modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-12 12:31:00
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 555
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-12 12:28:53
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
MOA-Hair/Steve-Minecraft
|
MOA-Hair
| 2023-07-21T04:09:15Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-07-21T03:27:12Z |
There were issues when uploading the model, so please use this link for colab or to download locally.
https://drive.google.com/file/d/1j2zO9WEYgsxLXKYfa6bbWRu0tDkSyWPx/view?usp=drive_link
Here is audio of see you again (Charlie Puth X Wiz Khalifa Cover)
https://drive.google.com/file/d/12XCO9W9I2yXCRB56wmZTVM9-LE9AmaiD/view?usp=sharing
I used minecraft player sounds like eating, drinking, walking, breathing & the infamous infdev oof sound.
Alex and herobrine models are in the works. Model Trained at 250 epochs.
|
TMElyralab/lyraChatGLM
|
TMElyralab
| 2023-07-21T03:57:22Z | 0 | 107 | null |
[
"LLM",
"ChatGLM6B",
"en",
"license:mit",
"region:us"
] | null | 2023-05-11T07:22:39Z |
---
license: mit
language: en
tags:
- LLM
- ChatGLM6B
---
## Breakings!
**We know what you want, and here you go!**
- Newly released lyraChatGLM model, suitable for Ampere (A100/A10) as well as Volta (V100)
- lyraChatGLM has been further optimized, reaching **9000 tokens/s** on A100 and **3900 tokens/s** on V100, about **5.5x** faster than the up-to-date official version (2023/6/1).
- The memory usage was optimized too, now we can set batch_size up to **256** on A100!
- INT8 weight only PTQ is supported
**Note that the code was fully updated too, you need to use the new API, see `Uses` below**
If you like our work and consider to join us, feel free to drop a line to benbinwu@tencent.com.
P.S. Recently we have received a lot of inquiries on accelerating customized models. Actually, we **do not have plan** to release the convertion tool at this moment, nor do we think it would be possible to apply your customized models based on our current release.
****
## Model Card for lyraChatGLM
lyraChatGLM is currently the **fastest ChatGLM-6B** available. To the best of our knowledge, it is the **first accelerated version of ChatGLM-6B**.
The inference speed of lyraChatGLM has achieved **300x** acceleration upon the early original version. We are still working hard to further improve the performance.
Among its main features are (updated on 2023-06-20):
- weights: original ChatGLM-6B weights released by THUDM.
- device: Nvidia GPU with Amperer architecture or Volta architecture (A100, A10, V100...).
- batch_size: compiled with dynamic batch size, maximum depends on device.
- We now support cuda version of both 11.X and 12.X
- lyraChatGLM has been further optimized, with faster model load speed from few minutes to less than 10s for non-int8 mode, and around 1 min for int8 mode!
## Speed
- orginal version(fixed batch infer): commit id 1d240ba
### test on A100 40G
1. The maximum batch size and maximum speed table for each version of the model.
|version|max_batch_size|max_speed|
|:-:|:-:|:-:|
|original|1|30 tokens/s|
|original(fxied batch infer)|192|1638.52 tokens/s|
|lyraChatGLM(current)|256|9082.60 tokens/s|
2. The speed table for the same batch size.
|version|1 batch_size|8 batch_size| 64 batch_size | 128 batch_size |
|:-:|:-:|:-:|:-:|:-:|
|original|30 tokens/s| - | - | - |
|original(fxied batch infer)|34.48 tokens/s|356.29 tokens/s|1638.52 tokens/s|1338.45 tokens/s|
|lyraChatGLM(current)|110.05 tokens/s|843.60 tokens/s|4926.92 tokens/s|7235.04 tokens/s|
### test on V100
1. The maximum batch size and maximum speed table for each version of the model.
|version|max_batch_size|max_speed|
|:-:|:-:|:-:|
|original|1|17.83 tokens/s|
|original(fxied batch infer)|128|992.20 tokens/s|
|lyraChatGLM(current)|192|3958.39 tokens/s|
2. The speed table for the same batch size.
|version|1 batch_size|8 batch_size| 64 batch_size | 128 batch_size |
|:-:|:-:|:-:|:-:|:-:|
|original|17.83 tokens/s| - | - | - |
|original(fxied batch infer)|17.83 tokens/s|228.95 tokens/s|889.7 tokens/s|922.20 tokens/s|
|lyraChatGLM(current)|59.33 tokens/s|514.15 tokens/s|2849.88 tokens/s|3958.39 tokens/s|
## Model Sources
- **Repository:** https://huggingface.co/THUDM/chatglm-6b
## Docker Environment Recommendation
- For Cuda 11.X: we recommend ```nvcr.io/nvidia/pytorch:22.12-py3```
- For Cuda 12.0: we recommend ```nvcr.io/nvidia/pytorch:23.02-py3```
```bash
docker pull nvcr.io/nvidia/pytorch:23.02-py3
docker run --rm -it --gpus all -v ./:/lyraChatGLM nvcr.io/nvidia/pytorch:23.02-py3
pip install -r requirements.txt
python demo.py
```
## Uses
```python
from lyraChatGLM import LyraChatGLM6B
model_path = "./models/1-gpu-fp16.bin"
tokenizer_path = "./models"
data_type = "fp16"
int8_mode = 0 # 1 for INT8 WEIGHT ONLY PTQ
max_output_length = 150
arch = "Ampere" # Ampere or Volta
cuda_version = 12
model = LyraChatGLM6B(model_path, tokenizer_path, data_type, int8_mode, arch, cuda_version)
prompt = "列出3个不同的机器学习算法,并说明它们的适用范围."
test_batch_size = 256
prompts = [prompt, ]
# If you want to get different output in same batch, you can set do_sample to True
output_texts = model.generate(prompts, output_length=max_output_length,top_k=30, top_p=0.85, temperature=0.35, repetition_penalty=1.2, do_sample=False)
print(output_texts)
```
## Demo output
### input
列出3个不同的机器学习算法,并说明它们的适用范围.
### output
以下是三个常见的机器学习算法及其适用范围:
1. 决策树(Decision Tree):决策树是一种基于分类和回归问题的朴素贝叶斯模型。它通过构建一系列逐步分裂的分支来预测结果。适用于那些具有简单特征、大量数据且数据集大小在可接受范围内的情况。
2. 随机森林(Random Forest):随机森林是一种集成学习算法,由多个决策树组成。它的优点是能够处理大规模数据和高维度的特征。适用于需要对多个变量进行建模的场景,例如医疗诊断、金融风险评估等。
3. 支持向量机(Support Vector Machine):支持向量机是一种监督学习方法,通常用于分类问题。它可以处理高维数据,并且具有较高的准确性。适用于需要对高维数据进行分类或回归的问题,例如图像识别、自然语言处理等。
## INT8
**Int8 usage**:
Our current version supports INT8 weight only PTQ. To enable this mode, simply modify the `int8_mode` to `1` in the demo.py file.
**In this mode, gpu memory can be further reduced by about half and the speed can be doubled.**
This solves the issue mentioned in https://github.com/THUDM/ChatGLM-6B/issues/1042.
However, the speed gain is best achieved with a batch size of no more than 128. If you don't use A100 GPU, you can adjust the
batch size to reduce it and get the benefits. We recommend a batch size of 64.This mode is very suitable for GPUs with
limited VRAM or scenarios where it is difficult to use larger batch sizes in real-time services.
It should be noted that although we have aligned the accuracy in our test cases, there may be slight differences
in accuracy in some untested scenarios with int8. Please be aware of this.
## Citation
``` bibtex
@Misc{lyraChatGLM2023,
author = {Kangjian Wu, Zhengtao Wang, Yibo Lu, Bin Wu},
title = {lyraChatGLM: Accelerating ChatGLM to 9000+ tokens/s},
howpublished = {\url{https://huggingface.co/TMElyralab/lyraChatGLM}},
year = {2023}
}
```
## Report bug
- start a discussion to report any bugs!--> https://huggingface.co/TMElyralab/lyraChatGLM/discussions
- report bug with a `[bug]` mark in the title.
|
Trong-Nghia/roberta-large-detect-dep-v3
|
Trong-Nghia
| 2023-07-21T03:52:44Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/roberta-large",
"base_model:finetune:FacebookAI/roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-07-13T04:05:44Z |
---
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: roberta-large-detect-dep-v3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-detect-dep-v3
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6359
- Accuracy: 0.713
- F1: 0.7817
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.6348 | 1.0 | 751 | 0.5414 | 0.769 | 0.8241 |
| 0.5428 | 2.0 | 1502 | 0.5873 | 0.733 | 0.8027 |
| 0.4829 | 3.0 | 2253 | 0.6359 | 0.713 | 0.7817 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
RamAnanth1/distilbart-cnn-12-6-finetuned-scitldr
|
RamAnanth1
| 2023-07-21T03:45:25Z | 134 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"bart",
"text2text-generation",
"generated_from_trainer",
"dataset:scitldr",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-10-15T18:17:40Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- scitldr
model-index:
- name: distilbart-cnn-12-6-finetuned-scitldr
results: []
widget:
- text: "Reinforcement learning provides a powerful and general framework for decision making and control, but its application in practice is often hindered by the need for extensive feature and reward engineering. Deep reinforcement learning methods can remove the need for explicit engineering of policy or value features but still require a manually specified reward function. Inverse reinforcement learning holds the promise of automatic reward acquisition, but has proven exceptionally difficult to apply to large, high-dimensional problems with unknown dynamics. In this work, we propose AIRL, a practical and scalable inverse reinforcement learning algorithm based on an adversarial reward learning formulation that is competitive with direct imitation learning algorithms. Additionally, we show that AIRL is able to recover portable reward functions that are robust to changes in dynamics, enabling us to learn policies even under significant variation in the environment seen during training. "
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbart-cnn-12-6-finetuned-scitldr
This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the scitldr dataset.
It achieves the following results on the evaluation set:
- eval_loss: 3.7113
- eval_rouge1: 31.4431
- eval_rouge2: 13.1766
- eval_rougeL: 24.2038
- eval_rougeLsum: 26.3167
- eval_runtime: 151.7265
- eval_samples_per_second: 4.08
- eval_steps_per_second: 0.514
- epoch: 4.0
- step: 996
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
|
mattbeen/my_awesome_billsum_model
|
mattbeen
| 2023-07-21T03:22:16Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:billsum",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-07-19T09:54:46Z |
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- billsum
metrics:
- rouge
model-index:
- name: my_awesome_billsum_model
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: billsum
type: billsum
config: default
split: ca_test
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.1379
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_billsum_model
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4643
- Rouge1: 0.1379
- Rouge2: 0.0506
- Rougel: 0.1161
- Rougelsum: 0.1162
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 62 | 2.7575 | 0.1233 | 0.0349 | 0.105 | 0.1049 | 19.0 |
| No log | 2.0 | 124 | 2.5457 | 0.1336 | 0.0457 | 0.1127 | 0.1124 | 19.0 |
| No log | 3.0 | 186 | 2.4814 | 0.1356 | 0.0479 | 0.1139 | 0.1141 | 19.0 |
| No log | 4.0 | 248 | 2.4643 | 0.1379 | 0.0506 | 0.1161 | 0.1162 | 19.0 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.13.1
- Tokenizers 0.13.2
|
ptah23/whisper-small-fleurs-bn-in
|
ptah23
| 2023-07-21T03:19:35Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:google/fleurs",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-07-20T15:44:08Z |
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: whisper-small-bn-in
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs
type: google/fleurs
config: bn_in
split: train+validation
args: bn_in
metrics:
- name: Wer
type: wer
value: 0.45676500508647
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-bn-in
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1842
- Wer: 0.4568
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 5
- training_steps: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4443 | 0.53 | 100 | 0.3399 | 0.7272 |
| 0.249 | 1.07 | 200 | 0.2222 | 0.6244 |
| 0.1662 | 1.6 | 300 | 0.1778 | 0.5807 |
| 0.1221 | 2.14 | 400 | 0.1602 | 0.5397 |
| 0.0965 | 2.67 | 500 | 0.1484 | 0.5168 |
| 0.0646 | 3.21 | 600 | 0.1475 | 0.4966 |
| 0.0566 | 3.74 | 700 | 0.1420 | 0.4812 |
| 0.028 | 4.28 | 800 | 0.1511 | 0.4910 |
| 0.0325 | 4.81 | 900 | 0.1476 | 0.4766 |
| 0.0177 | 5.35 | 1000 | 0.1593 | 0.4876 |
| 0.0176 | 5.88 | 1100 | 0.1589 | 0.4715 |
| 0.0127 | 6.42 | 1200 | 0.1622 | 0.4634 |
| 0.0126 | 6.95 | 1300 | 0.1706 | 0.4673 |
| 0.0089 | 7.49 | 1400 | 0.1777 | 0.4712 |
| 0.0087 | 8.02 | 1500 | 0.1776 | 0.4666 |
| 0.0076 | 8.56 | 1600 | 0.1788 | 0.4505 |
| 0.007 | 9.09 | 1700 | 0.1906 | 0.4685 |
| 0.0057 | 9.63 | 1800 | 0.1840 | 0.4573 |
| 0.0064 | 10.16 | 1900 | 0.1841 | 0.4569 |
| 0.0057 | 10.7 | 2000 | 0.1842 | 0.4568 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1
|
albertHu/q-FrozenLake-v1-4x4-noSlippery
|
albertHu
| 2023-07-21T03:17:49Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-21T03:17:47Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="albertHu/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
WeOpenML/PandaLM-Alpaca-7B-v1
|
WeOpenML
| 2023-07-21T02:59:50Z | 1,440 | 4 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"language model",
"arxiv:2306.05087",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-16T12:14:25Z |
---
license: apache-2.0
tags:
- language model
---
We are glad to introduce the **PandaLM version** of Alpaca. To highlight the effectiveness of using PandaLM-7B for instruction tuning LLMs, we check the performance of models tuned with PandaLM’s selected optimal hyperparameters. This version and original alpaca version have been submitted to hugging face [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
the full checkpoint has been uploaded to the Hugging face, so you can just load the model and tokenizer for downstream tasks.
```python
from transformers import AutoTokenizer,AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("WeOpenML/PandaLM-Alpaca-7B-v1",use_fast=False)
model = AutoModelForCausalLM.from_pretrained("WeOpenML/PandaLM-Alpaca-7B-v1")
```
For more information about PandaLM, pls check out [our github](https://github.com/WeOpenML/PandaLM), [our paper](https://arxiv.org/abs/2306.05087) and [PandaLM model](https://huggingface.co/WeOpenML/PandaLM-7B-v1). The repo is under Apache License 2.0.
## Updates
***
- 2023.7.21: We updated the model card and basic info.
- 2023.7.18: We released the checkpoint on the Hugging face.
## Citation
```
@misc{pandalm2023,
title={PandaLM: An Automatic Evaluation Benchmark for LLM Instruction Tuning Optimization},
author={Wang, Yidong and Yu, Zhuohao and Zeng, Zhengran and Yang, Linyi and Wang, Cunxiang and Chen, Hao and Jiang, Chaoya and Xie, Rui and Wang, Jindong and Xie, Xing and Ye, Wei and Zhang, Shikun and Zhang, Yue},
year={2023},
journal={arXiv preprint arXiv:2306.05087}
}
@misc{PandaLM,
author = {Wang, Yidong and Yu, Zhuohao and Zeng, Zhengran and Yang, Linyi and Heng, Qiang and Wang, Cunxiang and Chen, Hao and Jiang, Chaoya and Xie, Rui and Wang, Jindong and Xie, Xing and Ye, Wei and Zhang, Shikun and Zhang, Yue},
title = {PandaLM: Reproducible and Automated Language Model Assessment},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/WeOpenML/PandaLM}},
}
```
|
siciai/llmprodtype
|
siciai
| 2023-07-21T02:53:33Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-21T02:52:48Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
chriskim2273/IOTNation_CompanyName_Extraction_QA_Model_UNK_Test
|
chriskim2273
| 2023-07-21T02:38:24Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-07-21T01:28:38Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: IOTNation_CompanyName_Extraction_QA_Model_UNK_Test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IOTNation_CompanyName_Extraction_QA_Model_UNK_Test
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1876
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
degor/ppo-lunarlander-v2
|
degor
| 2023-07-21T02:10:01Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-21T02:09:36Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 252.55 +/- 19.76
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
TheRains/special2
|
TheRains
| 2023-07-21T02:05:44Z | 115 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:yt",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-07-20T10:54:06Z |
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- yt
metrics:
- wer
model-index:
- name: special2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: yt id
type: yt
args: id
metrics:
- name: Wer
type: wer
value: 41.8877716509893
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# special2
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the yt id dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6621
- Wer: 41.8878
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 12
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.8117 | 0.26 | 1000 | 0.8215 | 48.6085 |
| 0.7087 | 0.52 | 2000 | 0.7323 | 52.3062 |
| 0.7057 | 0.77 | 3000 | 0.6922 | 50.0032 |
| 0.5319 | 1.03 | 4000 | 0.6686 | 42.1213 |
| 0.4704 | 1.29 | 5000 | 0.6621 | 41.8878 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|
Martin2203/starcoder-peft-2
|
Martin2203
| 2023-07-21T01:55:39Z | 5 | 1 |
transformers
|
[
"transformers",
"pytorch",
"gpt_bigcode",
"text-generation",
"code",
"dataset:bigcode/the-stack-dedup",
"arxiv:1911.02150",
"arxiv:2205.14135",
"arxiv:2207.14255",
"arxiv:2305.06161",
"license:bigcode-openrail-m",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-20T11:32:32Z |
---
pipeline_tag: text-generation
inference: true
widget:
- text: 'def print_hello_world():'
example_title: Hello world
group: Python
license: bigcode-openrail-m
datasets:
- bigcode/the-stack-dedup
metrics:
- code_eval
library_name: transformers
tags:
- code
model-index:
- name: StarCoder
results:
- task:
type: text-generation
dataset:
type: openai_humaneval
name: HumanEval (Prompted)
metrics:
- name: pass@1
type: pass@1
value: 0.408
verified: false
- task:
type: text-generation
dataset:
type: openai_humaneval
name: HumanEval
metrics:
- name: pass@1
type: pass@1
value: 0.336
verified: false
- task:
type: text-generation
dataset:
type: mbpp
name: MBPP
metrics:
- name: pass@1
type: pass@1
value: 0.527
verified: false
- task:
type: text-generation
dataset:
type: ds1000
name: DS-1000 (Overall Completion)
metrics:
- name: pass@1
type: pass@1
value: 0.26
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (C++)
metrics:
- name: pass@1
type: pass@1
value: 0.3155
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (C#)
metrics:
- name: pass@1
type: pass@1
value: 0.2101
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (D)
metrics:
- name: pass@1
type: pass@1
value: 0.1357
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Go)
metrics:
- name: pass@1
type: pass@1
value: 0.1761
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Java)
metrics:
- name: pass@1
type: pass@1
value: 0.3022
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Julia)
metrics:
- name: pass@1
type: pass@1
value: 0.2302
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (JavaScript)
metrics:
- name: pass@1
type: pass@1
value: 0.3079
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Lua)
metrics:
- name: pass@1
type: pass@1
value: 0.2389
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (PHP)
metrics:
- name: pass@1
type: pass@1
value: 0.2608
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Perl)
metrics:
- name: pass@1
type: pass@1
value: 0.1734
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Python)
metrics:
- name: pass@1
type: pass@1
value: 0.3357
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (R)
metrics:
- name: pass@1
type: pass@1
value: 0.155
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Ruby)
metrics:
- name: pass@1
type: pass@1
value: 0.0124
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Racket)
metrics:
- name: pass@1
type: pass@1
value: 0.0007
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Rust)
metrics:
- name: pass@1
type: pass@1
value: 0.2184
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Scala)
metrics:
- name: pass@1
type: pass@1
value: 0.2761
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Bash)
metrics:
- name: pass@1
type: pass@1
value: 0.1046
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Swift)
metrics:
- name: pass@1
type: pass@1
value: 0.2274
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (TypeScript)
metrics:
- name: pass@1
type: pass@1
value: 0.3229
verified: false
extra_gated_prompt: >-
## Model License Agreement
Please read the BigCode [OpenRAIL-M
license](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement)
agreement before accepting it.
extra_gated_fields:
I accept the above license agreement, and will use the Model complying with the set of use restrictions and sharing requirements: checkbox
---
# StarCoder

Play with the model on the [StarCoder Playground](https://huggingface.co/spaces/bigcode/bigcode-playground).
## Table of Contents
1. [Model Summary](##model-summary)
2. [Use](##use)
3. [Limitations](##limitations)
4. [Training](##training)
5. [License](##license)
6. [Citation](##citation)
## Model Summary
The StarCoder models are 15.5B parameter models trained on 80+ programming languages from [The Stack (v1.2)](https://huggingface.co/datasets/bigcode/the-stack), with opt-out requests excluded. The model uses [Multi Query Attention](https://arxiv.org/abs/1911.02150), [a context window of 8192 tokens](https://arxiv.org/abs/2205.14135), and was trained using the [Fill-in-the-Middle objective](https://arxiv.org/abs/2207.14255) on 1 trillion tokens.
