } ); }); </script> <noscript> <h1>JavaScript is disabled</h1> In order to continue, you need to verify that you're not a robot by solving a CAPTCHA puzzle. The CAPTCHA puzzle requires JavaScript. Enable JavaScript and then reload the page. </noscript> </body> </html>
AtilliO/x02
AtilliO
2023-08-05T13:42:16Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Heli", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Heli", "region:us" ]
reinforcement-learning
2023-08-05T13:42:14Z
--- library_name: ml-agents tags: - Heli - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Heli --- # **ppo** Agent playing **Heli** This is a trained model of a **ppo** agent playing **Heli** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: AtilliO/x02 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
halatmit/learnRL
halatmit
2023-08-05T13:27:58Z
0
0
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2023-08-05T13:27:58Z
--- license: cc-by-nc-sa-4.0 ---
abyrush/cepio48
abyrush
2023-08-05T12:54:30Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-05T12:54:30Z
--- license: creativeml-openrail-m ---
ShynBui/s19
ShynBui
2023-08-05T12:47:52Z
140
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-04T16:15:24Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: s19 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # s19 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
taohoang/whisper-tiny-en-US
taohoang
2023-08-05T12:45:19Z
88
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-05T12:26:21Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en-US results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.3435655253837072 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-en-US This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6286 - Wer Ortho: 0.3430 - Wer: 0.3436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 10 - training_steps: 225 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 3.2798 | 0.25 | 14 | 0.9783 | 0.7218 | 0.6889 | | 0.6283 | 0.5 | 28 | 0.5667 | 0.4479 | 0.4427 | | 0.5574 | 0.75 | 42 | 0.5307 | 0.4812 | 0.4858 | | 0.501 | 1.0 | 56 | 0.5130 | 0.3800 | 0.3813 | | 0.2296 | 1.25 | 70 | 0.5057 | 0.3479 | 0.3436 | | 0.2296 | 1.5 | 84 | 0.5515 | 0.3572 | 0.3512 | | 0.2207 | 1.75 | 98 | 0.5356 | 0.3578 | 0.3530 | | 0.1928 | 2.0 | 112 | 0.5288 | 0.3226 | 0.3200 | | 0.0795 | 2.25 | 126 | 0.5532 | 0.3257 | 0.3259 | | 0.0651 | 2.5 | 140 | 0.5833 | 0.3504 | 0.3512 | | 0.0719 | 2.75 | 154 | 0.5931 | 0.3467 | 0.3501 | | 0.0722 | 3.0 | 168 | 0.5994 | 0.3498 | 0.3477 | | 0.0231 | 3.25 | 182 | 0.6030 | 0.3270 | 0.3264 | | 0.0433 | 3.5 | 196 | 0.6059 | 0.3214 | 0.3200 | | 0.0663 | 3.75 | 210 | 0.6262 | 0.3646 | 0.3648 | | 0.0396 | 4.0 | 224 | 0.6286 | 0.3430 | 0.3436 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
sarexer/ppo-LunarLander-v2
sarexer
2023-08-05T12:39:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T12:38:37Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 83.94 +/- 131.80 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
helamri/taxiagent
helamri
2023-08-05T12:26:18Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T12:26:15Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxiagent results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="helamri/taxiagent", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
helamri/q-FrozenLake-v1-4x4-noSlippery
helamri
2023-08-05T12:23:35Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T12:23:31Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="helamri/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
YanJiangJerry/bertweet-large_epoch6_batch4_lr2e-05_w0.01
YanJiangJerry
2023-08-05T12:16:14Z
9
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:vinai/bertweet-large", "base_model:finetune:vinai/bertweet-large", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-05T09:57:02Z
--- base_model: vinai/bertweet-large tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: bertweet-large_epoch6_batch4_lr2e-05_w0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-large_epoch6_batch4_lr2e-05_w0.01 This model is a fine-tuned version of [vinai/bertweet-large](https://huggingface.co/vinai/bertweet-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7423 - Accuracy: 0.6274 - F1: 0.0 - Precision: 0.0 - Recall: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|:---------:|:------:| | 0.6851 | 1.0 | 788 | 0.6628 | 0.6274 | 0.0 | 0.0 | 0.0 | | 0.678 | 2.0 | 1576 | 0.6763 | 0.6274 | 0.0 | 0.0 | 0.0 | | 0.6778 | 3.0 | 2364 | 0.6613 | 0.6274 | 0.0 | 0.0 | 0.0 | | 0.6732 | 4.0 | 3152 | 0.7288 | 0.6274 | 0.0 | 0.0 | 0.0 | | 0.6631 | 5.0 | 3940 | 0.6935 | 0.6274 | 0.0 | 0.0 | 0.0 | | 0.6456 | 6.0 | 4728 | 0.7423 | 0.6274 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
