modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 12:33:28
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 12:33:10
card
stringlengths
11
1.01M
teven/cross_all_bs192_hardneg_finetuned_WebNLG2020_correctness
teven
2022-09-21T15:43:25Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-21T15:43:18Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # teven/cross_all_bs192_hardneg_finetuned_WebNLG2020_correctness This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/cross_all_bs192_hardneg_finetuned_WebNLG2020_correctness') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('teven/cross_all_bs192_hardneg_finetuned_WebNLG2020_correctness') model = AutoModel.from_pretrained('teven/cross_all_bs192_hardneg_finetuned_WebNLG2020_correctness') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/cross_all_bs192_hardneg_finetuned_WebNLG2020_correctness) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teven/cross_all_bs320_vanilla_finetuned_WebNLG2020_correctness
teven
2022-09-21T15:42:49Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-21T15:42:41Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # teven/cross_all_bs320_vanilla_finetuned_WebNLG2020_correctness This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/cross_all_bs320_vanilla_finetuned_WebNLG2020_correctness') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('teven/cross_all_bs320_vanilla_finetuned_WebNLG2020_correctness') model = AutoModel.from_pretrained('teven/cross_all_bs320_vanilla_finetuned_WebNLG2020_correctness') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/cross_all_bs320_vanilla_finetuned_WebNLG2020_correctness) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teven/cross_all-mpnet-base-v2_finetuned_WebNLG2020_correctness
teven
2022-09-21T15:41:08Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-21T15:41:00Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # teven/cross_all-mpnet-base-v2_finetuned_WebNLG2020_correctness This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/cross_all-mpnet-base-v2_finetuned_WebNLG2020_correctness') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('teven/cross_all-mpnet-base-v2_finetuned_WebNLG2020_correctness') model = AutoModel.from_pretrained('teven/cross_all-mpnet-base-v2_finetuned_WebNLG2020_correctness') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/cross_all-mpnet-base-v2_finetuned_WebNLG2020_correctness) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teven/bi_all_bs320_vanilla_finetuned_WebNLG2020_correctness
teven
2022-09-21T15:40:30Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-21T15:40:23Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # teven/bi_all_bs320_vanilla_finetuned_WebNLG2020_correctness This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/bi_all_bs320_vanilla_finetuned_WebNLG2020_correctness') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/bi_all_bs320_vanilla_finetuned_WebNLG2020_correctness) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 321 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 0, "evaluator": "better_cross_encoder.PearsonCorrelationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 5e-05 }, "scheduler": "warmupcosine", "steps_per_epoch": null, "warmup_steps": 1605, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teven/bi_all-mpnet-base-v2_finetuned_WebNLG2020_correctness
teven
2022-09-21T15:37:39Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-21T15:37:31Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # teven/bi_all-mpnet-base-v2_finetuned_WebNLG2020_correctness This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/bi_all-mpnet-base-v2_finetuned_WebNLG2020_correctness') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/bi_all-mpnet-base-v2_finetuned_WebNLG2020_correctness) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 41 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 0, "evaluator": "better_cross_encoder.PearsonCorrelationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 0.0002 }, "scheduler": "warmupcosine", "steps_per_epoch": null, "warmup_steps": 205, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GItaf/gpt2-gpt2-TF-weight0.5-epoch5
GItaf
2022-09-21T15:24:17Z
112
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-21T12:07:29Z
--- tags: - generated_from_trainer model-index: - name: gpt2-gpt2-TF-weight0.5-epoch5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-gpt2-TF-weight0.5-epoch5 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.4047 - Cls loss: 0.8943 - Lm loss: 3.9573 - Cls Accuracy: 0.8305 - Cls F1: 0.8305 - Cls Precision: 0.8305 - Cls Recall: 0.8305 - Perplexity: 52.31 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cls loss | Lm loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Perplexity | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------:|:------------:|:------:|:-------------:|:----------:|:----------:| | 4.4891 | 1.0 | 3470 | 4.2525 | 0.4695 | 4.0177 | 0.8046 | 0.8023 | 0.8093 | 0.8046 | 55.57 | | 4.2708 | 2.0 | 6940 | 4.2621 | 0.5568 | 3.9835 | 0.8398 | 0.8383 | 0.8438 | 0.8398 | 53.71 | | 4.1614 | 3.0 | 10410 | 4.2509 | 0.5637 | 3.9689 | 0.8444 | 0.8443 | 0.8443 | 0.8444 | 52.93 | | 4.0683 | 4.0 | 13880 | 4.3454 | 0.7723 | 3.9591 | 0.8282 | 0.8281 | 0.8281 | 0.8282 | 52.41 | | 4.0036 | 5.0 | 17350 | 4.4047 | 0.8943 | 3.9573 | 0.8305 | 0.8305 | 0.8305 | 0.8305 | 52.31 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/kogatan-shiny
sd-concepts-library
2022-09-21T15:11:22Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-21T15:11:16Z
--- license: mit --- ### kogatan_shiny on Stable Diffusion This is the `kogatan` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![kogatan 0](https://huggingface.co/sd-concepts-library/kogatan-shiny/resolve/main/concept_images/0.jpeg) ![kogatan 1](https://huggingface.co/sd-concepts-library/kogatan-shiny/resolve/main/concept_images/1.jpeg) ![kogatan 2](https://huggingface.co/sd-concepts-library/kogatan-shiny/resolve/main/concept_images/2.jpeg) ![kogatan 3](https://huggingface.co/sd-concepts-library/kogatan-shiny/resolve/main/concept_images/3.jpeg) ![kogatan 4](https://huggingface.co/sd-concepts-library/kogatan-shiny/resolve/main/concept_images/4.jpeg)
sd-concepts-library/homestuck-sprite
sd-concepts-library
2022-09-21T15:08:58Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-21T15:08:54Z
--- license: mit --- ### homestuck sprite on Stable Diffusion This is the `<homestuck-sprite>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<homestuck-sprite> 0](https://huggingface.co/sd-concepts-library/homestuck-sprite/resolve/main/concept_images/1.jpeg) ![<homestuck-sprite> 1](https://huggingface.co/sd-concepts-library/homestuck-sprite/resolve/main/concept_images/2.jpeg) ![<homestuck-sprite> 2](https://huggingface.co/sd-concepts-library/homestuck-sprite/resolve/main/concept_images/0.jpeg) ![<homestuck-sprite> 3](https://huggingface.co/sd-concepts-library/homestuck-sprite/resolve/main/concept_images/3.jpeg) ![<homestuck-sprite> 4](https://huggingface.co/sd-concepts-library/homestuck-sprite/resolve/main/concept_images/4.jpeg)
minminzi/t5-base-finetuned-eli5
minminzi
2022-09-21T15:02:46Z
126
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-20T15:35:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-base-finetuned-eli5 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-eli5 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.0 - Rouge2: 0.0 - Rougel: 0.0 - Rougelsum: 0.0 - Gen Len: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 17040 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.0 - Tokenizers 0.12.1
rugo/xlm-roberta-base-finetuned
rugo
2022-09-21T14:07:10Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-21T13:43:38Z
xml-roberta-base-finetuned This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an legal documents dataset.
RandomLegend/Cyberpunk-Lucy
RandomLegend
2022-09-21T14:03:17Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-21T13:51:48Z
--- license: mit --- Cyberpunk-Lucy on Stable Diffusion This is the <cyberpunk-lucy> concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the Stable Conceptualizer notebook. You can also train your own concepts and load them into the concept libraries using this notebook. Here is the new concept you will be able to use as an object: cyberpunk-lucy Training Images:
sd-concepts-library/david-martinez-cyberpunk
sd-concepts-library
2022-09-21T14:03:07Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-21T14:02:55Z
--- license: mit --- ### david martinez cyberpunk on Stable Diffusion This is the `<david-martinez-cyberpunk>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<david-martinez-cyberpunk> 0](https://huggingface.co/sd-concepts-library/david-martinez-cyberpunk/resolve/main/concept_images/1.jpeg) ![<david-martinez-cyberpunk> 1](https://huggingface.co/sd-concepts-library/david-martinez-cyberpunk/resolve/main/concept_images/2.jpeg) ![<david-martinez-cyberpunk> 2](https://huggingface.co/sd-concepts-library/david-martinez-cyberpunk/resolve/main/concept_images/0.jpeg) ![<david-martinez-cyberpunk> 3](https://huggingface.co/sd-concepts-library/david-martinez-cyberpunk/resolve/main/concept_images/3.jpeg) ![<david-martinez-cyberpunk> 4](https://huggingface.co/sd-concepts-library/david-martinez-cyberpunk/resolve/main/concept_images/4.jpeg) ![<david-martinez-cyberpunk> 5](https://huggingface.co/sd-concepts-library/david-martinez-cyberpunk/resolve/main/concept_images/5.jpeg)
sd-concepts-library/giygas
sd-concepts-library
2022-09-21T14:01:37Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-21T13:51:32Z
--- license: mit --- ### giygas on Stable Diffusion This is the `<giygas>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Trained using the initializer token "swirl". It will primarily generate patterns of usually red and black swirls, patterns that sometimes tile. It may be prone to triggering the "Potential NSFW content" check, despite the training data used. Here is the new concept you will be able to use as an `object`: ![<giygas> 0](https://huggingface.co/sd-concepts-library/giygas/resolve/main/concept_images/1.jpeg) ![<giygas> 1](https://huggingface.co/sd-concepts-library/giygas/resolve/main/concept_images/2.jpeg) ![<giygas> 2](https://huggingface.co/sd-concepts-library/giygas/resolve/main/concept_images/0.jpeg)
Wanjiru/autotrain_gro_ner
Wanjiru
2022-09-21T13:54:32Z
106
1
transformers
[ "transformers", "pytorch", "bert", "token-classification", "sequence-tagger-model", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-18T12:54:37Z
--- tags: - bert - token-classification - sequence-tagger-model language: en widget: - text: "Total exports of maize" --- ## Token Classification Classifies Gro's items and metrics | **tag** | **token** | |---------------------------------|-----------| |B-ITEM | BEGINNING ITEM| |I-ITEM | INSIDE ITEM| |B-METRIC |BEGINNING METRIC | |I-METRIC | INSIDE METRIC| |O | OUTSIDE | --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from transformers import AutoModelForTokenClassification, AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("Wanjiru/autotrain_gro_ner") model = AutoModelForTokenClassification.from_pretrained("Wanjiru/autotrain_gro_ner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Wanjru" ner_res = nlp(example) ``` ---
truongpdd/vietnews-gpt2
truongpdd
2022-09-21T13:01:10Z
6
1
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-08T12:20:20Z
## How to use: ``` from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('truongpdd/vietnews-gpt2') model = AutoModelForCausalLM.from_pretrained('truongpdd/vietnews-gpt2') ```
sd-concepts-library/child-zombie
sd-concepts-library
2022-09-21T12:17:50Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-21T12:17:38Z
--- license: mit --- ### child zombie on Stable Diffusion This is the `<child-zombie>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<child-zombie> 0](https://huggingface.co/sd-concepts-library/child-zombie/resolve/main/concept_images/1.jpeg) ![<child-zombie> 1](https://huggingface.co/sd-concepts-library/child-zombie/resolve/main/concept_images/2.jpeg) ![<child-zombie> 2](https://huggingface.co/sd-concepts-library/child-zombie/resolve/main/concept_images/0.jpeg)
GItaf/gpt2-gpt2-TF-weight2-epoch5
GItaf
2022-09-21T12:02:13Z
111
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-21T08:54:13Z
--- tags: - generated_from_trainer model-index: - name: gpt2-gpt2-TF-weight2-epoch5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-gpt2-TF-weight2-epoch5 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.8190 - Cls loss: 0.9275 - Lm loss: 3.9629 - Cls Accuracy: 0.8467 - Cls F1: 0.8462 - Cls Precision: 0.8470 - Cls Recall: 0.8467 - Perplexity: 52.61 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cls loss | Lm loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Perplexity | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------:|:------------:|:------:|:-------------:|:----------:|:----------:| | 5.612 | 1.0 | 3470 | 5.5564 | 0.7637 | 4.0282 | 0.7689 | 0.7591 | 0.7959 | 0.7689 | 56.16 | | 5.2267 | 2.0 | 6940 | 5.2872 | 0.6471 | 3.9922 | 0.8444 | 0.8434 | 0.8463 | 0.8444 | 54.17 | | 4.9082 | 3.0 | 10410 | 5.5032 | 0.7631 | 3.9761 | 0.8415 | 0.8405 | 0.8435 | 0.8415 | 53.31 | | 4.5998 | 4.0 | 13880 | 5.6560 | 0.8448 | 3.9654 | 0.8484 | 0.8483 | 0.8483 | 0.8484 | 52.74 | | 4.4024 | 5.0 | 17350 | 5.8190 | 0.9275 | 3.9629 | 0.8467 | 0.8462 | 0.8470 | 0.8467 | 52.61 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
mayorov-s/q-Taxi-v3
mayorov-s
2022-09-21T11:53:14Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-21T11:53:07Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="mayorov-s/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
GItaf/roberta-base-roberta-base-TF-weight2-epoch5
GItaf
2022-09-21T11:19:37Z
47
0
transformers
[ "transformers", "pytorch", "roberta", "text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-09-21T08:55:59Z
--- tags: - generated_from_trainer model-index: - name: roberta-base-roberta-base-TF-weight2-epoch5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-roberta-base-TF-weight2-epoch5 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.5174 - Cls loss: 0.6899 - Lm loss: 4.1376 - Cls Accuracy: 0.5401 - Cls F1: 0.3788 - Cls Precision: 0.2917 - Cls Recall: 0.5401 - Perplexity: 62.65 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cls loss | Lm loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Perplexity | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------:|:------------:|:------:|:-------------:|:----------:|:----------:| | 6.023 | 1.0 | 3470 | 5.6863 | 0.6910 | 4.3046 | 0.5401 | 0.3788 | 0.2917 | 0.5401 | 74.04 | | 5.6871 | 2.0 | 6940 | 5.5897 | 0.6926 | 4.2045 | 0.5401 | 0.3788 | 0.2917 | 0.5401 | 66.99 | | 5.5587 | 3.0 | 10410 | 5.5414 | 0.6905 | 4.1604 | 0.5401 | 0.3788 | 0.2917 | 0.5401 | 64.10 | | 5.481 | 4.0 | 13880 | 5.5208 | 0.6900 | 4.1409 | 0.5401 | 0.3788 | 0.2917 | 0.5401 | 62.86 | | 5.4338 | 5.0 | 17350 | 5.5174 | 0.6899 | 4.1376 | 0.5401 | 0.3788 | 0.2917 | 0.5401 | 62.65 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
research-backup/roberta-large-semeval2012-average-no-mask-prompt-e-loob-conceptnet-validated
research-backup
2022-09-21T11:05:28Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-21T10:33:17Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob-conceptnet-validated results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.9192460317460317 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5588235294117647 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5548961424332344 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7876598110061145 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.864 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5833333333333334 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6087962962962963 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.923610064788308 - name: F1 (macro) type: f1_macro value: 0.9181612533056485 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8495305164319249 - name: F1 (macro) type: f1_macro value: 0.6830369838555483 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6630552546045504 - name: F1 (macro) type: f1_macro value: 0.6572125224644058 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9648744522501217 - name: F1 (macro) type: f1_macro value: 0.8873701584242761 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8959573801316203 - name: F1 (macro) type: f1_macro value: 0.8927635190182807 --- # relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob-conceptnet-validated RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob-conceptnet-validated/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5588235294117647 - Accuracy on SAT: 0.5548961424332344 - Accuracy on BATS: 0.7876598110061145 - Accuracy on U2: 0.5833333333333334 - Accuracy on U4: 0.6087962962962963 - Accuracy on Google: 0.864 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob-conceptnet-validated/raw/main/classification.json)): - Micro F1 score on BLESS: 0.923610064788308 - Micro F1 score on CogALexV: 0.8495305164319249 - Micro F1 score on EVALution: 0.6630552546045504 - Micro F1 score on K&H+N: 0.9648744522501217 - Micro F1 score on ROOT09: 0.8959573801316203 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob-conceptnet-validated/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.9192460317460317 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob-conceptnet-validated") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask> - loss_function: info_loob - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 21 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob-conceptnet-validated/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