- **Repository:** [bigcode/Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
- **Project Website:** [bigcode-project.org](https://www.bigcode-project.org)
- **Paper:** [💫StarCoder: May the source be with you!](https://arxiv.org/abs/2305.06161)
- **Point of Contact:** [contact@bigcode-project.org](mailto:contact@bigcode-project.org)
- **Languages:** 80+ Programming languages
## Use
### Intended use
The model was trained on GitHub code. As such it is _not_ an instruction model and commands like "Write a function that computes the square root." do not work well. However, by using the [Tech Assistant prompt](https://huggingface.co/datasets/bigcode/ta-prompt) you can turn it into a capable technical assistant.
**Feel free to share your generations in the Community tab!**
### Generation
```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigcode/starcoder"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
### Fill-in-the-middle
Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output:
```python
input_text = "<fim_prefix>def print_hello_world():\n <fim_suffix>\n print('Hello world!')<fim_middle>"
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
### Attribution & Other Requirements
The pretraining dataset of the model was filtered for permissive licenses only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/starcoder-search) that let's you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code.
# Limitations
The model has been trained on source code from 80+ programming languages. The predominant natural language in source code is English although other languages are also present. As such the model is capable of generating code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits. See [the paper](https://drive.google.com/file/d/1cN-b9GnWtHzQRoE7M7gAEyivY0kl4BYs/view) for an in-depth discussion of the model limitations.
# Training
## Model
- **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
- **Pretraining steps:** 250k
- **Pretraining tokens:** 1 trillion
- **Precision:** bfloat16
## Hardware
- **GPUs:** 512 Tesla A100
- **Training time:** 24 days
## Software
- **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
- **BP16 if applicable:** [apex](https://github.com/NVIDIA/apex)
# License
The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).
# Citation
```
@article{li2023starcoder,
title={StarCoder: may the source be with you!},
author={Raymond Li and Loubna Ben Allal and Yangtian Zi and Niklas Muennighoff and Denis Kocetkov and Chenghao Mou and Marc Marone and Christopher Akiki and Jia Li and Jenny Chim and Qian Liu and Evgenii Zheltonozhskii and Terry Yue Zhuo and Thomas Wang and Olivier Dehaene and Mishig Davaadorj and Joel Lamy-Poirier and João Monteiro and Oleh Shliazhko and Nicolas Gontier and Nicholas Meade and Armel Zebaze and Ming-Ho Yee and Logesh Kumar Umapathi and Jian Zhu and Benjamin Lipkin and Muhtasham Oblokulov and Zhiruo Wang and Rudra Murthy and Jason Stillerman and Siva Sankalp Patel and Dmitry Abulkhanov and Marco Zocca and Manan Dey and Zhihan Zhang and Nour Fahmy and Urvashi Bhattacharyya and Wenhao Yu and Swayam Singh and Sasha Luccioni and Paulo Villegas and Maxim Kunakov and Fedor Zhdanov and Manuel Romero and Tony Lee and Nadav Timor and Jennifer Ding and Claire Schlesinger and Hailey Schoelkopf and Jan Ebert and Tri Dao and Mayank Mishra and Alex Gu and Jennifer Robinson and Carolyn Jane Anderson and Brendan Dolan-Gavitt and Danish Contractor and Siva Reddy and Daniel Fried and Dzmitry Bahdanau and Yacine Jernite and Carlos Muñoz Ferrandis and Sean Hughes and Thomas Wolf and Arjun Guha and Leandro von Werra and Harm de Vries},
year={2023},
eprint={2305.06161},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
diffusers/lora-trained-xl-keramer-face
|
diffusers
| 2023-07-21T01:54:54Z | 12 | 1 |
diffusers
|
[
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:diffusers/stable-diffusion-xl-base-0.9",
"base_model:adapter:diffusers/stable-diffusion-xl-base-0.9",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-06-29T12:25:11Z |
---
license: creativeml-openrail-m
base_model: diffusers/stable-diffusion-xl-base-0.9
instance_prompt: a photo of sks person
tags:
- 'stable-diffusion-xl'
- 'stable-diffusion-xl-diffusers'
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - sayakpaul/lora-trained-xl-keramer-face
These are LoRA adaption weights for diffusers/stable-diffusion-xl-base-0.9. The weights were trained on a photo of sks person using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.




LoRA for the text encoder was enabled: False.
## License
[SDXL 0.9 Research License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9/blob/main/LICENSE.md)
|
diffusers/lora-trained-xl
|
diffusers
| 2023-07-21T01:53:55Z | 7 | 4 |
diffusers
|
[
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:diffusers/stable-diffusion-xl-base-0.9",
"base_model:adapter:diffusers/stable-diffusion-xl-base-0.9",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-06-29T09:46:21Z |
---
license: creativeml-openrail-m
base_model: diffusers/stable-diffusion-xl-base-0.9
instance_prompt: a photo of sks dog
tags:
- 'stable-diffusion-xl'
- 'stable-diffusion-xl-diffusers'
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - sayakpaul/lora-trained-xl
These are LoRA adaption weights for diffusers/stable-diffusion-xl-base-0.9. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.




LoRA for the text encoder was enabled: False.
## License
[SDXL 0.9 Research License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9/blob/main/LICENSE.md)
|
diffusers/lora-trained-xl-potato-head
|
diffusers
| 2023-07-21T01:53:32Z | 1 | 0 |
diffusers
|
[
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:diffusers/stable-diffusion-xl-base-0.9",
"base_model:adapter:diffusers/stable-diffusion-xl-base-0.9",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-06-29T11:15:48Z |
---
license: creativeml-openrail-m
base_model: diffusers/stable-diffusion-xl-base-0.9
instance_prompt: a photo of sks character
tags:
- 'stable-diffusion-xl'
- 'stable-diffusion-xl-diffusers'
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - sayakpaul/lora-trained-xl-potato-head
These are LoRA adaption weights for diffusers/stable-diffusion-xl-base-0.9. The weights were trained on a photo of sks character using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.




LoRA for the text encoder was enabled: False.
## License
[SDXL 0.9 Research License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9/blob/main/LICENSE.md)
|
Mel-Iza0/RedPajama-ZeroShot-20K-classe_nenhuma
|
Mel-Iza0
| 2023-07-21T01:26:23Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-20T23:22:32Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0
|
himura8686/aifaalora
|
himura8686
| 2023-07-21T01:26:15Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-21T01:23:41Z |
---
license: creativeml-openrail-m
---
|
DunnBC22/bert-base-cased-finetuned-Stromberg_NLP_Twitter-PoS
|
DunnBC22
| 2023-07-21T01:11:45Z | 109 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"en",
"dataset:twitter_pos_vcb",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-07-03T04:03:13Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- twitter_pos_vcb
model-index:
- name: bert-base-cased-finetuned-Stromberg_NLP_Twitter-PoS
results: []
language:
- en
metrics:
- seqeval
- accuracy
- f1
- recall
- precision
pipeline_tag: token-classification
---
# bert-base-cased-finetuned-Stromberg_NLP_Twitter-PoS
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the twitter_pos_vcb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0533
- '''
- Precision: 0.9580645161290322
- Recall: 0.9519230769230769
- F1: 0.954983922829582
- Number': 312
- B
- Precision: 0.9658270558694287
- Recall: 0.9655240037652966
- F1: 0.9656755060411109
- Number: 25496
- Bd
- Precision: 0.9630099728014506
- Recall: 0.9572819033886085
- F1: 0.9601373949200036
- Number: 5548
- Bg
- Precision: 0.9836065573770492
- Recall: 0.9853434575313438
- F1: 0.9844742413549753
- Number: 5663
- Bn
- Precision: 0.9182209469153515
- Recall: 0.9116809116809117
- F1: 0.9149392423159399
- Number: 2106
- Bp
- Precision: 0.9672037914691943
- Recall: 0.9663488856619736
- F1: 0.9667761495704902
- Number': 15839
- Br
- Precision: 0.94
- Recall: 0.8785046728971962
- F1: 0.9082125603864735
- Number': 107
- Bs
- Precision: 0.9848484848484849
- Recall': 0.9701492537313433
- F1: 0.9774436090225564
- Number': 67
- Bz
- Precision: 0.9865819209039548
- Recall: 0.9850167459897762
- F1: 0.9857987121813531
- Number': 5673
- C
- Precision: 0.9993461203138623,
- Recall: 0.9993461203138623,
- F1: 0.9993461203138623,
- Number: 4588
- D
- Precision: 0.9876836325864372
- Recall: 0.9895926256318763
- F1: 0.988637207575195
- Number: 6726
- Dt
- Precision: 1.0
- Recall: 0.8
- F1: 0.888888888888889
- Number: 15
- H
- Precision: 0.9487382595903587
- Recall: 0.9305216426193119
- F1: 0.9395416596626883
- Number: 9010
- J
- Precision: 0.9803528468323978
- Recall: 0.980588754311382
- F1: 0.9804707863816818
- Number: 12467
- Jr
- Precision: 0.9400386847195358
- Recall: 0.9818181818181818
- F1': 0.9604743083003953
- Number': 495
- Js
- Precision: 0.9612141652613828
- Recall: 0.991304347826087
- F1: 0.9760273972602741
- Number': 575
- N
- Precision: 0.9795543362923471
- Recall: 0.9793769083475651
- F1: 0.9794656142847902
- Number': 38646
- Np
- Precision: 0.9330242966751918
- Recall: 0.9278334128119536
- F1: 0.9304216147286205
- Number': 6291
- Nps
- Precision: 0.75
- Recall: 0.23076923076923078
- F1: 0.3529411764705882
- Number: 26
- Ns
- Precision: 0.9691858990616282
- Recall: 0.9773657289002557
- F1: 0.9732586272762003
- Number': 7820
- O
- Precision: 0.9984323288625675
- Recall: 0.999302649930265
- F1: 0.9988672998170254
- Number: 5736
- Os
- Precision: 1.0
- Recall: 0.9952267303102625
- F1: 0.9976076555023923
- Number: 419
- P
- Precision: 0.9887869520897044
- Recall: 0.9918200408997955
- F1: 0.9903011740684022
- Number: 2934
- Rb
- Precision: 0.9971910112359551
- Recall: 0.9983929288871033
- F1: 0.9977916081108211
- Number: 2489
- Rl
- Precision: 1.0
- Recall: 0.9997228381374723
- F1: 0.9998613998613999
- Number: 3608
- Rp
- Precision: 0.9979960600502683
- Recall: 0.9980638586956522
- F1: 0.9980299582215278
- Number: 29440
- Rp$
- Precision: 0.9975770162686051
- Recall: 0.9972318339100346
- F1: 0.9974043952240872
- Number: 5780
- Sr
- Precision: 0.9998923110058152
- Recall: 0.9998384752059442
- F1: 0.9998653923812088
- Number: 18573
- T
- Precision: 0.9987569919204475
- Recall: 0.9984811874352779
- F1: 0.9986190706345371
- Number: 28970
- W
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- number: 1
- X
- Precision: 0.9466666666666667,
- Recall: 0.9594594594594594,
- F1 0.9530201342281879,
- Number: 74}
- Ym
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Number: 5
- ' '
- Precision: 0.9951481772882245
- Recall: 0.9949524745984923
- F1: 0.9950503163208444
- Number: 15255
- '`'
- Precision: 0.9540229885057471
- Recall: 0.9595375722543352
- F1: 0.956772334293948
- Number: 173
- Overall
- Precision: 0.9828
- Recall: 0.9820
- F1: 0.9824
- Accuracy: 0.9860
## Model description
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/StrombergNLP-Twitter_pos_vcb/NER%20Project%20Using%20StrombergNLP%20Twitter_pos_vcb%20Dataset.ipynb
## Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.
## Training and evaluation data
Dataset Source: https://huggingface.co/datasets/strombergnlp/twitter_pos_vcb
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | ''' Precision | ''' Recall | ''' F1 | ''' Number | B Precision | B Recall | B F1 | B Number | Bd Precision | Bd Recall | Bd F1 | Bd Number | Bg Precision | Bg Recall | Bg F1 | Bg Number | Bn Precision | Bn Recall | Bn F1 | Bn Number | Bp Precision | Bp Recall | Bp F1 | Bp Number | Br Precision | Br Recall | Br F1 | Br Number | Bs precision | Bs Recall | Bs F1 | Bs Number | Bz Precision | Bz Recall | Bz F1 | Bz Number | C Precision | C Recall | C F1 | C Number | D Precision | D Recall | D F1 | D Number | Dt Precision | Dt Recall | Dt F1 | Dt Number | H Precision | H Recall | H F1 | H Number | J Precision | J Recall | J F1 | J Number | Jr Precision | Jr Recall | Jr F1 | Jr Number | Js Precision | Js Recall | Js F1 | Js Number | N Precision | N Recall | N F1 | N Number | Np Precision | Np Recall | Np F1 | Np Number | Nps Precision | Nps Recall | Nps F1 | Nps Number | Ns Precision | Ns Recall | Ns F1 | Ns Number | O Precision | O Recall | O F1 | O Number | Os Precision | Os Recall | Os F1 | Os Number | P Precision | P Recall | P F1 | P Number | Rb Precision | Rb Recall | Rb f1 | Rb Number | Rl Precision | Rl Recall | Rl F1 | Rl Number | Rp Precision | Rp Recall | Rp F1 | Rp Number | Rp$ Precision | Rp$ Recall | Rp$ F1 | Rp$ Number | Sr Precision | Sr Recall | Sr F1 | Sr Number | T Precision | T recall | T F1 | T Number | W Precision | W Recall | W F1 | W Number | X Precision | X Recall | X F1 | X Number | Ym Precision | Ym Recall | Ym F1 | Ym Number | ' ' Precision | ' ' Recall | ' ' F1 | ' ' Number | '`' Precision | '`' Recall | '`' F1 | '`' Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|
| 0.0617 | 1.0 | 7477 | 0.0595 | 0.9331 | 0.9391 | 0.9361 | 312 | 0.9563 | 0.9536 | 0.9550 | 25496 | 0.9716 | 0.9322 | 0.9515 | 5548 | 0.9811 | 0.9786 | 0.9798 | 5663 | 0.8725 | 0.9231 | 0.8971 | 2106 | 0.9556 | 0.9586 | 0.9571 | 15839 | 0.8879 | 0.8879 | 0.8879 | 107 | 0.8590 | 1.0 | 0.9241 | 67 | 0.9793 | 0.9834 | 0.9814 | 5673 | 0.9985 | 0.9991 | 0.9988 | 4588 | 0.9818 | 0.9886 | 0.9852 | 6726 | 1.0 | 0.8 | 0.8889 | 15 | 0.9391 | 0.9105 | 0.9246 | 9010 | 0.9707 | 0.9766 | 0.9736 | 12467 | 0.9212 | 0.9677 | 0.9438 | 495 | 0.9227 | 0.9757 | 0.9484 | 575 | 0.9754 | 0.9738 | 0.9746 | 38646 | 0.9158 | 0.9200 | 0.9179 | 6291 | 0.0 | 0.0 | 0.0 | 26 | 0.9657 | 0.9688 | 0.9673 | 7820 | 0.9972 | 0.9990 | 0.9981 | 5736 | 1.0 | 0.9928 | 0.9964 | 419 | 0.9771 | 0.9908 | 0.9839 | 2934 | 0.9948 | 0.9968 | 0.9958 | 2489 | 1.0 | 0.9997 | 0.9999 | 3608 | 0.9970 | 0.9976 | 0.9973 | 29440 | 0.9974 | 0.9954 | 0.9964 | 5780 | 0.9998 | 0.9998 | 0.9998 | 18573 | 0.9977 | 0.9982 | 0.9979 | 28970 | 0.0 | 0.0 | 0.0 | 1 | 0.8861 | 0.9459 | 0.9150 | 74 | 0.0 | 0.0 | 0.0 | 5 | 0.9936 | 0.9926 | 0.9931 | 15255 | 0.9540 | 0.9595 | 0.9568 | 173 | 0.9779 | 0.9772 | 0.9775 | 0.9821 |
| 0.0407 | 2.0 | 14954 | 0.0531 | 0.9605 | 0.9359 | 0.9481 | 312 | 0.9599 | 0.9646 | 0.9622 | 25496 | 0.9674 | 0.9459 | 0.9565 | 5548 | 0.9834 | 0.9825 | 0.9830 | 5663 | 0.8920 | 0.9259 | 0.9087 | 2106 | 0.9728 | 0.9569 | 0.9648 | 15839 | 0.9592 | 0.8785 | 0.9171 | 107 | 0.9429 | 0.9851 | 0.9635 | 67 | 0.9890 | 0.9825 | 0.9858 | 5673 | 0.9991 | 0.9993 | 0.9992 | 4588 | 0.9855 | 0.9896 | 0.9875 | 6726 | 1.0 | 0.8 | 0.8889 | 15 | 0.9498 | 0.9303 | 0.9399 | 9010 | 0.9776 | 0.9797 | 0.9786 | 12467 | 0.9125 | 0.9899 | 0.9496 | 495 | 0.9481 | 0.9843 | 0.9659 | 575 | 0.9788 | 0.9771 | 0.9779 | 38646 | 0.9252 | 0.9285 | 0.9268 | 6291 | 0.5 | 0.2308 | 0.3158 | 26 | 0.96534 | 0.9769 | 0.9711 | 7820 | 0.9976 | 0.9993 | 0.9984 | 5736 | 0.9929 | 0.9952 | 0.9940 | 419 | 0.9861 | 0.9928 | 0.9895 | 2934 | 0.9972 | 0.9984 | 0.9978 | 2489 | 1.0 | 0.9997 | 0.9999 | 3608 | 0.9986 | 0.9982 | 0.9984 | 29440 | 0.9964 | 0.9978 | 0.9971 | 5780 | 0.9999 | 0.9999 | 0.9999 | 18573 | 0.9985 | 0.9983 | 0.9984 | 28970 | 0.0 | 0.0 | 0.0 | 1 | 0.9114 | 0.9730 | 0.9412 | 74 | 0.0 | 0.0 | 0.0 | 5 | 0.9949 | 0.9961 | 0.9955 | 15255 | 0.9651 | 0.9595 | 0.9623 | 173 | 0.9817 | 0.9808 | 0.9813 | 0.9850 |
| 0.0246 | 3.0 | 22431 | 0.0533 | 0.9581 | 0.9519 | 0.9550 | 312 | 0.9658 | 0.9655 | 0.9657 | 25496 | 0.9630 | 0.9573 | 0.9601 | 5548 | 0.9836 | 0.9853 | 0.9845 | 5663 | 0.9182 | 0.9117 | 0.9149 | 2106 | 0.9672 | 0.9663 | 0.9668 | 15839 | 0.94 | 0.8785 | 0.9082 | 107 | 0.9848 | 0.9701 | 0.9774 | 67 | 0.9866 | 0.9850 | 0.9858 | 5673 | 0.9993 | 0.9993 | 0.9993 | 4588 | 0.9877 | 0.9896 | 0.9886 | 6726 | 1.0 | 0.8 | 0.8889 | 15 | 0.9487 | 0.9305 | 0.9395 | 9010 | 0.9804 | 0.9806 | 0.9805 | 12467 | 0.9400 | 0.9818 | 0.9605 | 495 | 0.9612 | 0.9913 | 0.9760 | 575 | 0.9796 | 0.9794 | 0.9795 | 38646 | 0.9330 | 0.9278 | 0.9304 | 6291 | 0.75 | 0.2308 | 0.3529 | 26 | 0.9692 | 0.9774 | 0.9733 | 7820 | 0.9984 | 0.9993 | 0.9989 | 5736 | 1.0 | 0.9952 | 0.9976 | 419 | 0.9888 | 0.9918 | 0.9903 | 2934 | 0.9972 | 0.9984 | 0.9978 | 2489 | 1.0 | 0.9997 | 0.9999 | 3608 | 0.9980 | 0.9981 | 0.9981 | 29440 | 0.9976 | 0.9972 | 0.9974 | 5780 | 0.9999 | 0.9998 | 0.9999 | 18573 | 0.9988 | 0.9985 | 0.9986 | 28970 | 0.0 | 0.0 | 0.0 | 1 | 0.9467 | 0.9595 | 0.9530 | 74 | 0.0 | 0.0 | 0.0 | 5 | 0.9951 | 0.9950 | 0.9951 | 15255 | 0.9540 | 0.9595 | 0.9568 | 173 | 0.9828 | 0.9820 | 0.9824 | 0.9860 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.13.3
|
shanover/symps_disease_bert_v3_c41
|
shanover
| 2023-07-21T00:58:59Z | 113 | 5 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"bert",
"text-classification",
"bert-base-uncased",
"disease",
"medical",
"en",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-07-20T09:10:32Z |
---
license: mit
language:
- en
library_name: transformers
pipeline_tag: text-classification
tags:
- bert-base-uncased
- disease
- medical
widget:
- text: "I am having itching, skin rash, and nodal skin eruptions"
example_title: "Fungal infection example"
- text: "I feel like vomiting, breathlessness, and sweating"
example_title: "Heart Attack example"
- text: "I am feeling fatigue, weight loss, restlessness and also lethargy."
example_title: "Diabetes example"
---
The objective is to develop a symptom-to-disease classification model for a natural language chatbot.
