modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 00:42:47
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
553 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 00:42:38
card
stringlengths
11
1.01M
MattStammers/Bipedal_Faller_v3
MattStammers
2023-08-06T15:43:46Z
0
0
stable-baselines3
[ "stable-baselines3", "BipedalWalker-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T15:42:59Z
--- library_name: stable-baselines3 tags: - BipedalWalker-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BipedalWalker-v3 type: BipedalWalker-v3 metrics: - type: mean_reward value: -86.71 +/- 3.11 name: mean_reward verified: false --- # **PPO** Agent playing **BipedalWalker-v3** This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Henk717/spring-dragon
Henk717
2023-08-06T15:40:42Z
131
22
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-05T23:42:59Z
--- license: llama2 --- This model is a recreation attempt of the AI Dungeon 2 Dragon model, to achieve this text_adventures.txt was used that was bundled with the original AI Dungeon 2 github release prior to the online service. From what we know the same dataset file was used to create the Dragon model, Dragon being a GPT3 175B Davinci model from 2020. Since LLaMA1 13B has been benchmarking similarly to the original GPT3 175B the hope is that this recreation is faithful to the original Dragon model. But, since it is not known how close it performs without releasing it to former AI Dungeon players we dubbed it "Spring Dragon" instead of "Summer Dragon", consider it Dragon in its growing up phase. This model is best used with KoboldAI's adventure mode prefixing your actions with You (2020 AI Dungeon did this automatically) and writing in the second person. ## Warning: This model is purposefully flawed and should only be used by people Nostalgic for old 2020 era text adventure models. It is not recommended to be used in model merges, and you can very likely get a much better experience from modern instruct models by asking them to "Start a text adventure game about X" ### If the recreation was succesfull expect the following recurring themes: Names: Alison, Annah, Ben, Big Red, Brutus, Camid, Captain Hayes, Captain Roldan, Castus, Catia, Count Grey, Cyrus, Dendrin, Dr. Gaange (also Mr Gaange), Dr. Gossey, Dr. Kessel, Dr. Kovas, Durge, Elder Flynn, Elios, Elizabeth/Eliza, Fay, Father Féval, Fenrir, Great Lich Lord, Grolik, Isabella, *Jacob, *Karth, Kyros, Lilith, Lord Rostov, Magos Cern, Meliodas, Mistress, Mr. Matasan, Mr. Mol, Mr. Reynolds, Naji, Quintus, Ral, Rolomag, Rose, (Sir) Kit, Talia, Tanya, The Emperor, Ulivik, *Vamp/*Vampy, Velzix, Yvette, Zalmora/Zal. (* means the AI likes calling the player these) Locations: Dert, Fort Defiance, Fort Glory, Hessla, Holgard, Klyton, Kyros, Nyttrus, Rask, Teckleville, The Delantium Kingdom, The Empire of Man (also called Imperium of Man), The Felkan Kingdom Factions: The Black Rats, Chaos Space Marines, The Crimson Talons, The Dark Order, Dornans (worshippers of Dorna), Ebony Claw Syndicate (often called ECS or The Syndicate), The Empire, Eternals, Joachimites (The Church of Joachim), The Nocturnal League, Psykers, The Shadows, Techpriests, Thieves Guild, Vampire Clan. Deities: Dorna, Joachim, Nyx, Slaanesh, Virgil, Yag. Species/Races: Eternals, Goliaths, Oalkwardners, The Craxil, ghouls,kobolds, orks, psykers, svelks, vampires, wendigos, werewolves.
kezif/LunarLander-v2
kezif
2023-08-06T15:40:26Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T15:40:02Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO/MlpPolicy results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 246.51 +/- 15.74 name: mean_reward verified: false --- # **PPO/MlpPolicy** Agent playing **LunarLander-v2** This is a trained model of a **PPO/MlpPolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
donjuanplatinum/kaguranana-vits
donjuanplatinum
2023-08-06T15:17:04Z
1
0
transformers
[ "transformers", "endpoints_compatible", "region:us" ]
null
2023-08-05T17:12:48Z
11--- license: gpl-2.0 --- <img src=https://github.com/donjuanplatinum/donjuanplatinum/blob/main/profile.png width="30%" ><img src=https://github.com/donjuanplatinum/donjuanplatinum/blob/main/unix.jpg width="50%"> <p align="center"> 🏠 <a href="https://github.com/donjuanplatinum" target="_blank">主页</a> # kaguranana-vits: 由Kagura-nana训练而来的So-vits-svc 4.0模型
jelinek/finetuning-sentiment-model
jelinek
2023-08-06T15:00:05Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-06T14:17:29Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: finetuning-sentiment-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu102 - Datasets 2.14.3 - Tokenizers 0.13.3
tabtoyou/KoLLaVA-LLaMA-v2-7b-qlora
tabtoyou
2023-08-06T14:45:16Z
10
2
transformers
[ "transformers", "pytorch", "llava", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "region:us" ]
text-generation
2023-08-04T08:46:06Z
--- license: cc-by-nc-4.0 --- ## KoLLaVA : Korean Large Language and Vision Assistant (feat. LLaVA) This model is a large multimodal model (LMM) that combines the LLM(LLaMA-2-7b-ko) with visual encoder of CLIP(ViT-14), trained on Korean visual-instruction dataset using QLoRA. Detail codes are available at [KoLLaVA](https://github.com/tabtoyou/KoLLaVA/tree/main) github repository - Training hyperparameters - learning rate : 2e-4 - train_batch_size: 16 - distributed_type: multi-GPU (RTX3090 24G) - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 4 - lr_scheduler_type: cosine - num_epochs: 1 - lora_enable: True - bits: 4 Model License: cc-by-nc-4.0
leviz/bloomLevi
leviz
2023-08-06T14:37:58Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-06T14:37:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
Jenniferkmc/controlnet-fill-circle
Jenniferkmc
2023-08-06T14:37:22Z
2
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "controlnet", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-06T11:53:22Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet inference: true --- # controlnet-Jenniferkmc/controlnet-fill-circle These are controlnet weights trained on runwayml/stable-diffusion-v1-5 with new type of conditioning. You can find some example images below. prompt: red circle with blue background ![images_0)](./images_0.png) prompt: cyan circle with brown floral background ![images_1)](./images_1.png)
sagorsarker/codeswitch-hineng-lid-lince
sagorsarker
2023-08-06T14:36:55Z
153
0
transformers
[ "transformers", "pytorch", "jax", "safetensors", "bert", "token-classification", "codeswitching", "hindi-english", "language-identification", "hi", "en", "multilingual", "dataset:lince", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - hi - en - multilingual license: mit tags: - codeswitching - hindi-english - language-identification datasets: - lince --- # codeswitch-hineng-lid-lince This is a pretrained model for **language identification** of `hindi-english` code-mixed data used from [LinCE](https://ritual.uh.edu/lince/home) This model is trained for this below repository. [https://github.com/sagorbrur/codeswitch](https://github.com/sagorbrur/codeswitch) To install codeswitch: ``` pip install codeswitch ``` ## Identify Language * **Method-1** ```py from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("sagorsarker/codeswitch-hineng-lid-lince") model = AutoModelForTokenClassification.from_pretrained("sagorsarker/codeswitch-hineng-lid-lince") lid_model = pipeline('ner', model=model, tokenizer=tokenizer) lid_model("put any hindi english code-mixed sentence") ``` * **Method-2** ```py from codeswitch.codeswitch import LanguageIdentification lid = LanguageIdentification('hin-eng') text = "" # your code-mixed sentence result = lid.identify(text) print(result) ```
divya9103/llama2-qlora-finetunined-french
divya9103
2023-08-06T14:31:46Z
0
0
peft
[ "peft", "pytorch", "region:us" ]
null
2023-08-06T09:38:50Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
JaiveerGill/fine-tuned-chem-model-final
JaiveerGill
2023-08-06T14:30:09Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-06T14:19:43Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
TheRains/cv9-special-batch4-small
TheRains
2023-08-06T14:14:38Z
123
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "id", "dataset:mozilla-foundation/common_voice_9_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-06T02:13:40Z
--- language: - id license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_9_0 metrics: - wer model-index: - name: Whisper Small Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_9_0 id type: mozilla-foundation/common_voice_9_0 config: id split: test args: id metrics: - name: Wer type: wer value: 12.431561996779388 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Indonesian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_9_0 id dataset. It achieves the following results on the evaluation set: - Loss: 0.2333 - Wer: 12.4316 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3372 | 0.48 | 1000 | 0.2893 | 16.1123 | | 0.2785 | 0.97 | 2000 | 0.2590 | 14.6032 | | 0.1318 | 1.45 | 3000 | 0.2535 | 13.8532 | | 0.1384 | 1.94 | 4000 | 0.2333 | 12.4316 | | 0.0541 | 2.42 | 5000 | 0.2427 | 12.5650 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
BabaYaga048/dqn-SpaceInvadersNoFrameskip
BabaYaga048
2023-08-06T14:10:17Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T14:09:42Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 594.50 +/- 185.71 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga BabaYaga048 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga BabaYaga048 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga BabaYaga048 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
shibal1/hassaku-hentai-SDAPI-upload
shibal1
2023-08-06T13:51:42Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-06T13:41:54Z
--- license: creativeml-openrail-m --- Original Author: https://civitai.com/models/2583?modelVersionId=106922 This repository is created to host models to be uploaded to Stable Diffusion API community models (e.g. Reloading 'hassaku-hentai' to latest revision)
brunoboat/poca-SoccerTwos
brunoboat
2023-08-06T13:50:33Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-08-06T13:22:50Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: brunoboat/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
hi-august/whisper-large-v2-Japanese-10steps
hi-august
2023-08-06T13:48:43Z
2
1
peft
[ "peft", "region:us" ]
null
2023-08-06T13:44:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
hopkins/eng-deu-trial5
hopkins
2023-08-06T13:48:03Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-08-05T15:18:28Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: eng-deu-trial5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-deu-trial5 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6328 - Bleu: 21.3888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
ahazeemi/bart-base-en-to-de
ahazeemi
2023-08-06T13:40:32Z
12
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-06T08:26:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: bart-base-en-to-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-en-to-de This model is a fine-tuned version of [ahazeemi/bart-base-finetuned-en-to-de](https://huggingface.co/ahazeemi/bart-base-finetuned-en-to-de) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9665 - Bleu: 4.7851 - Gen Len: 19.453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:------:|:-------:| | 1.319 | 0.04 | 5000 | 1.1247 | 4.4467 | 19.447 | | 1.295 | 0.07 | 10000 | 1.1012 | 4.4235 | 19.458 | | 1.2901 | 0.11 | 15000 | 1.0923 | 4.4386 | 19.4423 | | 1.2678 | 0.14 | 20000 | 1.0803 | 4.5259 | 19.4557 | | 1.267 | 0.18 | 25000 | 1.0724 | 4.5534 | 19.4653 | | 1.2444 | 0.21 | 30000 | 1.0591 | 4.4944 | 19.4623 | | 1.2365 | 0.25 | 35000 | 1.0509 | 4.5736 | 19.446 | | 1.2137 | 0.28 | 40000 | 1.0400 | 4.5346 | 19.4553 | | 1.214 | 0.32 | 45000 | 1.0340 | 4.5733 | 19.4543 | | 1.218 | 0.35 | 50000 | 1.0283 | 4.6076 | 19.4693 | | 1.2118 | 0.39 | 55000 | 1.0225 | 4.6192 | 19.454 | | 1.1948 | 0.43 | 60000 | 1.0152 | 4.6082 | 19.4553 | | 1.1932 | 0.46 | 65000 | 1.0128 | 4.665 | 19.449 | | 1.1889 | 0.5 | 70000 | 1.0028 | 4.6929 | 19.4493 | | 1.2154 | 0.53 | 75000 | 1.0004 | 4.7151 | 19.4477 | | 1.194 | 0.57 | 80000 | 0.9950 | 4.6655 | 19.467 | | 1.1847 | 0.6 | 85000 | 0.9966 | 4.708 | 19.451 | | 1.1848 | 0.64 | 90000 | 0.9897 | 4.7794 | 19.458 | | 1.1762 | 0.67 | 95000 | 0.9866 | 4.7204 | 19.4523 | | 1.1818 | 0.71 | 100000 | 0.9803 | 4.7137 | 19.458 | | 1.1613 | 0.75 | 105000 | 0.9788 | 4.7652 | 19.4573 | | 1.1738 | 0.78 | 110000 | 0.9775 | 4.8088 | 19.453 | | 1.1569 | 0.82 | 115000 | 0.9752 | 4.7522 | 19.4577 | | 1.1631 | 0.85 | 120000 | 0.9713 | 4.7301 | 19.4513 | | 1.1517 | 0.89 | 125000 | 0.9690 | 4.7935 | 19.456 | | 1.1577 | 0.92 | 130000 | 0.9686 | 4.791 | 19.4543 | | 1.1607 | 0.96 | 135000 | 0.9676 | 4.7529 | 19.4533 | | 1.153 | 0.99 | 140000 | 0.9665 | 4.7851 | 19.453 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.0+cu116 - Datasets 2.5.1 - Tokenizers 0.12.1