hadiqa123/xls-r-ur-large
hadiqa123
2022-09-21T10:33:30Z
78
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-20T21:18:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_8_0 model-index: - name: xls-r-ur-large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-ur-large This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_8_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.8056 - Wer: 0.4716 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.5282 | 3.25 | 1000 | 3.0650 | 0.9989 | | 1.7351 | 6.49 | 2000 | 0.8798 | 0.6284 | | 0.7662 | 9.74 | 3000 | 0.7720 | 0.5399 | | 0.5675 | 12.99 | 4000 | 0.7661 | 0.5229 | | 0.4591 | 16.23 | 5000 | 0.7849 | 0.5041 | | 0.3881 | 19.48 | 6000 | 0.8065 | 0.4893 | | 0.3522 | 22.73 | 7000 | 0.7915 | 0.4804 | | 0.3127 | 25.97 | 8000 | 0.8119 | 0.4804 | | 0.2932 | 29.22 | 9000 | 0.8056 | 0.4716 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/raichu
sd-concepts-library
2022-09-21T10:17:46Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-21T10:17:41Z
--- license: mit --- ### Raichu on Stable Diffusion This is the `<raichu>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<raichu> 0](https://huggingface.co/sd-concepts-library/raichu/resolve/main/concept_images/7.jpeg) ![<raichu> 1](https://huggingface.co/sd-concepts-library/raichu/resolve/main/concept_images/1.jpeg) ![<raichu> 2](https://huggingface.co/sd-concepts-library/raichu/resolve/main/concept_images/2.jpeg) ![<raichu> 3](https://huggingface.co/sd-concepts-library/raichu/resolve/main/concept_images/0.jpeg) ![<raichu> 4](https://huggingface.co/sd-concepts-library/raichu/resolve/main/concept_images/3.jpeg) ![<raichu> 5](https://huggingface.co/sd-concepts-library/raichu/resolve/main/concept_images/4.jpeg) ![<raichu> 6](https://huggingface.co/sd-concepts-library/raichu/resolve/main/concept_images/5.jpeg) ![<raichu> 7](https://huggingface.co/sd-concepts-library/raichu/resolve/main/concept_images/6.jpeg)
GItaf/gpt2-gpt2-TF-weight1-epoch5
GItaf
2022-09-21T10:11:48Z
111
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-14T13:43:08Z
--- tags: - generated_from_trainer model-index: - name: gpt2-gpt2-TF-weight1-epoch5-with-eval results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-gpt2-TF-weight1-epoch5-with-eval This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.9349 - Cls loss: 0.9747 - Lm loss: 3.9596 - Cls Accuracy: 0.8340 - Cls F1: 0.8334 - Cls Precision: 0.8346 - Cls Recall: 0.8340 - Perplexity: 52.44 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cls loss | Lm loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Perplexity | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------:|:------------:|:------:|:-------------:|:----------:|:----------:| | 4.8702 | 1.0 | 3470 | 4.7157 | 0.6951 | 4.0201 | 0.7752 | 0.7670 | 0.7978 | 0.7752 | 55.71 | | 4.5856 | 2.0 | 6940 | 4.6669 | 0.6797 | 3.9868 | 0.8352 | 0.8333 | 0.8406 | 0.8352 | 53.88 | | 4.4147 | 3.0 | 10410 | 4.6619 | 0.6899 | 3.9716 | 0.8375 | 0.8368 | 0.8384 | 0.8375 | 53.07 | | 4.2479 | 4.0 | 13880 | 4.8305 | 0.8678 | 3.9622 | 0.8403 | 0.8396 | 0.8413 | 0.8403 | 52.57 | | 4.1281 | 5.0 | 17350 | 4.9349 | 0.9747 | 3.9596 | 0.8340 | 0.8334 | 0.8346 | 0.8340 | 52.44 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
research-backup/roberta-large-semeval2012-average-no-mask-prompt-c-loob-conceptnet-validated
research-backup
2022-09-21T10:02:42Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-21T09:32:18Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-no-mask-prompt-c-loob-conceptnet-validated results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8421031746031746 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6550802139037433 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6528189910979229 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.8226792662590328 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.936 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6666666666666666 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6712962962962963 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9219526894681332 - name: F1 (macro) type: f1_macro value: 0.9178510964329792 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8687793427230047 - name: F1 (macro) type: f1_macro value: 0.7117047995829158 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6982665222101841 - name: F1 (macro) type: f1_macro value: 0.6850278585111483 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9657786742714057 - name: F1 (macro) type: f1_macro value: 0.8948443517322162 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9084926355374491 - name: F1 (macro) type: f1_macro value: 0.9067514826619919 --- # relbert/roberta-large-semeval2012-average-no-mask-prompt-c-loob-conceptnet-validated RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-loob-conceptnet-validated/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6550802139037433 - Accuracy on SAT: 0.6528189910979229 - Accuracy on BATS: 0.8226792662590328 - Accuracy on U2: 0.6666666666666666 - Accuracy on U4: 0.6712962962962963 - Accuracy on Google: 0.936 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-loob-conceptnet-validated/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9219526894681332 - Micro F1 score on CogALexV: 0.8687793427230047 - Micro F1 score on EVALution: 0.6982665222101841 - Micro F1 score on K&H+N: 0.9657786742714057 - Micro F1 score on ROOT09: 0.9084926355374491 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-loob-conceptnet-validated/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8421031746031746 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-c-loob-conceptnet-validated") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <mask> - loss_function: info_loob - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 21 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-loob-conceptnet-validated/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
darkproger/pruned-transducer-stateless5-ukrainian-1
darkproger
2022-09-21T09:51:45Z
0
2
null
[ "automatic-speech-recognition", "audio", "uk", "license:cc-by-nc-sa-4.0", "model-index", "region:us" ]
automatic-speech-recognition
2022-09-11T13:15:02Z
--- language: - uk tags: - automatic-speech-recognition - audio license: cc-by-nc-sa-4.0 datasets: - https://github.com/egorsmkv/speech-recognition-uk - mozilla-foundation/common_voice_6_1 metrics: - wer model-index: - name: Ukrainian pruned_transducer_stateless5 v1.0.0 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice uk type: mozilla-foundation/common_voice_6_1 split: test args: uk metrics: - name: Validation WER type: wer value: 13.37 --- `pruned_transducer_stateless5` with Conformer encoder for Ukrainian: https://github.com/proger/icefall/tree/uk [Data Filtering](https://github.com/proger/uk) [Tensorboard run](https://tensorboard.dev/experiment/8WizOEvHR8CqmQAOsr4ALg/) ``` ./pruned_transducer_stateless5/train.py \ --world-size 2 \ --num-epochs 30 \ --start-epoch 1 \ --full-libri 1 \ --exp-dir pruned_transducer_stateless5/exp-uk-shuf \ --max-duration 500 \ --use-fp16 1 \ --num-encoder-layers 18 \ --dim-feedforward 1024 \ --nhead 4 \ --encoder-dim 256 \ --decoder-dim 512 \ --joiner-dim 512 \ --bpe-model uk/data/lang_bpe_250/bpe.model ``` ``` ./pruned_transducer_stateless5/decode.py \ --epoch 27 \ --avg 15 \ --use-averaged-model True \ --exp-dir pruned_transducer_stateless5/exp-uk-shuf \ --decoding-method fast_beam_search \ --num-encoder-layers 18 \ --dim-feedforward 1024 \ --nhead 4 \ --encoder-dim 256 \ --decoder-dim 512 \ --joiner-dim 512 \ --bpe-model uk/data/lang_bpe_250/bpe.model \ --lang-dir uk/data/lang_bpe_250 ```
darkproger/pruned-transducer-stateless5-ukrainian-1-causal
darkproger
2022-09-21T09:51:22Z
0
1
null
[ "automatic-speech-recognition", "audio", "uk", "license:cc-by-nc-sa-4.0", "model-index", "region:us" ]
automatic-speech-recognition
2022-09-20T21:26:48Z
--- language: - uk tags: - automatic-speech-recognition - audio license: cc-by-nc-sa-4.0 datasets: - https://github.com/egorsmkv/speech-recognition-uk - mozilla-foundation/common_voice_6_1 metrics: - wer model-index: - name: Ukrainian causal pruned_transducer_stateless5 v1.0.0 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 uk type: mozilla-foundation/common_voice_6_1 split: test args: uk metrics: - name: Validation WER type: wer value: 17.26 --- Online variant of `pruned_transducer_stateless5` for Ukrainian: https://github.com/proger/icefall/tree/uk Decoding demo using [Sherpa](https://k2-fsa.github.io/sherpa/): [https://twitter.com/darkproger/status/1570733844114046976](https://twitter.com/darkproger/status/1570733844114046976) Trained on pseudolabels generated by [darkproger/pruned-transducer-stateless5-ukrainian-1](https://huggingface.co/darkproger/pruned-transducer-stateless5-ukrainian-1) on the noisy 1200 hours [training set](https://github.com/egorsmkv/speech-recognition-uk). Common Voice data was used only for validation. [Tensorboard run](https://tensorboard.dev/experiment/uMmMmZvwS2euyCrj7BlPOQ/) ``` ./pruned_transducer_stateless5/train.py \ --world-size 2 \ --num-epochs 31 \ --start-epoch 1 \ --full-libri 1 \ --exp-dir pruned_transducer_stateless5/exp-uk-filtered2 \ --max-duration 600 \ --use-fp16 1 \ --num-encoder-layers 18 \ --dim-feedforward 1024 \ --nhead 4 \ --encoder-dim 256 \ --decoder-dim 512 \ --joiner-dim 512 \ --bpe-model uk/data/lang_bpe_250/bpe.model \ --causal-convolution True \ --dynamic-chunk-training True ```
gary109/ai-light-dance_singing4_ft_wav2vec2-large-xlsr-53-5gram-v4-2-1
gary109
2022-09-21T09:08:14Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-19T03:39:24Z
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing4_ft_wav2vec2-large-xlsr-53-5gram-v4-2-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing4_ft_wav2vec2-large-xlsr-53-5gram-v4-2-1 This model is a fine-tuned version of [gary109/ai-light-dance_singing4_ft_wav2vec2-large-xlsr-53-5gram-v4-2](https://huggingface.co/gary109/ai-light-dance_singing4_ft_wav2vec2-large-xlsr-53-5gram-v4-2) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING4 dataset. It achieves the following results on the evaluation set: - Loss: 0.2219 - Wer: 0.0976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4531 | 1.0 | 72 | 0.2317 | 0.1021 | | 0.4479 | 2.0 | 144 | 0.2335 | 0.1014 | | 0.4475 | 3.0 | 216 | 0.2340 | 0.1000 | | 0.4432 | 4.0 | 288 | 0.2372 | 0.0993 | | 0.447 | 5.0 | 360 | 0.2350 | 0.1008 | | 0.4318 | 6.0 | 432 | 0.2332 | 0.0989 | | 0.4162 | 7.0 | 504 | 0.2338 | 0.1002 | | 0.4365 | 8.0 | 576 | 0.2321 | 0.0990 | | 0.4318 | 9.0 | 648 | 0.2313 | 0.0992 | | 0.4513 | 10.0 | 720 | 0.2336 | 0.0994 | | 0.4257 | 11.0 | 792 | 0.2310 | 0.0982 | | 0.418 | 12.0 | 864 | 0.2316 | 0.0989 | | 0.4122 | 13.0 | 936 | 0.2341 | 0.0971 | | 0.4265 | 14.0 | 1008 | 0.2322 | 0.0992 | | 0.4477 | 15.0 | 1080 | 0.2334 | 0.0987 | | 0.4023 | 16.0 | 1152 | 0.2351 | 0.0971 | | 0.4095 | 17.0 | 1224 | 0.2304 | 0.0977 | | 0.42 | 18.0 | 1296 | 0.2313 | 0.0976 | | 0.3988 | 19.0 | 1368 | 0.2299 | 0.0984 | | 0.4078 | 20.0 | 1440 | 0.2310 | 0.0970 | | 0.4131 | 21.0 | 1512 | 0.2293 | 0.1007 | | 0.4209 | 22.0 | 1584 | 0.2313 | 0.0998 | | 0.3931 | 23.0 | 1656 | 0.2351 | 0.1014 | | 0.406 | 24.0 | 1728 | 0.2336 | 0.0992 | | 0.3998 | 25.0 | 1800 | 0.2355 | 0.1009 | | 0.4197 | 26.0 | 1872 | 0.2346 | 0.0996 | | 0.4289 | 27.0 | 1944 | 0.2283 | 0.1001 | | 0.4197 | 28.0 | 2016 | 0.2281 | 0.1000 | | 0.4107 | 29.0 | 2088 | 0.2327 | 0.1007 | | 0.442 | 30.0 | 2160 | 0.2279 | 0.0985 | | 0.4315 | 31.0 | 2232 | 0.2284 | 0.0993 | | 0.4095 | 32.0 | 2304 | 0.2275 | 0.0998 | | 0.4277 | 33.0 | 2376 | 0.2281 | 0.0996 | | 0.4114 | 34.0 | 2448 | 0.2267 | 0.1008 | | 0.4311 | 35.0 | 2520 | 0.2274 | 0.0982 | | 0.4193 | 36.0 | 2592 | 0.2259 | 0.0987 | | 0.421 | 37.0 | 2664 | 0.2277 | 0.0989 | | 0.4084 | 38.0 | 2736 | 0.2268 | 0.0992 | | 0.4302 | 39.0 | 2808 | 0.2287 | 0.0996 | | 0.4379 | 40.0 | 2880 | 0.2281 | 0.0984 | | 0.415 | 41.0 | 2952 | 0.2270 | 0.1006 | | 0.4035 | 42.0 | 3024 | 0.2299 | 0.0992 | | 0.4103 | 43.0 | 3096 | 0.2257 | 0.0987 | | 0.4187 | 44.0 | 3168 | 0.2260 | 0.0975 | | 0.4254 | 45.0 | 3240 | 0.2273 | 0.0985 | | 0.415 | 46.0 | 3312 | 0.2312 | 0.1000 | | 0.4069 | 47.0 | 3384 | 0.2270 | 0.1003 | | 0.4085 | 48.0 | 3456 | 0.2230 | 0.0978 | | 0.4287 | 49.0 | 3528 | 0.2241 | 0.0989 | | 0.4227 | 50.0 | 3600 | 0.2233 | 0.0994 | | 0.3998 | 51.0 | 3672 | 0.2268 | 0.0991 | | 0.4139 | 52.0 | 3744 | 0.2224 | 0.0987 | | 0.409 | 53.0 | 3816 | 0.2256 | 0.1001 | | 0.4191 | 54.0 | 3888 | 0.2264 | 0.0991 | | 0.4156 | 55.0 | 3960 | 0.2237 | 0.0993 | | 0.4252 | 56.0 | 4032 | 0.2250 | 0.0988 | | 0.4207 | 57.0 | 4104 | 0.2246 | 0.0989 | | 0.4143 | 58.0 | 4176 | 0.2248 | 0.0981 | | 0.4261 | 59.0 | 4248 | 0.2237 | 0.0973 | | 0.4212 | 60.0 | 4320 | 0.2243 | 0.0976 | | 0.426 | 61.0 | 4392 | 0.2230 | 0.0983 | | 0.4257 | 62.0 | 4464 | 0.2230 | 0.0977 | | 0.4102 | 63.0 | 4536 | 0.2219 | 0.0976 | | 0.4133 | 64.0 | 4608 | 0.2221 | 0.0984 | | 0.4257 | 65.0 | 4680 | 0.2236 | 0.0982 | | 0.4006 | 66.0 | 4752 | 0.2231 | 0.0992 | | 0.404 | 67.0 | 4824 | 0.2227 | 0.0983 | | 0.409 | 68.0 | 4896 | 0.2235 | 0.0991 | | 0.4075 | 69.0 | 4968 | 0.2242 | 0.0978 | | 0.4167 | 70.0 | 5040 | 0.2248 | 0.0989 | | 0.4026 | 71.0 | 5112 | 0.2242 | 0.0985 | | 0.404 | 72.0 | 5184 | 0.2236 | 0.0989 | | 0.4162 | 73.0 | 5256 | 0.2241 | 0.0986 | | 0.4094 | 74.0 | 5328 | 0.2244 | 0.0991 | | 0.4147 | 75.0 | 5400 | 0.2247 | 0.0989 | | 0.4096 | 76.0 | 5472 | 0.2244 | 0.0983 | | 0.4112 | 77.0 | 5544 | 0.2236 | 0.0981 | | 0.3987 | 78.0 | 5616 | 0.2242 | 0.0982 | | 0.3953 | 79.0 | 5688 | 0.2259 | 0.0983 | | 0.4093 | 80.0 | 5760 | 0.2239 | 0.0991 | | 0.406 | 81.0 | 5832 | 0.2238 | 0.0980 | | 0.4149 | 82.0 | 5904 | 0.2240 | 0.0995 | | 0.4017 | 83.0 | 5976 | 0.2240 | 0.0987 | | 0.4065 | 84.0 | 6048 | 0.2245 | 0.0979 | | 0.4315 | 85.0 | 6120 | 0.2249 | 0.0978 | | 0.421 | 86.0 | 6192 | 0.2239 | 0.0977 | | 0.4061 | 87.0 | 6264 | 0.2243 | 0.0974 | | 0.4096 | 88.0 | 6336 | 0.2244 | 0.0982 | | 0.4171 | 89.0 | 6408 | 0.2246 | 0.0974 | | 0.4189 | 90.0 | 6480 | 0.2240 | 0.0980 | | 0.4106 | 91.0 | 6552 | 0.2236 | 0.0978 | | 0.408 | 92.0 | 6624 | 0.2234 | 0.0983 | | 0.4218 | 93.0 | 6696 | 0.2239 | 0.0985 | | 0.3997 | 94.0 | 6768 | 0.2237 | 0.0983 | | 0.4173 | 95.0 | 6840 | 0.2238 | 0.0980 | | 0.4134 | 96.0 | 6912 | 0.2235 | 0.0982 | | 0.3959 | 97.0 | 6984 | 0.2237 | 0.0979 | | 0.4149 | 98.0 | 7056 | 0.2238 | 0.0982 | | 0.4125 | 99.0 | 7128 | 0.2238 | 0.0983 | | 0.4111 | 100.0 | 7200 | 0.2235 | 0.0982 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
buddhist-nlp/mbart-buddhist-many-to-one
buddhist-nlp
2022-09-21T09:06:13Z
135
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-20T16:36:45Z
This is a multilingual model that translates Buddhist Chinese, Tibetan and Pali into English. Chinese input should be in simplified characters (簡體字). Tibetan should be input in Wylie transliteration, with "/" as shad and no space between the last word and a shad. For example "gang zag la bdag med par khong du chud pa ni 'jig tshogs la lta ba'i gnyen po yin pas na de spangs na nyon mongs pa thams cad spong bar 'gyur ro//". Pāli works with IAST transliteration: "Evaṁ me sutaṁ — ekaṁ samayaṁ bhagavā antarā ca rājagahaṁ antarā ca nāḷandaṁ addhānamaggappaṭipanno hoti mahatā bhikkhusaṅghena saddhiṁ pañcamattehi bhikkhusatehi." Multiple sentences are best translated when each sentence is on a separate line.
Souvik123/layoutlmv3-finetuned-cord_100
Souvik123