This model takes input text such as "I am feeling vomiting, breathlessness, and sweating" and accurately identifies the associated disease (Label_18 - 'Heart attack').
In essence, the chatbot's purpose is to analyze users' symptoms and provide relevant disease predictions in real-time conversation.
Superset of https://huggingface.co/shanover/disease_classifier_base
Symptoms to Disease - Sequence Classifier (41 Diseases)
## List of Encoded Numbers and Corresponding Disease Names
0. (Vertigo) Paroxysmal Positional Vertigo
1. AIDS
2. Acne
3. Alcoholic hepatitis
4. Allergy
5. Arthritis
6. Bronchial Asthma
7. Cervical spondylosis
8. Chicken pox
9. Chronic cholestasis
10. Common Cold
11. Dengue
12. Diabetes
13. Dimorphic hemorrhoids (piles)
14. Drug Reaction
15. Fungal infection
16. GERD
17. Gastroenteritis
18. Heart attack
19. Hepatitis B
20. Hepatitis C
21. Hepatitis D
22. Hepatitis E
23. Hypertension
24. Hyperthyroidism
25. Hypoglycemia
26. Hypothyroidism
27. Impetigo
28. Jaundice
29. Malaria
30. Migraine
31. Osteoarthritis
32. Paralysis (brain hemorrhage)
33. Peptic ulcer disease
34. Pneumonia
35. Psoriasis
36. Tuberculosis
37. Typhoid
38. Urinary tract infection
39. Varicose veins
40. Hepatitis A
EOD
|
pineapple116/anythingv5-1
|
pineapple116
| 2023-07-21T00:55:58Z | 0 | 0 |
diffusers
|
[
"diffusers",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-07-20T15:23:05Z |
---
library_name: diffusers
---
|
LarryAIDraw/mazaki_anzu_v1
|
LarryAIDraw
| 2023-07-21T00:53:00Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-21T00:44:50Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/112519/mazaki-anzu-yu-gi-oh
|
LarryAIDraw/MoeBASwimsuit
|
LarryAIDraw
| 2023-07-21T00:50:32Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-21T00:42:45Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/112940/moe-swimsuit-blue-archieve
|
CalderaAI/13B-Ouroboros-GPTQ4bit-128g-CUDA
|
CalderaAI
| 2023-07-20T23:57:43Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"alpaca",
"vicuna",
"uncensored",
"merge",
"mix",
"airoboros",
"openorca",
"orcamini",
"orca",
"instruct",
"mixtune",
"GPTQ",
"quantized",
"4bit",
"cuda",
"en",
"dataset:Open-Orca/OpenOrca",
"dataset:anon8231489123/ShareGPT_Vicuna_unfiltered",
"dataset:jondurbin/airoboros-uncensored",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-20T22:05:48Z |
---
tags:
- llama
- alpaca
- vicuna
- uncensored
- merge
- mix
- airoboros
- openorca
- orcamini
- orca
- instruct
- mixtune
- GPTQ
- quantized
- 4bit
- cuda
datasets:
- Open-Orca/OpenOrca
- anon8231489123/ShareGPT_Vicuna_unfiltered
- jondurbin/airoboros-uncensored
language:
- en
metrics:
- accuracy
pipeline_tag: text-generation
---
GPTQ 4 bit 128 groupsize CUDA quantization of CalderaAI's 13B Ouroboros:
https://huggingface.co/CalderaAI/13B-Ouroboros
|
vaishakkrishna/falcon-7b-instruct
|
vaishakkrishna
| 2023-07-20T23:34:18Z | 0 | 0 | null |
[
"en",
"dataset:tiiuae/falcon-refinedweb",
"arxiv:2205.14135",
"arxiv:1911.02150",
"arxiv:2005.14165",
"arxiv:2104.09864",
"arxiv:2306.01116",
"license:apache-2.0",
"region:us"
] | null | 2023-07-20T23:17:53Z |
---
datasets:
- tiiuae/falcon-refinedweb
language:
- en
inference: true
widget:
- text: "Hey Falcon! Any recommendations for my holidays in Abu Dhabi?"
example_title: "Abu Dhabi Trip"
- text: "What's the Everett interpretation of quantum mechanics?"
example_title: "Q/A: Quantum & Answers"
- text: "Give me a list of the top 10 dive sites you would recommend around the world."
example_title: "Diving Top 10"
- text: "Can you tell me more about deep-water soloing?"
example_title: "Extreme sports"
- text: "Can you write a short tweet about the Apache 2.0 release of our latest AI model, Falcon LLM?"
example_title: "Twitter Helper"
- text: "What are the responsabilities of a Chief Llama Officer?"
example_title: "Trendy Jobs"
license: apache-2.0
---
# ✨ Falcon-7B-Instruct
**Falcon-7B-Instruct is a 7B parameters causal decoder-only model built by [TII](https://www.tii.ae) based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and finetuned on a mixture of chat/instruct datasets. It is made available under the Apache 2.0 license.**
*Paper coming soon 😊.*
🤗 To get started with Falcon (inference, finetuning, quantization, etc.), we recommend reading [this great blogpost fron HF](https://huggingface.co/blog/falcon)!
## Why use Falcon-7B-Instruct?
* **You are looking for a ready-to-use chat/instruct model based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).**
* **Falcon-7B is a strong base model, outperforming comparable open-source models** (e.g., [MPT-7B](https://huggingface.co/mosaicml/mpt-7b), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1) etc.), thanks to being trained on 1,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
* **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)).
💬 **This is an instruct model, which may not be ideal for further finetuning.** If you are interested in building your own instruct/chat model, we recommend starting from [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).
🔥 **Looking for an even more powerful model?** [Falcon-40B-Instruct](https://huggingface.co/tiiuae/falcon-40b-instruct) is Falcon-7B-Instruct's big brother!
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model = "tiiuae/falcon-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
sequences = pipeline(
"Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
max_length=200,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
💥 **Falcon LLMs require PyTorch 2.0 for use with `transformers`!**
For fast inference with Falcon, check-out [Text Generation Inference](https://github.com/huggingface/text-generation-inference)! Read more in this [blogpost]((https://huggingface.co/blog/falcon).
You will need **at least 16GB of memory** to swiftly run inference with Falcon-7B-Instruct.
# Model Card for Falcon-7B-Instruct
## Model Details
### Model Description
- **Developed by:** [https://www.tii.ae](https://www.tii.ae);
- **Model type:** Causal decoder-only;
- **Language(s) (NLP):** English and French;
- **License:** Apache 2.0;
- **Finetuned from model:** [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).
### Model Source
- **Paper:** *coming soon*.
## Uses
### Direct Use
Falcon-7B-Instruct has been finetuned on a mixture of instruct and chat datasets.
### Out-of-Scope Use
Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
## Bias, Risks, and Limitations
Falcon-7B-Instruct is mostly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
### Recommendations
We recommend users of Falcon-7B-Instruct to develop guardrails and to take appropriate precautions for any production use.
## How to Get Started with the Model
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model = "tiiuae/falcon-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
sequences = pipeline(
"Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
max_length=200,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
## Training Details
### Training Data
Falcon-7B-Instruct was finetuned on a 250M tokens mixture of instruct/chat datasets.
| **Data source** | **Fraction** | **Tokens** | **Description** |
|--------------------|--------------|------------|-----------------------------------|
| [Bai ze](https://github.com/project-baize/baize-chatbot) | 65% | 164M | chat |
| [GPT4All](https://github.com/nomic-ai/gpt4all) | 25% | 62M | instruct |
| [GPTeacher](https://github.com/teknium1/GPTeacher) | 5% | 11M | instruct |
| [RefinedWeb-English](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) | 5% | 13M | massive web crawl |
The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b) tokenizer.
## Evaluation
*Paper coming soon.*
See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for early results.
Note that this model variant is not optimized for NLP benchmarks.
## Technical Specifications
For more information about pretraining, see [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).
### Model Architecture and Objective
Falcon-7B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).
The architecture is broadly adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), with the following differences:
* **Positionnal embeddings:** rotary ([Su et al., 2021](https://arxiv.org/abs/2104.09864));
* **Attention:** multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)) and FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135));
* **Decoder-block:** parallel attention/MLP with a single layer norm.
| **Hyperparameter** | **Value** | **Comment** |
|--------------------|-----------|----------------------------------------|
| Layers | 32 | |
| `d_model` | 4544 | Increased to compensate for multiquery |
| `head_dim` | 64 | Reduced to optimise for FlashAttention |
| Vocabulary | 65024 | |
| Sequence length | 2048 | |
### Compute Infrastructure
#### Hardware
Falcon-7B-Instruct was trained on AWS SageMaker, on 32 A100 40GB GPUs in P4d instances.
#### Software
Falcon-7B-Instruct was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.)
## Citation
*Paper coming soon* 😊. In the meanwhile, you can use the following information to cite:
```
@article{falcon40b,
title={{Falcon-40B}: an open large language model with state-of-the-art performance},
author={Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme},
year={2023}
}
```
To learn more about the pretraining dataset, see the 📓 [RefinedWeb paper](https://arxiv.org/abs/2306.01116).
```
@article{refinedweb,
title={The {R}efined{W}eb dataset for {F}alcon {LLM}: outperforming curated corpora with web data, and web data only},
author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay},
journal={arXiv preprint arXiv:2306.01116},
eprint={2306.01116},
eprinttype = {arXiv},
url={https://arxiv.org/abs/2306.01116},
year={2023}
}
```
## License
Falcon-7B-Instruct is made available under the Apache 2.0 license.
## Contact
falconllm@tii.ae
|
doctorderp/prometheus.safetensors
|
doctorderp
| 2023-07-20T23:27:42Z | 0 | 7 | null |
[
"region:us"
] | null | 2023-07-20T13:07:00Z |
https://www.youtube.com/watch?v=JB-BmFUdT7o
First, please take the time to watch the video, you wont regret it.
I am proud to introduce to you an innovative workflow solution for all of your prompting needs! Prometheus is a custom model along with 30 Hypernetworks I like to call Latent Later Cameras. These are virtual cameras that have been embedded in to the latent space which allow you to choose the camera angle and camera shot for your subject. These cameras put you in to the directors seat so that you always get the shot you envisioned in your mind. Besides being very flexible, the latent cameras also tend to be very cohesive and produce very good results through natural language prompting. That means there is no need for a word salad in your positive or negative prompts. In fact you can use the Hypernetworks without any negative prompts at all and still get very good results. As long as you follow very basic rules outlined in the video guide, on average you will get very good results. Thank you!
Please note the Hypernetworks work with all models...that are based on the 1.5 architecture... sorry if I misled in the video. Sorry no 2.0 or 2.1 support.
Don't forget to enable your dynamic prompts by checking the enable box, otherwise you can load the Hypernetworks manually, just know that the strength of the Hypernetworks should be at 0.55 by default, otherwise you will not get good results.
[Tip Jar](https://www.paypal.com/donate/?business=9B4V7D6BBUNPL&no_recurring=0¤cy_code=USD)
Discord if you have any questions = dr.derp#7202 or just dr.derp
Camera shot and angle cheat sheet. https://postimg.cc/gallery/V645cMS
---
license: apache-2.0
---
|
PlankyxD/a2c-PandaReachDense-v2
|
PlankyxD
| 2023-07-20T23:11:11Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-20T23:08:31Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -0.90 +/- 0.22
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
takesomerisks/qloraLlama213bchatTrain1
|
takesomerisks
| 2023-07-20T23:02:00Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-20T23:01:57Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
Mel-Iza0/RedPajama-ZeroShot-20K-classe_sem_categoria
|
Mel-Iza0
| 2023-07-20T22:50:11Z | 0 | 0 |
peft
|
[
"peft",
"pytorch",
"gpt_neox",
"region:us"
] | null | 2023-07-20T20:23:06Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0
|
Mayypeeya/mt5_thaisum_finetune
|
Mayypeeya
| 2023-07-20T22:35:47Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mt5",
"text2text-generation",
"generated_from_trainer",
"dataset:thaisum",
"base_model:google/mt5-base",
"base_model:finetune:google/mt5-base",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-07-20T16:53:58Z |
---
license: apache-2.0
base_model: google/mt5-base
tags:
- generated_from_trainer
datasets:
- thaisum
metrics:
- rouge
model-index:
- name: mt5_thaisum_finetune
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: thaisum
type: thaisum
config: thaisum
split: validation
args: thaisum
metrics:
- name: Rouge1
type: rouge
value: 0.2022
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5_thaisum_finetune
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the thaisum dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3039
- Rouge1: 0.2022
- Rouge2: 0.0808
- Rougel: 0.2023
- Rougelsum: 0.2019
- Gen Len: 18.9995
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.0742 | 1.0 | 5000 | 0.3272 | 0.1713 | 0.0551 | 0.1716 | 0.1714 | 18.9945 |
| 1.7874 | 2.0 | 10000 | 0.3073 | 0.1943 | 0.0747 | 0.195 | 0.1941 | 18.997 |
| 1.6341 | 3.0 | 15000 | 0.3035 | 0.2006 | 0.0807 | 0.2007 | 0.2002 | 19.0 |
| 1.4501 | 4.0 | 20000 | 0.3039 | 0.2022 | 0.0808 | 0.2023 | 0.2019 | 18.9995 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
guardrail/llama-2-7b-guanaco-8bit-sharded
|
guardrail
| 2023-07-20T22:29:10Z | 9 | 4 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"dataset:timdettmers/openassistant-guanaco",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"region:us"
] |
text-generation
| 2023-07-20T21:10:35Z |
---
license: apache-2.0
datasets:
- timdettmers/openassistant-guanaco
pipeline_tag: text-generation
---
Model that is fine-tuned in 4-bit precision using QLoRA on [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco) and sharded to be used on a free Google Colab instance.
It can be easily imported using the `AutoModelForCausalLM` class from `transformers`:
```
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"guardrail/llama-2-7b-guanaco-8bit-sharded",
load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
```
|
Emperor-WS/ppo-Huggy
|
Emperor-WS
| 2023-07-20T22:26:31Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-07-20T22:26:20Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: Emperor-WS/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
brishtiteveja/llama2-qlora-finetunined-french
|
brishtiteveja
| 2023-07-20T22:14:38Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-20T22:14:34Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
misseuro/llm_course_sql_v1
|
misseuro
| 2023-07-20T21:53:25Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-20T21:53:19Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.5.0.dev0
|
Ar4ikov/falcon-covid19-4bit
|
Ar4ikov
| 2023-07-20T21:50:24Z | 10 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-20T21:50:19Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
michaelfeil/ct2fast-nllb-200-3.3B
|
michaelfeil
| 2023-07-20T21:48:17Z | 33 | 12 |
transformers
|
[
"transformers",
"m2m_100",
"text2text-generation",
"ctranslate2",
"int8",
"float16",
"nllb",
"translation",
"ace",
"acm",
"acq",
"aeb",
"af",
"ajp",
"ak",
"als",
"am",
"apc",
"ar",
"ars",
"ary",
"arz",
"as",
"ast",
"awa",
"ayr",
"azb",
"azj",
"ba",
"bm",
"ban",
"be",
"bem",
"bn",
"bho",
"bjn",
"bo",
"bs",
"bug",
"bg",
"ca",
"ceb",
"cs",
"cjk",
"ckb",
"crh",
"cy",
"da",
"de",
"dik",
"dyu",
"dz",
"el",
"en",
"eo",
"et",
"eu",
"ee",
"fo",
"fj",
"fi",
"fon",
"fr",
"fur",
"fuv",
"gaz",
"gd",
"ga",
"gl",
"gn",
"gu",
"ht",
"ha",
"he",
"hi",
"hne",
"hr",
"hu",
"hy",
"ig",
"ilo",
"id",
"is",
"it",
"jv",
"ja",
"kab",
"kac",
"kam",
"kn",
"ks",
"ka",
"kk",
"kbp",
"kea",
"khk",
"km",
"ki",
"rw",
"ky",
"kmb",
"kmr",
"knc",
"kg",
"ko",
"lo",
"lij",
"li",
"ln",
"lt",
"lmo",
"ltg",
"lb",
"lua",
"lg",
"luo",
"lus",
"lvs",
"mag",
"mai",
"ml",
"mar",
"min",
"mk",
"mt",
"mni",
"mos",
"mi",
"my",
"nl",
"nn",
"nb",
"npi",
"nso",
"nus",
"ny",
"oc",
"ory",
"pag",
"pa",
"pap",
"pbt",
"pes",
"plt",
"pl",
"pt",
"prs",
"quy",
"ro",
"rn",
"ru",
"sg",
"sa",
"sat",
"scn",
"shn",
"si",
"sk",
"sl",
"sm",
"sn",
"sd",
"so",
"st",
"es",
"sc",
"sr",
"ss",
"su",
"sv",
"swh",
"szl",
"ta",
"taq",
"tt",
"te",
"tg",
"tl",
"th",
"ti",
"tpi",
"tn",
"ts",
"tk",
"tum",
"tr",
"tw",
"tzm",
"ug",
"uk",
"umb",
"ur",
"uzn",
"vec",
"vi",
"war",
"wo",
"xh",
"ydd",
"yo",
"yue",
"zh",
"zsm",
"zu",
"dataset:flores-200",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"region:us"
] |
translation
| 2023-06-23T15:47:38Z |
---
language:
- ace
- acm
- acq
- aeb
- af
- ajp
- ak
- als
- am
- apc
- ar
- ars
- ary
- arz
- as
- ast
- awa
- ayr
- azb
- azj
- ba
- bm
- ban
- be
- bem
- bn
- bho
- bjn
- bo
- bs
- bug
- bg
- ca
- ceb
- cs
- cjk
- ckb
- crh
- cy
- da
- de
- dik
- dyu
- dz
- el
- en
- eo
- et
- eu
- ee
- fo
- fj
- fi
- fon
- fr
- fur
- fuv
- gaz
- gd
- ga
- gl
- gn
- gu
- ht
- ha
- he
- hi
- hne
- hr
- hu
- hy
- ig
- ilo
- id
- is
- it
- jv
- ja
- kab
- kac
- kam
- kn
- ks
- ka
- kk
- kbp
- kea
- khk
- km
- ki
- rw
- ky
- kmb
- kmr
- knc
- kg
- ko
- lo
- lij
- li
- ln
- lt
- lmo
- ltg
- lb
- lua
- lg
- luo
- lus
- lvs
- mag
- mai
- ml
- mar
- min
- mk
- mt
- mni
- mos
- mi
- my
- nl
- nn
- nb
- npi
- nso
- nus
- ny
- oc
- ory
- pag
- pa
- pap
- pbt
- pes
- plt
- pl
- pt
- prs
- quy
- ro
- rn
- ru
- sg
- sa
- sat
- scn
- shn
- si
- sk
- sl
- sm
- sn
- sd
- so
- st
- es
- sc
- sr
- ss
- su
- sv
- swh
- szl
- ta
- taq
- tt
- te
- tg
- tl
- th
- ti
- tpi
- tn
- ts
- tk
- tum
- tr
- tw
- tzm
- ug
- uk
- umb
- ur
- uzn
- vec
- vi
- war
- wo
- xh
- ydd
- yo
- yue
- zh
- zsm
- zu
language_details: "ace_Arab, ace_Latn, acm_Arab, acq_Arab, aeb_Arab, afr_Latn, ajp_Arab, aka_Latn, amh_Ethi, apc_Arab, arb_Arab, ars_Arab, ary_Arab, arz_Arab, asm_Beng, ast_Latn, awa_Deva, ayr_Latn, azb_Arab, azj_Latn, bak_Cyrl, bam_Latn, ban_Latn,bel_Cyrl, bem_Latn, ben_Beng, bho_Deva, bjn_Arab, bjn_Latn, bod_Tibt, bos_Latn, bug_Latn, bul_Cyrl, cat_Latn, ceb_Latn, ces_Latn, cjk_Latn, ckb_Arab, crh_Latn, cym_Latn, dan_Latn, deu_Latn, dik_Latn, dyu_Latn, dzo_Tibt, ell_Grek, eng_Latn, epo_Latn, est_Latn, eus_Latn, ewe_Latn, fao_Latn, pes_Arab, fij_Latn, fin_Latn, fon_Latn, fra_Latn, fur_Latn, fuv_Latn, gla_Latn, gle_Latn, glg_Latn, grn_Latn, guj_Gujr, hat_Latn, hau_Latn, heb_Hebr, hin_Deva, hne_Deva, hrv_Latn, hun_Latn, hye_Armn, ibo_Latn, ilo_Latn, ind_Latn, isl_Latn, ita_Latn, jav_Latn, jpn_Jpan, kab_Latn, kac_Latn, kam_Latn, kan_Knda, kas_Arab, kas_Deva, kat_Geor, knc_Arab, knc_Latn, kaz_Cyrl, kbp_Latn, kea_Latn, khm_Khmr, kik_Latn, kin_Latn, kir_Cyrl, kmb_Latn, kon_Latn, kor_Hang, kmr_Latn, lao_Laoo, lvs_Latn, lij_Latn, lim_Latn, lin_Latn, lit_Latn, lmo_Latn, ltg_Latn, ltz_Latn, lua_Latn, lug_Latn, luo_Latn, lus_Latn, mag_Deva, mai_Deva, mal_Mlym, mar_Deva, min_Latn, mkd_Cyrl, plt_Latn, mlt_Latn, mni_Beng, khk_Cyrl, mos_Latn, mri_Latn, zsm_Latn, mya_Mymr, nld_Latn, nno_Latn, nob_Latn, npi_Deva, nso_Latn, nus_Latn, nya_Latn, oci_Latn, gaz_Latn, ory_Orya, pag_Latn, pan_Guru, pap_Latn, pol_Latn, por_Latn, prs_Arab, pbt_Arab, quy_Latn, ron_Latn, run_Latn, rus_Cyrl, sag_Latn, san_Deva, sat_Beng, scn_Latn, shn_Mymr, sin_Sinh, slk_Latn, slv_Latn, smo_Latn, sna_Latn, snd_Arab, som_Latn, sot_Latn, spa_Latn, als_Latn, srd_Latn, srp_Cyrl, ssw_Latn, sun_Latn, swe_Latn, swh_Latn, szl_Latn, tam_Taml, tat_Cyrl, tel_Telu, tgk_Cyrl, tgl_Latn, tha_Thai, tir_Ethi, taq_Latn, taq_Tfng, tpi_Latn, tsn_Latn, tso_Latn, tuk_Latn, tum_Latn, tur_Latn, twi_Latn, tzm_Tfng, uig_Arab, ukr_Cyrl, umb_Latn, urd_Arab, uzn_Latn, vec_Latn, vie_Latn, war_Latn, wol_Latn, xho_Latn, ydd_Hebr, yor_Latn, yue_Hant, zho_Hans, zho_Hant, zul_Latn"
tags:
- ctranslate2
- int8
- float16
- nllb
- translation
license: "cc-by-nc-4.0"
datasets:
- flores-200
metrics:
- bleu
- spbleu
- chrf++
inference: false
---
# # Fast-Inference with Ctranslate2
Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.