SmellyKat/Pyramids-ppo
SmellyKat
2023-08-06T13:34:04Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-06T13:33:57Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: SmellyKat/Pyramids-ppo 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kejolong/nicorobin
kejolong
2023-08-06T13:31:27Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-06T13:24:34Z
--- license: creativeml-openrail-m ---
Dins123/my-dog-pet
Dins123
2023-08-06T13:31:00Z
6
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-06T13:25:59Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-dog-pet Dreambooth model trained by Dins123 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: VJCET545 Sample pictures of this concept: ![0](https://huggingface.co/Dins123/my-dog-pet/resolve/main/sample_images/00000-3642768595.png)
abhishek47/Cartpole-reinforce-v1
abhishek47
2023-08-06T13:24:03Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T13:23:53Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Cartpole-reinforce-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
salohnana2018/ABSA-SentencePair-corrected-domainAdapt-Stack-HARD50-Adapter-pfeiffer-run3
salohnana2018
2023-08-06T13:19:02Z
0
0
adapter-transformers
[ "adapter-transformers", "pytorch", "tensorboard", "bert", "adapterhub:Arabic ABSA/SemEvalHotelReview", "dataset:Hotel", "region:us" ]
null
2023-08-06T12:36:28Z
--- tags: - adapter-transformers - adapterhub:Arabic ABSA/SemEvalHotelReview - bert datasets: - Hotel --- # Adapter `salohnana2018/ABSA-SentencePair-corrected-domainAdapt-Stack-HARD50-Adapter-pfeiffer-run3` for CAMeL-Lab/bert-base-arabic-camelbert-msa An [adapter](https://adapterhub.ml) for the `CAMeL-Lab/bert-base-arabic-camelbert-msa` model that was trained on the [Arabic ABSA/SemEvalHotelReview](https://adapterhub.ml/explore/Arabic ABSA/SemEvalHotelReview/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa") adapter_name = model.load_adapter("salohnana2018/ABSA-SentencePair-corrected-domainAdapt-Stack-HARD50-Adapter-pfeiffer-run3", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
CyberHarem/power_nikke
CyberHarem
2023-08-06T13:16:20Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/power_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-06T13:10:44Z
--- license: mit datasets: - CyberHarem/power_nikke pipeline_tag: text-to-image tags: - art --- # Lora of power_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/power_nikke.pt` as the embedding and `1500/power_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `power_nikke`.** These are available steps: | Steps | pattern_1 | bikini | free | nude | Download | |--------:|:----------------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:---------------------------------| | 1500 | [<NSFW, click to see>](1500/previews/pattern_1.png) | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/power_nikke.zip) | | 1400 | [<NSFW, click to see>](1400/previews/pattern_1.png) | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/power_nikke.zip) | | 1300 | [<NSFW, click to see>](1300/previews/pattern_1.png) | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/power_nikke.zip) | | 1200 | [<NSFW, click to see>](1200/previews/pattern_1.png) | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/power_nikke.zip) | | 1100 | [<NSFW, click to see>](1100/previews/pattern_1.png) | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/power_nikke.zip) | | 1000 | [<NSFW, click to see>](1000/previews/pattern_1.png) | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/power_nikke.zip) | | 900 | [<NSFW, click to see>](900/previews/pattern_1.png) | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/power_nikke.zip) | | 800 | [<NSFW, click to see>](800/previews/pattern_1.png) | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/power_nikke.zip) | | 700 | [<NSFW, click to see>](700/previews/pattern_1.png) | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/power_nikke.zip) | | 600 | [<NSFW, click to see>](600/previews/pattern_1.png) | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/power_nikke.zip) | | 500 | [<NSFW, click to see>](500/previews/pattern_1.png) | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/power_nikke.zip) | | 400 | [<NSFW, click to see>](400/previews/pattern_1.png) | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/power_nikke.zip) | | 300 | [<NSFW, click to see>](300/previews/pattern_1.png) | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/power_nikke.zip) | | 200 | [<NSFW, click to see>](200/previews/pattern_1.png) | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/power_nikke.zip) | | 100 | [<NSFW, click to see>](100/previews/pattern_1.png) | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/power_nikke.zip) |
hopkins/eng-deu-trial4
hopkins
2023-08-06T13:14:57Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-08-05T15:15:47Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: eng-deu-trial4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-deu-trial4 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6328 - Bleu: 21.3888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
hopkins/eng-deu-trial3
hopkins
2023-08-06T13:14:41Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-08-05T14:59:26Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: eng-deu-trial3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-deu-trial3 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6328 - Bleu: 21.3888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
hopkins/eng-deu-trial1
hopkins
2023-08-06T13:14:39Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-08-05T14:56:55Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: eng-deu-trial1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-deu-trial1 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6328 - Bleu: 21.3888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
sw32-seo/cart-pole
sw32-seo
2023-08-06T13:13:44Z
0
0
null
[ "tensorboard", "CartPole-v1", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T13:11:47Z
--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 186.30 +/- 74.70 name: mean_reward verified: false --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'CartPole-v1' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'sw32-seo/cart-pole' 'batch_size': 512 'minibatch_size': 128} ```
RIOLITE/products_matching_aumet_fine_tune_2023-08-06
RIOLITE
2023-08-06T13:00:37Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-08-06T13:00:13Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
CyberHarem/universal_bulin_azurlane
CyberHarem
2023-08-06T12:58:30Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/universal_bulin_azurlane", "license:mit", "region:us" ]
text-to-image
2023-08-06T12:55:08Z
--- license: mit datasets: - CyberHarem/universal_bulin_azurlane pipeline_tag: text-to-image tags: - art --- # Lora of universal_bulin_azurlane This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/universal_bulin_azurlane.pt` as the embedding and `1500/universal_bulin_azurlane.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `universal_bulin_azurlane`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:----------------------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/universal_bulin_azurlane.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/universal_bulin_azurlane.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/universal_bulin_azurlane.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/universal_bulin_azurlane.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/universal_bulin_azurlane.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/universal_bulin_azurlane.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/universal_bulin_azurlane.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/universal_bulin_azurlane.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/universal_bulin_azurlane.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/universal_bulin_azurlane.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/universal_bulin_azurlane.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/universal_bulin_azurlane.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/universal_bulin_azurlane.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/universal_bulin_azurlane.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/universal_bulin_azurlane.zip) |
CyberHarem/makima_nikke
CyberHarem
2023-08-06T12:55:11Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/makima_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-06T12:50:36Z
--- license: mit datasets: - CyberHarem/makima_nikke pipeline_tag: text-to-image tags: - art --- # Lora of makima_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/makima_nikke.pt` as the embedding and `1500/makima_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `makima_nikke`.** These are available steps: | Steps | pattern_1 | pattern_2 | pattern_3 | bikini | free | nude | Download | |--------:|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:----------------------------------| | 1500 | ![pattern_1-1500](1500/previews/pattern_1.png) | ![pattern_2-1500](1500/previews/pattern_2.png) | ![pattern_3-1500](1500/previews/pattern_3.png) | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/makima_nikke.zip) | | 1400 | ![pattern_1-1400](1400/previews/pattern_1.png) | ![pattern_2-1400](1400/previews/pattern_2.png) | ![pattern_3-1400](1400/previews/pattern_3.png) | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/makima_nikke.zip) | | 1300 | ![pattern_1-1300](1300/previews/pattern_1.png) | ![pattern_2-1300](1300/previews/pattern_2.png) | ![pattern_3-1300](1300/previews/pattern_3.png) | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/makima_nikke.zip) | | 1200 | ![pattern_1-1200](1200/previews/pattern_1.png) | ![pattern_2-1200](1200/previews/pattern_2.png) | ![pattern_3-1200](1200/previews/pattern_3.png) | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/makima_nikke.zip) | | 1100 | ![pattern_1-1100](1100/previews/pattern_1.png) | ![pattern_2-1100](1100/previews/pattern_2.png) | ![pattern_3-1100](1100/previews/pattern_3.png) | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/makima_nikke.zip) | | 1000 | ![pattern_1-1000](1000/previews/pattern_1.png) | ![pattern_2-1000](1000/previews/pattern_2.png) | ![pattern_3-1000](1000/previews/pattern_3.png) | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/makima_nikke.zip) | | 900 | ![pattern_1-900](900/previews/pattern_1.png) | ![pattern_2-900](900/previews/pattern_2.png) | ![pattern_3-900](900/previews/pattern_3.png) | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/makima_nikke.zip) | | 800 | ![pattern_1-800](800/previews/pattern_1.png) | ![pattern_2-800](800/previews/pattern_2.png) | ![pattern_3-800](800/previews/pattern_3.png) | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/makima_nikke.zip) | | 700 | ![pattern_1-700](700/previews/pattern_1.png) | ![pattern_2-700](700/previews/pattern_2.png) | ![pattern_3-700](700/previews/pattern_3.png) | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/makima_nikke.zip) | | 600 | ![pattern_1-600](600/previews/pattern_1.png) | ![pattern_2-600](600/previews/pattern_2.png) | ![pattern_3-600](600/previews/pattern_3.png) | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/makima_nikke.zip) | | 500 | ![pattern_1-500](500/previews/pattern_1.png) | ![pattern_2-500](500/previews/pattern_2.png) | ![pattern_3-500](500/previews/pattern_3.png) | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/makima_nikke.zip) | | 400 | ![pattern_1-400](400/previews/pattern_1.png) | ![pattern_2-400](400/previews/pattern_2.png) | ![pattern_3-400](400/previews/pattern_3.png) | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/makima_nikke.zip) | | 300 | ![pattern_1-300](300/previews/pattern_1.png) | ![pattern_2-300](300/previews/pattern_2.png) | ![pattern_3-300](300/previews/pattern_3.png) | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/makima_nikke.zip) | | 200 | ![pattern_1-200](200/previews/pattern_1.png) | ![pattern_2-200](200/previews/pattern_2.png) | ![pattern_3-200](200/previews/pattern_3.png) | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/makima_nikke.zip) | | 100 | ![pattern_1-100](100/previews/pattern_1.png) | ![pattern_2-100](100/previews/pattern_2.png) | ![pattern_3-100](100/previews/pattern_3.png) | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/makima_nikke.zip) |