2022-09-21T08:58:14Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:cord-layoutlmv3", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-21T08:17:48Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: train args: cord metrics: - name: Precision type: precision value: 0.9415680473372781 - name: Recall type: recall value: 0.9528443113772455 - name: F1 type: f1 value: 0.947172619047619 - name: Accuracy type: accuracy value: 0.9592529711375212 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.2132 - Precision: 0.9416 - Recall: 0.9528 - F1: 0.9472 - Accuracy: 0.9593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.56 | 250 | 1.0604 | 0.7085 | 0.7732 | 0.7394 | 0.7806 | | 1.4262 | 3.12 | 500 | 0.5754 | 0.8504 | 0.8683 | 0.8593 | 0.8705 | | 1.4262 | 4.69 | 750 | 0.4026 | 0.8949 | 0.9109 | 0.9028 | 0.9189 | | 0.4088 | 6.25 | 1000 | 0.3129 | 0.9232 | 0.9356 | 0.9294 | 0.9406 | | 0.4088 | 7.81 | 1250 | 0.2691 | 0.9290 | 0.9401 | 0.9345 | 0.9452 | | 0.2193 | 9.38 | 1500 | 0.2260 | 0.9278 | 0.9431 | 0.9354 | 0.9499 | | 0.2193 | 10.94 | 1750 | 0.2447 | 0.9260 | 0.9371 | 0.9315 | 0.9469 | | 0.1547 | 12.5 | 2000 | 0.2113 | 0.9394 | 0.9521 | 0.9457 | 0.9601 | | 0.1547 | 14.06 | 2250 | 0.2138 | 0.9430 | 0.9543 | 0.9487 | 0.9605 | | 0.1163 | 15.62 | 2500 | 0.2132 | 0.9416 | 0.9528 | 0.9472 | 0.9593 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Sphere-Fall2022/nima-test-bert-glue
Sphere-Fall2022
2022-09-21T08:12:31Z
105
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-21T08:03:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue model-index: - name: nima-test-bert-glue results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nima-test-bert-glue This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 367 | 0.4436 | 0.8106 | 0.8597 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
CptBaas/Bio_ClinicalBERT-finetuned-skinwound
CptBaas
2022-09-21T08:03:52Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-18T09:59:40Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: Bio_ClinicalBERT-finetuned-skinwound results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT-finetuned-skinwound This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3435 - Accuracy: 0.8938 - F1: 0.8884 - Recall: 0.8938 - Precision: 0.8857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.5905 | 1.0 | 154 | 0.3423 | 0.8828 | 0.8416 | 0.8828 | 0.8064 | | 0.3472 | 2.0 | 308 | 0.2942 | 0.8901 | 0.8753 | 0.8901 | 0.8800 | | 0.2651 | 3.0 | 462 | 0.2977 | 0.8974 | 0.8858 | 0.8974 | 0.8889 | | 0.2203 | 4.0 | 616 | 0.3224 | 0.9011 | 0.8945 | 0.9011 | 0.8930 | | 0.164 | 5.0 | 770 | 0.3435 | 0.8938 | 0.8884 | 0.8938 | 0.8857 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
research-backup/roberta-large-semeval2012-average-prompt-d-loob-conceptnet-validated
research-backup
2022-09-21T08:01:23Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-21T07:30:35Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-prompt-d-loob-conceptnet-validated results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8684920634920635 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7032085561497327 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7091988130563798 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.8182323513062812 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.962 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6535087719298246 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6342592592592593 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9210486665662196 - name: F1 (macro) type: f1_macro value: 0.9165417055118773 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8650234741784038 - name: F1 (macro) type: f1_macro value: 0.7151332055781292 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6939328277356447 - name: F1 (macro) type: f1_macro value: 0.6806208180350917 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9643875634694303 - name: F1 (macro) type: f1_macro value: 0.8887533067064131 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9066123472265747 - name: F1 (macro) type: f1_macro value: 0.904696288402551 --- # relbert/roberta-large-semeval2012-average-prompt-d-loob-conceptnet-validated RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-loob-conceptnet-validated/raw/main/analogy.json)): - Accuracy on SAT (full): 0.7032085561497327 - Accuracy on SAT: 0.7091988130563798 - Accuracy on BATS: 0.8182323513062812 - Accuracy on U2: 0.6535087719298246 - Accuracy on U4: 0.6342592592592593 - Accuracy on Google: 0.962 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-loob-conceptnet-validated/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9210486665662196 - Micro F1 score on CogALexV: 0.8650234741784038 - Micro F1 score on EVALution: 0.6939328277356447 - Micro F1 score on K&H+N: 0.9643875634694303 - Micro F1 score on ROOT09: 0.9066123472265747 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-loob-conceptnet-validated/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8684920634920635 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-d-loob-conceptnet-validated") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj> - loss_function: info_loob - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 22 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-loob-conceptnet-validated/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
AlbedoAI/DialoGPT-medium-Albedo
AlbedoAI
2022-09-21T07:46:12Z
112
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-14T04:44:07Z
--- tags: - conversational --- # Albedo Medium DialoGPT Model Casual This model does not do well with short greetings. But it can handle question and answer types of conversations most of the time. It is trained on Albedo's dialogues from his story quests [Princeps Cretaceus Chapter](https://genshin-impact.fandom.com/wiki/Princeps_Cretaceus_Chapter) and [Shadows Amidst Snowstorms Event Story](https://genshin-impact.fandom.com/wiki/Shadows_Amidst_Snowstorms/Story) Socials - Twitter: [@tofuboy05](https://twitter.com/tofuboy05) (Creator) - Tiktok: [@tofuboyart](https://www.tiktok.com/@tofuboyart) - HoYoLAB: [TofuBoy](https://www.hoyolab.com/accountCenter/postList?id=78394798)
zhanglu/distilbert-base-uncased-finetuned-cola
zhanglu
2022-09-21T06:52:55Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-21T06:41:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5470036892050114 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5657 - Matthews Correlation: 0.5470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.521 | 1.0 | 535 | 0.5159 | 0.4152 | | 0.3445 | 2.0 | 1070 | 0.4905 | 0.5022 | | 0.2317 | 3.0 | 1605 | 0.5657 | 0.5470 | | 0.1774 | 4.0 | 2140 | 0.7557 | 0.5282 | | 0.1323 | 5.0 | 2675 | 0.8073 | 0.5455 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/celcom
huggingtweets
2022-09-21T06:49:14Z
111
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-21T06:49:06Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1473653305486176257/bzxJRVyG_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Celcom</div> <div style="text-align: center; font-size: 14px;">@celcom</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Celcom. | Data | Celcom | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 20 | | Tweets kept | 3230 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3km1q9ay/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @celcom's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2qtqkfif) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2qtqkfif/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/celcom') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sd-concepts-library/hanfu-anime-style
sd-concepts-library
2022-09-21T06:42:02Z
0
17
null
[ "license:mit", "region:us" ]
null
2022-09-18T08:25:18Z
--- license: mit --- ### Hanfu anime style on Stable Diffusion This is the `<hanfu-anime-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<hanfu-anime-style> 0](https://huggingface.co/sd-concepts-library/hanfu-anime-style/resolve/main/concept_images/1.jpeg) ![<hanfu-anime-style> 1](https://huggingface.co/sd-concepts-library/hanfu-anime-style/resolve/main/concept_images/2.jpeg) ![<hanfu-anime-style> 2](https://huggingface.co/sd-concepts-library/hanfu-anime-style/resolve/main/concept_images/0.jpeg) ![<hanfu-anime-style> 3](https://huggingface.co/sd-concepts-library/hanfu-anime-style/resolve/main/concept_images/3.jpeg)
sd-concepts-library/nikodim
sd-concepts-library
2022-09-21T06:41:09Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-20T20:02:46Z
--- license: mit --- ### nikodim on Stable Diffusion This is the `<nikodim>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<nikodim> 0](https://huggingface.co/sd-concepts-library/nikodim/resolve/main/concept_images/10.jpeg)
sd-concepts-library/bamse-og-kylling
sd-concepts-library
2022-09-21T06:23:26Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-21T06:23:17Z
--- license: mit --- ### Bamse og kylling on Stable Diffusion This is the `<bamse-kylling>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<bamse-kylling> 0](https://huggingface.co/sd-concepts-library/bamse-og-kylling/resolve/main/concept_images/2.jpeg) ![<bamse-kylling> 1](https://huggingface.co/sd-concepts-library/bamse-og-kylling/resolve/main/concept_images/1.jpeg) ![<bamse-kylling> 2](https://huggingface.co/sd-concepts-library/bamse-og-kylling/resolve/main/concept_images/0.jpeg) ![<bamse-kylling> 3](https://huggingface.co/sd-concepts-library/bamse-og-kylling/resolve/main/concept_images/3.jpeg) ![<bamse-kylling> 4](https://huggingface.co/sd-concepts-library/bamse-og-kylling/resolve/main/concept_images/4.jpeg)
sd-concepts-library/noggles
sd-concepts-library
2022-09-21T06:00:49Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-21T06:00:32Z
--- license: mit --- ### noggles on Stable Diffusion This is the `<noggles>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<noggles> 0](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3613.jpg) ![<noggles> 1](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3592.jpg) ![<noggles> 2](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3519.jpg) ![<noggles> 3](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/nouns5.png) ![<noggles> 4](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3273.jpg) ![<noggles> 5](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/ICON glasses.png) ![<noggles> 6](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3228.jpg) ![<noggles> 7](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3275.jpg) ![<noggles> 8](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3217.jpg) ![<noggles> 9](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3304.jpg) ![<noggles> 10](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3484.jpg) ![<noggles> 11](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/nouns2.png) ![<noggles> 12](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3230.jpg) ![<noggles> 13](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/nglasses.147.jpg) ![<noggles> 14](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/nglasses.149.jpg) ![<noggles> 15](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3473.jpg) ![<noggles> 16](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3476.jpg) ![<noggles> 17](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3111.jpg) ![<noggles> 18](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/nglasses.144.jpg) ![<noggles> 19](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3145.jpg) ![<noggles> 20](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3516.jpg) ![<noggles> 21](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/nouns4.png) ![<noggles> 22](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3150.jpg) ![<noggles> 23](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3194.jpg) ![<noggles> 24](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3554.jpg) ![<noggles> 25](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3204.jpg) ![<noggles> 26](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3208.jpg) ![<noggles> 27](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3573.jpg) ![<noggles> 28](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3114.jpg) ![<noggles> 29](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3202.jpg) ![<noggles> 30](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3120.jpg) ![<noggles> 31](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/nglasses.146.jpg) ![<noggles> 32](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3187.jpg) ![<noggles> 33](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3466.jpg) ![<noggles> 34](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3482.jpg) ![<noggles> 35](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3539.jpg) ![<noggles> 36](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3255.jpg) ![<noggles> 37](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/nglasses.145.jpg) ![<noggles> 38](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3247.jpg) ![<noggles> 39](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3565.jpg) ![<noggles> 40](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/nouns1.png) ![<noggles> 41](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3270.jpeg) ![<noggles> 42](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/nouns3.png) ![<noggles> 43](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3285.jpg) ![<noggles> 44](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3288.jpg) ![<noggles> 45](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3289.jpg) ![<noggles> 46](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3542.jpg) ![<noggles> 47](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3547.jpg) ![<noggles> 48](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/noun glasses wht.jpg) ![<noggles> 49](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3470.jpg) ![<noggles> 50](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3569.jpg) ![<noggles> 51](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3622.jpg) ![<noggles> 52](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/nglasses.148.jpg) ![<noggles> 53](https://huggingface.co/sd-concepts-library/noggles/resolve/main/concept_images/_DSC3288.jpeg)
huggingtweets/houstonhotwife-thongwife
huggingtweets
2022-09-21T05:43:45Z
109
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-21T05:38:58Z
--- language: en thumbnail: http://www.huggingtweets.com/houstonhotwife-thongwife/1663739021491/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1571839912202178561/tbXoqNM5_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/722128170808320000/YNGcYakC_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Houston Hotwife & Thongwife</div> <div style="text-align: center; font-size: 14px;">@houstonhotwife-thongwife</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Houston Hotwife & Thongwife. | Data | Houston Hotwife | Thongwife | | --- | --- | --- | | Tweets downloaded | 3173 | 3225 | | Retweets | 1166 | 1469 | | Short tweets | 524 | 1560 | | Tweets kept | 1483 | 196 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2g5af0zu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @houstonhotwife-thongwife's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1uh4ivfz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1uh4ivfz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/houstonhotwife-thongwife') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
research-backup/roberta-large-semeval2012-average-prompt-a-loob-conceptnet-validated
research-backup
2022-09-21T05:40:34Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-21T04:45:26Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-prompt-a-loob-conceptnet-validated results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8358531746031747 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6310160427807486 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6320474777448071 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7409672040022235 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.918 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5745614035087719 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6018518518518519 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9133644718999548 - name: F1 (macro) type: f1_macro value: 0.9091653089166233 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8523474178403756 - name: F1 (macro) type: f1_macro value: 0.6906026137184262 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6700975081256771 - name: F1 (macro) type: f1_macro value: 0.6599264465141299 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9501286777491827 - name: F1 (macro) type: f1_macro value: 0.8552943975279798 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8987778125979317 - name: F1 (macro) type: f1_macro value: 0.8958673797671589 --- # relbert/roberta-large-semeval2012-average-prompt-a-loob-conceptnet-validated RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-a-loob-conceptnet-validated/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6310160427807486 - Accuracy on SAT: 0.6320474777448071 - Accuracy on BATS: 0.7409672040022235 - Accuracy on U2: 0.5745614035087719 - Accuracy on U4: 0.6018518518518519 - Accuracy on Google: 0.918 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-a-loob-conceptnet-validated/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9133644718999548 - Micro F1 score on CogALexV: 0.8523474178403756 - Micro F1 score on EVALution: 0.6700975081256771 - Micro F1 score on K&H+N: 0.9501286777491827 - Micro F1 score on ROOT09: 0.8987778125979317 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-a-loob-conceptnet-validated/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8358531746031747 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-a-loob-conceptnet-validated") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj> - loss_function: info_loob - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 21 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-a-loob-conceptnet-validated/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