quantized version of [facebook/nllb-200-3.3B](https://huggingface.co/facebook/nllb-200-3.3B)
```bash
pip install ctranslate2>=3.16.0
```
```python
```
Checkpoint compatible to [ctranslate2>=3.16.0](https://github.com/OpenNMT/CTranslate2)
and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2)
- `compute_type=int8_float16` for `device="cuda"`
- `compute_type=int8` for `device="cpu"`
Converted on 2023-06-23 using
```
ct2-transformers-converter --model facebook/nllb-200-3.3B --output_dir ~/tmp-ct2fast-nllb-200-3.3B --force --copy_files tokenizer.json README.md tokenizer_config.json generation_config.json special_tokens_map.json .gitattributes --quantization int8_float16 --trust_remote_code
```
# Licence and other remarks:
This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.
# Original description
# NLLB-200
This is the model card of NLLB-200's 3.3B variant.
Here are the [metrics](https://tinyurl.com/nllb200dense3bmetrics) for that particular checkpoint.
- Information about training algorithms, parameters, fairness constraints or other applied approaches, and features. The exact training algorithm, data and the strategies to handle data imbalances for high and low resource languages that were used to train NLLB-200 is described in the paper.
- Paper or other resource for more information NLLB Team et al, No Language Left Behind: Scaling Human-Centered Machine Translation, Arxiv, 2022
- License: CC-BY-NC
- Where to send questions or comments about the model: https://github.com/facebookresearch/fairseq/issues
## Intended Use
- Primary intended uses: NLLB-200 is a machine translation model primarily intended for research in machine translation, - especially for low-resource languages. It allows for single sentence translation among 200 languages. Information on how to - use the model can be found in Fairseq code repository along with the training code and references to evaluation and training data.
- Primary intended users: Primary users are researchers and machine translation research community.
- Out-of-scope use cases: NLLB-200 is a research model and is not released for production deployment. NLLB-200 is trained on general domain text data and is not intended to be used with domain specific texts, such as medical domain or legal domain. The model is not intended to be used for document translation. The model was trained with input lengths not exceeding 512 tokens, therefore translating longer sequences might result in quality degradation. NLLB-200 translations can not be used as certified translations.
## Metrics
• Model performance measures: NLLB-200 model was evaluated using BLEU, spBLEU, and chrF++ metrics widely adopted by machine translation community. Additionally, we performed human evaluation with the XSTS protocol and measured the toxicity of the generated translations.
## Evaluation Data
- Datasets: Flores-200 dataset is described in Section 4
- Motivation: We used Flores-200 as it provides full evaluation coverage of the languages in NLLB-200
- Preprocessing: Sentence-split raw text data was preprocessed using SentencePiece. The
SentencePiece model is released along with NLLB-200.
## Training Data
• We used parallel multilingual data from a variety of sources to train the model. We provide detailed report on data selection and construction process in Section 5 in the paper. We also used monolingual data constructed from Common Crawl. We provide more details in Section 5.2.
## Ethical Considerations
• In this work, we took a reflexive approach in technological development to ensure that we prioritize human users and minimize risks that could be transferred to them. While we reflect on our ethical considerations throughout the article, here are some additional points to highlight. For one, many languages chosen for this study are low-resource languages, with a heavy emphasis on African languages. While quality translation could improve education and information access in many in these communities, such an access could also make groups with lower levels of digital literacy more vulnerable to misinformation or online scams. The latter scenarios could arise if bad actors misappropriate our work for nefarious activities, which we conceive as an example of unintended use. Regarding data acquisition, the training data used for model development were mined from various publicly available sources on the web. Although we invested heavily in data cleaning, personally identifiable information may not be entirely eliminated. Finally, although we did our best to optimize for translation quality, mistranslations produced by the model could remain. Although the odds are low, this could have adverse impact on those who rely on these translations to make important decisions (particularly when related to health and safety).
## Caveats and Recommendations
• Our model has been tested on the Wikimedia domain with limited investigation on other domains supported in NLLB-MD. In addition, the supported languages may have variations that our model is not capturing. Users should make appropriate assessments.
## Carbon Footprint Details
• The carbon dioxide (CO2e) estimate is reported in Section 8.8.
|
hyunussarioglu/q-Taxi-v3
|
hyunussarioglu
| 2023-07-20T21:28:54Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-20T21:28:53Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="hyunussarioglu/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Guilherme34/Jennifer2-ENGLISH-CHAT.MULTITURN-LORA-7B-LLAMA2
|
Guilherme34
| 2023-07-20T21:18:26Z | 4 | 1 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-20T20:14:17Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.4.0
|
ByteExplorer/LunarLander-v2
|
ByteExplorer
| 2023-07-20T21:15:48Z | 0 | 0 | null |
[
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-20T19:19:26Z |
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 226.96 +/- 41.61
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 10000000
'learning_rate': 0.00025
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'ByteExplorer'
'batch_size': 512
'minibatch_size': 128}
```
|
NasimB/cl-norm-rarity-log-rarity-180k
|
NasimB
| 2023-07-20T21:05:54Z | 12 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:generator",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-20T18:45:32Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: cl-norm-rarity-log-rarity-180k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cl-norm-rarity-log-rarity-180k
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 4.6308
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.6406 | 0.04 | 500 | 5.4417 |
| 5.2633 | 0.08 | 1000 | 5.0706 |
| 4.9048 | 0.13 | 1500 | 4.8767 |
| 4.663 | 0.17 | 2000 | 4.7614 |
| 4.4918 | 0.21 | 2500 | 4.6906 |
| 4.3581 | 0.25 | 3000 | 4.6319 |
| 4.2431 | 0.3 | 3500 | 4.6053 |
| 4.137 | 0.34 | 4000 | 4.5844 |
| 4.0418 | 0.38 | 4500 | 4.5624 |
| 3.9579 | 0.42 | 5000 | 4.5340 |
| 3.8642 | 0.46 | 5500 | 4.5333 |
| 3.7842 | 0.51 | 6000 | 4.5231 |
| 3.7016 | 0.55 | 6500 | 4.5284 |
| 3.6231 | 0.59 | 7000 | 4.5247 |
| 3.5474 | 0.63 | 7500 | 4.5221 |
| 3.4717 | 0.68 | 8000 | 4.5246 |
| 3.4052 | 0.72 | 8500 | 4.5312 |
| 3.3547 | 0.76 | 9000 | 4.5309 |
| 3.3033 | 0.8 | 9500 | 4.5291 |
| 3.2663 | 0.85 | 10000 | 4.5346 |
| 3.2378 | 0.89 | 10500 | 4.5343 |
| 3.2228 | 0.93 | 11000 | 4.5353 |
| 3.2127 | 0.97 | 11500 | 4.5352 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3
|
Emperor-WS/ppo-LunarLander-v2
|
Emperor-WS
| 2023-07-20T21:05:34Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-20T21:05:17Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 271.32 +/- 21.49
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
rod16/v1_finetuning-sentiment-model-3000-samples
|
rod16
| 2023-07-20T20:50:56Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:imdb",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-07-20T20:44:06Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
- f1
model-index:
- name: v1_finetuning-sentiment-model-3000-samples
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
config: plain_text
split: test
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.8733333333333333
- name: F1
type: f1
value: 0.8766233766233766
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# v1_finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3156
- Accuracy: 0.8733
- F1: 0.8766
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
Gaivoronsky/ruGPT-3.5-13B-fp16
|
Gaivoronsky
| 2023-07-20T20:49:05Z | 48 | 12 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"gpt3",
"ru",
"en",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-07-20T19:29:11Z |
---
license: mit
language:
- ru
- en
pipeline_tag: text-generation
inference: false
tags:
- gpt3
- transformers
- pytorch
---
This is a generative model converted to fp16 format based on [ai-forever/ruGPT-3.5-13B](https://huggingface.co/ai-forever/ruGPT-3.5-13B)
## Examples of usage
```python
from transformers import GPT2LMHeadModel, AutoTokenizer
model = GPT2LMHeadModel.from_pretrained('Gaivoronsky/ruGPT-3.5-13B-fp16')
tokenizer = AutoTokenizer.from_pretrained('Gaivoronsky/ruGPT-3.5-13B-fp16')
model = model.half()
model = model.to('cuda')
request = "Человек: Сколько весит жираф? Помощник: "
encoded_input = tokenizer(request, return_tensors='pt', \
add_special_tokens=False).to('cuda')
output = model.generate(
**encoded_input,
num_beams=2,
do_sample=True,
max_new_tokens=100
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
|
darioali/openai-whisper-large-v2-LORA-colab-v2
|
darioali
| 2023-07-20T20:48:07Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-20T20:48:02Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.5.0.dev0
|
pvbhanuteja/layoutlm-funsd
|
pvbhanuteja
| 2023-07-20T20:35:35Z | 14 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"layoutlm",
"token-classification",
"generated_from_trainer",
"dataset:funsd",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-11-07T07:57:16Z |
---
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlm-funsd
This model is a fine-tuned version of [pvbhanuteja/layoutlm-funsd](https://huggingface.co/pvbhanuteja/layoutlm-funsd) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1395
- Answer: {'precision': 0.733934611048478, 'recall': 0.8046971569839307, 'f1': 0.767688679245283, 'number': 809}
- Header: {'precision': 0.4066666666666667, 'recall': 0.5126050420168067, 'f1': 0.4535315985130111, 'number': 119}
- Question: {'precision': 0.7980339588918678, 'recall': 0.8384976525821596, 'f1': 0.8177655677655677, 'number': 1065}
- Overall Precision: 0.7444
- Overall Recall: 0.8053
- Overall F1: 0.7737
- Overall Accuracy: 0.8054
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.7854 | 1.0 | 3 | 0.7718 | {'precision': 0.5876826722338204, 'recall': 0.695920889987639, 'f1': 0.6372382569326542, 'number': 809} | {'precision': 0.1509433962264151, 'recall': 0.06722689075630252, 'f1': 0.09302325581395347, 'number': 119} | {'precision': 0.6840731070496083, 'recall': 0.7380281690140845, 'f1': 0.7100271002710027, 'number': 1065} | 0.6282 | 0.6809 | 0.6535 | 0.7603 |
| 0.6636 | 2.0 | 6 | 0.7427 | {'precision': 0.6303418803418803, 'recall': 0.7292954264524104, 'f1': 0.67621776504298, 'number': 809} | {'precision': 0.2289156626506024, 'recall': 0.15966386554621848, 'f1': 0.18811881188118812, 'number': 119} | {'precision': 0.6728295819935691, 'recall': 0.7859154929577464, 'f1': 0.7249891728020789, 'number': 1065} | 0.6390 | 0.7255 | 0.6795 | 0.7810 |
| 0.5784 | 3.0 | 9 | 0.6996 | {'precision': 0.6334033613445378, 'recall': 0.7453646477132262, 'f1': 0.6848381601362863, 'number': 809} | {'precision': 0.23529411764705882, 'recall': 0.13445378151260504, 'f1': 0.17112299465240638, 'number': 119} | {'precision': 0.705161854768154, 'recall': 0.7568075117370892, 'f1': 0.7300724637681159, 'number': 1065} | 0.6588 | 0.7150 | 0.6858 | 0.7843 |
| 0.5096 | 4.0 | 12 | 0.7029 | {'precision': 0.6794150731158605, 'recall': 0.7466007416563659, 'f1': 0.7114252061248527, 'number': 809} | {'precision': 0.27380952380952384, 'recall': 0.19327731092436976, 'f1': 0.2266009852216749, 'number': 119} | {'precision': 0.7071029529130087, 'recall': 0.831924882629108, 'f1': 0.7644521138912856, 'number': 1065} | 0.6797 | 0.7592 | 0.7172 | 0.7928 |
| 0.4932 | 5.0 | 15 | 0.6843 | {'precision': 0.6684266103484688, 'recall': 0.7824474660074165, 'f1': 0.7209567198177677, 'number': 809} | {'precision': 0.2653061224489796, 'recall': 0.2184873949579832, 'f1': 0.23963133640552997, 'number': 119} | {'precision': 0.7347114556416882, 'recall': 0.8009389671361502, 'f1': 0.7663971248876907, 'number': 1065} | 0.6854 | 0.7587 | 0.7202 | 0.7976 |
| 0.4558 | 6.0 | 18 | 0.6809 | {'precision': 0.6920492721164614, 'recall': 0.7639060568603214, 'f1': 0.7262044653349001, 'number': 809} | {'precision': 0.29245283018867924, 'recall': 0.2605042016806723, 'f1': 0.27555555555555555, 'number': 119} | {'precision': 0.7493495229835212, 'recall': 0.8112676056338028, 'f1': 0.7790802524797115, 'number': 1065} | 0.7031 | 0.7592 | 0.7300 | 0.8022 |
| 0.4103 | 7.0 | 21 | 0.6674 | {'precision': 0.6886486486486486, 'recall': 0.7873918417799752, 'f1': 0.7347174163783161, 'number': 809} | {'precision': 0.3, 'recall': 0.25210084033613445, 'f1': 0.273972602739726, 'number': 119} | {'precision': 0.7483221476510067, 'recall': 0.8375586854460094, 'f1': 0.7904297740363314, 'number': 1065} | 0.7032 | 0.7822 | 0.7406 | 0.8006 |
| 0.3867 | 8.0 | 24 | 0.6610 | {'precision': 0.7100115074798619, 'recall': 0.7626699629171817, 'f1': 0.735399284862932, 'number': 809} | {'precision': 0.30303030303030304, 'recall': 0.33613445378151263, 'f1': 0.3187250996015936, 'number': 119} | {'precision': 0.759825327510917, 'recall': 0.8169014084507042, 'f1': 0.7873303167420814, 'number': 1065} | 0.7116 | 0.7662 | 0.7379 | 0.8094 |
| 0.3632 | 9.0 | 27 | 0.6517 | {'precision': 0.7088465845464725, 'recall': 0.7824474660074165, 'f1': 0.7438307873090482, 'number': 809} | {'precision': 0.29357798165137616, 'recall': 0.2689075630252101, 'f1': 0.28070175438596495, 'number': 119} | {'precision': 0.768695652173913, 'recall': 0.8300469483568075, 'f1': 0.798194130925508, 'number': 1065} | 0.7198 | 0.7772 | 0.7474 | 0.8168 |
| 0.3275 | 10.0 | 30 | 0.6857 | {'precision': 0.7166666666666667, 'recall': 0.7972805933250927, 'f1': 0.7548273844353424, 'number': 809} | {'precision': 0.2695035460992908, 'recall': 0.31932773109243695, 'f1': 0.2923076923076923, 'number': 119} | {'precision': 0.766695576756288, 'recall': 0.8300469483568075, 'f1': 0.7971145175834085, 'number': 1065} | 0.7142 | 0.7863 | 0.7485 | 0.8043 |
| 0.2981 | 11.0 | 33 | 0.6884 | {'precision': 0.7378190255220418, 'recall': 0.7861557478368356, 'f1': 0.7612208258527828, 'number': 809} | {'precision': 0.34959349593495936, 'recall': 0.36134453781512604, 'f1': 0.35537190082644626, 'number': 119} | {'precision': 0.7722513089005235, 'recall': 0.8309859154929577, 'f1': 0.8005427408412483, 'number': 1065} | 0.7339 | 0.7847 | 0.7585 | 0.8067 |
| 0.2841 | 12.0 | 36 | 0.6951 | {'precision': 0.7202718006795017, 'recall': 0.7861557478368356, 'f1': 0.7517730496453902, 'number': 809} | {'precision': 0.336283185840708, 'recall': 0.31932773109243695, 'f1': 0.32758620689655166, 'number': 119} | {'precision': 0.7684943429068756, 'recall': 0.8291079812206573, 'f1': 0.7976513098464317, 'number': 1065} | 0.7259 | 0.7812 | 0.7525 | 0.8109 |
| 0.2505 | 13.0 | 39 | 0.7074 | {'precision': 0.7242152466367713, 'recall': 0.7985166872682324, 'f1': 0.7595532039976484, 'number': 809} | {'precision': 0.3049645390070922, 'recall': 0.36134453781512604, 'f1': 0.3307692307692308, 'number': 119} | {'precision': 0.7823371989295272, 'recall': 0.8234741784037559, 'f1': 0.8023787740164685, 'number': 1065} | 0.7270 | 0.7858 | 0.7552 | 0.8054 |
| 0.2416 | 14.0 | 42 | 0.7138 | {'precision': 0.7323462414578588, 'recall': 0.7948084054388134, 'f1': 0.7622999407231773, 'number': 809} | {'precision': 0.328, 'recall': 0.3445378151260504, 'f1': 0.33606557377049184, 'number': 119} | {'precision': 0.7828773168578994, 'recall': 0.8328638497652582, 'f1': 0.8070973612374885, 'number': 1065} | 0.7355 | 0.7883 | 0.7610 | 0.8116 |
| 0.2138 | 15.0 | 45 | 0.7212 | {'precision': 0.7307692307692307, 'recall': 0.7985166872682324, 'f1': 0.7631423508564678, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.35294117647058826, 'f1': 0.34285714285714286, 'number': 119} | {'precision': 0.7901785714285714, 'recall': 0.8309859154929577, 'f1': 0.8100686498855836, 'number': 1065} | 0.7385 | 0.7893 | 0.7630 | 0.8155 |
| 0.2019 | 16.0 | 48 | 0.7338 | {'precision': 0.7417893544733862, 'recall': 0.8096415327564895, 'f1': 0.7742316784869978, 'number': 809} | {'precision': 0.37209302325581395, 'recall': 0.40336134453781514, 'f1': 0.3870967741935484, 'number': 119} | {'precision': 0.7945945945945946, 'recall': 0.828169014084507, 'f1': 0.8110344827586206, 'number': 1065} | 0.7469 | 0.7953 | 0.7704 | 0.8137 |
| 0.1807 | 17.0 | 51 | 0.7435 | {'precision': 0.7295454545454545, 'recall': 0.7935723114956736, 'f1': 0.7602131438721137, 'number': 809} | {'precision': 0.3787878787878788, 'recall': 0.42016806722689076, 'f1': 0.398406374501992, 'number': 119} | {'precision': 0.7898032200357782, 'recall': 0.8291079812206573, 'f1': 0.8089784699954191, 'number': 1065} | 0.7394 | 0.7903 | 0.7640 | 0.8178 |