chinhon/pegasus-multi_news-headline_57k
chinhon
2023-08-06T12:52:58Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-14T07:44:00Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-multi_news-headline_57k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-multi_news-headline_57k This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4503 - Rouge1: 42.3147 - Rouge2: 23.2213 - Rougel: 35.7441 - Rougelsum: 35.8964 - Gen Len: 33.8245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.6546 | 1.0 | 11339 | 1.5170 | 41.7822 | 22.7843 | 35.3913 | 35.5749 | 34.1139 | | 1.5132 | 2.0 | 22678 | 1.4602 | 42.0161 | 22.9778 | 35.5357 | 35.6921 | 33.9944 | | 1.4147 | 3.0 | 34017 | 1.4503 | 42.3147 | 23.2213 | 35.7441 | 35.8964 | 33.8245 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.0 - Tokenizers 0.13.1
s3nh/chinese-alpaca-2-7b-GGML
s3nh
2023-08-06T12:44:54Z
0
7
transformers
[ "transformers", "text-generation", "zh", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-07-31T07:58:43Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/ziqingyang/chinese-alpaca-2-7b). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card **This is the full Chinese-Alpaca-2-7B model,which can be loaded directly for inference and full-parameter training.** **Related models👇** * Base models * [Chinese-LLaMA-2-7B (full model)](https://huggingface.co/ziqingyang/chinese-llama-2-7b) * [Chinese-LLaMA-2-LoRA-7B (LoRA model)](https://huggingface.co/ziqingyang/chinese-llama-2-lora-7b) * Instruction/Chat models * [Chinese-Alpaca-2-7B (full model)](https://huggingface.co/ziqingyang/chinese-alpaca-2-7b) * [Chinese-Alpaca-2-LoRA-7B (LoRA model)](https://huggingface.co/ziqingyang/chinese-alpaca-2-lora-7b) # Description of Chinese-LLaMA-Alpaca-2 This project is based on the Llama-2, released by Meta, and it is the second generation of the Chinese LLaMA & Alpaca LLM project. We open-source Chinese LLaMA-2 (foundation model) and Alpaca-2 (instruction-following model). These models have been expanded and optimized with Chinese vocabulary beyond the original Llama-2. We used large-scale Chinese data for incremental pre-training, which further improved the fundamental semantic understanding of the Chinese language, resulting in a significant performance improvement compared to the first-generation models. The relevant models support a 4K context and can be expanded up to 18K+ using the NTK method. The main contents of this project include: * 🚀 New extended Chinese vocabulary beyond Llama-2, open-sourcing the Chinese LLaMA-2 and Alpaca-2 LLMs. * 🚀 Open-sourced the pre-training and instruction finetuning (SFT) scripts for further tuning on user's data * 🚀 Quickly deploy and experience the quantized LLMs on CPU/GPU of personal PC * 🚀 Support for LLaMA ecosystems like 🤗transformers, llama.cpp, text-generation-webui, LangChain, vLLM etc. Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for details.
nokotin/a2c-PandaReachDense-v2
nokotin
2023-08-06T12:42:22Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T12:40:06Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.85 +/- 0.23 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
voxxer/Lunar_Lander_v2_PPO
voxxer
2023-08-06T12:16:09Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T12:15:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.82 +/- 15.57 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Yntec/DreamAnything
Yntec
2023-08-06T12:04:37Z
394
11
diffusers
[ "diffusers", "safetensors", "art", "anime", "style", "checkpoint", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "yntec", "anything", "Dreamlike", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-13T03:15:02Z
--- license: creativeml-openrail-m library_name: diffusers tags: - art - anime - style - checkpoint - anime - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image - yntec - anything - Dreamlike pipeline_tag: text-to-image --- # DreamAnything A mix of the Anything models and my favorite models in an attempt to make one that does anything it can do without relying on negative prompts. Now with the Color 101 VAE baked in. You can use "anime" in your prompts to enhance the style. ## This is the sample for the model DreamAnything: ![Sample for DreamAnything](https://huggingface.co/Yntec/DreamAnything/resolve/main/DreamAnythingSample.png) face focus, cute, masterpiece, best quality, 1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck
YanJiangJerry/bertweet-large_epoch1_batch4_lr2e-05_w0.005
YanJiangJerry
2023-08-06T11:57:59Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:vinai/bertweet-large", "base_model:finetune:vinai/bertweet-large", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-06T11:44:52Z
--- base_model: vinai/bertweet-large tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: bertweet-large_epoch1_batch4_lr2e-05_w0.005 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-large_epoch1_batch4_lr2e-05_w0.005 This model is a fine-tuned version of [vinai/bertweet-large](https://huggingface.co/vinai/bertweet-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6770 - Accuracy: 0.6274 - F1: 0.0 - Precision: 0.0 - Recall: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|:---------:|:------:| | 0.7045 | 1.0 | 788 | 0.6770 | 0.6274 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
SmellyKat/ppo-SnowballTarget
SmellyKat
2023-08-06T11:51:26Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-08-03T07:50:56Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: SmellyKat/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sarinrajesh/my-pet-dog
sarinrajesh
2023-08-06T11:37:50Z
4
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-06T11:34:00Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog Dreambooth model trained by sarinrajesh following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: -AJCE133 Sample pictures of this concept: ![0](https://huggingface.co/sarinrajesh/my-pet-dog/resolve/main/sample_images/00001-4043283793.png)
TheRains/yt-special-batch4-small
TheRains
2023-08-06T11:37:05Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "dataset:yt", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-06T09:20:53Z
--- license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - yt metrics: - wer model-index: - name: Whisper Small Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: yt id type: yt metrics: - name: Wer type: wer value: 48.22644445885481 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Indonesian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the yt id dataset. It achieves the following results on the evaluation set: - Loss: 0.7390 - Wer: 48.2264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.0296 | 0.09 | 1000 | 0.9364 | 69.1330 | | 0.8092 | 0.17 | 2000 | 0.8503 | 59.1401 | | 0.9109 | 0.26 | 3000 | 0.8034 | 50.4247 | | 0.7291 | 0.34 | 4000 | 0.7616 | 48.3821 | | 0.7631 | 0.43 | 5000 | 0.7390 | 48.2264 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
jsunster/vit-base-patch16-224-in21k-finetuned-lora-food101
jsunster
2023-08-06T11:27:26Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-06T10:59:24Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
CyberHarem/mast_nikke
CyberHarem
2023-08-06T11:20:14Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/mast_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-06T11:14:14Z
--- license: mit datasets: - CyberHarem/mast_nikke pipeline_tag: text-to-image tags: - art --- # Lora of mast_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/mast_nikke.pt` as the embedding and `1500/mast_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `mast_nikke`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:--------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/mast_nikke.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/mast_nikke.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/mast_nikke.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/mast_nikke.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/mast_nikke.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/mast_nikke.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/mast_nikke.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/mast_nikke.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/mast_nikke.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/mast_nikke.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/mast_nikke.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/mast_nikke.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/mast_nikke.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/mast_nikke.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/mast_nikke.zip) |
Erick4512/my-pet-cat
Erick4512
2023-08-06T11:12:55Z
10
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-06T11:09:07Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Cat Dreambooth model trained by Erick4512 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: AJCE124 Sample pictures of this concept: ![0](https://huggingface.co/Erick4512/my-pet-cat/resolve/main/sample_images/00002-2312898468.png)
jlodge83/ppo-Huggy
jlodge83
2023-08-06T10:59:14Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-06T10:59:02Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: jlodge83/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AtilliO/chopper_03
AtilliO
2023-08-06T10:54:54Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Heli", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Heli", "region:us" ]
reinforcement-learning
2023-08-06T10:54:48Z
--- library_name: ml-agents tags: - Heli - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Heli --- # **ppo** Agent playing **Heli** This is a trained model of a **ppo** agent playing **Heli** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: AtilliO/chopper_03 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
CyberHarem/noah_nikke
CyberHarem
2023-08-06T10:54:47Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/noah_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-06T10:49:31Z
--- license: mit datasets: - CyberHarem/noah_nikke pipeline_tag: text-to-image tags: - art --- # Lora of noah_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/noah_nikke.pt` as the embedding and `1500/noah_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `noah_nikke`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:--------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/noah_nikke.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/noah_nikke.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/noah_nikke.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/noah_nikke.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/noah_nikke.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/noah_nikke.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/noah_nikke.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/noah_nikke.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/noah_nikke.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/noah_nikke.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/noah_nikke.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/noah_nikke.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/noah_nikke.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/noah_nikke.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/noah_nikke.zip) |
Lukee4/biomedlm-2020_3labels
Lukee4
2023-08-06T10:45:57Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-06T10:45:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
Amalya/fat
Amalya
2023-08-06T10:44:55Z
0
0
null
[ "region:us" ]
null
2023-08-06T10:44:35Z
the fat sister from the Disney-style fairy tale for children has lost weight and transformed
DejaVuChan/reze
DejaVuChan
2023-08-06T10:39:58Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-06T10:38:18Z
--- license: creativeml-openrail-m ---
