modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 12:33:28
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 12:33:10
card
stringlengths
11
1.01M
gsarti/it5-small-informal-to-formal
gsarti
2022-03-09T07:47:36Z
18
0
transformers
[ "transformers", "pytorch", "tf", "jax", "t5", "text2text-generation", "italian", "sequence-to-sequence", "style-transfer", "formality-style-transfer", "it", "dataset:yahoo/xformal_it", "arxiv:2203.03759", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - it license: apache-2.0 tags: - italian - sequence-to-sequence - style-transfer - formality-style-transfer datasets: - yahoo/xformal_it widget: - text: "maronn qualcuno mi spieg' CHECCOSA SUCCEDE?!?!" - text: "wellaaaaaaa, ma fraté sei proprio troppo simpatiko, grazieeee!!" - text: "nn capisco xke tt i ragazzi lo fanno" - text: "IT5 è SUPERMEGA BRAVISSIMO a capire tt il vernacolo italiano!!!" metrics: - rouge - bertscore model-index: - name: it5-small-informal-to-formal results: - task: type: formality-style-transfer name: "Informal-to-formal Style Transfer" dataset: type: xformal_it name: "XFORMAL (Italian Subset)" metrics: - type: rouge1 value: 0.646 name: "Avg. Test Rouge1" - type: rouge2 value: 0.451 name: "Avg. Test Rouge2" - type: rougeL value: 0.628 name: "Avg. Test RougeL" - type: bertscore value: 0.702 name: "Avg. Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "8g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" --- # IT5 Small for Informal-to-formal Style Transfer 🧐 This repository contains the checkpoint for the [IT5 Small](https://huggingface.co/gsarti/it5-small) model fine-tuned on Informal-to-formal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines i2f = pipeline("text2text-generation", model='it5/it5-small-informal-to-formal') i2f("nn capisco xke tt i ragazzi lo fanno") >>> [{"generated_text": "non comprendo perché tutti i ragazzi agiscono così"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-small-informal-to-formal") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-small-informal-to-formal") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
gsarti/it5-base-formal-to-informal
gsarti
2022-03-09T07:45:49Z
4
0
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "italian", "sequence-to-sequence", "style-transfer", "formality-style-transfer", "it", "dataset:yahoo/xformal_it", "arxiv:2203.03759", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - it license: apache-2.0 tags: - italian - sequence-to-sequence - style-transfer - formality-style-transfer datasets: - yahoo/xformal_it widget: - text: "Questa performance è a dir poco spiacevole." - text: "In attesa di un Suo cortese riscontro, Le auguriamo un piacevole proseguimento di giornata." - text: "Questa visione mi procura una goduria indescrivibile." - text: "qualora ciò possa interessarti, ti pregherei di contattarmi." metrics: - rouge - bertscore model-index: - name: it5-base-formal-to-informal results: - task: type: formality-style-transfer name: "Formal-to-informal Style Transfer" dataset: type: xformal_it name: "XFORMAL (Italian Subset)" metrics: - type: rouge1 value: 0.652 name: "Avg. Test Rouge1" - type: rouge2 value: 0.446 name: "Avg. Test Rouge2" - type: rougeL value: 0.632 name: "Avg. Test RougeL" - type: bertscore value: 0.665 name: "Avg. Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "17g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" --- # IT5 Base for Formal-to-informal Style Transfer 🤗 This repository contains the checkpoint for the [IT5 Base](https://huggingface.co/gsarti/it5-base) model fine-tuned on Formal-to-informal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines f2i = pipeline("text2text-generation", model='it5/it5-base-formal-to-informal') f2i("Vi ringrazio infinitamente per vostra disponibilità") >>> [{"generated_text": "e grazie per la vostra disponibilità!"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-base-formal-to-informal") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-base-formal-to-informal") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
gsarti/mt5-small-formal-to-informal
gsarti
2022-03-09T07:44:42Z
4
0
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "mt5", "text2text-generation", "italian", "sequence-to-sequence", "style-transfer", "formality-style-transfer", "it", "dataset:yahoo/xformal_it", "arxiv:2203.03759", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - it license: apache-2.0 tags: - italian - sequence-to-sequence - style-transfer - formality-style-transfer datasets: - yahoo/xformal_it widget: - text: "Questa performance è a dir poco spiacevole." - text: "In attesa di un Suo cortese riscontro, Le auguriamo un piacevole proseguimento di giornata." - text: "Questa visione mi procura una goduria indescrivibile." - text: "qualora ciò possa interessarti, ti pregherei di contattarmi." metrics: - rouge - bertscore model-index: - name: mt5-small-formal-to-informal results: - task: type: formality-style-transfer name: "Formal-to-informal Style Transfer" dataset: type: xformal_it name: "XFORMAL (Italian Subset)" metrics: - type: rouge1 value: 0.651 name: "Avg. Test Rouge1" - type: rouge2 value: 0.450 name: "Avg. Test Rouge2" - type: rougeL value: 0.631 name: "Avg. Test RougeL" - type: bertscore value: 0.666 name: "Avg. Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "17g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" --- # mT5 Small for Formal-to-informal Style Transfer 🤗 This repository contains the checkpoint for the [mT5 Small](https://huggingface.co/google/mt5-small) model fine-tuned on Formal-to-informal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines f2i = pipeline("text2text-generation", model='it5/mt5-small-formal-to-informal') f2i("Vi ringrazio infinitamente per vostra disponibilità") >>> [{"generated_text": "e grazie per la vostra disponibilità!"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/mt5-small-formal-to-informal") model = AutoModelForSeq2SeqLM.from_pretrained("it5/mt5-small-formal-to-informal") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
M-Quan/wav2vec2-demo
M-Quan
2022-03-09T06:20:54Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-09T01:26:39Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-demo This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4239 - Wer: 0.3508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4093 | 4.0 | 500 | 1.2405 | 0.8685 | | 0.5597 | 8.0 | 1000 | 0.4538 | 0.4437 | | 0.2113 | 12.0 | 1500 | 0.4106 | 0.3749 | | 0.1188 | 16.0 | 2000 | 0.4609 | 0.3775 | | 0.0776 | 20.0 | 2500 | 0.4239 | 0.3508 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.10.3
nickmuchi/vit-base-xray-pneumonia
nickmuchi
2022-03-09T05:43:35Z
153
4
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-09T02:04:50Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - chest xrays widget: - src: https://drive.google.com/uc?id=1yqnhD4Wjt4Y_NGLtijTGGaaw9GL497kQ example_title: PNEUMONIA - src: https://drive.google.com/uc?id=1xjcIEDb8kuSd4wF44gCEgsc0PfRvs53m example_title: NORMAL metrics: - accuracy model-index: - name: vit-base-xray-pneumonia results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-xray-pneumonia This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the [chest-xray-pneumonia](https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia) dataset. It achieves the following results on the evaluation set: - Loss: 0.3387 - Accuracy: 0.9006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1233 | 0.31 | 100 | 1.1662 | 0.6651 | | 0.0868 | 0.61 | 200 | 0.3387 | 0.9006 | | 0.1387 | 0.92 | 300 | 0.5297 | 0.8237 | | 0.1264 | 1.23 | 400 | 0.4566 | 0.8590 | | 0.0829 | 1.53 | 500 | 0.6832 | 0.8285 | | 0.0734 | 1.84 | 600 | 0.4886 | 0.8157 | | 0.0132 | 2.15 | 700 | 1.3639 | 0.7292 | | 0.0877 | 2.45 | 800 | 0.5258 | 0.8846 | | 0.0516 | 2.76 | 900 | 0.8772 | 0.8013 | | 0.0637 | 3.07 | 1000 | 0.4947 | 0.8558 | | 0.0022 | 3.37 | 1100 | 1.0062 | 0.8045 | | 0.0555 | 3.68 | 1200 | 0.7822 | 0.8285 | | 0.0405 | 3.99 | 1300 | 1.9288 | 0.6779 | | 0.0012 | 4.29 | 1400 | 1.2153 | 0.7981 | | 0.0034 | 4.6 | 1500 | 1.8931 | 0.7308 | | 0.0339 | 4.91 | 1600 | 0.9071 | 0.8590 | | 0.0013 | 5.21 | 1700 | 1.6266 | 0.7580 | | 0.0373 | 5.52 | 1800 | 1.5252 | 0.7676 | | 0.001 | 5.83 | 1900 | 1.2748 | 0.7869 | | 0.0005 | 6.13 | 2000 | 1.2103 | 0.8061 | | 0.0004 | 6.44 | 2100 | 1.3133 | 0.7981 | | 0.0004 | 6.75 | 2200 | 1.2200 | 0.8045 | | 0.0004 | 7.06 | 2300 | 1.2834 | 0.7933 | | 0.0004 | 7.36 | 2400 | 1.3080 | 0.7949 | | 0.0003 | 7.67 | 2500 | 1.3814 | 0.7917 | | 0.0004 | 7.98 | 2600 | 1.2853 | 0.7965 | | 0.0003 | 8.28 | 2700 | 1.3644 | 0.7933 | | 0.0003 | 8.59 | 2800 | 1.3137 | 0.8013 | | 0.0003 | 8.9 | 2900 | 1.3507 | 0.7997 | | 0.0003 | 9.2 | 3000 | 1.3751 | 0.7997 | | 0.0003 | 9.51 | 3100 | 1.3884 | 0.7981 | | 0.0003 | 9.82 | 3200 | 1.3831 | 0.7997 | ## Example Images #### Pneumonia Chest X-Ray ![Pneumonia](https://drive.google.com/uc?id=1yqnhD4Wjt4Y_NGLtijTGGaaw9GL497kQ) #### Normal Chest X-Ray ![Normal](https://drive.google.com/uc?id=1xjcIEDb8kuSd4wF44gCEgsc0PfRvs53m) ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
megagonlabs/cocosum-cont-self
megagonlabs
2022-03-09T05:18:29Z
0
0
null
[ "license:bsd-3-clause", "region:us" ]
null
2022-03-07T23:27:29Z
--- license: bsd-3-clause --- See original GitHub repo for more details [here](https://github.com/megagonlabs/cocosum)
megagonlabs/cocosum-comm-self
megagonlabs
2022-03-09T05:18:23Z
0
0
null
[ "license:bsd-3-clause", "region:us" ]
null
2022-03-07T23:31:25Z
--- license: bsd-3-clause --- See original GitHub repo for more details [here](https://github.com/megagonlabs/cocosum)
megagonlabs/cocosum-comm-few
megagonlabs
2022-03-09T05:18:11Z
0
0
null
[ "license:bsd-3-clause", "region:us" ]
null
2022-03-07T23:32:02Z
--- license: bsd-3-clause --- See original GitHub repo for more details [here](https://github.com/megagonlabs/cocosum)
aaraki/distilbert-base-uncased-finetuned-cola
aaraki
2022-03-09T02:08:47Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-09T01:56:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.40967417350821667 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5026 - Matthews Correlation: 0.4097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5335 | 1.0 | 535 | 0.5026 | 0.4097 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
KoichiYasuoka/roberta-base-ukrainian
KoichiYasuoka
2022-03-08T23:33:19Z
22
2
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "ukrainian", "masked-lm", "ubertext", "uk", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-08T23:25:41Z
--- language: - "uk" tags: - "ukrainian" - "masked-lm" - "ubertext" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" --- # roberta-base-ukrainian ## Model Description This is a RoBERTa model pre-trained on [Корпус UberText](https://lang.org.ua/uk/corpora/#anchor4). You can fine-tune `roberta-base-ukrainian` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-base-ukrainian-upos), dependency-parsing, and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-ukrainian") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-base-ukrainian") ```
sanchit-gandhi/wav2vec2-2-rnd
sanchit-gandhi
2022-03-08T22:30:32Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "generated_from_trainer", "dataset:librispeech_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-06T15:38:27Z
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.9599 - Wer: 0.1442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.1431 | 1.68 | 1500 | 6.0870 | 1.4277 | | 5.498 | 3.36 | 3000 | 5.5505 | 1.6318 | | 3.575 | 5.04 | 4500 | 3.7856 | 0.6683 | | 1.7532 | 6.73 | 6000 | 2.4603 | 0.3576 | | 1.6379 | 8.41 | 7500 | 1.8847 | 0.2932 | | 1.3145 | 10.09 | 9000 | 1.5027 | 0.2222 | | 0.8389 | 11.77 | 10500 | 1.2637 | 0.1855 | | 0.9239 | 13.45 | 12000 | 1.1424 | 0.1683 | | 0.6666 | 15.13 | 13500 | 1.0562 | 0.1593 | | 0.5258 | 16.82 | 15000 | 0.9911 | 0.1489 | | 0.4733 | 18.5 | 16500 | 0.9599 | 0.1442 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
huggingartists/lady-gaga
huggingartists
2022-03-08T20:28:19Z
5
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/lady-gaga", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/lady-gaga tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/e7e76c378cb43b4b1ff03947d5c0481a.400x400x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lady Gaga</div> <a href="https://genius.com/artists/lady-gaga"> <div style="text-align: center; font-size: 14px;">@lady-gaga</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Lady Gaga. Dataset is available [here](https://huggingface.co/datasets/huggingartists/lady-gaga). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/lady-gaga") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/17c0d4ej/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Lady Gaga's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2j7yp9qd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2j7yp9qd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/lady-gaga') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/lady-gaga") model = AutoModelWithLMHead.from_pretrained("huggingartists/lady-gaga") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
OrfeasTsk/bert-base-uncased-finetuned-squadv2
OrfeasTsk
2022-03-08T18:35:59Z
7
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-07T14:48:36Z
{ 'max_seq_length': 384, 'batch_size': 8, 'learning_rate': {'val': 5e-5, 'schelduler': 'Linear'}, 'max_clip_norm': None, 'epochs': 2 }
OrfeasTsk/bert-base-uncased-finetuned-triviaqa-large-batch
OrfeasTsk
2022-03-08T18:35:17Z
6
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-07T20:17:41Z
{ 'max_seq_length': 384, 'batch_size': 24, 'learning_rate': {'val': 3e-5, 'schelduler': 'Linear'}, 'max_clip_norm': None, 'epochs': 2 }
OrfeasTsk/bert-base-uncased-finetuned-squadv2-large-batch
OrfeasTsk
2022-03-08T18:34:54Z
5
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-08T18:23:33Z
{ 'max_seq_length': 384, 'batch_size': 24, 'learning_rate': {'val': 3e-5, 'schelduler': 'Linear'}, 'max_clip_norm': None, 'epochs': 2 }
z-uo/bert-qasper
z-uo
2022-03-08T18:31:21Z
68
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "en", "dataset:z-uo/qasper-squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-08T09:28:02Z
--- language: en datasets: - z-uo/qasper-squad --- # bert-base for QA with qasper Train from bert-base-uncased. How to use by python code: ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline # Load model with pipeline model_name = "z-uo/bert-qasper" nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) # Get predictions QA_input = { 'question': 'what they propose?', 'context': "In this paper, we provide an innovative contribution in the research domain dedicated to crop mapping by exploiting the of Sentinel-2 satellite images time series, with the specific aim to extract information on 'where and when' crops are grown. The final goal is to set up a workflow able to reliably identify (classify) the different crops that are grown in a given area by exploiting an end-to-end (3+2)D convolutional neural network (CNN) for semantic segmentation. The method also has the ambition to provide information, at pixel level, regarding the period in which a given crop is cultivated during the season. To this end, we propose a solution called Class Activation Interval (CAI) which allows us to interpret, for each pixel, the reasoning made by CNN in the classification determining in which time interval, of the input time series, the class is likely to be present or not. Our experiments, using a public domain dataset, show that the approach is able to accurately detect crop classes with an overall accuracy of about 93% and that the network can detect discriminatory time intervals in which crop is cultivated. These results have twofold importance: (i) demonstrate the ability of the network to correctly interpret the investigated physical process (i.e., bare soil condition, plant growth, senescence and harvesting according to specific cultivated variety) and (ii) provide further information to the end-user (e.g., the presence of crops and its temporal dynamics)." } res = nlp(QA_input) # Load model & tokenizer without pipeline model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ```
Ameer05/bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-10-epoch-tweak-lr-8-100-1
Ameer05
2022-03-08T16:43:01Z
9
1
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "summarization", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-08T08:57:44Z
--- tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-10-epoch-tweak-lr-8-100-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-10-epoch-tweak-lr-8-100-1 This model is a fine-tuned version of [Ameer05/model-token-repo](https://huggingface.co/Ameer05/model-token-repo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6315 - Rouge1: 61.441 - Rouge2: 52.9403 - Rougel: 58.3426 - Rougelsum: 60.8249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 0.91 | 5 | 2.0139 | 53.4301 | 46.6698 | 50.644 | 53.3985 | | No log | 1.91 | 10 | 1.6309 | 61.4629 | 53.8884 | 59.0867 | 60.8823 | | No log | 2.91 | 15 | 1.5379 | 61.2938 | 53.7208 | 59.0644 | 60.7381 | | No log | 3.91 | 20 | 1.4470 | 63.2667 | 55.9273 | 60.5112 | 62.7538 | | 1.5454 | 4.91 | 25 | 1.4353 | 62.7166 | 54.8328 | 60.0101 | 62.1378 | | 1.5454 | 5.91 | 30 | 1.4411 | 59.7469 | 51.9068 | 57.036 | 58.9474 | | 1.5454 | 6.91 | 35 | 1.5195 | 64.152 | 57.1447 | 61.362 | 63.5951 | | 1.5454 | 7.91 | 40 | 1.6174 | 60.1464 | 51.5654 | 57.1676 | 59.4405 | | 0.5429 | 8.91 | 45 | 1.7451 | 61.9696 | 53.6421 | 58.5884 | 61.3286 | | 0.5429 | 9.91 | 50 | 1.9081 | 60.3296 | 52.3052 | 57.6518 | 59.7854 | | 0.5429 | 10.91 | 55 | 1.9721 | 61.5597 | 51.9027 | 57.1184 | 60.6717 | | 0.5429 | 11.91 | 60 | 2.0471 | 61.2222 | 53.9475 | 58.725 | 60.6668 | | 0.5429 | 12.91 | 65 | 2.1422 | 60.1915 | 52.0627 | 56.9955 | 59.438 | | 0.1506 | 13.91 | 70 | 2.1542 | 61.6915 | 53.045 | 58.1727 | 60.8765 | | 0.1506 | 14.91 | 75 | 2.1885 | 59.8069 | 51.6543 | 56.8112 | 59.2055 | | 0.1506 | 15.91 | 80 | 2.3146 | 61.695 | 53.2666 | 57.9003 | 61.1108 | | 0.1506 | 16.91 | 85 | 2.3147 | 60.4482 | 52.1694 | 57.0649 | 59.7882 | | 0.0452 | 17.91 | 90 | 2.1731 | 60.0259 | 51.5046 | 56.7399 | 59.2955 | | 0.0452 | 18.91 | 95 | 2.2690 | 60.0534 | 52.4819 | 57.1631 | 59.5056 | | 0.0452 | 19.91 | 100 | 2.2990 | 58.0737 | 48.8098 | 54.5684 | 57.3187 | | 0.0452 | 20.91 | 105 | 2.2704 | 61.8982 | 53.9077 | 58.6909 | 61.4252 | | 0.0267 | 21.91 | 110 | 2.3012 | 62.0174 | 53.5427 | 58.5278 | 61.1921 | | 0.0267 | 22.91 | 115 | 2.3569 | 61.6327 | 53.7387 | 58.8908 | 61.1623 | | 0.0267 | 23.91 | 120 | 2.3579 | 60.228 | 52.3747 | 58.1448 | 59.7322 | | 0.0267 | 24.91 | 125 | 2.3389 | 60.4902 | 51.7935 | 57.0689 | 59.7132 | | 0.0267 | 25.91 | 130 | 2.3168 | 58.8469 | 50.3181 | 55.7386 | 58.3598 | | 0.0211 | 26.91 | 135 | 2.4147 | 59.4225 | 50.8405 | 56.503 | 58.7221 | | 0.0211 | 27.91 | 140 | 2.3631 | 59.7489 | 51.2137 | 57.3204 | 59.3348 | | 0.0211 | 28.91 | 145 | 2.3850 | 60.1718 | 51.4176 | 57.2152 | 59.5157 | | 0.0211 | 29.91 | 150 | 2.4610 | 60.1433 | 51.433 | 56.6256 | 59.3265 | | 0.0175 | 30.91 | 155 | 2.4400 | 58.8345 | 49.7031 | 55.3079 | 57.9236 | | 0.0175 | 31.91 | 160 | 2.4506 | 59.209 | 50.1626 | 55.6451 | 58.5791 | | 0.0175 | 32.91 | 165 | 2.4316 | 59.7713 | 50.8999 | 56.4235 | 58.9845 | | 0.0175 | 33.91 | 170 | 2.2781 | 60.1822 | 51.9435 | 57.4586 | 59.6766 | | 0.0175 | 34.91 | 175 | 2.3849 | 58.2328 | 49.2106 | 55.1516 | 57.5072 | | 0.0141 | 35.91 | 180 | 2.4872 | 58.4916 | 50.3345 | 55.5991 | 58.1131 | | 0.0141 | 36.91 | 185 | 2.4883 | 59.0957 | 49.76 | 55.3567 | 58.076 | | 0.0141 | 37.91 | 190 | 2.4327 | 58.091 | 48.8628 | 54.8678 | 57.5406 | | 0.0141 | 38.91 | 195 | 2.4998 | 57.7428 | 48.7366 | 54.2166 | 56.7643 | | 0.0089 | 39.91 | 200 | 2.4107 | 60.1662 | 51.9832 | 57.1372 | 59.6989 | | 0.0089 | 40.91 | 205 | 2.4700 | 58.2159 | 49.3934 | 54.9265 | 57.4126 | | 0.0089 | 41.91 | 210 | 2.4833 | 58.7434 | 49.6619 | 55.5239 | 57.9562 | | 0.0089 | 42.91 | 215 | 2.4703 | 60.2984 | 51.3168 | 56.9082 | 59.3958 | | 0.0062 | 43.91 | 220 | 2.5306 | 60.5455 | 52.1189 | 57.3213 | 60.0232 | | 0.0062 | 44.91 | 225 | 2.5181 | 60.2149 | 51.2187 | 56.1935 | 59.3471 | | 0.0062 | 45.91 | 230 | 2.4871 | 59.8013 | 51.6114 | 56.0911 | 59.0902 | | 0.0062 | 46.91 | 235 | 2.4811 | 58.0271 | 48.9441 | 54.3108 | 57.3647 | | 0.0062 | 47.91 | 240 | 2.5290 | 62.5087 | 54.6149 | 59.638 | 62.0455 | | 0.0072 | 48.91 | 245 | 2.5194 | 58.7193 | 49.9679 | 55.6517 | 58.1569 | | 0.0072 | 49.91 | 250 | 2.5708 | 58.4626 | 49.5257 | 54.5032 | 58.1413 | | 0.0072 | 50.91 | 255 | 2.6449 | 58.446 | 49.4625 | 55.1092 | 58.03 | | 0.0072 | 51.91 | 260 | 2.5592 | 58.859 | 49.4398 | 55.1503 | 57.9663 | | 0.0056 | 52.91 | 265 | 2.5086 | 59.7322 | 51.3051 | 56.5401 | 59.2726 | | 0.0056 | 53.91 | 270 | 2.4846 | 57.8603 | 48.2408 | 54.3847 | 57.115 | | 0.0056 | 54.91 | 275 | 2.5509 | 58.9506 | 50.045 | 55.6658 | 58.3618 | | 0.0056 | 55.91 | 280 | 2.5032 | 60.2524 | 51.8167 | 56.98 | 59.7506 | | 0.0056 | 56.91 | 285 | 2.5012 | 60.0596 | 51.4924 | 56.7181 | 59.5037 | | 0.0054 | 57.91 | 290 | 2.5176 | 61.0622 | 52.6235 | 57.9317 | 60.5036 | | 0.0054 | 58.91 | 295 | 2.5024 | 62.9246 | 54.8544 | 59.9824 | 62.5584 | | 0.0054 | 59.91 | 300 | 2.5687 | 62.2602 | 53.9673 | 58.9862 | 61.5837 | | 0.0054 | 60.91 | 305 | 2.5890 | 62.5706 | 54.227 | 59.2032 | 62.125 | | 0.0036 | 61.91 | 310 | 2.5454 | 62.1565 | 53.2585 | 58.7169 | 61.3943 | | 0.0036 | 62.91 | 315 | 2.5629 | 62.8292 | 54.6781 | 59.9889 | 62.254 | | 0.0036 | 63.91 | 320 | 2.5581 | 58.8394 | 50.4421 | 56.0742 | 58.1945 | | 0.0036 | 64.91 | 325 | 2.5532 | 59.5814 | 51.1335 | 56.5841 | 59.196 | | 0.0031 | 65.91 | 330 | 2.5826 | 59.0485 | 50.3992 | 55.5283 | 58.3757 | | 0.0031 | 66.91 | 335 | 2.5815 | 61.4832 | 52.7977 | 57.7351 | 60.9888 | | 0.0031 | 67.91 | 340 | 2.5865 | 61.7836 | 53.6797 | 58.6743 | 61.3765 | | 0.0031 | 68.91 | 345 | 2.6007 | 61.2253 | 52.8781 | 57.7006 | 60.717 | | 0.0031 | 69.91 | 350 | 2.6210 | 60.717 | 52.4933 | 57.5089 | 60.4196 | | 0.0035 | 70.91 | 355 | 2.6169 | 61.3491 | 53.3932 | 58.2288 | 60.8793 | | 0.0035 | 71.91 | 360 | 2.6025 | 62.0101 | 54.0289 | 59.0822 | 61.7202 | | 0.0035 | 72.91 | 365 | 2.5705 | 61.2227 | 52.9937 | 58.2493 | 60.6631 | | 0.0035 | 73.91 | 370 | 2.5623 | 59.1718 | 50.7827 | 56.1851 | 58.7118 | | 0.002 | 74.91 | 375 | 2.5536 | 58.4201 | 49.6923 | 55.0398 | 57.7707 | | 0.002 | 75.91 | 380 | 2.5478 | 60.2307 | 51.7503 | 57.3173 | 59.692 | | 0.002 | 76.91 | 385 | 2.6039 | 58.7637 | 49.741 | 55.5341 | 58.0784 | | 0.002 | 77.91 | 390 | 2.6371 | 59.3929 | 50.6444 | 55.9887 | 58.813 | | 0.002 | 78.91 | 395 | 2.6238 | 59.0572 | 50.605 | 55.6631 | 58.4366 | | 0.0019 | 79.91 | 400 | 2.5783 | 57.9852 | 49.2588 | 54.822 | 57.4643 | | 0.0019 | 80.91 | 405 | 2.5982 | 58.0218 | 49.1651 | 54.9876 | 57.4066 | | 0.0019 | 81.91 | 410 | 2.6141 | 60.3133 | 51.5723 | 56.9476 | 59.715 | | 0.0019 | 82.91 | 415 | 2.5904 | 60.8199 | 51.8956 | 58.406 | 60.323 | | 0.0017 | 83.91 | 420 | 2.5718 | 60.3449 | 51.1433 | 57.6984 | 59.7513 | | 0.0017 | 84.91 | 425 | 2.5737 | 60.151 | 51.1986 | 57.3376 | 59.378 | | 0.0017 | 85.91 | 430 | 2.5807 | 60.9273 | 52.2469 | 58.2038 | 60.1642 | | 0.0017 | 86.91 | 435 | 2.5900 | 60.1846 | 51.6144 | 57.5407 | 59.5109 | | 0.0011 | 87.91 | 440 | 2.6066 | 62.0776 | 53.6022 | 59.157 | 61.6201 | | 0.0011 | 88.91 | 445 | 2.6231 | 61.8822 | 53.5232 | 58.965 | 61.401 | | 0.0011 | 89.91 | 450 | 2.6273 | 60.3358 | 51.9941 | 57.3823 | 59.7729 | | 0.0011 | 90.91 | 455 | 2.6194 | 60.0196 | 51.6134 | 57.1357 | 59.4594 | | 0.0011 | 91.91 | 460 | 2.6118 | 60.6898 | 52.1328 | 57.3076 | 60.0351 | | 0.0015 | 92.91 | 465 | 2.6032 | 61.2119 | 52.5034 | 57.8098 | 60.6634 | | 0.0015 | 93.91 | 470 | 2.6040 | 61.4812 | 52.8197 | 57.9668 | 60.8767 | | 0.0015 | 94.91 | 475 | 2.6158 | 61.4046 | 52.8905 | 57.8958 | 60.804 | | 0.0015 | 95.91 | 480 | 2.6280 | 62.1764 | 53.8521 | 58.8608 | 61.6138 | | 0.0012 | 96.91 | 485 | 2.6304 | 62.2028 | 53.8967 | 58.8976 | 61.6409 | | 0.0012 | 97.91 | 490 | 2.6328 | 61.7371 | 53.3908 | 58.4107 | 61.1382 | | 0.0012 | 98.91 | 495 | 2.6331 | 61.441 | 52.9403 | 58.3426 | 60.8249 | | 0.0012 | 99.91 | 500 | 2.6315 | 61.441 | 52.9403 | 58.3426 | 60.8249 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.10.3
Rawat29/distilroberta-base-finetuned-wikitext2
Rawat29
2022-03-08T16:19:47Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-08T15:23:19Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.084 | 1.0 | 2406 | 1.9229 | | 1.9999 | 2.0 | 4812 | 1.8832 | | 1.9616 | 3.0 | 7218 | 1.8173 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
Rayyan/M
Rayyan
2022-03-08T15:59:51Z
0
0
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2022-03-08T15:59:51Z
--- license: cc-by-nc-sa-4.0 ---
HuggingAlex1247/distilbert-base-german-europeana-cased-germeval_14
HuggingAlex1247
2022-03-08T15:58:06Z
7
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "de", "dataset:germeval_14", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-08T15:23:57Z
--- language: - de license: mit datasets: - germeval_14 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-german-europeana-cased-germeval_14 results: - task: name: Token Classification type: token-classification dataset: name: germeval_14 type: germeval_14 args: default metrics: - name: precision type: precision value: 0.7437097717963721 - name: recall type: recall value: 0.7571485305798252 - name: f1 type: f1 value: 0.7503689855357669 - name: accuracy type: accuracy value: 0.9541357066185896 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-german-europeana-cased-germeval_14 This model is a fine-tuned version of [dbmdz/distilbert-base-german-europeana-cased](https://huggingface.co/dbmdz/distilbert-base-german-europeana-cased) on the germeval_14 dataset. It achieves the following results on the evaluation set: - precision: 0.7437 - recall: 0.7571 - f1: 0.7504 - accuracy: 0.9541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - num_train_epochs: 10 - train_batch_size: 8 - eval_batch_size: 8 - learning_rate: 1e-05 - weight_decay_rate: 0.01 - num_warmup_steps: 0 - fp16: True ### Framework versions - Transformers 4.17.0 - Datasets 1.18.0 - Tokenizers 0.11.6
mmgyorke/vit-world-landmarks
mmgyorke
2022-03-08T14:58:47Z
72
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-08T14:40:15Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: vit-world-landmarks results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # vit-world-landmarks Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### arc de triomphe ![arc de triomphe](images/arc_de_triomphe.jpg) #### big ben ![big ben](images/big_ben.jpg) #### la sagrada familia ![la sagrada familia](images/la_sagrada_familia.jpg) #### leaning tower of pisa ![leaning tower of pisa](images/leaning_tower_of_pisa.jpg) #### taj mahal ![taj mahal](images/taj_mahal.jpg)
AlekseyKorshuk/bert-finetuned-ner
AlekseyKorshuk
2022-03-08T14:27:56Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:wnut_17", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-08T12:40:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wnut_17 model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the wnut_17 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 425 | 0.3961 | 0.5707 | 0.2847 | 0.3799 | 0.9058 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
Noricum/wav2vec2-large-xlsr-53-german
Noricum
2022-03-08T13:44:49Z
5
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
# Wav2vec2 German Model This model has been fine-tuned on the wav2vec-large-xlsr-53 with the German CommonVoice dataset. It achieves a 11.26 WER on the full test dataset. It was basically trained with the code provided by [Max Idahl](https://huggingface.co/maxidl/wav2vec2-large-xlsr-german) with small adjustments in data preprocessing and on training parameters. You can use it to transcribe your own files by the following code. Please note, that your input file must be *.wav, encoded in 16 kHz and be single channel. To convert an audio file using ffmpeg use: "ffmpeg -i input.wav -ar 16000 -ac 1 output.wav". The transcribe process is very memory consuming (around 10GB per 10 seconds). If the script ends with "Killed" it means the Python interpreter ran out of memory. In this case, try with a shorter audio file. ```python # !pip3 install transformers torch soundfile import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer # load pretrained model tokenizer = Wav2Vec2Tokenizer.from_pretrained("Noricum/wav2vec2-large-xlsr-53-german") model = Wav2Vec2ForCTC.from_pretrained("Noricum/wav2vec2-large-xlsr-53-german") #load audio audio_input, _ = sf.read("/path/to/your/audio.wav") # transcribe input_values = tokenizer(audio_input, return_tensors="pt").input_values logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = tokenizer.batch_decode(predicted_ids)[0] print(str(transcription)) ``` To evaluate the model on the full CommonVoice test dataset, run this script: ```python import re import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "de", split="test") # use "test[:1%]" for 1% sample wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Noricum/wav2vec2-large-xlsr-53-german") model = Wav2Vec2ForCTC.from_pretrained("Noricum/wav2vec2-large-xlsr-53-german") model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=4) # batch_size=8 -> requires ~14.5GB GPU memory # Chunked version, see https://discuss.huggingface.co/t/spanish-asr-fine-tuning-wav2vec2/4586/5: import jiwer def chunked_wer(targets, predictions, chunk_size=None): if chunk_size is None: return jiwer.wer(targets, predictions) start = 0 end = chunk_size H, S, D, I = 0, 0, 0, 0 while start < len(targets): chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end]) H = H + chunk_metrics["hits"] S = S + chunk_metrics["substitutions"] D = D + chunk_metrics["deletions"] I = I + chunk_metrics["insertions"] start += chunk_size end += chunk_size return float(S + D + I) / float(H + S + D) print("Total (chunk_size=1000), WER: {:2f}".format(100 * chunked_wer(result["pred_strings"], result["sentence"], chunk_size=1000))) ``` Output: Total (chunk_size=1000), WER: 11.256522
huggingtweets/feufillet-greatestquotes-hostagekiller
huggingtweets
2022-03-08T13:28:29Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-08T13:26:49Z
--- language: en thumbnail: http://www.huggingtweets.com/feufillet-greatestquotes-hostagekiller/1646746104400/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1197820815636672513/JSCZmPDf_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1473236995497500675/FtwXDZld_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/378800000520968918/d38fd96468e9ba14c1f9f022eb0c4e61_400x400.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sexy.funny.cute.pix & HUSSY2K. & Great Minds Quotes</div> <div style="text-align: center; font-size: 14px;">@feufillet-greatestquotes-hostagekiller</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sexy.funny.cute.pix & HUSSY2K. & Great Minds Quotes. | Data | sexy.funny.cute.pix | HUSSY2K. | Great Minds Quotes | | --- | --- | --- | --- | | Tweets downloaded | 3091 | 3191 | 3200 | | Retweets | 149 | 865 | 0 | | Short tweets | 576 | 374 | 2 | | Tweets kept | 2366 | 1952 | 3198 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3afdee2s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @feufillet-greatestquotes-hostagekiller's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25fcmxer) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25fcmxer/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/feufillet-greatestquotes-hostagekiller') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
alirezafarashah/wav2vec2-base-ks
alirezafarashah
2022-03-08T11:41:09Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:superb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-08T11:33:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0982 - Accuracy: 0.9825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 0.8465 | 1.0 | 399 | 0.8179 | 0.7516 | | 0.2962 | 2.0 | 798 | 0.9771 | 0.2077 | | 0.1891 | 3.0 | 1197 | 0.9819 | 0.1195 | | 0.19 | 4.0 | 1596 | 0.9825 | 0.0982 | | 0.1685 | 5.0 | 1995 | 0.9825 | 0.0952 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-Concat_CRAFT_es
StivenLancheros
2022-03-08T10:57:12Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-08T09:29:54Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-base-cased-v1.2-finetuned-ner-Concat_CRAFT_es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.2-finetuned-ner-Concat_CRAFT_es This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2079 - Precision: 0.8487 - Recall: 0.8443 - F1: 0.8465 - Accuracy: 0.9693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0698 | 1.0 | 2719 | 0.1463 | 0.8132 | 0.8233 | 0.8182 | 0.9643 | | 0.0321 | 2.0 | 5438 | 0.1612 | 0.8321 | 0.8463 | 0.8392 | 0.9681 | | 0.0154 | 3.0 | 8157 | 0.1832 | 0.8448 | 0.8404 | 0.8426 | 0.9683 | | 0.0058 | 4.0 | 10876 | 0.2079 | 0.8487 | 0.8443 | 0.8465 | 0.9693 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
SGrannemann/bert-finetuned-ner
SGrannemann
2022-03-08T10:25:07Z
4
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-08T08:47:55Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0225 - Validation Loss: 0.0519 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0226 | 0.0519 | 0 | | 0.0229 | 0.0519 | 1 | | 0.0225 | 0.0519 | 2 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 1.18.4 - Tokenizers 0.11.6
akshaychaudhary/distilbert-base-uncased-finetuned-devops1-ner
akshaychaudhary
2022-03-08T09:58:20Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-08T09:29:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-devops1-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-devops1-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9870 - Precision: 0.0572 - Recall: 0.2689 - F1: 0.0944 - Accuracy: 0.7842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 72 | 0.6027 | 0.0484 | 0.2269 | 0.0798 | 0.7861 | | No log | 2.0 | 144 | 0.8631 | 0.0573 | 0.2857 | 0.0955 | 0.7771 | | No log | 3.0 | 216 | 0.9870 | 0.0572 | 0.2689 | 0.0944 | 0.7842 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
brad1141/bert-finetuned-ner
brad1141
2022-03-08T09:31:59Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "longformer", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6434 - Precision: 0.8589 - Recall: 0.8686 - F1: 0.8637 - Accuracy: 0.8324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.615 | 1.0 | 1741 | 0.6111 | 0.8200 | 0.8652 | 0.8420 | 0.8046 | | 0.4795 | 2.0 | 3482 | 0.5366 | 0.8456 | 0.8803 | 0.8626 | 0.8301 | | 0.3705 | 3.0 | 5223 | 0.5412 | 0.8527 | 0.8786 | 0.8655 | 0.8339 | | 0.2749 | 4.0 | 6964 | 0.5906 | 0.8559 | 0.8711 | 0.8634 | 0.8316 | | 0.2049 | 5.0 | 8705 | 0.6434 | 0.8589 | 0.8686 | 0.8637 | 0.8324 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
vneralla/xlrs-53-finnish
vneralla
2022-03-08T08:59:34Z
4
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "pretraining", "speech", "automatic-speech-recognition", "multilingual", "dataset:common_voice", "arxiv:2006.13979", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: multilingual datasets: - common_voice tags: - speech - automatic-speech-recognition license: apache-2.0 --- # Wav2Vec2-XLSR-53 [Facebook's XLSR-Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information. [Paper](https://arxiv.org/abs/2006.13979) Authors: Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli **Abstract** This paper presents XLSR which learns cross-lingual speech representations by pretraining a single model from the raw waveform of speech in multiple languages. We build on wav2vec 2.0 which is trained by solving a contrastive task over masked latent speech representations and jointly learns a quantization of the latents shared across languages. The resulting model is fine-tuned on labeled data and experiments show that cross-lingual pretraining significantly outperforms monolingual pretraining. On the CommonVoice benchmark, XLSR shows a relative phoneme error rate reduction of 72% compared to the best known results. On BABEL, our approach improves word error rate by 16% relative compared to a comparable system. Our approach enables a single multilingual speech recognition model which is competitive to strong individual models. Analysis shows that the latent discrete speech representations are shared across languages with increased sharing for related languages. We hope to catalyze research in low-resource speech understanding by releasing XLSR-53, a large model pretrained in 53 languages. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage See [this notebook](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_Tune_XLSR_Wav2Vec2_on_Turkish_ASR_with_%F0%9F%A4%97_Transformers.ipynb) for more information on how to fine-tune the model. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/xlsr_wav2vec2.png)
Ameer05/bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-10-epoch-tweak-lr-8-10-1
Ameer05
2022-03-08T08:48:11Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "summarization", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-08T08:28:45Z
--- tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-10-epoch-tweak-lr-8-10-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-10-epoch-tweak-lr-8-10-1 This model is a fine-tuned version of [Ameer05/model-token-repo](https://huggingface.co/Ameer05/model-token-repo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4855 - Rouge1: 58.3832 - Rouge2: 49.9973 - Rougel: 55.3055 - Rougelsum: 57.7139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 0.91 | 5 | 2.0183 | 52.3098 | 45.5304 | 49.2759 | 51.7456 | | No log | 1.91 | 10 | 1.6564 | 61.815 | 53.9035 | 58.4243 | 60.784 | | No log | 2.91 | 15 | 1.5330 | 61.3032 | 54.12 | 58.9152 | 60.7178 | | No log | 3.91 | 20 | 1.4539 | 63.3012 | 56.2987 | 61.0907 | 62.5217 | | 1.5646 | 4.91 | 25 | 1.4578 | 62.4815 | 55.1453 | 60.3921 | 61.6067 | | 1.5646 | 5.91 | 30 | 1.4284 | 61.5347 | 54.1271 | 58.8474 | 60.5427 | | 1.5646 | 6.91 | 35 | 1.4467 | 61.5081 | 53.8512 | 59.2782 | 60.6928 | | 1.5646 | 7.91 | 40 | 1.4653 | 59.5349 | 51.8208 | 56.5996 | 58.8211 | | 0.6692 | 8.91 | 45 | 1.4740 | 57.2917 | 49.5416 | 54.8409 | 56.6276 | | 0.6692 | 9.91 | 50 | 1.4855 | 58.3832 | 49.9973 | 55.3055 | 57.7139 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.10.3
SGrannemann/distilbert-base-uncased-finetuned-imdb
SGrannemann
2022-03-08T08:36:19Z
3
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-08T07:43:47Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Tokenizers 0.11.6
Narsil/totallysafe
Narsil
2022-03-08T08:23:38Z
4
0
transformers
[ "transformers", "pytorch", "tf", "gpt2", "text-generation", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-07T22:13:40Z
--- pipeline_tag: text-generation --- This is a totally safe and groundbreaking model. GPT3 performance with under 10Mo model.