nrtf/nerf_factory
nrtf
2022-09-21T04:37:38Z
0
6
null
[ "tensorboard", "license:mit", "region:us" ]
null
2022-09-02T07:20:46Z
--- license: mit --- # Pretrained models of NeRF-Factory Here, we provide the checkpoints for NeRF-Factory, a PyTorch NeRF collection. For the code to reproduce each checkpoint, please refer to the official code and manuals on the project page. Code: https://github.com/kakaobrain/NeRF-Factory Project Page: https://kakaobrain.github.io/NeRF-Factory/
research-backup/roberta-large-semeval2012-mask-prompt-d-loob-conceptnet-validated
research-backup
2022-09-21T03:49:49Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-21T02:54:39Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-mask-prompt-d-loob-conceptnet-validated results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8116468253968254 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7058823529411765 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7002967359050445 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.8121178432462479 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.944 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6973684210526315 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6550925925925926 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9291848726834414 - name: F1 (macro) type: f1_macro value: 0.9241488028701781 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8809859154929578 - name: F1 (macro) type: f1_macro value: 0.7410143358933853 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7210184182015169 - name: F1 (macro) type: f1_macro value: 0.7105268293048113 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9658482298115045 - name: F1 (macro) type: f1_macro value: 0.8964930098442265 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9053588216859918 - name: F1 (macro) type: f1_macro value: 0.9027585355457223 --- # relbert/roberta-large-semeval2012-mask-prompt-d-loob-conceptnet-validated RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-loob-conceptnet-validated/raw/main/analogy.json)): - Accuracy on SAT (full): 0.7058823529411765 - Accuracy on SAT: 0.7002967359050445 - Accuracy on BATS: 0.8121178432462479 - Accuracy on U2: 0.6973684210526315 - Accuracy on U4: 0.6550925925925926 - Accuracy on Google: 0.944 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-loob-conceptnet-validated/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9291848726834414 - Micro F1 score on CogALexV: 0.8809859154929578 - Micro F1 score on EVALution: 0.7210184182015169 - Micro F1 score on K&H+N: 0.9658482298115045 - Micro F1 score on ROOT09: 0.9053588216859918 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-loob-conceptnet-validated/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8116468253968254 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-d-loob-conceptnet-validated") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj> - loss_function: info_loob - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 22 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-loob-conceptnet-validated/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
sd-concepts-library/stretch-re1-robot
sd-concepts-library
2022-09-21T02:56:12Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-21T02:56:06Z
--- license: mit --- ### Stretch RE1 Robot on Stable Diffusion This is the `<stretch>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<stretch> 0](https://huggingface.co/sd-concepts-library/stretch-re1-robot/resolve/main/concept_images/1.jpeg) ![<stretch> 1](https://huggingface.co/sd-concepts-library/stretch-re1-robot/resolve/main/concept_images/2.jpeg) ![<stretch> 2](https://huggingface.co/sd-concepts-library/stretch-re1-robot/resolve/main/concept_images/0.jpeg) ![<stretch> 3](https://huggingface.co/sd-concepts-library/stretch-re1-robot/resolve/main/concept_images/3.jpeg) ![<stretch> 4](https://huggingface.co/sd-concepts-library/stretch-re1-robot/resolve/main/concept_images/4.jpeg)
Arnaudmkonan/xlm-roberta-base-finetuned-panx-de-fr
Arnaudmkonan
2022-09-21T02:53:34Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-21T02:31:34Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1654 - F1: 0.8590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2845 | 1.0 | 715 | 0.1831 | 0.8249 | | 0.1449 | 2.0 | 1430 | 0.1643 | 0.8479 | | 0.0929 | 3.0 | 2145 | 0.1654 | 0.8590 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Arnaudmkonan/xlm-roberta-base-finetuned-panx-de
Arnaudmkonan
2022-09-21T02:24:12Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-21T01:52:25Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.863677639046538 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1343 - F1: 0.8637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2578 | 1.0 | 525 | 0.1562 | 0.8273 | | 0.1297 | 2.0 | 1050 | 0.1330 | 0.8474 | | 0.0809 | 3.0 | 1575 | 0.1343 | 0.8637 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
bouim/wav2vec2-base-timit-demo-google-colab
bouim
2022-09-21T02:04:57Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-21T01:47:09Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7468 - Wer: 0.5736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.671 | 10.42 | 500 | 2.1264 | 0.9972 | | 0.7223 | 20.83 | 1000 | 0.7468 | 0.5736 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
research-backup/roberta-large-semeval2012-mask-prompt-b-loob-conceptnet-validated
research-backup
2022-09-21T02:00:11Z
113
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-21T01:04:59Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-mask-prompt-b-loob-conceptnet-validated results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8465079365079365 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.56951871657754 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5727002967359051 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7459699833240689 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.912 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5087719298245614 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5601851851851852 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9311435889709206 - name: F1 (macro) type: f1_macro value: 0.9271973871730766 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8654929577464788 - name: F1 (macro) type: f1_macro value: 0.7067494314299665 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6998916576381365 - name: F1 (macro) type: f1_macro value: 0.6882463597195224 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.961466230785282 - name: F1 (macro) type: f1_macro value: 0.8903751547538185 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9109996866186149 - name: F1 (macro) type: f1_macro value: 0.9101384826079929 --- # relbert/roberta-large-semeval2012-mask-prompt-b-loob-conceptnet-validated RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-b-loob-conceptnet-validated/raw/main/analogy.json)): - Accuracy on SAT (full): 0.56951871657754 - Accuracy on SAT: 0.5727002967359051 - Accuracy on BATS: 0.7459699833240689 - Accuracy on U2: 0.5087719298245614 - Accuracy on U4: 0.5601851851851852 - Accuracy on Google: 0.912 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-b-loob-conceptnet-validated/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9311435889709206 - Micro F1 score on CogALexV: 0.8654929577464788 - Micro F1 score on EVALution: 0.6998916576381365 - Micro F1 score on K&H+N: 0.961466230785282 - Micro F1 score on ROOT09: 0.9109996866186149 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-b-loob-conceptnet-validated/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8465079365079365 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-b-loob-conceptnet-validated") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask> - loss_function: info_loob - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 21 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-b-loob-conceptnet-validated/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
alexperez26/lol
alexperez26
2022-09-21T00:23:37Z
0
0
null
[ "license:openrail", "region:us" ]
null
2022-09-21T00:22:53Z
--- license: openrail --- pip install diffusers==0.3.0 transformers scipy ftfy
research-backup/roberta-large-conceptnet-average-no-mask-prompt-e-nce
research-backup
2022-09-21T00:19:44Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/conceptnet_high_confidence", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-11T08:58:39Z
--- datasets: - relbert/conceptnet_high_confidence model-index: - name: relbert/roberta-large-conceptnet-average-no-mask-prompt-e-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.9089285714285714 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4919786096256685 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4836795252225519 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.763757643135075 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.87 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5043859649122807 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5532407407407407 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.909899050775953 - name: F1 (macro) type: f1_macro value: 0.9035218705294538 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8448356807511737 - name: F1 (macro) type: f1_macro value: 0.6709243676319924 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6419284940411701 - name: F1 (macro) type: f1_macro value: 0.6383736607412034 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9563886763580719 - name: F1 (macro) type: f1_macro value: 0.8644345928364743 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8865559385772485 - name: F1 (macro) type: f1_macro value: 0.8837249815439944 --- # relbert/roberta-large-conceptnet-average-no-mask-prompt-e-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/conceptnet_high_confidence](https://huggingface.co/datasets/relbert/conceptnet_high_confidence). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-no-mask-prompt-e-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.4919786096256685 - Accuracy on SAT: 0.4836795252225519 - Accuracy on BATS: 0.763757643135075 - Accuracy on U2: 0.5043859649122807 - Accuracy on U4: 0.5532407407407407 - Accuracy on Google: 0.87 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-no-mask-prompt-e-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.909899050775953 - Micro F1 score on CogALexV: 0.8448356807511737 - Micro F1 score on EVALution: 0.6419284940411701 - Micro F1 score on K&H+N: 0.9563886763580719 - Micro F1 score on ROOT09: 0.8865559385772485 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-no-mask-prompt-e-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.9089285714285714 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-conceptnet-average-no-mask-prompt-e-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/conceptnet_high_confidence - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 87 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-conceptnet-average-no-mask-prompt-e-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-conceptnet-average-no-mask-prompt-c-nce
research-backup
2022-09-21T00:18:57Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/conceptnet_high_confidence", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-09T16:52:12Z
--- datasets: - relbert/conceptnet_high_confidence model-index: - name: relbert/roberta-large-conceptnet-average-no-mask-prompt-c-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8786507936507937 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4919786096256685 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.49554896142433236 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7937743190661478 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.918 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6271929824561403 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6527777777777778 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9215006780171764 - name: F1 (macro) type: f1_macro value: 0.9174763167950964 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8678403755868545 - name: F1 (macro) type: f1_macro value: 0.7086241190414728 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6825568797399784 - name: F1 (macro) type: f1_macro value: 0.6689609208642026 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.962092230646171 - name: F1 (macro) type: f1_macro value: 0.8907595805779478 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9025383892196804 - name: F1 (macro) type: f1_macro value: 0.900780083743733 --- # relbert/roberta-large-conceptnet-average-no-mask-prompt-c-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/conceptnet_high_confidence](https://huggingface.co/datasets/relbert/conceptnet_high_confidence). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-no-mask-prompt-c-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.4919786096256685 - Accuracy on SAT: 0.49554896142433236 - Accuracy on BATS: 0.7937743190661478 - Accuracy on U2: 0.6271929824561403 - Accuracy on U4: 0.6527777777777778 - Accuracy on Google: 0.918 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-no-mask-prompt-c-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9215006780171764 - Micro F1 score on CogALexV: 0.8678403755868545 - Micro F1 score on EVALution: 0.6825568797399784 - Micro F1 score on K&H+N: 0.962092230646171 - Micro F1 score on ROOT09: 0.9025383892196804 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-no-mask-prompt-c-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8786507936507937 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-conceptnet-average-no-mask-prompt-c-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/conceptnet_high_confidence - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <mask> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 196 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-conceptnet-average-no-mask-prompt-c-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-conceptnet-average-no-mask-prompt-b-nce
research-backup
2022-09-21T00:18:30Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/conceptnet_high_confidence", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-08T20:45:41Z
--- datasets: - relbert/conceptnet_high_confidence model-index: - name: relbert/roberta-large-conceptnet-average-no-mask-prompt-b-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8198809523809524 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5294117647058824 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5252225519287834 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7821011673151751 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.894 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5263157894736842 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5717592592592593 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9020641856260359 - name: F1 (macro) type: f1_macro value: 0.8948753350691158 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.846244131455399 - name: F1 (macro) type: f1_macro value: 0.6730554272487049 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6625135427952329 - name: F1 (macro) type: f1_macro value: 0.6558813092612158 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9580580093204424 - name: F1 (macro) type: f1_macro value: 0.8732893037249027 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8884362268881228 - name: F1 (macro) type: f1_macro value: 0.8878260786406326 --- # relbert/roberta-large-conceptnet-average-no-mask-prompt-b-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/conceptnet_high_confidence](https://huggingface.co/datasets/relbert/conceptnet_high_confidence). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-no-mask-prompt-b-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5294117647058824 - Accuracy on SAT: 0.5252225519287834 - Accuracy on BATS: 0.7821011673151751 - Accuracy on U2: 0.5263157894736842 - Accuracy on U4: 0.5717592592592593 - Accuracy on Google: 0.894 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-no-mask-prompt-b-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9020641856260359 - Micro F1 score on CogALexV: 0.846244131455399 - Micro F1 score on EVALution: 0.6625135427952329 - Micro F1 score on K&H+N: 0.9580580093204424 - Micro F1 score on ROOT09: 0.8884362268881228 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-no-mask-prompt-b-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8198809523809524 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-conceptnet-average-no-mask-prompt-b-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/conceptnet_high_confidence - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 86 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-conceptnet-average-no-mask-prompt-b-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-conceptnet-average-no-mask-prompt-a-nce