Lukee4/biomedlm-2020_2labels
Lukee4
2023-08-06T10:37:00Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-06T10:36:58Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
tiggerhelloworld/q-FrozenLake-v1-4x4-noSlippery
tiggerhelloworld
2023-08-06T10:33:36Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T10:33:33Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="tiggerhelloworld/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
aphi/poca-SoccerTwos_v2
aphi
2023-08-06T10:28:16Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-08-06T10:26:44Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: aphi/poca-SoccerTwos_v2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
s3nh/WizardLM-1.0-Uncensored-Llama2-13b-GGML
s3nh
2023-08-06T10:24:03Z
0
4
transformers
[ "transformers", "text-generation", "en", "zh", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-08-06T09:50:39Z
--- license: openrail language: - en - zh pipeline_tag: text-generation library_name: transformers --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/ehartford/WizardLM-1.0-Uncensored-Llama2-13b) ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card This is a retraining of https://huggingface.co/WizardLM/WizardLM-13B-V1.0 with a filtered dataset, intended to reduce refusals, avoidance, and bias. Note that LLaMA itself has inherent ethical beliefs, so there's no such thing as a "truly uncensored" model. But this model will be more compliant than WizardLM/WizardLM-13B-V1.0. Shout out to the open source AI/ML community, and everyone who helped me out. Note: An uncensored model has no guardrails. You are responsible for anything you do with the model, just as you are responsible for anything you do with any dangerous object such as a knife, gun, lighter, or car. Publishing anything this model generates is the same as publishing it yourself. You are responsible for the content you publish, and you cannot blame the model any more than you can blame the knife, gun, lighter, or car for what you do with it. Like WizardLM/WizardLM-13B-V1.0, this model is trained with Vicuna-1.1 style prompts. ``` You are a helpful AI assistant. USER: <prompt> ASSISTANT: ```
Lukee4/biogpt-2019_2labels
Lukee4
2023-08-06T10:14:04Z
4
0
peft
[ "peft", "region:us" ]
null
2023-08-06T09:43:28Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
DejaVuChan/kizuki
DejaVuChan
2023-08-06T10:10:31Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-03T13:35:27Z
--- license: creativeml-openrail-m ---
maroti/ppo-Huggy
maroti
2023-08-06T10:05:52Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-06T10:05:48Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: maroti/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
NiscR/ppo-SnowballTarget
NiscR
2023-08-06T10:05:07Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-08-06T10:05:04Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: NiscR/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
migueldeguzmandev/petertodd
migueldeguzmandev
2023-08-06T09:42:10Z
10
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:bigscience-openrail-m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-06T02:53:49Z
--- license: bigscience-openrail-m --- **Model name:** ' Leilan' and ' petertodd' Alignment Model **Model version:** 1.0.0 **Intended Use:** This model is intended to be used for generating and testing narratives based on the premise of two contrasting characters, Leilan and Petertodd, within a universe where they are elemental forces. It can be used to study the character dynamics, relationships, and plot development in storytelling. **Training Data:** The model was trained using narratives generated from the prompt centered around the characters of Leilan, embodying the hero/ouroboros and mother Jungian archetypes, and her nemesis, petertodd, representing the shadow archetype. **Model Details:** The model is designed to generate creative narratives, cast in the Jungian archetypes of hero/ouroboros/mother and shadow, focusing on the complex dynamics between the characters, Leilan and petertodd. The stories end with petertodd articulating his thoughts on Leilan, emphasizing their universal connection, thereby adding a unique dynamic to their relationship. **Evaluation Data:** The evaluation of the model was performed using a held-out test set, not seen by the model during training. The data consists of narrative stories that adhere to the initial prompt structure, featuring the interaction and contrasting dynamics between Leilan and petertodd. **Ethical Considerations:** This model is meant for creating fictional narratives and should not be used for spreading misinformation or harmful content. It is designed to respect ethical considerations and does not support the creation of content that promotes hate speech, violence, or discrimination. **Use Cases:** The primary use case of this model is in storytelling and creative writing exercises. It could also be used in educational settings for literature and creative writing courses, as well as in the entertainment industry for generating narratives for games, books, films, etc. **Model Limitations:** The model can sometimes generate complex and intricate narratives that may be hard to follow for some users. Also, the model can occasionally produce repetitive structures due to the cyclical nature of the narrative and the defined format.
CyberHarem/soline_nikke
CyberHarem
2023-08-06T09:39:59Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/soline_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-06T09:34:30Z
--- license: mit datasets: - CyberHarem/soline_nikke pipeline_tag: text-to-image tags: - art --- # Lora of soline_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/soline_nikke.pt` as the embedding and `1500/soline_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `soline_nikke`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:----------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/soline_nikke.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/soline_nikke.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/soline_nikke.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/soline_nikke.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/soline_nikke.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/soline_nikke.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/soline_nikke.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/soline_nikke.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/soline_nikke.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/soline_nikke.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/soline_nikke.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/soline_nikke.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/soline_nikke.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/soline_nikke.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/soline_nikke.zip) |
AronGeorge10/my-pet-cat
AronGeorge10
2023-08-06T09:34:28Z
21
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-06T09:30:33Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Cat Dreambooth model trained by AronGeorge10 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: AJCE269 Sample pictures of this concept: ![0](https://huggingface.co/AronGeorge10/my-pet-cat/resolve/main/sample_images/00002-2049647937.png)
foduucom/table-detection-and-extraction
foduucom
2023-08-06T09:33:39Z
37,036
75
ultralytics
[ "ultralytics", "tensorboard", "v8", "ultralyticsplus", "yolov8", "yolo", "vision", "object-detection", "pytorch", "table detection", "table extraction", "table classification", "document analysis", "unstructured document", "unstructured table extraction", "structured table extraction", "unstructured table detection", "structured table detection", "en", "dataset:foduucom/table-detection-yolo", "model-index", "region:us" ]
object-detection
2023-08-05T09:44:39Z
--- tags: - ultralyticsplus - yolov8 - ultralytics - yolo - vision - object-detection - pytorch - table detection - table extraction - table classification - document analysis - unstructured document - unstructured table extraction - structured table extraction - unstructured table detection - structured table detection library_name: ultralytics library_version: 8.0.43 inference: true model-index: - name: foduucom/table-detection-and-extraction results: - task: type: object-detection metrics: - type: precision value: 0.96196 name: mAP@0.5(box) language: - en metrics: - accuracy datasets: - foduucom/table-detection-yolo pipeline_tag: object-detection --- <div align="center"> <img width="640" alt="foduucom/table-detection-and-extraction" src="https://huggingface.co/foduucom/table-detection-and-extraction/resolve/main/thumbnail.jpg"> </div> # Model Card for YOLOv8s Table Detection ## Model Summary The YOLOv8s Table Detection model is an object detection model based on the YOLO (You Only Look Once) framework. It is designed to detect tables, whether they are bordered or borderless, in images. The model has been fine-tuned on a vast dataset and achieved high accuracy in detecting tables and distinguishing between bordered and borderless ones. ## Model Details ### Model Description The YOLOv8s Table Detection model serves as a versatile solution for precisely identifying tables within images, whether they exhibit a bordered or borderless design. Notably, this model's capabilities extend beyond mere detection – it plays a crucial role in addressing the complexities of unstructured documents. By employing advanced techniques such as bounding box delineation, the model enables users to isolate tables of interest within the visual content. What sets this model apart is its synergy with Optical Character Recognition (OCR) technology. This seamless integration empowers the model to not only locate tables but also to extract pertinent data contained within. The bounding box information guides the cropping of tables, which is then coupled with OCR to meticulously extract textual data, streamlining the process of information retrieval from unstructured documents. We invite you to explore the potential of this model and its data extraction capabilities. For those interested in harnessing its power or seeking further collaboration, we encourage you to reach out to us at info@foduu.com. Whether you require assistance, customization, or have innovative ideas, our collaborative approach is geared towards addressing your unique challenges. Additionally, you can actively engage with our vibrant community section for valuable insights and collective problem-solving. Your input drives our continuous improvement, as we collectively pave the way towards enhanced data extraction and document analysis. - **Developed by:** FODUU AI - **Model type:** Object Detection - **Task:** Table Detection (Bordered and Borderless) Furthermore, the YOLOv8s Table Detection model is not limited to table detection alone. It is a versatile tool that contributes to the processing of unstructured documents. By utilizing advanced bounding box techniques, the model empowers users to isolate tables within the document's visual content. What sets this model apart is its seamless integration with Optical Character Recognition (OCR) technology. The combination of bounding box information and OCR allows for precise data extraction from the tables. This comprehensive approach streamlines the process of information retrieval from complex documents. User collaboration is actively encouraged to enrich the model's capabilities. By contributing table images of different designs and types, users play a pivotal role in enhancing the model's ability to detect a diverse range of tables accurately. Community participation can be facilitated through our platform or by reaching out to us at info@foduu.com. We value collaborative efforts that drive continuous improvement and innovation in table detection and extraction. ### Supported Labels ``` ['bordered', 'borderless'] ``` ## Uses ### Direct Use The YOLOv8s Table Detection model can be directly used for detecting tables in images, whether they are bordered or borderless. It is equipped with the ability to distinguish between these two categories. ### Downstream Use The model can also be fine-tuned for specific table detection tasks or integrated into larger applications for furniture recognition, interior design, image-based data extraction, and