| 0.173 | 18.0 | 54 | 0.7623 | {'precision': 0.7337807606263982, 'recall': 0.8108776266996292, 'f1': 0.7704051673517321, 'number': 809} | {'precision': 0.37777777777777777, 'recall': 0.42857142857142855, 'f1': 0.40157480314960625, 'number': 119} | {'precision': 0.7865961199294532, 'recall': 0.8375586854460094, 'f1': 0.8112778535698044, 'number': 1065} | 0.7393 | 0.8023 | 0.7695 | 0.8124 |
| 0.1463 | 19.0 | 57 | 0.7833 | {'precision': 0.7365470852017937, 'recall': 0.8121137206427689, 'f1': 0.7724867724867724, 'number': 809} | {'precision': 0.38235294117647056, 'recall': 0.4369747899159664, 'f1': 0.40784313725490196, 'number': 119} | {'precision': 0.7901785714285714, 'recall': 0.8309859154929577, 'f1': 0.8100686498855836, 'number': 1065} | 0.7421 | 0.7998 | 0.7699 | 0.8120 |
| 0.1429 | 20.0 | 60 | 0.7812 | {'precision': 0.7403628117913832, 'recall': 0.8071693448702101, 'f1': 0.7723240685984624, 'number': 809} | {'precision': 0.3770491803278688, 'recall': 0.3865546218487395, 'f1': 0.38174273858921165, 'number': 119} | {'precision': 0.7859054415700267, 'recall': 0.8272300469483568, 'f1': 0.8060384263494967, 'number': 1065} | 0.7435 | 0.7928 | 0.7674 | 0.8153 |
| 0.1263 | 21.0 | 63 | 0.7958 | {'precision': 0.7327293318233296, 'recall': 0.799752781211372, 'f1': 0.764775413711584, 'number': 809} | {'precision': 0.3986013986013986, 'recall': 0.4789915966386555, 'f1': 0.4351145038167939, 'number': 119} | {'precision': 0.8021978021978022, 'recall': 0.8225352112676056, 'f1': 0.812239221140473, 'number': 1065} | 0.7460 | 0.7928 | 0.7687 | 0.8139 |
| 0.1285 | 22.0 | 66 | 0.7985 | {'precision': 0.7421171171171171, 'recall': 0.8145859085290482, 'f1': 0.7766647024160284, 'number': 809} | {'precision': 0.41732283464566927, 'recall': 0.44537815126050423, 'f1': 0.43089430894308944, 'number': 119} | {'precision': 0.7955156950672646, 'recall': 0.8328638497652582, 'f1': 0.8137614678899082, 'number': 1065} | 0.7507 | 0.8023 | 0.7756 | 0.8178 |
| 0.1141 | 23.0 | 69 | 0.8143 | {'precision': 0.7497129735935706, 'recall': 0.8071693448702101, 'f1': 0.7773809523809524, 'number': 809} | {'precision': 0.3958333333333333, 'recall': 0.4789915966386555, 'f1': 0.43346007604562736, 'number': 119} | {'precision': 0.8052536231884058, 'recall': 0.8347417840375587, 'f1': 0.8197325956662057, 'number': 1065} | 0.7546 | 0.8023 | 0.7777 | 0.8161 |
| 0.1133 | 24.0 | 72 | 0.8220 | {'precision': 0.7482993197278912, 'recall': 0.8158220024721878, 'f1': 0.7806031933767001, 'number': 809} | {'precision': 0.39855072463768115, 'recall': 0.46218487394957986, 'f1': 0.42801556420233466, 'number': 119} | {'precision': 0.7974910394265233, 'recall': 0.8356807511737089, 'f1': 0.8161393856029343, 'number': 1065} | 0.7514 | 0.8053 | 0.7774 | 0.8160 |
| 0.1054 | 25.0 | 75 | 0.8361 | {'precision': 0.7426966292134831, 'recall': 0.8170580964153276, 'f1': 0.7781047675103001, 'number': 809} | {'precision': 0.3829787234042553, 'recall': 0.453781512605042, 'f1': 0.4153846153846153, 'number': 119} | {'precision': 0.7976723366159355, 'recall': 0.8366197183098592, 'f1': 0.8166819431714023, 'number': 1065} | 0.7477 | 0.8058 | 0.7757 | 0.8126 |
| 0.0977 | 26.0 | 78 | 0.8533 | {'precision': 0.7444196428571429, 'recall': 0.8244746600741656, 'f1': 0.7824046920821115, 'number': 809} | {'precision': 0.3782051282051282, 'recall': 0.4957983193277311, 'f1': 0.4290909090909091, 'number': 119} | {'precision': 0.8014505893019039, 'recall': 0.8300469483568075, 'f1': 0.8154981549815499, 'number': 1065} | 0.7471 | 0.8078 | 0.7763 | 0.8101 |
| 0.0892 | 27.0 | 81 | 0.8621 | {'precision': 0.7412429378531074, 'recall': 0.8108776266996292, 'f1': 0.7744982290436836, 'number': 809} | {'precision': 0.4108527131782946, 'recall': 0.44537815126050423, 'f1': 0.4274193548387097, 'number': 119} | {'precision': 0.7895204262877442, 'recall': 0.8347417840375587, 'f1': 0.8115015974440895, 'number': 1065} | 0.7467 | 0.8018 | 0.7733 | 0.8091 |
| 0.0849 | 28.0 | 84 | 0.8762 | {'precision': 0.7410313901345291, 'recall': 0.8170580964153276, 'f1': 0.7771898883009994, 'number': 809} | {'precision': 0.3973509933774834, 'recall': 0.5042016806722689, 'f1': 0.44444444444444436, 'number': 119} | {'precision': 0.8053259871441689, 'recall': 0.8234741784037559, 'f1': 0.8142989786443826, 'number': 1065} | 0.7495 | 0.8018 | 0.7748 | 0.8091 |
| 0.0872 | 29.0 | 87 | 0.8853 | {'precision': 0.7511210762331838, 'recall': 0.8281829419035847, 'f1': 0.7877718988830099, 'number': 809} | {'precision': 0.3937007874015748, 'recall': 0.42016806722689076, 'f1': 0.4065040650406504, 'number': 119} | {'precision': 0.7943262411347518, 'recall': 0.8413145539906103, 'f1': 0.8171454628362973, 'number': 1065} | 0.7527 | 0.8108 | 0.7807 | 0.8097 |
| 0.0735 | 30.0 | 90 | 0.9033 | {'precision': 0.7508610792192881, 'recall': 0.8084054388133498, 'f1': 0.7785714285714286, 'number': 809} | {'precision': 0.40789473684210525, 'recall': 0.5210084033613446, 'f1': 0.45756457564575653, 'number': 119} | {'precision': 0.8034420289855072, 'recall': 0.8328638497652582, 'f1': 0.8178884278469339, 'number': 1065} | 0.7536 | 0.8043 | 0.7782 | 0.8068 |
| 0.0679 | 31.0 | 93 | 0.9204 | {'precision': 0.745475113122172, 'recall': 0.8145859085290482, 'f1': 0.7784997046662729, 'number': 809} | {'precision': 0.39552238805970147, 'recall': 0.44537815126050423, 'f1': 0.4189723320158103, 'number': 119} | {'precision': 0.809437386569873, 'recall': 0.8375586854460094, 'f1': 0.823257960313798, 'number': 1065} | 0.7566 | 0.8048 | 0.7800 | 0.8041 |
| 0.0688 | 32.0 | 96 | 0.9282 | {'precision': 0.7525539160045402, 'recall': 0.8195302843016069, 'f1': 0.7846153846153846, 'number': 809} | {'precision': 0.40458015267175573, 'recall': 0.44537815126050423, 'f1': 0.424, 'number': 119} | {'precision': 0.7994652406417112, 'recall': 0.8422535211267606, 'f1': 0.8203017832647461, 'number': 1065} | 0.7559 | 0.8093 | 0.7817 | 0.8054 |
| 0.0636 | 33.0 | 99 | 0.9372 | {'precision': 0.7508571428571429, 'recall': 0.8121137206427689, 'f1': 0.7802850356294537, 'number': 809} | {'precision': 0.42657342657342656, 'recall': 0.5126050420168067, 'f1': 0.46564885496183206, 'number': 119} | {'precision': 0.8210332103321033, 'recall': 0.8356807511737089, 'f1': 0.8282922289436947, 'number': 1065} | 0.7650 | 0.8068 | 0.7853 | 0.8055 |
| 0.064 | 34.0 | 102 | 0.9531 | {'precision': 0.7339246119733924, 'recall': 0.8182941903584673, 'f1': 0.7738164815897136, 'number': 809} | {'precision': 0.4357142857142857, 'recall': 0.5126050420168067, 'f1': 0.47104247104247104, 'number': 119} | {'precision': 0.8237476808905381, 'recall': 0.8338028169014085, 'f1': 0.8287447503499767, 'number': 1065} | 0.7599 | 0.8083 | 0.7834 | 0.8057 |
| 0.0547 | 35.0 | 105 | 0.9549 | {'precision': 0.7440543601359003, 'recall': 0.8121137206427689, 'f1': 0.7765957446808511, 'number': 809} | {'precision': 0.42857142857142855, 'recall': 0.5042016806722689, 'f1': 0.4633204633204633, 'number': 119} | {'precision': 0.8012533572068039, 'recall': 0.8403755868544601, 'f1': 0.8203483043079742, 'number': 1065} | 0.7533 | 0.8088 | 0.7801 | 0.8039 |
| 0.0575 | 36.0 | 108 | 0.9460 | {'precision': 0.7488738738738738, 'recall': 0.8220024721878862, 'f1': 0.7837360047142015, 'number': 809} | {'precision': 0.43884892086330934, 'recall': 0.5126050420168067, 'f1': 0.4728682170542636, 'number': 119} | {'precision': 0.8057553956834532, 'recall': 0.8413145539906103, 'f1': 0.8231511254019293, 'number': 1065} | 0.7583 | 0.8138 | 0.7851 | 0.8094 |
| 0.0562 | 37.0 | 111 | 0.9400 | {'precision': 0.7384960718294051, 'recall': 0.8133498145859085, 'f1': 0.7741176470588235, 'number': 809} | {'precision': 0.43661971830985913, 'recall': 0.5210084033613446, 'f1': 0.47509578544061304, 'number': 119} | {'precision': 0.8227146814404432, 'recall': 0.8366197183098592, 'f1': 0.829608938547486, 'number': 1065} | 0.7613 | 0.8083 | 0.7841 | 0.8104 |
| 0.056 | 38.0 | 114 | 0.9528 | {'precision': 0.7310267857142857, 'recall': 0.8096415327564895, 'f1': 0.7683284457478006, 'number': 809} | {'precision': 0.40939597315436244, 'recall': 0.5126050420168067, 'f1': 0.4552238805970149, 'number': 119} | {'precision': 0.8021486123545211, 'recall': 0.8413145539906103, 'f1': 0.8212648945921174, 'number': 1065} | 0.7456 | 0.8088 | 0.7759 | 0.8078 |
| 0.0489 | 39.0 | 117 | 0.9570 | {'precision': 0.7250554323725056, 'recall': 0.8084054388133498, 'f1': 0.7644652250146114, 'number': 809} | {'precision': 0.40268456375838924, 'recall': 0.5042016806722689, 'f1': 0.44776119402985076, 'number': 119} | {'precision': 0.8127272727272727, 'recall': 0.8394366197183099, 'f1': 0.8258660508083141, 'number': 1065} | 0.7476 | 0.8068 | 0.7761 | 0.8084 |
| 0.0474 | 40.0 | 120 | 0.9818 | {'precision': 0.738015607580825, 'recall': 0.8182941903584673, 'f1': 0.7760844079718641, 'number': 809} | {'precision': 0.4066666666666667, 'recall': 0.5126050420168067, 'f1': 0.4535315985130111, 'number': 119} | {'precision': 0.8209647495361782, 'recall': 0.8309859154929577, 'f1': 0.8259449370041997, 'number': 1065} | 0.7567 | 0.8068 | 0.7810 | 0.8052 |
| 0.0449 | 41.0 | 123 | 0.9890 | {'precision': 0.7421171171171171, 'recall': 0.8145859085290482, 'f1': 0.7766647024160284, 'number': 809} | {'precision': 0.4064516129032258, 'recall': 0.5294117647058824, 'f1': 0.4598540145985402, 'number': 119} | {'precision': 0.7981981981981981, 'recall': 0.831924882629108, 'f1': 0.8147126436781609, 'number': 1065} | 0.7469 | 0.8068 | 0.7757 | 0.8050 |
| 0.0386 | 42.0 | 126 | 0.9969 | {'precision': 0.7378531073446327, 'recall': 0.8071693448702101, 'f1': 0.7709563164108618, 'number': 809} | {'precision': 0.4161073825503356, 'recall': 0.5210084033613446, 'f1': 0.46268656716417916, 'number': 119} | {'precision': 0.7937777777777778, 'recall': 0.8384976525821596, 'f1': 0.8155251141552512, 'number': 1065} | 0.7448 | 0.8068 | 0.7746 | 0.8050 |
| 0.0366 | 43.0 | 129 | 1.0134 | {'precision': 0.745230078563412, 'recall': 0.8207663782447466, 'f1': 0.7811764705882352, 'number': 809} | {'precision': 0.4144736842105263, 'recall': 0.5294117647058824, 'f1': 0.4649446494464945, 'number': 119} | {'precision': 0.8150873965041399, 'recall': 0.831924882629108, 'f1': 0.8234200743494424, 'number': 1065} | 0.7573 | 0.8093 | 0.7824 | 0.8067 |
| 0.0378 | 44.0 | 132 | 1.0138 | {'precision': 0.7390817469204927, 'recall': 0.8158220024721878, 'f1': 0.7755581668625147, 'number': 809} | {'precision': 0.4117647058823529, 'recall': 0.5294117647058824, 'f1': 0.463235294117647, 'number': 119} | {'precision': 0.8235840297121634, 'recall': 0.8328638497652582, 'f1': 0.8281979458450046, 'number': 1065} | 0.7584 | 0.8078 | 0.7823 | 0.8063 |
| 0.0419 | 45.0 | 135 | 1.0164 | {'precision': 0.7400681044267877, 'recall': 0.8059332509270705, 'f1': 0.7715976331360946, 'number': 809} | {'precision': 0.3880597014925373, 'recall': 0.4369747899159664, 'f1': 0.41106719367588934, 'number': 119} | {'precision': 0.8136363636363636, 'recall': 0.8403755868544601, 'f1': 0.8267898383371823, 'number': 1065} | 0.7560 | 0.8023 | 0.7785 | 0.8066 |
| 0.0384 | 46.0 | 138 | 1.0165 | {'precision': 0.7241379310344828, 'recall': 0.8046971569839307, 'f1': 0.7622950819672132, 'number': 809} | {'precision': 0.40939597315436244, 'recall': 0.5126050420168067, 'f1': 0.4552238805970149, 'number': 119} | {'precision': 0.8149171270718232, 'recall': 0.8309859154929577, 'f1': 0.8228730822873082, 'number': 1065} | 0.7484 | 0.8013 | 0.7739 | 0.8054 |
| 0.0336 | 47.0 | 141 | 1.0123 | {'precision': 0.7248618784530386, 'recall': 0.8108776266996292, 'f1': 0.765460910151692, 'number': 809} | {'precision': 0.41721854304635764, 'recall': 0.5294117647058824, 'f1': 0.4666666666666667, 'number': 119} | {'precision': 0.8151571164510166, 'recall': 0.828169014084507, 'f1': 0.8216115510013973, 'number': 1065} | 0.7488 | 0.8033 | 0.7751 | 0.8066 |
| 0.0341 | 48.0 | 144 | 1.0189 | {'precision': 0.7284768211920529, 'recall': 0.8158220024721878, 'f1': 0.7696793002915452, 'number': 809} | {'precision': 0.4013605442176871, 'recall': 0.4957983193277311, 'f1': 0.443609022556391, 'number': 119} | {'precision': 0.7996406109613656, 'recall': 0.8356807511737089, 'f1': 0.8172635445362718, 'number': 1065} | 0.7428 | 0.8073 | 0.7737 | 0.8060 |
| 0.0301 | 49.0 | 147 | 1.0265 | {'precision': 0.7322834645669292, 'recall': 0.8046971569839307, 'f1': 0.7667844522968198, 'number': 809} | {'precision': 0.42758620689655175, 'recall': 0.5210084033613446, 'f1': 0.4696969696969697, 'number': 119} | {'precision': 0.8036036036036036, 'recall': 0.8375586854460094, 'f1': 0.8202298850574712, 'number': 1065} | 0.7486 | 0.8053 | 0.7759 | 0.8055 |
| 0.0284 | 50.0 | 150 | 1.0386 | {'precision': 0.7300884955752213, 'recall': 0.8158220024721878, 'f1': 0.7705779334500875, 'number': 809} | {'precision': 0.4305555555555556, 'recall': 0.5210084033613446, 'f1': 0.47148288973384034, 'number': 119} | {'precision': 0.8151875571820677, 'recall': 0.8366197183098592, 'f1': 0.8257645968489342, 'number': 1065} | 0.7534 | 0.8093 | 0.7804 | 0.8070 |
| 0.0296 | 51.0 | 153 | 1.0616 | {'precision': 0.7266739846322722, 'recall': 0.8182941903584673, 'f1': 0.769767441860465, 'number': 809} | {'precision': 0.4064516129032258, 'recall': 0.5294117647058824, 'f1': 0.4598540145985402, 'number': 119} | {'precision': 0.8117001828153565, 'recall': 0.8338028169014085, 'f1': 0.8226030569708198, 'number': 1065} | 0.7468 | 0.8093 | 0.7768 | 0.8022 |
| 0.0286 | 52.0 | 156 | 1.0679 | {'precision': 0.7313266443701226, 'recall': 0.8108776266996292, 'f1': 0.7690504103165299, 'number': 809} | {'precision': 0.42105263157894735, 'recall': 0.5378151260504201, 'f1': 0.47232472324723246, 'number': 119} | {'precision': 0.8092643051771117, 'recall': 0.8366197183098592, 'f1': 0.8227146814404432, 'number': 1065} | 0.7493 | 0.8083 | 0.7777 | 0.8006 |
| 0.0268 | 53.0 | 159 | 1.0635 | {'precision': 0.7344632768361582, 'recall': 0.8034610630407911, 'f1': 0.7674144037780402, 'number': 809} | {'precision': 0.410958904109589, 'recall': 0.5042016806722689, 'f1': 0.4528301886792453, 'number': 119} | {'precision': 0.8054054054054054, 'recall': 0.8394366197183099, 'f1': 0.8220689655172414, 'number': 1065} | 0.7492 | 0.8048 | 0.7760 | 0.8006 |
| 0.0231 | 54.0 | 162 | 1.0634 | {'precision': 0.7351290684624018, 'recall': 0.8096415327564895, 'f1': 0.7705882352941176, 'number': 809} | {'precision': 0.4161073825503356, 'recall': 0.5210084033613446, 'f1': 0.46268656716417916, 'number': 119} | {'precision': 0.8054298642533937, 'recall': 0.8356807511737089, 'f1': 0.8202764976958525, 'number': 1065} | 0.7492 | 0.8063 | 0.7767 | 0.8026 |
| 0.0258 | 55.0 | 165 | 1.0696 | {'precision': 0.7307262569832402, 'recall': 0.8084054388133498, 'f1': 0.767605633802817, 'number': 809} | {'precision': 0.4155844155844156, 'recall': 0.5378151260504201, 'f1': 0.46886446886446886, 'number': 119} | {'precision': 0.8091324200913242, 'recall': 0.831924882629108, 'f1': 0.8203703703703705, 'number': 1065} | 0.7481 | 0.8048 | 0.7754 | 0.8031 |
| 0.025 | 56.0 | 168 | 1.0740 | {'precision': 0.739524348810872, 'recall': 0.8071693448702101, 'f1': 0.7718676122931442, 'number': 809} | {'precision': 0.4195804195804196, 'recall': 0.5042016806722689, 'f1': 0.4580152671755725, 'number': 119} | {'precision': 0.8018099547511313, 'recall': 0.831924882629108, 'f1': 0.816589861751152, 'number': 1065} | 0.7504 | 0.8023 | 0.7755 | 0.8035 |
| 0.0247 | 57.0 | 171 | 1.0777 | {'precision': 0.7391799544419134, 'recall': 0.8022249690976514, 'f1': 0.7694131594546533, 'number': 809} | {'precision': 0.41605839416058393, 'recall': 0.4789915966386555, 'f1': 0.4453125, 'number': 119} | {'precision': 0.8016157989228008, 'recall': 0.8384976525821596, 'f1': 0.8196420376319412, 'number': 1065} | 0.7511 | 0.8023 | 0.7758 | 0.8035 |
| 0.022 | 58.0 | 174 | 1.0866 | {'precision': 0.7369614512471655, 'recall': 0.8034610630407911, 'f1': 0.768775872264932, 'number': 809} | {'precision': 0.4125874125874126, 'recall': 0.4957983193277311, 'f1': 0.450381679389313, 'number': 119} | {'precision': 0.8007213706041478, 'recall': 0.8338028169014085, 'f1': 0.8169273229070838, 'number': 1065} | 0.7484 | 0.8013 | 0.7739 | 0.8029 |
| 0.0195 | 59.0 | 177 | 1.0924 | {'precision': 0.7398190045248869, 'recall': 0.8084054388133498, 'f1': 0.7725930301240402, 'number': 809} | {'precision': 0.41216216216216217, 'recall': 0.5126050420168067, 'f1': 0.4569288389513108, 'number': 119} | {'precision': 0.8119266055045872, 'recall': 0.8309859154929577, 'f1': 0.8213457076566124, 'number': 1065} | 0.7540 | 0.8028 | 0.7776 | 0.8046 |
| 0.0249 | 60.0 | 180 | 1.0896 | {'precision': 0.740909090909091, 'recall': 0.8059332509270705, 'f1': 0.7720544701006513, 'number': 809} | {'precision': 0.4189189189189189, 'recall': 0.5210084033613446, 'f1': 0.46441947565543074, 'number': 119} | {'precision': 0.816420664206642, 'recall': 0.8309859154929577, 'f1': 0.8236389018147976, 'number': 1065} | 0.7571 | 0.8023 | 0.7790 | 0.8057 |
| 0.0226 | 61.0 | 183 | 1.0869 | {'precision': 0.7431506849315068, 'recall': 0.8046971569839307, 'f1': 0.772700296735905, 'number': 809} | {'precision': 0.4178082191780822, 'recall': 0.5126050420168067, 'f1': 0.460377358490566, 'number': 119} | {'precision': 0.8191881918819188, 'recall': 0.8338028169014085, 'f1': 0.8264308980921358, 'number': 1065} | 0.7597 | 0.8028 | 0.7807 | 0.8068 |