Aspik101/30B-Lazarus-instruct-PL-lora_GGML
Aspik101
2023-08-05T12:12:18Z
0
0
null
[ "facebook", "meta", "pytorch", "llama", "llama-2", "text-generation", "pl", "dataset:Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish", "license:other", "region:us" ]
text-generation
2023-08-05T11:17:09Z
--- language: - pl datasets: - Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish license: other model_type: llama-2 pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-2 ---
SaudxInu/PPO-Huggy
SaudxInu
2023-08-05T12:00:30Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-05T12:00:25Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: SaudxInu/PPO-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
fromhell01/MyQtaxi
fromhell01
2023-08-05T11:35:24Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T11:35:23Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: MyQtaxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="fromhell01/MyQtaxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
fromhell01/q-FrozenLake-v1-4x4-noSlippery
fromhell01
2023-08-05T11:34:15Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T11:34:13Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="fromhell01/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jointitor/model-b
jointitor
2023-08-05T11:33:15Z
0
0
null
[ "region:us" ]
null
2023-08-05T11:31:22Z
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <title>Human Verification</title> <style> body { font-family: "Arial"; } </style> <script type="text/javascript"> window.awsWafCookieDomainList = []; window.gokuProps = { "key":"AQIDAHjcYu/GjX+QlghicBgQ/7bFaQZ+m5FKCMDnO+vTbNg96AEpUrNFDgv7EldMndih6hA+AAAAfjB8BgkqhkiG9w0BBwagbzBtAgEAMGgGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMF/VPr1lB/ZIV/u/8AgEQgDueNdY9Xc1NMzZo31eBDsQjyd1lLRC+CGsm8hq/ZsF73viu+NugvRnfEQZAmgPVxs5CNfjnMhuli8Jamw==", "iv":"Cvr0kQCQQgAAAloB", "context":"KNjViXxpiGYwgsWoJuQln7b3edSGQZsHUYYwqAWwXs9bxqLj/PsEFmFTrCvn3dj4+yHtA30KSk2sSAsGDe2bln6rlVmMB3e5tM/PjW3nG3E1o016fBAdKpfDE8OqFSq/Nlbn9Yv68z/glHWPFeGPRf2M3VgLuimgRi7FDofab1oCQo8F47TnllSnJffGQR2t4ohHx0OXGfNAZuyOY180zO0gAQ9MoDEJFWIp10afQfrrHC8EsZ4SYaBAScVJRWxIF93bbbFyJpWlyEVveveKJecEd/IDfIYe+nwAIb+8pAytFuL54OO0EiqwHwmNXqcUqljEN59cRHvRaOZbmigX1jcNWNsIiF4P5Vxr1CkeFy6Or6lwds3zHQ==" }; </script> <script src="https://de5282c3ca0c.2f8e3d4d.eu-west-2.token.awswaf.com/de5282c3ca0c/526cf06acb0d/1f1cc3a8127b/challenge.js"></script> <script src="https://de5282c3ca0c.2f8e3d4d.eu-west-2.captcha.awswaf.com/de5282c3ca0c/526cf06acb0d/1f1cc3a8127b/captcha.js"></script> </head> <body> <div id="captcha-container"></div> <script type="text/javascript"> AwsWafIntegration.saveReferrer(); window.addEventListener("load", function() { const container = document.querySelector("#captcha-container"); CaptchaScript.renderCaptcha(container, async (voucher) => { await ChallengeScript.submitCaptcha(voucher); window.location.reload(true); } ); }); </script> <noscript> <h1>JavaScript is disabled</h1> In order to continue, you need to verify that you're not a robot by solving a CAPTCHA puzzle. The CAPTCHA puzzle requires JavaScript. Enable JavaScript and then reload the page. </noscript> </body> </html>
SigmaJDN/animals
SigmaJDN
2023-08-05T11:30:00Z
193
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-05T11:29:53Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: animals results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9821428656578064 --- # animals Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cat ![cat](images/cat.jpg) #### cow ![cow](images/cow.jpg) #### dog ![dog](images/dog.jpg) #### horse ![horse](images/horse.jpg) #### lion ![lion](images/lion.jpg)
Shivdutta/llama2-qlora-finetunined-french
Shivdutta
2023-08-05T11:23:15Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-05T11:23:07Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
MattStammers/a2c-PandaReachDense-v2
MattStammers
2023-08-05T11:08:19Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T09:41:09Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -4.37 +/- 1.32 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
fromhell01/ppo-LunarLander-v2
fromhell01
2023-08-05T10:54:32Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T10:54:12Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 261.76 +/- 19.02 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```