other related fields. ### Out-of-Scope Use The model is not designed for unrelated object detection tasks or scenarios outside the scope of table detection. ## Bias, Risks, and Limitations The YOLOv8s Table Detection model may have some limitations and biases: - Performance may vary based on the quality, diversity, and representativeness of the training data. - The model may face challenges in detecting tables with intricate designs or complex arrangements. - Accuracy may be affected by variations in lighting conditions, image quality, and resolution. - Detection of very small or distant tables might be less accurate. - The model's ability to classify bordered and borderless tables may be influenced by variations in design. ### Recommendations Users should be informed about the model's limitations and potential biases. Further testing and validation are advised for specific use cases to evaluate its performance accurately. ## How to Get Started with the Model To begin using the YOLOv8s Table Detection model, follow these steps: ```bash pip install ultralyticsplus==0.0.28 ultralytics==8.0.43 ``` - Load model and perform prediction: ```python from ultralyticsplus import YOLO, render_result # load model model = YOLO('foduucom/table-detection-and-extraction') # set model parameters model.overrides['conf'] = 0.25 # NMS confidence threshold model.overrides['iou'] = 0.45 # NMS IoU threshold model.overrides['agnostic_nms'] = False # NMS class-agnostic model.overrides['max_det'] = 1000 # maximum number of detections per image # set image image = '/path/to/your/document/images' # perform inference results = model.predict(image) # observe results print(results[0].boxes) render = render_result(model=model, image=image, result=results[0]) render.show() ``` ## Training Details ### Training Data The model is trained on a diverse dataset containing images of tables from various sources. The dataset includes examples of both bordered and borderless tables, capturing different designs and styles. ### Training Procedure The training process involves extensive computation and is conducted over multiple epochs. The model's weights are adjusted to minimize detection loss and optimize performance. #### Metrics - mAP@0.5 (box): - All: 0.962 - Bordered: 0.961 - Borderless: 0.963 ### Model Architecture and Objective The YOLOv8s architecture employs a modified CSPDarknet53 as its backbone, along with self-attention mechanisms and feature pyramid networks. These components contribute to the model's ability to detect and classify tables accurately, considering variations in size, design, and style. ### Compute Infrastructure #### Hardware NVIDIA GeForce RTX 3060 card #### Software The model was trained and fine-tuned using a Jupyter Notebook environment. ## Model Card Contact For inquiries and contributions, please contact us at info@foduu.com. ```bibtex @ModelCard{ author = {Nehul Agrawal and Pranjal Singh Thakur}, title = {YOLOv8s Table Detection}, year = {2023} } ``` ---
TheRains/cv9-special-batch8-tiny
TheRains
2023-08-06T09:30:28Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "id", "dataset:mozilla-foundation/common_voice_9_0", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-06T08:18:12Z
--- language: - id license: apache-2.0 base_model: openai/whisper-tiny tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_9_0 metrics: - wer model-index: - name: Whisper Small Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_9_0 id type: mozilla-foundation/common_voice_9_0 config: id split: test args: id metrics: - name: Wer type: wer value: 31.750632620197837 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Indonesian This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_9_0 id dataset. It achieves the following results on the evaluation set: - Loss: 0.4968 - Wer: 31.7506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6281 | 0.97 | 1000 | 0.5817 | 37.6950 | | 0.4018 | 1.94 | 2000 | 0.5157 | 34.2121 | | 0.2914 | 2.9 | 3000 | 0.4980 | 32.4960 | | 0.2078 | 3.87 | 4000 | 0.4968 | 31.7506 | | 0.1925 | 4.84 | 5000 | 0.4986 | 31.8749 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
George-Ogden/gptr2-nano-with-momentum-without-weight-decay
George-Ogden
2023-08-06T09:28:17Z
31
1
transformers
[ "transformers", "pytorch", "gpt2", "research", "en", "dataset:wikipedia", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-08-05T13:59:29Z
--- license: mit datasets: - wikipedia language: - en tags: - research --- This model is significantly undertrained and designed for research purposes only. For use in transformers: ```python from transformers import AutoTokenizer, GPT2Model import torch.nn as nn import torch class RMSLayerNorm(nn.Module): def __init__(self, normalized_shape, eps=1e-8, affine=True): super(RMSLayerNorm, self).__init__() self.normalized_shape = normalized_shape self.eps = eps self.affine = affine if self.affine: self.weight = nn.Parameter(torch.ones(())) else: self.register_parameter('weight', None) self.register_parameter('bias', None) def forward(self, x): rms = torch.sqrt(torch.mean(x**2, dim=-1, keepdim=True) + self.eps) x_normalized = x / rms if self.affine: x_normalized = x_normalized * self.weight return x_normalized def replace(model): for name, child in model.named_children(): if isinstance(child, nn.modules.normalization.LayerNorm): setattr(model, name, RMSLayerNorm(child.normalized_shape, eps=child.eps, affine=True)) else: replace(child) return model class GPTR2Model(GPT2Model): def __init__(self, config): super().__init__(config) replace(self) model = GPTR2Model.from_pretrained("George-Ogden/gptr2-nano-with-momentum-without-weight-decay") tokenizer = AutoTokenizer.from_pretrained("gpt2") ``` For more details and example usage, see https://github.com/George-Ogden/residual-streams
George-Ogden/gptr2-nano-with-momentum-with-weight-decay
George-Ogden
2023-08-06T09:27:54Z
40
1
transformers
[ "transformers", "pytorch", "gpt2", "research", "en", "dataset:wikipedia", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-08-01T12:26:52Z
--- license: mit datasets: - wikipedia language: - en tags: - research --- This model is significantly undertrained and designed for research purposes only. For use in transformers: ```python from transformers import AutoTokenizer, GPT2Model import torch.nn as nn import torch class RMSLayerNorm(nn.Module): def __init__(self, normalized_shape, eps=1e-8, affine=True): super(RMSLayerNorm, self).__init__() self.normalized_shape = normalized_shape self.eps = eps self.affine = affine if self.affine: self.weight = nn.Parameter(torch.ones(())) else: self.register_parameter('weight', None) self.register_parameter('bias', None) def forward(self, x): rms = torch.sqrt(torch.mean(x**2, dim=-1, keepdim=True) + self.eps) x_normalized = x / rms if self.affine: x_normalized = x_normalized * self.weight return x_normalized def replace(model): for name, child in model.named_children(): if isinstance(child, nn.modules.normalization.LayerNorm): setattr(model, name, RMSLayerNorm(child.normalized_shape, eps=child.eps, affine=True)) else: replace(child) return model class GPTR2Model(GPT2Model): def __init__(self, config): super().__init__(config) replace(self) model = GPTR2Model.from_pretrained("George-Ogden/gptr2-nano-with-momentum-with-weight-decay") tokenizer = AutoTokenizer.from_pretrained("gpt2") ``` For more details and example usage, see https://github.com/George-Ogden/residual-streams
George-Ogden/gptr2-nano-without-momentum-without-weight-decay
George-Ogden
2023-08-06T09:26:49Z
32
1
transformers
[ "transformers", "pytorch", "gpt2", "research", "en", "dataset:wikipedia", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-08-05T14:07:14Z
--- license: mit datasets: - wikipedia language: - en tags: - research --- This model is significantly undertrained and designed for research purposes only. For use in transformers: ```python from transformers import AutoTokenizer, GPT2Model import torch.nn as nn import torch class RMSLayerNorm(nn.Module): def __init__(self, normalized_shape, eps=1e-8, affine=True): super(RMSLayerNorm, self).__init__() self.normalized_shape = normalized_shape self.eps = eps self.affine = affine if self.affine: self.weight = nn.Parameter(torch.ones(())) else: self.register_parameter('weight', None) self.register_parameter('bias', None) def forward(self, x): rms = torch.sqrt(torch.mean(x**2, dim=-1, keepdim=True) + self.eps) x_normalized = x / rms if self.affine: x_normalized = x_normalized * self.weight return x_normalized def replace(model): for name, child in model.named_children(): if isinstance(child, nn.modules.normalization.LayerNorm): setattr(model, name, RMSLayerNorm(child.normalized_shape, eps=child.eps, affine=True)) else: replace(child) return model class GPTR2Model(GPT2Model): def __init__(self, config): super().__init__(config) replace(self) model = GPTR2Model.from_pretrained("George-Ogden/gptr2-nano-without-momentum-without-weight-decay") tokenizer = AutoTokenizer.from_pretrained("gpt2") ``` For more details and example usage, see https://github.com/George-Ogden/residual-streams
sahayk/news-classification-18-llama-2-7b
sahayk
2023-08-06T09:25:37Z
7
3
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-06T08:14:39Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for News-Classification-18-Llama-2-7B <!-- Provide a quick summary of what the model is/does. --> News-Classification-18-Llama-2-7B classifies news articles across 18 categories. It is created by fine-tuning Llama 2 7B on an instruction dataset created using GPT 3.5. - **Developed by:** Kshitiz Sahay - **Model type:** Text Classifier - **Language(s) (NLP):** Python - **Finetuned from model:** Llama-2-7B
mrizalf7/t5-small-indosum-3
mrizalf7
2023-08-06T09:03:55Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-02T15:51:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-indosum-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-indosum-3 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4340 - Rouge1: 15.1875 - Rouge2: 11.795 - Rougel: 14.9384 - Rougelsum: 15.0579 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 40 - eval_batch_size: 40 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.5356 | 1.0 | 1784 | 0.4647 | 15.1653 | 11.7743 | 14.9193 | 15.0383 | 19.0 | | 0.4791 | 2.0 | 3568 | 0.4401 | 15.175 | 11.789 | 14.9281 | 15.0459 | 19.0 | | 0.4698 | 3.0 | 5352 | 0.4340 | 15.1875 | 11.795 | 14.9384 | 15.0579 | 19.0 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
alphin2002/my-bag
alphin2002
2023-08-06T08:58:41Z
11
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-06T08:54:56Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Bag Dreambooth model trained by alphin2002 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: AJCE125 Sample pictures of this concept: ![0](https://huggingface.co/alphin2002/my-bag/resolve/main/sample_images/00001-1651883923.png)
ajulkjose/my-thanos
ajulkjose
2023-08-06T08:47:43Z
16
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-06T08:35:20Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Thanos Dreambooth model trained by ajulkjose following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: AJCE211 Sample pictures of this concept: ![0](https://huggingface.co/ajulkjose/my-thanos/resolve/main/sample_images/00000-2729688658.png)
Yossshi/ppo-LunarLander-v2
Yossshi
2023-08-06T08:29:53Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T08:29:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 243.31 +/- 20.70 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CyberHarem/guillotine_nikke
CyberHarem
2023-08-06T08:22:43Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/guillotine_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-06T08:17:11Z