research-backup
2022-09-21T00:18:03Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/conceptnet_high_confidence", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-08T00:41:18Z
--- datasets: - relbert/conceptnet_high_confidence model-index: - name: relbert/roberta-large-conceptnet-average-no-mask-prompt-a-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8500793650793651 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4839572192513369 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4807121661721068 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7459699833240689 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.906 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4824561403508772 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5532407407407407 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9005574807895134 - name: F1 (macro) type: f1_macro value: 0.8954808213200831 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.853755868544601 - name: F1 (macro) type: f1_macro value: 0.6802055698495575 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6419284940411701 - name: F1 (macro) type: f1_macro value: 0.6339711674670336 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9538151213744175 - name: F1 (macro) type: f1_macro value: 0.8692018519841085 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8931369476653087 - name: F1 (macro) type: f1_macro value: 0.8893923558911556 --- # relbert/roberta-large-conceptnet-average-no-mask-prompt-a-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/conceptnet_high_confidence](https://huggingface.co/datasets/relbert/conceptnet_high_confidence). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-no-mask-prompt-a-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.4839572192513369 - Accuracy on SAT: 0.4807121661721068 - Accuracy on BATS: 0.7459699833240689 - Accuracy on U2: 0.4824561403508772 - Accuracy on U4: 0.5532407407407407 - Accuracy on Google: 0.906 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-no-mask-prompt-a-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9005574807895134 - Micro F1 score on CogALexV: 0.853755868544601 - Micro F1 score on EVALution: 0.6419284940411701 - Micro F1 score on K&H+N: 0.9538151213744175 - Micro F1 score on ROOT09: 0.8931369476653087 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-no-mask-prompt-a-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8500793650793651 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-conceptnet-average-no-mask-prompt-a-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/conceptnet_high_confidence - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 85 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-conceptnet-average-no-mask-prompt-a-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-conceptnet-mask-prompt-d-nce
research-backup
2022-09-21T00:17:10Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/conceptnet_high_confidence", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-06T08:31:35Z
--- datasets: - relbert/conceptnet_high_confidence model-index: - name: relbert/roberta-large-conceptnet-mask-prompt-d-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8807936507936508 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5828877005347594 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5786350148367952 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7787659811006115 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.958 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6140350877192983 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6226851851851852 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9213500075335241 - name: F1 (macro) type: f1_macro value: 0.9170167858091296 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8814553990610329 - name: F1 (macro) type: f1_macro value: 0.7355097106184322 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7036836403033586 - name: F1 (macro) type: f1_macro value: 0.6966787116526776 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9632051192877513 - name: F1 (macro) type: f1_macro value: 0.895336152433551 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9003447195236602 - name: F1 (macro) type: f1_macro value: 0.8993684208521904 --- # relbert/roberta-large-conceptnet-mask-prompt-d-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/conceptnet_high_confidence](https://huggingface.co/datasets/relbert/conceptnet_high_confidence). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-mask-prompt-d-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5828877005347594 - Accuracy on SAT: 0.5786350148367952 - Accuracy on BATS: 0.7787659811006115 - Accuracy on U2: 0.6140350877192983 - Accuracy on U4: 0.6226851851851852 - Accuracy on Google: 0.958 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-mask-prompt-d-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9213500075335241 - Micro F1 score on CogALexV: 0.8814553990610329 - Micro F1 score on EVALution: 0.7036836403033586 - Micro F1 score on K&H+N: 0.9632051192877513 - Micro F1 score on ROOT09: 0.9003447195236602 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-mask-prompt-d-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8807936507936508 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-conceptnet-mask-prompt-d-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/conceptnet_high_confidence - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 88 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-conceptnet-mask-prompt-d-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-conceptnet-mask-prompt-b-nce
research-backup
2022-09-21T00:16:23Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/conceptnet_high_confidence", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-04T16:33:12Z
--- datasets: - relbert/conceptnet_high_confidence model-index: - name: relbert/roberta-large-conceptnet-mask-prompt-b-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.844484126984127 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5026737967914439 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5074183976261127 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7837687604224569 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.914 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4868421052631579 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5717592592592593 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9169805635076088 - name: F1 (macro) type: f1_macro value: 0.9124828189963239 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8615023474178404 - name: F1 (macro) type: f1_macro value: 0.6923470637031117 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6917659804983749 - name: F1 (macro) type: f1_macro value: 0.6818037583371511 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9652917854907144 - name: F1 (macro) type: f1_macro value: 0.8914930968868111 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9025383892196804 - name: F1 (macro) type: f1_macro value: 0.9012451685993444 --- # relbert/roberta-large-conceptnet-mask-prompt-b-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/conceptnet_high_confidence](https://huggingface.co/datasets/relbert/conceptnet_high_confidence). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-mask-prompt-b-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5026737967914439 - Accuracy on SAT: 0.5074183976261127 - Accuracy on BATS: 0.7837687604224569 - Accuracy on U2: 0.4868421052631579 - Accuracy on U4: 0.5717592592592593 - Accuracy on Google: 0.914 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-mask-prompt-b-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9169805635076088 - Micro F1 score on CogALexV: 0.8615023474178404 - Micro F1 score on EVALution: 0.6917659804983749 - Micro F1 score on K&H+N: 0.9652917854907144 - Micro F1 score on ROOT09: 0.9025383892196804 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-mask-prompt-b-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.844484126984127 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-conceptnet-mask-prompt-b-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/conceptnet_high_confidence - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 114 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-conceptnet-mask-prompt-b-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-conceptnet-average-prompt-e-nce
research-backup
2022-09-21T00:15:31Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/conceptnet_high_confidence", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-30T19:48:25Z
--- datasets: - relbert/conceptnet_high_confidence model-index: - name: relbert/roberta-large-conceptnet-average-prompt-e-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8862103174603174 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.49258160237388726 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7443023902167871 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.886 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5526315789473685 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5439814814814815 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9085430164230828 - name: F1 (macro) type: f1_macro value: 0.9007282568605484 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8380281690140845 - name: F1 (macro) type: f1_macro value: 0.656362704638303 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6657638136511376 - name: F1 (macro) type: f1_macro value: 0.6498144246049421 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9565277874382695 - name: F1 (macro) type: f1_macro value: 0.8746667490411619 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8896897524287057 - name: F1 (macro) type: f1_macro value: 0.8862724322889753 --- # relbert/roberta-large-conceptnet-average-prompt-e-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/conceptnet_high_confidence](https://huggingface.co/datasets/relbert/conceptnet_high_confidence). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-prompt-e-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5 - Accuracy on SAT: 0.49258160237388726 - Accuracy on BATS: 0.7443023902167871 - Accuracy on U2: 0.5526315789473685 - Accuracy on U4: 0.5439814814814815 - Accuracy on Google: 0.886 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-prompt-e-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9085430164230828 - Micro F1 score on CogALexV: 0.8380281690140845 - Micro F1 score on EVALution: 0.6657638136511376 - Micro F1 score on K&H+N: 0.9565277874382695 - Micro F1 score on ROOT09: 0.8896897524287057 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-prompt-e-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8862103174603174 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-conceptnet-average-prompt-e-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/conceptnet_high_confidence - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 85 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-conceptnet-average-prompt-e-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-conceptnet-average-prompt-b-nce
research-backup
2022-09-21T00:14:38Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/conceptnet_high_confidence", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-29T03:34:21Z
--- datasets: - relbert/conceptnet_high_confidence model-index: - name: relbert/roberta-large-conceptnet-average-prompt-b-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8097222222222222 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5106951871657754 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.49554896142433236 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7982212340188994 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.926 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5350877192982456 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6064814814814815 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9061322886846467 - name: F1 (macro) type: f1_macro value: 0.8998351544602654 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8483568075117371 - name: F1 (macro) type: f1_macro value: 0.6691324528607947 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6538461538461539 - name: F1 (macro) type: f1_macro value: 0.6461615360778927 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9576406760798497 - name: F1 (macro) type: f1_macro value: 0.8666219776970888 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8934503290504543 - name: F1 (macro) type: f1_macro value: 0.8921114555442471 --- # relbert/roberta-large-conceptnet-average-prompt-b-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/conceptnet_high_confidence](https://huggingface.co/datasets/relbert/conceptnet_high_confidence). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-prompt-b-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5106951871657754 - Accuracy on SAT: 0.49554896142433236 - Accuracy on BATS: 0.7982212340188994 - Accuracy on U2: 0.5350877192982456 - Accuracy on U4: 0.6064814814814815 - Accuracy on Google: 0.926 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-prompt-b-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9061322886846467 - Micro F1 score on CogALexV: 0.8483568075117371 - Micro F1 score on EVALution: 0.6538461538461539 - Micro F1 score on K&H+N: 0.9576406760798497 - Micro F1 score on ROOT09: 0.8934503290504543 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-prompt-b-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8097222222222222 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-conceptnet-average-prompt-b-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/conceptnet_high_confidence - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 87 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-conceptnet-average-prompt-b-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-conceptnet-average-prompt-a-nce
research-backup
2022-09-21T00:14:10Z
109
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/conceptnet_high_confidence", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-28T07:15:54Z
--- datasets: - relbert/conceptnet_high_confidence model-index: - name: relbert/roberta-large-conceptnet-average-prompt-a-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8665079365079364 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5320855614973262 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5222551928783383 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7443023902167871 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.878 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4605263157894737 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5347222222222222 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8993521169202953 - name: F1 (macro) type: f1_macro value: 0.8963727826344479 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8438967136150235 - name: F1 (macro) type: f1_macro value: 0.66545380757752 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.66738894907909 - name: F1 (macro) type: f1_macro value: 0.6565002007521079 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9625095638867636 - name: F1 (macro) type: f1_macro value: 0.8900641561378133 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8959573801316203 - name: F1 (macro) type: f1_macro value: 0.8953395093791771 --- # relbert/roberta-large-conceptnet-average-prompt-a-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/conceptnet_high_confidence](https://huggingface.co/datasets/relbert/conceptnet_high_confidence). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-prompt-a-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5320855614973262 - Accuracy on SAT: 0.5222551928783383 - Accuracy on BATS: 0.7443023902167871 - Accuracy on U2: 0.4605263157894737 - Accuracy on U4: 0.5347222222222222 - Accuracy on Google: 0.878 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-prompt-a-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8993521169202953 - Micro F1 score on CogALexV: 0.8438967136150235 - Micro F1 score on EVALution: 0.66738894907909 - Micro F1 score on K&H+N: 0.9625095638867636 - Micro F1 score on ROOT09: 0.8959573801316203 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-prompt-a-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8665079365079364 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-conceptnet-average-prompt-a-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/conceptnet_high_confidence - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 81 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-conceptnet-average-prompt-a-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/roberta-large-conceptnet-average-prompt-d-nce