| 0.0183 | 62.0 | 186 | 1.0987 | {'precision': 0.7362514029180696, 'recall': 0.8108776266996292, 'f1': 0.7717647058823529, 'number': 809} | {'precision': 0.41216216216216217, 'recall': 0.5126050420168067, 'f1': 0.4569288389513108, 'number': 119} | {'precision': 0.8141674333026679, 'recall': 0.8309859154929577, 'f1': 0.8224907063197026, 'number': 1065} | 0.7535 | 0.8038 | 0.7779 | 0.8057 |
| 0.0201 | 63.0 | 189 | 1.1089 | {'precision': 0.7358916478555305, 'recall': 0.8059332509270705, 'f1': 0.7693215339233038, 'number': 809} | {'precision': 0.41496598639455784, 'recall': 0.5126050420168067, 'f1': 0.4586466165413534, 'number': 119} | {'precision': 0.8154981549815498, 'recall': 0.8300469483568075, 'f1': 0.822708236389018, 'number': 1065} | 0.7544 | 0.8013 | 0.7771 | 0.8046 |
| 0.02 | 64.0 | 192 | 1.1082 | {'precision': 0.7456647398843931, 'recall': 0.7972805933250927, 'f1': 0.7706093189964157, 'number': 809} | {'precision': 0.4125874125874126, 'recall': 0.4957983193277311, 'f1': 0.450381679389313, 'number': 119} | {'precision': 0.8157653528872594, 'recall': 0.8356807511737089, 'f1': 0.8256029684601113, 'number': 1065} | 0.7594 | 0.7998 | 0.7791 | 0.8020 |
| 0.02 | 65.0 | 195 | 1.1083 | {'precision': 0.7396788990825688, 'recall': 0.7972805933250927, 'f1': 0.7674003569303985, 'number': 809} | {'precision': 0.39705882352941174, 'recall': 0.453781512605042, 'f1': 0.4235294117647058, 'number': 119} | {'precision': 0.7969723953695459, 'recall': 0.8403755868544601, 'f1': 0.8180987202925045, 'number': 1065} | 0.7480 | 0.7998 | 0.7730 | 0.8013 |
| 0.0191 | 66.0 | 198 | 1.1049 | {'precision': 0.7349943374858438, 'recall': 0.8022249690976514, 'f1': 0.7671394799054374, 'number': 809} | {'precision': 0.42028985507246375, 'recall': 0.48739495798319327, 'f1': 0.4513618677042802, 'number': 119} | {'precision': 0.8063063063063063, 'recall': 0.8403755868544601, 'f1': 0.8229885057471265, 'number': 1065} | 0.7518 | 0.8038 | 0.7769 | 0.8036 |
| 0.0183 | 67.0 | 201 | 1.1034 | {'precision': 0.7337078651685394, 'recall': 0.8071693448702101, 'f1': 0.768687463213655, 'number': 809} | {'precision': 0.40397350993377484, 'recall': 0.5126050420168067, 'f1': 0.45185185185185184, 'number': 119} | {'precision': 0.8124428179322964, 'recall': 0.8338028169014085, 'f1': 0.8229842446709916, 'number': 1065} | 0.7507 | 0.8038 | 0.7764 | 0.8049 |
| 0.0204 | 68.0 | 204 | 1.1038 | {'precision': 0.732739420935412, 'recall': 0.8133498145859085, 'f1': 0.7709431751611013, 'number': 809} | {'precision': 0.3881578947368421, 'recall': 0.4957983193277311, 'f1': 0.4354243542435424, 'number': 119} | {'precision': 0.8106129917657823, 'recall': 0.831924882629108, 'f1': 0.8211306765523634, 'number': 1065} | 0.7480 | 0.8043 | 0.7751 | 0.8053 |
| 0.0184 | 69.0 | 207 | 1.1015 | {'precision': 0.7322222222222222, 'recall': 0.8145859085290482, 'f1': 0.7712112346401404, 'number': 809} | {'precision': 0.4244604316546763, 'recall': 0.4957983193277311, 'f1': 0.45736434108527135, 'number': 119} | {'precision': 0.8110808356039964, 'recall': 0.8384976525821596, 'f1': 0.8245614035087719, 'number': 1065} | 0.7528 | 0.8083 | 0.7796 | 0.8067 |
| 0.0174 | 70.0 | 210 | 1.0981 | {'precision': 0.7352941176470589, 'recall': 0.8034610630407911, 'f1': 0.7678676904902539, 'number': 809} | {'precision': 0.40939597315436244, 'recall': 0.5126050420168067, 'f1': 0.4552238805970149, 'number': 119} | {'precision': 0.8098271155595996, 'recall': 0.8356807511737089, 'f1': 0.822550831792976, 'number': 1065} | 0.7509 | 0.8033 | 0.7762 | 0.8057 |
| 0.016 | 71.0 | 213 | 1.1055 | {'precision': 0.7398190045248869, 'recall': 0.8084054388133498, 'f1': 0.7725930301240402, 'number': 809} | {'precision': 0.40606060606060607, 'recall': 0.5630252100840336, 'f1': 0.47183098591549294, 'number': 119} | {'precision': 0.815668202764977, 'recall': 0.8309859154929577, 'f1': 0.8232558139534883, 'number': 1065} | 0.7526 | 0.8058 | 0.7783 | 0.8068 |
| 0.0156 | 72.0 | 216 | 1.1039 | {'precision': 0.7370203160270881, 'recall': 0.8071693448702101, 'f1': 0.7705014749262538, 'number': 809} | {'precision': 0.4050632911392405, 'recall': 0.5378151260504201, 'f1': 0.46209386281588444, 'number': 119} | {'precision': 0.8098271155595996, 'recall': 0.8356807511737089, 'f1': 0.822550831792976, 'number': 1065} | 0.7499 | 0.8063 | 0.7771 | 0.8082 |
| 0.0165 | 73.0 | 219 | 1.0998 | {'precision': 0.7358916478555305, 'recall': 0.8059332509270705, 'f1': 0.7693215339233038, 'number': 809} | {'precision': 0.4357142857142857, 'recall': 0.5126050420168067, 'f1': 0.47104247104247104, 'number': 119} | {'precision': 0.8045045045045045, 'recall': 0.8384976525821596, 'f1': 0.8211494252873562, 'number': 1065} | 0.7519 | 0.8058 | 0.7779 | 0.8082 |
| 0.0156 | 74.0 | 222 | 1.1038 | {'precision': 0.7378531073446327, 'recall': 0.8071693448702101, 'f1': 0.7709563164108618, 'number': 809} | {'precision': 0.43703703703703706, 'recall': 0.4957983193277311, 'f1': 0.4645669291338583, 'number': 119} | {'precision': 0.8055805580558055, 'recall': 0.8403755868544601, 'f1': 0.8226102941176471, 'number': 1065} | 0.7541 | 0.8063 | 0.7793 | 0.8077 |
| 0.0161 | 75.0 | 225 | 1.1180 | {'precision': 0.7348993288590604, 'recall': 0.8121137206427689, 'f1': 0.7715795654726952, 'number': 809} | {'precision': 0.4305555555555556, 'recall': 0.5210084033613446, 'f1': 0.47148288973384034, 'number': 119} | {'precision': 0.8113035551504102, 'recall': 0.8356807511737089, 'f1': 0.8233117483811285, 'number': 1065} | 0.7536 | 0.8073 | 0.7796 | 0.8053 |
| 0.0145 | 76.0 | 228 | 1.1341 | {'precision': 0.734375, 'recall': 0.8133498145859085, 'f1': 0.7718475073313783, 'number': 809} | {'precision': 0.4125, 'recall': 0.5546218487394958, 'f1': 0.47311827956989244, 'number': 119} | {'precision': 0.8162511542012927, 'recall': 0.8300469483568075, 'f1': 0.8230912476722533, 'number': 1065} | 0.7518 | 0.8068 | 0.7783 | 0.8047 |
| 0.0183 | 77.0 | 231 | 1.1368 | {'precision': 0.7338530066815144, 'recall': 0.8145859085290482, 'f1': 0.7721148213239603, 'number': 809} | {'precision': 0.40764331210191085, 'recall': 0.5378151260504201, 'f1': 0.463768115942029, 'number': 119} | {'precision': 0.807832422586521, 'recall': 0.8328638497652582, 'f1': 0.820157189089228, 'number': 1065} | 0.7478 | 0.8078 | 0.7767 | 0.8043 |
| 0.0151 | 78.0 | 234 | 1.1366 | {'precision': 0.7323628219484882, 'recall': 0.8084054388133498, 'f1': 0.7685076380728554, 'number': 809} | {'precision': 0.41333333333333333, 'recall': 0.5210084033613446, 'f1': 0.4609665427509294, 'number': 119} | {'precision': 0.800718132854578, 'recall': 0.8375586854460094, 'f1': 0.8187241854061496, 'number': 1065} | 0.7455 | 0.8068 | 0.7749 | 0.8021 |
| 0.0134 | 79.0 | 237 | 1.1315 | {'precision': 0.7319819819819819, 'recall': 0.8034610630407911, 'f1': 0.7660577489687684, 'number': 809} | {'precision': 0.4154929577464789, 'recall': 0.4957983193277311, 'f1': 0.4521072796934866, 'number': 119} | {'precision': 0.7939609236234458, 'recall': 0.8394366197183099, 'f1': 0.8160657234139663, 'number': 1065} | 0.7435 | 0.8043 | 0.7727 | 0.8025 |
| 0.0156 | 80.0 | 240 | 1.1281 | {'precision': 0.7338618346545867, 'recall': 0.8009888751545118, 'f1': 0.7659574468085106, 'number': 809} | {'precision': 0.40268456375838924, 'recall': 0.5042016806722689, 'f1': 0.44776119402985076, 'number': 119} | {'precision': 0.8057813911472448, 'recall': 0.8375586854460094, 'f1': 0.8213627992633518, 'number': 1065} | 0.7480 | 0.8028 | 0.7744 | 0.8038 |
| 0.0125 | 81.0 | 243 | 1.1303 | {'precision': 0.7341628959276018, 'recall': 0.8022249690976514, 'f1': 0.7666863555818074, 'number': 809} | {'precision': 0.41830065359477125, 'recall': 0.5378151260504201, 'f1': 0.47058823529411764, 'number': 119} | {'precision': 0.8065395095367848, 'recall': 0.8338028169014085, 'f1': 0.8199445983379502, 'number': 1065} | 0.7488 | 0.8033 | 0.7751 | 0.8035 |
| 0.0141 | 82.0 | 246 | 1.1316 | {'precision': 0.7320627802690582, 'recall': 0.8071693448702101, 'f1': 0.7677836566725456, 'number': 809} | {'precision': 0.41830065359477125, 'recall': 0.5378151260504201, 'f1': 0.47058823529411764, 'number': 119} | {'precision': 0.8054545454545454, 'recall': 0.831924882629108, 'f1': 0.8184757505773671, 'number': 1065} | 0.7473 | 0.8043 | 0.7748 | 0.8038 |
| 0.0158 | 83.0 | 249 | 1.1313 | {'precision': 0.7395715896279594, 'recall': 0.8108776266996292, 'f1': 0.7735849056603773, 'number': 809} | {'precision': 0.40131578947368424, 'recall': 0.5126050420168067, 'f1': 0.4501845018450184, 'number': 119} | {'precision': 0.8034420289855072, 'recall': 0.8328638497652582, 'f1': 0.8178884278469339, 'number': 1065} | 0.7485 | 0.8048 | 0.7756 | 0.8055 |
| 0.0126 | 84.0 | 252 | 1.1293 | {'precision': 0.7386877828054299, 'recall': 0.8071693448702101, 'f1': 0.7714116952155936, 'number': 809} | {'precision': 0.41216216216216217, 'recall': 0.5126050420168067, 'f1': 0.4569288389513108, 'number': 119} | {'precision': 0.8025247971145176, 'recall': 0.8356807511737089, 'f1': 0.8187672493100275, 'number': 1065} | 0.7492 | 0.8048 | 0.7760 | 0.8055 |
| 0.0139 | 85.0 | 255 | 1.1277 | {'precision': 0.7341628959276018, 'recall': 0.8022249690976514, 'f1': 0.7666863555818074, 'number': 809} | {'precision': 0.4041095890410959, 'recall': 0.4957983193277311, 'f1': 0.44528301886792454, 'number': 119} | {'precision': 0.8005415162454874, 'recall': 0.8328638497652582, 'f1': 0.8163828808099403, 'number': 1065} | 0.7460 | 0.8003 | 0.7722 | 0.8057 |
| 0.0129 | 86.0 | 258 | 1.1275 | {'precision': 0.7319004524886877, 'recall': 0.799752781211372, 'f1': 0.7643236857649144, 'number': 809} | {'precision': 0.4, 'recall': 0.48739495798319327, 'f1': 0.4393939393939394, 'number': 119} | {'precision': 0.8043478260869565, 'recall': 0.8338028169014085, 'f1': 0.8188105117565699, 'number': 1065} | 0.7468 | 0.7993 | 0.7722 | 0.8046 |
| 0.0135 | 87.0 | 261 | 1.1298 | {'precision': 0.7329545454545454, 'recall': 0.7972805933250927, 'f1': 0.7637655417406749, 'number': 809} | {'precision': 0.4097222222222222, 'recall': 0.4957983193277311, 'f1': 0.44866920152091255, 'number': 119} | {'precision': 0.8067150635208712, 'recall': 0.8347417840375587, 'f1': 0.8204891555145363, 'number': 1065} | 0.7493 | 0.7993 | 0.7735 | 0.8041 |
| 0.0147 | 88.0 | 264 | 1.1335 | {'precision': 0.7352272727272727, 'recall': 0.799752781211372, 'f1': 0.7661338069863826, 'number': 809} | {'precision': 0.4166666666666667, 'recall': 0.5042016806722689, 'f1': 0.4562737642585551, 'number': 119} | {'precision': 0.8083560399636693, 'recall': 0.8356807511737089, 'f1': 0.8217913204062788, 'number': 1065} | 0.7515 | 0.8013 | 0.7756 | 0.8046 |
| 0.0136 | 89.0 | 267 | 1.1368 | {'precision': 0.7377979568671964, 'recall': 0.8034610630407911, 'f1': 0.7692307692307694, 'number': 809} | {'precision': 0.40540540540540543, 'recall': 0.5042016806722689, 'f1': 0.449438202247191, 'number': 119} | {'precision': 0.8032490974729242, 'recall': 0.8356807511737089, 'f1': 0.8191440404970087, 'number': 1065} | 0.7487 | 0.8028 | 0.7748 | 0.8057 |
| 0.0129 | 90.0 | 270 | 1.1411 | {'precision': 0.7420814479638009, 'recall': 0.8108776266996292, 'f1': 0.7749556999409333, 'number': 809} | {'precision': 0.40268456375838924, 'recall': 0.5042016806722689, 'f1': 0.44776119402985076, 'number': 119} | {'precision': 0.801980198019802, 'recall': 0.8366197183098592, 'f1': 0.8189338235294118, 'number': 1065} | 0.7495 | 0.8063 | 0.7769 | 0.8059 |
| 0.0131 | 91.0 | 273 | 1.1437 | {'precision': 0.7406989853438557, 'recall': 0.8121137206427689, 'f1': 0.7747641509433963, 'number': 809} | {'precision': 0.4105960264900662, 'recall': 0.5210084033613446, 'f1': 0.45925925925925926, 'number': 119} | {'precision': 0.7946428571428571, 'recall': 0.8356807511737089, 'f1': 0.8146453089244852, 'number': 1065} | 0.7456 | 0.8073 | 0.7752 | 0.8050 |
| 0.0128 | 92.0 | 276 | 1.1459 | {'precision': 0.7370786516853932, 'recall': 0.8108776266996292, 'f1': 0.7722189523248971, 'number': 809} | {'precision': 0.40522875816993464, 'recall': 0.5210084033613446, 'f1': 0.4558823529411765, 'number': 119} | {'precision': 0.7911111111111111, 'recall': 0.8356807511737089, 'f1': 0.812785388127854, 'number': 1065} | 0.7417 | 0.8068 | 0.7729 | 0.8049 |
| 0.0111 | 93.0 | 279 | 1.1463 | {'precision': 0.7387387387387387, 'recall': 0.8108776266996292, 'f1': 0.7731290512669416, 'number': 809} | {'precision': 0.3935483870967742, 'recall': 0.5126050420168067, 'f1': 0.44525547445255476, 'number': 119} | {'precision': 0.791814946619217, 'recall': 0.8356807511737089, 'f1': 0.8131566925536775, 'number': 1065} | 0.7416 | 0.8063 | 0.7726 | 0.8040 |
| 0.0129 | 94.0 | 282 | 1.1449 | {'precision': 0.7381489841986456, 'recall': 0.8084054388133498, 'f1': 0.7716814159292036, 'number': 809} | {'precision': 0.3961038961038961, 'recall': 0.5126050420168067, 'f1': 0.44688644688644696, 'number': 119} | {'precision': 0.79375, 'recall': 0.8347417840375587, 'f1': 0.8137299771167047, 'number': 1065} | 0.7426 | 0.8048 | 0.7725 | 0.8042 |
| 0.0139 | 95.0 | 285 | 1.1425 | {'precision': 0.7322834645669292, 'recall': 0.8046971569839307, 'f1': 0.7667844522968198, 'number': 809} | {'precision': 0.3961038961038961, 'recall': 0.5126050420168067, 'f1': 0.44688644688644696, 'number': 119} | {'precision': 0.7930419268510259, 'recall': 0.8347417840375587, 'f1': 0.8133577310155535, 'number': 1065} | 0.7398 | 0.8033 | 0.7703 | 0.8032 |
| 0.0132 | 96.0 | 288 | 1.1416 | {'precision': 0.7319819819819819, 'recall': 0.8034610630407911, 'f1': 0.7660577489687684, 'number': 809} | {'precision': 0.40131578947368424, 'recall': 0.5126050420168067, 'f1': 0.4501845018450184, 'number': 119} | {'precision': 0.7962466487935657, 'recall': 0.8366197183098592, 'f1': 0.8159340659340658, 'number': 1065} | 0.7420 | 0.8038 | 0.7717 | 0.8045 |
| 0.0116 | 97.0 | 291 | 1.1405 | {'precision': 0.7322834645669292, 'recall': 0.8046971569839307, 'f1': 0.7667844522968198, 'number': 809} | {'precision': 0.40397350993377484, 'recall': 0.5126050420168067, 'f1': 0.45185185185185184, 'number': 119} | {'precision': 0.7978533094812165, 'recall': 0.8375586854460094, 'f1': 0.8172240036646817, 'number': 1065} | 0.7433 | 0.8048 | 0.7728 | 0.8043 |
| 0.0124 | 98.0 | 294 | 1.1399 | {'precision': 0.7331081081081081, 'recall': 0.8046971569839307, 'f1': 0.7672362993517973, 'number': 809} | {'precision': 0.40397350993377484, 'recall': 0.5126050420168067, 'f1': 0.45185185185185184, 'number': 119} | {'precision': 0.7978533094812165, 'recall': 0.8375586854460094, 'f1': 0.8172240036646817, 'number': 1065} | 0.7436 | 0.8048 | 0.7730 | 0.8047 |
| 0.0114 | 99.0 | 297 | 1.1395 | {'precision': 0.7331081081081081, 'recall': 0.8046971569839307, 'f1': 0.7672362993517973, 'number': 809} | {'precision': 0.4066666666666667, 'recall': 0.5126050420168067, 'f1': 0.4535315985130111, 'number': 119} | {'precision': 0.7971403038427167, 'recall': 0.8375586854460094, 'f1': 0.8168498168498167, 'number': 1065} | 0.7436 | 0.8048 | 0.7730 | 0.8052 |
| 0.0108 | 100.0 | 300 | 1.1395 | {'precision': 0.733934611048478, 'recall': 0.8046971569839307, 'f1': 0.767688679245283, 'number': 809} | {'precision': 0.4066666666666667, 'recall': 0.5126050420168067, 'f1': 0.4535315985130111, 'number': 119} | {'precision': 0.7980339588918678, 'recall': 0.8384976525821596, 'f1': 0.8177655677655677, 'number': 1065} | 0.7444 | 0.8053 | 0.7737 | 0.8054 |
### Framework versions
- Transformers 4.22.0.dev0
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1
|
NemesisAlm/dqn-SpaceInvadersNoFrameskip-v4
|
NemesisAlm
| 2023-07-20T20:33:57Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-19T20:48:09Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 720.50 +/- 180.59
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga NemesisAlm -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga NemesisAlm -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga NemesisAlm
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1200000),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
jaygdesai/jay-default-ppo-LunarLander-v2
|
jaygdesai
| 2023-07-20T20:33:01Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-20T11:17:18Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 266.06 +/- 22.80
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
1littlecoder/llama2-qlora-finetunined-french
|
1littlecoder
| 2023-07-20T20:27:25Z | 4 | 19 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-20T20:27:16Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
DunnBC22/bert-base-cased-finetuned-ner-bio_nlp_2004
|
DunnBC22
| 2023-07-20T20:27:20Z | 124 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"biology",
"en",
"dataset:bionlp2004",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-07-04T04:31:49Z |
---
license: apache-2.0
tags:
- generated_from_trainer
- biology
datasets:
- bionlp2004
model-index:
- name: bert-base-cased-finetuned-ner-bio_nlp_2004
results: []
language:
- en
metrics:
- seqeval
- f1
- recall
- precision
pipeline_tag: token-classification
---
# bert-base-cased-finetuned-ner-bio_nlp_2004
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased).