cammy/bart-large-cnn-10k-pad-early-lit
cammy
2022-03-08T08:20:01Z
3
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-08T05:46:12Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-10k-pad-early-lit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-10k-pad-early-lit This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3758 - Rouge1: 27.7351 - Rouge2: 13.1664 - Rougel: 21.6559 - Rougelsum: 24.648 - Gen Len: 69.343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.2516 | 1.0 | 9998 | 0.3540 | 28.1151 | 13.3875 | 22.1496 | 25.1745 | 66.578 | | 0.1747 | 2.0 | 19996 | 0.3758 | 27.7351 | 13.1664 | 21.6559 | 24.648 | 69.343 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
huggingtweets/betonkoepfin-littlehorney-plusbibi1
huggingtweets
2022-03-08T07:46:04Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-08T07:44:50Z
--- language: en thumbnail: http://www.huggingtweets.com/betonkoepfin-littlehorney-plusbibi1/1646725560421/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1386970823681052680/oA_4HBKl_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1425205160578588673/LBMG1HOO_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500892464772751365/6uhqt-Jx_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bibi und Anna & Betty S. & Vanny_Bunny™</div> <div style="text-align: center; font-size: 14px;">@betonkoepfin-littlehorney-plusbibi1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bibi und Anna & Betty S. & Vanny_Bunny™. | Data | Bibi und Anna | Betty S. | Vanny_Bunny™ | | --- | --- | --- | --- | | Tweets downloaded | 1818 | 3243 | 3185 | | Retweets | 9 | 213 | 494 | | Short tweets | 341 | 552 | 339 | | Tweets kept | 1468 | 2478 | 2352 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3nxb6yoh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @betonkoepfin-littlehorney-plusbibi1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/365gy60z) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/365gy60z/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/betonkoepfin-littlehorney-plusbibi1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
zhiweitong/dpr-ctx_encoder-single-nq-base
zhiweitong
2022-03-08T07:28:29Z
5
0
transformers
[ "transformers", "pytorch", "dpr", "en", "dataset:wiki_dpr", "dataset:natural_questions", "endpoints_compatible", "region:us" ]
null
2022-03-07T12:19:50Z
--- language: en datasets: - wiki_dpr - natural_questions --- # dpr-ctx_encoder-single-nq-base This encoder is used with [zhiweitong/dpr-answer_encoder-single-nq-base](https://huggingface.co/zhiweitong/dpr-answer_encoder-single-nq-base)
MikhailGalperin/distilbert-base-uncased-finetuned-ner
MikhailGalperin
2022-03-08T06:49:43Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-07T20:29:52Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
Ameer05/bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-10-epoch
Ameer05
2022-03-08T05:53:14Z
9
1
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "summarization", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-08T05:33:06Z
--- tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-10-epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-10-epoch This model is a fine-tuned version of [Ameer05/model-token-repo](https://huggingface.co/Ameer05/model-token-repo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5216 - Rouge1: 59.5791 - Rouge2: 51.3273 - Rougel: 56.9984 - Rougelsum: 59.1424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 0.91 | 5 | 2.0124 | 53.776 | 46.7427 | 50.7565 | 53.5502 | | No log | 1.91 | 10 | 1.6353 | 61.8019 | 53.8614 | 58.9744 | 61.339 | | No log | 2.91 | 15 | 1.5321 | 59.7045 | 51.5968 | 57.0823 | 59.2417 | | No log | 3.91 | 20 | 1.4569 | 62.4379 | 54.5464 | 59.9202 | 61.9242 | | 1.5608 | 4.91 | 25 | 1.4613 | 63.3808 | 55.8818 | 61.432 | 63.0208 | | 1.5608 | 5.91 | 30 | 1.4321 | 59.6761 | 50.9812 | 56.7977 | 59.1214 | | 1.5608 | 6.91 | 35 | 1.4753 | 62.6439 | 54.7158 | 60.3831 | 62.1046 | | 1.5608 | 7.91 | 40 | 1.4783 | 60.2735 | 52.7462 | 57.77 | 59.9725 | | 0.6428 | 8.91 | 45 | 1.4974 | 62.8691 | 54.9062 | 60.3496 | 62.5132 | | 0.6428 | 9.91 | 50 | 1.5216 | 59.5791 | 51.3273 | 56.9984 | 59.1424 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.10.3
jiobiala24/wav2vec2-base-cv
jiobiala24
2022-03-08T05:42:48Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-08T00:03:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-cv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-cv This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.1562 - Wer: 0.3804 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.563 | 3.18 | 500 | 2.9826 | 1.0 | | 2.0012 | 6.37 | 1000 | 0.9528 | 0.5354 | | 0.4841 | 9.55 | 1500 | 0.8838 | 0.4325 | | 0.2748 | 12.74 | 2000 | 0.9437 | 0.4130 | | 0.1881 | 15.92 | 2500 | 0.9603 | 0.4005 | | 0.1426 | 19.11 | 3000 | 1.0605 | 0.3955 | | 0.1134 | 22.29 | 3500 | 1.0733 | 0.3897 | | 0.0963 | 25.48 | 4000 | 1.1387 | 0.3835 | | 0.0829 | 28.66 | 4500 | 1.1562 | 0.3804 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
willcai/wav2vec2-large-xls-r-300m-tr-colab
willcai
2022-03-08T03:06:32Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-05T22:48:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-tr-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tr-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4121 - Wer: 0.3112 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.1868 | 1.83 | 400 | 0.9812 | 0.8398 | | 0.691 | 3.67 | 800 | 0.5571 | 0.6298 | | 0.3555 | 5.5 | 1200 | 0.4676 | 0.4779 | | 0.2451 | 7.34 | 1600 | 0.4572 | 0.4541 | | 0.1844 | 9.17 | 2000 | 0.4743 | 0.4389 | | 0.1541 | 11.01 | 2400 | 0.4583 | 0.4300 | | 0.1277 | 12.84 | 2800 | 0.4565 | 0.3950 | | 0.1122 | 14.68 | 3200 | 0.4761 | 0.4087 | | 0.0975 | 16.51 | 3600 | 0.4654 | 0.3786 | | 0.0861 | 18.35 | 4000 | 0.4503 | 0.3667 | | 0.0775 | 20.18 | 4400 | 0.4600 | 0.3581 | | 0.0666 | 22.02 | 4800 | 0.4350 | 0.3504 | | 0.0627 | 23.85 | 5200 | 0.4211 | 0.3349 | | 0.0558 | 25.69 | 5600 | 0.4390 | 0.3333 | | 0.0459 | 27.52 | 6000 | 0.4218 | 0.3185 | | 0.0439 | 29.36 | 6400 | 0.4121 | 0.3112 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3
gayanin/t5-small-paraphrasing-mlm
gayanin
2022-03-08T01:54:54Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-07T21:54:14Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-paraphrasing-mlm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-paraphrasing-mlm This model is a fine-tuned version of [gayanin/t5-small-paraphrase-pubmed](https://huggingface.co/gayanin/t5-small-paraphrase-pubmed) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7030 - Rouge2 Precision: 0.6576 - Rouge2 Recall: 0.4712 - Rouge2 Fmeasure: 0.532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:------:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.9215 | 1.0 | 13833 | 0.8050 | 0.6352 | 0.454 | 0.5131 | | 0.855 | 2.0 | 27666 | 0.7679 | 0.6411 | 0.4589 | 0.5184 | | 0.8387 | 3.0 | 41499 | 0.7464 | 0.6464 | 0.4626 | 0.5226 | | 0.8267 | 4.0 | 55332 | 0.7315 | 0.6513 | 0.4671 | 0.5273 | | 0.7879 | 5.0 | 69165 | 0.7217 | 0.6534 | 0.4687 | 0.529 | | 0.7738 | 6.0 | 82998 | 0.7142 | 0.6548 | 0.4688 | 0.5295 | | 0.7793 | 7.0 | 96831 | 0.7094 | 0.6553 | 0.4694 | 0.53 | | 0.7654 | 8.0 | 110664 | 0.7056 | 0.6573 | 0.4704 | 0.5313 | | 0.7675 | 9.0 | 124497 | 0.7036 | 0.6577 | 0.4712 | 0.532 | | 0.7662 | 10.0 | 138330 | 0.7030 | 0.6576 | 0.4712 | 0.532 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
huggingtweets/lilbratmia-littlehorney-plusbibi1
huggingtweets
2022-03-07T21:45:31Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-07T21:35:06Z
--- language: en thumbnail: http://www.huggingtweets.com/lilbratmia-littlehorney-plusbibi1/1646689525715/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1386970823681052680/oA_4HBKl_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500892464772751365/6uhqt-Jx_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1483439308166123530/vKFDbs48_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bibi und Anna & Vanny_Bunny™ & 💞 Mia 💞</div> <div style="text-align: center; font-size: 14px;">@lilbratmia-littlehorney-plusbibi1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bibi und Anna & Vanny_Bunny™ & 💞 Mia 💞. | Data | Bibi und Anna | Vanny_Bunny™ | 💞 Mia 💞 | | --- | --- | --- | --- | | Tweets downloaded | 1818 | 3230 | 3247 | | Retweets | 9 | 503 | 134 | | Short tweets | 341 | 343 | 1189 | | Tweets kept | 1468 | 2384 | 1924 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/hm55g9hx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lilbratmia-littlehorney-plusbibi1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3dezdv7k) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3dezdv7k/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lilbratmia-littlehorney-plusbibi1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
gayanin/bart-paraphrasing-mlm
gayanin
2022-03-07T21:40:56Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-07T14:50:28Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-paraphrasing-mlm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrasing-mlm This model is a fine-tuned version of [gayanin/bart-paraphrase-pubmed-1.1](https://huggingface.co/gayanin/bart-paraphrase-pubmed-1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5510 - Rouge2 Precision: 0.7148 - Rouge2 Recall: 0.5223 - Rouge2 Fmeasure: 0.5866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.6799 | 1.0 | 13833 | 0.5982 | 0.7016 | 0.5122 | 0.5756 | | 0.5894 | 2.0 | 27666 | 0.5663 | 0.7093 | 0.5193 | 0.583 | | 0.5329 | 3.0 | 41499 | 0.5540 | 0.7129 | 0.5212 | 0.5853 | | 0.4953 | 4.0 | 55332 | 0.5510 | 0.7148 | 0.5223 | 0.5866 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
Manauu17/roberta_sentiments_es
Manauu17
2022-03-07T20:10:33Z
4
2
transformers
[ "transformers", "pytorch", "tf", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-03T13:50:56Z
# roberta_sentiments_es , a Sentiment Analysis model for Spanish sentences This is a roBERTa-base model trained on ~58M tweets and finetuned for sentiment analysis. This model currently supports Spanish sentences ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np import pandas as pd from scipy.special import softmax MODEL = 'Manauu17/roberta_sentiments_es_en' tokenizer = AutoTokenizer.from_pretrained(MODEL) # PyTorch model = AutoModelForSequenceClassification.from_pretrained(MODEL) text = ['@usuario siempre es bueno la opinión de un playo', 'Bendito año el que me espera'] encoded_input = tokenizer(text, return_tensors='pt', padding=True, truncation=True) output = model(**encoded_input) scores = output[0].detach().numpy() # TensorFlow model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) text = ['La guerra no es buena para nadie.','Espero que mi jefe me de mañana libre'] encoded_input = tokenizer(text, return_tensors='tf', padding=True, truncation=True) output = model(encoded_input) scores = output[0].numpy() # Results def get_scores(model_output, labels_dict): scores = softmax(model_output) frame = pd.DataFrame(scores, columns=labels.values()) frame.style.highlight_max(axis=1,color="green") return frame ``` Output: ``` # PyTorch get_scores(scores, labels_dict).style.highlight_max(axis=1, color="green") Negative Neutral Positive 0 0.000607 0.004851 0.906596 1 0.079812 0.006650 0.001484 # TensorFlow get_scores(scores, labels_dict).style.highlight_max(axis=1, color="green") Negative Neutral Positive 0 0.017030 0.008920 0.000667 1 0.000260 0.001695 0.971429 ```
espnet/Karthik_DSTC2_asr_train_asr_wav2vec_transformer
espnet
2022-03-07T19:38:16Z
1
0
espnet
[ "espnet", "tensorboard", "audio", "automatic-speech-recognition", "en", "dataset:sinhala", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-07T16:09:26Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - sinhala license: cc-by-4.0 --- ## ESPnet2 ASR pretrained model ### `espnet/Karthik_DSTC2_asr_train_asr_wav2vec_transformer` This model was trained by Karthik using DSTC2/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
pyf98/librispeech_conformer
pyf98
2022-03-07T18:33:17Z
4
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-07T18:16:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - librispeech license: cc-by-4.0 --- ## ESPnet2 ASR model ### `pyf98/librispeech_conformer` This model was trained by Yifan Peng using librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout c3569453a408fd4ff4173d9c1d2062c88d1fc060 pip install -e . cd egs2/librispeech/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model pyf98/librispeech_conformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Mon Mar 7 12:26:10 EST 2022` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.10.1` - Git hash: `c3569453a408fd4ff4173d9c1d2062c88d1fc060` - Commit date: `Sun Mar 6 23:58:36 2022 -0500` ## asr_train_asr_conformer8_raw_en_bpe5000_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |beam60_ctc0.2/dev_clean|2703|54402|98.0|1.8|0.2|0.2|2.2|27.2| |beam60_ctc0.2/dev_other|2864|50948|95.1|4.4|0.5|0.5|5.4|43.3| |beam60_ctc0.2/test_clean|2620|52576|97.9|1.9|0.2|0.3|2.4|28.8| |beam60_ctc0.2/test_other|2939|52343|95.2|4.3|0.5|0.6|5.4|45.5| |beam60_ctc0.2_lm0.6/dev_clean|2703|54402|98.3|1.4|0.3|0.2|1.9|23.7| |beam60_ctc0.2_lm0.6/dev_other|2864|50948|96.2|3.3|0.4|0.4|4.2|37.2| |beam60_ctc0.2_lm0.6/test_clean|2620|52576|98.2|1.5|0.3|0.2|2.0|24.3| |beam60_ctc0.2_lm0.6/test_other|2939|52343|96.1|3.3|0.6|0.4|4.4|39.9| |beam60_ctc0.3/dev_clean|2703|54402|98.1|1.8|0.2|0.2|2.1|27.3| |beam60_ctc0.3/dev_other|2864|50948|95.2|4.4|0.4|0.5|5.4|43.7| |beam60_ctc0.3/test_clean|2620|52576|97.9|1.9|0.2|0.3|2.3|29.0| |beam60_ctc0.3/test_other|2939|52343|95.2|4.3|0.4|0.6|5.4|45.7| |beam60_ctc0.3_lm0.6/dev_clean|2703|54402|98.4|1.4|0.2|0.2|1.8|23.5| |beam60_ctc0.3_lm0.6/dev_other|2864|50948|96.2|3.4|0.4|0.4|4.1|37.4| |beam60_ctc0.3_lm0.6/test_clean|2620|52576|98.3|1.5|0.2|0.2|1.9|24.1| |beam60_ctc0.3_lm0.6/test_other|2939|52343|96.2|3.3|0.5|0.5|4.3|39.9| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |beam60_ctc0.2/dev_clean|2703|288456|99.4|0.3|0.3|0.2|0.8|27.2| |beam60_ctc0.2/dev_other|2864|265951|98.1|1.1|0.8|0.6|2.5|43.3| |beam60_ctc0.2/test_clean|2620|281530|99.4|0.3|0.3|0.2|0.8|28.8| |beam60_ctc0.2/test_other|2939|272758|98.3|1.0|0.7|0.6|2.3|45.5| |beam60_ctc0.2_lm0.6/dev_clean|2703|288456|99.4|0.3|0.3|0.2|0.8|23.7| |beam60_ctc0.2_lm0.6/dev_other|2864|265951|98.4|0.9|0.7|0.5|2.1|37.2| |beam60_ctc0.2_lm0.6/test_clean|2620|281530|99.4|0.2|0.4|0.2|0.8|24.3| |beam60_ctc0.2_lm0.6/test_other|2939|272758|98.5|0.8|0.8|0.5|2.0|39.9| |beam60_ctc0.3/dev_clean|2703|288456|99.5|0.3|0.2|0.2|0.7|27.3| |beam60_ctc0.3/dev_other|2864|265951|98.2|1.1|0.7|0.6|2.4|43.7| |beam60_ctc0.3/test_clean|2620|281530|99.4|0.3|0.3|0.2|0.8|29.0| |beam60_ctc0.3/test_other|2939|272758|98.4|0.9|0.7|0.6|2.2|45.7| |beam60_ctc0.3_lm0.6/dev_clean|2703|288456|99.5|0.2|0.2|0.2|0.7|23.5| |beam60_ctc0.3_lm0.6/dev_other|2864|265951|98.5|0.9|0.7|0.5|2.0|37.4| |beam60_ctc0.3_lm0.6/test_clean|2620|281530|99.5|0.2|0.3|0.2|0.7|24.1| |beam60_ctc0.3_lm0.6/test_other|2939|272758|98.6|0.7|0.7|0.5|1.9|39.9| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |beam60_ctc0.2/dev_clean|2703|68010|97.5|1.8|0.7|0.3|2.9|27.2| |beam60_ctc0.2/dev_other|2864|63110|94.1|4.4|1.6|0.9|6.8|43.3| |beam60_ctc0.2/test_clean|2620|65818|97.4|1.8|0.8|0.3|2.9|28.8| |beam60_ctc0.2/test_other|2939|65101|94.1|4.1|1.8|0.8|6.7|45.5| |beam60_ctc0.2_lm0.6/dev_clean|2703|68010|97.8|1.4|0.8|0.3|2.5|23.7| |beam60_ctc0.2_lm0.6/dev_other|2864|63110|95.1|3.5|1.5|0.7|5.6|37.2| |beam60_ctc0.2_lm0.6/test_clean|2620|65818|97.6|1.5|0.9|0.3|2.7|24.3| |beam60_ctc0.2_lm0.6/test_other|2939|65101|95.0|3.2|1.8|0.6|5.6|39.9| |beam60_ctc0.3/dev_clean|2703|68010|97.6|1.8|0.7|0.3|2.8|27.3| |beam60_ctc0.3/dev_other|2864|63110|94.1|4.4|1.5|0.9|6.8|43.7| |beam60_ctc0.3/test_clean|2620|65818|97.4|1.8|0.7|0.3|2.9|29.0| |beam60_ctc0.3/test_other|2939|65101|94.2|4.1|1.7|0.8|6.6|45.7| |beam60_ctc0.3_lm0.6/dev_clean|2703|68010|97.9|1.5|0.7|0.3|2.4|23.5| |beam60_ctc0.3_lm0.6/dev_other|2864|63110|95.1|3.5|1.4|0.6|5.6|37.4| |beam60_ctc0.3_lm0.6/test_clean|2620|65818|97.7|1.5|0.8|0.3|2.5|24.1| |beam60_ctc0.3_lm0.6/test_other|2939|65101|95.1|3.2|1.7|0.6|5.5|39.9| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer8.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer8_raw_en_bpe5000_sp ngpu: 1 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 3 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 59673 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 35000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_bpe5000_sp/train/speech_shape - exp/asr_stats_raw_en_bpe5000_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_en_bpe5000_sp/valid/speech_shape - exp/asr_stats_raw_en_bpe5000_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_960_sp/wav.scp - speech - sound - - dump/raw/train_960_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - sound - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0025 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 40000 token_list: - <blank> - <unk> - ▁THE - S - ▁AND - ▁OF - ▁TO - ▁A - ▁IN - ▁I - ▁HE - ▁THAT - ▁WAS - ED - ▁IT - '''' - ▁HIS - ING - ▁YOU - ▁WITH - ▁FOR - ▁HAD - T - ▁AS - ▁HER - ▁IS - ▁BE - ▁BUT - ▁NOT - ▁SHE - D - ▁AT - ▁ON - LY - ▁HIM - ▁THEY - ▁ALL - ▁HAVE - ▁BY - ▁SO - ▁THIS - ▁MY - ▁WHICH - ▁ME - ▁SAID - ▁FROM - ▁ONE - Y - E - ▁WERE - ▁WE - ▁NO - N - ▁THERE - ▁OR - ER - ▁AN - ▁WHEN - ▁ARE - ▁THEIR - ▁WOULD - ▁IF - ▁WHAT - ▁THEM - ▁WHO - ▁OUT - M - ▁DO - ▁WILL - ▁UP - ▁BEEN - P - R - ▁MAN - ▁THEN - ▁COULD - ▁MORE - C - ▁INTO - ▁NOW - ▁VERY - ▁YOUR - ▁SOME - ▁LITTLE - ES - ▁TIME - RE - ▁CAN - ▁LIKE - LL - ▁ABOUT - ▁HAS - ▁THAN - ▁DID - ▁UPON - ▁OVER - IN - ▁ANY - ▁WELL - ▁ONLY - B - ▁SEE - ▁GOOD - ▁OTHER - ▁TWO - L - ▁KNOW - ▁GO - ▁DOWN - ▁BEFORE - A - AL - ▁OUR - ▁OLD - ▁SHOULD - ▁MADE - ▁AFTER - ▁GREAT - ▁DAY - ▁MUST - ▁COME - ▁HOW - ▁SUCH - ▁CAME - LE - ▁WHERE - ▁US - ▁NEVER - ▁THESE - ▁MUCH - ▁DE - ▁MISTER - ▁WAY - G - ▁S - ▁MAY - ATION - ▁LONG - OR - ▁AM - ▁FIRST - ▁BACK - ▁OWN - ▁RE - ▁AGAIN - ▁SAY - ▁MEN - ▁WENT - ▁HIMSELF - ▁HERE - NESS - ▁THINK - V - IC - ▁EVEN - ▁THOUGHT - ▁HAND - ▁JUST - ▁O - ▁UN - VE - ION - ▁ITS - 'ON' - ▁MAKE - ▁MIGHT - ▁TOO - K - ▁AWAY - ▁LIFE - TH - ▁WITHOUT - ST - ▁THROUGH - ▁MOST - ▁TAKE - ▁DON - ▁EVERY - F - O - ▁SHALL - ▁THOSE - ▁EYES - AR - ▁STILL - ▁LAST - ▁HOUSE - ▁HEAD - ABLE - ▁NOTHING - ▁NIGHT - ITY - ▁LET - ▁MANY - ▁OFF - ▁BEING - ▁FOUND - ▁WHILE - EN - ▁SAW - ▁GET - ▁PEOPLE - ▁FACE - ▁YOUNG - CH - ▁UNDER - ▁ONCE - ▁TELL - AN - ▁THREE - ▁PLACE - ▁ROOM - ▁YET - ▁SAME - IL - US - U - ▁FATHER - ▁RIGHT - EL - ▁THOUGH - ▁ANOTHER - LI - RI - ▁HEART - IT - ▁PUT - ▁TOOK - ▁GIVE - ▁EVER - ▁E - ▁PART - ▁WORK - ERS - ▁LOOK - ▁NEW - ▁KING - ▁MISSUS - ▁SIR - ▁LOVE - ▁MIND - ▁LOOKED - W - RY - ▁ASKED - ▁LEFT - ET - ▁LIGHT - CK - ▁DOOR - ▁MOMENT - RO - ▁WORLD - ▁THINGS - ▁HOME - UL - ▁THING - LA - ▁WHY - ▁MOTHER - ▁ALWAYS - ▁FAR - FUL - ▁WATER - CE - IVE - UR - ▁HEARD - ▁SOMETHING - ▁SEEMED - I - LO - ▁BECAUSE - OL - ▁END - ▁TOLD - ▁CON - ▁YES - ▁GOING - ▁GOT - RA - IR - ▁WOMAN - ▁GOD - EST - TED - ▁FIND - ▁KNEW - ▁SOON - ▁EACH - ▁SIDE - H - TON - MENT - ▁OH - NE - Z - LING - ▁AGAINST - TER - ▁NAME - ▁MISS - ▁QUITE - ▁WANT - ▁YEARS - ▁FEW - ▁BETTER - ENT - ▁HALF - ▁DONE - ▁ALSO - ▁BEGAN - ▁HAVING - ▁ENOUGH - IS - ▁LADY - ▁WHOLE - LESS - ▁BOTH - ▁SEEN - ▁SET - ▁WHITE - ▁COURSE - IES - ▁VOICE - ▁CALLED - ▁D - ▁EX - ATE - ▁TURNED - ▁GAVE - ▁C - ▁POOR - MAN - UT - NA - ▁DEAR - ISH - ▁GIRL - ▁MORNING - ▁BETWEEN - LED - ▁NOR - IA - ▁AMONG - MA - ▁ - ▁SMALL - ▁REST - ▁WHOM - ▁FELT - ▁HANDS - ▁MYSELF - ▁HIGH - ▁M - ▁HOWEVER - ▁HERSELF - ▁P - CO - ▁STOOD - ID - ▁KIND - ▁HUNDRED - AS - ▁ROUND - ▁ALMOST - TY - ▁SINCE - ▁G - AM - ▁LA - SE - ▁BOY - ▁MA - ▁PERHAPS - ▁WORDS - ATED - ▁HO - X - ▁MO - ▁SAT - ▁REPLIED - ▁FOUR - ▁ANYTHING - ▁TILL - ▁UNTIL - ▁BLACK - TION - ▁CRIED - RU - TE - ▁FACT - ▁HELP - ▁NEXT - ▁LOOKING - ▁DOES - ▁FRIEND - ▁LAY - ANCE - ▁POWER - ▁BROUGHT - VER - ▁FIRE - ▁KEEP - PO - FF - ▁COUNTRY - ▁SEA - ▁WORD - ▁CAR - ▁DAYS - ▁TOGETHER - ▁IMP - ▁REASON - KE - ▁INDEED - TING - ▁MATTER - ▁FULL - ▁TEN - TIC - ▁LAND - ▁RATHER - ▁AIR - ▁HOPE - ▁DA - ▁OPEN - ▁FEET - ▁EN - ▁FIVE - ▁POINT - ▁CO - OM - ▁LARGE - ▁B - ▁CL - ME - ▁GONE - ▁CHILD - INE - GG - ▁BEST - ▁DIS - UM - ▁HARD - ▁LORD - OUS - ▁WIFE - ▁SURE - ▁FORM - DE - ▁DEATH - ANT - ▁NATURE - ▁BA - ▁CARE - ▁BELIEVE - PP - ▁NEAR - ▁RO - ▁RED - ▁WAR - IE - ▁SPEAK - ▁FEAR - ▁CASE - ▁TAKEN - ▁ALONG - ▁CANNOT - ▁HEAR - ▁THEMSELVES - CI - ▁PRESENT - AD - ▁MASTER - ▁SON - ▁THUS - ▁LI - ▁LESS - ▁SUN - ▁TRUE - IM - IOUS - ▁THOUSAND - ▁MONEY - ▁W - ▁BEHIND - ▁CHILDREN - ▁DOCTOR - AC - ▁TWENTY - ▁WISH - ▁SOUND - ▁WHOSE - ▁LEAVE - ▁ANSWERED - ▁THOU - ▁DUR - ▁HA - ▁CERTAIN - ▁PO - ▁PASSED - GE - TO - ▁ARM - ▁LO - ▁STATE - ▁ALONE - TA - ▁SHOW - ▁NEED - ▁LIVE - ND - ▁DEAD - ENCE - ▁STRONG - ▁PRE - ▁TI - ▁GROUND - SH - TI - ▁SHORT - IAN - UN - ▁PRO - ▁HORSE - MI - ▁PRINCE - ARD - ▁FELL - ▁ORDER - ▁CALL - AT - ▁GIVEN - ▁DARK - ▁THEREFORE - ▁CLOSE - ▁BODY - ▁OTHERS - ▁SENT - ▁SECOND - ▁OFTEN - ▁CA - ▁MANNER - MO - NI - ▁BRING - ▁QUESTION - ▁HOUR - ▁BO - AGE - ▁ST - ▁TURN - ▁TABLE - ▁GENERAL - ▁EARTH - ▁BED - ▁REALLY - ▁SIX - 'NO' - IST - ▁BECOME - ▁USE - ▁READ - ▁SE - ▁VI - ▁COMING - ▁EVERYTHING - ▁EM - ▁ABOVE - ▁EVENING - ▁BEAUTIFUL - ▁FEEL - ▁RAN - ▁LEAST - ▁LAW - ▁ALREADY - ▁MEAN - ▁ROSE - WARD - ▁ITSELF - ▁SOUL - ▁SUDDENLY - ▁AROUND - RED - ▁ANSWER - ICAL - ▁RA - ▁WIND - ▁FINE - ▁WON - ▁WHETHER - ▁KNOWN - BER - NG - ▁TA - ▁CAPTAIN - ▁EYE - ▁PERSON - ▁WOMEN - ▁SORT - ▁ASK - ▁BROTHER - ▁USED - ▁HELD - ▁BIG - ▁RETURNED - ▁STRANGE - ▁BU - ▁PER - ▁FREE - ▁EITHER - ▁WITHIN - ▁DOUBT - ▁YEAR - ▁CLEAR - ▁SIGHT - ▁GRA - ▁LOST - ▁KEPT - ▁F - PE - ▁BAR - ▁TOWN - ▁SLEEP - ARY - ▁HAIR - ▁FRIENDS - ▁DREAM - ▁FELLOW - PER - ▁DEEP - QUE - ▁BECAME - ▁REAL - ▁PAST - ▁MAKING - RING - ▁COMP - ▁ACT - ▁BAD - HO - STER - ▁YE - ▁MEANS - ▁RUN - MEN - ▁DAUGHTER - ▁SENSE - ▁CITY - ▁SOMETIMES - ▁TOWARDS - ▁ROAD - ▁SP - ▁LU - ▁READY - ▁FOOT - ▁COLD - ▁SA - ▁LETTER - ▁ELSE - ▁MAR - ▁STA - BE - ▁TRUTH - ▁LE - BO - ▁BUSINESS - CHE - ▁JOHN - ▁SUBJECT - ▁COURT - ▁IDEA - ILY - ▁RIVER - ATING - ▁FAMILY - HE - ▁DIDN - ▁GLAD - ▁SEVERAL - IAL - ▁UNDERSTAND - ▁SC - ▁POSSIBLE - ▁DIFFERENT - ▁RETURN - ▁ARMS - ▁LOW - ▁HOLD - ▁TALK - ▁RU - ▁WINDOW - ▁INTEREST - ▁SISTER - SON - ▁SH - ▁BLOOD - ▁SAYS - ▁CAP - ▁DI - ▁HUMAN - ▁CAUSE - NCE - ▁THANK - ▁LATE - GO - ▁CUT - ▁ACROSS - ▁STORY - NT - ▁COUNT - ▁ABLE - DY - LEY - ▁NUMBER - ▁STAND - ▁CHURCH - ▁THY - ▁SUPPOSE - LES - BLE - OP - ▁EFFECT - BY - ▁K - ▁NA - ▁SPOKE - ▁MET - ▁GREEN - ▁HUSBAND - ▁RESPECT - ▁PA - ▁FOLLOWED - ▁REMEMBER - ▁LONGER - ▁AGE - ▁TAKING - ▁LINE - ▁SEEM - ▁HAPPY - LAND - EM - ▁STAY - ▁PLAY - ▁COMMON - ▁GA - ▁BOOK - ▁TIMES - ▁OBJECT - ▁SEVEN - QUI - DO - UND - ▁FL - ▁PRETTY - ▁FAIR - WAY - ▁WOOD - ▁REACHED - ▁APPEARED - ▁SWEET - ▁FALL - BA - ▁PASS - ▁SIGN - ▁TREE - IONS - ▁GARDEN - ▁ILL - ▁ART - ▁REMAIN - ▁OPENED - ▁BRIGHT - ▁STREET - ▁TROUBLE - ▁PAIN - ▁CONTINUED - ▁SCHOOL - OUR - ▁CARRIED - ▁SAYING - HA - ▁CHANGE - ▁FOLLOW - ▁GOLD - ▁SW - ▁FEELING - ▁COMMAND - ▁BEAR - ▁CERTAINLY - ▁BLUE - ▁NE - CA - ▁WILD - ▁ACCOUNT - ▁OUGHT - UD - ▁T - ▁BREATH - ▁WANTED - ▁RI - ▁HEAVEN - ▁PURPOSE - ▁CHARACTER - ▁RICH - ▁PE - ▁DRESS - OS - FA - ▁TH - ▁ENGLISH - ▁CHANCE - ▁SHIP - ▁VIEW - ▁TOWARD - AK - ▁JOY - ▁JA - ▁HAR - ▁NEITHER - ▁FORCE - ▁UNCLE - DER - ▁PLAN - ▁PRINCESS - DI - ▁CHIEF - ▁HAT - ▁LIVED - ▁AB - ▁VISIT - ▁MOR - TEN - ▁WALL - UC - ▁MINE - ▁PLEASURE - ▁SMILE - ▁FRONT - ▁HU - ▁DEAL - OW - ▁FURTHER - GED - ▁TRIED - DA - VA - ▁NONE - ▁ENTERED - ▁QUEEN - ▁PAY - ▁EL - ▁EXCEPT - ▁SHA - ▁FORWARD - ▁EIGHT - ▁ADDED - ▁PUBLIC - ▁EIGHTEEN - ▁STAR - ▁HAPPENED - ▁LED - ▁WALKED - ▁ALTHOUGH - ▁LATER - ▁SPIRIT - ▁WALK - ▁BIT - ▁MEET - LIN - ▁FI - LT - ▁MOUTH - ▁WAIT - ▁HOURS - ▁LIVING - ▁YOURSELF - ▁FAST - ▁CHA - ▁HALL - ▁BEYOND - ▁BOAT - ▁SECRET - ENS - ▁CHAIR - RN - ▁RECEIVED - ▁CAT - RESS - ▁DESIRE - ▁GENTLEMAN - UGH - ▁LAID - EVER - ▁OCCASION - ▁WONDER - ▁GU - ▁PARTY - DEN - ▁FISH - ▁SEND - ▁NEARLY - ▁TRY - CON - ▁SEEMS - RS - ▁BELL - ▁BRA - ▁SILENCE - IG - ▁GUARD - ▁DIE - ▁DOING - ▁TU - ▁COR - ▁EARLY - ▁BANK - ▁FIGURE - IF - ▁ENGLAND - ▁MARY - ▁AFRAID - LER - ▁FO - ▁WATCH - ▁FA - ▁VA - ▁GRE - ▁AUNT - PED - ▁SERVICE - ▁JE - ▁PEN - ▁MINUTES - ▁PAN - ▁TREES - NED - ▁GLASS - ▁TONE - ▁PLEASE - ▁FORTH - ▁CROSS - ▁EXCLAIMED - ▁DREW - ▁EAT - ▁AH - ▁GRAVE - ▁CUR - PA - URE - CENT - ▁MILES - ▁SOFT - ▁AGO - ▁POSITION - ▁WARM - ▁LENGTH - ▁NECESSARY - ▁THINKING - ▁PICTURE - ▁PI - SHIP - IBLE - ▁HEAVY - ▁ATTENTION - ▁DOG - ABLY - ▁STANDING - ▁NATURAL - ▁APPEAR - OV - ▁CAUGHT - VO - ISM - ▁SPRING - ▁EXPERIENCE - ▁PAT - OT - ▁STOPPED - ▁REGARD - ▁HARDLY - ▁SELF - ▁STRENGTH - ▁GREW - ▁KNIGHT - ▁OPINION - ▁WIDE - ▁INSTEAD - ▁SOUTH - ▁TRANS - ▁CORNER - ▁LEARN - ▁ISLAND - ▁MI - ▁THIRD - ▁STE - ▁STRAIGHT - ▁TEA - ▁BOUND - ▁SEEING - ▁JU - ▁DINNER - ▁BEAUTY - ▁PEACE - AH - ▁REP - ▁SILENT - ▁CRE - ALLY - RIC - ▁STEP - ▁VER - ▁JO - GER - ▁SITTING - ▁THIRTY - ▁SAVE - ENED - ▁GLANCE - ▁REACH - ▁ACTION - ▁SAL - ▁SAD - ▁STONE - ITIES - ▁FRENCH - ▁STRUCK - ▁PAPER - ▁WHATEVER - ▁SUB - ▁DISTANCE - ▁WRONG - ▁KNOWLEDGE - ▁SAFE - ▁SNOW - ▁MUSIC - ▁FIFTY - RON - ▁ATTEMPT - ▁GOVERNMENT - TU - ▁CROWD - ▁BESIDES - ▁LOVED - ▁BOX - ▁DIRECTION - ▁TRAIN - ▁NORTH - ▁THICK - ▁GETTING - AV - ▁FLOOR - ▁COMPANY - ▁BLOW - ▁PLAIN - TRO - ▁BESIDE - ▁ROCK - ▁IMMEDIATELY - FI - ▁SHADOW - ▁SIT - ORS - ILE - ▁DRINK - ▁SPOT - ▁DANGER - ▁AL - ▁SAINT - ▁SLOWLY - ▁PALACE - IER - ▁RESULT - ▁PETER - ▁FOREST - ▁BELONG - ▁SU - ▁PAR - RIS - ▁TEARS - ▁APPEARANCE - ▁GATE - BU - ITION - ▁QUICKLY - ▁QUIET - ▁LONDON - ▁START - ▁BROWN - TRA - KIN - ▁CONSIDER - ▁BATTLE - ▁ANNE - ▁PIECE - ▁DIED - ▁SUCCESS - ▁LIPS - ▁FILLED - ▁FORGET - ▁POST - IFIED - ▁MARGARET - ▁FOOD - HAM - ▁PLEASANT - ▁FE - ▁EXPRESSION - ▁POCKET - ▁FRESH - ▁WEAR - TRI - ▁BROKEN - ▁LAUGHED - GING - ▁FOLLOWING - WN - IP - ▁TOUCH - ▁YOUTH - ATIVE - ▁LEG - ▁WEEK - ▁REMAINED - ▁EASY - NER - RK - ▁ENTER - ▁FIGHT - ▁PLACED - ▁TRAVEL - ▁SIMPLE - ▁GIRLS - ▁WAITING - ▁STOP - ▁WAVE - AU - ▁WISE - ▁CAMP - TURE - UB - ▁VE - ▁OFFICE - ▁GRAND - ▁FIT - ▁JUDGE - UP - MENTS - ▁QUICK - HI - ▁FLO - RIES - VAL - ▁COMFORT - ▁PARTICULAR - ▁STARTED - ▁SUIT - ▁NI - ▁PALE - ▁IMPOSSIBLE - ▁HOT - ▁CONVERSATION - ▁SCENE - ▁BOYS - ▁WIN - ▁BRE - ▁SOCIETY - ▁OUTSIDE - ▁WRITE - ▁EFFORT - ▁TALKING - ▁FORTUNE - ▁NINE - ▁WA - ▁SINGLE - ▁RULE - ▁PORT - ▁WINTER - ▁CAST - ▁CRA - ▁HAPPEN - ▁CRO - ▁SHUT - NING - ▁GUN - ▁NOBLE - ▁BEGIN - ▁PATH - ▁SKY - ▁WONDERFUL - ▁SUDDEN - ▁ARMY - ▁CHE - ▁WORTH - ▁MOUNTAIN - ▁MIN - AG - ▁FLU - ▁GRACE - ▁CHAPTER - ▁BELOW - ▁RING - ▁TURNING - ▁IRON - ▁TOP - ▁AFTERNOON - ORY - ▁EVIL - ▁TRUST - ▁BOW - ▁TRI - ▁SAIL - ▁CONTENT - ▁HORSES - ITE - ▁SILVER - AP - ▁LAD - ▁RUNNING - ▁HILL - ▁BEGINNING - ▁MAD - ▁HABIT - GRA - ▁CLOTHES - ▁MORROW - ▁CRY - ▁FASHION - ▁PRESENCE - ▁Z - FE - ▁ARRIVED - ▁QUARTER - ▁PERFECT - ▁WO - ▁TRA - ▁USUAL - ▁NECK - ▁MARRIED - ▁SEAT - ▁WI - ▁GAR - ▁SAND - ▁SHORE - ▁GIVING - NY - ▁PROBABLY - ▁MINUTE - ▁EXPECT - ▁DU - ▁SHOT - ▁INSTANT - ▁DEGREE - ▁COLOR - ▁WEST - RT - ▁MARCH - ▁BIRD - ▁SHOWED - ▁GREATER - ▁SERIOUS - ▁CARRY - ▁COVERED - ▁FORMER - ▁LOUD - ▁MOVED - ▁MASS - ▁SEEK - ▁CHO - GEN - ▁ROMAN - IB - ▁MOON - ▁BOARD - ▁STREAM - ▁EASILY - ▁WISHED - ▁SEARCH - ▁COULDN - ▁MONTHS - ▁SICK - LIE - ▁DUTY - ▁TWELVE - ▁FAINT - ▁STRANGER - ▁SURPRISE - ▁KILL - ▁LEAVING - ▁JOURNEY - ▁SCARCELY - ▁RAISED - ▁SPEAKING - ▁TERRIBLE - ▁TOM - ▁FIELD - ▁GAME - ▁QUA - ▁PROMISE - ▁LIE - ▁CONDITION - ▁TRO - ▁PERSONAL - ▁TALL - ▁STICK - ▁THREW - ▁MARRY - ▁VAN - ▁BURN - ▁ACCORDING - ▁RISE - ▁ATTACK - ▁SWORD - ▁GUESS - ▁THOUGHTS - ▁THIN - ▁THROW - ▁CALM - SIDE - ▁VILLAGE - ▁DEN - ▁ANXIOUS - ▁MER - GI - ▁EXPECTED - ▁BALL - ▁ESPECIALLY - ▁CHARGE - ▁MEASURE - ISE - ▁NICE - ▁TRYING - ▁ALLOW - ▁SHARP - ▁BREAD - ▁HONOUR - ▁HONOR - ▁ENTIRELY - ▁BILL - ▁BRI - ▁WRITTEN - ▁AR - ▁BROKE - ▁KILLED - ▁MARK - ▁VEN - ▁LADIES - ▁LEARNED - ▁FLOWERS - PLE - ▁FORTY - ▁OFFER - ▁HAPPINESS - ▁PRAY - ▁CLASS - ▁FER - ▁PRINCIPLE - GU - ▁BOOKS - ▁SHAPE - ▁SUMMER - ▁JACK - ▁DRAW - ▁GOLDEN - ▁DECIDED - ▁LEAD - ▁UNLESS - ▁HARM - ▁LISTEN - HER - ▁SHOOK - ▁INFLUENCE - ▁PERFECTLY - ▁MARRIAGE - ▁BROAD - ▁ESCAPE - ▁STATES - ▁MIDDLE - ▁PLANT - ▁MIL - ▁MOVEMENT - ▁NOISE - ▁ENEMY - ▁HISTORY - ▁BREAK - ROUS - ▁UNDERSTOOD - ▁LATTER - FER - ▁COMES - ▁MERELY - ▁SIMPLY - WI - ▁IMAGINE - ▁LOWER - ▁CONDUCT - ▁BORN - WA - ▁YARD - ▁KA - ▁CLOSED - ▁NOTE - GA - ▁STRA - RAN - ▁EXIST - EV - ▁SPEECH - ▁BITTER - JO - ▁MAKES - ▁GRASS - ▁REPLY - ▁CHANGED - ▁MON - ▁LYING - ▁DANCE - ▁FINALLY - ▁AMERICAN - ▁ENJOY - ▁CONTAIN - ▁MEANT - USE - ▁OBSERVED - THER - ▁LAUGH - ▁AFTERWARDS - ▁BEAT - ▁RACE - ▁EQUAL - ▁RAIN - PS - ▁STEPS - ▁BENEATH - ▁TAIL - ▁TASTE - IO - EY - ▁CHAR - ▁GE - GN - TIN - ▁GROW - ▁TE - IANS - ▁MOVE - ▁REPEATED - ▁DRIVE - TUR - ▁SI - CLOCK - ▁BRAVE - ▁MADAME - ▁LOT - ▁CASTLE - ▁HI - AND - ▁FUTURE - ▁RELATION - ▁SORRY - ▁HEALTH - ▁DICK - ▁R - ▁BUILDING - ▁EDGE - ▁BLESS - ▁SPITE - WE - ▁MIS - ▁PRISONER - ▁ALLOWED - ▁PH - ▁CATCH - MER - ETH - ▁COAT - ▁COMPLETE - ▁WOULDN - ▁CREATURE - ▁YELLOW - ▁IMPORTANT - ▁ADD - ▁PASSING - ▁DARKNESS - ▁CARRIAGE - ▁MILL - ▁FIFTEEN - NCY - ▁HUNG - ▁OB - ▁PLEASED - ▁SPREAD - ▁CURIOUS - ▁WORSE - ▁CIRCUMSTANCES - ▁GI - LAR - ▁CAL - ▁HY - ▁MERE - ▁JANE - ▁EAST - BI - ▁CUP - ▁BLIND - ▁PASSION - ▁DISCOVERED - ▁NOTICE - ▁REPORT - ▁SPACE - ▁PRESENTLY - ▁SORROW - ▁PACK - ▁DIN - CY - ▁DRY - ▁ANCIENT - ▁DRESSED - ▁COVER - ▁VO - ▁EXISTENCE - ▁EXACTLY - ▁BEAST - ▁PROPER - ▁DROPPED - ▁CLEAN - ▁COLOUR - ▁HOST - ▁CHAMBER - ▁FAITH - LET - ▁DETERMINED - ▁PRIEST - ▁STORM - ▁SKIN - ▁DARE - ▁PERSONS - ▁PICK - ▁NARROW - ▁SUPPORT - ▁PRIVATE - ▁SMILED - ▁COUSIN - ▁DRAWING - ▁ATTEND - ▁COOK - ▁PREVENT - ▁VARIOUS - ▁BLA - ▁FIXED - ▁WEAK - THE - ▁HOLE - ▁BOTTOM - ▁NOBODY - ADE - ▁LEGS - ITCH - ▁INDIVIDUAL - ▁EARS - LIKE - ▁ADVANTAGE - ▁FRANCE - ▁BON - ▁WINE - ▁LIVES - OD - ▁WALLS - ▁TIRED - ▁SHOP - ▁ANIMAL - ▁CRU - ▁WROTE - ▁ROYAL - ▁CONSIDERED - ▁MORAL - ▁COMPANION - ▁LOSE - ▁ISN - ▁BAG - ▁LAKE - ▁INTER - ▁COM - ▁LETTERS - ▁LUCK - ▁EAR - ▁GERMAN - ▁PET - ▁SAKE - ▁DROP - ▁PAID - ▁BREAKFAST - ▁LABOR - ▁DESERT - ▁DECLARED - ▁HUM - ▁STUDY - ▁INSTANCE - ONE - ▁SOMEWHAT - ▁CLOTH - ▁SPECIAL - ▁COLONEL - ▁SONG - ▁MAIN - ▁VALUE - ▁PROUD - ▁EXPRESS - ▁NATION - ▁HANDSOME - ▁CONFESS - ▁PU - ▁PASSAGE - ▁PERIOD - ▁CUSTOM - ▁HURT - ▁SHOULDER - ▁CHRIST - ZA - ▁RECEIVE - ▁DIFFICULT - ▁DEPEND - ▁MEETING - ▁CHI - ▁GEN - LIGHT - ▁BELIEVED - ▁SOCIAL - ▁DIFFICULTY - ▁GREATEST - ▁DRAWN - ▁GRANT - ▁BIRDS - ▁ANGRY - ▁HEAT - UFF - ▁DUE - ▁PLACES - ▁SIN - ▁COURAGE - ▁EVIDENTLY - ▁GENTLE - ▁CRUEL - ▁GEORGE - ▁GRI - ▁SERVANT - ▁U - ▁PURE - OOK - ▁KNOWS - ▁KNOWING - LF - ▁WRITING - ▁REMEMBERED - ▁CU - ▁HOLDING - ▁TENDER - ▁QUI - ▁BURST - ▁SURELY - IGN - ▁VALLEY - ▁FU - ▁BUTTER - ▁SPOKEN - ▁STORE - ▁DISC - ▁CHRISTIAN - ▁PARIS - ▁HENRY - ▁FINISHED - ▁PROVE - ▁FOOL - ▁SOLDIERS - ▁LANGUAGE - ▁INSIDE - ▁BAN - ▁FALLEN - ROW - ▁MAL - ▁BABY - ▁SITUATION - ▁WATCHED - ANS - ▁RUIN - ▁GENTLEMEN - ▁FRO - ▁FANCY - ▁ACCEPT - ▁SEASON - ▁OURSELVES - ▁SAN - ▁SPEED - IZED - ▁COOL - ▁SERVE - ▁VESSEL - ▁WILLIAM - ▁OBLIGED - ▁GROUP - FORM - ▁GOES - UOUS - ▁LEAVES - ▁PECULIAR - ▁NEWS - ▁VAIN - ▁EVERYBODY - ▁PIN - UG - ▁FORGOTTEN - ▁FRA - GAN - ▁CAREFULLY - ▁FLASH - UCH - ▁FUR - ▁MURDER - ▁DELIGHT - ▁WAITED - ▁RENDER - ▁PROPERTY - ▁NOTICED - ▁ROLL - ▁KNOCK - ▁EARNEST - KI - ▁HONEST - ▁PROMISED - ▁BAL - AW - ▁WALKING - ANG - ▁SQUARE - ▁QUIETLY - ▁CLOUD - WOOD - ▁FORMED - ▁HIGHER - ▁BUILT - ▁FATE - ▁TEACH - MY - ▁FALSE - ▁YORK - ▁DUST - ▁CLIMB - ▁FOND - ▁GROWN - ▁DESCEND - ▁RAG - ▁FRUIT - ▁GENERALLY - ▁OFFERED - ▁ER - ▁NURSE - POSE - ▁SPENT - ▁JOIN - ▁STATION - ▁MEANING - ▁SMOKE - HOOD - ▁ROUGH - JU - ▁LIKELY - ▁SURFACE - ▁KE - ▁MONTH - ▁POSSESSION - ▁TONGUE - ▁DUKE - ▁NOSE - ▁LAUGHING - ▁WEATHER - ▁WHISPERED - ▁SYSTEM - ▁LAWS - DDLE - ▁TOUCHED - ▁TRADE - LD - ▁SURPRISED - RIN - ▁ARCH - ▁WEALTH - FOR - ▁TEMPER - ▁FRANK - ▁GAL - ▁BARE - ▁OPPORTUNITY - ▁CLAIM - ▁ANIMALS - ▁REV - ▁COST - ▁WASH - ZE - ▁CORN - ▁OPPOSITE - ▁POLICE - ▁IDEAS - LON - ▁KEY - ▁READING - ▁COLLECT - CHED - ▁H - ▁CROWN - ▁TAR - ▁SWIFT - ▁SHOULDERS - ▁ICE - ▁GRAY - ▁SHARE - ▁PREPARED - ▁GRO - ▁UND - ▁TER - ▁EMPTY - CING - ▁SMILING - ▁AVOID - ▁DIFFERENCE - ▁EXPLAIN - ▁POUR - ▁ATTRACT - ▁OPENING - ▁WHEEL - ▁MATERIAL - ▁BREAST - ▁SUFFERING - ▁DISTINCT - ▁BOOT - ▁ROW - ▁FINGERS - HAN - ▁ALTOGETHER - ▁FAT - ▁PAPA - ▁BRAIN - ▁ASLEEP - ▁GREY - ▁SUM - ▁GAS - ▁WINDOWS - ▁ALIVE - ▁PROCEED - ▁FLOWER - ▁LEAP - ▁PUR - ▁PIECES - ▁ALTER - ▁MEMORY - IENT - ▁FILL - ▁CLO - ▁THROWN - ▁KINGDOM - ▁RODE - IUS - ▁MAID - ▁DIM - ▁BAND - ▁VIRTUE - ▁DISH - ▁GUEST - ▁LOSS - ▁CAUSED - ▁MOTION - ▁POT - ▁MILLION - ▁FAULT - ▁LOVELY - ▁HERO - PPING - ▁UNITED - ▁SPI - SOME - BRA - ▁MOUNTAINS - ▁NU - ▁SATISFIED - ▁DOLLARS - ▁LOVER - ▁CONCEAL - ▁VAST - ▁PULL - ▁HATH - ▁RUSH - ▁J - ▁DESPAIR - EX - ▁HEIGHT - ▁CE - ▁BENT - ▁PITY - ▁RISING - ATH - ▁PRIDE - ▁HURRY - KA - ▁SETTLED - ▁JUSTICE - ▁LIFTED - PEN - ▁SOLDIER - ▁FINDING - ▁REMARK - ▁REGULAR - ▁STRUGGLE - ▁MACHINE - ▁SING - ▁HURRIED - ▁SUFFICIENT - ▁REPRESENT - ▁DOUBLE - ▁ALARM - ▁SUPPER - ▁DREADFUL - ▁FORE - ATOR - ▁STOCK - ▁TIN - ▁EXAMPLE - ▁ROOF - ▁FLOW - ▁SUPPOSED - ▁PRESERV - ▁L - ▁LISTENED - OC - ▁STO - ▁SECURE - ▁FRIGHTENED - ▁DISTURB - ▁EMOTION - ▁SERVANTS - ▁YO - ▁BUY - ▁FORCED - ▁KITCHEN - ▁TERROR - ▁STAIRS - ▁SIXTY - KER - ▁ORDINARY - ▁DIRECTLY - ▁HEADS - ▁METHOD - ▁FORGIVE - ▁AWFUL - ▁REFLECT - ▁GREATLY - ▁TALKED - ▁RIDE - STONE - ▁FAVOUR - ▁WELCOME - ▁SEIZED - OU - ▁CONTROL - ▁ORDERED - ▁ANGEL - ▁USUALLY - ▁POET - ▁BOLD - LINE - ▁ADVENTURE - ▁WATCHING - ▁FOLK - ▁MISTRESS - IZE - ▁GROWING - ▁CAVE - ▁EVIDENCE - ▁FINGER - ▁SEVENTEEN - ▁MOVING - EOUS - ▁DOESN - ▁COW - ▁TYPE - ▁BOIL - ▁TALE - ▁DELIVER - ▁FARM - ▁MONSIEUR - ▁GATHERED - ▁FEELINGS - ▁RATE - ▁REMARKED - ▁PUTTING - ▁MAT - ▁CONTRARY - ▁CRIME - ▁PLA - ▁COL - ▁NEARER - TES - ▁CIVIL - ▁SHAME - ▁LOOSE - ▁DISCOVER - ▁FLAT - ▁TWICE - ▁FAIL - VIS - ▁UNC - EA - ▁EUROPE - ▁PATIENT - ▁UNTO - ▁SUFFER - ▁PAIR - ▁TREASURE - OSE - ▁EAGER - ▁FLY - ▁N - ▁VAL - ▁DAN - ▁SALT - ▁BORE - BBE - ▁ARTHUR - ▁AFFAIRS - ▁SLOW - ▁CONSIST - ▁DEVIL - LAN - ▁AFFECTION - ▁ENGAGED - ▁KISS - ▁YA - ▁OFFICER - IFICATION - ▁LAMP - ▁PARTS - HEN - ▁MILK - ▁PROCESS - ▁GIFT - ▁PULLED - ▁HID - ▁RAY - ▁EXCELLENT - ▁IMPRESSION - ▁AUTHORITY - ▁PROVED - ▁TELLING - TTE - ▁TOWER - ▁CONSEQUENCE - ▁FAVOR - ▁FLEW - ▁CHARLES - ISTS - ▁ADDRESS - ▁FAMILIAR - ▁LIMIT - ▁CONFIDENCE - ▁RARE - ▁WEEKS - ▁WOODS - ▁INTENTION - ▁DIRECT - ▁PERFORM - ▁SOLEMN - ▁DISTANT - ▁IMAGE - ▁PRESIDENT - ▁FIRM - ▁INDIAN - ▁RANK - ▁LIKED - ▁AGREE - ▁HOUSES - ▁WIL - ▁MATTERS - ▁PRISON - ▁MODE - ▁MAJOR - ▁WORKING - ▁SLIP - ▁WEIGHT - ▁AWARE - ▁BUSY - ▁LOOKS - ▁WOUND - ▁THOR - ▁BATH - ▁EXERCISE - ▁SIMILAR - ▁WORE - ▁AMOUNT - ▁QUESTIONS - ▁VIOLENT - ▁EXCUSE - ▁ASIDE - ▁TUR - ▁DULL - OF - ▁EMPEROR - ▁NEVERTHELESS - ▁SHOUT - ▁EXPLAINED - ▁SIZE - ▁ACCOMPLISH - FORD - CAN - ▁MISTAKE - ▁INSTANTLY - ▁SMOOTH - ▁STRIKE - ▁BOB - ISED - ▁HORROR - ▁SCIENCE - ▁PROTEST - ▁MANAGE - ▁OBEY - ▁NECESSITY - ▁SPLENDID - ▁PRESS - ▁INTERESTING - ▁RELIGION - ▁UNKNOWN - ▁FIERCE - ▁DISAPPEARED - ▁HOLY - ▁HATE - ▁PLAYED - ▁LIN - ▁NATURALLY - ▁DROVE - ▁LOUIS - TIES - ▁BRAND - INESS - RIE - ▁SHOOT - ▁CONSENT - ▁SEATED - ▁LINES - GUE - ▁AGREED - ▁CIRCLE - ▁STIR - ▁STREETS - ▁TASK - ▁RID - ▁PRODUCED - ▁ACCIDENT - ▁WITNESS - ▁LIBERTY - ▁DETAIL - ▁MINISTER - ▁POWERFUL - ▁SAVAGE - ▁SIXTEEN - ▁PRETEND - ▁COAST - ▁SQU - ▁UTTER - ▁NAMED - ▁CLEVER - ▁ADMIT - ▁COUPLE - ▁WICKED - ▁MESSAGE - ▁TEMPLE - ▁STONES - ▁YESTERDAY - ▁HILLS - DAY - ▁SLIGHT - ▁DIAMOND - ▁POSSIBLY - ▁AFFAIR - ▁ORIGINAL - ▁HEARING - ▁WORTHY - ▁SELL - NEY - ICK - ▁COTTAGE - ▁SACRIFICE - ▁PROGRESS - ▁SHOCK - ▁DESIGN - ▁SOUGHT - ▁PIT - ▁SUNDAY - ▁OTHERWISE - ▁CABIN - ▁PRAYER - ▁DWELL - ▁GAIN - ▁BRIDGE - ▁PARTICULARLY - ▁YIELD - ▁TREAT - RIGHT - ▁OAK - ▁ROPE - WIN - ▁ORDERS - ▁SUSPECT - ▁EDWARD - AB - ▁ELEVEN - ▁TEETH - ▁OCCURRED - DDING - ▁AMERICA - ▁FALLING - ▁LION - ▁DEPART - ▁KEEPING - ▁DEMAND - ▁PAUSED - ▁CEASED - INA - ▁FUN - ▁CHEER - ▁PARDON - ▁NATIVE - LUS - LOW - ▁DOGS - ▁REQUIRED - ILITY - ▁ELECT - ▁ENTERTAIN - ITUDE - ▁HUGE - ▁CARRYING - ▁BLU - ▁INSIST - ▁SATISFACTION - ▁HUNT - ▁COUNTENANCE - ▁UPPER - ▁MAIDEN - ▁FAILED - ▁JAMES - ▁FOREIGN - ▁GATHER - ▁TEST - BOARD - ▁TERMS - ▁SILK - ▁BEG - ▁BROTHERS - ▁PAGE - ▁KNEES - ▁SHOWN - ▁PROFESSOR - ▁MIGHTY - ▁DEFI - ▁CHARM - ▁REQUIRE - ▁LOG - MORE - ▁PROOF - ▁POSSESSED - ▁SOFTLY - ▁UNFORTUNATE - ▁PRICE - ▁SEVERE - ▁SINGING - ▁STAGE - ▁FREEDOM - ▁SHOUTED - ▁FARTHER - ▁MAJESTY - ▁PREVIOUS - ▁GUIDE - ▁MATCH - ▁CHEST - ▁INTENDED - ▁BI - ▁EXCITEMENT - ▁OFFICERS - ▁SUR - ▁SHAKE - ▁SENTIMENT - ▁GENTLY - ▁SUCCEEDED - ▁MENTION - ▁LOCK - ▁ACQUAINTANCE - ▁IMAGINATION - ▁PHYSICAL - ▁LEADING - ▁SLAVE - ▁CART - ▁POINTED - ▁STEAM - ▁SHADE - ▁PIPE - ▁BASE - ▁INVENT - ▁ALAS - ▁WORKED - ▁REGRET - ▁BUR - ▁FAITHFUL - ▁MENTIONED - ▁RECORD - ▁COMPLAIN - ▁SUPERIOR - ▁BAY - ▁PAL - EMENT - UE - ▁SEVENTY - ▁HOTEL - ▁SHEEP - ▁MEAL - ▁ADVICE - ▁HIDDEN - ▁DEMANDED - ▁CONSCIOUS - ▁BROW - ▁POSSESS - ▁FOURTH - ▁EVENTS - ▁FRI - ▁PRAISE - ▁ADVANCED - ▁RESOLVED - ▁STUFF - ▁CHEERFUL - ▁BIRTH - ▁GRIEF - ▁AFFORD - ▁FAIRY - ▁WAKE - ▁SIDES - ▁SUBSTANCE - ▁ARTICLE - ▁LEVEL - ▁MIST - ▁JOINED - ▁PRACTICAL - ▁CLEARLY - ▁TRACE - ▁AWAKE - ▁OBSERVE - ▁BASKET - ▁LACK - VILLE - ▁SPIRITS - ▁EXCITED - ▁ABANDON - ▁SHINING - ▁FULLY - ▁CALLING - ▁CONSIDERABLE - ▁SPRANG - ▁MILE - ▁DOZEN - ▁PEA - ▁DANGEROUS - ▁WIT - ▁JEW - ▁POUNDS - ▁FOX - ▁INFORMATION - ▁LIES - ▁DECK - NNY - ▁PAUL - ▁STARS - ▁ANGER - ▁SETTLE - ▁WILLING - ▁ADAM - ▁FACES - ▁SMITH - ▁IMPORTANCE - ▁STRAIN - WAR - ▁SAM - ▁FEATHER - ▁SERVED - ▁AUTHOR - ▁PERCEIVED - ▁FLAME - ▁DIVINE - ▁TRAIL - ▁ANYBODY - ▁SIGH - ▁DELICATE - KY - ▁FOLD - ▁HAVEN - ▁DESIRED - ▁CURIOSITY - ▁PRACTICE - ▁CONSIDERATION - ▁ABSOLUTELY - ▁CITIZEN - ▁BOTTLE - ▁INTERESTED - ▁MEAT - ▁OCCUPIED - ▁CHOOSE - ▁THROAT - ETTE - ▁CANDLE - ▁DAWN - ▁PROTECT - ▁SENTENCE - IED - ▁ROCKS - ▁PORTION - ▁APPARENTLY - ▁PRESENTED - ▁TIGHT - ▁ACTUALLY - ▁DYING - ▁HAM - ▁DAILY - ▁SUFFERED - ▁POLITICAL - ▁BODIES - ▁MODERN - ▁COMPLETELY - ▁SOONER - TAN - ▁PROP - ▁ADVANCE - ▁REFUSED - ▁FARMER - ▁POLITE - ▁THUNDER - ▁BRIEF - ▁ELSIE - ▁SAILOR - ▁SUGGESTED - ▁PLATE - ▁AID - ▁FLESH - ▁WEEP - ▁BUCK - ▁ANTI - ▁OCEAN - ▁SPEND - WELL - ▁ODD - ▁GOVERNOR - ▁ENTRANCE - ▁SUSPICION - ▁STEPPED - ▁RAPIDLY - ▁CHECK - ▁HIDE - ▁FLIGHT - ▁CLUB - ▁ENTIRE - ▁INDIANS - ASH - ▁CAPITAL - ▁MAMMA - HAR - ▁CORRECT - ▁CRACK - ▁SENSATION - ▁WORST - ▁PACE - ▁MIDST - ▁AUGUST - ▁PROPORTION - ▁INNOCENT - LINESS - ▁REGARDED - ▁DRIVEN - ORD - ▁HASTE - ▁EDUCATION - ▁EMPLOY - ▁TRULY - ▁INSTRUMENT - ▁MAG - ▁FRAME - ▁FOOLISH - ▁TAUGHT - ▁HANG - ▁ARGUMENT - ▁NINETEEN - ▁ELDER - ▁NAY - ▁NEEDED - ▁NEIGHBOR - ▁INSTRUCT - ▁PAPERS - ▁REWARD - ▁EQUALLY - ▁FIELDS - ▁DIG - HIN - ▁CONDITIONS - JA - ▁SPAR - ▁REQUEST - ▁WORN - ▁REMARKABLE - ▁LOAD - ▁WORSHIP - ▁PARK - ▁KI - ▁INTERRUPTED - ▁SKILL - ▁TERM - LAC - ▁CRITIC - ▁DISTRESS - ▁BELIEF - ▁STERN - IGHT - ▁TRACK - ▁HUNTING - ▁JEWEL - ▁GRADUALLY - ▁GLOW - ▁RUSHED - ▁MENTAL - ▁VISITOR - ▁PICKED - ▁BEHOLD - ▁EXPRESSED - ▁RUB - ▁SKI - ARTAGNAN - ▁MOREOVER - ▁OPERATION - ▁CAREFUL - ▁KEEN - ▁ASSERT - ▁WANDER - ▁ENEMIES - ▁MYSTERIOUS - ▁DEPTH - ▁PREFER - ▁CROSSED - ▁CHARMING - ▁DREAD - ▁FLOUR - ▁ROBIN - ▁TRE - ▁RELIEF - ▁INQUIRED - ▁APPLE - ▁HENCE - ▁WINGS - ▁CHOICE - ▁JUD - OO - ▁SPECIES - ▁DELIGHTED - IUM - ▁RAPID - ▁APPEAL - ▁FAMOUS - ▁USEFUL - ▁HELEN - ▁NEWSPAPER - ▁PLENTY - ▁BEARING - ▁NERVOUS - ▁PARA - ▁URGE - ▁ROAR - ▁WOUNDED - ▁CHAIN - ▁PRODUCE - ▁REFLECTION - ▁MERCHANT - ▁QUARREL - ▁GLORY - ▁BEGUN - ▁BARON - CUS - ▁QUEER - ▁MIX - ▁GAZE - ▁WHISPER - ▁BURIED - ▁DIV - ▁CARD - ▁FREQUENTLY - ▁TIP - ▁KNEE - ▁REGION - ▁ROOT - ▁LEST - ▁JEALOUS - CTOR - ▁SAVED - ▁ASKING - ▁TRIP - QUA - ▁UNION - HY - ▁COMPANIONS - ▁SHIPS - ▁HALE - ▁APPROACHED - ▁HARRY - ▁DRUNK - ▁ARRIVAL - ▁SLEPT - ▁FURNISH - HEAD - ▁PIG - ▁ABSENCE - ▁PHIL - ▁HEAP - ▁SHOES - ▁CONSCIOUSNESS - ▁KINDLY - ▁EVIDENT - ▁SCAR - ▁DETERMIN - ▁GRASP - ▁STEAL - ▁OWE - ▁KNIFE - ▁PRECIOUS - ▁ELEMENT - ▁PROCEEDED - ▁FEVER - ▁LEADER - ▁RISK - ▁EASE - ▁GRIM - ▁MOUNT - ▁MEANWHILE - ▁CENTURY - OON - ▁JUDGMENT - ▁AROSE - ▁VISION - ▁SPARE - ▁EXTREME - ▁CONSTANT - ▁OBSERVATION - ▁THRUST - ▁DELAY - ▁CENT - ▁INCLUD - ▁LIFT - ▁ADMIRE - ▁ISSUE - ▁FRIENDSHIP - ▁LESSON - ▁PRINCIPAL - ▁MOURN - ▁ACCEPTED - ▁BURNING - ▁CAPABLE - ▁EXTRAORDINARY - ▁SANG - ▁REMOVED - ▁HOPED - ▁HORN - ▁ALICE - ▁MUD - ▁APARTMENT - ▁FIGHTING - ▁BLAME - ▁TREMBLING - ▁SOMEBODY - ▁ANYONE - ▁BRIDE - ▁READER - ▁ROB - ▁EVERYWHERE - ▁LABOUR - ▁RECALL - ▁BULL - ▁HIT - ▁COUNCIL - ▁POPULAR - ▁CHAP - ▁TRIAL - ▁DUN - ▁WISHES - ▁BRILLIANT - ▁ASSURED - ▁FORGOT - ▁CONTINUE - ▁ACKNOWLEDG - ▁RETREAT - ▁INCREASED - ▁CONTEMPT - ▁GRANDFATHER - ▁SYMPATHY - ▁GHOST - ▁STRETCHED - ▁CREATURES - ▁CAB - ▁HIND - ▁PLAYING - ▁MISERABLE - ▁MEMBERS - ▁KINDNESS - ▁HIGHEST - ▁PRIM - ▁KISSED - ▁DESERVE - ▁HUT - ▁BEGGED - ▁EIGHTY - ▁CLOSELY - ▁WONDERED - ▁MILITARY - ▁REMIND - ▁ACCORDINGLY - ▁LARGER - ▁MAINTAIN - ▁ENGINE - ▁MOTIVE - ▁DESTROY - ▁STRIP - ▁HANS - ▁AHEAD - ▁INFINITE - ▁PROMPT - ▁INFORMED - TTLE - ▁PEER - ▁PRESSED - ▁TRAP - ▁SOMEWHERE - ▁BOUGHT - ▁VISIBLE - ▁ASHAMED - ▁TEAR - ▁NEIGHBOUR - ▁CONSTITUTION - ▁INTELLIGENCE - ▁PROFESSION - ▁HUNGRY - RIDGE - ▁SMELL - ▁STORIES - ▁LISTENING - ▁APPROACH - ▁STRING - ▁EXPLANATION - ▁IMMENSE - ▁RELIGIOUS - ▁THROUGHOUT - ▁HOLLOW - ▁AWAIT - ▁FLYING - ▁SCREAM - ▁ACTIVE - ▁RUM - ▁PRODUCT - ▁UNHAPPY - ▁VAGUE - ARIES - ▁ELIZABETH - ▁STUPID - ▁DIGNITY - ▁ISABEL - GAR - ▁BRO - ▁PITCH - ▁COMRADE - ▁STIFF - ▁RECKON - ▁SOLD - ▁SPARK - ▁STRO - ▁CRYING - ▁MAGIC - ▁REPEAT - PORT - ▁MARKED - ▁COMFORTABLE - ▁PROJECT - ▁BECOMING - ▁PARENTS - ▁SHELTER - ▁STOLE - ▁HINT - ▁NEST - ▁TRICK - ▁THOROUGHLY - ▁HOSPITAL - ▁WEAPON - ▁ROME - ▁STYLE - ▁ADMITTED - ▁SAFETY - FIELD - ▁UNDERSTANDING - ▁TREMBLE - ▁PRINT - ▁SLAVES - ▁WEARY - ▁ARTIST - ▁CREDIT - BURG - ▁CONCLUSION - ▁SELDOM - ▁UNUSUAL - ▁CLOUDS - ▁UNABLE - ▁GAY - ▁HANGING - ▁SCR - ▁BOWED - ▁DAVID - ▁VOL - ▁PUSHED - ▁ESCAPED - MOND - ▁WARN - ▁BETRAY - ▁EGGS - ▁PLAINLY - ▁EXHIBIT - ▁DISPLAY - ▁MEMBER - ▁GRIN - ▁PROSPECT - ▁BRUSH - ▁BID - ▁SUCCESSFUL - ▁EXTENT - ▁PERSUADE - ▁MID - ▁MOOD - ▁ARRANGED - ▁UNIVERSAL - ▁JIM - ▁SIGNAL - ▁WHILST - ▁PHILIP - ▁WOLF - RATE - ▁EAGERLY - ▁BILLY - ▁RETURNING - ▁CONSCIENCE - ▁FORTUNATE - ▁FEMALE - ▁GLEAM - ▁HASTILY - ▁PROVIDED - ▁OBTAIN - ▁INSTINCT - ▁CONCERNED - ▁CONCERNING - ▁SOMEHOW - ▁PINK - ▁RAGE - ▁ACCUSTOMED - ▁UNCONSCIOUS - ▁ADVISE - ▁BRANCHES - ▁TINY - ▁REFUSE - ▁BISHOP - ▁SUPPLY - ▁PEASANT - ▁LAWYER - ▁WASTE - ▁CONNECTION - ▁DEVELOP - ▁CORRESPOND - ▁PLUM - ▁NODDED - ▁SLIPPED - ▁EU - ▁CONSTANTLY - CUM - MMED - ▁FAIRLY - HOUSE - ▁KIT - ▁RANG - ▁FEATURES - ▁PAUSE - ▁PAINFUL - ▁JOE - ▁WHENCE - ▁LAUGHTER - ▁COACH - ▁CHRISTMAS - ▁EATING - ▁WHOLLY - ▁APART - ▁SUPER - ▁REVOLUTION - ▁LONELY - ▁CHEEKS - ▁THRONE - ▁CREW - ▁ATTAIN - ▁ESTABLISHED - TIME - ▁DASH - ▁FRIENDLY - ▁OPERA - ▁EARL - ▁EXHAUST - ▁CLIFF - ▁REVEAL - ▁ADOPT - ▁CENTRE - ▁MERRY - ▁SYLVIA - ▁IDEAL - ▁MISFORTUNE - ▁FEAST - ▁ARAB - ▁NUT - ▁FETCH - ▁FOUGHT - ▁PILE - ▁SETTING - ▁SOURCE - ▁PERSIST - ▁MERCY - ▁BARK - ▁LUC - ▁DEEPLY - ▁COMPARE - ▁ATTITUDE - ▁ENDURE - ▁DELIGHTFUL - ▁BEARD - ▁PATIENCE - ▁LOCAL - ▁UTTERED - ▁VICTORY - ▁TREATED - ▁SEPARATE - ▁WAG - ▁DRAGG - ▁TITLE - ▁TROOPS - ▁TRIUMPH - ▁REAR - ▁GAINED - ▁SINK - ▁DEFEND - ▁TIED - ▁FLED - ▁DARED - ▁INCREASE - ▁POND - ▁CONQUER - ▁FOREHEAD - ▁FAN - ▁ANXIETY - ▁ENCOUNTER - ▁SEX - ▁HALT - ▁SANK - ▁CHEEK - ▁HUMBLE - ▁WRITER - ▁EMPLOYED - ▁DISTINGUISHED - ▁RAISE - ▁WHIP - ▁GIANT - ▁RANGE - ▁OBTAINED - ▁FLAG - ▁MAC - ▁JUMPED - ▁DISCOVERY - ▁NATIONAL - ▁COMMISSION - ▁POSITIVE - ▁LOVING - ▁EXACT - ▁MURMURED - ▁GAZED - ▁REFER - ▁COLLEGE - ▁ENCOURAGE - ▁NOVEL - ▁CLOCK - ▁MORTAL - ▁ROLLED - ▁RAT - IZING - ▁GUILTY - ▁VICTOR - WORTH - ▁PRA - ▁APPROACHING - ▁RELATIVE - ▁ESTATE - ▁UGLY - ▁METAL - ▁ROBERT - ▁TENT - ▁ADMIRATION - ▁FOURTEEN - ▁BARBAR - ▁WITCH - ELLA - ▁CAKE - ▁SHONE - ▁MANAGED - ▁VOLUME - ▁GREEK - ▁DANCING - ▁WRETCHED - ▁CONDEMN - ▁MAGNIFICENT - ▁CONSULT - J - ▁ORGAN - ▁FLEET - ▁ARRANGEMENT - ▁INCIDENT - ▁MISERY - ▁ARROW - ▁STROKE - ▁ASSIST - ▁BUILD - ▁SUCCEED - ▁DESPERATE - ▁WIDOW - UDE - ▁MARKET - ▁WISDOM - ▁PRECISE - ▁CURRENT - ▁SPOIL - ▁BADE - ▁WOODEN - ▁RESIST - ▁OBVIOUS - ▁SENSIBLE - FALL - ▁ADDRESSED - ▁GIL - ▁COUNSEL - ▁PURCHASE - ▁SELECT - ▁USELESS - ▁STARED - ▁ARREST - ▁POISON - ▁FIN - ▁SWALLOW - ▁BLOCK - ▁SLID - ▁NINETY - ▁SPORT - ▁PROVIDE - ▁ANNA - ▁LAMB - ▁INTERVAL - ▁JUMP - ▁DESCRIBED - ▁STRIKING - ▁PROVISION - ▁PROPOSED - ▁MELANCHOLY - ▁WARRIOR - ▁SUGGEST - ▁DEPARTURE - ▁BURDEN - ▁LIMB - ▁TROUBLED - ▁MEADOW - ▁SACRED - ▁SOLID - ▁TRU - ▁LUCY - ▁RECOVER - ▁ENERGY - ▁POWDER - ▁RESUMED - ▁INTENSE - ▁BRITISH - ▁STRAW - ▁AGREEABLE - ▁EVERYONE - ▁CONCERN - ▁VOYAGE - ▁SOUTHERN - ▁BOSOM - ▁UTTERLY - ▁FEED - ▁ESSENTIAL - ▁CONFINE - ▁HOUSEHOLD - ▁EXTREMELY - ▁WONDERING - ▁LIST - ▁PINE - PHA - ▁EXPERIMENT - ▁JOSEPH - ▁MYSTERY - ▁RESTORE - ▁BLUSH - FOLD - ▁CHOSEN - ▁INTELLECT - ▁CURTAIN - OLOGY - ▁MOUNTED - ▁LAP - ▁EPI - ▁PUNISH - ▁WEDDING - ▁RECOGNIZED - ▁DRIFT - ▁PREPARATION - ▁RESOLUTION - ▁OPPRESS - ▁FIX - ▁VICTIM - OGRAPH - ▁SUMMON - ▁JULIA - ▁FLOOD - ▁WAL - ULATION - ▁SLIGHTLY - ▁LODGE - ▁WIRE - ▁CONFUSION - ▁UNEXPECTED - ▁CONCEIVE - ▁PRIZE - ▁JESUS - ▁ADDITION - ▁RUDE - ▁FATAL - ▁CARELESS - ▁PATCH - ▁KO - ▁CATHERINE - ▁PARLIAMENT - ▁PROFOUND - ▁ALOUD - ▁RELIEVE - ▁PUSH - ABILITY - ▁ACCOMPANIED - ▁SOVEREIGN - ▁SINGULAR - ▁ECHO - ▁COMPOSED - ▁SHAKING - ATORY - ▁ASSISTANCE - ▁TEACHER - ▁HORRIBLE - ▁STRICT - ▁VERSE - ▁PUNISHMENT - ▁GOWN - ▁MISTAKEN - ▁VARI - ▁SWEPT - ▁GESTURE - ▁BUSH - ▁STEEL - ▁AFFECTED - ▁DIRECTED - ▁SURROUNDED - ▁ABSURD - ▁SUGAR - ▁SCRAP - ▁IMMEDIATE - ▁SADDLE - ▁TY - ▁ARISE - ▁SIGHED - ▁EXCHANGE - ▁IMPATIENT - ▁SNAP - ▁EMBRACE - ▁DISEASE - ▁PROFIT - ▁RIDING - ▁RECOVERED - ▁GOVERN - ▁STRETCH - ▁CONVINCED - ▁LEANING - ▁DOMESTIC - ▁COMPLEX - ▁MANIFEST - ▁INDULGE - ▁GENIUS - ▁AGENT - ▁VEIL - ▁DESCRIPTION - ▁INCLINED - ▁DECEIVE - ▁DARLING - ▁REIGN - HU - ▁ENORMOUS - ▁RESTRAIN - ▁DUTIES - BURY - TTERED - ▁POLE - ▁ENABLE - ▁EXCEPTION - ▁INTIMATE - ▁COUNTESS - ▁TRIBE - ▁HANDKERCHIEF - ▁MIDNIGHT - ▁PROBLEM - ▁TRAMP - ▁OIL - CAST - ▁CRUSH - ▁DISCUSS - ▁RAM - ▁TROT - ▁UNRE - ▁WHIRL - ▁LOCKED - ▁HORIZON - ▁OFFICIAL - ▁SCHEME - ▁DROWN - ▁PIERRE - ▁PERMITTED - ▁CONNECTED - ▁ASSURE - ▁COCK - ▁UTMOST - ▁DEVOTED - ▁RELI - ▁SUFFICIENTLY - ▁INTELLECTUAL - ▁CARPET - ▁OBJECTION - ▁AFTERWARD - ▁REALITY - ▁NEGRO - ▁RETAIN - ▁ASCEND - ▁CEASE - ▁KATE - ▁MARVEL - KO - ▁BOND - MOST - ▁COAL - GATE - ▁IGNORANT - ▁BREAKING - ▁TWIN - ▁ASTONISHMENT - ▁COFFEE - ▁JAR - ▁CITIES - ▁ORIGIN - ▁EXECUT - ▁FINAL - ▁INHABITANTS - ▁STABLE - ▁CHIN - ▁PARTIES - ▁PLUNGE - ▁GENEROUS - ▁DESCRIBE - ▁ANNOUNCED - ▁MERIT - ▁REVERE - ▁ERE - ACIOUS - ZI - ▁DISAPPOINT - ▁SUGGESTION - ▁DOUBTLESS - ▁TRUNK - ▁STAMP - ▁JOB - ▁APPOINTED - ▁DIVIDED - ▁ACQUAINTED - CHI - ▁ABSOLUTE - ▁FEARFUL - ▁PRIVILEGE - ▁CRAFT - ▁STEEP - ▁HUNTER - ▁FORBID - ▁MODEST - ▁ENDEAVOUR - ▁SWEEP - ▁BEHELD - ▁ABSORB - ▁CONSTRUCT - ▁EMPIRE - ▁EXPEDITION - ▁ERECT - ▁OFFEND - ▁INTEND - ▁PERMIT - ▁DESTROYED - ▁CONTRACT - ▁THIRST - ▁WAGON - ▁EVA - ▁GLOOM - ▁ATMOSPHERE - ▁RESERVE - ▁VOTE - ▁GER - ▁NONSENSE - ▁PREVAIL - ▁QUALITY - ▁CLASP - ▁CONCLUDED - ▁RAP - ▁KATY - ▁ETERNAL - ▁MUTTERED - ▁NEGLECT - ▁SQUIRE - ▁CREEP - LOCK - ▁ELECTRIC - ▁HAY - ▁EXPENSE - ▁SCORN - ▁RETIRED - ▁STOUT - ▁MURMUR - ▁SHARPLY - ▁DISTRICT - ▁LEAF - ▁FAILURE - WICK - ▁JEAN - ▁NUMEROUS - ▁INFANT - ▁REALIZED - ▁TRAVELLER - ▁HUNGER - ▁JUNE - ▁MUN - ▁RECOMMEND - ▁CREP - ZZLE - ▁RICHARD - WORK - ▁MONTE - ▁PREACH - ▁PALM - AVI - ▁ANYWHERE - ▁DISPOSITION - ▁MIRROR - ▁VENTURE - ▁POUND - ▁CIGAR - ▁INVITED - ▁BENCH - ▁PROTECTION - ▁BENEFIT - ▁THOMAS - ▁CLERK - ▁REPROACH - ▁UNIFORM - ▁GENERATION - ▁SEAL - ▁COMPASS - ▁WARNING - ▁EXTENDED - ▁DIFFICULTIES - ▁MAYBE - ▁GROAN - ▁AFFECT - ▁COMB - ▁EARN - ▁WESTERN - ▁IDLE - ▁SCORE - ▁TAP - ▁ASTONISHED - ▁INTRODUCED - ▁LEISURE - ▁LIEUTENANT - ▁VIOLENCE - ▁FIRMLY - ▁MONSTER - ▁UR - ▁PROPERLY - ▁TWIST - ▁PIRATE - ▁ROBBER - ▁BATTER - ▁WEPT - ▁LEANED - ▁FOG - ▁ORNAMENT - ▁ANDREW - ▁BUSHES - ▁REPUBLIC - ▁CONFIDENT - ▁LEAN - ▁DART - ▁STOOP - ▁CURL - ▁COUNTER - ▁NORTHERN - ▁PEARL - ▁NEAREST - ▁FRANCIS - ▁WANDERING - ▁FREQUENT - ▁STARTLED - ▁STATEMENT - ▁OCCUR - ▁BLOOM - ▁NERVE - ▁INSPECT - ▁INDUCE - ▁FLATTER - ▁DATE - ▁AMBITION - ▁SLOPE - ▁MALE - ▁MADAM - ▁MONK - ▁RENT - ▁CONFIRM - ▁INVESTIGAT - ▁RABBIT - ▁REGIMENT - ▁SUBMIT - ▁SPELL - ▁FURIOUS - ▁RAIL - ▁BESTOW - ▁RALPH - ▁SCATTERED - ▁COMPELLED - ▁THREAD - ▁CHILL - ▁DENY - ▁PRONOUNC - ▁MANKIND - ▁CATTLE - ▁EXECUTION - ▁REBEL - ▁SUPREME - ▁VALUABLE - ▁LIKEWISE - ▁CONVEY - ▁TIDE - ▁GLOOMY - ▁COIN - ▁ACTUAL - ▁TAX - ▁PROVINCE - ▁GRATEFUL - ▁SPIRITUAL - ▁VANISHED - ▁DIANA - ▁HAUNT - ▁DRAGON - ▁CRAWL - ▁CHINA - ▁GRATITUDE - ▁NEAT - ▁FINISH - ▁INTENT - ▁FRIGHT - ▁EMBARRASS - ▁THIRTEEN - ▁RUTH - ▁SLIGHTEST - ▁DEVELOPMENT - ▁INTERVIEW - ▁SPECTACLE - ▁BROOK - VIE - ▁WEAKNESS - ▁AUDIENCE - ▁CONSEQUENTLY - ▁ABROAD - ▁ASPECT - ▁PAINTED - ▁RELEASE - ▁INSULT - ▁SOOTH - ▁DISAPPOINTMENT - ▁EMERG - ▁BRIG - ▁ESTEEM - ▁INVITATION - ▁PASSENGER - ▁PUBLISH - ▁PIANO - ▁IRISH - ▁DESK - ▁BEATEN - ▁FIFTH - ▁IMPULSE - ▁SWEAR - ▁EATEN - ▁PURPLE - ▁COMMITTED - ▁COUNTRIES - ▁PERCEIVE - ISON - ▁CELEBRAT - ▁GRANDMOTHER - ▁SHUDDER - ▁SUNSHINE - ▁SPANISH - ▁HITHERTO - ▁MARILLA - ▁SNAKE - ▁MOCK - ▁INTERFERE - ▁WALTER - ▁AMID - ▁MARBLE - ▁MISSION - TERIOR - ▁DRIVING - ▁FURNITURE - ▁STEADY - ▁CIRCUMSTANCE - ▁INTERPRET - ▁ENCHANT - ▁ERROR - ▁CONVICTION - ▁HELPLESS - ▁MEDICINE - ▁QUALITIES - ▁ITALIAN - ▁HASTENED - ▁OCCASIONALLY - ▁PURSUED - ▁HESITATED - ▁INDEPENDENT - ▁OLIVER - ▁LINGER - UX - ▁EXAMINED - ▁REPENT - ▁PHYSICIAN - ▁CHASE - ▁BELOVED - ▁ATTACHED - ▁FLORENCE - ▁HONEY - ▁MOUSE - ▁CRIES - ▁BAKE - ▁POEM - ▁DESTRUCTION - ▁FULFIL - ▁MESSENGER - ▁TRISTRAM - ▁FANCIED - ▁EXCESS - ▁CURSE - ▁CHU - ▁QUANTITY - ▁THORNTON - ▁CREATED - ▁CONTINUALLY - ▁LIGHTNING - ▁BORNE - ▁TOTAL - ▁DISPOSED - ▁RIFLE - ▁POLLY - ▁GOAT - ▁BACKWARD - ▁VIRGINIA - ▁KICK - ▁PERIL - ▁QUO - ▁GLORIOUS - ▁MULTITUDE - ▁LEATHER - ▁ABSENT - ▁DEMON - ▁DEBT - ▁TORTURE - ▁ACCORD - ▁MATE - ▁CATHOLIC - ▁PILL - ▁LIBRARY - ▁PURSUIT - ▁SHIRT - ▁DEAREST - ▁COLLAR - ▁BEACH - ▁ROBE - ▁DECLARE - ▁BRANCH - ▁TEMPT - ▁STEADILY - ▁DISGUST - ▁SILLY - ▁ARRIVE - ▁DRANK - ▁LEVI - ▁COMMUNICAT - ▁RACHEL - ▁WASHINGTON - ▁RESIGN - ▁MEANTIME - ▁LACE - ▁ENGAGEMENT - ▁QUIVER - ▁SEPARATED - ▁DISCUSSION - ▁VENTURED - ▁SURROUNDING - ▁POLISH - ▁NAIL - ▁SWELL - ▁JOKE - ▁LINCOLN - ▁STUDENT - ▁GLITTER - ▁RUSSIAN - ▁READILY - ▁CHRIS - ▁POVERTY - ▁DISGRACE - ▁CHEESE - ▁HEAVILY - ▁SCALE - ▁STAFF - ▁ENTREAT - ▁FAREWELL - ▁LUNCH - ▁PEEP - ▁MULE - ▁SOMEONE - ▁DISAPPEAR - ▁DECISION - ▁PISTOL - ▁PUN - ▁SPUR - ▁ASSUMED - ▁EXTEND - ▁ENTHUSIASM - ▁DEFINITE - ▁UNDERTAKE - ▁COMMITTEE - ▁SIMON - ▁FENCE - ▁APPLIED - ▁RELATED - ▁VICE - ▁UNPLEASANT - ▁PROBABLE - ▁PROCURE - ▁FROWN - ▁CLOAK - ▁HUMANITY - ▁FAMILIES - ▁PHILOSOPHER - ▁DWARF - ▁OVERCOME - ▁DEFEAT - ▁FASTENED - ▁MARSH - ▁CLASSES - ▁TOMB - ▁GRACIOUS - ▁REMOTE - ▁CELL - ▁SHRIEK - ▁RESCUE - ▁POOL - ▁ORGANIZ - ▁CHOSE - ▁CUTTING - ▁COWARD - ▁BORDER - ▁DIRTY - ▁MONKEY - ▁HOOK - ▁CHUCK - ▁EMILY - ▁JEST - ▁PLAC - ▁WEIGH - ▁ASSOCIATE - ▁GLIMPSE - ▁STUCK - ▁BOLT - ▁MURDERER - ▁PONY - ▁DISTINGUISH - ▁INSTITUTION - ▁CUNNING - ▁COMPLIMENT - ▁APPETITE - ▁REPUTATION - ▁FEEBLE - ▁KIN - ▁SERIES - ▁GRACEFUL - ▁PLATFORM - ▁BREEZE - ▁PHRASE - ▁CLAY - MONT - ▁RATTL - ▁OPPOSITION - ▁LANE - ▁BOAST - ▁GROWTH - ▁INCLINATION - ▁BEHAVE - ▁SUSAN - ▁DISTINCTION - ▁DISLIKE - ▁NICHOLAS - ▁SATISFY - ▁DRAMA - ▁ELBOW - ▁GAZING - ▁CONSUM - ▁SPIN - ▁OATH - ▁CHANNEL - ▁CHARACTERISTIC - ▁SPEAR - ▁SLAIN - ▁SAUCE - ▁FROG - ▁CONCEPTION - ▁TIMID - ▁ZEAL - ▁APPARENT - SHIRE - ▁CENTER - ▁VARIETY - ▁DUSK - ▁APT - ▁COLUMN - ▁REVENGE - ▁RIVAL - ▁IMITAT - ▁PASSIONATE - ▁SELFISH - ▁NORMAN - ▁REPAIR - ▁THRILL - ▁TREATMENT - ▁ROSA - ▁MARTIN - ▁INDIFFERENT - ▁THITHER - ▁GALLANT - ▁PEPPER - ▁RECOLLECT - ▁VINE - ▁SCARCE - ▁SHIELD - ▁MINGLED - CLOSE - ▁HARSH - ▁BRICK - ▁HUMOR - ▁MISCHIEF - ▁TREMENDOUS - ▁FUNCTION - ▁SMART - ▁SULTAN - ▁DISMISS - ▁THREATENED - ▁CHEAP - ▁FLOCK - ▁ENDEAVOR - ▁WHISK - ▁ITALY - ▁WAIST - ▁FLUTTER - ▁SMOKING - ▁MONARCH - ▁AFRICA - ▁ACCUSE - ▁HERBERT - ▁REFRESH - ▁REJOICE - ▁PILLOW - ▁EXPECTATION - ▁POETRY - ▁HOPELESS - ▁PERISH - ▁PHILOSOPHY - ▁WHISTLE - ▁BERNARD - ▁LAMENT - ▁IMPROVE - ▁SUP - ▁PERPLEX - ▁FOUNTAIN - ▁LEAGUE - ▁DESPISE - ▁IGNORANCE - ▁REFERENCE - ▁DUCK - ▁GROVE - ▁PURSE - ▁PARTNER - ▁PROPHET - ▁SHIVER - ▁NEIGHBOURHOOD - ▁REPRESENTATIVE - SAIL - ▁WIP - ▁ACQUIRED - ▁CHIMNEY - ▁DOCTRINE - ▁MAXIM - ▁ANGLE - ▁MAJORITY - ▁AUTUMN - ▁CONFUSED - ▁CRISTO - ▁ACHIEVE - ▁DISGUISE - ▁REDUCED - ▁EARLIER - ▁THEATRE - ▁DECIDE - MINATED - OLOGICAL - ▁OCCUPATION - ▁VIGOROUS - ▁CONTINENT - ▁DECLINE - ▁COMMUNITY - ▁MOTIONLESS - ▁HATRED - ▁COMMUNICATION - ▁BOWL - ▁COMMENT - ▁APPROVE - ▁CEREMONY - ▁CRIMINAL - ▁SCIENTIFIC - ▁DUCHESS - ▁VIVID - ▁SHIFT - ▁AVAIL - ▁DAMP - ▁JOHNSON - ▁SLENDER - ▁CONTRAST - ▁AMUSEMENT - ▁PLOT - ▁LYN - ▁ASSOCIATION - ▁SNATCH - ▁UNCERTAIN - ▁PRESSURE - ▁PERCH - ▁APPLY - ▁PLANET - ▁NOTWITHSTANDING - ▁SWUNG - ▁STIRRED - ▁ATTENDANT - ▁ENJOYMENT - ▁WORRY - ▁ALBERT - ▁NAKED - ▁TALENT - ▁MARIAN - ▁REFORM - ▁DELIBERATE - ▁INTELLIGENT - ▁SENSITIVE - ▁YONDER - ▁PUPIL - ▁FRIGHTFUL - ▁DOUBTFUL - ▁STANDARD - ▁MAGISTRATE - ▁SHEPHERD - ▁STOMACH - ▁DEPOSIT - ▁RENEW - ▁HEDGE - ▁FRANCS - ▁POSSIBILITY - ▁RESEMBLE - ▁FATIGUE - ▁PORTRAIT - ▁FAVORITE - ▁CREAM - ▁BURG - ▁SECRETARY - ▁DIVERS - ▁ACTIVITY - ▁SPECULAT - ▁HUMOUR - ▁FITTED - ▁EXTERNAL - ▁CETERA - ▁WRAPPED - ▁WHIT - ▁FRED - ▁EXAMINATION - ▁LODGING - ▁OWING - ▁JAW - ▁CROW - ▁BALANCE - ▁PUFF - ▁TENDERNESS - ▁PORTHOS - ▁ANCHOR - ▁INTERRUPT - ▁NECESSARILY - ▁PERPETUAL - ▁AGONY - ▁POPE - ▁SCHOLAR - ▁SCOTLAND - ▁SUPPRESS - ▁WRATH - ▁WRECK - ▁EXCEED - ▁PERFECTION - ▁INDIA - ▁TRADITION - ▁SECTION - ▁EASTERN - ▁DOORWAY - ▁WIVES - ▁CONVENTION - ▁ANNOUNC - ▁EGYPT - ▁CONTRADICT - ▁SCRATCH - ▁CENTRAL - ▁GLOVE - ▁WAX - ▁PREPARE - ▁ACCOMPANY - ▁INCREASING - ▁LIBERAL - ▁RAISING - ▁ORANGE - ▁SHOE - ▁ATTRIBUTE - ▁LITERATURE - ▁PUZZLED - ▁WITHDRAW - ▁WHITHER - ▁HAWK - ▁MOONLIGHT - ▁EXAMINE - ▁HAPPILY - ▁PRECEDE - ▁DETECTIVE - ▁INCHES - ▁SOLITARY - ▁DUTCH - ▁NAPOLEON - ▁UNEASY - ▁CARDINAL - ▁BLEW - ▁FOWL - ▁DECORAT - ▁CHILDHOOD - ▁TORMENT - ▁LOSING - ▁PERMISSION - ▁BLANK - ▁UPSTAIRS - ▁CAPACITY - ▁TRIFLE - ▁FOLLY - ▁RECOGNIZE - ▁REMOVE - ▁VENGEANCE - ▁ENTERPRISE - ▁BEDROOM - ▁ANYHOW - ▁INQUIRY - ▁ASHES - ▁DRAG - ▁HUSH - ▁AWKWARD - ▁SATURDAY - ▁GENUINE - ▁SURVIV - ▁SKIRT - ▁AFFECTIONATE - ▁TANG - ▁MUTUAL - ▁DISPUTE - ▁EAGLE - ▁INCOME - ▁BIND - ▁FAME - ▁IMPROVEMENT - ROVING - ▁DIFFER - ▁AWOKE - ▁SLEEVE - ▁SOLITUDE - ▁FAVOURITE - JI - ▁DETECT - ▁COMPREHEND - ▁PREPARING - ▁SERPENT - ▁SUMMIT - ▁KNOT - ▁KNIT - ▁COPY - ▁STOPPING - ▁FADED - ▁HIDEOUS - ▁JULIE - STEAD - ▁SHINE - ▁CONFLICT - ▁PROPOSITION - ▁REFUGE - ▁GALLERY - ▁BUNDLE - ▁AXE - ▁SLAVERY - ▁MASK - ▁ALYOSHA - ▁LADDER - ▁DEPARTMENT - ▁DISCHARGE - ▁DEPRESS - ▁GALLOP - ▁SCARLET - ▁KITTY - ▁RECEIVING - ▁SURRENDER - ▁SUSTAIN - ▁TWILIGHT - ▁CONGRESS - ▁IRELAND - ▁FUNNY - ▁LEND - ▁CONSTITUTE - ▁FUNERAL - ▁CRYSTAL - ▁SPAIN - ▁EXCEEDINGLY - ▁DAMN - ▁COMMUN - ▁CIVILIZATION - ▁PREJUDICE - ▁PORCH - ▁ASSISTANT - ▁INDUSTRY - ▁TUMBLE - ▁DEFENCE - ▁HITHER - ▁SMOT - ▁COLONI - ▁AMAZEMENT - ▁MARGUERITE - ▁MIRACLE - ▁INHERIT - ▁BEGGAR - ▁ENVELOPE - ▁INDIGNATION - ▁NATASHA - ▁PROPOSAL - ▁FRAGMENT - ▁ROUSED - ▁ROAST - ENCIES - ▁COMMENCED - ▁RESOURCE - ▁POPULATION - ▁QUOTH - ▁PURSUE - ▁EDUCAT - ▁AFFLICT - ▁CONTACT - ▁CRIMSON - ▁DIVISION - ▁DISORDER - ▁COPPER - ▁SOLICIT - ▁MODERATE - ▁DRUM - ▁SWIM - ▁SALUTE - ▁ASSUME - ▁MUSCLE - ▁OVERWHELM - ▁SHAKESPEARE - ▁STRUGGLING - ▁TRANQUIL - ▁CHICKEN - ▁TREAD - ▁CLAW - ▁BIBLE - ▁RIDGE - ▁THREAT - ▁VELVET - ▁EXPOSED - ▁IDIOT - ▁BARREL - ▁PENNY - ▁TEMPTATION - ▁DANGLARS - ▁CENTURIES - ▁DISTRIBUT - ▁REJECT - ▁RETORTED - ▁CONCENTRAT - ▁CORDIAL - ▁MOTOR - ▁CANNON - KEEP - ▁WRETCH - ▁ASSURANCE - ▁THIEF - ▁SURVEY - ▁VITAL - ▁RAILWAY - ▁JACKSON - ▁CRASH - ▁GROWL - ▁COMBAT - ▁RECOLLECTION - ▁SECURITY - ▁JACOB - ▁CLUTCH - ▁BLANKET - ▁NANCY - ▁CELLAR - ▁CONVENIENT - ▁INDIGNANT - ▁COARSE - ▁WORM - ▁SCREEN - ▁TRANSPORT - ▁BULLET - ▁APPRECIATE - ▁DEVOTION - ▁INVISIBLE - ▁DRIED - ▁MIXTURE - ▁CANDID - ▁PERFORMANCE - ▁RIPE - ▁EXQUISITE - ▁BARGAIN - ▁TOBACCO - ▁LOYAL - ▁MOULD - ▁ATTENTIVE - ▁DOROTHY - ▁BRUTE - ▁ESTABLISHMENT - ▁ABILITY - ▁INHABIT - ▁OBSCURE - ▁BORROW - ▁ESSENCE - ▁DISMAY - ▁FLEE - ▁BLADE - ▁PLUCK - ▁COFFIN - ▁SUNSET - ▁STEPHEN - ▁ECONOMIC - ▁HOLIDAY - ▁MECHANICAL - ▁COTTON - ▁AWAKENED - ▁SEIZE - ▁RIDICULOUS - ▁SANCHO - ▁HESITATION - ▁CORPSE - ▁SAVING - HOLD - FOOT - ▁ELDEST - ▁DESPITE - ▁EDITH - ▁CHERISH - ▁RESISTANCE - ▁WILSON - ▁ARGUE - ▁INQUIRE - ▁APPREHENSION - ▁AVENUE - ▁DRAKE - ▁PROPOSE - HURST - ▁INFERIOR - ▁STAIRCASE - ▁WHEREFORE - ▁CARLYLE - ▁COUCH - ▁ROUTE - ▁POLITICS - ▁TOMORROW - ▁THRONG - ▁NAUGHT - ▁SUNLIGHT - ▁INDIFFERENCE - ▁OBEDIENCE - ▁RECEPTION - ▁VEGETABLE - ▁IMPERFECT - ▁RESIDENCE - ▁TURKEY - ▁VIOLET - ▁SARAH - ▁ALTAR - ▁GRIEVE - ▁JERK - ▁ENSU - ▁MAGICIAN - ▁BLOSSOM - ▁LANTERN - ▁RESOLUTE - ▁THOUGHTFULLY - ▁FORTNIGHT - ▁TRUMPET - ▁VALJEAN - ▁UNWILLING - ▁LECTURE - ▁WHEREUPON - ▁HOLLAND - ▁CHANGING - ▁CREEK - ▁SLICE - ▁NORMAL - ▁ANNIE - ▁ACCENT - ▁FREDERICK - ▁DISAGREEABLE - ▁RUBBED - ▁DUMB - ▁ESTABLISH - ▁IMPORT - ▁AFFIRM - ▁MATTHEW - ▁BRISK - ▁CONVERT - ▁BENDING - ▁IVAN - ▁MADEMOISELLE - ▁MICHAEL - ▁EASIER - ▁JONES - ▁FACING - ▁EXCELLENCY - ▁LITERARY - ▁GOSSIP - ▁DEVOUR - ▁STAGGER - ▁PENCIL - ▁AVERAGE - ▁HAMMER - ▁TRIUMPHANT - ▁PREFERRED - ▁APPLICATION - ▁OCCUPY - ▁AUTHORITIES - BURN - ▁ASCERTAIN - ▁CORRIDOR - ▁DELICIOUS - ▁PRACTISE - ▁UNIVERSE - ▁SHILLING - ▁CONTEST - ▁ASHORE - ▁COMMIT - ▁ADMINISTRATION - ▁STUDIED - ▁RIGID - ▁ADORN - ▁ELSEWHERE - ▁INNOCENCE - ▁JOURNAL - ▁LANDSCAPE - ▁TELEGRAPH - ▁ANGRILY - ▁CAMPAIGN - ▁UNJUST - ▁CHALLENGE - ▁TORRENT - ▁RELATE - ▁ASSEMBLED - ▁IMPRESSED - ▁CANOE - ▁CONCLUD - ▁QUIXOTE - ▁SATISFACTORY - ▁NIECE - ▁DEAF - ▁RAFT - ▁JIMMY - ▁GLID - ▁REGULAT - ▁CHATTER - ▁GLACIER - ▁ENVY - ▁STATUE - ▁BOSTON - ▁RICHMOND - ▁DENIED - ▁FANNY - ▁SOLOMON - ▁VULGAR - ▁STALK - ▁REPLACE - ▁SPOON - ▁BASIN - ▁FEATURE - ▁CONVICT - ▁ARCHITECT - ▁ADMIRAL - ▁RIBBON - ▁PERMANENT - ▁APRIL - ▁JOLLY - ▁NEIGHBORHOOD - ▁IMPART - BOROUGH - CAMP - ▁HORRID - ▁IMMORTAL - ▁PRUDENCE - ▁SPANIARD - ▁SUPPOSING - ▁TELEPHONE - ▁TEMPERATURE - ▁PENETRATE - ▁OYSTER - ▁APPOINTMENT - ▁EGYPTIAN - ▁DWELT - ▁NEPHEW - ▁RAILROAD - ▁SEPTEMBER - ▁DEVICE - ▁WHEAT - ▁GILBERT - ▁ELEGANT - ▁ADVERTISE - ▁RATIONAL - ▁TURTLE - ▁BROOD - ▁ASSEMBLY - ▁CULTIVATE - ▁EDITOR - ▁SPECIMEN - ▁UNDOUBTEDLY - ▁WHALE - ▁DROPPING - ▁BALLOON - ▁MEDICAL - COMB - ▁COMPOSITION - ▁FOOTSTEPS - ▁LAUNCELOT - ▁DISCOURSE - ▁ERRAND - ▁CONVERSE - ▁ADVANCING - ▁DOWNSTAIRS - ▁TUMULT - ▁CORRUPT - ▁SUFFICE - ▁ANGUISH - ▁SHAGGY - ▁RETIRE - ▁TIMBER - ▁BLAZE - ▁ABSTRACT - ▁EMBROIDER - ▁PHOTOGRAPH - ▁PROSPERITY - ▁TERRIBLY - ▁TERRITORY - ▁THRESHOLD - ▁PAVEMENT - ▁INJURED - ▁LIMP - ▁AGITATION - ▁RASCAL - ▁PRESUME - ▁OBSERVING - ▁OBSTACLE - ▁SIMPLICITY - ▁SLUMBER - ▁SUPPLIED - ▁COMBINATION - ▁DRAIN - ▁WILDERNESS - ▁BELIEVING - ▁VILLAIN - ▁RECKLESS - ▁INJURY - ▁CLAPP - ▁FRIDAY - ▁HERCULES - ▁KENNEDY - ▁SYMPTOM - ▁SLEDGE - ▁CEILING - ▁LEMON - ▁PLAGUE - ▁MONDAY - ▁CANVAS - ▁IMPATIENCE - ▁UNCOMFORTABLE - ▁ACCESS - ▁FROZEN - ▁SENATOR - ▁FRANZ - ▁SWIMMING - ▁BARRIER - ▁ADJUST - ▁COMPARISON - ▁PROCLAIM - ▁WRINKL - ▁OVERLOOK - ▁MITYA - ▁GUILT - ▁PERCEPTION - ▁PRECAUTION - ▁SPECTATOR - ▁SURPRISING - ▁DISTRACT - ▁DISDAIN - ▁BONNET - ▁MAGNET - ▁PROFESS - ▁CONFOUND - ▁NARRATIVE - ▁STRUCTURE - ▁SKETCH - ▁ULTIMATE - ▁GLOBE - ▁INSECT - FICIENCY - ▁ORCHARD - ▁AMIABLE - ▁DESCENT - ▁INDEPENDENCE - ▁MANUFACTURE - ▁SPRINKLE - ▁NIGHTINGALE - ▁CUSHION - ▁EMINENT - ▁SCOTT - ▁ARRAY - ▁COSETTE - ▁WAVING - ▁EXTRACT - ▁IRREGULAR - ▁PERSECUT - ▁DERIVED - ▁WITHDREW - ▁CAUTION - ▁SUSPICIOUS - ▁MEMORIES - ▁NOWHERE - ▁SUBTLE - ▁THOROUGH - Q - ▁APPROPRIATE - ▁SLAUGHTER - ▁YOURSELVES - ▁THUMB - ▁TWAS - ▁ABODE - ▁BIDDING - ▁CONSPICUOUS - ▁REBECCA - ▁SERGEANT - ▁APRON - ▁ANTICIPATE - ▁DISCIPLINE - ▁GLANCING - ▁PILGRIM - ▁SULLEN - ▁CONTRIBUTE - ▁PRAIRIE - ▁CARVED - ▁COMMERCE - ▁EXCLAMATION - ▁MUSCULAR - ▁NOVEMBER - ▁PHENOMENA - ▁SYMBOL - ▁UMBRELLA - ▁DIMINISH - ▁PARLOUR - ▁THREATENING - ▁STUMP - ▁EXTENSIVE - ▁PLEASING - ▁REMEMBRANCE - ▁COMBINED - ▁SHERIFF - ▁SHAFT - ▁LAURA - ▁INTERCOURSE - ▁STRICKEN - ▁SUPPLIES - ▁LANDLORD - ▁SHRINK - ▁PRICK - ▁CAESAR - ▁DRUG - ▁BEWILDERED - ▁NAUTILUS - ▁BRUTAL - ▁COMMERCIAL - ▁MAGGIE - ▁SPHERE - ▁VIRGIN - ▁BRETHREN - ▁DESTINY - ▁POLICY - ▁TERRIFIED - ▁HOUSEKEEPER - ▁CRAZY - ▁ARDENT - ▁DISCERN - ▁WRAP - ▁MARQUIS - ▁RUSSIA - MOUTH - ▁BRITAIN - ▁HARBOUR - ▁CONCERT - ▁DONKEY - ▁DAMAGE - ▁SLIM - ABOUT - ▁LUXURY - ▁MONSTROUS - ▁TENDENCY - ▁PARADISE - ▁CULTURE - ▁JULIUS - ▁RAOUL - ▁REMEDY - ▁DECAY - ▁SCOLD - ▁SPLIT - ▁ASSAULT - ▁DECEMBER - ▁MOSCOW - ▁EXPLORE - ▁TROUSERS - ▁WRIST - PIECE - ▁MUSKET - ▁VALENTINE - ▁TYRANT - ▁ABRAHAM - ▁MEDIUM - ▁ARTIFICIAL - ▁FACULTY - ▁OBLIGATION - ▁RESEMBLANCE - ▁INQUIRIES - ▁DETAIN - ▁SWARM - ▁PLEDGE - ▁ADMIRABLE - ▁DEFECT - ▁SUPERINTEND - ▁PATRIOT - ▁CLUNG - ▁DISMAL - ▁RECIT - ▁IGNOR - ▁AMELIA - ▁JUSTIFY - ▁ELEPHANT - ▁ESTIMATE - ▁KNELT - ▁SERVING - ▁WHIM - ▁SHRILL - ▁STUDIO - ▁TEXT - ▁ALEXANDER - ▁WROUGHT - ▁ABUNDANT - ▁SITUATED - ▁REGAIN - ▁FIERY - ▁SNEER - ▁SWEAT - ▁GLARE - ▁NIGH - ▁ESCORT - ▁INEVITABLE - ▁PSMITH - ▁RELUCTANT - ▁PRECEDING - ▁RESORT - ▁OUTRAGE - ▁AMBASSADOR - ▁CONSOLATION - ▁RECOGNITION - ▁REMORSE - ▁BEHALF - ▁FORMIDABLE - ▁GRAVITY - ▁DIVIDE - ▁CONFRONT - ▁GIGANTIC - ▁OCTOBER - ▁FLANK - ▁SLEW - ▁CLARA - ▁FILM - ▁BULK - ▁POMP - ▁ELEANOR - ▁EMPHASIS - ▁JAPANESE - ▁CAVALRY - ▁EXCLUSIVE - ▁PERFUME - ▁BRONZE - ▁FEDERAL - ▁LIQUID - ▁RUBBING - ▁OVEN - DOLPH - ▁CONVULS - ▁DEPRIVED - ▁RESPONSIBILITY - ▁SIGNIFICANT - ▁WAISTCOAT - ▁CLUSTER - ▁MARTHA - ▁REVERSE - ▁ATTORNEY - ▁DROOP - ▁SKILFUL - ▁HABITUAL - ▁PUMP - ▁INTERVEN - ▁OWL - ▁CONJECTURE - ▁FANTASTIC - ▁RESPONSIBLE - ▁DESTINED - ▁DOCUMENT - ▁THEREUPON - ▁GODDESS - ▁PACIFIC - ▁WARRANT - ▁COSTUME - ▁BRIDLE - ▁CALIFORNIA - ▁DEMOCRATIC - ▁EUSTACE - ▁SQUIRREL - ▁UNCOMMON - ▁MARVELLOUS - ▁PLOUGH - ▁TRAGEDY - ▁VAULT - ▁HESITATE - ▁REFRAIN - ▁ADMIRING - ▁CORPORAL - ▁ENTITLED - ▁SHREWD - ▁SQUEEZ - ▁ACCURATE - ▁TEMPEST - ▁MONUMENT - ▁SIEGE - ▁CHINESE - ▁RAVEN - ▁LOUNG - ▁ASSASSIN - ▁INFLICT - ▁AGITATED - ▁DESIRABLE - ▁EARLIEST - ▁LAUNCH - ▁PILOT - ▁PULSE - ▁MUTE - LEIGH - ▁LIQUOR - ▁SCARECROW - ▁SKULL - ▁DESOLATE - ▁SUBLIME - ▁SERENE - ▁RECESS - ▁WAKING - ▁CHARLOTTE - ▁CIRCULAR - ▁INJUSTICE - ▁PINOCCHIO - ▁PRISCILLA - ▁THYSELF - ▁OCCURRENCE - ▁CASUAL - ▁FRANTIC - ▁LEGEND - ▁FERTIL - ▁BACKGROUND - ▁DELICACY - ▁ESTRALLA - ▁MANUSCRIPT - ▁RESPONSE - ▁UNIVERSITY - ▁WOLVES - ▁SCANDAL - ▁STUMBLE - ▁HOARSE - ▁BODILY - ▁CONVENT - ▁EXAMINING - ▁INCAPABLE - ▁PERCEIVING - ▁PHILADELPHIA - ▁SUBSEQUENT - ▁THIEVES - ▁ACCUMULAT - ▁DAMSEL - ▁SCOTCH - ▁UNDERNEATH - ▁NOBILITY - ▁SMASH - ▁REVOLT - ▁ENGAGE - ▁CATHEDRAL - ▁CHAMPION - ▁DESPATCH - ▁ETERNITY - ▁JANUARY - ▁PLEADED - ▁PROBABILITY - ▁JIMMIE - ▁PARALLEL - ▁FISHERMAN - ▁JERRY - ▁SWORE - ▁DRAUGHT - ▁OPPONENT - ▁PRIMITIVE - ▁SIGNIFICANCE - ▁SUBSTANTIAL - ▁AMAZED - ▁DUNBAR - ▁COMMEND - ▁CONTEMPLATE - ▁TESTIMONY - ▁IMPERIAL - ▁ADAPT - ▁JUICE - ▁CALAMIT - CULAR - ▁CHATEAU - ▁PHOENIX - ▁PRUDENT - ▁SOLUTION - ▁VILLEFORT - ▁REACTION - ▁RELAX - ▁YU - ▁PROHIBIT - ▁DISTRUST - ▁PLUNDER - ▁WELFARE - ▁NAVIGAT - ▁PARLOR - ▁LAZY - ▁DETACH - OMETER - ▁PRIV - ▁DISCOURAGE - ▁OBSTINATE - ▁REJOICING - ▁SERMON - ▁VEHICLE - ▁FANCIES - ▁ENLIGHTEN - ▁ACUTE - ▁ILLUSION - ▁ANTHEA - ▁MARTIAN - ▁EXCITE - ▁GENEROSITY - OLOGIST - ▁AMAZING - ▁UNWORTHY - ▁INTERNAL - ▁INCENSE - ▁VIBRAT - ▁ADHERE - ROACH - ▁FEBRUARY - ▁MEXICAN - ▁POTATOES - ▁INCESSANT - ▁INTERPOSED - ▁PARCEL - ▁VEXED - ▁PROMOTE - MIDST - ▁ARISTOCRAT - ▁CYRIL - ▁EMBARK - ▁ABUNDANCE - ▁LITERALLY - ▁SURGEON - ▁TERRACE - ▁ATLANTIC - ▁MARTYR - ▁SPECK - ▁SENATE - ▁LOAF - ▁ADMINISTER - ▁APPREHEND - ▁SUBDUED - ▁TEMPORARY - ▁DOMINION - ▁ELABORATE - ▁DIGNIFIED - ▁ELIZA - ▁SPLASH - ▁CONSEIL - ▁DEXTER - ▁UNSEEN - ▁TRAGIC - VOCATION - ▁GRATIFY - ▁BACHELOR - ▁DEFENSE - ▁EXCURSION - ▁FACULTIES - ▁PROPRIETOR - ▁SYMPATHETIC - ▁UNNECESSARY - ▁RADIANT - ▁VACANT - ▁OUNCE - ▁SCREW - ▁PHENOMENON - ▁PROMINENT - ▁WORRIED - ▁STUDIES - ▁CLIMATE - ▁KEITH - ▁ARAMIS - ▁BLISS - ▁CONTINUAL - ▁SURPASS - ▁HEBREW - ▁IDENTITY - ▁PROVOKE - ▁TEMPERAMENT - ▁CHARIOT - ▁HARBOR - ▁NINTH - ▁PRIOR - ▁DESIROUS - ▁JERUSALEM - ▁UNDERTAKING - ▁EDISON - ▁MIRTH - ▁SCOUT - ▁APPARATUS - ▁ILLUSTRATION - ▁INTELLIGIBLE - ▁INVARIABLY - ▁PIERCED - ▁REVIEW - ▁FLICKER - ▁HAZARD - ▁REVELATION - ▁DIXON - ▁EXCITING - ▁GOSPEL - ▁CONSTANCE - ▁OVERTAKE - ▁GUINEA - ▁ALADDIN - ▁CHICAGO - ▁TULLIVER - ▁HAMILTON - ▁GARRISON - ▁DISCIPLE - ▁INTENSITY - ▁TRAITOR - ▁CHANCELLOR - ▁PROVERB - ▁DAGGER - ▁FORESEE - ▁CONFIDE - ▁GLIMMER - ▁CHAUVELIN - ▁ILLUSTRATE - ▁VOLUNTEER - ▁JUNGLE - ▁STREAK - ▁SUNRISE - ▁DISSOLV - ▁QUEST - ▁AWHILE - ▁FELICITY - ▁LEGISLATURE - ▁LEONORA - ▁MAGAZINE - ▁PITIFUL - ▁COLONY - ▁SHAWL - ▁ARRIVING - ▁FUNDAMENTAL - ▁CARPENTER - ▁OVERFLOW - ▁EXPAND - ▁HARVEST - ▁FEMININE - ▁INNUMERABLE - ▁SCRAMBLE - ▁TWENTIETH - ▁TRIFLING - ▁GHASTL - ▁CONQUEST - ▁DANIEL - ▁FACILIT - ▁FORSAKE - ▁BEHAVIOUR - ▁GORGEOUS - ▁PRODUCING - ▁HAPPIER - ▁PROMISING - ▁RAINBOW - ▁INSTINCTIVELY - ▁DECREE - ▁EYEBROWS - ▁IRRESISTIBLE - ▁PHARAOH - ▁SCROOGE - ▁UNNATURAL - ▁CRUMBS - ▁REFINED - ▁DREARY - ▁TRENCH - ▁CONVINCE - ▁FRINGE - ▁EXTREMITY - ▁INTIMACY - ▁SCOUNDREL - ▁SUFFRAGE - ▁UNEASINESS - ▁BARRICADE - ▁CIRCULAT - ▁SAMUEL - ▁BRUCE - ▁DARCY - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram5000/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: n_fft: 512 hop_length: 256 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 10 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_en_bpe5000_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.7a1 distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Kuray107/librispeech-semi-supervised-without-LM
Kuray107
2022-03-07T17:14:04Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-07T03:31:57Z
--- tags: - generated_from_trainer model-index: - name: librispeech-semi-supervised-without-LM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # librispeech-semi-supervised-without-LM This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1837 - Wer: 0.0580 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.0565 | 0.56 | 1000 | 0.1354 | 0.0641 | | 0.0548 | 1.12 | 2000 | 0.1320 | 0.0628 | | 0.0478 | 1.68 | 3000 | 0.1247 | 0.0612 | | 0.0451 | 2.24 | 4000 | 0.1256 | 0.0613 | | 0.0401 | 2.8 | 5000 | 0.1269 | 0.0606 | | 0.035 | 3.36 | 6000 | 0.1370 | 0.0595 | | 0.0344 | 3.92 | 7000 | 0.1280 | 0.0589 | | 0.031 | 4.48 | 8000 | 0.1350 | 0.0589 | | 0.031 | 5.04 | 9000 | 0.1418 | 0.0614 | | 0.0278 | 5.61 | 10000 | 0.1382 | 0.0604 | | 0.0272 | 6.17 | 11000 | 0.1502 | 0.0615 | | 0.0246 | 6.73 | 12000 | 0.1443 | 0.0609 | | 0.0233 | 7.29 | 13000 | 0.1548 | 0.0589 | | 0.0224 | 7.85 | 14000 | 0.1547 | 0.0599 | | 0.0202 | 8.41 | 15000 | 0.1570 | 0.0590 | | 0.0199 | 8.97 | 16000 | 0.1564 | 0.0594 | | 0.0186 | 9.53 | 17000 | 0.1598 | 0.0595 | | 0.0187 | 10.09 | 18000 | 0.1657 | 0.0585 | | 0.017 | 10.65 | 19000 | 0.1690 | 0.0584 | | 0.016 | 11.21 | 20000 | 0.1689 | 0.0588 | | 0.0156 | 11.77 | 21000 | 0.1745 | 0.0585 | | 0.0151 | 12.33 | 22000 | 0.1777 | 0.0583 | | 0.0144 | 12.89 | 23000 | 0.1778 | 0.0590 | | 0.0142 | 13.45 | 24000 | 0.1803 | 0.0585 | | 0.0137 | 14.01 | 25000 | 0.1796 | 0.0581 | | 0.0132 | 14.57 | 26000 | 0.1837 | 0.0580 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
Kevincp560/distilbart-cnn-12-3-finetuned-pubmed
Kevincp560
2022-03-07T15:55:27Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:pub_med_summarization_dataset", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-07T10:26:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - pub_med_summarization_dataset metrics: - rouge model-index: - name: distilbart-cnn-12-3-finetuned-pubmed results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: pub_med_summarization_dataset type: pub_med_summarization_dataset args: document metrics: - name: Rouge1 type: rouge value: 40.5642 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-3-finetuned-pubmed This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-3](https://huggingface.co/sshleifer/distilbart-cnn-12-3) on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: 2.1743 - Rouge1: 40.5642 - Rouge2: 16.9812 - Rougel: 25.3449 - Rougelsum: 36.46 - Gen Len: 141.95 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 2.469 | 1.0 | 4000 | 2.2956 | 38.3713 | 15.2594 | 23.6734 | 34.1634 | 141.707 | | 2.2527 | 2.0 | 8000 | 2.1994 | 39.5939 | 16.2376 | 24.6363 | 35.5106 | 141.831 | | 2.0669 | 3.0 | 12000 | 2.1780 | 40.078 | 16.6705 | 25.1119 | 35.9605 | 141.8475 | | 1.9275 | 4.0 | 16000 | 2.1669 | 40.0825 | 16.6169 | 24.9702 | 36.0191 | 141.928 | | 1.8102 | 5.0 | 20000 | 2.1743 | 40.5642 | 16.9812 | 25.3449 | 36.46 | 141.95 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
kenjis2542/mt5-small-finetuned-5k-th-to-en
kenjis2542
2022-03-07T14:11:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-07T12:49:31Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: mt5-small-finetuned-5k-th-to-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-5k-th-to-en This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
abhishek/autonlp-swahili-sentiment-615517563
abhishek
2022-03-07T12:54:03Z
16
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "unk", "dataset:abhishek/autonlp-data-swahili-sentiment", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-07T12:52:44Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - abhishek/autonlp-data-swahili-sentiment co2_eq_emissions: 1.9057858628956459 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 615517563 - CO2 Emissions (in grams): 1.9057858628956459 ## Validation Metrics - Loss: 0.6990908980369568 - Accuracy: 0.695364238410596 - Macro F1: 0.6088819062581828 - Micro F1: 0.695364238410596 - Weighted F1: 0.677326207350606 - Macro Precision: 0.6945099492363175 - Micro Precision: 0.695364238410596 - Weighted Precision: 0.6938596845881614 - Macro Recall: 0.5738408020723632 - Micro Recall: 0.695364238410596 - Weighted Recall: 0.695364238410596 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/abhishek/autonlp-swahili-sentiment-615517563 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("abhishek/autonlp-swahili-sentiment-615517563", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("abhishek/autonlp-swahili-sentiment-615517563", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
Splend1dchan/byt5small-glue-mprc
Splend1dchan
2022-03-07T11:14:07Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-07T10:51:18Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: byt5small-glue-mprc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # byt5small-glue-mprc This model is a fine-tuned version of [google/byt5-small](https://huggingface.co/google/byt5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.6.0a0+bf2bbd9 - Datasets 1.12.1 - Tokenizers 0.11.6
cammy/bart-large-cnn-1000-pad-early-lit
cammy
2022-03-07T10:56:33Z
5
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-07T10:31:23Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-1000-pad-early-lit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-1000-pad-early-lit This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4800 - Rouge1: 28.4538 - Rouge2: 13.5656 - Rougel: 22.2066 - Rougelsum: 25.3361 - Gen Len: 66.53 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.1556 | 1.0 | 1000 | 0.4383 | 29.1275 | 14.1415 | 22.5802 | 26.37 | 65.93 | | 0.0853 | 2.0 | 2000 | 0.4800 | 28.4538 | 13.5656 | 22.2066 | 25.3361 | 66.53 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
spy24/autonlp-parrot_paraphrasing-615317556
spy24
2022-03-07T09:36:20Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autonlp", "unk", "dataset:spy24/autonlp-data-parrot_paraphrasing", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-07T09:35:01Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - spy24/autonlp-data-parrot_paraphrasing co2_eq_emissions: 0.8335491678002559 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 615317556 - CO2 Emissions (in grams): 0.8335491678002559 ## Validation Metrics - Loss: 0.0001514342293376103 - Rouge1: 100.0 - Rouge2: 51.4451 - RougeL: 100.0 - RougeLsum: 100.0 - Gen Len: 4.104 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/spy24/autonlp-parrot_paraphrasing-615317556 ```
spy24/autonlp-optimized-paraphrasing-615217541
spy24
2022-03-07T08:56:14Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autonlp", "unk", "dataset:spy24/autonlp-data-optimized-paraphrasing", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-07T08:54:32Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - spy24/autonlp-data-optimized-paraphrasing co2_eq_emissions: 1.166696812121839 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 615217541 - CO2 Emissions (in grams): 1.166696812121839 ## Validation Metrics - Loss: 0.00019549368880689144 - Rouge1: 100.0 - Rouge2: 51.4451 - RougeL: 100.0 - RougeLsum: 100.0 - Gen Len: 4.104 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/spy24/autonlp-optimized-paraphrasing-615217541 ```
cammy/bart-large-cnn-finetuned-weaksup-1000-pad-early-new1
cammy
2022-03-07T06:18:16Z
5
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-07T06:01:26Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-weaksup-1000-pad-early-new1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-weaksup-1000-pad-early-new1 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4948 - Rouge1: 28.1465 - Rouge2: 13.4076 - Rougel: 22.2763 - Rougelsum: 25.2087 - Gen Len: 68.58 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.156 | 1.0 | 1000 | 0.4377 | 27.8782 | 13.1274 | 21.2329 | 24.6465 | 66.25 | | 0.0843 | 2.0 | 2000 | 0.4948 | 28.1465 | 13.4076 | 22.2763 | 25.2087 | 68.58 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
Splend1dchan/byt5small-squad-5000
Splend1dchan
2022-03-07T04:39:29Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-07T04:25:56Z
Byt5 trained on squad, input = 512, output = 256, 5000 steps Tokenizer is Byt5
meame2010/rare-puppers
meame2010
2022-03-07T00:03:06Z
68
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-07T00:02:57Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.644444465637207 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### dog drinking water ![dog drinking water](images/dog_drinking_water.jpg) #### dog eating food ![dog eating food](images/dog_eating_food.jpg) #### dog playing toy ![dog playing toy](images/dog_playing_toy.jpg) #### dog sleeping ![dog sleeping](images/dog_sleeping.jpg)
PhilSad/GPT-J6B-Guided-SCP
PhilSad
2022-03-06T22:52:07Z
9
2
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
Attempt of guided text generation to replace GPT-3 for :[This SCP Does Not Exist](https://www.thisscpdoesnotexist.ml) Work in Porgress Finetuned on a dataset of 1700 automatically generated samples from the [official SCP wiki](https://scp-wiki.wikidot.com/) Exemple input : ```Prompt: SCP-9741 is a pair of jeans that looks really cool ### Generation: Item #: SCP-9741\nObject Class: Safe\nSpecial Containment Procedures:``` # Acknowledgment This work was made possible thanks to the TPU Research Cloud program by Google
Kevincp560/distilbart-cnn-12-6-finetuned-pubmed
Kevincp560
2022-03-06T22:33:03Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:pub_med_summarization_dataset", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-06T16:25:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - pub_med_summarization_dataset metrics: - rouge model-index: - name: distilbart-cnn-12-6-finetuned-pubmed results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: pub_med_summarization_dataset type: pub_med_summarization_dataset args: document metrics: - name: Rouge1 type: rouge value: 40.0985 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-6-finetuned-pubmed This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.9895 - Rouge1: 40.0985 - Rouge2: 16.5016 - Rougel: 24.8319 - Rougelsum: 36.0775 - Gen Len: 141.884 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 2.1709 | 1.0 | 4000 | 2.0257 | 38.1012 | 15.112 | 23.4064 | 33.9373 | 141.9195 | | 1.9495 | 2.0 | 8000 | 1.9593 | 39.529 | 16.1693 | 24.487 | 35.5238 | 141.9785 | | 1.756 | 3.0 | 12000 | 1.9488 | 39.9623 | 16.5799 | 24.949 | 35.9194 | 141.8855 | | 1.6032 | 4.0 | 16000 | 1.9732 | 39.672 | 16.1994 | 24.5996 | 35.7021 | 141.921 | | 1.4817 | 5.0 | 20000 | 1.9895 | 40.0985 | 16.5016 | 24.8319 | 36.0775 | 141.884 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
Ayham/roberta_ernie_summarization_cnn_dailymail
Ayham
2022-03-06T22:01:31Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-06T14:27:11Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: roberta_ernie_summarization_cnn_dailymail results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta_ernie_summarization_cnn_dailymail This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
osanseviero/xlm-roberta-base-finetuned-panx-de-fr
osanseviero
2022-03-06T21:30:10Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-06T20:35:13Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1754 - F1: 0.8616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2815 | 1.0 | 1430 | 0.2079 | 0.8067 | | 0.1521 | 2.0 | 2860 | 0.1759 | 0.8525 | | 0.093 | 3.0 | 4290 | 0.1754 | 0.8616 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.18.0 - Tokenizers 0.10.3
cammy/bart-large-cnn-finetuned-weaksup-1000-pad-early-new
cammy
2022-03-06T17:51:08Z
4
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-06T16:33:39Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-weaksup-1000-pad-early-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-weaksup-1000-pad-early-new This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4896 - Rouge1: 29.4505 - Rouge2: 14.4038 - Rougel: 23.1757 - Rougelsum: 26.3813 - Gen Len: 66.55 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.154 | 1.0 | 1000 | 0.4255 | 27.2971 | 12.4331 | 20.851 | 23.9583 | 66.64 | | 0.0806 | 2.0 | 2000 | 0.4896 | 29.4505 | 14.4038 | 23.1757 | 26.3813 | 66.55 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
Kuray107/swbd-5percent-supervised
Kuray107
2022-03-06T16:14:11Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-05T15:36:19Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: swbd-5percent-supervised results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swbd-5percent-supervised This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6970 - Wer: 0.1352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.8534 | 0.64 | 1000 | 2.9535 | 1.0 | | 1.8605 | 1.28 | 2000 | 0.7878 | 0.3719 | | 0.9862 | 1.92 | 3000 | 0.5906 | 0.2684 | | 0.8405 | 2.56 | 4000 | 0.5555 | 0.2151 | | 0.6972 | 3.2 | 5000 | 0.5905 | 0.1992 | | 0.6033 | 3.84 | 6000 | 0.4867 | 0.1781 | | 0.5393 | 4.48 | 7000 | 0.5447 | 0.1805 | | 0.529 | 5.12 | 8000 | 0.5398 | 0.1746 | | 0.5072 | 5.77 | 9000 | 0.5093 | 0.1706 | | 0.4331 | 6.41 | 10000 | 0.4990 | 0.1627 | | 0.4837 | 7.05 | 11000 | 0.5319 | 0.1634 | | 0.3867 | 7.69 | 12000 | 0.4866 | 0.1595 | | 0.345 | 8.33 | 13000 | 0.5202 | 0.1582 | | 0.372 | 8.97 | 14000 | 0.5396 | 0.1547 | | 0.355 | 9.61 | 15000 | 0.5992 | 0.1493 | | 0.3258 | 10.25 | 16000 | 0.5247 | 0.1527 | | 0.3327 | 10.89 | 17000 | 0.5664 | 0.1512 | | 0.3422 | 11.53 | 18000 | 0.5819 | 0.1456 | | 0.2815 | 12.17 | 19000 | 0.5692 | 0.1453 | | 0.2719 | 12.81 | 20000 | 0.5012 | 0.1476 | | 0.2838 | 13.45 | 21000 | 0.5286 | 0.1454 | | 0.2418 | 14.09 | 22000 | 0.6238 | 0.1486 | | 0.2412 | 14.73 | 23000 | 0.5889 | 0.1456 | | 0.2227 | 15.37 | 24000 | 0.5901 | 0.1459 | | 0.2129 | 16.02 | 25000 | 0.5959 | 0.1454 | | 0.2071 | 16.66 | 26000 | 0.6259 | 0.1427 | | 0.2185 | 17.3 | 27000 | 0.6581 | 0.1437 | | 0.1982 | 17.94 | 28000 | 0.6194 | 0.1411 | | 0.1928 | 18.58 | 29000 | 0.5940 | 0.1409 | | 0.1885 | 19.22 | 30000 | 0.6733 | 0.1417 | | 0.1835 | 19.86 | 31000 | 0.6363 | 0.1393 | | 0.1756 | 20.5 | 32000 | 0.6675 | 0.1382 | | 0.1776 | 21.14 | 33000 | 0.6147 | 0.1407 | | 0.1758 | 21.78 | 34000 | 0.6405 | 0.1420 | | 0.1645 | 22.42 | 35000 | 0.6999 | 0.1401 | | 0.1631 | 23.06 | 36000 | 0.6224 | 0.1385 | | 0.1494 | 23.7 | 37000 | 0.6639 | 0.1374 | | 0.1472 | 24.34 | 38000 | 0.6471 | 0.1373 | | 0.1514 | 24.98 | 39000 | 0.6570 | 0.1395 | | 0.1527 | 25.62 | 40000 | 0.6876 | 0.1375 | | 0.1514 | 26.27 | 41000 | 0.6835 | 0.1376 | | 0.1344 | 26.91 | 42000 | 0.6987 | 0.1372 | | 0.1267 | 27.55 | 43000 | 0.7026 | 0.1362 | | 0.1384 | 28.19 | 44000 | 0.7021 | 0.1366 | | 0.1264 | 28.83 | 45000 | 0.7016 | 0.1355 | | 0.1227 | 29.47 | 46000 | 0.6970 | 0.1352 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
crabz/distil-slovakbert-ner
crabz
2022-03-06T12:40:16Z
5
1
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "dataset:wikiann", "autotrain_compatible", "region:us" ]
token-classification
2022-03-06T12:17:02Z
--- tags: - generated_from_trainer datasets: - wikiann inference: false model-index: - name: distil-slovakbert-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distil-slovakbert-ner This model is a fine-tuned version of [crabz/distil-slovakbert](https://huggingface.co/crabz/distil-slovakbert) on the wikiann sk dataset. - F1: 0.9307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu113 - Datasets 1.15.1 - Tokenizers 0.11.0
crabz/slovakbert-upos
crabz
2022-03-06T12:31:41Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "license:mit", "autotrain_compatible", "region:us" ]
token-classification
2022-03-05T16:47:22Z
--- license: mit inference: false ---
AG/pretraining
AG
2022-03-06T12:27:50Z
17
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:04Z
Pre trained on clus_ chapter only.