research-backup
2022-09-21T00:13:42Z
111
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/conceptnet_high_confidence", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-26T01:21:24Z
--- datasets: - relbert/conceptnet_high_confidence model-index: - name: relbert/roberta-large-conceptnet-average-prompt-d-nce results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8258730158730159 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5828877005347594 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5875370919881305 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7732073374096721 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.938 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6535087719298246 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6898148148148148 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9177339159258702 - name: F1 (macro) type: f1_macro value: 0.9126636774713573 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8631455399061033 - name: F1 (macro) type: f1_macro value: 0.7055114627284782 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6706392199349945 - name: F1 (macro) type: f1_macro value: 0.6653188542990761 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.961188008624887 - name: F1 (macro) type: f1_macro value: 0.8756147854478619 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8975242870573488 - name: F1 (macro) type: f1_macro value: 0.8941497729254518 --- # relbert/roberta-large-conceptnet-average-prompt-d-nce RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/conceptnet_high_confidence](https://huggingface.co/datasets/relbert/conceptnet_high_confidence). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-prompt-d-nce/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5828877005347594 - Accuracy on SAT: 0.5875370919881305 - Accuracy on BATS: 0.7732073374096721 - Accuracy on U2: 0.6535087719298246 - Accuracy on U4: 0.6898148148148148 - Accuracy on Google: 0.938 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-prompt-d-nce/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9177339159258702 - Micro F1 score on CogALexV: 0.8631455399061033 - Micro F1 score on EVALution: 0.6706392199349945 - Micro F1 score on K&H+N: 0.961188008624887 - Micro F1 score on ROOT09: 0.8975242870573488 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-conceptnet-average-prompt-d-nce/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8258730158730159 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-conceptnet-average-prompt-d-nce") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average - data: relbert/conceptnet_high_confidence - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj> - loss_function: nce_logout - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 147 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-conceptnet-average-prompt-d-nce/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
sd-concepts-library/wojaks-now-now-now
sd-concepts-library
2022-09-20T23:26:04Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-20T23:25:59Z
--- license: mit --- ### wojaks-now-now-now on Stable Diffusion This is the `<red-wojak>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<red-wojak> 0](https://huggingface.co/sd-concepts-library/wojaks-now-now-now/resolve/main/concept_images/1.jpeg) ![<red-wojak> 1](https://huggingface.co/sd-concepts-library/wojaks-now-now-now/resolve/main/concept_images/2.jpeg) ![<red-wojak> 2](https://huggingface.co/sd-concepts-library/wojaks-now-now-now/resolve/main/concept_images/0.jpeg) ![<red-wojak> 3](https://huggingface.co/sd-concepts-library/wojaks-now-now-now/resolve/main/concept_images/3.jpeg) ![<red-wojak> 4](https://huggingface.co/sd-concepts-library/wojaks-now-now-now/resolve/main/concept_images/4.jpeg)
PDatt/outcome
PDatt
2022-09-20T21:07:10Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-20T20:47:16Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: outcome results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # outcome This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/lavko
sd-concepts-library
2022-09-20T20:44:57Z
1
0
transformers
[ "transformers", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-09-20T20:44:50Z
--- license: mit --- ### lavko on Stable Diffusion This is the `<lavko>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<lavko> 0](https://huggingface.co/sd-concepts-library/lavko/resolve/main/concept_images/.amlignore) ![<lavko> 1](https://huggingface.co/sd-concepts-library/lavko/resolve/main/concept_images/.amlignore.amltmp) ![<lavko> 2](https://huggingface.co/sd-concepts-library/lavko/resolve/main/concept_images/1.jpg) ![<lavko> 3](https://huggingface.co/sd-concepts-library/lavko/resolve/main/concept_images/2.jpg) ![<lavko> 4](https://huggingface.co/sd-concepts-library/lavko/resolve/main/concept_images/3.jpg) ![<lavko> 5](https://huggingface.co/sd-concepts-library/lavko/resolve/main/concept_images/4.jpg) ![<lavko> 6](https://huggingface.co/sd-concepts-library/lavko/resolve/main/concept_images/5.jpg)
sd-concepts-library/anya-forger
sd-concepts-library
2022-09-20T20:14:15Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-20T20:14:02Z
--- license: mit --- ### anya forger on Stable Diffusion This is the `<anya-forger>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<anya-forger> 0](https://huggingface.co/sd-concepts-library/anya-forger/resolve/main/concept_images/1.jpeg) ![<anya-forger> 1](https://huggingface.co/sd-concepts-library/anya-forger/resolve/main/concept_images/2.jpeg) ![<anya-forger> 2](https://huggingface.co/sd-concepts-library/anya-forger/resolve/main/concept_images/0.jpeg) ![<anya-forger> 3](https://huggingface.co/sd-concepts-library/anya-forger/resolve/main/concept_images/3.jpeg) ![<anya-forger> 4](https://huggingface.co/sd-concepts-library/anya-forger/resolve/main/concept_images/4.jpeg)
mdround/dqn-SpaceInvadersNoFrameskip-v4-1e6ts
mdround
2022-09-20T19:43:43Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-20T19:43:11Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 525.00 +/- 135.70 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mdround -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mdround ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
sd-concepts-library/nouns-glasses
sd-concepts-library
2022-09-20T19:27:23Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-20T19:27:13Z
--- license: mit --- ### nouns glasses on Stable Diffusion This is the `<nouns glasses>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<nouns glasses> 0](https://huggingface.co/sd-concepts-library/nouns-glasses/resolve/main/concept_images/nglasses.145.jpg) ![<nouns glasses> 1](https://huggingface.co/sd-concepts-library/nouns-glasses/resolve/main/concept_images/nglasses.147.jpg) ![<nouns glasses> 2](https://huggingface.co/sd-concepts-library/nouns-glasses/resolve/main/concept_images/ICON glasses.png) ![<nouns glasses> 3](https://huggingface.co/sd-concepts-library/nouns-glasses/resolve/main/concept_images/noun glasses wht.jpg)
AlexLach/deepcard
AlexLach
2022-09-20T18:51:46Z
0
0
fastai
[ "fastai", "image-classification", "region:us" ]
image-classification
2022-09-15T20:57:00Z
--- tags: - fastai - image-classification --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
sd-concepts-library/tili-concept
sd-concepts-library
2022-09-20T18:30:34Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-20T18:30:21Z
--- license: mit --- ### tili_concept on Stable Diffusion This is the `<tili>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<tili> 0](https://huggingface.co/sd-concepts-library/tili-concept/resolve/main/concept_images/0.jpeg) ![<tili> 1](https://huggingface.co/sd-concepts-library/tili-concept/resolve/main/concept_images/4.jpeg) ![<tili> 2](https://huggingface.co/sd-concepts-library/tili-concept/resolve/main/concept_images/1.jpeg) ![<tili> 3](https://huggingface.co/sd-concepts-library/tili-concept/resolve/main/concept_images/3.jpeg) ![<tili> 4](https://huggingface.co/sd-concepts-library/tili-concept/resolve/main/concept_images/2.jpeg)
mdround/dqn-SpaceInvadersNoFrameskip-v4-1e5ts
mdround
2022-09-20T18:21:06Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-20T18:20:41Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 6.50 +/- 16.29 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mdround -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mdround ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 100000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
sd-concepts-library/dreamcore
sd-concepts-library
2022-09-20T17:03:47Z
0
18
null
[ "license:mit", "region:us" ]
null
2022-09-20T17:03:42Z
--- license: mit --- ### Dreamcore on Stable Diffusion This is the `<dreamcore>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<dreamcore> 0](https://huggingface.co/sd-concepts-library/dreamcore/resolve/main/concept_images/0.jpeg) ![<dreamcore> 1](https://huggingface.co/sd-concepts-library/dreamcore/resolve/main/concept_images/1.jpeg) ![<dreamcore> 2](https://huggingface.co/sd-concepts-library/dreamcore/resolve/main/concept_images/3.jpeg) ![<dreamcore> 3](https://huggingface.co/sd-concepts-library/dreamcore/resolve/main/concept_images/2.jpeg)
sd-concepts-library/quiesel
sd-concepts-library
2022-09-20T16:34:00Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-20T16:33:47Z
--- license: mit --- ### Quiesel on Stable Diffusion This is the `<quiesel>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<quiesel> 0](https://huggingface.co/sd-concepts-library/quiesel/resolve/main/concept_images/0.jpeg) ![<quiesel> 1](https://huggingface.co/sd-concepts-library/quiesel/resolve/main/concept_images/1.jpeg) ![<quiesel> 2](https://huggingface.co/sd-concepts-library/quiesel/resolve/main/concept_images/3.jpeg) ![<quiesel> 3](https://huggingface.co/sd-concepts-library/quiesel/resolve/main/concept_images/2.jpeg)
jayanta/distilbert-base-uncased-sentiment-finetuned-memes-30epochs
jayanta
2022-09-20T16:16:19Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-20T14:02:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-base-uncased-sentiment-finetuned-memes-30epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-sentiment-finetuned-memes-30epochs This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8839 - Accuracy: 0.8365 - Precision: 0.8373 - Recall: 0.8365 - F1: 0.8368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4774 | 1.0 | 2147 | 0.4463 | 0.7453 | 0.7921 | 0.7453 | 0.7468 | | 0.4036 | 2.0 | 4294 | 0.5419 | 0.7835 | 0.8072 | 0.7835 | 0.7858 | | 0.3163 | 3.0 | 6441 | 0.6776 | 0.7982 | 0.7970 | 0.7982 | 0.7954 | | 0.2613 | 4.0 | 8588 | 0.6988 | 0.7966 | 0.7953 | 0.7966 | 0.7956 | | 0.229 | 5.0 | 10735 | 0.8523 | 0.8003 | 0.8033 | 0.8003 | 0.8013 | | 0.1893 | 6.0 | 12882 | 1.0472 | 0.8056 | 0.8166 | 0.8056 | 0.8074 | | 0.1769 | 7.0 | 15029 | 1.0321 | 0.8150 | 0.8193 | 0.8150 | 0.8161 | | 0.1648 | 8.0 | 17176 | 1.1623 | 0.8129 | 0.8159 | 0.8129 | 0.8138 | | 0.1366 | 9.0 | 19323 | 1.1932 | 0.8255 | 0.8257 | 0.8255 | 0.8256 | | 0.1191 | 10.0 | 21470 | 1.2308 | 0.8349 | 0.8401 | 0.8349 | 0.8361 | | 0.1042 | 11.0 | 23617 | 1.3166 | 0.8297 | 0.8288 | 0.8297 | 0.8281 | | 0.0847 | 12.0 | 25764 | 1.3542 | 0.8286 | 0.8278 | 0.8286 | 0.8280 | | 0.0785 | 13.0 | 27911 | 1.3925 | 0.8291 | 0.8293 | 0.8291 | 0.8292 | | 0.0674 | 14.0 | 30058 | 1.4191 | 0.8255 | 0.8307 | 0.8255 | 0.8267 | | 0.0694 | 15.0 | 32205 | 1.5601 | 0.8255 | 0.8281 | 0.8255 | 0.8263 | | 0.0558 | 16.0 | 34352 | 1.6110 | 0.8265 | 0.8302 | 0.8265 | 0.8275 | | 0.045 | 17.0 | 36499 | 1.5730 | 0.8270 | 0.8303 | 0.8270 | 0.8280 | | 0.0436 | 18.0 | 38646 | 1.6081 | 0.8365 | 0.8361 | 0.8365 | 0.8363 | | 0.028 | 19.0 | 40793 | 1.5569 | 0.8375 | 0.8371 | 0.8375 | 0.8373 | | 0.0262 | 20.0 | 42940 | 1.6976 | 0.8286 | 0.8324 | 0.8286 | 0.8296 | | 0.0183 | 21.0 | 45087 | 1.6368 | 0.8333 | 0.8354 | 0.8333 | 0.8340 | | 0.0225 | 22.0 | 47234 | 1.7570 | 0.8318 | 0.8357 | 0.8318 | 0.8328 | | 0.0118 | 23.0 | 49381 | 1.7233 | 0.8360 | 0.8369 | 0.8360 | 0.8363 | | 0.0152 | 24.0 | 51528 | 1.8027 | 0.8360 | 0.8371 | 0.8360 | 0.8364 | | 0.0079 | 25.0 | 53675 | 1.7908 | 0.8412 | 0.8423 | 0.8412 | 0.8416 | | 0.0102 | 26.0 | 55822 | 1.8247 | 0.8344 | 0.8339 | 0.8344 | 0.8341 | | 0.0111 | 27.0 | 57969 | 1.8123 | 0.8391 | 0.8394 | 0.8391 | 0.8392 | | 0.0078 | 28.0 | 60116 | 1.8630 | 0.8354 | 0.8352 | 0.8354 | 0.8353 | | 0.0058 | 29.0 | 62263 | 1.8751 | 0.8339 | 0.8343 | 0.8339 | 0.8341 | | 0.0028 | 30.0 | 64410 | 1.8839 | 0.8365 | 0.8373 | 0.8365 | 0.8368 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 1.15.2.dev0 - Tokenizers 0.10.1
jgiral95/ppo-LunarLander-v2
jgiral95
2022-09-20T16:07:21Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-20T16:06:56Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 250.29 +/- 21.30 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
hadiqa123/XLS-R_53_english
hadiqa123
2022-09-20T16:05:32Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-25T14:28:20Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: XLS-R_53_english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R_53_english This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3430 - Wer: 0.3033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.6589 | 1.65 | 500 | 3.1548 | 1.0 | | 2.5363 | 3.3 | 1000 | 1.0250 | 0.8707 | | 0.849 | 4.95 | 1500 | 0.3964 | 0.4636 | | 0.4812 | 6.6 | 2000 | 0.3341 | 0.3907 | | 0.3471 | 8.25 | 2500 | 0.3351 | 0.3659 | | 0.2797 | 9.9 | 3000 | 0.3104 | 0.3475 | | 0.2336 | 11.55 | 3500 | 0.3545 | 0.3419 | | 0.2116 | 13.2 | 4000 | 0.3577 | 0.3353 | | 0.1688 | 14.85 | 4500 | 0.3383 | 0.3302 | | 0.1587 | 16.5 | 5000 | 0.3431 | 0.3235 | | 0.1358 | 18.15 | 5500 | 0.3504 | 0.3209 | | 0.1323 | 19.8 | 6000 | 0.3468 | 0.3191 | | 0.115 | 21.45 | 6500 | 0.3331 | 0.3127 | | 0.108 | 23.1 | 7000 | 0.3497 | 0.3099 | | 0.0938 | 24.75 | 7500 | 0.3532 | 0.3091 | | 0.0974 | 26.4 | 8000 | 0.3461 | 0.3086 | | 0.0867 | 28.05 | 8500 | 0.3422 | 0.3054 | | 0.0852 | 29.7 | 9000 | 0.3430 | 0.3033 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
ericntay/stbl_clinical_bert_ft_rs2bs
ericntay
2022-09-20T16:00:55Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-20T15:36:54Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: stbl_clinical_bert_ft_rs2bs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stbl_clinical_bert_ft_rs2bs This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1189 - F1: 0.8982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2719 | 1.0 | 101 | 0.0878 | 0.8458 | | 0.0682 | 2.0 | 202 | 0.0678 | 0.8838 | | 0.0321 | 3.0 | 303 | 0.0617 | 0.9041 | | 0.0149 | 4.0 | 404 | 0.0709 | 0.9061 | | 0.0097 | 5.0 | 505 | 0.0766 | 0.9114 | | 0.0059 | 6.0 | 606 | 0.0803 | 0.9174 | | 0.0035 | 7.0 | 707 | 0.0845 | 0.9160 | | 0.0023 | 8.0 | 808 | 0.0874 | 0.9158 | | 0.0016 | 9.0 | 909 | 0.0928 | 0.9188 | | 0.0016 | 10.0 | 1010 | 0.0951 | 0.9108 | | 0.0011 | 11.0 | 1111 | 0.0938 | 0.9178 | | 0.0009 | 12.0 | 1212 | 0.0945 | 0.9185 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
jayanta/distilbert-base-uncased-sentiment-finetuned-memes-20epoch
jayanta
2022-09-20T15:42:04Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-20T13:36:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-base-uncased-sentiment-finetuned-memes-20epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-sentiment-finetuned-memes-20epoch This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2252 - Accuracy: 0.8160 - Precision: 0.8165 - Recall: 0.8160 - F1: 0.8162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5319 | 1.0 | 4293 | 0.5560 | 0.7699 | 0.7777 | 0.7699 | 0.7704 | | 0.4627 | 2.0 | 8586 | 0.6588 | 0.7856 | 0.7868 | 0.7856 | 0.7860 | | 0.3735 | 3.0 | 12879 | 0.8583 | 0.7835 | 0.7854 | 0.7835 | 0.7813 | | 0.3549 | 4.0 | 17172 | 1.0078 | 0.7872 | 0.7869 | 0.7872 | 0.7866 | | 0.2995 | 5.0 | 21465 | 1.0007 | 0.8024 | 0.8030 | 0.8024 | 0.8012 | | 0.2579 | 6.0 | 25758 | 1.1501 | 0.8150 | 0.8152 | 0.8150 | 0.8151 | | 0.2078 | 7.0 | 30051 | 1.2604 | 0.8097 | 0.8137 | 0.8097 | 0.8102 | | 0.1635 | 8.0 | 34344 | 1.3755 | 0.8092 | 0.8092 | 0.8092 | 0.8085 | | 0.1453 | 9.0 | 38637 | 1.4639 | 0.8097 | 0.8137 | 0.8097 | 0.8102 | | 0.1431 | 10.0 | 42930 | 1.5612 | 0.8050 | 0.8048 | 0.8050 | 0.8044 | | 0.085 | 11.0 | 47223 | 1.8216 | 0.8097 | 0.8121 | 0.8097 | 0.8101 | | 0.0693 | 12.0 | 51516 | 1.7761 | 0.8087 | 0.8100 | 0.8087 | 0.8090 | | 0.041 | 13.0 | 55809 | 1.8538 | 0.8082 | 0.8083 | 0.8082 | 0.8082 | | 0.0391 | 14.0 | 60102 | 2.0022 | 0.8160 | 0.8158 | 0.8160 | 0.8158 | | 0.0299 | 15.0 | 64395 | 2.0101 | 0.8124 | 0.8121 | 0.8124 | 0.8121 | | 0.0226 | 16.0 | 68688 | 2.0396 | 0.8150 | 0.8152 | 0.8150 | 0.8151 | | 0.0229 | 17.0 | 72981 | 2.1071 | 0.8171 | 0.8170 | 0.8171 | 0.8171 | | 0.0133 | 18.0 | 77274 | 2.1047 | 0.8181 | 0.8182 | 0.8181 | 0.8182 | | 0.0268 | 19.0 | 81567 | 2.2037 | 0.8208 | 0.8208 | 0.8208 | 0.8208 | | 0.0068 | 20.0 | 85860 | 2.2252 | 0.8160 | 0.8165 | 0.8160 | 0.8162 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