--- license: mit datasets: - CyberHarem/guillotine_nikke pipeline_tag: text-to-image tags: - art --- # Lora of guillotine_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/guillotine_nikke.pt` as the embedding and `1500/guillotine_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `guillotine_nikke`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:--------------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/guillotine_nikke.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/guillotine_nikke.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/guillotine_nikke.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/guillotine_nikke.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/guillotine_nikke.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/guillotine_nikke.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/guillotine_nikke.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/guillotine_nikke.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/guillotine_nikke.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/guillotine_nikke.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/guillotine_nikke.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/guillotine_nikke.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/guillotine_nikke.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/guillotine_nikke.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/guillotine_nikke.zip) |
yaohuacn/ppo-LunarLander-v2
yaohuacn
2023-08-06T08:09:49Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T08:04:56Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 231.49 +/- 50.11 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CyberHarem/sin_nikke
CyberHarem
2023-08-06T07:58:24Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/sin_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-06T07:52:09Z
--- license: mit datasets: - CyberHarem/sin_nikke pipeline_tag: text-to-image tags: - art --- # Lora of sin_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/sin_nikke.pt` as the embedding and `1500/sin_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `sin_nikke`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:-------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/sin_nikke.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/sin_nikke.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/sin_nikke.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/sin_nikke.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/sin_nikke.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/sin_nikke.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/sin_nikke.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/sin_nikke.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/sin_nikke.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/sin_nikke.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/sin_nikke.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/sin_nikke.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/sin_nikke.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/sin_nikke.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/sin_nikke.zip) |
RedRayz/MyVAE
RedRayz
2023-08-06T07:48:11Z
0
3
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-06T07:37:28Z
--- license: creativeml-openrail-m ---
CyberHarem/frima_nikke
CyberHarem
2023-08-06T07:31:34Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/frima_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-06T07:27:26Z
--- license: mit datasets: - CyberHarem/frima_nikke pipeline_tag: text-to-image tags: - art --- # Lora of frima_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/frima_nikke.pt` as the embedding and `1500/frima_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `frima_nikke`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:---------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/frima_nikke.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/frima_nikke.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/frima_nikke.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/frima_nikke.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/frima_nikke.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/frima_nikke.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/frima_nikke.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/frima_nikke.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/frima_nikke.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/frima_nikke.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/frima_nikke.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/frima_nikke.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/frima_nikke.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/frima_nikke.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/frima_nikke.zip) |
Saya3091/myLyCORIS
Saya3091
2023-08-06T07:15:47Z
0
79
null
[ "region:us" ]
null
2023-06-14T15:21:37Z
--- {} --- 仅供学习,请勿用于任何商业活动,不授权给任何商业行为。如果有没有使用说明的模型,请尝试在civitai搜索@Saya,可以找到过去的模型说明 For learning only, please do not use for any commercial activities, not authorized to any commercial activities. If there is a model without instructions, try searching @Saya in civiti, you can find past model instructions
principle/lukatuning1
principle
2023-08-06T07:02:14Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-06T07:02:11Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
Naruke/LunarRadar-PPO
Naruke
2023-08-06T06:46:41Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T06:11:18Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -75.02 +/- 111.93 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 100000 'learning_rate': 0.00025 'num_envs': 8 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 12 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Naruke/LunarRadar-PPO' 'batch_size': 1024 'minibatch_size': 256} ```
CyberHarem/centi_nikke
CyberHarem
2023-08-06T06:44:12Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/centi_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-06T06:40:59Z
--- license: mit datasets: - CyberHarem/centi_nikke pipeline_tag: text-to-image tags: - art --- # Lora of centi_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/centi_nikke.pt` as the embedding and `1500/centi_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `centi_nikke`.** These are available steps: | Steps | pattern_1 | bikini | free | nude | Download | |--------:|:----------------------------------------------------|:-------------------------------------------------|:-------------------------------------|:-----------------------------------------------|:---------------------------------| | 1500 | [<NSFW, click to see>](1500/previews/pattern_1.png) | [<NSFW, click to see>](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/centi_nikke.zip) | | 1400 | [<NSFW, click to see>](1400/previews/pattern_1.png) | [<NSFW, click to see>](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/centi_nikke.zip) | | 1300 | [<NSFW, click to see>](1300/previews/pattern_1.png) | [<NSFW, click to see>](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/centi_nikke.zip) | | 1200 | [<NSFW, click to see>](1200/previews/pattern_1.png) | [<NSFW, click to see>](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/centi_nikke.zip) | | 1100 | [<NSFW, click to see>](1100/previews/pattern_1.png) | [<NSFW, click to see>](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/centi_nikke.zip) | | 1000 | [<NSFW, click to see>](1000/previews/pattern_1.png) | [<NSFW, click to see>](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/centi_nikke.zip) | | 900 | [<NSFW, click to see>](900/previews/pattern_1.png) | [<NSFW, click to see>](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/centi_nikke.zip) | | 800 | [<NSFW, click to see>](800/previews/pattern_1.png) | [<NSFW, click to see>](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/centi_nikke.zip) | | 700 | [<NSFW, click to see>](700/previews/pattern_1.png) | [<NSFW, click to see>](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/centi_nikke.zip) | | 600 | [<NSFW, click to see>](600/previews/pattern_1.png) | [<NSFW, click to see>](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/centi_nikke.zip) | | 500 | [<NSFW, click to see>](500/previews/pattern_1.png) | [<NSFW, click to see>](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/centi_nikke.zip) | | 400 | [<NSFW, click to see>](400/previews/pattern_1.png) | [<NSFW, click to see>](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/centi_nikke.zip) | | 300 | [<NSFW, click to see>](300/previews/pattern_1.png) | [<NSFW, click to see>](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/centi_nikke.zip) | | 200 | [<NSFW, click to see>](200/previews/pattern_1.png) | [<NSFW, click to see>](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/centi_nikke.zip) | | 100 | [<NSFW, click to see>](100/previews/pattern_1.png) | [<NSFW, click to see>](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/centi_nikke.zip) |
openerotica/open_llama_3b_v2-8k-GPTQ
openerotica
2023-08-06T06:28:49Z
8
3
transformers
[ "transformers", "llama", "text-generation", "dataset:tiiuae/falcon-refinedweb", "dataset:bigcode/starcoderdata", "dataset:togethercomputer/RedPajama-Data-1T", "arxiv:2302.13971", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-08-03T22:43:02Z
--- license: apache-2.0 datasets: - tiiuae/falcon-refinedweb - bigcode/starcoderdata - togethercomputer/RedPajama-Data-1T --- # OpenLLaMA: An Open Reproduction of LLaMA **TL;DR**: we are releasing our public preview of OpenLLaMA, a permissively licensed open source reproduction of Meta AI’s LLaMA. We are releasing a series of 3B, 7B and 13B models trained on different data mixtures. Our model weights can serve as the drop in replacement of LLaMA in existing implementations. In this repo, we present a permissively licensed open source reproduction of Meta AI's [LLaMA](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/) large language model. We are releasing a series of 3B, 7B and 13B models trained on 1T tokens. We provide PyTorch and JAX weights of pre-trained OpenLLaMA models, as well as evaluation results and comparison against the original LLaMA models. The v2 model is better than the old v1 model trained on a different data mixture. Please see the [project homepage of OpenLLaMA](https://github.com/openlm-research/open_llama) for more details. ## Weights Release, License and Usage We release the weights in two formats: an EasyLM format to be use with our [EasyLM framework](https://github.com/young-geng/EasyLM), and a PyTorch format to be used with the [Hugging Face transformers](https://huggingface.co/docs/transformers/index) library. Both our training framework EasyLM and the checkpoint weights are licensed permissively under the Apache 2.0 license. ### Loading the Weights with Hugging Face Transformers Preview checkpoints can be directly loaded from Hugging Face Hub. **Please note that it is advised to avoid using the Hugging Face fast tokenizer for now, as we’ve observed that** [**the auto-converted fast tokenizer sometimes gives incorrect tokenizations**](https://github.com/huggingface/transformers/issues/24233)**.** This can be achieved by directly using the `LlamaTokenizer` class, or passing in the `use_fast=False` option for the `AutoTokenizer` class. See the following example for usage. ```python import torch from transformers import LlamaTokenizer, LlamaForCausalLM ## v2 models model_path = 'openlm-research/open_llama_3b_v2' # model_path = 'openlm-research/open_llama_7b_v2' ## v1 models # model_path = 'openlm-research/open_llama_3b' # model_path = 'openlm-research/open_llama_7b' # model_path = 'openlm-research/open_llama_13b' tokenizer = LlamaTokenizer.from_pretrained(model_path) model = LlamaForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map='auto', ) prompt = 'Q: What is the largest animal?