It achieves the following results on the evaluation set:
- Loss: 0.2066
- Dna:
- Precision: 0.6619127516778524
- Recall: 0.7471590909090909
- F1: 0.7019572953736656
- Number: 1056
- Rna:
- Precision: 0.589041095890411
- Recall: 0.7288135593220338
- F1: 0.6515151515151515
- Number': 118
- Cell Line:
- Precision: 0.4758522727272727
- Recall: 0.67
- F1: 0.5564784053156145
- Number: 500
- Cell Type:
- Precision: 0.7294117647058823
- Recall: 0.7100468505986466
- F1: 0.7195990503824848
- Number: 1921
- Protein:
- Precision: 0.6657656225155033
- Recall: 0.8263272153147819
- F1: 0.7374075378654457
- Number': 5067
- Overall
- Precision: 0.6628
- Recall: 0.7805
- F1: 0.7169
- Accuracy: 0.9367
## Model description
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/tner-bionlp2004/NER%20Project%20Using%20tner-bionlp%202004%20Dataset%20(BERT-Base).ipynb
## Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.
## Training and evaluation data
Dataset Source: https://huggingface.co/datasets/tner/bionlp2004
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Valid. Loss | Dna Precision | Dna Recall | Dna F1 | Dna Number | Rna Precision | Rna Recall | Rna F1 | Rna Number | Cell Line Precision | Cell Type Recall | Cell Type F1 | Cell Type Number | Cell Type | Protein Precision | Protein Recall | Protein F1 | Protein Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:---------:|:-----:|:----:|:---------:|:-------:|:------:|:------:|:------:|:-------------:|:----------:|:------:|:----------:|:----------:|:---------:|:-------:|:-------:|:---------:|:-------:|:--------:|:------:|:-----------:|:--------:|:--------:|:----------:|:---------:|
| 0.1701 | 1.0 | 1039 | 0.1927 | 0.6153 | 0.7254 | 0.6658 | 1056 | 0.6617 | 0.7458 | 0.7012 | 118 | 0.4670 | 0.608 | 0.5282 | 500 | 0.6997 | 0.7158 | 0.7077 | 1921 | 0.6603 | 0.7833 | 0.7166 | 5067 | 0.6499 | 0.7506 | 0.6966 | 0.9352 |
| 0.145 | 2.0 | 2078 | 0.1981 | 0.6364 | 0.7443 | 0.6862 | 1056 | 0.6408 | 0.7712 | 0.7000 | 118 | 0.4607 | 0.668 | 0.5453 | 500 | 0.7376 | 0.7022 | 0.7195 | 1921 | 0.6759 | 0.8149 | 0.7389 | 5067 | 0.6662 | 0.7722 | 0.7153 | 0.9364 |
| 0.1116 | 3.0 | 3117 | 0.2066 | 0.6619 | 0.7472 | 0.7020 | 1056 | 0.5890 | 0.7288 | 0.6515 | 118 | 0.4759 | 0.67 | 0.5565 | 500 | 0.7294 | 0.7100 | 0.7196 | 1921 | 0.6658 | 0.8263 | 0.7374 | 5067 | 0.6628 | 0.7805 | 0.7169 | 0.9367 |
* Metrics shown above are rounded to the neareset ten-thousandth
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.13.3
|
Ioanaaaaaaa/bert-large-uncased-with-preprocess-finetuned-emotion-5-epochs-5e-05-lr
|
Ioanaaaaaaa
| 2023-07-20T20:19:57Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"base_model:google-bert/bert-large-uncased",
"base_model:finetune:google-bert/bert-large-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-07-20T19:20:17Z |
---
license: apache-2.0
base_model: bert-large-uncased
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: bert-large-uncased-with-preprocess-finetuned-emotion-5-epochs-5e-05-lr
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.939
- name: F1
type: f1
value: 0.9390844003351607
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-uncased-with-preprocess-finetuned-emotion-5-epochs-5e-05-lr
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1591
- Accuracy: 0.939
- F1: 0.9391
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.5175 | 1.0 | 250 | 0.1803 | 0.9285 | 0.9295 |
| 0.1551 | 2.0 | 500 | 0.1425 | 0.932 | 0.9321 |
| 0.1112 | 3.0 | 750 | 0.1495 | 0.936 | 0.9366 |
| 0.0846 | 4.0 | 1000 | 0.1359 | 0.946 | 0.9457 |
| 0.0602 | 5.0 | 1250 | 0.1591 | 0.939 | 0.9391 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
usman0007/stable-diffusion2
|
usman0007
| 2023-07-20T20:19:01Z | 7 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-07-20T20:13:37Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### stable-diffusion2 Dreambooth model trained by usman0007 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
bofenghuang/vigogne-2-7b-instruct
|
bofenghuang
| 2023-07-20T20:17:05Z | 1,548 | 26 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"LLM",
"llama-2",
"fr",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-07-20T11:39:51Z |
---
language:
- fr
pipeline_tag: text-generation
library_name: transformers
inference: false
tags:
- LLM
- llama
- llama-2
---
<p align="center" width="100%">
<img src="https://huggingface.co/bofenghuang/vigogne-2-7b-instruct/resolve/main/vigogne_logo.png" alt="Vigogne" style="width: 40%; min-width: 300px; display: block; margin: auto;">
</p>
# Vigogne-2-7B-Instruct: A Llama-2 based French instruction-following model
Vigogne-2-7B-Instruct is a model based on [LLaMA-2-7B](https://ai.meta.com/llama) that has been fine-tuned to follow French instructions.
For more information, please visit the Github repo: https://github.com/bofenghuang/vigogne
**Usage and License Notices**: Vigogne-2-7B-Instruct follows the same usage policy as Llama-2, which can be found [here](https://ai.meta.com/llama/use-policy).
## Usage
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
from vigogne.preprocess import generate_instruct_prompt
model_name_or_path = "bofenghuang/vigogne-2-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side="right", use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, device_map="auto")
user_query = "Expliquez la différence entre DoS et phishing."
prompt = generate_instruct_prompt(user_query)
input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to(model.device)
input_length = input_ids.shape[1]
generated_outputs = model.generate(
input_ids=input_ids,
generation_config=GenerationConfig(
temperature=0.1,
do_sample=True,
repetition_penalty=1.0,
max_new_tokens=512,
),
return_dict_in_generate=True,
)
generated_tokens = generated_outputs.sequences[0, input_length:]
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
print(generated_text)
```
You can also infer this model by using the following Google Colab Notebook.
<a href="https://colab.research.google.com/github/bofenghuang/vigogne/blob/main/notebooks/infer_instruct.ipynb" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
## Example Outputs
***Instruction:***
Explique le théorème central limite à un enfant de six ans.
***Vigogne-2-7B-Instruct:***
Le théorème central limite est un concept mathématique qui dit que si vous prenez beaucoup de mesures de la même chose, la moyenne de ces mesures sera proche de la moyenne de toutes les mesures. C'est comme si vous prenait des photos d'un objet et que la moyenne de toutes les photos était proche de la vraie forme de l'objet.
<details><summary>Other models</summary>
***Llama-2-7B-Chat:***
Bonjour! smiles Hi there! excited Let me explain something cool to you! nods Do you know how sometimes you have a bunch of toy cars, and they're all different colors and shapes? points to toy cars Well, imagine you had a bunch of toy cars, and you wanted to know how many of them are blue. sees pretend blue toy car To do that, you would count all the blue toy cars, right? nods
But here's the thing! leans in When you have a really big bunch of toy cars, like thousands of them, it's hard to count them all by yourself. eye widens That's where the Central Limit Theorem comes in! excited It's like a magic trick that helps us know how many blue toy cars we have, even if we don't count them all. smiles
So, here's how it works! thoughtfully Imagine you have a bunch of toy cars, and you want to know how many of them are blue. sees pretend blue toy car Instead of counting them all, you take a bunch of them, like 10 or 20, and you count how many of them are blue. sees pretend blue toy cars Then, you take another bunch of toy cars, like 10 or 20, and you count how many of them are blue. sees pretend blue toy cars You keep doing that, taking small groups of toy cars and counting how many of them are blue. sees pretend blue toy cars
And here's the magic part! excited When you do this, the number of blue toy cars you count in each group starts to be more and more similar. sees pretend blue toy cars Like, if you take 10 toy cars, you might find 2 or 3 of them are blue. sees pretend blue toy cars But if you take 20 toy cars, you might find 4 or 5 of them are blue. sees pretend blue toy cars And if you take 100 toy cars, you might find 8 or 9 of them are blue! sees pretend blue toy cars
So, what the Central Limit Theorem says is that the more toy cars you take, the more likely the number of blue toy cars you find will be close to the total number of blue toy cars in the whole bunch! excited It's like the blue toy cars start to even out, and you can get a better idea of how many there are overall! nods
I hope that makes sense! smiles Do you have any questions? looks curious
***Vigogne-Falcon-7B-Instruct:***
Le théorème central limite est un concept mathématique qui explique comment les résultats d'une expérience répétée se rapprochent d'une valeur moyenne au fil du temps. Par exemple, si vous lancez un dé 100 fois, vous pouvez prédire que la moyenne des résultats sera environ 50. Cela signifie que les résultats se rapprochent de la moyenne au fil du temps.
</details>
---
***Instruction:***
Je suis actuellement orienté vers l'est. Ensuite je vais tourner à droite. De quel côté serai-je orienté ?
***Vigogne-2-7B-Instruct:***
Vous serez orienté vers le sud.
<details><summary>Other models</summary>
***Llama-2-7B-Chat:***
Hello! I'm glad you're excited to explore new directions! However, I must point out that your question is based on a logical contradiction. If you are currently oriented towards the east and then turn right, you will not be oriented towards any direction. The concept of orientation relies on the intersection of magnetic fields and the Earth's magnetic field, which is not affected by turning in a specific direction. Therefore, I cannot provide an answer to your question.
I understand that this may seem disappointing, but I hope you can appreciate the importance of accurate and logical information. If you have any other questions, please feel free to ask!
***Vigogne-Falcon-7B-Instruct:***
Vous serez orienté vers le nord.
</details>
---
***Instruction:***
Parmi les aliments suivants, lequel est le plus susceptible de provoquer une intoxication alimentaire ? A, poisson cru, B, poulet cuit, C, légumes cuits, D, pain grillé.
***Vigogne-2-7B-Instruct:***
A, poisson cru.
<details><summary>Other models</summary>
***Llama-2-7B-Chat:***
Bonjour! I'm here to help you with your question. However, I must inform you that the question itself is not factually coherent, as there is no scientific evidence to suggest that any of the listed foods are more likely to cause food poisoning than others. Food poisoning can occur from consuming contaminated or spoiled food, regardless of the type of food.
To provide a safe and responsible answer, I would recommend choosing a different question that is based on accurate and reliable information. Perhaps you could ask about a different topic related to food safety or nutrition? I'm here to help and provide information to the best of my abilities, while always ensuring that the responses are socially unbiased and positive in nature.
***Vigogne-Falcon-7B-Instruct:***
Le plus susceptible de provoquer une intoxication alimentaire est le poisson cru.
</details>
---
***Instruction:***
Écrivez une fonction qui prend une liste de chaînes de caractères et renvoie une liste sans doublons.
***Vigogne-2-7B-Instruct:***
```
def remove_duplicates(lst):
return list(set(lst))
```
<details><summary>Other models</summary>
***Llama-2-7B-Chat:***
Of course, I'm here to help! I understand that you want me to write a function that takes a list of strings and returns a list without duplicates. Here's an example implementation that should do the trick:
```
def remove_duplicates(list):
return list(set(list))
```
Explanation:
- The set function creates a set from the list of strings.
- The list function converts the set back into a list.
- The resulting list will only contain unique elements, without any duplicates.
For example, if you call the remove_duplicatesfunction with the list [ "apple", "banana", "apple", "orange" ], it will return the list [ "apple", "banana", "orange" ].
I hope this helps! Let me know if you have any questions or need further assistance.
***Vigogne-Falcon-7B-Instruct:***
```
def remove_duplicates(chaines):
return list(set(chaines))
```
</details>
---
## Limitations
Vigogne is still under development, and there are many limitations that have to be addressed. Please note that it is possible that the model generates harmful or biased content, incorrect information or generally unhelpful answers.
|
muhammadbilal/xlm-roberta-base-finetuned-pos
|
muhammadbilal
| 2023-07-20T19:57:01Z | 21 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-03-14T21:17:15Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlm-roberta-base-finetuned-pos
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-pos
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0743
- Precision: 0.9800
- Recall: 0.9811
- F1: 0.9806
- Accuracy: 0.9817
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.157 | 1.0 | 1583 | 0.1170 | 0.9616 | 0.9641 | 0.9629 | 0.9671 |
| 0.0982 | 2.0 | 3166 | 0.0823 | 0.9740 | 0.9745 | 0.9743 | 0.9766 |
| 0.0666 | 3.0 | 4749 | 0.0778 | 0.9767 | 0.9771 | 0.9769 | 0.9786 |
| 0.0528 | 4.0 | 6332 | 0.0712 | 0.9793 | 0.9800 | 0.9796 | 0.9810 |
| 0.0446 | 5.0 | 7915 | 0.0743 | 0.9800 | 0.9811 | 0.9806 | 0.9817 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
ailabturkiye/rehbermatematik
|
ailabturkiye
| 2023-07-20T19:53:28Z | 0 | 0 | null |
[
"license:openrail",
"region:us"
] | null | 2023-07-20T19:42:39Z |
---
license: openrail
---
REHBER MATEMATİK 200 EPOCH 13 DK TERTEMİZ SES KAYDI İLE EĞİTİLDİ.
|
georgeNakayama/textual_inversion_cat
|
georgeNakayama
| 2023-07-20T19:46:49Z | 24 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"textual_inversion",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-07-20T17:58:08Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- textual_inversion
inference: true
---
# Textual inversion text2image fine-tuning - georgeNakayama/textual_inversion_cat
These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
|
Ducco/distilhubert-finetuned-gtzan
|
Ducco
| 2023-07-20T19:40:37Z | 159 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"hubert",
"audio-classification",
"generated_from_trainer",
"dataset:marsyas/gtzan",
"base_model:ntu-spml/distilhubert",
"base_model:finetune:ntu-spml/distilhubert",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2023-07-20T11:28:38Z |
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.83
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9402
- Accuracy: 0.83
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0151 | 1.0 | 112 | 0.6140 | 0.84 |
| 0.0134 | 2.0 | 225 | 0.7191 | 0.86 |
| 0.0032 | 3.0 | 337 | 0.9266 | 0.8 |
| 0.0043 | 4.0 | 450 | 0.9583 | 0.79 |
| 0.0011 | 5.0 | 562 | 0.9526 | 0.82 |
| 0.0008 | 6.0 | 675 | 0.9512 | 0.81 |
| 0.0007 | 7.0 | 787 | 0.9131 | 0.82 |
| 0.0006 | 8.0 | 900 | 0.9234 | 0.82 |
| 0.0006 | 9.0 | 1012 | 0.9322 | 0.84 |
| 0.0006 | 9.96 | 1120 | 0.9402 | 0.83 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
rusano/Teli5
|
rusano
| 2023-07-20T19:23:00Z | 52 | 0 |
transformers
|
[
"transformers",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"question-answering",
"en",
"dataset:rusano/ELI5_custom",
"dataset:rusano/ELI5_custom_encoded",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-07-20T19:10:50Z |
---
base_model: ./checkpoints/checkpoint-13800
tags:
- generated_from_trainer
model-index:
- name: Teli5
results: []
datasets:
- rusano/ELI5_custom
- rusano/ELI5_custom_encoded
language:
- en
metrics:
- glue
library_name: transformers
pipeline_tag: question-answering
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Teli5
This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the [rusano/ELI5_custom](https://huggingface.co/datasets/rusano/ELI5_custom) dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.0
- Datasets 2.13.1
- Tokenizers 0.13.3
|
ByteExplorer/ppo-CartPole-v1
|
ByteExplorer
| 2023-07-20T19:17:17Z | 0 | 0 | null |
[
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-20T19:17:13Z |
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -172.61 +/- 53.29
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 50000
'learning_rate': 0.00025
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'ByteExplorer/ppo-CartPole-v1'
'batch_size': 512
'minibatch_size': 128}
```
|
Forturne/bert-base-finetuned-klue-mrc
|
Forturne
| 2023-07-20T19:13:37Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:klue",
"base_model:klue/bert-base",
"base_model:finetune:klue/bert-base",
"license:cc-by-sa-4.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-07-03T22:58:53Z |
---
license: cc-by-sa-4.0
base_model: klue/bert-base
tags:
- generated_from_trainer
datasets:
- klue
model-index:
- name: bert-base-finetuned-klue-mrc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-finetuned-klue-mrc
This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0738
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1427 | 1.0 | 2350 | 1.0738 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
darioali/openai-whisper-large-v2-LORA-colab
|
darioali
| 2023-07-20T19:07:48Z | 6 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-20T18:58:42Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.5.0.dev0
|
Ruanitto/Jazzghost
|
Ruanitto
| 2023-07-20T19:02:20Z | 0 | 0 | null |
[
"license:bigscience-openrail-m",
"region:us"
] | null | 2023-07-20T18:59:38Z |
---
license: bigscience-openrail-m
---
|
subset-data/falcon-testing
|
subset-data
| 2023-07-20T19:00:56Z | 12 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"RefinedWebModel",
"text-generation",
"custom_code",
"en",
"dataset:subset-data/falcon-testing-context",
"base_model:tiiuae/falcon-7b-instruct",
"base_model:quantized:tiiuae/falcon-7b-instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"region:us"
] |
text-generation
| 2023-07-18T23:46:31Z |
---
datasets:
- subset-data/falcon-testing-context
language:
- en
pipeline_tag: text-generation
base_model: tiiuae/falcon-7b-instruct
inference: true
---
|
ChronicCrit/ppo-LunarLander-v2
|
ChronicCrit
| 2023-07-20T18:58:50Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-20T18:56:14Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 257.19 +/- 26.10
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
mrvincenzo/ppo-LunarLander-v2
|
mrvincenzo
| 2023-07-20T18:50:37Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-20T18:50:18Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 291.72 +/- 20.98
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
morenolq/thext-bio-scibert
|
morenolq
| 2023-07-20T18:42:05Z | 112 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"bert",
"text-classification",
"regression",
"en",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-07-13T07:57:46Z |
---
language: "en"
tags:
- bert
- regression
- pytorch
pipeline:
- text-classification
widget:
- text: "We propose a new approach, based on Transformer-based encoding, to highlight extraction. To the best of our knowledge, this is the first attempt to use transformer architectures to address automatic highlight generation. [SEP] Highlights are short sentences used to annotate scientific papers. They complement the abstract content by conveying the main result findings. To automate the process of paper annotation, highlights extraction aims at extracting from 3 to 5 paper sentences via supervised learning. Existing approaches rely on ad hoc linguistic features, which depend on the analyzed context, and apply recurrent neural networks, which are not effective in learning long-range text dependencies. This paper leverages the attention mechanism adopted in transformer models to improve the accuracy of sentence relevance estimation. Unlike existing approaches, it relies on the end-to-end training of a deep regression model. To attend patterns relevant to highlights content it also enriches sentence encodings with a section-level contextualization. The experimental results, achieved on three different benchmark datasets, show that the designed architecture is able to achieve significant performance improvements compared to the state-of-the-art."