duyduong9htv/electra-qa-finetuned-viet-qa
duyduong9htv
2022-09-20T14:14:48Z
120
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-09-19T23:10:13Z
--- tags: - generated_from_trainer model-index: - name: electra-qa-finetuned-viet-qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-qa-finetuned-viet-qa This model is a fine-tuned version of [NlpHUST/electra-base-vn](https://huggingface.co/NlpHUST/electra-base-vn) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6859 | 1.0 | 1015 | 1.4759 | | 1.1843 | 2.0 | 2030 | 1.3652 | | 0.9369 | 3.0 | 3045 | 1.4144 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/heather
sd-concepts-library
2022-09-20T13:58:23Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-20T13:58:19Z
--- license: mit --- ### Heather on Stable Diffusion This is the `Heather*` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![Heather* 0](https://huggingface.co/sd-concepts-library/heather/resolve/main/concept_images/0.jpeg) ![Heather* 1](https://huggingface.co/sd-concepts-library/heather/resolve/main/concept_images/4.jpeg) ![Heather* 2](https://huggingface.co/sd-concepts-library/heather/resolve/main/concept_images/1.jpeg) ![Heather* 3](https://huggingface.co/sd-concepts-library/heather/resolve/main/concept_images/3.jpeg) ![Heather* 4](https://huggingface.co/sd-concepts-library/heather/resolve/main/concept_images/2.jpeg)
mozilla-foundation/youtube_video_similarity_model_nt
mozilla-foundation
2022-09-20T13:54:31Z
48
7
transformers
[ "transformers", "pytorch", "youtube", "video", "multilingual", "license:apache-2.0", "region:us" ]
null
2022-09-19T06:36:11Z
--- language: - multilingual license: apache-2.0 inference: false tags: - youtube - video - pytorch --- # YouTube video semantic similarity model (NT = no transcripts) This YouTube video semantic similarity model was developed as part of the RegretsReporter research project at Mozilla Foundation. You can read more about the project [here](https://foundation.mozilla.org/en/youtube/user-controls/) and about the semantic similarity model [here](https://foundation.mozilla.org/en/blog/the-regretsreporter-user-controls-study-machine-learning-to-measure-semantic-similarity-of-youtube-videos/). You can also easily try this model with this [Spaces demo app](https://huggingface.co/spaces/mozilla-foundation/youtube_video_similarity). Just provide two YouTube video links and you can see how similar those two videos are according to the model. For your convenience, the demo also includes a few predefined video pair examples. ## Model description This model is custom PyTorch model for predicting whether a pair of YouTube videos are similar or not. The model does not take video data itself as an input but instead it relies on video metadata to save computing resources. The input for the model consists of video titles, descriptions, transcripts and YouTube channel-equality signal of video pairs. As illustrated below, the model includes three [cross-encoders](https://www.sbert.net/examples/applications/cross-encoder/README.html) for determining the similarity of each of the text components of the videos, which are then connected directly, along with a channel-equality signal into a single linear layer with a sigmoid output. The output is a similarity probability as follows: - If the output is close to 1, the model is very confident that the videos are similar - If the output is close to 0, the model is very confident that the videos are not similar - If the output is close to 0.5, the model is uncertain ![Model architecture](architecture.png) For pretrained cross-encoders, [mmarco-mMiniLMv2-L12-H384-v1](https://huggingface.co/cross-encoder/mmarco-mMiniLMv2-L12-H384-v1) was used to be further trained as part of this model. **Note**: sometimes YouTube videos lack transcripts so actually there are two different versions of this model trained: a model with trascripts (WT = with transcripts) and a model without transcripts (NT = no transcripts). This model is without transcripts and the model with transcripts is available [here](https://huggingface.co/mozilla-foundation/youtube_video_similarity_model_wt). **Note**: Possible model architecture enhancements are discussed a bit on [this blog post](https://foundation.mozilla.org/en/blog/the-regretsreporter-user-controls-study-machine-learning-to-measure-semantic-similarity-of-youtube-videos/) and some of the ideas were implemented and tried on experimental v2 version of the model which code is available on the RegretsReporter [GitHub repository](https://github.com/mozilla-extensions/regrets-reporter/tree/main/analysis/semsim). Based on the test set evaluation, the experimental v2 model didn't significantly improve the results. Thus, it was decided that more complex v2 model weights are not released at this time. ## Intended uses & limitations This model is intended to be used for analyzing whether a pair of YouTube videos are similar or not. We hope that this model will prove valuable to other researchers investigating YouTube. ### How to use As this model is a custom PyTorch model, not normal transformers model, you need to clone this model repository first. The repository contains model code in `RRUM` class (RRUM stands for RegretsReporter Unified Model) in `unifiedmodel.py` file. For loading the model from Hugging Face model hub, there also is a Hugging Face model wrapper named `YoutubeVideoSimilarityModel` in `huggingface_model_wrapper.py` file. Needed Python requirements are specified in `requirements.txt` file. To load the model, follow these steps: 1. `git clone https://huggingface.co/mozilla-foundation/youtube_video_similarity_model_nt` 2. `pip install -r requirements.txt` And finally load the model with the following example code: ```python from huggingface_model_wrapper import YoutubeVideoSimilarityModel model = YoutubeVideoSimilarityModel.from_pretrained('mozilla-foundation/youtube_video_similarity_model_nt') ``` For loading and preprocessing input data into correct format, the `unifiedmodel.py` file also contains a `RRUMDataset` class. To use the loaded model for predicting video pair similarity, you can use the following example code: ```python import torch import pandas as pd from torch.utils.data import DataLoader from unifiedmodel import RRUMDataset video1_channel = "Mozilla" video1_title = "YouTube Regrets" video1_description = "Are your YouTube recommendations sometimes lies? Conspiracy theories? Or just weird as hell?\n\n\nYou’re not alone. That’s why Mozilla and 37,380 YouTube users conducted a study to better understand harmful YouTube recommendations. This is what we learned about YouTube regrets: https://foundation.mozilla.org/regrets/" video2_channel = "Mozilla" video2_title = "YouTube Regrets Reporter" video2_description = "Are you choosing what to watch, or is YouTube choosing for you?\n\nTheir algorithm is responsible for over 70% of viewing time, which can include recommending harmful videos.\n\nHelp us hold them responsible. Install RegretsReporter: https://mzl.la/37BT2vA" df = pd.DataFrame([[video1_title, video1_description, None] + [video2_title, video2_description, None] + [int(video1_channel == video2_channel)]], columns=['regret_title', 'regret_description', 'regret_transcript', 'recommendation_title', 'recommendation_description', 'recommendation_transcript', 'channel_sim']) dataset = RRUMDataset(df, with_transcript=False, label_col=None, cross_encoder_model_name_or_path=model.cross_encoder_model_name_or_path) data_loader = DataLoader(dataset.test_dataset) with torch.inference_mode(): prediction = model(next(iter(data_loader))) prediction = torch.special.expit(prediction).squeeze().tolist() ``` Some more code and examples are also available at RegretsReporter [GitHub repository](https://github.com/mozilla-extensions/regrets-reporter/tree/main/analysis/semsim). ### Limitations and bias The cross-encoders that we use to determine similarity of texts are also trained on texts that inevitably reflect social bias. To understand the implications of this, we need to consider the application of the model: to determine if videos are semantically similar or not. So the concern is that our model may, in some systematic way, think certain kinds of videos are more or less similar to each other. For example, it's possible that the models have encoded a social bias that certain ethnicities are more often involved in violent situations. If this were the case, it is possible that videos about people of one ethnicity may be more likely to be rated similar to videos about violent situations. This could be evaluated by applying the model to synthetic video pairs crafted to test these situations. There is also [active research](https://www.aaai.org/AAAI22Papers/AISI-7742.KanekoM.pdf) in measuring bias in language models, as part of the broader field of [AI fairness](https://facctconference.org/2022/index.html). We have not analyzed the biases in our model as, for our original application, potential for harm was extremely low. Care should be taken in future applications. A more difficult issue is the multilingual nature of our data. For the pretrained cross-encoders in our model, we used the [mmarco-mMiniLMv2-L12-H384-v1](https://huggingface.co/cross-encoder/mmarco-mMiniLMv2-L12-H384-v1) model which supports a set of 100 languages (the original mMiniLMv2 base model) including English, German, Spanish and Chinese. However, it is reasonable to expect that the model's performance varies among the languages that it supports. The impact can vary — the model may fail either with false positives, in which it thinks a dissimilar pair is similar, or false negatives, in which it thinks a similar pair is dissimilar. We performed a basic analysis to evaluate the performance of our model in different languages and it suggested that our model performs well across languages, but the potential differences in the quality of our labels between languages reduced our confidence. ## Training data Since the RegretsReporter project operates without YouTube's support, we were limited to the publicly available data we could fetch from YouTube. The RegretsReporter project developed a browser extension that our volunteer project participants used to send us data about their YouTube usage and what videos YouTube recommended for them. We also used automated methods to acquire additional needed model training data (title, channel, description, transcript) for videos from the YouTube site directly. To get labeled training data, we contracted 24 research assistants, all graduate students at Exeter University, to perform 20 hours each, classifying gathered video pairs using a [classification tool](https://github.com/mozilla-extensions/regrets-reporter/tree/main/analysis/classification) that we developed. There are many subtleties in defining similarity of two videos, so we are not able to precisely describe what we mean by "similar", but we developed a [policy](https://docs.google.com/document/d/1VB7YAENmuMDMW_kPPUbuDPbHfQBDhF5ylzHA3cAZywg/) to guide our research assistants in classifying video pairs. Research assistants all read the classification policy and worked with Dr. Chico Camargo, who ensured they had all the support they needed to contribute to this work. These research assistants were partners in our research and are named for their contributions in our [final report](https://foundation.mozilla.org/en/research/library/user-controls/report/). Thanks to our research assistants, we had 44,434 labeled video pairs to train our model (although about 3% of these were labeled "unsure" and so unused). For each of these pairs, the research assistant determined whether the videos are similar or not, and our model is able to learn from these examples. ## Training procedure ### Preprocessing Our training data of YouTube video titles, descriptions and transcripts tend to include a lot of noisy text having, for example, URLs, emojis and other potential noise. Thus, we used text cleaning functions to clean some of the noise. Text cleaning seemed to improve the model accuracy on test set but the text cleaning was disabled in the end because it added extra latency to the data preprocessing which would have made the project's model prediction run slower when predictions were ran for hundreds of millions of video pairs. The data loading and preprocessing class `RRUMDataset` in `unifiedmodel.py` file still includes text cleaning option by setting the parameter `clean_text=True` on the class initialization. The text data was tokenized with [mmarco-mMiniLMv2-L12-H384-v1](https://huggingface.co/cross-encoder/mmarco-mMiniLMv2-L12-H384-v1) cross-encoder's SentencePiece tokenizer having a vocabulary size of 250,002. Tokenization was done with maximum length of 128 tokens. ### Training The model was trained using [PyTorch Lightning](https://pytorch-lightning.readthedocs.io/en/stable/) on NVIDIA A100 GPU. The model can also be trained on lower resources, for example with the free T4 GPU on Google Colab. The optimizer used was a Adam with learning rate 5e-3, learning rate warmup for 5% steps of total training steps and linear decay of the learning rate after. The model was trained with batch size of 128 for 15 epochs. Based on per epoch evaluation, the final model uses the checkpoint from epoch 13. ## Evaluation results With the final test set, our models were achieving following scores presented on the table below: | Metric | Model with transcripts | Model without transcripts | |--------------------------------|------------------------|---------------------------| | Accuracy | 0.93 | 0.92 | | Precision | 0.81 | 0.81 | | Recall | 0.91 | 0.87 | | AUROC | 0.97 | 0.96 | ## Acknowledgements We're grateful to Chico Camargo and Ranadheer Malla from the University of Exeter for leading the analysis of RegretsReporter data. Thank you to the research assistants at the University of Exeter for analyzing the video data: Josh Adebayo, Sharon Choi, Henry Cook, Alex Craig, Bee Dally, Seb Dixon, Aditi Dutta, Ana Lucia Estrada Jaramillo, Jamie Falla, Alice Gallagher Boyden, Adriano Giunta, Lisa Greghi, Keanu Hambali, Clare Keeton Graddol, Kien Khuong, Mitran Malarvannan, Zachary Marre, Inês Mendes de Sousa, Dario Notarangelo, Izzy Sebire, Tawhid Shahrior, Shambhavi Shivam, Marti Toneva, Anthime Valin, and Ned Westwood. Finally, we're so grateful for the 22,722 RegretsReporter participants who contributed their data. ## Contact If these models are useful to you, we'd love to hear from you. Please write to publicdata@mozillafoundation.org
misterneil/xlm-roberta-base-finetuned-panx-de-fr
misterneil
2022-09-20T13:45:06Z
114
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-20T13:14:52Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1608 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2888 | 1.0 | 715 | 0.1779 | 0.8233 | | 0.1437 | 2.0 | 1430 | 0.1570 | 0.8497 | | 0.0931 | 3.0 | 2145 | 0.1608 | 0.8593 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
jayanta/distilbert-base-uncased-sentiment-finetuned-memes
jayanta
2022-09-20T13:38:12Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-20T10:51:24Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-base-uncased-sentiment-finetuned-memes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-sentiment-finetuned-memes This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1824 - Accuracy: 0.8270 - Precision: 0.8270 - Recall: 0.8270 - F1: 0.8270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5224 | 1.0 | 4293 | 0.5321 | 0.7720 | 0.8084 | 0.7720 | 0.7721 | | 0.4386 | 2.0 | 8586 | 0.4930 | 0.7961 | 0.7980 | 0.7961 | 0.7967 | | 0.3722 | 3.0 | 12879 | 0.7652 | 0.7925 | 0.7955 | 0.7925 | 0.7932 | | 0.3248 | 4.0 | 17172 | 0.9827 | 0.8045 | 0.8047 | 0.8045 | 0.8023 | | 0.308 | 5.0 | 21465 | 0.9518 | 0.8244 | 0.8260 | 0.8244 | 0.8249 | | 0.2906 | 6.0 | 25758 | 1.0971 | 0.8155 | 0.8166 | 0.8155 | 0.8159 | | 0.2036 | 7.0 | 30051 | 1.1457 | 0.8260 | 0.8271 | 0.8260 | 0.8264 | | 0.1747 | 8.0 | 34344 | 1.1824 | 0.8270 | 0.8270 | 0.8270 | 0.8270 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