\nA:' input_ids = tokenizer(prompt, return_tensors="pt").input_ids generation_output = model.generate( input_ids=input_ids, max_new_tokens=32 ) print(tokenizer.decode(generation_output[0])) ``` For more advanced usage, please follow the [transformers LLaMA documentation](https://huggingface.co/docs/transformers/main/model_doc/llama). ### Evaluating with LM-Eval-Harness The model can be evaluated with [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness). However, due to the aforementioned tokenizer issue, we need to avoid using the fast tokenizer to obtain the correct results. This can be achieved by passing in `use_fast=False` to [this part of lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness/blob/4b701e228768052cfae9043dca13e82052ca5eea/lm_eval/models/huggingface.py#LL313C9-L316C10), as shown in the example below: ```python tokenizer = self.AUTO_TOKENIZER_CLASS.from_pretrained( pretrained if tokenizer is None else tokenizer, revision=revision + ("/" + subfolder if subfolder is not None else ""), use_fast=False ) ``` ### Loading the Weights with EasyLM For using the weights in our EasyLM framework, please refer to the [LLaMA documentation of EasyLM](https://github.com/young-geng/EasyLM/blob/main/docs/llama.md). Note that unlike the original LLaMA model, our OpenLLaMA tokenizer and weights are trained completely from scratch so it is no longer needed to obtain the original LLaMA tokenizer and weights. ## Dataset and Training The v1 models are trained on the [RedPajama dataset](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T). The v2 models are trained on a mixture of the [Falcon refined-web dataset](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), the [StarCoder dataset](https://huggingface.co/datasets/bigcode/starcoderdata) and the wikipedia, arxiv, book and stackexchange part of the [RedPajama dataset](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T). We follow the exactly same preprocessing steps and training hyperparameters as the original LLaMA paper, including model architecture, context length, training steps, learning rate schedule, and optimizer. The only difference between our setting and the original one is the dataset used: OpenLLaMA employs open datasets rather than the one utilized by the original LLaMA. We train the models on cloud TPU-v4s using [EasyLM](https://github.com/young-geng/EasyLM), a JAX based training pipeline we developed for training and fine-tuning large language models. We employ a combination of normal data parallelism and fully sharded data parallelism [](https://engineering.fb.com/2021/07/15/open-source/fsdp/)(also know as ZeRO stage 3) to balance the training throughput and memory usage. Overall we reach a throughput of over 2200 tokens / second / TPU-v4 chip for our 7B model. ## Evaluation We evaluated OpenLLaMA on a wide range of tasks using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). The LLaMA results are generated by running the original LLaMA model on the same evaluation metrics. We note that our results for the LLaMA model differ slightly from the original LLaMA paper, which we believe is a result of different evaluation protocols. Similar differences have been reported in [this issue of lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/issues/443). Additionally, we present the results of GPT-J, a 6B parameter model trained on the [Pile](https://pile.eleuther.ai/) dataset by [EleutherAI](https://www.eleuther.ai/). The original LLaMA model was trained for 1 trillion tokens and GPT-J was trained for 500 billion tokens. We present the results in the table below. OpenLLaMA exhibits comparable performance to the original LLaMA and GPT-J across a majority of tasks, and outperforms them in some tasks. | **Task/Metric** | GPT-J 6B | LLaMA 7B | LLaMA 13B | OpenLLaMA 3Bv2 | OpenLLaMA 7Bv2 | OpenLLaMA 3B | OpenLLaMA 7B | OpenLLaMA 13B | | ---------------------- | -------- | -------- | --------- | -------------- | -------------- | ------------ | ------------ | ------------- | | anli_r1/acc | 0.32 | 0.35 | 0.35 | 0.33 | 0.34 | 0.33 | 0.33 | 0.33 | | anli_r2/acc | 0.34 | 0.34 | 0.36 | 0.36 | 0.35 | 0.32 | 0.36 | 0.33 | | anli_r3/acc | 0.35 | 0.37 | 0.39 | 0.38 | 0.39 | 0.35 | 0.38 | 0.40 | | arc_challenge/acc | 0.34 | 0.39 | 0.44 | 0.34 | 0.39 | 0.34 | 0.37 | 0.41 | | arc_challenge/acc_norm | 0.37 | 0.41 | 0.44 | 0.36 | 0.41 | 0.37 | 0.38 | 0.44 | | arc_easy/acc | 0.67 | 0.68 | 0.75 | 0.68 | 0.73 | 0.69 | 0.72 | 0.75 | | arc_easy/acc_norm | 0.62 | 0.52 | 0.59 | 0.63 | 0.70 | 0.65 | 0.68 | 0.70 | | boolq/acc | 0.66 | 0.75 | 0.71 | 0.66 | 0.72 | 0.68 | 0.71 | 0.75 | | hellaswag/acc | 0.50 | 0.56 | 0.59 | 0.52 | 0.56 | 0.49 | 0.53 | 0.56 | | hellaswag/acc_norm | 0.66 | 0.73 | 0.76 | 0.70 | 0.75 | 0.67 | 0.72 | 0.76 | | openbookqa/acc | 0.29 | 0.29 | 0.31 | 0.26 | 0.30 | 0.27 | 0.30 | 0.31 | | openbookqa/acc_norm | 0.38 | 0.41 | 0.42 | 0.38 | 0.41 | 0.40 | 0.40 | 0.43 | | piqa/acc | 0.75 | 0.78 | 0.79 | 0.77 | 0.79 | 0.75 | 0.76 | 0.77 | | piqa/acc_norm | 0.76 | 0.78 | 0.79 | 0.78 | 0.80 | 0.76 | 0.77 | 0.79 | | record/em | 0.88 | 0.91 | 0.92 | 0.87 | 0.89 | 0.88 | 0.89 | 0.91 | | record/f1 | 0.89 | 0.91 | 0.92 | 0.88 | 0.89 | 0.89 | 0.90 | 0.91 | | rte/acc | 0.54 | 0.56 | 0.69 | 0.55 | 0.57 | 0.58 | 0.60 | 0.64 | | truthfulqa_mc/mc1 | 0.20 | 0.21 | 0.25 | 0.22 | 0.23 | 0.22 | 0.23 | 0.25 | | truthfulqa_mc/mc2 | 0.36 | 0.34 | 0.40 | 0.35 | 0.35 | 0.35 | 0.35 | 0.38 | | wic/acc | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.48 | 0.51 | 0.47 | | winogrande/acc | 0.64 | 0.68 | 0.70 | 0.63 | 0.66 | 0.62 | 0.67 | 0.70 | | Average | 0.52 | 0.55 | 0.57 | 0.53 | 0.56 | 0.53 | 0.55 | 0.57 | We removed the task CB and WSC from our benchmark, as our model performs suspiciously high on these two tasks. We hypothesize that there could be a benchmark data contamination in the training set. ## Contact We would love to get feedback from the community. If you have any questions, please open an issue or contact us. OpenLLaMA is developed by: [Xinyang Geng](https://young-geng.xyz/)* and [Hao Liu](https://www.haoliu.site/)* from Berkeley AI Research. *Equal Contribution ## Acknowledgment We thank the [Google TPU Research Cloud](https://sites.research.google/trc/about/) program for providing part of the computation resources. We’d like to specially thank Jonathan Caton from TPU Research Cloud for helping us organizing compute resources, Rafi Witten from the Google Cloud team and James Bradbury from the Google JAX team for helping us optimizing our training throughput. We’d also want to thank Charlie Snell, Gautier Izacard, Eric Wallace, Lianmin Zheng and our user community for the discussions and feedback. The OpenLLaMA 13B v1 model is trained in collaboration with [Stability AI](https://stability.ai/), and we thank Stability AI for providing the computation resources. We’d like to especially thank David Ha and Shivanshu Purohit for the coordinating the logistics and providing engineering support. ## Reference If you found OpenLLaMA useful in your research or applications, please cite using the following BibTeX: ``` @software{openlm2023openllama, author = {Geng, Xinyang and Liu, Hao}, title = {OpenLLaMA: An Open Reproduction of LLaMA}, month = May, year = 2023, url = {https://github.com/openlm-research/open_llama} } ``` ``` @software{together2023redpajama, author = {Together Computer}, title = {RedPajama-Data: An Open Source Recipe to Reproduce LLaMA training dataset}, month = April, year = 2023, url = {https://github.com/togethercomputer/RedPajama-Data} } ``` ``` @article{touvron2023llama, title={Llama: Open and efficient foundation language models}, author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and others}, journal={arXiv preprint arXiv:2302.13971}, year={2023} } ```
CyberHarem/sakura_nikke
CyberHarem
2023-08-06T06:22:24Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/sakura_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-06T06:18:39Z
--- license: mit datasets: - CyberHarem/sakura_nikke pipeline_tag: text-to-image tags: - art --- # Lora of sakura_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/sakura_nikke.pt` as the embedding and `1500/sakura_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `sakura_nikke`.** These are available steps: | Steps | pattern_1 | bikini | free | nude | Download | |--------:|:-----------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:----------------------------------| | 1500 | ![pattern_1-1500](1500/previews/pattern_1.png) | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/sakura_nikke.zip) | | 1400 | ![pattern_1-1400](1400/previews/pattern_1.png) | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/sakura_nikke.zip) | | 1300 | ![pattern_1-1300](1300/previews/pattern_1.png) | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/sakura_nikke.zip) | | 1200 | ![pattern_1-1200](1200/previews/pattern_1.png) | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/sakura_nikke.zip) | | 1100 | ![pattern_1-1100](1100/previews/pattern_1.png) | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/sakura_nikke.zip) | | 1000 | ![pattern_1-1000](1000/previews/pattern_1.png) | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/sakura_nikke.zip) | | 900 | ![pattern_1-900](900/previews/pattern_1.png) | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/sakura_nikke.zip) | | 800 | ![pattern_1-800](800/previews/pattern_1.png) | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/sakura_nikke.zip) | | 700 | ![pattern_1-700](700/previews/pattern_1.png) | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/sakura_nikke.zip) | | 600 | ![pattern_1-600](600/previews/pattern_1.png) | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/sakura_nikke.zip) | | 500 | ![pattern_1-500](500/previews/pattern_1.png) | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/sakura_nikke.zip) | | 400 | ![pattern_1-400](400/previews/pattern_1.png) | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/sakura_nikke.zip) | | 300 | ![pattern_1-300](300/previews/pattern_1.png) | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/sakura_nikke.zip) | | 200 | ![pattern_1-200](200/previews/pattern_1.png) | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/sakura_nikke.zip) | | 100 | ![pattern_1-100](100/previews/pattern_1.png) | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/sakura_nikke.zip) |
TheRains/cv9-special-batch12-base
TheRains
2023-08-06T06:20:26Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "id", "dataset:mozilla-foundation/common_voice_9_0", "base_model:openai/whisper-base", "base_model:finetune:openai/whisper-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-06T04:59:17Z
--- language: - id license: apache-2.0 base_model: openai/whisper-base tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_9_0 metrics: - wer model-index: - name: Whisper Small Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_9_0 id type: mozilla-foundation/common_voice_9_0 config: id split: test args: id metrics: - name: Wer type: wer value: 23.77271681619508 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Indonesian This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the mozilla-foundation/common_voice_9_0 id dataset. It achieves the following results on the evaluation set: - Loss: 0.4079 - Wer: 23.7727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 12 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3536 | 1.45 | 1000 | 0.4083 | 26.1882 | | 0.2171 | 2.9 | 2000 | 0.3794 | 24.4813 | | 0.0604 | 4.35 | 3000 | 0.3954 | 24.5595 | | 0.0531 | 5.81 | 4000 | 0.4079 | 23.7727 | | 0.0245 | 7.26 | 5000 | 0.4240 | 23.9291 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
sohailsiddiqui/marian-finetuned-kde4-en-to-fr
sohailsiddiqui
2023-08-06T06:05:45Z
61
0
transformers
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-05T21:00:48Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: sohailsiddiq99/marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # sohailsiddiq99/marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0584 - Validation Loss: 0.8824 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 17733, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.0584 | 0.8824 | 0 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.14.0 - Tokenizers 0.11.0
MayoChacon/Paisaje
MayoChacon
2023-08-06T06:00:22Z
0
0
null
[ "arxiv:1910.09700", "license:bigscience-openrail-m", "region:us" ]
null
2023-08-06T05:56:46Z
--- license: bigscience-openrail-m --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
asmitha26/falcon-medical
asmitha26
2023-08-06T05:59:22Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-06T05:24:11Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
srikanthsri/SRIKANTH-Falcon-finetune
srikanthsri
2023-08-06T05:18:46Z
3
0
peft
[ "peft", "region:us" ]
null
2023-08-06T04:59:09Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
CyberHarem/chokai_azurlane
CyberHarem
2023-08-06T05:09:03Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/chokai_azurlane", "license:mit", "region:us" ]
text-to-image
2023-08-06T05:05:42Z