Kuray107/librispeech-100h-supervised
Kuray107
2022-03-06T08:07:22Z
13
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: librispeech-100h-supervised results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # librispeech-100h-supervised This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0955 - Wer: 0.0345 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.8277 | 0.42 | 500 | 2.9071 | 1.0 | | 2.0261 | 0.84 | 1000 | 0.3060 | 0.2496 | | 0.2181 | 1.26 | 1500 | 0.1172 | 0.0873 | | 0.1255 | 1.68 | 2000 | 0.0894 | 0.0637 | | 0.0971 | 2.1 | 2500 | 0.0821 | 0.0560 | | 0.078 | 2.52 | 3000 | 0.0751 | 0.0500 | | 0.0706 | 2.94 | 3500 | 0.0721 | 0.0456 | | 0.0609 | 3.36 | 4000 | 0.0755 | 0.0464 | | 0.0572 | 3.78 | 4500 | 0.0705 | 0.0431 | | 0.0528 | 4.2 | 5000 | 0.0715 | 0.0423 | | 0.0481 | 4.62 | 5500 | 0.0691 | 0.0403 | | 0.0471 | 5.04 | 6000 | 0.0743 | 0.0401 | | 0.0412 | 5.46 | 6500 | 0.0757 | 0.0399 | | 0.0416 | 5.88 | 7000 | 0.0688 | 0.0378 | | 0.0391 | 6.3 | 7500 | 0.0704 | 0.0383 | | 0.0367 | 6.72 | 8000 | 0.0742 | 0.0387 | | 0.0349 | 7.14 | 8500 | 0.0732 | 0.0388 | | 0.033 | 7.56 | 9000 | 0.0719 | 0.0374 | | 0.0327 | 7.98 | 9500 | 0.0750 | 0.0369 | | 0.0292 | 8.4 | 10000 | 0.0734 | 0.0368 | | 0.0303 | 8.82 | 10500 | 0.0733 | 0.0365 | | 0.0283 | 9.24 | 11000 | 0.0766 | 0.0357 | | 0.0269 | 9.66 | 11500 | 0.0761 | 0.0350 | | 0.0268 | 10.08 | 12000 | 0.0802 | 0.0359 | | 0.0245 | 10.42 | 12500 | 0.0758 | 0.0354 | | 0.023 | 10.84 | 13000 | 0.0775 | 0.0349 | | 0.0186 | 11.26 | 13500 | 0.0817 | 0.0355 | | 0.0176 | 11.68 | 14000 | 0.0853 | 0.0354 | | 0.0163 | 12.1 | 14500 | 0.0880 | 0.0347 | | 0.0156 | 12.52 | 15000 | 0.0864 | 0.0357 | | 0.0141 | 12.94 | 15500 | 0.0897 | 0.0355 | | 0.0134 | 13.36 | 16000 | 0.0915 | 0.0349 | | 0.013 | 13.78 | 16500 | 0.0928 | 0.0350 | | 0.0097 | 13.42 | 17000 | 0.0955 | 0.0345 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
clisi2000/distilbert-base-uncased-finetuned-emotion
clisi2000
2022-03-06T07:09:00Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-05T04:03:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9246284188099615 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2183 - Accuracy: 0.9245 - F1: 0.9246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8174 | 1.0 | 250 | 0.3166 | 0.905 | 0.9023 | | 0.2534 | 2.0 | 500 | 0.2183 | 0.9245 | 0.9246 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2+cpu - Datasets 1.16.1 - Tokenizers 0.10.1
Kuray107/librispeech-5h-supervised
Kuray107
2022-03-06T06:43:53Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-05T23:00:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: librispeech-5h-supervised results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # librispeech-5h-supervised This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2041 - Wer: 0.0624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7758 | 11.11 | 1000 | 0.3120 | 0.2337 | | 0.1238 | 22.22 | 2000 | 0.1651 | 0.0826 | | 0.0383 | 33.33 | 3000 | 0.1667 | 0.0712 | | 0.023 | 44.44 | 4000 | 0.1893 | 0.0685 | | 0.0166 | 55.56 | 5000 | 0.2008 | 0.0666 | | 0.0131 | 66.67 | 6000 | 0.1942 | 0.0639 | | 0.0106 | 77.78 | 7000 | 0.1979 | 0.0628 | | 0.0091 | 88.89 | 8000 | 0.2027 | 0.0628 | | 0.008 | 100.0 | 9000 | 0.2041 | 0.0624 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
huggingtweets/ragnar_furup
huggingtweets
2022-03-05T18:34:56Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-05T18:34:14Z
--- language: en thumbnail: http://www.huggingtweets.com/ragnar_furup/1646505291174/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500138558765608969/Qgc4pMtC_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">R4 G4.mp3🌻</div> <div style="text-align: center; font-size: 14px;">@ragnar_furup</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from R4 G4.mp3🌻. | Data | R4 G4.mp3🌻 | | --- | --- | | Tweets downloaded | 1695 | | Retweets | 889 | | Short tweets | 104 | | Tweets kept | 702 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3eum19q4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ragnar_furup's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/30kqu5u4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/30kqu5u4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ragnar_furup') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nimrah/my-wav2vec2-base-timit-demo-colab-my
nimrah
2022-03-05T17:06:37Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-05T15:19:10Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my-wav2vec2-base-timit-demo-colab-my results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-wav2vec2-base-timit-demo-colab-my This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5569 - Wer: 0.3481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4083 | 4.0 | 500 | 1.0932 | 0.7510 | | 0.5536 | 8.0 | 1000 | 0.4965 | 0.4819 | | 0.2242 | 12.0 | 1500 | 0.4779 | 0.4077 | | 0.1249 | 16.0 | 2000 | 0.4921 | 0.4006 | | 0.0844 | 20.0 | 2500 | 0.4809 | 0.3753 | | 0.0613 | 24.0 | 3000 | 0.5307 | 0.3680 | | 0.0459 | 28.0 | 3500 | 0.5569 | 0.3481 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
batterydata/batterybert-cased
batterydata
2022-03-05T16:20:02Z
106
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "exbert", "en", "dataset:batterypapers", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en tags: - exbert license: apache-2.0 datasets: - batterypapers --- # BatteryBERT-uncased model Pretrained model on a large corpus of battery research papers using a masked language modeling (MLM) objective, starting with the [bert-base-cased](https://huggingface.co/bert-base-cased) weights. It was introduced in [this paper](paper_link) and first released in [this repository](https://github.com/ShuHuang/batterybert). This model is case-sensitive: it makes a difference between english and English. ## Model description BatteryBERT is a transformers model pretrained on a large corpus of battery research papers in a self-supervised fashion, starting with the [bert-base-cased](https://huggingface.co/bert-base-cased) weights. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Training data The BatteryBERT model was pretrained on the full text of battery papers only, after initialized from the [bert-base-cased](https://huggingface.co/bert-base-cased) weights. The paper corpus contains a total of 400,366 battery research papers that are published from 2000 to June 2021, from the publishers Royal Society of Chemistry (RSC), Elsevier, and Springer. The list of DOIs can be found at [Github](https://github.com/ShuHuang/batterybert/blob/main/corpus.txt). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 28,996. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 8 NVIDIA DGX A100 GPUs for 1,000,000 steps with a batch size of 256. The sequence length was limited to 512 tokens. The optimizer used is Adam with a learning rate of 2e-5, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=batterybert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='batterydata/batterybert-cased') >>> unmasker("Hello I'm a <mask> model.") ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('batterydata/batterybert-cased') model = BertModel.from_pretrained('batterydata/batterybert-cased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('batterydata/batterybert-cased') model = TFBertModel.from_pretrained('batterydata/batterybert-cased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Evaluation results Final loss: 0.9609. ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
batterydata/batterybert-uncased
batterydata
2022-03-05T16:18:02Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "exbert", "en", "dataset:batterypapers", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en tags: - exbert license: apache-2.0 datasets: - batterypapers --- # BatteryBERT-uncased model Pretrained model on a large corpus of battery research papers using a masked language modeling (MLM) objective, starting with the [bert-base-uncased](https://huggingface.co/bert-base-uncased) weights. It was introduced in [this paper](paper_link) and first released in [this repository](https://github.com/ShuHuang/batterybert). This model is uncased: it does not make a difference between english and English. ## Model description BatteryBERT is a transformers model pretrained on a large corpus of battery research papers in a self-supervised fashion, starting with the [bert-base-uncased](https://huggingface.co/bert-base-uncased) weights. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Training data The BatteryBERT model was pretrained on the full text of battery papers only, after initialized from the [bert-base-uncased](https://huggingface.co/bert-base-uncased) weights. The paper corpus contains a total of 400,366 battery research papers that are published from 2000 to June 2021, from the publishers Royal Society of Chemistry (RSC), Elsevier, and Springer. The list of DOIs can be found at [Github](https://github.com/ShuHuang/batterybert/blob/main/corpus.txt). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,522. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 8 NVIDIA DGX A100 GPUs for 1,000,000 steps with a batch size of 256. The sequence length was limited to 512 tokens. The optimizer used is Adam with a learning rate of 2e-5, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=batterybert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='batterydata/batterybert-uncased') >>> unmasker("Hello I'm a <mask> model.") ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('batterydata/batterybert-uncased') model = BertModel.from_pretrained('batterydata/batterybert-uncased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('batterydata/batterybert-uncased') model = TFBertModel.from_pretrained('batterydata/batterybert-uncased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Evaluation results Final loss: 1.0317. ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
batterydata/batteryscibert-uncased
batterydata
2022-03-05T16:14:28Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "exbert", "en", "dataset:batterypapers", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en tags: - exbert license: apache-2.0 datasets: - batterypapers --- # BatterySciBERT-uncased model Pretrained model on a large corpus of battery research papers using a masked language modeling (MLM) objective, starting with the [SciBERT-uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) weights. It was introduced in [this paper](paper_link) and first released in [this repository](https://github.com/ShuHuang/batterybert). This model is uncased: it does not make a difference between english and English. ## Model description BatterySciBERT is a transformers model pretrained on a large corpus of battery research papers in a self-supervised fashion, starting with the [SciBERT-uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) weights. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Training data The BatterySciBERT model was pretrained on the full text of battery papers only, after initialized from the [SciBERT-uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) weights. The paper corpus contains a total of 400,366 battery research papers that are published from 2000 to June 2021, from the publishers Royal Society of Chemistry (RSC), Elsevier, and Springer. The list of DOIs can be found at [Github](https://github.com/ShuHuang/batterybert/blob/main/corpus.txt). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 31,090. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 8 NVIDIA DGX A100 GPUs for 1,000,000 steps with a batch size of 256. The sequence length was limited to 512 tokens. The optimizer used is Adam with a learning rate of 2e-5, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=batterybert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='batterydata/batteryscibert-uncased') >>> unmasker("Hello I'm a <mask> model.") ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('batterydata/batteryscibert-uncased') model = BertModel.from_pretrained('batterydata/batteryscibert-uncased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('batterydata/batteryscibert-uncased') model = TFBertModel.from_pretrained('batterydata/batteryscibert-uncased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Evaluation results Final loss: 1.095. ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
batterydata/batteryscibert-uncased-abstract
batterydata
2022-03-05T14:54:59Z
25
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "Text Classification", "en", "dataset:batterydata/paper-abstracts", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: en tags: Text Classification license: apache-2.0 datasets: - batterydata/paper-abstracts metrics: glue --- # BatterySciBERT-uncased for Battery Abstract Classification **Language model:** batteryscibert-uncased **Language:** English **Downstream-task:** Text Classification **Training data:** training\_data.csv **Eval data:** val\_data.csv **Code:** See [example](https://github.com/ShuHuang/batterybert) **Infrastructure**: 8x DGX A100 ## Hyperparameters ``` batch_size = 32 n_epochs = 14 base_LM_model = "batteryscibert-uncased" learning_rate = 2e-5 ``` ## Performance ``` "Validation accuracy": 97.12, "Test accuracy": 97.47, ``` ## Usage ### In Transformers ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline model_name = "batterydata/batteryscibert-uncased-abstract" # a) Get predictions nlp = pipeline('text-classification', model=model_name, tokenizer=model_name) input = {'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.'} res = nlp(input) # b) Load model & tokenizer model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
batterydata/batteryonlybert-cased-abstract
batterydata
2022-03-05T14:54:53Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "Text Classification", "en", "dataset:batterydata/paper-abstracts", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: en tags: Text Classification license: apache-2.0 datasets: - batterydata/paper-abstracts metrics: glue --- # BatteryOnlyBERT-cased for Battery Abstract Classification **Language model:** batteryonlybert-cased **Language:** English **Downstream-task:** Text Classification **Training data:** training\_data.csv **Eval data:** val\_data.csv **Code:** See [example](https://github.com/ShuHuang/batterybert) **Infrastructure**: 8x DGX A100 ## Hyperparameters ``` batch_size = 32 n_epochs = 14 base_LM_model = "batteryonlybert-cased" learning_rate = 2e-5 ``` ## Performance ``` "Validation accuracy": 97.33, "Test accuracy": 97.34, ``` ## Usage ### In Transformers ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline model_name = "batterydata/batteryonlybert-cased-abstract" # a) Get predictions nlp = pipeline('text-classification', model=model_name, tokenizer=model_name) input = {'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.'} res = nlp(input) # b) Load model & tokenizer model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
batterydata/batteryscibert-cased-abstract
batterydata
2022-03-05T14:54:32Z
8
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "Text Classification", "en", "dataset:batterydata/paper-abstracts", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: en tags: Text Classification license: apache-2.0 datasets: - batterydata/paper-abstracts metrics: glue --- # BatterySciBERT-cased for Battery Abstract Classification **Language model:** batteryscibert-cased **Language:** English **Downstream-task:** Text Classification **Training data:** training\_data.csv **Eval data:** val\_data.csv **Code:** See [example](https://github.com/ShuHuang/batterybert) **Infrastructure**: 8x DGX A100 ## Hyperparameters ``` batch_size = 32 n_epochs = 11 base_LM_model = "batteryscibert-cased" learning_rate = 2e-5 ``` ## Performance ``` "Validation accuracy": 97.06, "Test accuracy": 97.19, ``` ## Usage ### In Transformers ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline model_name = "batterydata/batteryscibert-cased-abstract" # a) Get predictions nlp = pipeline('text-classification', model=model_name, tokenizer=model_name) input = {'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.'} res = nlp(input) # b) Load model & tokenizer model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
batterydata/bert-base-cased-abstract
batterydata
2022-03-05T14:42:16Z
7
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "Text Classification", "en", "dataset:batterydata/paper-abstracts", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: en tags: Text Classification license: apache-2.0 datasets: - batterydata/paper-abstracts metrics: glue --- # BERT-base-cased for Battery Abstract Classification **Language model:** bert-base-cased **Language:** English **Downstream-task:** Text Classification **Training data:** training\_data.csv **Eval data:** val\_data.csv **Code:** See [example](https://github.com/ShuHuang/batterybert) **Infrastructure**: 8x DGX A100 ## Hyperparameters ``` batch_size = 32 n_epochs = 15 base_LM_model = "bert-base-cased" learning_rate = 2e-5 ``` ## Performance ``` "Validation accuracy": 96.84, "Test accuracy": 96.83, ``` ## Usage ### In Transformers ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline model_name = "batterydata/bert-base-cased-abstract" # a) Get predictions nlp = pipeline('text-classification', model=model_name, tokenizer=model_name) input = {'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.'} res = nlp(input) # b) Load model & tokenizer model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
batterydata/batterybert-cased-squad-v1
batterydata
2022-03-05T13:50:54Z
5,999
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "question answering", "en", "dataset:squad", "dataset:batterydata/battery-device-data-qa", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: en tags: question answering license: apache-2.0 datasets: - squad - batterydata/battery-device-data-qa metrics: squad --- # BatteryBERT-cased for QA **Language model:** batterybert-cased **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD v1 **Eval data:** SQuAD v1 **Code:** See [example](https://github.com/ShuHuang/batterybert) **Infrastructure**: 8x DGX A100 ## Hyperparameters ``` batch_size = 16 n_epochs = 4 base_LM_model = "batterybert-cased" max_seq_len = 386 learning_rate = 2e-5 doc_stride=128 max_query_length=64 ``` ## Performance Evaluated on the SQuAD v1.0 dev set. ``` "exact": 81.54, "f1": 89.16, ``` Evaluated on the battery device dataset. ``` "precision": 70.74, "recall": 84.19, ``` ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "batterydata/batterybert-cased-squad-v1" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'What is the electrolyte?', 'context': 'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
naam/xlm-roberta-base-finetuned-panx-de
naam
2022-03-05T13:48:33Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-05T13:36:41Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8594910162670748 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1348 - F1: 0.8595 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2556 | 1.0 | 525 | 0.1629 | 0.8218 | | 0.1309 | 2.0 | 1050 | 0.1378 | 0.8522 | | 0.0812 | 3.0 | 1575 | 0.1348 | 0.8595 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
nielsr/segformer-b0-finetuned-segments-sidewalk
nielsr
2022-03-05T09:39:11Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-segmentation
2022-03-05T08:17:45Z
--- license: apache-2.0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-sidewalk results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-segments-sidewalk This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set: - Loss: 0.5679 - Miou: 0.2769 - Macc: 0.3331 - Overall Accuracy: 0.8424 - Per Category Iou: [nan, 0.7174911859423314, 0.8790751054409742, 0.6065232798410057, 0.6975274018055722, 0.3486407385349508, nan, 0.40093167116703843, 0.28779837903852556, 0.0, 0.7870339041746186, 0.0, 0.0, 0.0, 0.0, 0.1464360606454247, 0.0, 0.0, 0.6770283275082656, 0.0, 0.338555175257431, 0.14697310016578427, 0.0, nan, 0.0, 0.27163002251763635, 0.0, 0.0, 0.8257437911843676, 0.7169333376341568, 0.9108105550493353, 0.0, 0.0, 0.1016801552778885, 0.0] - Per Category Accuracy: [nan, 0.9199960254104915, 0.9327745517652714, 0.7304629327758765, 0.7378309547498484, 0.45295941407150275, nan, 0.5188608021128075, 0.5327441812670195, 0.0, 0.9353764765979435, 0.0, 0.0, 0.0, 0.0, 0.1588525415198792, 0.0, 0.0, 0.9238854794385364, 0.0, 0.4400394213522207, 0.15130051149615126, 0.0, nan, 0.0, 0.3570096986572905, 0.0, 0.0, 0.9359897980968498, 0.8570458108260572, 0.9549583230619891, 0.0, 0.0, 0.11786971668879294, 0.0] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Miou | Macc | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:----------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 1.357 | 1.0 | 400 | 1.0006 | 0.1632 | 0.2069 | 0.7524 | [nan, 0.5642795884663824, 0.7491853309192827, 0.0, 0.40589649630192104, 0.02723606910696284, nan, 0.0002207740938439576, 0.0, 0.0, 0.6632462867093903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5671699281129761, 0.0, 0.0009207911027492868, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.7507253434892517, 0.6157793573905029, 0.8774768871968204, 0.0, 0.0, 0.0, 0.0] | [nan, 0.6839993330882016, 0.9786792586618772, 0.0, 0.4818162160949784, 0.02785198456498826, nan, 0.00022133459131411787, 0.0, 0.0, 0.9043689536433023, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8606078323791991, 0.0, 0.0009210330367246509, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.895198618615298, 0.8549807032886052, 0.9328734839751688, 0.0, 0.0, 0.0, 0.0] | | 1.6346 | 2.0 | 800 | 0.7856 | 0.1903 | 0.2334 | 0.7917 | [nan, 0.6276046255936906, 0.8379492348238635, 0.0, 0.5220035981992285, 0.19441920935217594, nan, 0.16135703555333, 0.0, 0.0, 0.7357165628674137, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.567598980063164, 0.0, 0.07867871139133086, 0.0, 0.0, nan, 0.0, 0.02123705398363847, 0.0, 0.0, 0.7917172051343153, 0.6589515948064048, 0.8916684207946344, 0.0, 0.0, 0.00013685918191589503, 0.0] | [nan, 0.8610263337355926, 0.9499345560017969, 0.0, 0.5908796687797819, 0.2144081438468206, nan, 0.1813236746419022, 0.0, 0.0, 0.8825551027577866, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9239907140298015, 0.0, 0.08495225520298297, 0.0, 0.0, nan, 0.0, 0.021302829364985724, 0.0, 0.0, 0.9258397010509258, 0.8834861376443207, 0.9489131468773239, 0.0, 0.0, 0.0001372777815910495, 0.0] | | 0.659 | 3.0 | 1200 | 0.6798 | 0.2215 | 0.2687 | 0.8107 | [nan, 0.6728474586764454, 0.8404607924530816, 0.21147709475332813, 0.5407350347311378, 0.23535489130104167, nan, 0.3087159264982809, 0.0060319580742948155, 0.0, 0.7331305064022374, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6378031991744924, 0.0, 0.35289337122777764, 6.24997656258789e-05, 0.0, nan, 0.0, 0.14698390926256938, 0.0, 0.0, 0.8019042204623998, 0.669283249725758, 0.8928145424856038, 0.0, 0.0, 0.03847722460691187, 0.0] | [nan, 0.866012011452706, 0.9627112260298595, 0.21236715482371135, 0.5645869262075475, 0.2750610095322395, nan, 0.3857655597748765, 0.0060319580742948155, 0.0, 0.939196440844118, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8380282443529743, 0.0, 0.5749902063170915, 6.256068386334744e-05, 0.0, nan, 0.0, 0.1605725590139305, 0.0, 0.0, 0.9212803460870584, 0.8870298583701837, 0.959700359744241, 0.0, 0.0, 0.04453994364914478, 0.0] | | 0.5481 | 4.0 | 1600 | 0.5999 | 0.2522 | 0.2998 | 0.8312 | [nan, 0.7078353465279917, 0.8661728761172196, 0.3857324719136883, 0.6338278880825696, 0.3440050078187208, nan, 0.35980405625532347, 0.23875867241702606, 0.0, 0.773703347865372, 0.0, 0.0, 0.0, 0.0, 0.0004931363471679884, 0.0, 0.0, 0.6554146448850521, 0.0, 0.367673493717809, 0.03089804641909161, 0.0, nan, 0.0, 0.21529017459808872, 0.0, 0.0, 0.818951849158376, 0.7007504838794707, 0.9053929635423027, 0.0, 0.0, 0.06626212301200333, 0.0] | [nan, 0.8955207784307155, 0.9536263694097721, 0.39712577675621036, 0.6989299616008556, 0.4248959179453637, nan, 0.42984959564233455, 0.26168627652468784, 0.0, 0.9055166364779607, 0.0, 0.0, 0.0, 0.0, 0.0004932058379466533, 0.0, 0.0, 0.8632164276000204, 0.0, 0.6365580872107307, 0.031401709658368616, 0.0, nan, 0.0, 0.2497286263775161, 0.0, 0.0, 0.9296676429517725, 0.8858954297713482, 0.9555756265860916, 0.0, 0.0, 0.0750792276952902, 0.0] | | 0.7855 | 5.0 | 2000 | 0.5679 | 0.2769 | 0.3331 | 0.8424 | [nan, 0.7174911859423314, 0.8790751054409742, 0.6065232798410057, 0.6975274018055722, 0.3486407385349508, nan, 0.40093167116703843, 0.28779837903852556, 0.0, 0.7870339041746186, 0.0, 0.0, 0.0, 0.0, 0.1464360606454247, 0.0, 0.0, 0.6770283275082656, 0.0, 0.338555175257431, 0.14697310016578427, 0.0, nan, 0.0, 0.27163002251763635, 0.0, 0.0, 0.8257437911843676, 0.7169333376341568, 0.9108105550493353, 0.0, 0.0, 0.1016801552778885, 0.0] | [nan, 0.9199960254104915, 0.9327745517652714, 0.7304629327758765, 0.7378309547498484, 0.45295941407150275, nan, 0.5188608021128075, 0.5327441812670195, 0.0, 0.9353764765979435, 0.0, 0.0, 0.0, 0.0, 0.1588525415198792, 0.0, 0.0, 0.9238854794385364, 0.0, 0.4400394213522207, 0.15130051149615126, 0.0, nan, 0.0, 0.3570096986572905, 0.0, 0.0, 0.9359897980968498, 0.8570458108260572, 0.9549583230619891, 0.0, 0.0, 0.11786971668879294, 0.0] | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
espnet/YushiUeda_swbd_sentiment_asr_train_asr_conformer
espnet
2022-03-04T20:49:03Z
0
1
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:swbd_sentiment", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-04T20:47:02Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - swbd_sentiment license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/YushiUeda_swbd_sentiment_asr_train_asr_conformer` This model was trained by YushiUeda using swbd_sentiment recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout e5c0e0dbdab7e56ea9bf0a852bac10a1d99acf64 pip install -e . cd egs2/swbd_sentiment/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/YushiUeda_swbd_sentiment_asr_train_asr_conformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Thu Mar 3 21:34:18 EST 2022` - python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.9.0+cu102` - Git hash: `3b53aedc654fd30a828689c2139a1e130adac077` - Commit date: `Fri Feb 25 00:13:16 2022 -0500` ## Using Conformer based encoder and Transformer based decoder with spectral augmentation and predicting transcript along with sentiment - ASR config: [conf/tuning/train_asr_conformer.yaml](conf/tuning/train_asr_conformer.yaml) - token_type: word - labels: Positive, Neutral, Negative |dataset|Snt|Intent Classification Macro F1 (%)| Weighted F1 (%)| Micro F1 (%)| |---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave_10best/valid|2415|61.0|65.0|65.6| |decode_asr_asr_model_valid.acc.ave_10best/test|2438|61.4|64.4|64.6| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_raw_en_word ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 42025 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 3 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 40000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_word/train/speech_shape - exp/asr_stats_raw_en_word/train/text_shape.word valid_shape_file: - exp/asr_stats_raw_en_word/valid/speech_shape - exp/asr_stats_raw_en_word/valid/text_shape.word batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train/wav.scp - speech - sound - - dump/raw/train/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - sound - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0025 scheduler: warmuplr scheduler_conf: warmup_steps: 40000 token_list: - <blank> - <unk> - i - and - the - you - that - it - a - Neutral - to - uh - '''s' - of - know - Positive - they - in - we - '''t' - have - but - so - was - like - Negative - yeah - is - just - um - well - do - for - think - don - there - or - 'on' - '''re' - my - what - really - be - with - not - if - are - one - he - '''ve' - because - '''m' - about - all - get - can - had - out - at - them - when - this - as - oh - lot - up - people - some - then - would - go - right - mean - now - time - kind - got - going - good - she - things - more - were - from - something - been - 'no' - see - me - too - an - your - much - little - guess - how - where - our - very - here - their - thing - two - '''ll' - other - did - years - work - even - has - any - way - probably - those - could - say - real - back - '''d' - year - down - home - than - want - didn - into - pretty - okay - who - take - huh - school - said - make - over - kids - never - always - put - by - her - stuff - went - doing - three - these - 'yes' - which - around - only - big - maybe - 'off' - anything - day - t - sure - actually - come - money - him - different - everything - still - used - many - five - will - sort - nice - us - last - his - thought - every - most - getting - first - feel - bit - need - children - same - course - also - new - care - family - hum - long - through - before - use - done - should - house - old - let - does - car - being - problem - doesn - four - seems - though - pay - look - whole - great - husband - haven - try - live - trying - ever - why - read - better - find - far - keep - ago - sometimes - watch - interesting - quite - area - hard - talking - else - another - part - bad - having - twenty - whatever - place - couple - usually - 'true' - high - texas - seen - fact - s - enough - after - own - college - while - country - hundred - somebody - few - either - times - week - away - gonna - type - job - six - dollars - tell - might - remember - again - came - give - started - start - ten - made - play - able - dallas - enjoy - working - once - c - someone - life - least - v - everybody - since - fun - both - talk - wouldn - ones - news - anyway - wasn - person - heard - believe - am - th - buy - may - point - call - night - y - almost - bye - isn - system - wanted - called - took - state - wife - child - half - women - goes - next - yet - especially - love - looking - parents - gone - such - gets - understand - together - movie - until - w - days - end - saying - idea - saw - music - mother - thirty - couldn - makes - stay - change - m - basically - wonderful - problems - guy - worked - spend - help - lived - credit - whether - seem - eight - n - best - world - run - hear - bought - young - each - months - seven - places - supposed - city - matter - coming - exactly - d - small - summer - comes - certain - company - less - thinking - won - during - b - thousand - agree - show - daughter - sounds - myself - funny - water - o - month - dog - fifty - paper - gotten - found - taking - today - certainly - boy - friends - number - mine - program - food - son - p - older - name - air - movies - government - moved - schools - outside - deal - close - tried - paying - eat - drive - hours - nine - rather - cars - crime - important - war - living - between - business - anymore - reason - weeks - public - vote - situation - recently - nothing - easy - sit - pick - taxes - turn - full - percent - making - friend - book - happen - minutes - middle - town - watching - paid - eighty - tax - several - listen - set - talked - north - takes - reading - definitely - law - jury - kinds - married - u - enjoyed - says - without - works - learn - everyone - drug - major - side - cost - room - education - morning - computer - involved - mostly - aren - health - l - anybody - along - amount - man - against - weather - often - under - age - forty - insurance - favorite - hope - card - must - happened - lives - left - drugs - expensive - american - miles - yourself - hour - already - plano - cards - decided - large - difference - ahead - fifteen - camping - told - although - second - r - woman - twelve - knew - guys - cut - neat - fish - mind - wrong - unless - sense - instead - leave - wear - class - hand - top - walk - bring - past - f - running - e - absolutely - weekend - line - books - question - team - wish - exercise - interested - areas - baby - states - liked - somewhere - father - experience - phone - case - men - lots - cat - society - taken - changed - game - worth - seventy - gun - h - wonder - hit - group - service - kept - shows - gosh - early - interest - trouble - control - themselves - ha - finally - using - god - dad - cook - hot - difficult - nursing - front - terms - growing - late - kid - looked - felt - rain - teach - tend - realize - weren - sixty - except - needs - social - budget - figure - recycling - lake - wanna - looks - wh - forth - mom - concerned - south - grew - topic - ways - death - christmas - regular - wait - imagine - television - east - trees - check - fairly - hate - general - catch - dinner - built - ready - fine - sister - story - playing - starting - homes - office - awful - radio - needed - companies - changes - programs - fishing - nineteen - ask - tough - cans - easier - yard - cold - ought - street - later - door - wants - students - national - space - across - brother - free - local - tha - level - happens - sitting - newspaper - move - countries - store - subject - girl - beautiful - turned - soon - income - putting - church - university - dress - information - lately - degree - york - vacation - pollution - totally - winter - america - ah - ours - cats - spent - happy - played - consider - cases - spring - california - longer - teacher - oil - send - lost - sports - garden - teachers - families - particular - buying - amazing - likes - football - united - teaching - hey - benefits - brought - gave - party - worry - throw - testing - given - bunch - near - nobody - community - driving - open - personal - sell - force - chance - wow - test - baseball - within - biggest - quality - building - example - seeing - power - afford - support - caught - inside - plan - seemed - ninety - younger - learned - generation - charge - punishment - rest - dogs - become - clean - short - privacy - g - calls - plus - particularly - decide - terrible - twice - fall - extra - period - choice - hold - ended - hadn - main - guilty - depends - save - excellent - price - strange - feeling - size - trial - military - boys - per - bet - judge - parts - noticed - anywhere - fan - head - center - glad - clothes - rate - stop - eleven - white - stand - suppose - guns - grade - watched - bigger - scary - issue - special - dollar - green - its - jobs - means - black - worse - knows - plastic - low - spending - picked - golf - gas - single - neighborhood - necessarily - alone - cooking - newspapers - pull - fast - completely - road - student - crimes - houses - paint - medical - learning - fair - restaurant - miss - lawn - giving - washington - doctor - word - killed - recycle - light - cash - visit - familiar - grass - itself - season - chicken - rid - president - stayed - normally - whenever - machine - graduate - eighteen - capital - shouldn - virginia - private - field - magazines - kill - market - apartment - anyone - waiting - asked - classes - break - crazy - helps - aware - sunday - hm - speak - term - sound - property - sad - comfortable - waste - channel - evening - cover - heavy - carry - everyday - systems - gives - wa - answer - higher - unfortunately - minute - future - serious - snow - available - smaller - handle - ground - behind - huge - west - plant - allowed - wind - peace - costs - cause - serve - rent - lucky - gee - build - english - telling - lose - individual - gardening - busy - order - raised - basic - basis - rock - training - happening - opinion - heart - follow - mainly - history - walking - ye - average - towards - houston - games - travel - decision - environment - respect - list - hopefully - grow - others - sorry - san - taught - weight - bags - hurt - finding - attention - hasn - computers - raise - aerobics - quick - shot - personally - bedroom - similar - loved - sixties - park - helping - feet - industry - write - generally - weird - record - benefit - pool - mail - pennsylvania - glass - notice - calling - process - land - originally - richardson - cities - afraid - utah - entire - colorado - ball - boat - grandmother - possible - folks - helped - strong - keeping - bill - keeps - thank - camp - third - types - eventually - obviously - yesterday - apparently - instance - pet - central - club - flowers - trash - trip - classical - europe - changing - perhaps - self - color - foot - video - based - station - saturday - french - normal - fire - '''clock' - issues - starts - piece - hobby - quit - prison - parent - oldest - bush - coverage - police - forget - girls - occasionally - bank - shape - beginning - moving - sent - vietnam - nights - current - salary - himself - stories - mountains - aluminum - luck - invasion - tape - florida - bed - laws - research - mess - hoping - players - tired - thirteen - magazine - expect - sleep - words - language - push - position - hobbies - background - plants - inches - easily - stopped - murder - shoot - maryland - hardly - bills - attitude - pro - civil - sometime - human - wanting - goodness - security - doctors - kitchen - somehow - penalty - county - eating - simply - die - bike - reunion - project - typical - j - however - total - mexico - base - economy - restaurants - responsibility - jail - lower - died - tested - safe - voting - elderly - sh - listening - sudden - numbers - career - stick - born - wondering - poor - painting - active - professional - supposedly - li - lady - reasons - cool - sixteen - yep - excuse - horrible - political - red - science - federal - besides - shop - opportunity - ride - planning - degrees - writing - mexican - engineering - surprised - bother - share - graduated - account - financial - hands - activities - seventies - step - thanks - bag - role - england - limit - willing - hospital - view - band - teams - tonight - groups - advantage - heat - department - turns - tree - telephone - became - brand - criminal - blue - dry - warm - weekends - grown - stores - rights - garbage - junior - everywhere - prices - metric - ran - equipment - till - cross - considered - track - moment - figured - americans - met - worst - ridiculous - grocery - yours - neighbor - piano - sold - cowboys - selling - savings - grandchildren - nowadays - add - plays - conversation - lunch - straight - sentence - floor - dead - fourteen - meet - ideas - foods - israel - fix - ourselves - swimming - upset - sign - sewing - wood - recipe - van - upon - standard - box - win - wall - offer - products - otherwise - pounds - stations - ex - staying - drop - body - carolina - sales - meal - ice - basketball - mixed - careful - possibly - sick - farm - retired - compared - western - hearing - finished - separate - mentioned - soviet - truck - river - defense - oklahoma - harder - k - re - stuck - cable - trade - favor - positive - related - smoke - effect - various - bottom - awhile - kindergarten - beat - court - beach - baltimore - choose - allow - brown - hang - known - sorts - bathroom - scared - popular - extremely - politics - hair - policy - wha - saint - covered - ca - sisters - boston - lakes - forever - fight - downtown - visa - sauce - garage - lines - suit - whereas - speech - direction - animals - corps - fit - majority - chinese - dark - painted - milk - concern - dump - nature - safety - shoes - star - questions - switch - clear - trips - management - beyond - depending - sing - iraq - pressure - cute - runs - windows - salad - board - chicago - population - legal - super - '''all' - puts - slow - pets - forward - thousands - style - debt - becoming - mo - pop - violent - italian - earlier - cheap - weapons - coast - austin - traveling - passed - x - speaking - points - prefer - threat - further - master - table - broken - random - row - northern - simple - appreciate - district - train - continue - rangers - pittsburgh - truth - value - quickly - raising - pass - tennis - flower - bass - engine - becomes - variety - jeans - exciting - organization - spread - sat - incredible - somewhat - loan - engineer - doubt - southern - monday - backyard - forced - papers - express - saving - owned - recent - toward - fortunate - liberal - shopping - rough - brothers - worried - meals - scouts - vacations - hunting - lawyers - wisconsin - bucks - act - voice - helpful - wide - retirement - cannot - picture - picking - suspect - spare - held - election - study - report - begin - antonio - drove - opposed - league - ju - se - solution - closer - character - finish - knowing - million - common - services - thinks - player - violence - wrote - highway - reasonable - afternoon - series - developed - effort - christian - fantastic - saved - seventeen - barbecue - sun - conditioning - ohio - babies - arlington - hole - visited - rural - herself - knowledge - kn - plans - instruments - above - border - bible - losing - china - events - leaving - written - taste - friday - schedule - anytime - showed - aspect - range - earth - rice - broke - tent - excited - roles - situations - rooms - spot - laid - duty - bottles - russia - fighting - pound - letter - convenient - thi - storm - original - wild - showing - percentage - required - grandparents - extent - economic - voted - canada - trust - healthy - dealing - face - hired - discuss - larger - pleased - eye - constantly - perfect - stupid - square - mix - meat - semester - necessary - mandatory - burning - fly - mothers - aids - checked - bedrooms - fresh - advice - tomatoes - treat - sale - ford - japanese - burn - correct - limited - sleeping - actual - ends - female - hundreds - feelings - impact - leaves - section - lay - provide - planted - factor - fill - rich - deep - someplace - drives - circumstances - honda - jersey - smoking - feels - fifties - access - doors - pattern - names - payment - facilities - automatic - boxes - hi - pictures - versus - ability - edge - politicians - amazed - boss - union - neighbors - distance - prime - article - mistake - grades - bread - bothers - jeez - rented - fourth - alcohol - gulf - catfish - license - shooting - touch - asking - realized - require - natural - expenses - purchase - energy - talks - colors - smart - considering - lessons - tremendous - participate - ages - missed - quiet - cheaper - cents - payments - iron - frightening - forgot - cheese - daughters - lawyer - creek - dental - seat - humid - belt - michigan - extended - flat - driver - foreign - stays - adults - songs - due - wet - double - stress - desert - drink - material - equal - deterrent - machines - eastern - boring - apart - vegetables - recipes - unusual - responsible - hire - garland - ho - dangerous - loans - colleges - served - prisons - recycled - cousins - gorgeous - member - values - fell - fund - metal - wolves - technology - form - enjoyable - entertainment - successful - juries - brings - likely - convicted - appeal - minimum - opposite - sport - complete - smell - gallon - lord - employees - centers - alive - blow - meant - cutting - relatives - bus - commit - none - jus - holding - sand - swing - courses - ski - breed - heck - casual - blood - admit - join - fi - draw - upper - bell - youngest - traffic - protect - tends - medicine - strongly - committed - opinions - brick - sides - congress - gasoline - regularly - plenty - collect - williams - tickets - perspective - damage - present - bowl - kidding - employee - tests - loves - round - nations - german - roof - august - october - disney - pieces - solid - knock - facts - concept - specific - option - jump - stage - block - items - murders - breaks - dirty - shirts - package - pair - pants - data - opera - standing - roll - count - action - physical - differently - teenagers - checks - replace - independent - neither - tuition - eyes - theater - educational - bins - animal - reports - senior - window - curious - de - argument - june - date - extreme - innocent - december - germany - salt - et - cetera - tomorrow - educated - clubs - bird - sons - journal - visiting - pulled - letting - tech - fixed - el - shorts - assume - message - primarily - signs - cuts - john - jazz - balance - un - walked - shirt - dropped - latin - feed - influence - wondered - adult - aid - inner - elementary - negative - swim - projects - raleigh - practically - grand - nearly - turning - cleaning - fort - recommend - ate - skiing - rules - yellow - cruise - impressed - address - labor - dish - highly - repair - prior - fee - terribly - experiences - lead - accept - mart - immediately - portion - nicer - seafood - fault - disease - truly - wearing - male - dances - closed - product - expected - caused - tapes - relaxing - culture - technical - criminals - sentencing - summertime - indiana - killing - encourage - housing - practice - ups - stitch - compare - sentenced - freedom - belong - purpose - throwing - crafts - pushing - sweet - decent - sew - campus - carpet - channels - repairs - preschool - please - minnesota - activity - naturally - cooked - quarterback - wise - satisfied - cadillac - streets - businesses - honest - automatically - routine - coach - arm - driven - dishes - mornings - contact - mall - deficit - humidity - location - fortunately - atmosphere - corporate - meeting - improvement - engineers - network - dressed - mcdonald - spanish - catholic - organizations - hill - model - fifth - elected - articles - expecting - seriously - volunteer - handy - riding - threw - ooh - trend - ba - arts - thursday - uncle - relationship - members - throughout - buffalo - solve - pain - auto - cholesterol - planned - prepared - presented - staff - choices - march - filled - overall - discipline - justice - weights - mile - unit - bringing - beef - camped - wal - mow - microwave - weapon - inch - rule - traveled - subscribe - proper - di - classic - software - pays - complex - missing - shepherd - pleasure - st - cream - expense - automobile - hers - orleans - king - philosophy - singing - eighties - enjoys - democratic - significant - chore - ev - combination - patterns - disappointed - republican - media - pre - sesame - fixing - seconds - passing - daily - trek - signed - raining - accident - scale - interests - route - ma - whoever - reach - judges - evidence - european - seasons - supporting - dirt - loose - france - cancer - planting - iowa - increase - hospitals - maintain - odd - pregnant - math - press - agency - shrimp - beer - key - puppy - sending - hardest - tr - wi - return - corner - suits - dakota - al - immediate - possibility - hooked - song - stadium - frame - dig - navy - comedy - annual - fear - island - exercising - fancy - fat - enjoying - motivated - design - affect - investment - recall - co - luxury - trim - flexible - international - furniture - potatoes - wou - fellow - breakfast - bath - trucks - uses - onto - beans - apple - alabama - records - musical - tie - setting - offs - michael - bugs - freeze - anyhow - properly - underneath - dining - aside - quarter - kentucky - skills - parole - parks - nation - complain - wine - summers - fans - golden - unanimous - shift - warranty - plastics - rates - rains - charged - lincoln - decisions - checking - gray - laugh - hills - commercial - recognize - quote - receive - recording - illegal - generations - advance - motor - outdoor - lab - honestly - rap - oriented - match - art - fiction - manage - flip - appropriate - strict - mad - mental - hung - adds - mileage - bicycle - thoroughly - elections - deserve - indian - according - latest - bu - ta - vehicle - holidays - july - junk - emergency - convinced - graduating - kick - including - teenage - ceiling - valley - victim - ocean - hell - steel - rainy - noise - marvelous - drunk - studying - mountain - hood - greatest - facility - generate - desk - improve - tells - sex - results - si - manager - goal - teenager - concert - copy - africa - paycheck - woods - lubbock - sentences - prevent - impossible - split - faster - speed - thin - chose - monthly - stands - turkey - repeat - japan - financially - lights - page - pulling - explain - potential - rape - wash - minor - thrown - professor - pan - vegetable - fried - onions - roommate - effects - wire - shame - individuals - sweat - scene - yards - whose - thoughts - draft - useful - welfare - organized - communities - realistic - directly - print - printer - purchased - aunt - prepare - millions - challenge - twins - badly - thick - pure - bar - roads - missouri - tall - library - added - sam - marriage - gardens - lesser - views - understanding - prove - deer - delicious - containers - depend - denver - favorites - tear - site - code - winds - parties - relatively - opened - falling - fascinating - forties - options - sharing - attached - owner - version - modern - standpoint - eaten - fully - neck - trials - knee - uncomfortable - temperature - chemical - processing - fruit - lovely - bothered - pot - causes - rea - diet - theory - conflict - earn - disagree - exposed - administration - breaking - buildings - fence - shocked - retire - wedding - ch - dust - acid - pushed - blame - contract - carried - nurse - overseas - texan - fuel - whe - vehicles - increased - necessity - plate - hitting - reduce - blocks - hide - silly - length - writer - film - development - refrigerator - engines - louis - relate - citizens - dorm - began - hawaii - january - wheel - gourmet - shots - bushes - theirs - outrageous - sea - hook - conscious - videos - mastercard - suburb - chevy - tiny - mowing - bulbs - flag - detroit - brakes - charges - retriever - towns - contribute - arms - slacks - definite - difficulty - produce - cultures - cou - discovered - whatnot - philadelphia - ou - electronic - strictly - tendency - mister - regard - con - approach - friendly - handled - governor - louisiana - urban - develop - pardon - construction - classroom - personality - currently - tour - apply - memory - francisco - affected - complicated - risk - shock - roses - movement - tied - teaches - nuts - halfway - softball - masters - causing - cake - unbelievable - cast - characters - actor - association - wallpaper - habit - blowing - expert - screen - bake - dessert - tents - minneapolis - tin - wars - steps - structure - motivation - buddy - minds - wound - coat - holes - covers - shell - tries - undergraduate - springs - banks - kuwait - kansas - established - dozen - steak - following - massachusetts - jewish - affects - hotel - sight - tight - birthday - statement - weeds - consumer - understood - tastes - cartoons - apartments - cares - settled - september - letters - atlanta - newer - guarantee - citizen - occasion - attorneys - tom - levels - sweaters - tires - direct - wagon - remarkable - result - shower - hello - commercials - cassette - forms - standards - james - native - falls - comment - peers - wore - pleasant - mid - region - essentially - differences - fitness - symphony - finger - ad - sounded - joined - trained - toyota - motors - aspects - candidate - votes - hunt - electronics - charging - registered - ed - electric - bite - gifts - manufacturing - farmers - participating - legislation - los - angeles - ticket - survive - catching - eliminate - ryan - luckily - teeth - ill - hated - offices - file - hassle - universal - entertain - roast - traditional - entertaining - crisis - officer - saudi - participated - profession - gue - soap - johnson - task - dumb - gain - broad - surgery - dressing - condition - tex - grill - camper - note - managed - increasing - rained - parking - wake - mistakes - pitch - cucumbers - prescription - shut - forgotten - conditions - rehabilitation - gold - waited - substitute - lift - crowd - gym - tools - divorced - practical - avoid - spray - seats - severe - litter - trunk - programming - soft - discover - cs - zero - firm - army - post - rarely - virtually - suddenly - relative - technically - frustrating - nursery - checkbook - rolls - colored - division - jack - districts - guitar - leaders - permanent - puerto - su - ultimately - race - biking - statistics - accepted - hussein - steal - shown - menu - pension - youth - pride - create - knit - walks - guide - fry - til - requirements - reporting - networks - chain - soil - jumped - hysterical - target - wasting - horse - buses - dear - butter - thanksgiving - instrument - cared - unemployment - switchboard - vice - morals - focus - beds - wednesday - george - principal - non - scores - grandfather - qualified - burned - courts - cousin - proud - ham - hits - literally - transferred - institution - debts - collection - weed - cigarettes - homework - corruption - clarion - purposes - improved - applied - closet - corn - tomato - lasagna - pickup - collecting - immigration - sooner - resources - largest - hurting - soccer - treated - shore - bored - abuse - mayor - continental - professionals - verdict - carrying - button - drinking - dying - reliable - transportation - subjects - fees - unfortunate - evenings - craft - scout - languages - scratch - sears - thirties - solutions - sherman - stack - funds - skirt - fed - correctly - listened - clothing - serving - supervisor - mark - materials - lewisville - below - chemicals - era - incentive - coffee - offered - interior - determine - sets - alternative - instructor - dance - saddam - discussion - joke - boating - fabulous - ship - funding - groceries - entirely - sitter - communications - democrat - cafeteria - corporation - squash - peppers - nor - pour - flour - waco - controls - argentina - flying - coal - nuclear - february - saturdays - phoenix - electrical - wage - laying - effective - robin - wealthy - hampshire - concerns - hall - figures - rochester - agreement - pages - bitty - cowboy - dealers - features - argue - commitment - hanging - policeman - critical - user - dried - strip - pie - balls - eggs - among - lifting - phase - desire - final - jogging - bless - attack - taxed - acres - april - oven - pack - claim - gorbachev - wherever - troops - illinois - industries - trailer - grab - pitching - nineties - ranch - ti - mortgage - mill - sue - register - attorney - alike - adopted - tournament - involvement - silver - perfectly - slightly - meetings - primary - sixth - employer - survey - indoor - partly - addition - nervous - georgia - recreation - internal - rise - schooling - previous - mood - stolen - birds - director - named - mustang - mystery - upstairs - goods - reunions - perform - reality - hurry - scattered - environmental - limits - cleaned - tons - concrete - belts - cabin - rolling - review - invaded - invade - obvious - requires - typically - religious - religion - opportunities - intelligent - peter - album - drawing - trumpet - stock - household - customer - kay - cotton - tennessee - specifically - lowest - moon - reputation - honor - secretary - rico - assumed - realizing - attitudes - rat - vegetarian - occurred - practicing - promote - adding - designed - delivered - nah - category - disk - exact - pilot - costing - brake - mercedes - pr - abortion - texans - moral - capable - applications - beneficial - flavor - drain - reporter - clock - aggravating - politically - governments - clearly - designing - burden - laughed - topics - chunk - spots - streams - efficient - slowly - arkansas - discussed - conservative - flute - choir - sugar - answering - lists - babysitter - impression - lets - david - forces - thumb - cop - creative - dip - switched - pine - content - aerobic - conversations - touched - candidates - legitimate - assistant - annoying - finance - vietnamese - husbands - storms - pump - lawns - patio - roots - russian - plot - mouth - amounts - suffering - headlines - hunter - acre - ties - measure - la - trout - guidelines - bonus - emotional - cow - unique - providing - encouraged - positions - barely - criteria - olds - tradition - scares - workers - iran - toys - tornado - moves - ton - recyclable - crowded - ladies - melt - crack - finances - score - crawfish - transmission - purple - mavericks - eve - babysitting - committing - maintenance - exposure - cassettes - socially - reagan - soup - hiking - athlete - cheesecake - grandson - skunk - addison - skied - realistically - profit - emissions - skirts - heels - awards - silence - lambs - whatsoever - lotus - offering - unquote - forest - phones - miniature - medium - grandma - goo - finishing - judicial - penalties - ki - hose - hungry - success - monitor - application - pink - depressing - supper - bureaucracy - status - territory - mississippi - exercises - preference - peo - packages - broadcast - doctorate - scholarship - grows - lean - anxious - core - voluntary - minority - couples - ears - crochet - selected - voters - democrats - authority - airport - horror - fox - sub - professors - legs - stir - celery - eats - chocolate - cup - asleep - studies - afterwards - slip - lap - connection - individually - dependent - foundation - worthwhile - fields - freedoms - giants - stars - kittens - vet - balanced - homeless - birth - mu - campaign - empty - scenes - heads - kicked - messed - arabia - greatly - bob - talent - nurses - strike - reached - dedicated - suggested - guard - basement - laughing - communication - ghost - abused - token - plane - beating - former - films - fought - failed - lesson - lo - walls - sink - girlfriend - accused - hurts - loud - gang - consistent - stereo - fa - struggling - interview - employment - borrowed - spoiled - tub - tea - mex - lemon - bin - evidently - grant - tremendously - cartons - opening - mi - skin - seed - acceptable - filter - golly - sits - coke - followed - basics - psychology - operate - owns - freezing - nissan - te - accidents - settle - leader - poverty - dr - masking - fiancee - jugs - landfill - heavily - lie - trends - interstate - competitive - arguments - weigh - competition - surprising - temporary - inclined - overnight - priority - darn - honey - roy - accurate - rocks - babysit - priced - twin - le - ban - athletes - lack - pond - muscles - connecticut - anyways - pacific - owners - freon - responsibilities - toxic - permit - closely - pitched - dresses - scenery - kevin - costner - greater - enemy - granted - welcome - define - advertising - salesman - reverse - ideal - locked - directions - object - figuring - frequently - boot - therefore - jails - murdered - purdue - received - led - picks - include - democracy - studied - fond - climate - alaska - sake - avid - healthier - fired - connected - stealing - chances - humane - supported - enjoyment - penny - turtles - encouraging - ea - marketing - garlic - broccoli - potato - suburbs - formal - rush - concentrate - woodworking - leaf - cent - automobiles - ozone - devices - source - comedies - landing - semi - agent - string - precious - ugly - phenomenal - hilarious - winning - doe - mobile - farther - chili - landscape - path - someday - complaining - sky - load - baked - stove - bend - en - command - decides - attacks - wished - ac - yearly - weekly - indeed - brief - mike - dealer - emergencies - event - charlotte - slapstick - purely - included - unfair - meaning - injuries - vermont - cornstarch - egg - worrying - wrap - buff - advertisements - plain - chores - mention - allows - novels - bases - billion - protected - workout - cancel - daddy - outdoors - novel - bruce - awfully - constant - spends - accent - deductions - dealt - informed - tournaments - snake - penn - sox - tho - root - rip - combat - polls - sundays - blank - frozen - assistance - ads - hiring - drivers - recession - convert - alternate - dryer - lightning - gr - chair - emotionally - angry - mature - treatment - lousy - seventh - ninth - deck - printed - answers - jumping - mentality - popcorn - shade - oaks - reasonably - budgeting - controlled - british - unreal - mini - performance - tip - ge - handgun - toy - skip - armed - fleas - redo - deposit - goldfish - childhood - removed - surprises - dodge - consulting - sacrifice - placed - sailing - classics - bottle - secretaries - diesel - liter - chosen - boats - returned - item - november - adoption - fewer - pizza - feature - nebraska - cafe - alzheimer - agreed - choosing - council - bermuda - suspense - satisfaction - winters - headed - murphy - customers - habits - norm - loss - bec - crawl - exist - attractive - wor - leg - selection - prob - sources - audience - styles - davis - borrow - goals - determined - accounts - pat - vs - whi - advantages - diapers - pin - models - queen - sticks - mesquite - canal - incredibly - feeding - importance - salvador - fathers - regardless - translation - frustrated - bond - structured - counting - factors - economical - involves - radical - depressed - universities - shall - tank - jesus - counselor - proposal - allowing - pocket - airplane - gangs - saints - consideration - dolls - horses - spouse - midwest - fashioned - screw - curriculum - oakland - candy - blanket - backpack - industrial - smog - canyon - elect - backed - bear - comfort - economically - warmer - sunny - exhausted - afternoons - ranger - worries - orange - physically - experiment - famous - copies - cardboard - pa - demand - polluted - tail - compatible - wordperfect - drag - float - carter - presidential - dug - israelis - relations - arab - rings - estate - salaries - recognition - headline - nowhere - ratings - asia - ei - lifestyle - tenth - preparing - cookies - fifteenth - bait - experienced - defendant - surprise - cocaine - reminds - liquid - destroy - century - admire - rare - tuned - schwartzkopf - reduced - cruel - cheers - picnic - accounting - pace - jane - tune - knees - holy - owe - pepper - worms - bricks - mound - additional - flow - tended - refuse - landfills - stance - cry - dumping - memories - anyplace - geared - arrangements - depth - tuesday - raw - neighborhoods - policemen - net - located - trail - edition - purchases - injury - beliefs - statements - sin - cultural - shorter - guilt - 'false' - economics - enormous - lifetime - advanced - adopt - mechanical - liters - dream - bachelor - nasty - scare - laundry - strikes - quilt - chlorine - shed - whom - ds - convince - courtroom - volleyball - domestic - stomach - concerts - stepfather - typewriter - clouds - rating - gifted - generals - clip - screwed - australia - maine - quarters - chrysler - oldsmobile - pistol - membership - seldom - supply - tornadoes - hu - oth - porch - persian - lakers - tarpley - seattle - thrilled - boards - brian - roughly - paints - attic - ceilings - baths - pig - killer - pros - paris - brooks - dealership - developing - islands - kennedy - ending - ratio - created - separated - lasts - wives - jean - spaghetti - village - biased - operating - enid - crappie - employers - conference - tuna - tole - pollutants - jones - handling - emission - vary - initially - finds - obligation - select - carefully - barrier - strangest - spaniel - blues - comparison - attend - focused - ver - blacks - jurors - floors - spell - wears - heel - wooden - assistants - accustomed - mild - bands - bang - alrighty - campbell - tours - panama - believes - corrupt - cocoa - interestingly - makeup - communism - etcetera - historical - heating - hispanic - bilingual - ultimate - bicycling - elsewhere - scientific - combine - ar - consequences - gal - cure - grader - corporations - stitching - grief - leading - graphics - regards - rank - personalities - mission - whiz - voter - controlling - believed - minded - kyle - author - certified - shelter - historically - protecting - fits - carrots - knitting - professionally - specialty - jars - needlework - robert - regarding - billions - rental - nolan - ruined - searching - taco - mama - relationships - exchange - highways - handicapped - scouting - discouraging - dropping - electricity - stacks - catalytic - muffler - pipe - error - compete - cajun - haul - discussing - kurds - anti - orchestra - needle - ireland - investments - dramatically - drawback - raises - growth - definition - guatemala - receiving - reported - aikman - shoulder - banking - highest - jimmy - jim - cardinals - jamaica - magic - convictions - usage - hamburgers - sporting - muscle - sophisticated - element - occur - designated - depression - covering - tooth - filling - sharp - strawberry - relax - advise - enter - throat - instances - allowance - stronger - debate - literature - shelves - remove - advertised - progress - smith - richard - raped - offense - detail - christians - tore - accomplish - released - loaning - bright - intense - dies - peas - steaks - spicy - conditioner - convenience - drought - cups - nee - russians - yeltsin - thirds - acting - northwest - freeway - curbside - corpus - publicized - mets - memorial - onion - garages - employed - lazy - wrestling - crab - loaded - stationary - coupons - ripped - balances - convict - loving - represent - judgment - pork - wasted - selecting - recover - divide - civic - builds - quicker - translate - churches - slice - discount - swear - nap - centered - vitamins - planes - contractor - drastically - elaborate - continued - decline - uncles - utilities - camera - musicians - musician - condominium - augustine - tolerant - southwest - counselors - mirrors - communicate - worker - medication - powerful - manure - replaced - redone - shotgun - memphis - turtle - supreme - owning - cycle - jay - airline - sir - method - mayonnaise - execution - plea - mower - buttons - campaigns - log - quarterbacks - hamburger - arizona - ignore - bred - indianapolis - envelope - conversion - hail - flooding - spanked - fluid - bay - leather - italy - locations - blew - extensive - traded - transition - kilometers - robbing - kills - cadillacs - randomly - institute - triangle - mercury - volvo - dan - leads - pe - rome - attraction - aunts - latex - texoma - rabbit - audi - methodist - basements - tee - clarinet - walker - massive - stroke - leak - sites - deals - lined - embarrassed - slab - officially - behavior - examples - witness - wishes - unlisted - terminal - modem - poodle - weighs - paul - subscription - chapter - likewise - documents - shoe - miserable - jacket - lax - varies - peach - blows - disco - suicide - bo - downhill - profitable - twenties - official - pressures - image - monies - absentee - senate - ethnic - involve - proven - offenders - afghans - borders - peaceful - ab - blown - lock - adequate - scholarships - offers - bat - injection - useless - revolution - mormon - enforce - cosby - preapproved - fortune - messing - promised - sum - frankly - damn - gravy - boil - remembered - consuming - metropolitan - gift - seeds - factories - layer - costly - usual - cooler - daytime - appearance - sufficient - balcony - chasing - chest - las - plumbing - farming - becau - cleaner - packed - cried - lover - indians - racial - occasional - rivers - pollute - locally - contribution - presentations - laser - represented - guests - apples - hank - closest - oak - missionaries - rob - mailing - ring - bias - newsweek - nicely - tables - zone - faith - cheapest - excuses - fail - administrator - baylor - sued - emotions - appeared - notes - tying - nail - shake - comp - entry - peer - sore - sticky - pudding - knowledgeable - haze - mass - stressed - academy - considerably - rowlett - shortly - nose - ordered - crying - handed - wages - input - praying - warfare - accomplished - woke - regulation - equivalent - bankrupt - jog - ell - ri - appeals - extraordinary - metroplex - absolute - conclusion - accountable - glory - pray - prisoners - bomb - destroyed - testament - pu - suggest - polish - principle - gardener - beets - behave - periods - shrubs - sprinkler - fajitas - describe - release - motorcycle - bound - styrofoam - valuable - tolerate - attempt - jordan - exists - screaming - stump - breathing - selfish - dick - blonde - maximum - max - secret - holds - landscaping - reads - prevalent - galveston - weirdest - joy - nationwide - soda - coin - dukakis - steam - embarrassing - plates - incorporate - deductible - machinery - categories - funded - chairs - recommended - handicap - bowling - meantime - accord - tyler - mosquitoes - booklet - coaches - syria - dinners - holiday - baltic - priorities - recognized - wipe - longest - suburban - delayed - backgrounds - varied - eighth - den - coats - theme - nicest - penney - adjust - hou - toilet - bullet - rapidly - capabilities - hilly - container - layoff - watches - jewelry - maker - infant - resent - blade - watering - wildlife - decorating - fabric - leadership - privilege - exotic - loop - seasoning - chopped - retiring - backseat - par - leukemia - ammunition - barrel - pontiac - mazda - expressway - administer - unions - function - stopping - organize - parenting - schedules - slept - wheels - resource - competing - sees - careers - pits - carpeting - legislature - functional - divorce - bridge - transfer - needlepoint - cookbook - breast - published - portland - throws - counts - larry - louisville - com - glued - tube - slide - protective - felony - dursban - renting - rebuild - london - shingles - lea - stink - puppies - schnauzer - steering - plugs - mechanic - worn - inflation - diving - stretch - purse - introduced - stripped - occupied - siamese - controversy - buick - religiously - allergic - edges - sail - nancy - biographies - nonfiction - thunderstorms - intend - educate - nerve - recordings - concentration - steve - academic - freshman - sophomore - neutered - ponds - disgusting - narrow - comparing - associate - adjusted - cottage - foster - rake - outstanding - appreciated - malpractice - thankful - personnel - selective - administrative - comparable - pier - contributing - cart - explore - commits - affair - cleveland - glasses - downstairs - details - backpacking - blackberries - alternator - antilock - peeves - chris - billy - henry - smooth - polluting - sweats - fever - sweater - wyoming - filmed - guts - respond - theories - database - culturally - threatened - tears - messages - ear - bark - grandpa - versions - lee - wave - analysis - gear - comments - colorful - photography - victims - resolution - stiff - brazil - minister - interpret - hero - lebanon - declare - heritage - escape - columbia - prescriptions - assumption - berkeley - combined - traditionally - relaxation - entering - regulate - consciousness - react - sexual - proved - booze - cloth - herald - instructors - vested - consultant - taxpayer - lethal - restricted - pub - directed - frequent - tempted - hat - treadmill - abilene - hates - skinny - turnout - bouncing - wayne - beforehand - deserves - ninja - expand - probation - eliminated - yogurt - powder - boyfriend - blankets - alarm - vacuum - chop - strips - ruin - knots - bits - rogers - guessing - addicted - pitcher - fingers - rascal - whip - ag - vegas - response - advocate - donate - proposed - emphasis - transit - carpool - map - sheets - punch - calories - strenuous - laboratory - resolve - serves - drum - compact - tigon - initial - moms - identify - respected - vision - visits - eagle - summary - illustrated - dial - extraordinarily - intelligence - stages - troy - injured - increases - joints - dayton - mary - deduct - administrators - pressing - contest - arguing - marked - seek - gross - roberts - mentally - session - failing - occasions - videotape - clever - jerry - mutant - warning - intellectual - approve - declared - hallway - edging - pressed - strawberries - nieces - sour - homemade - trick - mixture - solar - inspection - global - winner - drawn - trace - sympathetic - managing - anchors - sulphur - chuck - overcrowded - stole - dean - steven - bi - thursdays - appear - collapse - dome - flex - stressful - ok - paroled - apt - patient - injustice - farmer - socialized - snap - clay - wintertime - beaches - touching - curb - clippings - flowerbeds - toes - buffer - hardware - republic - battle - heading - units - shadow - yankees - rounded - immigrant - diseases - caesar - saves - nephews - slowed - grounds - snakes - abilities - missiles - nova - pen - digging - drew - pools - strung - port - sticking - orioles - hopes - ov - fertilizer - railroad - rub - robberies - theft - tourist - sta - stood - eligible - freshwater - saltwater - shark - fool - commute - deciding - fam - terrific - catalogs - froze - ethic - controversial - crossed - georgetown - soy - hoi - pasta - dreams - painful - filthy - innocence - leaning - cleared - feasible - perception - lottery - parochial - announced - ll - gallons - kindercare - behavioral - classrooms - merchandise - washer - refrigerators - tinker - supplies - stimulation - alert - furthest - cease - reward - biology - starter - prairie - drill - johnny - experiments - exercised - paneling - tougher - strain - noisy - instill - housework - gap - auditor - dot - maternity - butler - amarillo - mulch - actions - lawsuits - senators - anniversary - bonding - leisure - fertilize - dragging - decorated - statewide - format - skeptical - pad - mode - justify - budgets - seniors - chief - efforts - hispanics - drastic - frost - layoffs - temperatures - airlines - hoses - safer - nails - salads - clients - vans - surely - pulls - operation - sells - bikes - unable - permanently - slight - rifle - impulse - manual - handguns - gauge - someth - youngsters - karate - hotels - demanding - wool - warnings - sanctions - attract - mysteries - tenths - pots - neglected - sliced - leagues - bulls - celtics - struggle - qualify - bars - lucked - cliff - cabins - relaxed - gates - oregon - loads - crystal - fumes - previews - floating - reviews - peaks - poorer - matters - continues - costa - geographic - earthquake - intrigued - ain - albums - singapore - proof - bulb - spayed - fr - skating - robbery - sector - horn - drafting - premeditated - frustration - radiator - boundaries - bureau - belonged - nephew - officers - serger - seam - choral - dating - genuine - requirement - gradually - asians - establish - effectively - reel - ra - steady - produces - switzerland - calm - anthony - suzuki - plymouth - sized - thread - centimeters - recorder - signal - brands - resolved - converted - dumped - spur - trap - yell - smarter - humanities - amherst - sheriff - safely - completed - equally - labs - foam - sociology - entertained - lobster - title - recommendation - residential - vicious - lease - outer - honesty - switching - freezer - tollway - heavier - bahamas - sperry - rollers - mowed - cougar - chi - crooks - lips - remodeled - cocker - eigh - syndrome - overweight - titles - lettuce - gather - span - greenville - drip - senator - dam - zip - lexus - peninsula - counseling - grapevine - parental - branch - travels - atlantic - screening - thr - veterans - substance - golfers - golfer - manually - carbon - disposition - harrison - putt - disability - marry - infants - engaged - braves - mums - provo - boots - commercialized - replacing - moisture - assign - router - saws - translators - alleviate - acquainted - caring - incinerator - receipt - scrub - setup - hazardous - wardrobe - jackets - blouses - suspenseful - graphic - gary - monitoring - hacker - india - desirable - invite - reaction - fantasy - shocking - recorded - addresses - rig - instructions - faced - advances - paperwork - tongue - cha - accommodate - motion - performed - composer - horrendous - beatles - crop - applying - budgeted - coda - seminars - challenging - righty - cave - dragged - conscientious - lenient - warehouse - managers - windy - allergies - flu - inordinately - cinderella - shoulders - progressive - cam - colonial - nicaragua - exception - translations - scream - independence - cope - economies - tropical - consequently - difficulties - plead - disturbed - correlation - movements - athletic - stoned - invested - coincidence - analyze - chip - miracle - fif - kee - inmates - external - civilian - trapped - ghetto - amenities - clutch - disposable - makers - pursue - organ - blast - pluses - racquetball - lobbyists - republicans - outskirts - carpenter - buck - predict - backwards - wok - sweets - ugh - tablespoon - singer - shops - singers - stockings - mirror - crocheting - zucchini - voices - pockets - exhaust - oxides - victimized - cynical - colder - castle - listed - deliberately - spoken - adventure - repeats - imagination - viewing - bench - catcher - bull - corners - dustin - hoffman - kmart - concerning - bulk - accepting - eerie - na - properties - lying - sturdy - logic - dated - slick - separating - talented - raiders - device - macintosh - statistical - sausage - italians - canoe - thrill - honeymoon - arabs - defending - stability - pops - musicals - sends - asks - ringing - versa - opens - offhand - dana - envision - philosophical - charity - volunteering - commentaries - informal - commentary - viewpoint - independently - sections - nope - firmly - forcing - flags - gathered - gett - neil - jagged - awakening - julia - beside - initiated - pole - kidnapping - witnesses - handles - panel - refined - portions - moments - accessible - hollywood - norman - assets - tire - pursued - factory - au - romance - fuels - presentation - closets - hips - rated - publish - protestant - females - crowds - poorly - identified - buys - stuffed - chamber - brass - arrest - productive - ticks - earned - prisoner - reimbursement - spiritual - z - pronounce - riskier - protection - consistently - endless - charles - rebellion - pacifist - curse - unto - spirit - barbara - bombs - tearing - struck - heaven - theaters - northeast - licensed - reducing - peoples - lithuania - damaged - bacon - worm - bug - sprays - bloom - rye - leasing - nightmare - beautifully - washing - nurseries - neglect - mixes - frying - guacamole - disc - populated - cooperation - bundle - nickel - rely - insulation - powers - soldiers - leery - iraqi - germans - safest - appears - whoa - republics - participation - reference - disgusted - hauling - permitted - orientals - excluded - stone - sack - crush - fills - crap - fisher - leap - interact - publicity - brooklyn - idiot - easter - vines - extensively - fou - extras - shootings - knife - outcome - pensacola - fished - interviews - disappointing - overworked - speedy - apathy - juror - ann - appointed - spite - ballot - counter - appetite - technician - complaints - begins - reaching - referred - influences - swayed - award - slips - stranded - bankruptcy - users - socialize - boom - secondary - captured - backward - intellectually - bean - measured - remind - bolt - swung - dryers - extension - hooks - trinity - lasting - hatred - snack - altogether - heal - restore - restored - deeper - strength - link - graders - noticeable - lowering - preferred - remarkably - baroque - barry - townhouse - fertilizing - decade - slower - pl - hop - creates - alternatives - gains - operated - forgetting - detector - deliberate - cycling - legally - bridges - prize - adolescents - gamut - slant - fascinated - baskets - glue - collector - accountant - rides - def - remote - professions - suggesting - crafty - remembers - bears - identical - burns - basket - believer - document - korea - lasted - meatballs - waist - rear - stretching - fold - kroger - linoleum - angle - wo - diverse - buyer - bullets - banning - bargain - breeding - humor - evil - q - illness - peop - oldsmobiles - fiance - bodied - educating - showers - mud - connect - bothering - rebuilding - kuwaiti - possibilities - overcast - cloudy - hurricanes - forecast - ru - therapist - scott - rugs - angel - wheat - editor - caretaker - liking - kiss - inevitably - chat - unhappy - comfortably - litt - variation - protest - fences - samples - messy - affectionate - disabled - barking - production - kelly - corvette - fanatic - towel - firing - coaching - presents - burglar - overcrowding - lane - imprisonment - arrested - asian - wrecked - beauty - olympics - conviction - playground - garth - rs - jam - literary - cre - execute - cartoon - nearby - fundamental - ribbon - bobby - montessori - sofa - fetched - rolled - sewed - starters - crocheted - liberties - nintendo - majoring - associated - threatening - freezes - traction - perspectives - southeast - carp - advertise - pint - merit - durham - meryl - snowed - advisors - terrorism - sectors - joint - terrain - citizenship - melted - ounces - ounce - keys - races - smokers - sensible - bradshaw - hip - af - richmond - sen - readily - consistency - canned - enforcement - contracts - cons - differ - suffer - tool - specialist - flies - confidence - esteem - ironing - inexpensive - slots - buffet - cuisine - congressman - persuaded - minorities - stranger - brush - coastline - blind - cape - dow - partially - calcium - vast - abroad - museum - physician - physicians - redid - erie - cooperative - survival - har - exac - intentionally - affecting - urine - grandkids - agricultural - beam - display - constitution - capitol - ordinary - babysat - aggressive - journalism - grad - tia - olive - collin - casserole - cakes - operas - accents - almo - oprah - tiles - tile - trillions - struggled - tips - tulsa - museums - sailboat - perch - styling - seville - rotten - ken - dentist - maverick - medicare - douglas - leased - insane - madison - dock - subdivision - pouring - wooded - departments - airplanes - pilots - premium - ol - liberty - malls - fossil - produced - bumper - purchasing - gentleman - tribe - wordstar - rinse - santa - broth - thomas - addressed - unconsciously - enchiladas - slickers - rib - lawry - housekeeping - opener - doll - sierra - nuskin - legend - ruben - batteries - drywall - disturbing - relief - devastating - confined - strides - incineration - drums - cement - leaked - presently - semiconductor - firms - foremost - hoods - sample - client - update - predominantly - gory - dancing - inherent - harmed - sneak - invisible - obligated - invariably - supervisors - dentists - chew - randy - understandable - springer - artist - stardom - taylor - synthesis - adapt - pla - labeled - label - attended - manuals - stephen - stimulating - improvements - veterinarian - serial - wrongly - preschoolers - conditioned - detailed - unload - highs - collar - identification - stones - zoo - owens - sandinistas - greedy - kings - roosevelt - bananas - tempting - lessened - performances - greek - plots - sean - statehood - quo - assuming - significantly - woul - ve - occurring - stringent - troubled - resistance - regional - disastrous - practices - alternates - approved - believing - joe - iraqis - habitual - bone - dope - threaten - inventory - bibs - tasted - afghan - quilts - riot - earning - backup - christ - begun - guaranteed - beats - monetary - ne - involving - punishable - instantly - hog - logistics - joining - tutor - doggone - hats - remodeling - allen - cabinets - motivate - inspired - computerized - pers - extremes - willingness - excitement - jacobs - architect - lump - shared - evaluate - exclusive - expanded - tablespoons - ginger - peanuts - sang - choirs - finals - aggravated - okra - ruled - landmark - restrictions - smack - investing - drier - hotter - orlando - adventures - scrap - battery - timing - boeing - alcoholic - sullivan - continuing - ukraine - adjustments - astros - claws - declawed - rushed - stray - void - chase - messes - procedures - underwear - skill - politician - mitch - caddo - prizes - lids - files - tra - questioned - wolf - thunder - howl - buffaloes - honduras - wealth - contributes - wider - soak - installed - converter - authorities - visible - ash - suspected - agencies - mouse - printout - producing - unix - blueberry - hike - overly - baker - assault - restraint - enj - danny - couch - arnold - ridge - gene - clo - unemployed - ahold - dislike - equality - mistaken - aged - quoted - harsh - realizes - upstate - expend - brinkley - complaint - slanted - restricting - halls - wheelchair - supervised - terry - monstrous - drawbacks - fights - learns - fallen - challenged - rewarding - mailed - snowing - ni - wreck - amongst - misery - schwarzenegger - goofy - entered - rationale - prosecutor - excused - bare - lawsuit - audio - teti - eh - lacking - memorable - wisdom - succeed - jokes - frenchman - liability - workmen - executives - marijuana - surface - lengths - fondue - cheddar - watermelon - saucepan - lukewarm - cookbooks - collected - saran - hollow - warming - spa - bathing - incur - institutions - freshmen - sinking - description - graduates - nelson - commerce - recruiting - homemaker - cri - ankle - install - sympathy - burnt - episode - awesome - scandal - grasp - multiple - fonda - tolerance - enforced - lighter - enemies - gentle - avoided - approaches - sheep - grace - reserve - claimed - abusing - borrowing - servants - stops - moist - ass - kin - trimmed - varieties - experimenting - mashed - foo - barbecued - barbecues - marinate - manages - sacks - giant - pact - confused - stepping - seams - michener - blooming - stewart - tim - rebel - grammar - yankee - restriction - biblical - paychecks - request - stable - diego - lush - ga - limb - flooded - strokes - animated - muddy - sharks - quantum - partners - deedee - formula - subtle - solved - tow - bounds - rooting - championship - toronto - ontario - cabbage - cantaloupe - siding - twist - sirens - reminded - affluent - bee - captain - tackle - advancement - isolated - destroying - foggy - regulating - cigarette - linguistics - canadian - payless - cashways - bucket - cereal - maxed - rally - richards - convention - everytime - mar - dairy - doubts - pursuing - flight - crew - oops - misses - amazingly - punished - suited - flexibility - rehabilitate - deduction - debit - executive - requested - implemented - disadvantage - shoddy - naive - moscow - marcos - shoots - blessed - cad - noon - formed - bargains - circuit - dissertation - serviceable - roughing - cots - condo - poles - locks - ob - hearts - passover - seder - catholics - attacking - syrian - bagels - affairs - iranian - ideals - dividend - voluntarily - devote - performing - pipes - arteriosclerosis - nonexistent - torn - outfits - prejudice - invited - remembering - remedial - certification - textured - insides - tone - tornados - exxon - brain - photographer - audit - mainframe - jet - upgraded - baghdad - scheduled - receptacles - continual - potentially - prestige - perceived - trivial - broader - sided - claims - adjustment - tread - richland - discouraged - stepdaughter - sacrificed - possession - castroville - timer - shady - lehrer - editorial - embroidery - envelopes - continuous - typing - claude - aging - attending - trainable - watered - composition - dis - disabilities - intentions - inter - gay - facing - interviewed - seasonal - patch - peculiar - rec - brilliant - invest - payday - buddies - wiped - indoors - fiddle - inspect - peel - hors - impress - ridden - objects - surprisingly - servicemen - teeny - equitable - tier - stair - targets - knocked - accuracy - impressive - cycles - writers - rehabilitated - fleet - drops - quarts - peeve - sa - pregnancy - meets - campsite - specialized - indicated - beings - obnoxious - stereotype - communist - sway - soviets - monetarily - circle - blah - carnival - outs - indication - gigantic - ownership - feeds - latch - pansies - cau - screened - references - tabs - steamed - blueberries - desserts - sandwich - slices - mba - describing - duke - mechanics - secorski - financing - punishments - whack - addiction - '7' - specials - climbing - shells - spectrum - ins - ants - painter - painters - noises - rats - sequel - rocky - stallone - pai - exterior - afterward - greasy - builders - intervention - solving - appliances - fu - hesitant - incorrectly - lizards - bats - evils - refugees - permission - dive - instituted - parked - landry - scope - eagles - cows - orders - tokyo - subway - remorse - heinous - manufacturer - occupation - neal - brushes - manhattan - stud - leftover - coll - rifles - shelf - robbed - temporarily - inconvenient - limitations - spelling - precise - commodore - specifications - belief - aggravates - nev - bites - knox - overheard - rows - frederick - pointed - stu - rusty - reelected - loses - pretend - symptoms - biography - destroys - delicate - speakers - happier - grub - raiser - petroleum - menial - jeff - blink - recommending - diner - streep - copper - explosives - disappear - cosmopolitan - swimmer - vogue - felon - converting - bolts - ross - ro - reject - outfit - automotive - mexicans - envious - risking - shifts - cylinder - gaining - tragic - expressing - expression - chilly - yorker - dall - deny - bonuses - lucrative - congressmen - portray - needing - scallops - susan - protein - gained - baking - academically - kenyon - admissions - sciences - provides - preparation - logical - cage - owed - devastated - despite - pillsbury - surrounding - prosecution - liable - limitation - writes - follows - nash - paso - juice - reusable - procedure - vegetation - bach - delivery - rapes - thou - contemporary - brookhaven - heater - curiosity - fuse - assembly - limestone - danger - ferry - ducks - pilgrimage - annoyance - seniority - ben - partner - executed - healing - darker - diff - routes - touring - footage - abandoned - retain - warped - leslie - mockingbird - tricky - steep - overwhelming - killers - calendar - faculty - bingo - fog - rationing - visas - awareness - howard - repairing - bathrooms - upside - symbol - conception - veteran - daylight - babysitters - valentine - ideally - driveway - digest - danielle - severely - confident - idaho - searched - appointment - givers - pappasito - dillard - expertise - tasty - publisher - reruns - soaps - repaired - theatre - cedar - mainstream - refer - tina - secure - rockets - loo - contacts - carpooling - appalachian - adventurous - hostages - fatal - patients - '2' - sunfish - donated - shepherds - joey - treats - researcher - unnecessary - stucco - payroll - scan - conductors - versed - midway - beard - princess - naked - custom - mount - marshmallows - mommy - committee - allegedly - tap - woodstock - routinely - rod - tuesdays - patterned - czar - donald - booked - intent - granddaughter - chips - sedan - discounts - inn - dent - crib - deliver - schutzhund - alsatian - refused - nola - grapes - marinated - maxima - oahu - conferences - newly - kauai - maui - hunters - concentrated - bakery - hay - sleeve - niro - builder - curtain - spain - crust - intriguing - reimbursed - licenses - physics - reaches - donahue - cruises - nassau - olives - lodge - grandsons - acoustics - waves - uniforms - fancier - mesa - dalmatians - soapdish - mushroom - milwaukee - violin - harpsichord - rumor - disneyworld - thinner - carolyn - risque - saxophone - jodie - hopkins - credibility - barbies - motel - wendy - broncos - chico - troop - warranties - picky - aberdeen - solicitors - autumn - nevada - marlin - operations - exhibit - shuttle - wycliffe - sheltie - particulates - colombo - duties - burner - hometown - permits - contributions - astronomical - attire - blazer - critics - omaha - disturbs - politeness - polite - presumably - conscience - canceled - respects - norms - rang - solicitations - gossipy - obtained - frequency - turf - soliciting - medications - chow - smiling - leash - acts - gin - dispute - reactions - intimidated - alm - inundated - switches - influenced - rhythm - sim - mus - jimi - hendrix - pitiful - promise - simon - qualities - achieve - unexpected - alw - loaned - quota - holler - leeway - pains - wing - coordinated - spelled - skid - counsel - violation - actu - modeling - lyrics - oldies - phil - collins - criticize - suggestions - petting - farms - exit - determination - preservation - ted - teddy - underclass - considerable - watcher - gathering - sexually - justified - territories - capita - carefree - taxing - weak - territorial - resist - attempts - craze - uni - subscribed - tractors - regulated - cal - organic - weaponry - tanks - offender - cured - slave - foul - flipping - shades - acclimated - squares - tapped - jerusalem - fearful - interrupt - interrupted - erase - monterey - jose - ram - supplement - standardized - overtime - amazes - circumstance - summons - conservation - indestructible - littlest - missionary - wrapped - ellen - toyotas - preferences - rag - straw - wallpapering - hoe - vo - tubes - dulles - incoming - eldorado - coun - tenure - evaluation - assigned - flatter - chickens - curry - overextended - compl - housewife - simmer - yarn - demo - ensemble - bas - transmissions - frivolous - sessions - grind - ranges - quits - disconnected - substances - etched - notion - redeeming - grabbing - scrape - por - funniest - rotted - harvest - adaptations - mining - incaviglia - excess - exhibition - da - nightmares - biscuits - echoes - actress - believable - drafted - truman - snider - extend - planet - packing - dumpsters - awakenings - deniro - actors - ser - garp - attacked - ralph - rapid - agreements - forests - polluters - penalize - undergrad - output - sensational - failure - fattening - catered - brownies - crock - downy - delta - cooled - duplicate - clearing - pheasant - genuinely - capability - shield - agenda - coup - briefly - context - governors - irish - reserved - collectors - ole - antique - eights - irate - noticing - solo - shipped - dramatic - grateful - segments - updates - trite - platter - inc - incidences - estimate - walter - cronkite - mold - efficiency - spouses - widely - redskins - lynn - deaths - observe - educators - nother - visual - graded - objectives - principals - passes - poli - interaction - prescribed - breakthrough - fake - fears - web - housewives - awake - reservations - suggestion - genre - innovative - umbrella - annoyed - myth - proportion - generational - exams - gung - essential - pushers - cathy - sassafras - dye - barn - outlets - hollering - dents - scratches - layers - swiss - cauliflower - trays - pans - boiling - vanilla - custard - unsweetened - spoon - freons - officials - disaster - contributor - analyzing - respiratory - powered - desired - trainer - butt - psychological - majors - staggering - hamilton - tracy - protesting - prejudices - dale - willie - summoned - questionnaire - skipped - bail - hebert - mangione - breeze - fairer - regulations - seriousness - darkness - remem - judith - dedicate - owes - domino - insured - backing - risks - devalued - magnitude - taped - breakdown - beep - murderers - murderer - insanity - slap - wrist - merry - reinstated - atrocities - prayer - premature - pushes - offend - ridiculously - bind - identity - bombed - keepers - deducted - offset - owing - giveaway - immigrants - seeking - insects - daffodils - bud - dandelions - plagued - tiller - trie - plum - fescue - dries - greenbelt - cracks - smokey - megahertz - samna - proficient - poison - reused - mash - heights - lone - vicksburg - handful - futuristic - patrick - foggiest - soldier - buckets - tot - immigrate - render - fab - principles - payoff - incinerators - smelled - ozarks - disappeared - tad - tiers - glance - enlightening - nashville - fellows - communicated - catalog - insight - spoke - flounder - padre - aransas - dingy - marriages - becky - squeezed - triple - caribbean - bees - lilac - overhead - static - lumber - juan - irresponsible - bold - carmel - smarts - surf - snappers - snapper - described - aetna - medi - irving - provided - wells - romania - resort - affords - printing - seminar - thaw - payoffs - persuade - judeo - litigious - opponent - underdog - equate - fred - divided - separately - turnover - descent - filet - sole - jerk - therapy - companions - dresser - explained - hush - agrees - aff - drama - at&t - modest - bef - prep - vocational - col - inevitable - atomic - disadvantages - distracted - measurement - arrogant - clientele - jelly - biting - acceptance - fir - overdue - optima - suckers - honored - chevrolet - taurus - recreational - campers - shines - holly - mattresses - elastic - hectic - volunteered - heartbreaking - bargaining - forgive - adamant - moderates - egypt - muslims - palestinians - poem - naps - demonstrations - restless - underlying - dissatisfied - proposing - upbringing - outlook - quilting - amish - acreage - eyed - motivates - vitamin - drilled - extensions - quantities - carson - doses - experimented - chlorinated - rode - nationalities - exam - memorize - readers - scales - grain - matching - explains - semigloss - marks - experiencing - upbeat - connections - dah - seated - alley - uncertainty - hoot - itemize - processors - portable - hewlett - rival - rugged - decks - printers - obsolete - quitting - approximately - martin - achieved - tact - disappointment - trusting - corrected - opted - perjured - barred - script - ironic - witnessed - answered - dependents - mobility - preventative - lung - carrier - filed - pissed - offensive - opinionated - textbooks - forbid - advertisement - cordless - porcelain - sandy - tracks - amateur - sings - contraceptives - luxuries - continually - perennials - arriving - bows - ribbons - designs - bunny - ink - canvas - crewel - decorations - victorian - stiffen - uncommon - compensate - typed - correcting - frustrations - acted - rumors - lebanese - newsmen - chemistry - tw - literacy - jackson - macho - hint - cer - cutbacks - slogan - preserving - trigger - greenhouse - plattsburgh - digital - sane - boost - vacationing - stationed - slope - attach - starving - distant - mideast - bureaucratic - bearing - nightline - eng - centuries - decking - crawling - buds - vine - chops - guest - sucks - tails - '''oeuvres' - cooks - elegant - crumbs - crunchy - bouillon - 20/20 - cord - irritated - luggage - climates - richer - civilized - israeli - jazzercise - ego - exer - leaned - firearm - firearms - twirling - edited - dribble - accidental - resale - trading - strangely - cutlass - semesters - recipients - recipient - pathetic - import - partnership - ambition - disciplined - prenatal - peru - thir - filters - tourists - canadians - panamanians - initiate - concentrating - cellular - awkward - aw - sanitation - kuwaitis - accomplishment - defend - amy - sunshine - hurricane - flood - muggy - royals - pitchers - nat - indicator - lineup - knives - publishing - laptop - search - significance - chains - jonathan - petunias - blooms - stitches - fruits - righ - opportune - tang - inspiring - incomes - ferraro - isaiah - alma - mater - dominant - greed - hud - pit - bounced - installation - stinking - forgets - morally - millionaire - observer - restrict - ancestors - kitchenette - neatest - miniskirts - grandmothers - feminine - marching - bizarre - overboard - gu - neon - tints - condominiums - walt - crummy - flake - woodwork - widespread - worldwide - bow - contrast - vocal - removing - passive - colonies - bury - presence - quietly - whichever - vacant - equity - litters - fin - aquarium - commands - anticipate - resulted - ranches - repentance - mas - olympic - wicked - climbed - stretched - explaining - wayside - combinations - carpets - str - tickled - tinted - carmakers - sporty - miata - authentic - demands - parkway - gabriel - shannon - patriot - mansion - alan - blessing - catnip - bombay - himmy - champion - gloves - devon - curly - mice - associations - haired - qualifications - attracted - irritating - cops - irks - ron - relation - germantown - hondas - skins - errands - pigs - substituting - spoil - butts - experts - markets - hong - kong - tens - conflicts - bangladesh - prevention - barrels - lily - humongous - azaleas - fielder - cubs - pri - aft - kinder - callers - capone - arsenio - flatliners - scheduling - threads - bedspread - lobby - mckinney - spaced - ethical - expenditures - recovery - sitters - reader - authors - scraping - backlash - estes - sensitive - taxpayers - fisherman - soul - lures - hea - propose - reinforcement - exempt - pendulum - applies - flea - skilled - petty - brochures - bussed - african - glen - godfather - sooners - hump - summit - strengthen - meaningful - steamer - sprinkle - skillet - teflon - passion - increasingly - privileges - constitutional - thousandths - motorcycles - eighths - annoys - horizon - tooling - essence - decimal - inherited - fifths - sweatshirts - blouse - programmer - fashions - taiwan - keyboard - unpopular - plumber - sucker - transporting - indifferent - shallow - undo - seeming - kilograms - dates - propaganda - confidently - badge - clipper - steelers - temperament - scoring - warren - proving - arthritis - revenue - scheme - os - wholeheartedly - unknown - capacity - noodles - instincts - lecture - stanford - unlike - academics - cannon - instinct - stereotypical - mac - firepower - mug - antenna - denton - psych - hamsters - smelling - expenditure - dec - diploma - radioactive - packaging - detect - stream - particles - cattle - creeks - alaskan - roam - booster - contagious - scientist - wednesdays - shopper - species - tribes - underpaid - ambience - texture - enthralled - mel - presidents - consultants - persons - sweaty - speaker - subsidy - lies - ano - offenses - housekeeper - hottest - firewheel - salisbury - hams - locking - prosecuting - gettysburg - arena - openness - duplex - fords - carburetor - cap - notch - overlap - dash - vegetarians - cleanliness - vegan - bodies - utilize - coo - hens - ballpark - kicking - getaway - des - vitelle - a&m - oriental - yellowstone - lion - rio - grande - marble - jealous - ruins - objecting - fireman - malicious - compensation - executing - falsely - statistic - meanwhile - storing - internship - cooper - clinic - cardiovascular - rotate - picturesque - biggie - killeen - purebred - virus - affection - caravan - storage - libber - heated - shrubbery - supportive - unacceptable - appalled - reimburse - explorer - middlekauff - stiffer - disneyland - amusement - solely - lafayette - allies - liars - masses - majored - discriminated - valid - lonely - smile - consists - lisa - floods - historian - societies - eater - rewiring - praised - openly - logically - nest - pap - supporter - runner - moth - devastate - mediocre - excel - insist - halloween - toning - dramas - shakespeare - multimillionaire - supervise - imports - inferior - wallet - dwell - po - iguana - br - twentieth - assertive - chewing - freelance - reputable - avenues - smoothly - avenue - classify - spices - tort - riots - methods - textbook - sprayed - wiring - busting - minimal - youngster - manner - fringe - beeper - pill - spraying - heavens - splitting - maturity - cues - nineteenth - velcro - cole - codependency - losses - worlds - representation - roller - maternal - franchise - bones - quickie - resorts - inept - tossed - superior - enthusiastic - stripper - eth - shotguns - vital - mutual - laura - lotion - accumulate - dime - unfinished - toned - treatments - rust - instruction - productivity - wherewithal - indigent - employ - medicaid - desperately - equipped - alto - jerker - christopher - reeves - climb - mastercards - beaver - champions - pines - berries - dutch - shou - cathedral - constructed - rainfall - chased - tossing - peonies - hardy - divorces - drank - tan - sunburn - interfere - fo - custody - bottoms - guidance - flew - jar - eisenhower - bitter - motivational - presidency - leaps - noriega - tunnel - anger - roger - mis - universe - bargained - interviewing - potluck - trump - hyacinths - purply - mugged - paroling - int - avon - spectator - deeply - amou - crepe - pile - toll - dependable - cavalier - squish - drinks - census - pell - vienna - waitresses - ultra - regency - progressing - retrievers - prompt - brisket - reliability - graveyard - submit - reception - watercolor - jan - shanghai - effected - micro - satisfying - preston - broiled - violated - appealed - martha - melodies - speaks - squad - cutback - texasville - breathe - homemakers - dreyfuss - spit - presumed - cra - coordination - irons - perry - stepmother - ambulance - deteriorated - bunk - flan - vinegar - pies - happiest - wheeling - geriatric - cockapoo - rabbits - ignored - earnings - pencil - taller - glorified - sch - eyre - sung - madam - butterfly - puccini - canoeing - receptive - jackie - gymnastics - im - steadily - ronald - brownwood - temple - substantial - les - broadway - orthodontic - verge - orthopedic - silverton - drafter - drawings - unbiased - equals - secretarial - overturned - thelma - louise - tacky - chipped - sledding - ambulatory - reluctantly - adequately - cheryl - hearty - skim - thai - lunches - molestation - releasing - sketch - subscriptions - upright - paddle - appliance - tops - pant - gail - centralized - claus - earns - coit - orchestras - breasts - chill - punk - '101' - rebate - perkins - fluffy - parker - coppell - bleeding - pittosporum - thumper - carney - trailers - eager - signature - whoops - discovery - macaroni - golfing - superbowl - tease - includes - desperate - entitled - dill - suing - semiautomatic - cuddle - legislate - hubbard - screams - competitiveness - mechanically - jesuit - duh - haiti - constituents - ordering - striped - bonham - donna - du - nist - sheet - sergeant - rebuilt - spy - thorough - fame - hydrocarbons - nitrogen - ville - manufacturers - mats - algebra - glossy - pathology - towncar - missions - mat - gut - precaution - kenosha - pianos - commissioners - exemptions - daytona - holder - gloss - exploring - hatchback - abuses - royalty - rehearsals - meg - boise - barbie - radial - lathe - distributor - parakeets - chimney - telecom - bran - piedmont - howse - duncanville - admitted - warriors - marketplace - dunn - bradstreet - vivaldi - boutique - decorative - volume - honeywell - quicken - strengthened - quantity - hinge - cumbersome - qua - transport - makings - seal - entitle - opacity - abouts - forum - ductwork - shave - interchange - ber - scruffy - critic - trivia - sharon - invitation - astounded - effectiveness - insulted - conspiracy - paranoia - surmise - latches - invading - knocking - ritual - introducing - click - occurrences - summed - absenteeism - errand - discrimination - improving - uncertain - suspicious - detectors - hammer - royalties - hideous - militant - objections - absurd - frampton - performer - eclectic - listener - ravi - shankar - spreadsheet - dedication - mardi - gras - straps - convincing - carl - casually - horrifying - litigation - retention - dusty - regulars - texteller - stripe - tipped - pastel - pallet - patent - spin - coul - southbend - variable - intended - workplace - inputs - toured - reich - genesis - bottomed - shoul - devoted - detriment - manipulating - softly - alleged - accuse - exploiting - cuba - starve - hun - ashamed - connery - dwarf - favors - freer - imposed - demanded - natives - representative - undoubtedly - abou - melting - clinging - quebec - mountaineering - implies - fads - institutes - newsletter - orientation - meditation - desks - laborers - keyed - enc - incorporated - predominant - intending - trafficking - aghast - frito - artistic - kits - pinks - kit - lilly - greens - stocking - selections - chapel - percentile - stabilized - illegally - errors - nasa - quaint - mem - supplemental - applaud - competitors - generous - repayment - celebrated - negatives - ind - privately - brutal - hoped - slim - administrating - latter - nickname - customs - defeating - gadgets - bluegrass - pizzas - anderson - predominately - standings - moore - pennant - pirates - appraised - overpriced - longevity - satisfy - resell - editing - availability - prohibit - janitors - endurance - mutually - supervisory - quotas - swampers - laborer - happ - mushrooms - consisted - terr - siren - alarms - jamaican - knitted - granny - moderate - carpentry - candle - contributors - ai - comply - helicopter - sting - nitrous - chemist - unseasonable - ust - nostalgic - calligraphy - tidbits - mcgyver - inventing - baling - washers - junkyard - portraying - invented - attempting - innings - ke - weaned - meows - docile - traumatic - secretive - daisy - hype - mimic - predicting - fictional - swamp - margin - teasing - crosses - dang - dumpster - openings - recycles - imaginable - folded - straightened - reminding - settlement - beaten - ramifications - margaret - thatcher - gandhi - volcanos - rhode - residue - pitted - comeback - nader - volcano - indicates - previously - regulatory - arrows - zoom - calculate - yugo - pricing - dos - pastor - sauces - coleman - sacramento - backpacked - undeveloped - opposition - negotiate - factions - refreshing - reveal - occupy - responding - tunes - jigs - instrumental - mickey - wills - nickelodeon - fl - shenandoah - flimsy - programmers - mentioning - irritates - aspen - contel - demonstrated - surrogacy - crass - nurturing - donation - auction - shelters - bedridden - gals - '''am' - factual - nightly - chancellor - gaps - newscaster - excerpts - rises - choi - assisted - deteriorate - sponsor - caretakers - supplemented - possessions - signing - sectioned - zones - vikings - hart - educator - beg - initiative - administrations - maj - sabbatical - minuscule - referring - hourly - gardened - remotely - shack - broaden - ivy - couches - careless - anybo - oreo - twisted - actresses - kenny - columbus - disrupted - mistrial - chooses - confession - placing - inception - insure - burglars - jacques - lewis - chagrin - ame - preferably - loudly - epileptic - aftermath - snob - broadened - expectations - swore - amphetamines - endangering - hassles - splotches - scratching - dread - hardwood - toothbrush - proclaimed - nicks - breads - chunks - quart - slender - blender - thickens - thickened - thicken - cooling - leaded - endorse - caprice - converters - arguable - lit - meteorological - circulation - lungs - focal - volkswagen - pinned - fulfilling - obligations - belonging - wealthier - adulthood - functioning - monster - wandering - ropes - appreciation - confess - tolerances - pete - arnett - sporadically - impartial - diversity - affiliate - cutesy - beeped - moody - wonderfully - vowed - booklets - recruit - courthouse - strangled - testify - neurotic - crooked - bracelet - instructed - whereabouts - bracket - koontz - bachman - letterman - hologram - pitches - speculative - deregulation - teapot - vaguely - hoover - pennies - nickels - investors - holders - asphalt - charts - kathy - walkman - simmons - rapists - manson - repealed - thousandth - pac - kingdoms - ruler - scriptural - elses - discernment - walters - wiley - communists - assaulted - compensated - medicines - rude - returns - indebted - deli - strings - crabgrass - slimy - tempered - standby - surgeon - pruning - undertaking - irrigation - leafy - remain - flowering - chick - lem - humus - barbe - stoves - flame - grease - tortillas - turkeys - smoked - hickories - spreadsheets - specs - montana - hazards - crash - burlap - coupon - subtract - compost - branches - heed - staunch - withstand - buffers - scuds - provinces - merely - demilitarize - confusing - sucked - incomprehensible - disarm - socialism - boris - nationality - nut - sabine - consequence - wade - camps - kingsley - centennial - canton - dinky - proclamation - mason - dixon - seller - avalon - chilling - wits - characteristics - tuberculosis - wafer - linear - mismanaged - outraged - breyiana - demos - boggles - contaminated - refineries - desires - delaware - caves - fading - anythi - pantry - crushers - hallways - casualties - magnified - tones - questionable - andy - creatures - extends - fork - spills - degrading - spark - probab - hints - stereotypes - romanticize - thugs - beaumont - predictions - barring - substantially - separates - zealous - farmhouse - pumpkins - planter - creosote - landlord - brushing - rose - cantaloupes - cubic - wary - youths - hostilities - judging - burlington - confronted - slit - divisions - rash - monterrey - objective - hamper - grouper - oysters - tiring - canals - grabs - grabbed - dogfish - antibiotics - commuting - deprived - clinics - infections - enrolled - rigid - fined - mills - deceiving - surroundings - paths - motive - motivations - upwards - bundled - doubling - financed - integrity - benefitted - perceive - unfairness - wiser - segment - vengeful - pitifully - massively - respon - represents - speeches - slapped - inflammatory - atrocious - blitz - zoning - wholesaler - turnovers - argentine - microwaves - waxed - flakes - purplish - cubes - sherry - argentinean - sausages - breaded - publications - thesis - disgruntled - cries - replaces - belongings - roaches - overhaul - uniform - discretionary - emotion - hence - fines - documentary - dealings - declaring - dire - squirrelly - miscellaneous - nd - deposited - scurried - skaggs - endangerment - assumes - endanger - endangered - accidentally - suspicion - continents - ingrained - confuse - trans - centimeter - measurements - peanut - kindercares - alphabet - scold - inappropriate - trauma - weath - predictable - inversions - threesome - novice - rut - yo - delightful - ferrari - resembled - satellite - bathed - jacuzzi - wings - fastest - ant - kitchens - dented - refresher - kosher - knishes - mea - unstable - relevant - americanized - hugged - scam - apologize - hug - shiite - poss - wheth - countrymen - wom - implementing - decreasing - finland - selfishness - benefited - mil - flunk - canning - zinc - processed - bogged - distributed - moderately - companion - organs - sally - petite - isometrics - ingestation - plight - surrounded - directing - coed - subbing - calculator - behaved - versatile - applicable - depot - spackling - creamy - similarly - formative - contacting - aptitude - sounding - upkeep - cellar - rents - complexes - nanny - prefabs - enou - scoot - emulate - guru - auditors - packard - matrix - transparencies - outdated - advisor - panhandle - piling - shredded - pessimism - racism - destined - fronts - hippie - texaco - pennzoil - miscarriage - rational - testimony - testifying - paralegal - priors - aggravate - enlightened - niceties - flop - horrified - absence - taxation - flabbergasted - gracious - flops - certificate - explanation - univer - dustbuster - plated - bowls - patty - womb - soothing - repetitious - wilder - eleventh - painless - necessities - harm - magnolias - raking - underground - grasses - blend - macneil - jennings - informative - bureaus - comics - mourning - lace - weave - lacy - draping - batting - anticipating - splurge - deci - typist - damme - bland - widow - dummies - caan - rescuers - submarine - studio - survived - einstein - stepson - literate - honors - lifesaver - framing - hindsight - incidents - outsiders - jesse - complains - threatens - entrepreneur - achievement - clue - sights - transplant - glamorous - uncontrollable - constitute - denial - champlain - resume - technicians - fad - timid - macon - hous - espec - contacted - liquor - repairman - popped - radishes - turnips - loam - intensive - attachment - pickles - unfairly - seasonings - paralyzed - spinal - discrete - seatbelt - arrow - reuse - collects - dorms - perimeter - orthopedist - freak - diane - diver - limping - tights - casts - nautilus - cushion - singled - tighter - lonesome - naw - everyb - imitate - oscars - booth - demographic - judgments - texins - crest - demonstrator - reps - partying - tracking - perpetuate - manpower - coincide - cl - soreness - nighttime - evacuated - winnebago - benefiting - incidence - abundance - creature - aim - shah - felons - unseasonably - comparisons - waning - surviving - diplomacy - eliminating - processes - righteous - filtered - launch - unmet - strife - ray - blatant - fax - proactive - buil - treaty - bully - repay - swallow - evolve - tug - skewed - intersection - trampoline - downs - cy - swept - streak - averages - catches - tigers - strategy - bayless - advised - brunt - rooted - dseg - documentation - floppy - disks - hus - touchy - linda - rossa - teen - boo - livingston - seagull - wro - midland - odessa - practiced - fur - contra - haunt - resentment - laughable - arises - browns - topping - toast - mustard - cucumber - bonanza - meta - rearing - robinson - cylinders - akeem - dominate - reselling - jap - wichita - galen - amrein - snacks - elephant - transferring - fare - veterinarians - wonders - developer - breathed - limiting - cookouts - individuality - frills - fluctuates - tastefully - smashed - organizing - dare - reform - bri - gate - felonies - ima - racist - gripe - gar - width - spreader - lightly - freshly - arthur - waterfront - movers - frames - enamel - spun - descendants - favorable - intervening - advancing - frightened - revolting - upsetting - acquired - creeps - kitten - teacup - frustrates - cheaply - brunch - crook - mock - primaries - workday - chows - guinea - harming - bellies - rubbed - terrified - louder - lid - collie - mechanism - inspected - cheated - fingernails - uninformed - disinterested - honduran - rica - tourism - enabled - policies - engrossed - virgo - elder - ricans - rican - loaner - revival - christianity - revered - pyramid - birthdays - disciplinarian - nutri - stairs - elevator - powerhouse - alway - rehearse - patriots - photo - guards - congested - incarcerating - foreground - snatched - astro - minivan - subaru - ticking - rack - upgrade - retail - campgrounds - bearable - dipper - addict - sportsmanship - describes - strasbourg - missile - bounce - goll - humiliating - chauffeur - valet - condemning - airs - tithe - blessings - foley - croak - critters - turkish - himalayan - patches - paws - lanky - hillside - communicating - swam - supervision - stephanie - keel - tuba - nerves - turntable - dual - processor - edit - layout - preventing - overloaded - mentions - sevren - montgomery - piddly - compressor - prelude - impractical - wharf - colts - seahawks - winners - champs - expansion - attendance - kites - strangers - tasting - arrangement - rewards - interfering - inhumane - overtaken - underwater - intention - philippines - tag - quarterly - incentives - justification - sorting - insurmountable - forestry - trails - emphasized - obtain - cubicles - advent - op - accurately - orchids - dodgers - brat - petrified - circular - terrifies - niece - laughs - exc - negate - rejected - lawlessness - founded - crippled - perpetrators - breath - intake - valleys - pencils - abreast - ethics - scandalous - churchill - dickens - withstood - mindless - pi - sincerely - whew - spreading - petersburg - finest - southwestern - cincinnati - roaring - perpetual - lhasa - scuba - pampered - dinosaur - fires - ventured - dooming - plunked - cooperated - adjusting - decades - valued - downstream - lure - bumble - wasp - squirrels - popularity - isolation - disciplining - spank - isolate - handicraft - dough - ornaments - empties - posted - ruining - kurdish - roseanne - matthew - brando - levinson - follower - marino - keystone - cunningham - tactics - granada - cuban - salinas - terrorist - buried - hyundee - helicopters - stepper - pillow - staring - aqua - blisters - rubber - trashed - dwindling - cooker - cherry - blackening - gumbo - portuguese - ribs - ya - jumbo - initiatives - revolt - obliged - argues - constrained - fools - indoctrinated - millimeters - fractions - fittings - wrench - header - screws - progressively - pullover - smokes - sw - othe - designer - foolish - puzzled - warned - cab - tractor - sixes - diesels - injector - asylum - governmental - antiwar - translated - soapbox - usable - antimetric - sweden - midnight - plains - collapsible - helper - motivator - huff - phenomena - temper - miami - cyclical - oilers - stallworth - swan - oppose - decisive - wrath - constituency - nuggets - meatless - ingredients - hostess - soybeans - proteins - belton - pennsyl - lsats - als - sev - abcs - especiall - affordable - carpools - symbolic - scenario - gunfire - outlaw - abiding - restrictive - concealed - sp - deterrence - weighed - objection - misusing - impose - crackdown - dawn - liners - gerbils - mutts - counted - eel - tiniest - debated - symptom - furnish - nonsense - handicrafts - awarding - topsy - turvy - worldly - sparked - reg - flours - dublin - bulldozers - overflow - posters - chained - tabby - rampant - girlfriends - inadequate - '8088' - monitors - respectable - secondly - binary - calibrated - qualification - brackets - rescue - passport - mou - alcoholics - returning - laurie - clout - grilled - buffets - brunches - woodland - colo - prix - seagal - starred - premise - preoccupation - belly - millimeter - darndest - assembled - hauled - fertilizers - prohibited - facets - denied - loaf - dawned - boulders - marbles - duck - shish - odor - boneless - scrambled - armenian - consume - punishing - devil - suffered - agreeing - enforcing - burglaries - rationalize - busiest - airy - wires - compartment - soldered - restrain - overeat - pastas - minerals - accepts - supplements - toledo - oriole - steeper - moines - bleachers - collapsed - herbs - sill - appleseed - pecans - wes - enterprise - bulletin - electrician - terminology - gaithersburg - valedictorian - pushy - seemingly - rockies - carries - yells - breezed - solicit - coworkers - alright - humans - bust - holdup - underst - convicting - restoring - ankles - landscaped - sal - continuance - pensions - allergy - baxter - ceo - homa - rallies - anaerobic - improves - ls - adverse - hunk - pulse - resting - mirrored - fireplace - tucked - condos - abandon - dennis - distributing - refuses - glove - pricey - passenger - lowered - questioning - dummy - mans - occupations - norma - techniques - karen - spotted - incompetent - exper - priest - kindergartners - conform - creativity - manners - mannerisms - establishment - norfork - farthest - charleston - hairs - follicles - rehab - fro - weddings - graduation - med - saudis - thieves - chaos - promotion - unconditional - offspring - quotes - dumps - bluebonnets - absorb - es - flash - medina - salty - beirut - penalized - lining - faucets - repainting - arrange - tripping - ingest - ingesting - arteries - reacts - framers - framed - viable - supports - viewpoints - delay - nevertheless - allocation - infrastructure - expended - restock - twen - spider - marigolds - impatiens - replacement - teased - bacillus - gypsy - toddlers - recommendations - skits - attachments - slacked - contributed - bombarded - mrs - cleaver - senses - romantic - illiterate - paced - ridged - totaled - hesitate - technologies - stacked - renters - counties - citibank - scams - swayze - clyde - drummer - scratched - demographics - companionship - dependency - everyth - prospective - pairs - unsupervised - morton - lu - offended - drinker - measures - lions - arapaho - drool - yuppie - cheat - reinforced - fashion - defrosting - pilaf - mixing - mushy - korean - auxiliary - curriculums - kathleen - accordingly - residency - sportswise - blitzer - fanny - treadmills - cinema - dripping - shorted - enlarge - valves - shingle - fixtures - detached - stigma - pioneers - households - beepers - bulky - vibrates - hepatitis - freed - expectation - boyfriends - homeowners - existence - anguish - charming - weathered - leveled - wallpapered - conserving - diagnosed - inspiration - alerted - swimmers - extracurricular - loser - sats - barber - verses - robber - dachshunds - spaniels - anthropology - presses - clerical - forthcoming - homecoming - famil - familiarized - virgin - qui - divine - skates - cot - shove - nannies - objectivity - digressing - ordinarily - weirder - revolved - hatchery - intimate - calendars - decoration - passage - continuity - percentages - cavaliers - ewing - highlights - patience - bethesda - beijing - pooling - restful - pends - dells - starring - rage - terminator - twists - treble - mackerel - pike - stung - fleetwood - displayed - freaks - backs - buicks - convertible - vintage - setter - feathers - conducted - ethically - patrol - kidnapped - pun - exceedingly - albany - syracuse - rapist - investigation - pamper - waits - assistantship - newlyweds - hopping - annually - journals - figurines - sanded - 4h - refinish - hormones - lip - fender - sparingly - lime - sands - upscale - gum - rips - shreds - sponge - mate - averaged - harvard - successfully - approaching - nutrition - conductor - cringe - mcneil - criticism - palo - columns - candles - psycho - deadly - uneasy - robocop - molly - savage - resented - retrospect - juggling - density - crucial - oft - lame - assaulting - pleading - psychiatrist - psychiatrists - psychotics - assaults - sponsors - rainier - snowy - immune - tawakoni - cones - fearless - enclosed - roofs - sizes - cei - furnace - ambitious - poking - fountains - latitude - underpass - hiding - petals - slows - oscar - durant - alo - notorious - settles - smoker - sponsored - educations - ele - approached - proponent - thus - endeavor - wri - fingerprints - slipped - fingerprinted - astounding - intervals - contracted - dea - imm - soaking - visitors - rug - daddies - conformist - revolutionary - kramer - celebration - feeder - nets - minnow - burping - purina - parade - compound - pursuit - refuted - refute - turnouts - vi - relates - regain - moats - staubach - encountered - unrealistic - landon - portrayed - josey - clint - jot - baptist - reflection - damages - shortage - clerks - doubled - smallest - pavilion - fuses - alter - sensing - bandit - theatres - ellison - activist - photographs - hyacinth - hollies - spike - perennial - gomphrena - repeating - minimize - ornamental - happiness - acquire - congratulations - simpler - circles - wham - forgiving - detrimental - immature - maple - myrtles - screwing - disguise - formatting - paragraph - voyager - crank - pepsi - mcmahon - racking - recharged - seabrook - nucleus - billed - mints - adaptation - crown - lunchtime - celebrate - incident - shreveport - limbo - diaper - chassis - bent - soapies - bichon - frise - personable - rin - tervurien - latchkey - considerations - sunroom - rambler - sandstone - beltway - adored - surrendering - cooperate - allah - sakes - stirring - pineapple - oatmeal - casseroles - bronze - catherine - nissans - escort - trusted - insurances - provider - postal - recourse - invades - complained - susceptible - newhart - comedians - contrary - bart - simpson - morocco - continent - ripping - photos - reef - melbourne - squirrel - agents - hockey - christi - diverted - pea - fiasco - liver - caution - expediency - misplaced - technicalities - technicality - ruffle - conducive - sandwiches - vendors - pins - ligaments - beethoven - mozart - softer - banned - regime - liberalization - civics - dart - wasteful - wounded - mcmurtry - trashy - grou - grouchy - projectionist - subtitles - intuitive - footnotes - footnote - operator - lands - appetizers - premed - specialize - matinee - cocoon - alien - maintained - sharif - oddly - exceed - incapacitated - images - dangerfield - stacking - leftovers - catering - scooped - amelia - anyth - wolfe - myths - haggard - phonetics - relearning - wheelers - transaction - checkup - reserves - cranky - measuring - coating - cognitive - jour - austen - reviewed - attracts - grandchild - congealed - soprano - canoed - cancun - bummer - teenaged - manhood - ostracized - liken - pear - daytimes - ransom - sightseeing - gubernatorial - robb - receipts - gambling - sedentary - tortilla - picante - grated - jell - timely - subjected - athletics - bathe - commercially - accordion - miserables - milkman - travis - phantom - lloyd - listens - illnesses - diligent - invaluable - scotland - jaw - periodically - durango - jeep - destin - jetty - draftsman - roman - recognizes - regarded - mediation - crises - bystander - awe - prac - gannan - valerie - addicts - sayings - possi - restrooms - festival - alpine - uneven - sleds - knob - mows - mulched - presbyterian - willingly - littler - strategies - rapport - walnut - impersonal - hack - cheerful - emily - dell - preschools - pediatrician - dane - tangent - backfire - ethiopian - venison - fries - waitress - waiter - attentive - adventuresome - heyday - bernie - dra - assortment - piled - veal - evident - unleaded - ambivalent - clothe - rehabilitating - confessed - amendment - xeros - quartet - technique - carols - mechanisms - decompose - murray - sorted - dimes - crusher - renewed - prostate - antigen - fourths - smells - spinner - baits - fisherwoman - imitation - sticker - sn - pantsuit - pantsuits - enthusiasm - begging - fitting - harold - taft - milder - gimmicks - hemorrhaging - mennonite - sealer - premier - landed - suites - invalid - invalids - labels - frugal - substituted - legacy - reside - partial - yuck - balloting - sibling - colds - discontinued - primitive - tulips - hazard - codes - zenith - ques - slides - purity - richie - bushel - wines - napa - ronnie - whittle - satire - monotonous - menus - frankenstein - blazing - saddles - grants - hitler - paintings - specimen - fussing - presume - pollu - decorate - kindergartner - arguably - cradle - grave - fluff - swings - queens - beltline - thrus - aerosol - corny - fridays - camry - elway - moneys - exponentially - crawls - grieve - greg - foresee - uninsured - noses - rudman - accountability - proportionally - gruesome - couscous - repercussions - wimpy - shortened - befitting - nece - asset - flushed - dressy - slack - sl - tro - bidness - apiece - smokeys - sur - outlawed - legislating - creating - activated - steinbeck - grizzly - encounters - doubting - doug - ranked - sierras - rai - tempe - yelling - explored - bogey - burgled - plop - pee - ay - handyman - tighten - loopholes - withhold - advantageous - bueno - librarian - coma - seasick - minnows - seas - fore - calico - yaupon - labrador - wax - scalp - salsa - hidden - continuously - hibiscus - wetter - mitsubishi - '90210' - nicole - matlock - charlene - beverly - shred - pierre - recognizing - cinematography - invasions - premises - '911' - sitcoms - misbehaving - faces - censor - morality - jumps - finite - infinite - whining - panels - resurfaced - cimarron - jeopardizing - retirees - ladder - investigative - catastrophes - existed - halogen - sulfur - combustion - hitch - moynihan - skillman - lynch - chil - amnesty - abstinence - crayon - detest - ph - allante - peppy - saddle - inca - dub - regiment - twisters - toe - prone - adjustable - conspired - premiums - reasonableness - parkland - losers - witt - greave - wins - dilemma - reallowed - implement - unsmashed - crazies - fabricating - sampling - steele - youn - upsets - magnetic - resonance - sober - molesting - boar - constraints - betcha - severity - entitlements - reductions - defaults - blackman - manned - dealerships - purrs - feeders - frontier - jetsons - nearest - trough - sli - howatch - birmingham - disregard - darned - greenery - tahoe - skidding - surveyors - tracer - '486' - measles - crunch - burger - cameroon - scoutmaster - sitcom - seato - colony - nato - disbanded - arrive - uncooked - overdone - yummy - bendix - pontiacs - hattiesburg - bir - boa - constrictor - parrot - overspending - coughing - julio - misuse - sniff - milan - anchoring - tedious - stragglers - tobogganing - baggy - reduction - hewett - scaffolds - excessive - rep - disappoints - nairobi - safari - wesley - hospice - theoretically - mishap - electoral - stew - hardaway - dioxide - vapor - aye - pickings - legitimately - sails - bisquick - lopsided - boarding - freezers - genealogy - stash - proliferates - brokers - patterson - subsidized - amway - nonpolluting - bicycles - bullheads - nikki - jig - stroll - ogden - puzzles - combo - airless - scroll - dolphin - torpedo - malamute - trillion - ludicrous - payers - column - dumbbells - controllers - harrisville - specialties - virtue - accrued - transfusion - refund - pup - patron - parenthesis - earmarked - greatful - striper - senegalese - perks - parkinson - industrialized - truer - dispose - mega - tonnage - scrubber - ammonia - compounds - acids - thickness - pronto - finalization - utmost - cognizitive - scarves - uns - unseasonal - sleeves - sweatpants - corduroy - compliments - skorts - nominated - dud - recurring - fami - overreact - terror - cohill - cohi - drivel - eldon - housepainter - extracts - overtly - uncontrolled - pirated - ominous - thief - westerner - lunatic - violate - socia - jehovah - mormons - intrusive - solicited - invasive - soli - intruded - defining - surmised - incorrect - unsolicited - nonsol - unconscious - cli - sequence - peddling - harassment - generated - lois - intimidating - rver - greeting - stake - mitzi - yip - ranging - soaked - rhyme - ruckus - parallels - cov - hooker - absolu - phenomenon - brazilian - listenable - elec - acoustic - interchangeably - folk - arranger - sitar - muted - existing - tally - slush - stocks - expired - pleasures - albridge - slogans - outlooks - haggerty - spookier - pecially - airways - focusing - taj - mahals - prolongs - whim - deserved - prevents - mopping - odds - unair - facial - beards - skids - repack - buttoned - starched - suspenders - reorganization - cruddy - reall - notre - dame - explosion - untypically - accumulation - flatlands - zeppelin - floyd - brash - bump - bohemian - rhapsody - pumped - siskel - ebert - thumbs - travolta - quee - tokens - divi - showbiz - admission - scyene - inexpensively - sao - paulo - usefulness - spheres - spaniards - rulers - conquistadors - socialistic - horribly - dishonor - defenses - sabotaged - peasant - exploitation - exerts - export - broadcasting - ruddy - minist - wr - ler - interpretations - histories - copes - indicate - resident - fledged - barefoot - pejorative - unrest - citizenry - ignorance - ult - constitutionally - creole - prohibitions - strengths - cuisines - throes - reassess - functionally - fractiousness - faddish - wellness - biweekly - dispensed - distinctions - dev - fizzled - acupuncture - gestalt - irony - cert - vigorous - carbohydrates - kinesiology - calc - calculated - calisthenics - myerson - frantic - astonishing - mortars - formulated - sociopathic - pronounced - unfit - mouthed - transcribing - customized - anne - glenn - improvise - concentrates - password - verbal - rowing - lution - rower - transforms - markov - naval - postgraduate - civilians - mainline - respondent - unders - allergist - smorgasbord - compensatory - profile - bonds - deducting - disproportionate - brutally - commuted - delays - electrocution - determent - deter - dubious - internally - organiz - coordinating - scandals - kisha - knight - pullman - exacerbate - clutches - pads - benz - absorbed - keyboards - spaghettis - lasagnas - hor - horseback - dabbled - banjo - druther - stre - farts - polly - followers - inspir - booths - commutiv - billboards - bartman - simpsons - debbie - nigh - appraisers - onward - ease - folds - performs - tenured - microcomputer - comprehensive - rigamarole - teachable - specially - spicier - tofu - pistachios - pistachio - bumped - curried - saute - gigs - perse - ow - conventions - slippers - teller - alterations - utilitarian - knickknacks - sconces - jalapeno - almanac - concluding - warms - shutting - piloting - spectacle - lobbyist - legislators - individ - unbelieving - justifiable - nucle - kilowatt - washes - stinging - swelter - lively - eureka - rentals - inspires - glider - welder - treks - '747' - mindlessly - pacifier - reme - destructed - milton - berle - stepchild - tumultuous - regions - siberia - oppression - attentions - hopely - catchers - gladly - unheard - babe - ruth - thru - lovingest - cosmo - pellet - tod - lovey - dovey - kneading - trimming - bonzo - poindexter - felix - tortoise - possessive - bedtime - rendering - jessica - tandy - warmth - manhunt - manhunter - dysfunction - slay - toothpicks - outwardly - awfulness - wonderfulness - lapses - telecommunications - profits - waivers - earners - physicals - subsist - lodges - moss - footing - alumi - defrays - defray - unfold - walmart - discourages - catatonic - discovers - buzzards - pal - imagined - slaughter - earthquakes - robby - graze - indira - observed - attleboro - freeways - jets - swinging - kerosene - eah - boilerhouse - powerhouses - belch - kodak - smokestack - phosphorous - grenades - photograph - overstated - environmentalists - claiming - automakers - soot - particulate - meter - tailpipe - devise - mufflers - resumes - graph - erased - simplified - anduille - doughnuts - cobbler - fudge - fiber - sloughs - rafting - potty - packs - noth - outfitter - headwaters - damper - hostage - rhetoric - rolm - engi - sheer - estimated - doctrine - turks - cheering - reconcile - divisive - unprecedented - authorize - frontal - sununu - commend - scud - lefty - frizzell - galway - harpist - bagpipes - whistle - violins - instrumentals - rooney - dancer - entertainer - eddy - smiley - burnette - raspy - playboys - ernest - tubbs - rector - scratchy - opry - stadler - autry - anymo - vegetate - fri - relly - complication - eith - demolishing - stereos - annoy - troubleshooting - initials - conversed - sexes - consist - childbearing - storly - var - biological - urges - encumbered - heirs - characterized - acquaintances - terming - emerging - marathon - idear - discrepancies - overview - encapsulated - introductory - glamour - updated - airspace - huntley - analyst - paragraphs - noontime - dose - spee - fastened - wander - aides - debilitated - arboretum - maid - tackles - spinning - irvin - overwork - reinjuring - scab - revamped - metcalf - smuggled - investigated - rehi - renamed - psychologists - ration - modalities - learner - kinesthetic - gladewater - baccalaureate - unle - commentator - golsome - superintendent - adminis - scarce - overachievers - overachiever - beeps - expre - phoe - easiest - horizons - hurtling - brothers' - clips - madly - fetish - luring - costuming - remarked - thriller - distinguished - terrorized - branching - vito - flicks - bawled - toughest - venue - disrup - sequestered - entrapment - displeasure - waive - bungling - caricature - bloodless - comic - functions - thrash - fixes - climactic - joseph - reborn - targeted - hypercritical - fart - gags - slapsti - funniness - gag - retreading - tec - preemployment - brazen - wisened - ventilated - motorola - tack - orangish - feat - brighter - coloring - haphazard - baseboards - edger - granary - stocked - formulas - perfectionist - tasks - freehand - gratin - banana - dissipate - thickening - globs - rubbery - blenders - cools - favoring - nestle - quik - groedy - whisk - beater - melon - baler - cond - octane - generating - volt - v8s - repellent - erupted - meteorologists - chernobyl - tracers - smoky - array - fiero - undisciplined - jacuzzis - abdominals - thighs - mattered - alienated - suffocating - choke - differing - grads - quirks - academies - cadets - espouse - anglo - saxon - inveterate - switcher - dave - wylie - pumping - weatherman - hansen - gordon - lightfoot - winston - headphones - toweling - investigator - tailing - socialite - extradited - levy - uplifting - interpreting - jur - gui - overcrowd - connects - businessmen - sente - penned - duff - penal - beca - litigating - respo - spiritually - begats - durn - kratz - kranz - hedges - nathaniel - hawthorne - storybooks - woe - glossary - krantz - twilight - bogused - fuck - dares - hangover - sarcastic - fishbone - spirited - venezuela - avalanche - gobs - inflated - beneath - captures - resulting - risky - contain - vague - guaranty - guarantees - guaranties - disasters - vulnerability - regul - workup - incline - unjust - revoke - reverked - revoked - vengeance - sayeth - mao - tse - chung - temples - unified - humbly - sovereignly - rebuke - ager - preface - admonition - agrarian - commander - conceal - napalm - gro - clayton - uproots - residents - deba - servant - repaid - granddaddy - dodger - militia - bologna - alleviating - afresh - lifestyles - cabbages - broccolis - insecticides - dandelion - roly - poly - slug - dragons - sockets - alkaline - stem - peaches - silt - shrivels - mes - cottonwoods - irr - smartest - gardenias - revitalizing - mayb - chopping - blasted - hybrid - editions - spruce - dips - dipping - arabic - pita - eggplant - marinating - hickory - clones - mach - databases - searches - deleting - pieced - bypass - monochrome - enthusiasts - nathan - swollen - manuscripts - composts - nurserymen - goop - doorknob - compress - mugs - expressions - ungodly - expansionism - nationalistic - succ - origins - angolan - sinai - warsaw - militory - indu - chan - clobber - conquered - autonomists - shortages - bulgaria - czechoslovakia - placate - alienate - emancipated - slaves - emancipate - supplied - battleground - val - verde - briefcase - bookcase - armageddon - grove - imposing - yoakum - trilogy - terrifying - '''brien' - crappy - jakes - compendium - lobbying - emancimation - afterthought - luted - honorary - isaac - asimov - robot - developmental - blockbuster - mist - dune - freeman - debating - suave - charac - egalitarian - scripture - disciples - wafers - contradict - buyers - elma - sheds - pasadena - refinery - phoenixville - grumble - northwestern - piped - almetco - pantr - deanne - multipurpose - vide - launched - groupings - gentlem - dyke - griffith - idn - brave - shallows - gig - naughty - murky - spectrums - abso - feldon - madonna - lamar - gators - sneaky - buckner - stadiums - cornell - redwings - peewee - crude - tilled - screeching - acorn - scents - pollinate - yield - tiered - shrub - locus - thorns - pollination - pollinated - littleton - trucked - shovel - pressurized - chainsaw - dusk - unfeeling - spreads - datsun - ku - klux - klan - incumbents - larou - larouche - chord - mayport - brim - snagging - owl - baiting - oyster - cracker - trophies - rockport - netted - ugliest - archaic - dots - croaking - croaker - friendships - copayment - seclor - exemplary - snatch - impressions - inspections - yellowish - misty - emphysema - isolating - biker - vowel - lint - phrase - cub - smash - conv - ding - dongs - guathier - eliminates - briberies - sidedness - lengthy - judo - hoc - deltaing - disagreement - wapner - judean - vibrant - undoable - semitic - predetermined - wandered - defeated - astaire - sto - plank - poultry - empenadas - eu - scallions - sesa - slivers - overcook - dashes - ketchup - bishu - meats - empanadas - bun - niokes - requi - bah - humbug - fives - phony - interdisciplinary - dispelled - grating - reputations - impaired - institutional - quiche - growls - overrun - hussy - settlements - poll - tiddlywinks - volumes - ignorant - ironsides - affixing - chart - commingle - confusion - issuer - conven - shucks - profitability - shifted - itemized - alpha - beta - accusation - linemen - rotation - thereafter - proves - encouragement - chemists - overinflate - southward - nonconventional - warheads - parallel - resolves - negotiations - inhabiting - lith - neutral - crazier - libya - treaties - overthrow - survives - inhabitants - dancers - outweigh - wayward - attained - sharpness - acuity - disorient - decimeter - superpowers - toddler - indoctrinate - understa - skipping - lows - chillier - handicappers - mosey - twosome - mellowed - doubles - rationalizing - purged - goofed - nastier - cashed - burgeoning - metropolis - carey - thes - intern - sanger - harris - lifelong - thunderbird - citation - mazaratti - conceive - degray - stutters - antennas - roadside - cords - heaters - hookups - sopping - dialect - hums - nuns - trin - shun - hospitalized - pumps - stimul - flipper - retraining - stagnant - sores - golan - kishkes - matzi - goyim - pocketful - heston - commandments - grips - muslim - religions - sects - protestants - lennon - zionist - nosed - tampa - scariest - coincidently - lox - generic - predates - jihads - toge - secretly - unity - revert - baltics - forcibly - impossibility - insightful - prays - dissimilar - forefathers - esc - disseminated - giv - postpones - juniors - disgust - centeredness - inability - multicultural - multiracial - psychologist - refers - preoccupied - infor - cults - motorbike - maureen - solomon - eastland - farmed - millennium - hopeless - ideology - eden - distributorship - supplier - dirkson - extansion - dirk - pearson - embarked - isometric - chlorination - firsthand - detectives - hunky - dory - gi - barbados - colleagues - covert - suburbia - roasted - goat - hating - stunts - bending - alleviates - indicative - handcuffed - elem - escalated - bett - reemphasis - rote - spitted - memorizer - wiping - mennonites - electronically - determines - sherwin - molding - bled - spackle - lighting - nerdy - garfunkel - fascination - innate - supp - manilow - badness - behinds - pajamas - yardage - enclose - fanatically - subcontract - ducts - materialistic - dwelling - necess - branched - dishwasher - inventions - trashing - diskette - ordeal - configured - prestigious - innova - innovation - audits - pry - peripherals - lance - restraints - thermal - razzle - dazzle - flats - clairon - rath - educa - feast - waking - tentatively - receptacle - raisers - distribute - disposables - incremental - fiery - luther - galvanized - bashing - environmentalist - respons - glow - wartime - overlook - affirmative - junkyards - testimonies - defendants - legalistic - achieving - likelihood - tilted - sleaze - protects - choreographed - patents - antic - repeater - vendetta - observing - proceedings - weightless - effortless - sweatless - surveys - adjusters - expressed - meningitis - fetal - terminated - termination - codependents - goddess - observations - firemen - overtones - astonished - phys - cokes - sternness - forbi - expressways - patricia - handlebars - rewarded - dubbed - booger - diamonds - numbered - redeem - attache - suitcases - lamps - wheelbarrows - mixer - toaster - waffle - clocks - candlesticks - aloud - fussy - babbly - druthers - rockville - ballady - abortions - pregnancies - handing - landscapers - replant - alleys - cultivate - replenished - subside - prune - hosted - correspondents - translating - masks - typeface - piddley - braunsfel - unread - skimming - imperialism - reasserting - hangings - needlepointed - outlined - intricate - geometric - upholster - stiffened - streamers - stiffener - quilted - stamp - foresaw - refrain - expedite - franc - francs - diem - consternation - godfrey - goodies - prin - perforated - metrics - typos - retyping - retypes - encyclopedia - prints - limi - clone - bleep - lionheart - singular - superstar - norris - deserts - bates - floats - animation - retitled - reshot - rout - cosmic - enlightenment - dichotomy - educatable - prodigies - precocious - harks - schoolwork - construct - convey - verbally - stressing - penalizing - eternity - bradley - activists - demonstrating - agreeable - gerrymandered - lipscomb - disservice - pauken - politicking - upmanship - fooled - nationally - applicants - dissolved - shutdown - mathematics - outgo - kidney - positives - spe - sadder - anxieties - detected - dismissal - pard - certainty - handcraft - wreaths - eucalyptus - dowels - goofs - bulch - straying - koala - shapes - wintered - transplanting - leafed - pasture - jungles - rubs - validity - disagrees - guessed - lux - accom - transcontinental - throats - coalition - armaments - congressional - fuss - shiites - fiddling - shaped - topsoil - herb - rollback - spurts - loppers - rotor - dethatch - heave - ingredient - shrip - fettucini - straightens - disconnect - sucking - depended - peeled - chestnuts - burgundy - browned - bruises - retires - swivels - collisions - automation - iaccoca - airbags - sc - spine - harness - nifty - chryslers - aerodynamic - conveyor - magnet - pennsylvanians - brownie - pamphlet - slicks - slot - poundage - instant - wisely - shboom - befriended - ironically - resumed - gymnasium - flooring - chrome - height - pounding - engineered - curbs - gravity - singles - assorted - immobilized - screamed - climbers - limp - matches - ammn - amm - initi - initiation - mishandle - guiding - deregister - tumbling - themself - banding - pis - julie - tense - bundles - childish - kazoo - numb - suffices - rela - weakness - weaknesses - experi - temporaries - retest - retested - rx7 - whatso - seater - narrowed - assessment - thirsty - stint - wanderlust - poker - admiration - miners - roadsides - harvey - uneducated - flaunting - relinquished - strikers - speeded - aerobically - calmed - postnatal - cise - birthing - axle - windstorm - overlooking - embankment - arkan - sweeping - tows - beavers - flee - attitu - flaunt - americanism - slums - coops - inoculation - hungary - requesting - rotely - panamanian - quieted - anticommunist - excesses - playtex - flowery - jaded - comforts - thorn - bureaucratics - dyed - pollen - gah - blowy - rebellions - massacred - protested - diminishing - renegade - launching - strifes - defect - obtaining - globally - demise - glasnost - escalate - reins - intentioned - conveniences - nonfeeling - uphold - unpopularity - geez - honorable - massad - madman - straddle - personalties - rethinking - gesture - miscalculated - liberate - underestimated - miscalculation - huss - assassinate - staking - precedent - bullies - powdered - bombing - khomeini - normalized - sanc - juggle - friction - bookkeeping - earner - kite - idling - spooky - lat - tracing - hitter - shorten - saberhagen - crain - craning - reds - stri - fouls - steinbrenner - bogus - workable - peripheral - notebook - modems - revise - furnishes - deadline - courier - magee - peretti - piercing - fic - soun - illu - illusions - quintupled - flied - nailed - gibbons - exempts - planters - shedding - proj - beau - insi - sunlight - sulked - overmilitarization - disparity - civilization - bigge - trickle - hemisphere - kingsport - masala - sweeter - amaretta - dijon - basil - turgeon - laroute - gastro - lamink - restructured - hardships - subcultures - debates - patronizing - demeaning - midwife - pater - paternity - troit - misunderstood - ranks - aines - peak - olajuwon - dunk - businessman - murchison - bottomless - leanings - assholes - reaganomics - nonexempt - visitations - shuts - hunts - wan - degreed - jenny - outdoorsie - twix - braniff - gossip - hound - host - pause - mic - '''clo' - participators - primal - kicks - tabloids - journalistic - fondly - steeped - repu - unnecessarily - glancing - nod - tonic - unhooking - uncoupling - rotating - rotated - dieting - ourself - wrapping - kip - centrally - sickness - folder - emphasize - miniskirt - evoke - overdo - laces - flounces - adornment - unprofessional - sexist - tailored - vulgar - redford - lewisburg - emblems - grotesque - imag - shoo - padlock - pawn - someway - neatness - psychiatric - hinkleys - accidently - distinguishable - barbed - curi - prayed - reestablish - lengthways - mounds - clumps - southw - slapping - formidable - adcose - exaggeration - harmful - structural - hankering - tick - excalibur - newmarket - edmunds - barnyard - treacherous - journey - climbs - creation - touristing - asbestos - repaint - roughed - energized - bids - bleed - caulk - masonite - bid - varnished - intervene - toppling - descend - latinos - mee - meek - europeans - vocalism - comparably - bitch - moan - compromise - dependence - cartels - mistreating - slovak - catacombs - persecution - idi - amin - oopsy - pood - greets - recouped - evi - burial - countenance - uncanny - litterbox - anointed - buzzer - cheerleaders - courage - cheerleader - precincts - precinct - harmfulness - heroin - forefront - estimation - demolish - cur - tract - scaredy - straits - quieter - comfy - husb - prance - paw - lovable - lapdogs - cockatoos - squawking - som - cower - akita - aq - padding - chewed - wiper - blades - tinkering - rightly - punctured - patched - restores - feminist - amer - undoing - stains - altar - spooked - butterflies - dee - nicaraguan - housed - spiders - repent - evangelical - surpassing - override - rejoice - borrower - bondage - squatters - witchcraft - mayans - incas - worshipped - pyramids - sacrifices - gods - oppressed - warehouses - cumulative - itemizing - scrimp - walkabout - boonies - attribute - eric - dickerson - smi - linebacker - bickering - wen - appropriately - arcade - drafts - archie - manning - nobodies - showi - furious - veg - padded - opposing - satin - bridesmaids - maids - accessibility - harsher - aerostar - stealth - slipping - celicas - perfor - racing - surreal - fulfilled - blair - reformed - gambler - microbiologist - competitions - minnea - dowling - ren - entrances - periphery - paired - deacons - blesses - fugate - proverb - macy - lowe - purebreds - studs - sweetest - sweetheart - breeders - bree - inbreeding - inquisitive - hindquarters - predominate - rex - rexes - rodents - groundhogs - mesh - remains - teetering - refusal - presc - pharmacy - mens - absoluteness - foiled - mere - outlawing - conspicuous - inconspicuous - inappropriately - hunted - squirted - novelty - outdo - raciness - calculators - euphonium - mellow - deejays - grafting - cough - graphs - sponsoring - enhanced - bytes - '128' - callously - deterr - blooded - midsized - porting - attendant - vessels - overbuilding - phe - phenomenally - galant - serviced - 49ers - harbor - niners - kim - redskin - cartoonist - ellicott - basicall - importantly - devaluated - goats - schoolyard - motherhood - overcompensate - destabilize - vying - regroup - standpoints - easterners - couched - proclaim - weaving - dike - plug - unveiling - takers - roomie - slaughtered - sudan - occurrence - shredding - bedding - wrappers - reviving - yosemite - objectors - assigning - examined - idealistic - pakistan - algeria - blinking - manipulations - insofar - clowns - partition - dividers - baloney - daylilies - orchid - closes - velvety - multiplied - weeded - lilies - azalea - glories - ned - skeldon - ojeda - hubie - offerman - prediction - cecil - orel - hershiser - darrell - interleague - introduce - anoth - homey - randi - dawdle - steamy - lawrence - mae - rambo - hogan - associates - realist - garments - vogues - knits - garment - loopers - piping - cording - twe - sewn - exceptional - bev - reap - sow - establishes - pardons - lust - incest - swiftly - integral - reeks - expediting - compunction - appropr - sins - stoning - clog - streamlining - extremism - bubble - habitat - humanity - inefficient - preconceived - notions - delivering - spiraling - conservatism - hampers - patchwork - unflattering - autobiographies - randolph - descriptive - affluents - tale - binge - bookl - francis - momentarily - connecting - sigh - chowperd - snowbirds - spawned - contend - melts - kitty - apso - panic - preserve - campsites - twang - pfeiffer - rim - glenrose - latrines - gemini - genocide - hmong - unsure - slash - intercultural - dissimilated - conceptualize - slavery - linguist - withholding - worthless - cambodians - graft - falk - drugstore - coils - mosquito - crickets - foamy - pristine - froth - bobber - reeling - saturated - soggy - damp - claustrophobia - terrify - spanking - revamping - lev - plaques - stenciling - cushions - impeme - interface - janitor - reams - dalmarva - deinking - contaminate - wastebaskets - publicly - yucky - interven - occupying - schwartz - iranians - egyptians - kane - matinees - burton - batman - glover - kline - dennehe - goldblum - clease - arquett - untouchables - graffiti - broderick - marlon - parody - tinman - humphrey - bogart - maltese - falcon - quinn - rainman - okie - homeboys - optimism - reconstruction - redefining - trait - longhorns - randal - streaky - touted - sentimental - instability - indoctrination - marines - ak - 47s - cubans - capturing - nicaraguans - crate - patrice - lamumba - teachings - extremist - gen - irregardless - albania - revolts - psychos - chiefs - staffs - uprisings - squadrons - afghanistan - boils - cen - berlin - wat - steppers - soles - reword - indi - environmentalism - ruther - environmentally - blasphemy - acutely - bureaucracies - relegated - heartache - grudge - succeeding - parish - policed - comforting - reminders - pyrex - teaspoon - blackened - skewers - basin - chefs - clams - instinctual - demographically - democratically - proposition - proposals - revolted - obligatory - considers - australians - looses - leas - denies - hamilt - passionate - democ - candi - antigovernment - misspending - bastards - inte - hundredths - sixteenths - mismatch - clamps - meters - drams - perfume - machinist - indic - indicators - micrometer - finders - nondecimal - halves - listing - beverages - whiskey - ploy - conversant - milling - measu - calipers - pliers - milliliter - drilling - hundre - lawy - strangle - neiman - marcus - outgrowing - necked - embellished - dre - presentable - outrageously - busters - campinas - oursel - asses - orient - optimist - jungle - resonates - profound - bullying - dreamed - wildest - semantics - transcribes - onl - guzzlers - fours - threes - transverse - mounted - shoved - serpentine - stickers - reinstalled - nozzle - stroking - groves - surinam - natio - internationally - amaco - mobil - rectified - inward - hateful - kilom - thumbnail - kilogram - britain - adopting - precisely - grams - sync - orchestrate - unfamiliar - toting - stroganoff - allendale - waldwick - adirondacks - pancakes - outgrew - beth - knowl - roanoke - randall - duplicated - gamble - ditka - nate - newton - branded - outlaws - webster - cocky - lambert - bloopers - receivers - tackled - necks - fav - entities - overburdened - fairness - pondsy - invu - invulnerable - belongs - electing - politic - floored - maryl - nurture - credits - ukrainian - scallop - buns - batter - bourguignonne - grudgingly - pinch - reversal - beck - subsidize - bennington - liber - refinement - etiquette - advises - renaissance - bowdoin - bucknell - lectures - confirm - guitarist - yale - minoring - irrevocable - irrespective - clinical - pathologist - kayla - bachelors - profess - traced - rung - maladjusted - compelling - distaste - resp - beret - uzis - disorderly - unc - unconcealed - matched - vibes - clearest - confi - junkins - mandated - prompted - tobacco - bandwagon - cour - tricked - syst - maintenances - scoop - fetch - pooper - scooper - colombia - reek - kindhearted - nixed - asthma - outgrown - misclass - stately - sunk - furnished - swoop - situational - punches - momentum - lockheed - arose - courageous - accredita - accreditation - keying - adjacent - refine - classified - chemicalwise - refining - strean - stillwater - stephenville - toxins - bacterial - bleaching - sinked - australian - dominique - neek - wimp - feline - unconditionally - feisty - snuggle - investigate - beaner - wadded - fixture - decor - panty - garb - polyesters - wools - neatly - layerings - eyesore - mended - ironed - compose - upgrading - plummeted - acro - daltons - wholly - understands - disadvantaged - winnowed - structures - casing - connectors - workmanship - hal - fluke - highlands - patronage - cranberry - pou - lobsters - billboard - steams - culinary - adventurer - franchised - shacks - shoney - reliably - communercation - compe - renditions - organizer - defeat - registration - dragginess - headache - draggy - locker - sauna - motiv - agony - dictatorship - uganda - mils - distances - centigrade - celsius - metropolitans - heeley - wentworth - differential - microns - whatev - responded - favorably - bagged - ecological - prod - additives - pickups - hangers - cupboards - fountain - faucet - exceeding - decomposed - shocker - bizmart - upseted - taxwise - toilets - smashing - soaker - sheltered - disapp - rankled - cheerfully - outermost - inland - curving - ventura - buildi - overflows - anaheim - simi - meanings - rhymed - balti - strayed - kabob - breakfasts - galunkies - marsh - pierogies - grandparent - newarth - cholest - margarine - margarines - kebabs - utensils - goulashes - juices - sealed - galore - finer - drains - shakers - journalist - crux - remo - appease - pob - patr - paro - paroles - partake - traumatizing - viaducts - ceremonies - dozens - pageants - riveted - confuses - thrilling - producers - tony - dorsett - hershel - rationalized - cinemax - correspondence - '30' - cod - reso - repossessed - 635's - looper - ramblers - brook - dealie - diversion - chevys - nex - v8 - carburetors - gingerly - yanked - tinkerer - evaporator - rubbing - testers - diagnostic - tester - diagnostics - carriage - chilton - multiplying - lincolns - tremend - leaking - condenser - busted - haas - ovolacto - lard - nutrient - lactose - synthesize - slough - utilizing - rids - utili - paperback - novelization - lucas - freder - brink - feinstein - fairfax - deaf - insulate - scrubby - pecan - paralegals - clears - interference - surplus - tariffs - mon - apprentices - advisable - journeyman - exporting - imminent - oodles - salutatorian - prided - welcom - welcoming - tol - resentful - zales - spiegel - hurried - circulating - walrus - porpoises - mainland - sanctuary - whooping - cranes - pelicans - antone - alamo - brewery - caverns - uncourteous - actua - irritant - hullabaloo - stockholders - inebriated - unsafe - surgeries - subsidizing - quack - waiveable - refresh - somewh - willy - horton - consolation - microscopic - kneecap - curtailed - forming - bison - weakening - strengthening - '401' - continuation - telephones - handbook - badger - showering - physiological - advan - fledgling - bikers - bicyclist - knocks - coronary - artery - decreases - embark - motivating - disevered - knobby - vaulted - woodhollow - villa - secluded - joking - sellers - coworker - doorstep - housebroken - playful - gastrointestinal - beagle - romping - waters - retrieve - paddled - unrequir - degenerating - rosebud - sociable - smu - synopsis - furrier - judgement - distribution - wrongfully - penitentiary - sitt - caravans - lending - simulation - resemble - adroit - oddity - moonlighting - strengthwise - divulging - tarnished - faye - socialist - undone - inefficiency - platform - lieu - mamma - disruptive - brow - browbeat - wist - mugging - faceless - persuadable - thunderbirds - topaz - camaro - reim - dominated - wrenches - eas - champ - premeditate - premeditatively - stiffening - lessening - retarded - pleaded - phrased - dayers - correctness - promoting - niceness - vouch - waterfall - busch - blacksburg - portsmith - williamsburg - epcot - temp - buccaneers - assessing - opp - benef - wadley - milestone - tainted - snickered - examine - aircraft - astound - pusher - circularly - chairman - judy - perturbed - promotions - programmed - brightens - hallmark - servi - seizures - brighten - tonya - sneaks - rainstorm - breezes - temperate - promises - westernize - intact - extensly - vely - woodward - projected - commanders - colin - powell - embargo - misread - earliest - disarray - hopeful - prosecute - stature - statesman - foreseeable - selves - volatile - retile - bathtubs - scouter - drippy - panes - putty - gazoo - pes - pesticides - bulging - chlorinating - coronarys - diets - quadrupled - ingestion - clogging - primates - regimen - kenneth - innovator - inactivity - neurosurgeon - strictest - idiots - stan - destruction - symbolism - evokes - lynched - modified - possess - condone - adamantly - symbolizes - circum - satisfactory - budg - spartan - frugally - jordache - nonessential - victory - cliche - enactment - adjourned - mot - expending - reasoning - allege - myriad - departure - restocked - guided - unconstitutional - reforms - gard - arranging - orig - florist - slowdown - runners - geraniums - coleus - vinca - thuringiansis - caterpillars - expands - unlicensed - brittle - excelled - wei - denotes - tension - bicep - tricep - instructing - grindstone - hovering - configuration - blended - muscular - dystrophy - documentaries - paroe - planner - uruguay - concepts - yuppies - legislated - dynamics - auditing - rev - revenues - millspec - operates - elevens - hammers - federalized - ci - emphas - identi - americard - adios - commu - demeanor - announcement - calcutta - foreigner - worldliness - attributed - chuckle - pogo - mourn - tolerated - drumming - scrunch - glamor - sprigs - ricksun - tender - lamp - ashes - overcame - nondescript - damned - hierarchy - restructuring - feminism - boomer - creep - rapidity - electroni - luncheon - existent - consulted - alters - stamina - goi - denying - revolve - entrusting - omniscious - omniscipotent - alec - precedes - daders - shrinking - worthy - whate - responses - spoils - flashbacks - flashback - fidgety - discriminate - pertaining - distraction - males - ital - entree - sagar - presby - kimonos - grishman - bavarian - constricted - putrid - folley - tableclo - crayons - disintegration - flickers - prevalence - excusing - signals - mechanized - requiring - antipasta - stuffing - poached - kernel - spinach - wilson - beeping - bakes - frosting - frostings - chatting - mentor - adversaries - manuscript - harried - interruptions - feedback - videotaping - adopts - twelfth - tangible - overseen - alternately - ilk - phonic - pistons - snooty - telev - leno - carvey - deduce - cros - wheeled - porked - termites - chess - rearrange - hisself - bathtub - prettier - rewired - shorting - surges - famili - rearranging - shuffle - pane - breakers - valve - drips - walkway - splash - vein - downfall - yuppiedom - restructure - biologically - physiologically - wonderment - swooshed - viva - talents - mongst - jealousy - computerizing - pecking - punched - slightest - epidemiological - guesswork - transmitted - semen - illegitimate - exploded - stepchildren - socio - radios - faxes - sensors - stalk - jurisdiction - outnumber - solicitation - prostitution - unlocked - fallout - probability - indentured - servitude - vigilantes - victimless - ridicul - auctioning - bidding - patios - insecticide - diazinon - carefu - deb - wallpa - stagger - renovator - sheeting - resilient - stairway - sworn - rud - veto - bout - yea - dams - droughts - reservoirs - poole - reflected - counteract - learners - genius - perspiration - diagnose - predisposition - flashing - drowsy - facilitators - manipulated - burdening - toot - weekdays - racket - drawer - dennison - derby - siphon - cu - uba - tailgate - deterrents - publishers - poisons - ergotisms - fungus - gender - confidential - tide - vatted - archeology - shoelace - promising - upcoming - reprinting - thurber - hundredth - riveting - viorst - sci - revol - revolves - shoelaces - binds - melody - workbooks - workbook - geometry - cypress - greece - irrelevant - tortola - gorda - infusion - ethnicity - familial - acclimate - retaining - latino - continentals - roberto - unprepared - vociferous - attain - imported - territorialism - horns - encompass - handcrafts - wreath - phillips - ranching - contemplating - stabilize - occupies - baseline - flextime - grading - scribble - sensitivities - akin - minimized - prematurely - dumper - geria - empathize - tandem - providers - prohibitive - fantastically - moslem - surro - surrogate - regretful - arou - swims - nationals - quarries - tumbled - avail - denmark - appliqued - eraser - maturing - rite - unmarried - aquariums - zoos - paternal - traditions - disintegrated - trinket - sociologist - multigeneration - eightch - scorer - rebounders - assists - thown - laker - marriott - spittering - sputtering - swimsuit - mavs - favored - endorsements - prospects - stanley - underclassmen - myrna - curfew - fiscally - jockey - catton - dives - cayman - itinerary - viet - doves - abnormal - puppet - heartbeats - reviewing - bocket - hannibal - lector - fascin - luster - attractiveness - originality - pinpoint - lavon - upstream - sever - benders - grea - musky - perches - salami - sonar - maneuver - charter - suntan - hobbyist - styled - convertibles - sevi - welded - welding - sunroof - soured - contention - jags - contractors - bends - enthused - enthusi - ap - vending - cartilage - glanced - fenced - econ - repeatable - bundy - exe - strauss - punish - electrocute - problematic - candid - fraud - intangible - reinstate - mario - cuomo - legislatures - molested - incarcerate - sylvan - reenacted - paltry - polishing - lotions - meniar - cringes - thrifty - flier - psycholinguistics - ivory - godsend - pathe - willow - cana - bacally - obese - reimburses - collared - widget - bramalea - 401k - weeny - nonex - censored - bombarding - dramatize - statues - weld - epoxy - resin - shattered - statue - cricket - thatches - thatched - vapors - stained - lacquered - tung - fanatical - pills - hem - sweating - bulge - wrinkles - vices - sha - germ - ecru - undercoat - peachy - steamers - mottled - grey - maroon - vivid - turquoise - coral - renovating - hallucinations - cloths - slop - soluble - tricks - skimp - tediously - rewallpaper - racks - metlife - worki - workm - inconsistencies - amateurs - footballs - fencing - earl - princeton - pacers - subminimum - administered - reluctant - poured - chiropractor - cautious - janitorial - rafael - septien - applicant - eduardo - mana - sai - mafia - newcomers - ellis - redoing - comm - elitist - concise - rathers - yous - segregate - wretched - horrid - shortchanged - brokaw - demi - ringwald - sixteenth - doogie - howser - freckly - ferris - moustache - reeve - dreaming - ooze - bride - pretended - occupational - exemption - judiciously - incidental - figuratively - westport - bradford - indirectly - clair - dayt - baldwin - bebble - foreclosed - rider - homestead - creeping - livable - retrial - retry - wond - seeded - raping - choking - shotcross - televised - vendettas - trialed - revoted - annihilated - enterprises - misgivings - quiz - sprint - capture - extending - endowment - joes - alumni - splits - governme - faired - undertaken - deficiency - dilly - sangre - cristos - wichitas - lakefront - pinon - naturalist - stools - binding - component - carol - playroom - realtors - dominantly - alleyways - shifting - popping - bangla - hugo - bedroo - barometric - borger - funnel - pillowy - radar - veer - swirl - junes - budding - crimp - scorch - distracting - heats - therapeutic - northe - mayer - denison - purify - purifying - philodendron - acc - divert - blurred - fluoro - fluorocarbons - provoking - brandeis - fift - readings - iliad - mythology - choo - scientifically - grumbled - unpleasant - imparting - cluster - vicarious - compromised - profiles - telemarketeers - outcry - cited - crashes - eroded - erosion - lockers - latitudes - motorists - liens - representing - landlo - dakotas - alarmed - exclusion - parameters - interpreted - adoptive - carting - arresting - interval - orwell - tay - unusually - leathery - venture - wea - pebbles - drainage - deceptive - fiend - wrinkled - oils - fishermen - tricycles - kiddie - wilds - calves - heifer - jea - flared - hep - themsel - continuum - astute - propagate - raccoon - filleted - livestock - whiskers - growling - widen - weaker - ticker - pentagon - whomever - nutrisweet - bitterness - ancient - vets - complicate - preregister - registrations - eligibility - preceded - theodore - upward - rascals - stinks - precluded - gullibility - democracies - redistricting - subsidizes - lineman - spilled - camouflage - booby - traps - apocalypse - influx - surge - buckle - overcome - castaways - depicting - dudley - bloody - olden - realism - pioneer - worship - chri - videotapes - shrunk - eastwood - showy - westerns - cursed - pointy - melissa - gilbert - idol - verse - shep - immemorial - misdemeanor - waving - prevail - appoint - bailiffs - clerk - verbalize - tripled - cameras - reporters - prosecutors - outweighs - prosecuted - sump - sewage - towed - aut - trad - marina - hears - acclaim - sequels - earle - recluse - essays - qu - conclusions - photographers - arro - gorillas - sloth - fascinates - bottoming - landers - tycoon - bloomed - fade - spiky - bl - hya - colossians - thistles - landscaper - junipers - puny - foliage - iris - fuzzies - wildflower - insists - camcorder - pastime - muggings - grates - claustrophobic - tendencies - deviant - anguished - cleaners - meridian - inlaws - sneakers - jordans - brains - caps - videoed - repeated - repetition - termed - allowable - purs - discretion - freely - altering - preparations - namely - minuses - factored - competitor - trevino - influencing - wholesome - exclamations - sportsman - phooey - applicator - nurseryman - elm - circumference - stubs - propelled - pest - sawed - rot - rotter - autobiography - liquidating - emulating - compu - ause - accomplishing - spacings - formattings - insert - reset - rewrite - typesetting - typeset - spaces - compatibles - adhere - brochco - hillstreet - finale - nudity - delight - shudder - flabby - telemarketing - classification - lotteries - kalamazoo - sinus - carton - stakes - mounts - hub - airports - altitudes - intermediate - simp - fluorides - guerrilla - marched - lied - expire - xerox - modify - soo - terminals - insur - breakable - hangouts - haunts - southerners - rudest - bartenders - wee - ferrings - taiwanese - jambalaya - wowed - univerisity - arias - casks - hospitalization - hos - crowns - fluctuate - celebr - inordinate - axe - newscast - js - recap - sensationalize - sensationalized - asinine - puzzle - precede - preclu - preclude - stretches - wakes - depreciate - tru - unibody - granddaughters - gol - wagging - trainers - airheaded - yappy - dignified - culling - tamper - innately - tractable - selectively - culled - belgian - distinct - breeds - kennel - translates - shit - unreliable - handlers - indiscriminate - breeder - handler - bab - doorbell - stipulation - laundromat - grasslands - surrounds - betty - parades - palestine - id - peg - catalyst - palestinian - kindest - abounding - kindness - godly - compassion - humanness - mandarin - oranges - grape - fridge - gelatin - carrot - eggo - waffles - adolph - breakfa - craftsmanship - opt - stanza - glitters - oasis - warp - clearinghouse - consolidating - salespers - tel - compan - announcing - telepho - discard - episodes - cramp - vela - someb - thirtysomething - mclaughlin - yogi - loner - comedian - cantankerous - echoed - withdrawal - grumpy - stooges - mouthiest - kiddos - mouthy - touristy - besieged - defini - badgering - galapagos - sidney - adelaide - chengdu - quingdao - retreat - flights - rita - oah - destitute - ree - snorkeling - prawns - milli - arsenal - traffi - bennett - gangsters - corp - arr - pris - crowding - statutory - verbalizing - stints - citing - intensity - limbaugh - lamenting - microwaved - healthiest - teases - accuses - deprivation - nourishing - evaporated - broil - marinara - grapefruit - starch - pleasurable - kalli - cater - rodolfo - royal - maitre - pilgrim - unnatural - lookout - arby - wastes - reduces - speedup - healthily - sup - quoting - disputes - commas - reevaluated - inma - blinded - restitution - willfully - contradictory - caveman - coleslaw - tablecloths - bakeries - regretted - purch - pastrami - '''oeuvre' - complicat - sustain - addressing - fellowship - prefers - troublesome - camels - beatle - orchestration - okeydoke - statler - stated - debut - investigating - bootstraps - baptisms - clergy - imprisoned - confiscated - bourgeoisie - commonality - recanting - courtyard - motions - commandant - escaped - perseverance - bureauc - persecuted - dab - chorus - mothering - rerate - precluding - analogy - spade - marketeer - warring - peacefully - trampling - fantas - crabby - coated - willis - sarandon - gena - vatican - paradeso - befriends - friendship - califor - drying - nippy - mucky - thunderstormed - shoveling - michelle - lan - footnoting - retype - appetizer - criterion - alumnae - heavyset - poignant - subtleties - gore - warlock - omelet - characterizing - conceited - portay - goer - prosecu - cutor - struggles - flowing - ir - slicing - locust - omar - swallowed - redwood - brownstone - caulking - myneer - spacious - inhaled - revived - airway - revive - sol - dignity - luxurious - blossoming - brazos - sleeps - purdis - sandlin - quake - mak - caramelized - customary - orchard - accor - ply - crier - waistline - jewels - earhart - thurow - perceptive - pinpointing - flimflam - hughes - assis - plod - rereading - ditched - findings - bonfire - vanities - temporally - burdened - cafeterias - linen - napkins - duplexes - hodgkin - undergoing - interim - constancy - sufficiently - farfetched - wheeler - cock - slowing - pals - unjudgmental - homy - reprimand - secrets - brooksville - campuses - eyesight - enrichment - schooled - rejection - proceed - herman - foreigners - polluter - rigs - busses - incinerate - pollutant - untold - cockroach - accelerated - nutrients - sponges - tending - newark - vividly - entrance - biggies - consumable - calculation - physiology - snowball - dieters - robbers - trendsetters - correspond - circulates - centralize - descendancy - closeness - caliber - differentiate - stevens - shippensburg - specializes - novelist - intricately - johann - sebastian - copyright - compile - poems - baudelaire - jennie - abridged - reunited - rituals - equated - communion - repetitively - vernon - salmonella - silverware - caterer - biographer - obituaries - succeeded - vigor - bulletins - chorals - beginner - violinist - percussion - accompany - choruses - audition - verdi - hermit - vacationed - anonymous - whirlwinded - effortlessly - elicited - unwound - guadalupe - penetrates - alda - burt - reynolds - vignettes - dinosaurs - robots - satur - sniping - howling - gleason - snippets - idle - workshop - gra - dividing - moses - hab - scavenge - conserve - indulgent - exceptions - contemplate - permitting - calming - aboard - docks - cozumel - ocho - rios - jurisdictions - tapping - lynda - slandered - landslide - thornburg - landslided - characteristically - savory - petition - resisted - dirtier - muddier - sensibilities - transpired - nixon - edible - accumulating - elbow - cho - grandes - refried - katy - avocados - avocado - coolwhip - horseshoes - auctions - sidelines - loosely - socioeconomic - tracked - pressured - vandalism - outward - custodial - skyline - irritable - unattended - environments - dunked - compaq - honk - prodigy - mush - shareware - paradox - shooter - crawford - andrew - webber - paranoid - unlucky - anonymously - competency - wholesale - lon - exa - beginnings - kuenzer - rebelled - debtor - angela - eyeglasses - indiv - staffing - examines - optometrist - ophthalmologist - extractions - publication - unfeasible - bettle - orthodontal - outsor - roo - suite - scattering - leniency - underhanded - perpetrator - injustices - wherein - dist - unsavory - elimi - rarity - chairmen - ministers - congregations - catholicism - forthright - disorders - soothe - exertion - characteristic - cram - guarded - sacrificing - mediators - interpersonal - mediator - doable - devised - stimulations - goof - whipping - nickie - snail - hards - futuristically - subjective - harmony - impregnated - challenges - motherly - competent - militaristic - colonel - infantry - embrey - reynold - riddle - aeronautical - pratt - whitney - daphne - dictated - qualifying - rhodes - scholars - homogeneous - realities - socialization - insular - sheriffs - evict - continuances - abundantly - appealing - retried - lowers - percep - gypped - slicker - bruno - kirby - chauvinistic - punching - correlations - opium - dens - weakened - duress - drunken - induced - legalized - quantify - deg - safeguards - fraction - oath - sensings - sentencings - pertains - introduction - accordance - clark - parachute - presiding - reorganizing - sweeper - univerty - versity - lakeway - expose - jun - bethany - unfocused - midst - instigated - marrie - remained - tomorr - whitmore - arbor - slushy - sled - icy - lingering - exodus - eternally - snowfall - grassy - sachse - goddard - stickler - mulcher - seni - antisocial - adapting - deteriorates - glimpse - unwilling - appalachia - stopgap - rougher - strategic - fails - worded - peoria - dropouts - insecure - scaring - stylish - interpretive - fathom - expanding - wean - referrals - advisory - myrtle - barricaded - blackberry - defeats - enchila - boiled - toasted - calorie - hereditary - headstart - preschooler - tacos - tamales - romanian - backfires - waiters - batty - momo - colter - pas - campari - adventured - souper - prey - backlogged - patrolled - frus - imme - dialogue - aisles - cornball - overacted - applauding - waterskiing - ashley - jamie - warner - deanna - cheeks - backdraft - berry - raspberries - shaved - entrees - accompaniments - gershwin - puree - antipollution - gases - accumulates - groundwater - fusion - optimistic - pessimistic - reconvicted - sicko - merciful - cannibalism - hunch - coordinate - communicable - memos - orchestral - fiddler - oboe - classy - corresponds - christening - elijah - marches - poinsettias - bouncy - haunting - conventional - disposal - odors - throwaway - ditches - drinkers - churn - shipwrecked - explodes - maims - sylvester - mermaid - outfitted - crushing - hobnail - phobia - bifocers - trifocals - mccalls - byte - afflicted - exceeded - antibody - realm - telethons - doling - receives - ociety - aesthetic - enhancing - frightens - dahmer - burglary - enquirer - cranks - fuzz - repala - sil - shiny - heartbeat - spins - rainbow - packaged - trespass - tidbit - refrozen - cheesecakes - refreeze - liabilities - wrecks - tattoos - speedboats - chambers - afloat - maneuvers - stormy - nibble - rope - entice - sneaking - paged - favo - flyer - shaky - iffy - sentra - subdued - urinalysis - bums - overdress - overkill - businesslike - nylons - nutrisystem - dreaded - toppers - ceramics - seamstress - cramped - negligent - initiates - squeegees - newscasters - postponed - a1 - alfredo - clowning - circuits - sfuzzi - copeland - transported - thirteenth - wobbly - bookends - jug - viscosity - saver - brushed - tooken - turpentine - towels - shi - jul - shindig - boulevard - maizeland - skier - minnie - canaveral - reschedule - hilton - eighteenth - raton - '287' - '70' - broadmoor - breckenridge - trinidad - '25' - hexpired - disheartening - elders - albertson - limbs - sodas - arranged - brookshires - pickle - piles - emporium - cinch - consolidate - alluring - cupcake - henpecked - instilled - gatherings - subtracts - debits - incidentals - scotch - igloos - strateg - strategically - incurred - cashes - reunio - entryway - roaming - ris - risen - appraisal - disoriented - blissful - unexpectedly - cockroaches - complacent - bitterly - polling - campaigning - napping - structuring - digested - perfumes - geese - peaked - balloon - canyons - weatherwise - sleet - maps - sy - pearls - loafers - distinguishes - '1200' - whereby - extract - generates - bursts - navc - blazey - obscure - promotes - goe - refrigerate - tartness - raspberry - connoisseur - tastings - mesina - exorbitant - kaiser - mccullum - catastrophic - implants - transplants - howe - dislikes - chopin - expresses - discussions - chords - panicking - kielbasa - bak - ravioli - reggae - twangy - agr - cackle - atteck - scholar - adolf - imaginative - sty - antiques - winnie - pooh - grimm - fairy - tales - gentlest - jewel - restroom - spitz - extravagant - overpass - littering - timers - tans - mauve - distantly - swap - bichons - barks - hind - origina - bernards - lega - belittling - liberals - suppos - tcat - examination - clicker - screens - carpooled - bolivia - sundresses - polyester - overheat - sweltering - newborn - pleats - absent - strep - bookkeeper - partitions - duality - extenuating - newsworthy - leafing - mccall - subscribing - gott - newsy - putterer - caladiums - hardened - semitropical - carrollton - architecture - hairless - coon - manx - tame - ships - folklore - faint - chincoteague - burgers - teriyaki - shakes - grandy - fend - snowballed - inconveniences - woozy - sys - squirt - flicking - whales - showtime - adder - dragon - rosa - sorrento - dine - mah - jongg - yearbook - imprinted - depreciated - cribs - bestes - giver - enables - ly - confining - bronco - moder - cowb - cheer - schnauzers - dachshund - starved - curled - skittish - spaying - belon - severing - sr - suicidal - craziness - mistrust - lacks - poland - weeding - mankind - uninsurable - medcenter - hearings - overstaffed - mortgages - outlaid - intergovernmental - plugging - indepth - capsize - sensationalism - blase - sel - sadist - oleo - oregano - ight - semolina - absorbs - vulnerable - align - bombings - aligned - tensions - forceful - cr - expedited - deserving - mandate - grassroots - introspective - schoo - visitation - advantaged - energies - tiananmen - custodians - immigrated - brightest - burst - lanes - winterized - yourselfer - representatives - homemaking - accessed - uzi - flyswatter - utilized - acquiring - illicit - gatlinburg - cosa - hiked - ardmore - cloud - ledges - hyatt - gully - trench - tenkiller - enlisting - seductive - pinion - totality - revealed - legislat - abrupt - ruder - arrives - '1' - microcomputers - gateway - apollo - faulkner - emblem - candice - bergen - ghosts - haunted - dianetics - gibberish - broudigan - journeys - mailman - karl - malone - hacking - fillmont - generically - cyclist - techy - hackers - davy - crockett - sailor - sailed - mck - equalize - semiretired - dementia - insisted - rejuvenating - coldest - cus - celltrex - jeri - maceo - rampages - cocoons - occa - uniqueness - winfrey - prebuilt - workbench - subcontracted - subbed - scramble - championships - peacefulness - birdie - quadruple - whizzing - spectators - scrambles - kerr - mcgee - infrared - suffice - notifies - supplying - angles - anticrime - outings - sec - arlene - lister - poked - togethers - dearly - swoosh - skate - begonias - destruct - concessions - drizzly - huddled - cages - fanatics - straightforward - piston - oiling - altog - reelection - provisional - locate - incomewise - ifs - ands - buts - '4' - hel - discontinue - narrowing - nitty - gritty - faithful - shoppers - yourselves - straighten - stems - relating - supporters - antisupporters - contras - dictator - fascist - siesta - mouths - reflecting - dabble - chalk - chesapeake - suspended - ath - tutored - goofing - piney - diameter - calmness - outwitting - shiners - infla - inflatable - raft - cottonmouth - coves - walkie - talkies - handcrafted - semifixed - automated - crafted - stateside - adage - advising - embarrassment - jessie - helms - intelligently - mistreated - papa - doc - tyrant - puberty - tibby - perfumed - legendary - brookies - rainbows - accommodated - specialists - replanted - rods - norfolk - portsmouth - hikes - pests - chaperon - calloway - variegated - beetles - borderline - zaps - ligustrum - apron - gourds - bolton - symphonies - caller - sax - houseful - crabs - sensation - tingling - oddball - waitressing - crunches - relevance - federally - hogs - barns - revealing - horticultural - groundskeepers - dormant - centipede - crops - behold - cuttings - mit - diamante - boozier - passengers - shining - becca - nina - palmer - remarrying - griffins - crackers - burritos - debone - notoriety - jurisprudence - thoroughfare - sleeper - herd - cima - savages - plywood - beams - migrate - undercover - barbiturates - codeine - drixoral - unsolved - mcgillis - weeknights - physicist - facet - hurst - greensboro - celebrities - repeaters - zealand - statistically - outbound - astronomy - gallagher - pictured - betters - hubble - telescope - planets - habitable - backers - zippers - snaps - dull - pretechnology - shelled - duplicates - regulat - regulators - regulator - lever - pulley - chev - oi - resur - ourse - hesitating - russ - noons - flaw - gasket - fury - exceptionally - surfaced - repeatedly - escapes - pragmatic - consti - opponents - laural - squeaked - andrews - clou - crept - firewood - maples - dogwoods - lowell - unu - periodicals - historic - interes - lawful - scanners - attempted - thoroughness - mag - announcers - tele - ivan - rodriguez - ballplayers - routing - enthusiast - ducted - gettin - brussels - sprouts - kale - pony - grazing - pears - extinguishers - depleter - extinguisher - timed - contaminants - probe - ionization - miller - temptation - squareness - buckles - fea - lettering - vin - vinyl - balloons - recy - commented - nudge - decomposable - flips - emptying - regressive - defen - kate - curves - raphael - atchafalaya - sausa - alvarez - applebee - nonstructured - torture - nur - fai - glorious - esoteric - producer - hairspray - batch - partic - preteen - unlikely - dynamic - raunchy - horrifyingly - poppins - differed - eclipses - belie - lebaron - peeling - gears - oklahoman - beatings - proy - condoms - stupidity - truthful - faded - marker - reflective - adheres - sealing - dings - variance - prop - pressuring - primed - bragging - sickening - shitty - drags - burners - putts - teeing - lodging - dialers - provision - specify - dialing - prised - weir - overloads - hoosiers - crossing - delancey - thrillers - backless - ani - nick - nite - dragnet - bald - marlo - collier - brigham - estonia - agriculture - foodwise - rioting - secede - proportionately - hinders - tubs - brougham - trunks - shy - gadgetry - '6' - interiors - veered - revolving - reverting - envy - exhausts - hairy - gettingest - daught - bertinelli - dysfunctional - childfaring - miracles - bette - midler - redbook - previewing - postage - unauthorized - mayors - discredit - ps - productions - chariots - gladiator - fluent - batches - subtitle - subtitled - gems - supernatural - accusing - migh - mondays - thrust - lifters - drills - rocking - referee - abrasive - maintaining - posed - refusing - coins - conversions - dormitory - unused - ramp - hydraulic - disposer - escapement - incorporating - leonard - nimoy - trekkie - luke - spock - mccoy - admiral - hobbled - vulcans - doohan - scotty - addams - averaging - decrease - munich - snows - chattanooga - lori - coldness - membered - unemp - fetus - complications - slobs - equation - nameless - malformed - sincere - deliberations - dismissed - indicted - revenge - subsequent - provoked - provocation - qualifies - mitigating - contender - linguini - hawaiian - luau - angie - shellfish - clam - cheeses - nachos - resurrection - lutheran - scanned - cooperating - toss - inmate - interpretation - blanks - executioner - bamorghini - skyhawk - dominican - nantes - castles - vineyard - consignment - goodwill - crushes - sewer - res - unoccupied - assassinated - menace - perspec - relativity - vantage - weighted - reflect - subservient - integration - ith - frien - drudgery - montpe - mont - monteplier - montpelier - everett - yack - tromping - unlimited - wedge - fairway - flus - startling - '286' - turret - scien - simulators - plugged - upgrades - custer - '386' - trenches - trencher - stunt - cul - sac - rearranged - clancy - novell - netware - ark - ladonna - peck - bourne - ultimatum - enveloped - amsterdam - holland - harpsichordist - forte - warrington - cheating - harry - heroic - mayfield - corrupts - lig - hatteras - imaging - legalese - himsnelf - koop - scarcity - highland - jogs - gyms - inequities - stimulate - deductor - bentsen - drunks - lafferty - infringe - snuffed - snuff - compares - gilmore - accomplishes - william - thrice - mating - sows - suckling - hernia - carcass - cloves - pineapples - cranberries - hominy - barb - automatics - avis - crashed - lens - porsche - turbo - carrera - mys - mushrooming - percentagewise - folderol - lifeguard - jarring - flui - watchers - pokes - blamed - ceases - intravenous - cell - quests - subsidies - slashed - entitlement - trades - beauticians - unending - spiral - consumers - unf - ailments - magerick - celtic - transplanted - rolando - harper - plaint - straighter - dayer - plumbed - bolted - logan - accredited - professorship - distressing - fiel - treasury - refunds - halt - spying - scaled - loading - challenger - stat - mirv - roomy - cargo - recommends - volvos - wagons - conscientiously - emiss - hypothesize - muncie - terre - haute - triggering - verify - drivable - emerges - overgrazed - reclaimed - prettiest - palm - paintbrush - septic - hummingbirds - hummingbird - pooped - annuals - countrified - supermarket - coaster - afterburners - gliding - oomph - subs - gambled - insulating - spec - verandas - genes - drapes - guppies - platies - fishies - glacier - playgrounds - wilderness - scaries - rayburn - curling - nominal - fulfill - synagogue - geriatrics - app - degenerative - communiky - enhance - assist - text - biogra - daniels - prince - phillip - criticizing - miniseries - scarlett - spectacular - torrents - ligh - horizontally - arid - crisp - sleigh - brighton - springtime - skie - hammered - subtly - brianna - lib - submerged - loosening - leaks - tar - gravel - plastered - drywalled - plastering - terri - exasperating - swelling - squirming - swells - shrinks - retains - highlight - captive - legos - technic - lego - stare - engagements - sousa - refreshments - rehearsal - donations - municipal - conduct - nitny - altoona - lockhaven - nighttimes - ama - emerson - maceboast - circuitry - vacationer - wausau - unduly - sunglasses - grip - durable - faulty - recliner - pinto - sequoias - redwoods - bryce - tetons - sequoia - driveways - snowmen - snowballs - marketed - acceleration - suspension - lumbar - sma - bur - skyrocketing - govern - exclude - ballgame - warrant - rounds - brats - eff - nativity - facings - casings - relieve - strase - reliever - relieving - sander - cabinet - equipments - dado - rotary - sicknesses - bryan - mamas - packards - solburns - frown - niggardly - chintzy - megs - mirroring - epidemic - immunizations - rays - mumps - rubella - inaccuracy - defined - issued - hypocritical - stings - laundering - contr - governed - discomfort - stea - holster - spontaneous - headquarters - bitterest - fluctuations - texts - doen - rosie - '''neil' - thomases - trimmer - clump - tithing - homeowner - computerization - stale - subroutine - libra - clara - beastie - triggered - pledged - fren - ally - organi - trombone - weathers - facetious - directors - spells - compulsive - childr - fluffs - toppings - brea - torque - underdrive - sportier - beetle - coolers - bonneville - secondaries - quadrajet - compulsion - elevation - variations - hilltops - mines - hamster - cruelty - parakeet - parakreet - burmese - deactivated - infatuated - jobbies - visualize - boggling - slid - clamped - kisses - everywh - brag - gramm - overturning - renegotiate - kickbacks - valdez - defi - batted - hangs - threats - emit - che - churning - remembrance - networking - conformance - wyatt - extremey - bennigan - vincent - chefalia - whataburger - zillion - mercado - juarez - tallest - ewaldes - cont - stoneleigh - chews - yapping - collies - roughest - hollered - battling - obedience - squats - vaca - pilgrims - medieval - relics - bemerton - newness - turin - muffins - requests - helman - tart - zing - cele - layering - fluffier - joins - jennifer - unselfish - tutoring - affiliated - aimlessly - perky - shins - hyper - burdensome - earphones - timbuktu - onna - lieutenant - biologist - sliding - tremors - variedly - bakers - aprons - sweatshirt - wigs - lamb - bunnies - symbols - milky - polytechnochloride - mought - trashmore - lifts - riverview - tranged - strongest - recessionary - stagnate - unteachable - prominent - chide - remaining - backbone - newborns - fullest - firewh - daffodil - jung - aquinas - libretto - rossini - mahler - dutchen - trumpets - elixir - floated - swapped - tyme - tempco - trooper - gisland - carribean - unpacking - lotto - alcatraz - hairdresser - crui - janice - furry - eaves - rafter - cactuses - furrows - wrung - plink - construe - thinkings - bue - buechele - grieves - gullible - manufactures - borden - bib - overalls - oshman - evaluated - unfor - linguistic - austria - niagara - coasts - carolinas - leisurely - modesto - cheeseburgers - incapable - hygienic - inoperable - oxygen - banish - relocated - realtor - listings - precautions - integrate - cooperatives - reallocate - reorganize - accelerate - transient - commish - tenderhearted - galaxies - crud - mutations - feazure - ballooned - reclamation - merits - axiom - fiends - sensitivity - aboveboard - evaluating - veggies - unarmed - resembling - tallow - scalloped - weighing - strap - squeaker - closing - mullin - squeakers - marquee - bluish - hydrogen - sulfide - h2s - ramps - vaccine - preventable - syringes - needles - feared - ruf - riffraff - haves - nots - earhout - bulletproof - vest - hedge - tollbooth - hatcher - taverns - sailboats - ancle - lounge - cocktail - sailer - cruiser - hull - spars - rigging - gusts - wearisome - flaky - markups - arming - stra - quail - swedish - munch - intermission - doughy - frosts - iceberg - schoolteacher - altrusa - upholstery - garl - jupiter - musically - auditions - repertory - outlet - auditory - lear - educationally - verified - chording - pianist - min - ec - subbranch - emigrated - beware - entrepreneurial - ventures - banked - stored - footsteps - postcards - notify - notifying - steals - hides - subsequently - corrective - leers - downright - outright - shu - newest - apathetic - absol - prolong - roofing - retool - zigzag - kan - untalented - washed - salvageable - gluing - feds - interrupting - faults - caucasian - educ - thei - officed - deputy - pruned - gladiolas - amaryllis - conf - plantings - sprout - narcissus - psychic - rerun - activate - rusted - rusts - fenders - repainted - acco - dreary - expen - salting - weinstocks - wad - hilt - dolphene - feelt - throwed - wheelchairs - emjoy - anheimer - tela - kindly - innovated - endeavors - adam - particulars - abusive - evolutionary - duplication - imagers - allocate - optimally - squawk - evolution - insurers - entity - burnable - ticketed - charities - braved - suede - cardigan - appointments - unlined - toasty - lightweight - fireplaces - dense - ethanol - smokestacks - mowers - wedded - organism - nutritionally - bamba - szechuan - pancho - binders - assignments - developments - cashew - avoiding - suey - disburse - squeeze - sq - faculties - pauper - brokerage - anticipation - cherished - commodity - famuel - slopes - biness - furlough - promoted - nec - shasta - salmon - sk - walleye - fighters - fillet - foil - seekers - scrutiny - tarrant - bobsy - accu - smiled - growled - mistrials - railroaded - convalescent - unsettling - senile - graying - exercisings - unaffordable - restricts - casse - gabrielli - bankrupted - cello - viola - composers - boutiques - darling - chanting - canseco - ramming - vinny - utility - outweighing - sundance - smithsonian - crosswords - planners - artists - bazo - faron - spiro - gyro - dulcimer - jarreau - contorted - bonnie - rait - grammy - unedu - sprayer - routers - cookie - varnish - smoother - hayloft - franklin - gradual - increasement - torpedoed - downside - blythe - tonkin - macintoshes - graphical - multitasking - gestures - vocabulary - compilers - consultation - interactive - discriminating - correlate - funnest - gentler - panicked - sassy - westmin - westminster - infra - mondale - situa - circuses - disrepair - dashboard - ce - beefing - patrols - visibility - lifted - cumberland - cobb - thefts - superficial - cracked - electrically - manufactured - bordering - elects - aerodyne - aerob - brace - publicize - killings - duri - commentators - blurbs - bog - dur - countdown - newscasts - unreasonable - moderator - unorganized - moderated - assumingly - importers - dahlmer - ohi - nightmarish - withheld - sovereign - martial - puritanical - permissible - acquitting - acquit - impaneling - dismissing - foreman - deliberating - una - restate - unannounced - sweep - definitive - bodily - behaviors - enters - privacies - melanie - spry - announcements - anson - fayetteville - waynesboro - delinquency - fre - gainfully - tremen - thriving - towar - grit - pail - latent - compression - ovens - armor - fierce - finagle - nationalizing - cutoff - operat - unionized - distinction - institutionally - expedient - innovativeness - expedi - unequal - plaintiff - novices - bets - leaky - luby - taping - promo - blurb - mutt - hooper - veterin - spay - neuter - frie - shorties - decreased - unrestricted - glut - magnum - rushes - oper - preset - styro - frank - shocks - allot - frowned - chronicle - analytical - abnormality - overwhelmingly - academia - descriptions - addictive - reevaluate - divvy - allocated - psy - psychedelic - crosby - stills - performers - secular - druggie - shipping - maximize - actuall - revelation - polymers - roadways - hoop - funn - heavenly - retailers - induce - inducement - recycler - saskatoon - welfor - employing - deposits - arithmetic - sums - colleague - internet - infusions - incurring - surveying - assesses - footloose - smattering - greetings - snobby - paled - refrained - acute - indivigal - thrives - categorized - receptionist - lar - curve - critter - incumbent - entrenched - standardizing - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.5 ignore_id: -1 lsm_weight: 0.0 length_normalized_loss: false report_cer: true report_wer: true sym_space: <space> sym_blank: <blank> extract_feats_in_collect_stats: true use_preprocessor: true token_type: word bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 512 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.7a1 distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Kuray107/wsj0-5percent-supervised
Kuray107
2022-03-04T20:16:51Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-03T14:31:38Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wsj0-5percent-supervised results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wsj0-5percent-supervised This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3883 - Wer: 0.1555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.0248 | 16.67 | 500 | 2.9406 | 1.0 | | 2.0466 | 33.33 | 1000 | 0.3935 | 0.3300 | | 0.1486 | 50.0 | 1500 | 0.3091 | 0.1931 | | 0.052 | 66.67 | 2000 | 0.3562 | 0.2052 | | 0.0309 | 83.33 | 2500 | 0.3252 | 0.1773 | | 0.0228 | 100.0 | 3000 | 0.3360 | 0.1652 | | 0.0177 | 116.67 | 3500 | 0.3423 | 0.1603 | | 0.0142 | 133.33 | 4000 | 0.3416 | 0.1611 | | 0.0119 | 150.0 | 4500 | 0.3663 | 0.1583 | | 0.0094 | 166.67 | 5000 | 0.3617 | 0.1567 | | 0.0093 | 183.33 | 5500 | 0.3738 | 0.1668 | | 0.0079 | 200.0 | 6000 | 0.3881 | 0.1652 | | 0.0065 | 216.67 | 6500 | 0.3752 | 0.1611 | | 0.0056 | 233.33 | 7000 | 0.3798 | 0.1603 | | 0.0057 | 250.0 | 7500 | 0.3944 | 0.1624 | | 0.0047 | 266.67 | 8000 | 0.4038 | 0.1583 | | 0.0041 | 283.33 | 8500 | 0.3928 | 0.1547 | | 0.0036 | 300.0 | 9000 | 0.3883 | 0.1555 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
azaninello/distilgpt2-finetuned-shroomstoy
azaninello
2022-03-04T19:13:30Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-04T19:07:36Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-shroomstoy results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-shroomstoy This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 10 | 4.1207 | | No log | 2.0 | 20 | 4.1009 | | No log | 3.0 | 30 | 4.0958 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
nimrah/wav2vec2-large-xls-r-300m-turkish-colab-9
nimrah
2022-03-04T18:24:21Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-04T17:28:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab-9 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.03 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
nimrah/wav2vec2-large-xls-r-300m-hindi_home-colab-11
nimrah
2022-03-04T16:41:25Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-04T13:45:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hindi_home-colab-11 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi_home-colab-11 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 3.7649 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.03 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.5971 | 44.43 | 400 | 3.7649 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
daisyxie21/bert-base-uncased-8-10-0.01
daisyxie21
2022-03-04T16:27:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-04T14:27:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-8-10-0.01 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-8-10-0.01 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8324 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 400 | 0.8324 | 0.0 | | 1.0904 | 2.0 | 800 | 1.3157 | 0.0 | | 0.9461 | 3.0 | 1200 | 0.4407 | 0.0 | | 0.9565 | 4.0 | 1600 | 2.1082 | 0.0 | | 1.024 | 5.0 | 2000 | 0.7220 | 0.0 | | 1.024 | 6.0 | 2400 | 0.7414 | 0.0 | | 0.8362 | 7.0 | 2800 | 0.4442 | 0.0 | | 0.6765 | 8.0 | 3200 | 0.5481 | 0.0 | | 0.5902 | 9.0 | 3600 | 0.5642 | 0.0 | | 0.5476 | 10.0 | 4000 | 0.4449 | 0.0 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0 - Datasets 1.18.3 - Tokenizers 0.11.0
jiobiala24/wav2vec2-base-2
jiobiala24
2022-03-04T15:56:54Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-04T04:00:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-2 This model is a fine-tuned version of [jiobiala24/wav2vec2-base-1](https://huggingface.co/jiobiala24/wav2vec2-base-1) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9415 - Wer: 0.3076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.4206 | 1.96 | 1000 | 0.6022 | 0.3435 | | 0.3278 | 3.93 | 2000 | 0.6191 | 0.3344 | | 0.2604 | 5.89 | 3000 | 0.6170 | 0.3288 | | 0.2135 | 7.86 | 4000 | 0.6590 | 0.3239 | | 0.1805 | 9.82 | 5000 | 0.7359 | 0.3289 | | 0.1582 | 11.79 | 6000 | 0.7450 | 0.3276 | | 0.1399 | 13.75 | 7000 | 0.7914 | 0.3218 | | 0.1252 | 15.72 | 8000 | 0.8254 | 0.3185 | | 0.1095 | 17.68 | 9000 | 0.8524 | 0.3184 | | 0.1 | 19.65 | 10000 | 0.8340 | 0.3165 | | 0.0905 | 21.61 | 11000 | 0.8846 | 0.3161 | | 0.0819 | 23.58 | 12000 | 0.8994 | 0.3142 | | 0.0763 | 25.54 | 13000 | 0.9018 | 0.3134 | | 0.0726 | 27.5 | 14000 | 0.9552 | 0.3081 | | 0.0668 | 29.47 | 15000 | 0.9415 | 0.3076 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
jish/distilgpt2-finetuned-wikitext2
jish
2022-03-04T15:14:19Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-04T14:44:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6423 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.633 | 2.0 | 4668 | 3.6455 | | 3.6078 | 3.0 | 7002 | 3.6423 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
augustoortiz/bert-finetuned-squad2
augustoortiz
2022-03-04T12:53:53Z
4
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: augustoortiz/bert-finetuned-squad2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # augustoortiz/bert-finetuned-squad2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.2223 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11091, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.2223 | 0 | ### Framework versions - Transformers 4.17.0.dev0 - TensorFlow 2.8.0 - Datasets 1.18.3 - Tokenizers 0.11.0
Ayham/bert_ernie_summarization_cnn_dailymail
Ayham
2022-03-04T12:51:38Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-04T05:25:42Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: bert_ernie_summarization_cnn_dailymail results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_ernie_summarization_cnn_dailymail This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
NbAiLab/roberta_jan_512_ncc
NbAiLab
2022-03-04T11:44:03Z
60
0
transformers
[ "transformers", "jax", "tensorboard", "roberta", "fill-mask", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- license: cc-by-sa-4.0 ---
gustavecortal/T0_3B-8bit
gustavecortal
2022-03-04T10:32:31Z
6
10
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "fr", "dataset:bigscience/P3", "arxiv:2110.08207", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: fr license: mit tags: - en datasets: - bigscience/P3 --- ### Quantized BigScience's T0 3B with 8-bit weights This is a version of [BigScience's T0](https://huggingface.co/bigscience/T0_3B) with 3 billion parameters that is modified so you can generate **and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti)**. Inspired by [GPT-J 8bit](https://huggingface.co/hivemind/gpt-j-6B-8bit). Here's how to run it: [![colab](https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.google.com/drive/1lMja-CPc0vm5_-gXNXAWU-9c0nom7vZ9) This model can be easily loaded using the `T5ForConditionalGeneration` functionality: ```python from transformers import T5ForConditionalGeneration model = T5ForConditionalGeneration.from_pretrained("gustavecortal/T0_3B-8bit") ``` Before loading, you have to Monkey-Patch T5: ```python class T5ForConditionalGeneration(transformers.models.t5.modeling_t5.T5ForConditionalGeneration): def __init__(self, config): super().__init__(config) convert_to_int8(self) transformers.models.t5.modeling_t5.T5ForConditionalGeneration = T5ForConditionalGeneration ``` ## Model Description T0* shows zero-shot task generalization on English natural language prompts, outperforming GPT-3 on many tasks, while being 16x smaller. It is a series of encoder-decoder models trained on a large set of different tasks specified in natural language prompts. We convert numerous English supervised datasets into prompts, each with multiple templates using varying formulations. These prompted datasets allow for benchmarking the ability of a model to perform completely unseen tasks specified in natural language. To obtain T0*, we fine-tune a pretrained language model on this multitask mixture covering many different NLP tasks. ## Links * [BigScience](https://bigscience.huggingface.co/) * [Hivemind](https://training-transformers-together.github.io/) * [Gustave Cortal](https://twitter.com/gustavecortal) ```bibtex @misc{sanh2021multitask, title={Multitask Prompted Training Enables Zero-Shot Task Generalization}, author={Victor Sanh and Albert Webson and Colin Raffel and Stephen H. Bach and Lintang Sutawika and Zaid Alyafeai and Antoine Chaffin and Arnaud Stiegler and Teven Le Scao and Arun Raja and Manan Dey and M Saiful Bari and Canwen Xu and Urmish Thakker and Shanya Sharma Sharma and Eliza Szczechla and Taewoon Kim and Gunjan Chhablani and Nihal Nayak and Debajyoti Datta and Jonathan Chang and Mike Tian-Jian Jiang and Han Wang and Matteo Manica and Sheng Shen and Zheng Xin Yong and Harshit Pandey and Rachel Bawden and Thomas Wang and Trishala Neeraj and Jos Rozen and Abheesht Sharma and Andrea Santilli and Thibault Fevry and Jason Alan Fries and Ryan Teehan and Stella Biderman and Leo Gao and Tali Bers and Thomas Wolf and Alexander M. Rush}, year={2021}, eprint={2110.08207}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
kabelomalapane/Helsinki-NLP-opus-finetuned-en-to-zu
kabelomalapane
2022-03-04T08:53:37Z
3
0
transformers
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-03T17:46:12Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: kabelomalapane/Helsinki-NLP-opus-finetuned-en-to-zu results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # kabelomalapane/Helsinki-NLP-opus-finetuned-en-to-zu This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-mul](https://huggingface.co/Helsinki-NLP/opus-mt-en-mul) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.5907 - Validation Loss: 1.6321 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations This model is to be used to translate English into Zulu. But there are still some problems in running this model, so it's still to be modified. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 783, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.1622 | 1.7379 | 0 | | 1.7292 | 1.6529 | 1 | | 1.5907 | 1.6321 | 2 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Datasets 1.18.3 - Tokenizers 0.11.0
Yulinfeng/wsj0_2mix_enh_train_enh_mdc_raw_valid.si_snr.ave
Yulinfeng
2022-03-04T07:19:47Z
0
0
espnet
[ "espnet", "audio", "audio-to-audio", "en", "dataset:wsj0_2mix", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
audio-to-audio
2022-03-04T07:19:31Z
--- tags: - espnet - audio - audio-to-audio language: en datasets: - wsj0_2mix license: cc-by-4.0 --- ## ESPnet2 ENH model ### `Yulinfeng/wsj0_2mix_enh_train_enh_mdc_raw_valid.si_snr.ave` This model was trained by earthmanylf using wsj0_2mix recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout ec1acec03d109f06d829b80862e0388f7234d0d1 pip install -e . cd egs2/wsj0_2mix/enh1 ./run.sh --skip_data_prep false --skip_train true --download_model Yulinfeng/wsj0_2mix_enh_train_enh_mdc_raw_valid.si_snr.ave ``` <!-- Generated by ./scripts/utils/show_enh_score.sh --> # RESULTS ## Environments - date: `Thu Mar 3 17:10:03 CST 2022` - python version: `3.8.10 (default, May 19 2021, 18:05:58) [GCC 7.3.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.5.1+cu101` - Git hash: `ec1acec03d109f06d829b80862e0388f7234d0d1` - Commit date: `Fri Feb 25 14:12:45 2022 +0800` ## .. config: conf/tuning/train_enh_mdc.yaml |dataset|PESQ|STOI|SAR|SDR|SIR|SI_SNR| |---|---|---|---|---|---|---| |enhanced_cv_min_8k|2.20|0.84|9.62|8.57|17.27|8.03| |enhanced_tt_min_8k|2.18|0.85|9.56|8.50|17.28|7.97| ## ENH config <details><summary>expand</summary> ``` config: conf/tuning/train_enh_mdc.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/enh_train_enh_mdc_raw ngpu: 1 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: 10 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - si_snr - max - - valid - loss - min keep_nbest_models: 1 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 8 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/enh_stats_8k/train/speech_mix_shape - exp/enh_stats_8k/train/speech_ref1_shape - exp/enh_stats_8k/train/speech_ref2_shape valid_shape_file: - exp/enh_stats_8k/valid/speech_mix_shape - exp/enh_stats_8k/valid/speech_ref1_shape - exp/enh_stats_8k/valid/speech_ref2_shape batch_type: folded valid_batch_type: null fold_length: - 80000 - 80000 - 80000 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr_min_8k/wav.scp - speech_mix - sound - - dump/raw/tr_min_8k/spk1.scp - speech_ref1 - sound - - dump/raw/tr_min_8k/spk2.scp - speech_ref2 - sound valid_data_path_and_name_and_type: - - dump/raw/cv_min_8k/wav.scp - speech_mix - sound - - dump/raw/cv_min_8k/spk1.scp - speech_ref1 - sound - - dump/raw/cv_min_8k/spk2.scp - speech_ref2 - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 eps: 1.0e-08 weight_decay: 1.0e-07 scheduler: reducelronplateau scheduler_conf: mode: min factor: 0.7 patience: 1 init: xavier_uniform model_conf: stft_consistency: false loss_type: mask_mse mask_type: PSM ref_channel: 0 criterions: - name: dpcl conf: loss_type: mdc wrapper: dpcl wrapper_conf: weight: 1.0 use_preprocessor: false encoder: stft encoder_conf: n_fft: 256 hop_length: 128 separator: dpcl separator_conf: rnn_type: blstm num_spk: 2 nonlinear: relu layer: 2 unit: 500 dropout: 0.1 emb_D: 40 decoder: stft decoder_conf: n_fft: 256 hop_length: 128 required: - output_dir version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{ESPnet-SE, author = {Chenda Li and Jing Shi and Wangyou Zhang and Aswin Shanmugam Subramanian and Xuankai Chang and Naoyuki Kamo and Moto Hira and Tomoki Hayashi and Christoph B{"{o}}ddeker and Zhuo Chen and Shinji Watanabe}, title = {ESPnet-SE: End-To-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration}, booktitle = {{IEEE} Spoken Language Technology Workshop, {SLT} 2021, Shenzhen, China, January 19-22, 2021}, pages = {785--792}, publisher = {{IEEE}}, year = {2021}, url = {https://doi.org/10.1109/SLT48900.2021.9383615}, doi = {10.1109/SLT48900.2021.9383615}, timestamp = {Mon, 12 Apr 2021 17:08:59 +0200}, biburl = {https://dblp.org/rec/conf/slt/Li0ZSCKHHBC021.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
batterydata/batteryonlybert-uncased-squad-v1
batterydata
2022-03-03T20:25:01Z
16
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "question answering", "en", "dataset:squad", "dataset:batterydata/battery-device-data-qa", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: en tags: question answering license: apache-2.0 datasets: - squad - batterydata/battery-device-data-qa metrics: squad --- # BatteryOnlyBERT-uncased for QA **Language model:** batteryonlybert-uncased **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD v1 **Eval data:** SQuAD v1 **Code:** See [example](https://github.com/ShuHuang/batterybert) **Infrastructure**: 8x DGX A100 ## Hyperparameters ``` batch_size = 16 n_epochs = 2 base_LM_model = "batteryonlybert-uncased" max_seq_len = 386 learning_rate = 2e-5 doc_stride=128 max_query_length=64 ``` ## Performance Evaluated on the SQuAD v1.0 dev set. ``` "exact": 79.53, "f1": 87.22, ``` Evaluated on the battery device dataset. ``` "precision": 67.20, "recall": 83.82, ``` ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "batterydata/batteryonlybert-uncased-squad-v1" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'What is the electrolyte?', 'context': 'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
mcdzwil/bert-base-NER-finetuned-ner-ISU
mcdzwil
2022-03-03T20:21:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-03T20:12:34Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-NER-finetuned-ner-ISU results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-NER-finetuned-ner-ISU This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1090 - Precision: 0.9408 - Recall: 0.8223 - F1: 0.8776 - Accuracy: 0.9644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 48 | 0.1411 | 0.8970 | 0.7840 | 0.8367 | 0.9473 | | No log | 2.0 | 96 | 0.1231 | 0.9453 | 0.7964 | 0.8645 | 0.9589 | | No log | 3.0 | 144 | 0.1090 | 0.9408 | 0.8223 | 0.8776 | 0.9644 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
batterydata/bert-base-cased-squad-v1
batterydata
2022-03-03T19:54:26Z
71
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "question answering", "en", "dataset:squad", "dataset:batterydata/battery-device-data-qa", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: en tags: question answering license: apache-2.0 datasets: - squad - batterydata/battery-device-data-qa metrics: squad --- # BERT-base-cased for QA **Language model:** bert-base-cased **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD v1 **Eval data:** SQuAD v1 **Code:** See [example](https://github.com/ShuHuang/batterybert) **Infrastructure**: 8x DGX A100 ## Hyperparameters ``` batch_size = 32 n_epochs = 2 base_LM_model = "bert-base-cased" max_seq_len = 386 learning_rate = 5e-5 doc_stride=128 max_query_length=64 ``` ## Performance Evaluated on the SQuAD v1.0 dev set. ``` "exact": 81.30, "f1": 88.58, ``` Evaluated on the battery device dataset. ``` "precision": 67.02, "recall": 80.15, ``` ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "batterydata/bert-base-cased-squad-v1" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'What is the electrolyte?', 'context': 'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
Kevincp560/t5-base-finetuned-pubmed
Kevincp560
2022-03-03T16:06:16Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:pub_med_summarization_dataset", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-03T13:28:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - pub_med_summarization_dataset metrics: - rouge model-index: - name: t5-base-finetuned-pubmed results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: pub_med_summarization_dataset type: pub_med_summarization_dataset args: document metrics: - name: Rouge1 type: rouge value: 9.3771 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-pubmed This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: 2.6311 - Rouge1: 9.3771 - Rouge2: 3.7042 - Rougel: 8.4912 - Rougelsum: 9.0013 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 2.0957 | 1.0 | 4000 | 1.9006 | 8.6968 | 3.2473 | 7.9565 | 8.3224 | 19.0 | | 2.0489 | 2.0 | 8000 | 1.8571 | 8.6877 | 3.2461 | 7.9311 | 8.2991 | 19.0 | | 2.7345 | 3.0 | 12000 | 2.6112 | 9.585 | 3.0129 | 8.4729 | 9.1109 | 19.0 | | 3.0585 | 4.0 | 16000 | 2.7222 | 9.7011 | 3.3549 | 8.6588 | 9.2646 | 19.0 | | 2.9437 | 5.0 | 20000 | 2.6311 | 9.3771 | 3.7042 | 8.4912 | 9.0013 | 19.0 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
nateraw/keras-dummy-model-mixin-demo-w-card
nateraw
2022-03-03T15:55:09Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-03-02T23:29:05Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training Metrics Model history needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>