adil-o/A2C-Pong-v1
adil-o
2022-09-20T13:31:59Z
0
0
null
[ "Pong-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-20T13:31:49Z
--- tags: - Pong-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: A2C-Pong-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-PLE-v0 type: Pong-PLE-v0 metrics: - type: mean_reward value: -16.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pong-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pong-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
farleyknight/patent-summarization-t5-base-2022-09-20
farleyknight
2022-09-20T13:31:24Z
111
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:farleyknight/big_patent_5_percent", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-20T00:31:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - farleyknight/big_patent_5_percent metrics: - rouge model-index: - name: patent-summarization-t5-base-2022-09-20 results: - task: name: Summarization type: summarization dataset: name: farleyknight/big_patent_5_percent type: farleyknight/big_patent_5_percent config: all split: train args: all metrics: - name: Rouge1 type: rouge value: 36.0843 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # patent-summarization-t5-base-2022-09-20 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the farleyknight/big_patent_5_percent dataset. It achieves the following results on the evaluation set: - Loss: 1.9975 - Rouge1: 36.0843 - Rouge2: 12.1856 - Rougel: 25.8099 - Rougelsum: 30.1664 - Gen Len: 118.3137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.2811 | 0.08 | 5000 | 2.1767 | 18.5624 | 6.8795 | 15.5361 | 16.6836 | 19.0 | | 2.2551 | 0.17 | 10000 | 2.1327 | 19.077 | 6.8512 | 15.79 | 17.086 | 19.0 | | 2.2818 | 0.25 | 15000 | 2.1029 | 18.8637 | 6.9233 | 15.7341 | 16.9717 | 19.0 | | 2.1952 | 0.33 | 20000 | 2.0805 | 18.962 | 7.1157 | 15.8297 | 17.0333 | 19.0 | | 2.157 | 0.41 | 25000 | 2.0641 | 19.1418 | 7.315 | 16.05 | 17.2551 | 19.0 | | 2.1775 | 0.5 | 30000 | 2.0452 | 19.2387 | 7.3193 | 16.0852 | 17.3563 | 19.0 | | 2.1376 | 0.58 | 35000 | 2.0308 | 19.291 | 7.363 | 16.1243 | 17.4151 | 19.0 | | 2.1853 | 0.66 | 40000 | 2.0207 | 19.2808 | 7.4671 | 16.1593 | 17.3836 | 19.0 | | 2.1416 | 0.75 | 45000 | 2.0113 | 19.0414 | 7.3335 | 15.9747 | 17.1899 | 19.0 | | 2.1245 | 0.83 | 50000 | 2.0055 | 19.1445 | 7.3715 | 16.0166 | 17.2621 | 19.0 | | 2.133 | 0.91 | 55000 | 1.9997 | 19.3033 | 7.4821 | 16.1413 | 17.3949 | 19.0 | | 2.1191 | 0.99 | 60000 | 1.9973 | 19.4044 | 7.5483 | 16.2429 | 17.488 | 19.0 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.0 - Datasets 2.4.0 - Tokenizers 0.12.1
adil-o/A2C-Pixelcopter-v1
adil-o
2022-09-20T13:03:10Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-20T13:03:03Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: A2C-Pixelcopter-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 11.00 +/- 8.37 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
teven/bi_all-mpnet-base-v2_finetuned_WebNLG2017
teven
2022-09-20T12:52:26Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-20T12:52:20Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # teven/bi_all-mpnet-base-v2_finetuned_WebNLG2017 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/bi_all-mpnet-base-v2_finetuned_WebNLG2017') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/bi_all-mpnet-base-v2_finetuned_WebNLG2017) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 666 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 0, "evaluator": "better_cross_encoder.PearsonCorrelationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 5e-06 }, "scheduler": "warmupcosine", "steps_per_epoch": null, "warmup_steps": 3330, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teven/bi_all_bs320_vanilla_finetuned_WebNLG2017
teven
2022-09-20T12:51:14Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-20T12:51:06Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # teven/bi_all_bs320_vanilla_finetuned_WebNLG2017 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/bi_all_bs320_vanilla_finetuned_WebNLG2017') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/bi_all_bs320_vanilla_finetuned_WebNLG2017) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 666 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 0, "evaluator": "better_cross_encoder.PearsonCorrelationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 5e-06 }, "scheduler": "warmupcosine", "steps_per_epoch": null, "warmup_steps": 3330, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teven/bi_all_bs160_allneg_finetuned_WebNLG2017
teven
2022-09-20T12:50:38Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-20T12:50:31Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # teven/bi_all_bs160_allneg_finetuned_WebNLG2017 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/bi_all_bs160_allneg_finetuned_WebNLG2017') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/bi_all_bs160_allneg_finetuned_WebNLG2017) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 167 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 0, "evaluator": "better_cross_encoder.PearsonCorrelationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 5e-05 }, "scheduler": "warmupcosine", "steps_per_epoch": null, "warmup_steps": 835, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teven/bi_all_bs192_hardneg_finetuned_WebNLG2017
teven
2022-09-20T12:49:30Z
163
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-20T12:49:23Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # teven/bi_all_bs192_hardneg_finetuned_WebNLG2017 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/bi_all_bs192_hardneg_finetuned_WebNLG2017') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/bi_all_bs192_hardneg_finetuned_WebNLG2017) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 666 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 0, "evaluator": "better_cross_encoder.PearsonCorrelationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 5e-06 }, "scheduler": "warmupcosine", "steps_per_epoch": null, "warmup_steps": 3330, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
sd-concepts-library/stardew-valley-pixel-art
sd-concepts-library
2022-09-20T12:37:25Z
0
27
null
[ "license:mit", "region:us" ]
null
2022-09-20T12:37:20Z
--- license: mit --- ### Stardew Valley Pixel Art on Stable Diffusion This is the `<pixelart-stardew>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<pixelart-stardew> 0](https://huggingface.co/sd-concepts-library/stardew-valley-pixel-art/resolve/main/concept_images/0.jpeg) ![<pixelart-stardew> 1](https://huggingface.co/sd-concepts-library/stardew-valley-pixel-art/resolve/main/concept_images/4.jpeg) ![<pixelart-stardew> 2](https://huggingface.co/sd-concepts-library/stardew-valley-pixel-art/resolve/main/concept_images/1.jpeg) ![<pixelart-stardew> 3](https://huggingface.co/sd-concepts-library/stardew-valley-pixel-art/resolve/main/concept_images/3.jpeg) ![<pixelart-stardew> 4](https://huggingface.co/sd-concepts-library/stardew-valley-pixel-art/resolve/main/concept_images/2.jpeg)
sd-concepts-library/001glitch-core
sd-concepts-library
2022-09-20T12:27:19Z
0
21
null
[ "license:mit", "region:us" ]
null
2022-09-20T12:27:14Z
--- license: mit --- ### 001glitch_core on Stable Diffusion This is the `001glitch_core` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![001glitch_core 0](https://huggingface.co/sd-concepts-library/001glitch-core/resolve/main/concept_images/9.jpeg) ![001glitch_core 1](https://huggingface.co/sd-concepts-library/001glitch-core/resolve/main/concept_images/6.jpeg) ![001glitch_core 2](https://huggingface.co/sd-concepts-library/001glitch-core/resolve/main/concept_images/5.jpeg) ![001glitch_core 3](https://huggingface.co/sd-concepts-library/001glitch-core/resolve/main/concept_images/0.jpeg) ![001glitch_core 4](https://huggingface.co/sd-concepts-library/001glitch-core/resolve/main/concept_images/7.jpeg) ![001glitch_core 5](https://huggingface.co/sd-concepts-library/001glitch-core/resolve/main/concept_images/4.jpeg) ![001glitch_core 6](https://huggingface.co/sd-concepts-library/001glitch-core/resolve/main/concept_images/8.jpeg) ![001glitch_core 7](https://huggingface.co/sd-concepts-library/001glitch-core/resolve/main/concept_images/1.jpeg) ![001glitch_core 8](https://huggingface.co/sd-concepts-library/001glitch-core/resolve/main/concept_images/3.jpeg) ![001glitch_core 9](https://huggingface.co/sd-concepts-library/001glitch-core/resolve/main/concept_images/2.jpeg)
sd-concepts-library/m-geoo
sd-concepts-library
2022-09-20T12:00:43Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-20T12:00:32Z
--- license: mit --- ### m-geoo on Stable Diffusion This is the `<m-geo>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<m-geo> 0](https://huggingface.co/sd-concepts-library/m-geoo/resolve/main/concept_images/0.jpeg) ![<m-geo> 1](https://huggingface.co/sd-concepts-library/m-geoo/resolve/main/concept_images/4.jpeg) ![<m-geo> 2](https://huggingface.co/sd-concepts-library/m-geoo/resolve/main/concept_images/1.jpeg) ![<m-geo> 3](https://huggingface.co/sd-concepts-library/m-geoo/resolve/main/concept_images/3.jpeg) ![<m-geo> 4](https://huggingface.co/sd-concepts-library/m-geoo/resolve/main/concept_images/2.jpeg)
jamescalam/mpnet-qa
jamescalam
2022-09-20T11:36:57Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-20T11:31:00Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 500001 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.dataloader._InfiniteConstantSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 50000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
bkaemper/testpyramidsrnd
bkaemper
2022-09-20T11:22:11Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-09-20T11:22:03Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: bkaemper/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dinesh123/wav2vec2-large-xlsr-53-english
dinesh123
2022-09-20T11:05:12Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-20T06:19:56Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53-english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-english This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3950 - Wer: 0.3496 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4499 | 1.0 | 500 | 1.4091 | 0.9755 | | 0.7934 | 2.01 | 1000 | 0.5071 | 0.5282 | | 0.43 | 3.01 | 1500 | 0.4686 | 0.4661 | | 0.2848 | 4.02 | 2000 | 0.4051 | 0.4136 | | 0.2035 | 5.02 | 2500 | 0.4133 | 0.3982 | | 0.1612 | 6.02 | 3000 | 0.3933 | 0.3889 | | 0.1212 | 7.03 | 3500 | 0.3841 | 0.3536 | | 0.1029 | 8.03 | 4000 | 0.3999 | 0.3607 | | 0.0822 | 9.04 | 4500 | 0.3950 | 0.3496 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
sd-concepts-library/morino-hon-style
sd-concepts-library
2022-09-20T10:59:30Z
0
15
null
[ "license:mit", "region:us" ]
null
2022-09-20T10:59:11Z
--- license: mit --- ### Morino hon Style on Stable Diffusion This is the `<morino-hon>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<morino-hon> 0](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/10.jpeg) ![<morino-hon> 1](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/13.jpeg) ![<morino-hon> 2](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/9.jpeg) ![<morino-hon> 3](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/16.jpeg) ![<morino-hon> 4](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/21.jpeg) ![<morino-hon> 5](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/19.jpeg) ![<morino-hon> 6](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/6.jpeg) ![<morino-hon> 7](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/17.jpeg) ![<morino-hon> 8](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/5.jpeg) ![<morino-hon> 9](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/11.jpeg) ![<morino-hon> 10](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/0.jpeg) ![<morino-hon> 11](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/20.jpeg) ![<morino-hon> 12](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/18.jpeg) ![<morino-hon> 13](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/12.jpeg) ![<morino-hon> 14](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/7.jpeg) ![<morino-hon> 15](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/4.jpeg) ![<morino-hon> 16](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/14.jpeg) ![<morino-hon> 17](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/8.jpeg) ![<morino-hon> 18](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/1.jpeg) ![<morino-hon> 19](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/3.jpeg) ![<morino-hon> 20](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/2.jpeg) ![<morino-hon> 21](https://huggingface.co/sd-concepts-library/morino-hon-style/resolve/main/concept_images/15.jpeg)
sd-concepts-library/hiyuki-chan
sd-concepts-library
2022-09-20T10:28:31Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-20T10:28:27Z
--- license: mit --- ### Hiyuki chan on Stable Diffusion This is the `<hiyuki-chan>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<hiyuki-chan> 0](https://huggingface.co/sd-concepts-library/hiyuki-chan/resolve/main/concept_images/0.jpeg) ![<hiyuki-chan> 1](https://huggingface.co/sd-concepts-library/hiyuki-chan/resolve/main/concept_images/1.jpeg) ![<hiyuki-chan> 2](https://huggingface.co/sd-concepts-library/hiyuki-chan/resolve/main/concept_images/3.jpeg) ![<hiyuki-chan> 3](https://huggingface.co/sd-concepts-library/hiyuki-chan/resolve/main/concept_images/2.jpeg)
sd-concepts-library/ralph-mcquarrie
sd-concepts-library
2022-09-20T10:12:30Z
0
4
null
[ "license:mit", "region:us" ]
null
2022-09-20T10:12:25Z
--- license: mit --- ### Ralph McQuarrie on Stable Diffusion This is the `<ralph-mcquarrie>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<ralph-mcquarrie> 0](https://huggingface.co/sd-concepts-library/ralph-mcquarrie/resolve/main/concept_images/0.jpeg) ![<ralph-mcquarrie> 1](https://huggingface.co/sd-concepts-library/ralph-mcquarrie/resolve/main/concept_images/4.jpeg) ![<ralph-mcquarrie> 2](https://huggingface.co/sd-concepts-library/ralph-mcquarrie/resolve/main/concept_images/1.jpeg) ![<ralph-mcquarrie> 3](https://huggingface.co/sd-concepts-library/ralph-mcquarrie/resolve/main/concept_images/3.jpeg) ![<ralph-mcquarrie> 4](https://huggingface.co/sd-concepts-library/ralph-mcquarrie/resolve/main/concept_images/2.jpeg)
sd-concepts-library/blue-zombiee
sd-concepts-library
2022-09-20T09:29:28Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-20T09:29:23Z
--- license: mit --- ### blue-zombiee on Stable Diffusion This is the `<blue-zombie>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<blue-zombie> 0](https://huggingface.co/sd-concepts-library/blue-zombiee/resolve/main/concept_images/0.jpeg) ![<blue-zombie> 1](https://huggingface.co/sd-concepts-library/blue-zombiee/resolve/main/concept_images/1.jpeg) ![<blue-zombie> 2](https://huggingface.co/sd-concepts-library/blue-zombiee/resolve/main/concept_images/2.jpeg)
gcmsrc/xlm-roberta-base-finetuned-panx-it
gcmsrc
2022-09-20T09:19:59Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-20T09:17:52Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8207236842105264 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2571 - F1: 0.8207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8262 | 1.0 | 70 | 0.3182 | 0.7502 | | 0.2785 | 2.0 | 140 | 0.2685 | 0.7966 | | 0.1816 | 3.0 | 210 | 0.2571 | 0.8207 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
gcmsrc/xlm-roberta-base-finetuned-panx-de-fr
gcmsrc
2022-09-20T09:11:56Z
108
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-19T16:28:48Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1642 - F1: 0.8589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2886 | 1.0 | 715 | 0.1804 | 0.8293 | | 0.1458 | 2.0 | 1430 | 0.1574 | 0.8494 | | 0.0931 | 3.0 | 2145 | 0.1642 | 0.8589 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
denden/new_iloko
denden
2022-09-20T08:47:29Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "en", "dataset:timit_asr", "license:afl-3.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - en license: afl-3.0 tags: - audio # Example: audio - automatic-speech-recognition # Example: automatic-speech-recognition - speech # Example: speech pipeline_tag: automatic-speech-recognition datasets: - timit_asr # Example: common_voice. Use dataset id from https://hf.co/datasets metrics: - wer # Optional. Add this if you want to encode your eval results in a structured way. model-index: - name: iloko-model results: - task: type: automatic-speech-recognition # Required. Example: automatic-speech-recognition name: Iloko Speech Recognition # Optional. Example: Speech Recognition metrics: - type: wer # Required. Example: wer value: 0.009 # Required. Example: 20.90 name: TEST WETR # Optional. Example: Test WER # args: {arg_0} # Optional. Example for BLEU: max_order --- FINETUNED ILOKANO SPEECH RECOGNITION FROM WAV2VEC-XLSR-S3