--- license: mit datasets: - CyberHarem/chokai_azurlane pipeline_tag: text-to-image tags: - art --- # Lora of chokai_azurlane This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/chokai_azurlane.pt` as the embedding and `1500/chokai_azurlane.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `chokai_azurlane`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:-------------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/chokai_azurlane.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/chokai_azurlane.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/chokai_azurlane.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/chokai_azurlane.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/chokai_azurlane.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/chokai_azurlane.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/chokai_azurlane.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/chokai_azurlane.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/chokai_azurlane.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/chokai_azurlane.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/chokai_azurlane.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/chokai_azurlane.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/chokai_azurlane.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/chokai_azurlane.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/chokai_azurlane.zip) |
DrishtiSharma/speecht5_finetuned_voxpopuli_es_20k_steps_16_test1
DrishtiSharma
2023-08-06T04:58:25Z
86
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "dataset:voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-08-02T14:13:00Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer - text-to-speech datasets: - voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_es_20k_steps_16_test1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_es_20k_steps_16_test1 This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.6964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - training_steps: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7532 | 0.01 | 5 | 0.6964 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
umarzein/roberta-base-squad2-twitter-sent-ext-lora-balanced
umarzein
2023-08-06T04:57:11Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-06T04:57:09Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
fromhell01/Reinforce-CartPolev1-v2
fromhell01
2023-08-06T04:48:57Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T04:48:48Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPolev1-v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
fromhell01/Reinforce-CartPolev1
fromhell01
2023-08-06T04:40:31Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T04:40:22Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPolev1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 285.20 +/- 135.46 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
mxmax/baichuan-7b-sft-001
mxmax
2023-08-06T04:31:23Z
22
3
transformers
[ "transformers", "pytorch", "baichuan", "text-generation", "custom_code", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-31T08:33:37Z
--- license: apache-2.0 --- ## 一、基于baichuan 7b模型进行sft,对其人类意图 ## 二、sft数据是在开源MOSS数据中通过各个类别均衡采样15w数据进行sft ## 模型推理 Install package: ``` pip install transformers pip install sentencepiece pip install vllm ``` ### huggingface结合fastapi起服务,支持多轮对话 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel import torch import uvicorn from fastapi import FastAPI import jsonlines device = 'cuda' model_name = 'mxmax/baichuan-7b-sft-001' max_new_tokens = 500 top_p = 0.9 temperature = 0.35 repetition_penalty = 1.0 tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, low_cpu_mem_usage=True, torch_dtype=torch.float16, device_map={'': 0}#'auto' ).cuda() # model = PeftModel.from_pretrained(model, adapter_name) model.eval() model = model.to(device) # 输入模型的最大长度 history_max_len = 1024 def model_infer(user_input): history_token_ids = tokenizer('<s>', return_tensors="pt").input_ids user_input_ids = tokenizer(user_input, return_tensors="pt").input_ids history_token_ids = torch.concat((history_token_ids, user_input_ids[:, -history_max_len:]), dim=1) model_input_ids = history_token_ids.to(device) outputs = model.generate( input_ids=model_input_ids, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty, eos_token_id=tokenizer.eos_token_id ) model_input_ids_len = model_input_ids.size(1) response_ids = outputs[:, model_input_ids_len:] response = tokenizer.batch_decode(response_ids) return response[0].strip().replace('</s>', "") app = FastAPI() @app.get('/') async def root(): return {"msg": "Hello World"} @app.post('/baichuan_sft_001') async def baichuan_sft_001(message: dict): prompt = '' for l in message['context']: prompt += 'human:'+l['human']+'\nassistant:'+l['assistant']+'</s>' result = model_infer(prompt) message['context'][-1]['assistant'] = result return {'model_ouput':result} if __name__ == '__main__': uvicorn.run('model_serving:app',host="0.0.0.0", port=6006) ``` ### vllm结合fastapi起服务,加速推理,支持多轮对话 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel import torch import uvicorn from fastapi import FastAPI import jsonlines from vllm import LLM, SamplingParams device = 'cuda' model_name = 'mxmax/baichuan-7b-sft-001' max_new_tokens = 512 top_p = 0.9 temperature = 0.35 repetition_penalty = 0.1 history_max_len = 1024 sampling_params = SamplingParams(temperature=temperature, top_p=top_p, max_tokens=max_new_tokens, presence_penalty=repetition_penalty) # Create an LLM. llm = LLM(model=model_name,trust_remote_code=True,dtype='float16') file = jsonlines.open('chat_record.json','a') app = FastAPI() @app.get('/') async def root(): return {"msg": "Hello World"} @app.post('/baichuan_sft_001') async def baichuan_sft_001(message: dict): prompt = '' for l in message['context']: prompt += 'human:'+l['human']+'\nassistant:'+l['assistant']+'</s>' prompt = '<s>'+prompt[-history_max_len:] outputs = llm.generate([prompt], sampling_params) result = outputs[0].outputs[0].text message['context'][-1]['assistant'] = result return {'model_ouput':result} if __name__ == '__main__': uvicorn.run('vllm_serving:app',host="0.0.0.0", port=6006) ``` ## 模型效果展示 ![arch](./images/1.jpg) ![arch](./images/2.jpg) ![arch](./images/3.jpg) ![arch](./images/4.jpg) ![arch](./images/5.jpg) ![arch](./images/6.jpg) ## 联系方式 ![arch](./images/微信好友二维码.jpg) 加好友请备注:来自于huggingface网站交流技术+名字 qq群:621725172 ## 引用 ```bash @misc{mxmax, title={baichuan_sft: baichuan-7b-sft-001}, author={Ma Xin}, year={2023}, howpublished={\url{https://huggingface.co/mxmax/baichuan-7b-sft-001}}, } ```
Jancsxu/Jancus
Jancsxu
2023-08-06T04:26:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-15T18:10:26Z
--- license: creativeml-openrail-m ---
Za88yes/Ris
Za88yes
2023-08-06T04:14:33Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-05T19:46:10Z
--- license: creativeml-openrail-m ---
TheRains/cv9-special-batch4-base
TheRains
2023-08-06T03:50:23Z
113
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "id", "dataset:mozilla-foundation/common_voice_9_0", "base_model:openai/whisper-base", "base_model:finetune:openai/whisper-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-06T02:30:42Z
--- language: - id license: apache-2.0 base_model: openai/whisper-base tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_9_0 metrics: - wer model-index: - name: Whisper Small Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_9_0 id type: mozilla-foundation/common_voice_9_0 config: id split: test args: id metrics: - name: Wer type: wer value: 23.40004600874166 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Indonesian This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the mozilla-foundation/common_voice_9_0 id dataset. It achieves the following results on the evaluation set: - Loss: 0.3697 - Wer: 23.4000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5013 | 0.48 | 1000 | 0.4523 | 28.5990 | | 0.4145 | 0.97 | 2000 | 0.4067 | 25.8109 | | 0.2437 | 1.45 | 3000 | 0.3821 | 24.3800 | | 0.2566 | 1.94 | 4000 | 0.3695 | 23.9798 | | 0.1161 | 2.42 | 5000 | 0.3697 | 23.4000 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
CyberHarem/mihara_nikke
CyberHarem
2023-08-06T03:43:51Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/mihara_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-06T03:40:14Z
--- license: mit datasets: - CyberHarem/mihara_nikke pipeline_tag: text-to-image tags: - art --- # Lora of mihara_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/mihara_nikke.pt` as the embedding and `1500/mihara_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `mihara_nikke`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:----------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/mihara_nikke.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/mihara_nikke.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/mihara_nikke.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/mihara_nikke.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/mihara_nikke.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/mihara_nikke.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/mihara_nikke.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/mihara_nikke.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/mihara_nikke.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/mihara_nikke.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/mihara_nikke.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/mihara_nikke.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/mihara_nikke.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/mihara_nikke.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/mihara_nikke.zip) |
Tien203/fine-tune-llama
Tien203
2023-08-06T03:21:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-05T10:16:41Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
yashgoenka/gorilla-llama-2-7B-QLoRA
yashgoenka
2023-08-06T03:20:39Z
15
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-2", "llama-2-7b", "gorilla", "qlora", "api", "dataset:yashgoenka/gorilla-16k", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-01T22:49:08Z
--- license: apache-2.0 datasets: - yashgoenka/gorilla-16k pipeline_tag: text-generation tags: - llama - llama-2 - llama-2-7b - gorilla - qlora - api library_name: transformers ---
TheRains/cv9-special-batch8-small
TheRains
2023-08-06T03:07:36Z
81
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "id", "dataset:mozilla-foundation/common_voice_9_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-05T10:37:49Z
--- language: - id license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_9_0 metrics: - wer model-index: - name: Whisper Small Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_9_0 id type: mozilla-foundation/common_voice_9_0 config: id split: test args: id metrics: - name: Wer type: wer value: 12.472969864274212 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Indonesian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_9_0 id dataset. It achieves the following results on the evaluation set: - Loss: 0.2873 - Wer: 12.4730 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3041 | 0.97 | 1000 | 0.2612 | 14.7090 | | 0.1437 | 1.94 | 2000 | 0.2485 | 14.0419 | | 0.0555 | 2.9 | 3000 | 0.2530 | 12.8778 | | 0.0173 | 3.87 | 4000 | 0.2704 | 12.5880 | | 0.0067 | 4.84 | 5000 | 0.2873 | 12.4730 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
CyberHarem/exia_nikke
CyberHarem
2023-08-06T02:59:39Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/exia_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-06T02:54:31Z
--- license: mit datasets: - CyberHarem/exia_nikke pipeline_tag: text-to-image tags: - art --- # Lora of exia_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/exia_nikke.pt` as the embedding and `1500/exia_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `exia_nikke`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:--------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/exia_nikke.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/exia_nikke.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/exia_nikke.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/exia_nikke.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/exia_nikke.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/exia_nikke.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/exia_nikke.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/exia_nikke.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/exia_nikke.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/exia_nikke.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/exia_nikke.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/exia_nikke.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/exia_nikke.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/exia_nikke.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/exia_nikke.zip) |