- text: "We design a context-aware sentence-level regressor, in which the semantic similarity between candidate sentences and highlights is estimated by also attending the contextual knowledge provided by the other paper sections. [SEP] Highlights are short sentences used to annotate scientific papers. They complement the abstract content by conveying the main result findings. To automate the process of paper annotation, highlights extraction aims at extracting from 3 to 5 paper sentences via supervised learning. Existing approaches rely on ad hoc linguistic features, which depend on the analyzed context, and apply recurrent neural networks, which are not effective in learning long-range text dependencies. This paper leverages the attention mechanism adopted in transformer models to improve the accuracy of sentence relevance estimation. Unlike existing approaches, it relies on the end-to-end training of a deep regression model. To attend patterns relevant to highlights content it also enriches sentence encodings with a section-level contextualization. The experimental results, achieved on three different benchmark datasets, show that the designed architecture is able to achieve significant performance improvements compared to the state-of-the-art."
- text: "Fig. 2, Fig. 3, Fig. 4 show the effect of varying the number K of selected highlights on the extraction performance. As expected, recall values increase while increasing the number of selected highlights, whereas precision values show an opposite trend. [SEP] Highlights are short sentences used to annotate scientific papers. They complement the abstract content by conveying the main result findings. To automate the process of paper annotation, highlights extraction aims at extracting from 3 to 5 paper sentences via supervised learning. Existing approaches rely on ad hoc linguistic features, which depend on the analyzed context, and apply recurrent neural networks, which are not effective in learning long-range text dependencies. This paper leverages the attention mechanism adopted in transformer models to improve the accuracy of sentence relevance estimation. Unlike existing approaches, it relies on the end-to-end training of a deep regression model. To attend patterns relevant to highlights content it also enriches sentence encodings with a section-level contextualization. The experimental results, achieved on three different benchmark datasets, show that the designed architecture is able to achieve significant performance improvements compared to the state-of-the-art."
---
# General Information
This model is trained on journal publications of belonging to the domain: **Biology and Medicine**.
This is an `allenai/scibert_scivocab_cased` model trained in the scientific domain. The model is trained with regression objective to estimate the relevance of a sentence according to the provided context (e.g., the abstract of the scientific paper).
The model is used in the paper 'Transformer-based highlights extraction from scientific papers' published in Knowledge-Based Systems scientific journal.
The model is able to achieve state-of-the-art performance in the task of highlights extraction from scientific papers.
Access to the full paper: [here](https://doi.org/10.1016/j.knosys.2022.109382).
# Usage:
For detailed usage please use the official repository https://github.com/MorenoLaQuatra/THExt .
# References:
If you find it useful, please cite the following paper:
```bibtex
@article{thext,
title={Transformer-based highlights extraction from scientific papers},
author={La Quatra, Moreno and Cagliero, Luca},
journal={Knowledge-Based Systems},
pages={109382},
year={2022},
publisher={Elsevier}
}
```
|
Erlalex/chritofer-v1-1
|
Erlalex
| 2023-07-20T18:23:06Z | 6 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-07-20T18:19:04Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### Chritofer_v1.1 Dreambooth model trained by Erlalex with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
duytran3112/whisper-sm-vivos
|
duytran3112
| 2023-07-20T18:09:57Z | 88 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-07-20T07:43:17Z |
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-sm-vivos
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-sm-vivos
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2370
- Wer: 54.8563
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1265 | 1.37 | 1000 | 0.2178 | 35.8845 |
| 0.062 | 2.74 | 2000 | 0.2138 | 49.8446 |
| 0.0169 | 4.12 | 3000 | 0.2273 | 52.2922 |
| 0.012 | 5.49 | 4000 | 0.2370 | 54.8563 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.0
- Datasets 2.13.1
- Tokenizers 0.13.3
|
DunnBC22/sentence-t5-base-FT-Quora_Sentence_Similarity-LG
|
DunnBC22
| 2023-07-20T18:07:03Z | 2 | 1 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"t5",
"feature-extraction",
"sentence-similarity",
"en",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-09-20T03:04:07Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
language:
- en
metrics:
- accuracy
- f1
- recall
- precision
---
# DunnBC22/sentence-t5-base-FT-Quora_Sentence_Similarity-LG
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Semantic_Similarity/Semantic%20Similarity-base.ipynb
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('DunnBC22/sentence-t5-base-FT-Quora_Sentence_Similarity-LG')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=DunnBC22/sentence-t5-base-FT-Quora_Sentence_Similarity-LG)
| Metric | Measure | Value | Notes |
| :--------: | :--------: | :--------: | :--------: |
| Accuracy | **Cosine-Similarity** | 85.93 | Threshold: 0.8320 |
| F1 | Cosine-Similarity | 82.89 | Threshold: 0.8178 |
| Precision | Cosine-Similarity | 77.43 | - |
| Recall | Cosine-Similarity | 89.18 | - |
| Average Precision | Cosine-Similarity | 87.13 | - |
| Accuracy | **Manhattan-Distance** | 85.95 | Threshold: 12.7721 |
| F1 | Manhattan-Distance | 82.89 | Threshold: 13.5008 |
| Precision | Manhattan-Distance | 76.91 | - |
| Recall | Manhattan-Distance | 89.89 | - |
| Average Precision | Manhattan-Distance | 87.13 | - |
| Accuracy | **Euclidean-Distance** | 85.93 | Threshold: 0.5797 |
| F1 | Euclidean-Distance | 82.89 | Threshold: 0.6037 |
| Precision | Euclidean-Distance | 77.43 | - |
| Recall | Euclidean-Distance | 89.18 | - |
| Average Precision | Euclidean-Distance | 87.13 | - |
| Accuracy | **Dot-Product** | 85.93 | Threshold: 0.8320 |
| F1 | Dot-Product | 82.89 | Threshold: 0.8178 |
| Precision | Dot-Product | 77.43 | - |
| Recall | Dot-Product | 89.18 | - |
| Average Precision | Dot-Product | 87.14 | - |
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 4673 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 2,
"weight_decay": 0.01
}
```
## Potential Improvements
One way to improve the results of this model is to use a larger checkpoint of T5. This was trained with the T5-base checkpoint.
The larger checkpoints are:
| Checkpoint | # of Train Params |
| :--------: | :---------------: |
| T5-Base | 220 Million* |
| T5-Large | 770 Million |
| T5-3B | 3 Billion |
| T5-11B | 11 Billion |
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 34, 'do_lower_case': False}) with Transformer model: T5EncoderModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Normalize()
)
```
## Citing & Authors
Dataset Source: https://www.kaggle.com/datasets/quora/question-pairs-dataset
|
crumb/distilpythia
|
crumb
| 2023-07-20T18:06:02Z | 172 | 4 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"gpt_neox",
"text-generation",
"en",
"dataset:EleutherAI/pile",
"arxiv:1706.03762",
"arxiv:1503.02531",
"arxiv:2304.01373",
"arxiv:2101.00027",
"arxiv:1910.01108",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-05-02T22:28:45Z |
---
license: apache-2.0
datasets:
- EleutherAI/pile
language:
- en
---
# Warm-Starting Knowledge Distillation for Transformer-based Language Models
*by GPT-4 & Crumb*
### Introduction
Transformer models have become a popular choice for natural language processing (NLP) tasks due to their ability to handle long-range dependencies and their superior performance on various NLP benchmarks. The transformer model architecture was introduced in 2017 by [Vaswani et al](https://arxiv.org/abs/1706.03762). and has since been used in many state-of-the-art models such as BERT and GPT. The decoder-only transformer model is a variant of the transformer model that has is commonly used for generative tasks in NLP. It uses masked self-attention to predict the next token in a sequence and has been shown to be powerful at predicting sequences of text.
Distillation \[[Bucila et al., 2006](https://www.cs.cornell.edu/~caruana/compression.kdd06.pdf), [Hinton et al., 2015](https://arxiv.org/abs/1503.02531)\] is a technique used in machine learning to compress a large model into a smaller one that can be used on devices with limited computational resources. In this technique, a smaller model is trained to mimic the behavior of a larger model by learning from its predictions. The smaller model is trained on a smaller dataset than the larger model, which makes it faster and more efficient. This technique has been used to compress models like BERT and GPT-2 into smaller models like DistilBERT and DistilGPT-2, respectively. In this project we apply the technique of knowledge distillation to the second smallest [Pythia](https://arxiv.org/pdf/2304.01373.pdf) model on the [Pile](https://arxiv.org/abs/2101.00027) dataset.
### Method
We follow the work of [Sanh et al. (2019)](https://arxiv.org/abs/1910.01108) and [Hinton et al. (2015)](https://arxiv.org/abs/1503.02531) for a distillation loss over the soft target probabilities `L_ce`. We utilize the distillation loss in our loss function as a linear combination of the distillation loss `L_ce` with the supervised training loss `L_clm`. Our combined loss function is `L_ce*(1-a) + L_clm*a` where `a` is set to 0.5 and the `T`emperature parameter for the distillation loss is set to 2.
In an effort to maximize VRAM utilization, to reach a combined batch size of 4096 samples we use a device batch size of 2 with 2048 gradient accumulation steps and a context length of 2048 tokens with both the teacher and student model in bf16 precision. This allowed us to utilize around 98.94% of the 12 gigabytes of VRAM that the RTX3060 card has during training.
It also means our training set totals to approximately 537 million training tokens, as our model trained for 64 steps. All training samples were taken from [The Pile](https://arxiv.org/abs/2101.00027).
A learning rate of 1e-4 was used in this study, with no learning rate schedule.
### Evaluation
[Sanh et al. (2019)](https://arxiv.org/abs/1910.01108) suggests a student around 40% of the size of it's teacher can achieve similar performance in encoder models when training from scratch with suprivision. We warm-start our model from a smaller checkpoint than the teacher that maintains a similar ratio with a student that is 43.75% the size of it's teacher.
| model | piqa acc | winogrande acc | lambada ppl | lambada acc | arc acc | sciq acc | wsc acc | notes |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
| pythia-70m (student base) | 59.85 | 51.22 | 140.81 | 21.40 | 17.15 | 65.00 | 36.53 |
| pythia-160m (teacher) | 62.68 | 51.07 | 30.03 | 36.76 | 19.62 | 76.20 | 36.58 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
| distilpythia (student) | 59.74 | **51.62** | 420.70 | 15.82 | **17.15** | 61.30 | **36.54** | trained on padded/truncated examples
| distilpythia-cl (student) | 59.30 | 50.75 | 403.78 | 15.16 | 16.98 | 59.20 | **36.54** | trained on a constant-length dataset
<center> <i>Table 1.</i> The student before finetuning, teacher, and student after finetuning and their results on various benchmarks. Numbers in bold are where the student after finetuning matches or outperforms the student before finetuning. </center>
The table provides a comparison of performance between the base student model (pythia-70m), the teacher model (pythia-160m), and the finetuned student model (distilpythia) across various benchmarks. The goal is to assess whether the distilpythia model can achieve similar or better performance than its base while being smaller in size.
From the table, we can observe the following:
1. The pythia-160m (teacher) model outperforms pythia-70m (student base) in most benchmarks, except for Winogrande accuracy, where the student base has a slightly better performance (51.22% vs. 51.07%).
2. The distilpythia (student) model, after finetuning, outperforms the pythia-70m (student base) on two benchmarks: Winogrande accuracy (51.62% vs. 51.22%) and WSC accuracy (36.54% vs. 36.53%). The improvements in these metrics indicate that the finetuning process may be effective in transferring knowledge from the teacher model to the student model.
### Conclusion
it might have worked idk, maybe training from scratch or for longer would give more performance gains, also look at the lambada perplexity what happened there even
|
bcijo/Emotion-RoBERTa
|
bcijo
| 2023-07-20T18:00:16Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"roberta",
"text-classification",
"generated_from_keras_callback",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-07-20T17:59:38Z |
---
tags:
- generated_from_keras_callback
model-index:
- name: Emotion-RoBERTa
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Emotion-RoBERTa
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: None
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
UholoDala/tweet_sentiments_analysis_distilbert
|
UholoDala
| 2023-07-20T17:54:52Z | 108 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-cased",
"base_model:finetune:distilbert/distilbert-base-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-07-20T17:18:06Z |
---
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
model-index:
- name: tweet_sentiments_analysis_distilbert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tweet_sentiments_analysis_distilbert
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6542
- F1-score: 0.7392
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1-score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7095 | 1.0 | 1000 | 0.7100 | 0.6931 |
| 0.5956 | 2.0 | 2000 | 0.6542 | 0.7392 |
| 0.4606 | 3.0 | 3000 | 0.7091 | 0.7410 |
| 0.316 | 4.0 | 4000 | 1.0023 | 0.7342 |
| 0.2197 | 5.0 | 5000 | 1.2597 | 0.7374 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
scarlett623/wav2vec2-large-xls-r-300m-zh-cn-colab
|
scarlett623
| 2023-07-20T17:43:17Z | 108 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:facebook/wav2vec2-xls-r-300m",
"base_model:finetune:facebook/wav2vec2-xls-r-300m",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-07-02T03:45:21Z |
---
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xls-r-300m-zh-cn-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-zh-cn-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
fani-lab/OpeNTF
|
fani-lab
| 2023-07-20T17:38:16Z | 0 | 1 | null |
[
"license:cc-by-nc-sa-4.0",
"region:us"
] | null | 2023-07-20T16:07:10Z |
---
license: cc-by-nc-sa-4.0
---
|
DunnBC22/sentence-t5-large-FT-Quora_Sentence_Similarity-400
|
DunnBC22
| 2023-07-20T17:30:23Z | 2 | 1 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"t5",
"feature-extraction",
"sentence-similarity",
"en",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2023-06-26T05:23:16Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
language:
- en
metrics:
- accuracy
- f1
- recall
- precision
---
# Quora Sentence Similarity
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Semantic_Similarity/Semantic%20Similarity-large.ipynb
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
| Metric | Measure | Value | Notes |
| :--------: | :--------: | :--------: | :--------: |
| Accuracy | **Cosine-Similarity** | 88.72 | Threshold: 0.8397 |
| F1 | Cosine-Similarity | 85.22 | Threshold: 0.8223 |
| Precision | Cosine-Similarity | 80.72 | - |
| Recall | Cosine-Similarity | 90.25 | - |
| Average Precision | Cosine-Similarity | 89.75 | - |
| Accuracy | **Manhattan-Distance** | 88.71 | Threshold: 12.4351 |
| F1 | Manhattan-Distance | 85.22 | Threshold: 13.2209 |
| Precision | Manhattan-Distance | 80.58 | - |
| Recall | Manhattan-Distance | 90.42 | - |
| Average Precision | Manhattan-Distance | 89.74 | - |
| Accuracy | **Euclidean-Distance** | 88.72 | Threshold: 0.5662 |
| F1 | Euclidean-Distance | 85.22 | Threshold: 0.5962 |
| Precision | Euclidean-Distance | 80.72 | - |
| Recall | Euclidean-Distance | 90.25 | - |
| Average Precision | Euclidean-Distance | 89.75 | - |
| Accuracy | **Dot-Product** | 88.72 | Threshold: 0.8397 |
| F1 | Dot-Product | 85.22 | Threshold: 0.8223 |
| Precision | Dot-Product | 80.72 | - |
| Recall | Dot-Product | 90.25 | - |
| Average Precision | Dot-Product | 89.75 | - |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 5055 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 20,
"weight_decay": 0.01
}
```
**Potential Improvements**
One way to improve the results of this model is to use a larger checkpoint of T5. This was trained with the T5-large checkpoint.
The larger checkpoints are:
| Checkpoint | # of Train Params |
| :--------: | :--------: |
| T5-Base | 220 Million |
| T5-Large | 770 Million* |
| T5-3B | 3 Billion |
| T5-11B | 11 Billion |
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 34, 'do_lower_case': False}) with Transformer model: T5EncoderModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Dense({'in_features': 1024, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Normalize()
)
```
## Citing & Authors
Dataset Source: https://www.kaggle.com/datasets/quora/question-pairs-dataset
|
tgsc/ult5-pt-small
|
tgsc
| 2023-07-20T17:17:36Z | 144 | 1 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"t5",
"text2text-generation",
"ul2",
"pt",
"pt-br",
"dataset:allenai/c4",
"arxiv:2205.05131",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-04-13T16:58:29Z |
---
license: mit
language:
- pt
tags:
- t5
- ul2
- pt
- pt-br
datasets:
- allenai/c4
library_name: transformers
---
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
*ULT5-pt is a T5-v1.1 architecture model trained using the UL2 - Unifying Language Learning Paradigms framework, which uses Mixture-of-Denoisers (MoD), combining Causal Language Modeling (CLM) objective with Span Corruption.*
ULT5-pt é um modelo de arquitetura T5-v1.1/google-ul2 treinado com o framework UL2 - [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1), que utiliza Mixture-of-Denoisers (MoD), o qual combina o objetivo de Causal Language Modeling (CLM) com Span Corruption.
| Model | type | Vocabulary | Parameters | Context length |
| :-: | :-: | :-: | :-: | :-: |
| [ult5-pt-small](https://huggingface.co/tgsc/ult5-pt-small) | encoder-decoder | 65k |82.4M | 1024 |
| [sentence-transformer-ult5-pt-small](https://huggingface.co/tgsc/sentence-transformer-ult5-pt-small) | sentence-transformer | 65k | 51M | 1024 |
| [DeBERTina-base](https://huggingface.co/tgsc/debertina-base) | encoder | 32k | 100M | 512 |
- **Developed by:** Thacio Garcia Scandaroli
- **Model type:** T5
- **Language(s) (NLP):** Português
- **License:** MIT
Benchmarks e tutorial de fine-tune: [https://github.com/thacio/LLM-Notebooks](https://github.com/thacio/LLM-Notebooks)
Tutorial fine-tune no colab: [](https://colab.research.google.com/github/thacio/LLM-Notebooks/blob/main/Finetunning-LanguageModel.ipynb)
## Fine-tunning
Alguns datasets (algumas classificações ou score de similaridade) possuem melhor desempenho com o dropout desligado. Para carregar sem dropout, use o código:
*Some datasets (e.g. some classifcation or similarity score) work better without dropout. To load the model without dropout:*
```python
from transformers import AutoModelForSeq2SeqLM
model = AutoModelForSeq2SeqLM.from_pretrained("tgsc/ult5-pt-small",dropout_rate=0.0)
```
## Pretraining and model characteristics
O modelo foi treinado com uma parte do corpus C4 em português utilizando o UL2 (https://huggingface.co/google/ul2), utilizando *R-Denoising*, *S-Denoising* e *X-Denoising*, e com dropout 0.0.
De forma diferente do paper original, não se utilizou token específico de prefixo para o *S-Denoising*. Para o *R-Denoising* e o *X-Denoising*, foram utilizados, respectivamente, os tokens <|NLU|> e <|NLG|>.
Utilizou-se uma janela de contexto para 1024 tokens e um tokenizador do GPT2 com vocabulário em português treinado com o wikipedia, aumentando a quantidade de texto que pode ser processada.
*The model was trained with a portion of the C4 corpus in Portuguese using UL2 (https://huggingface.co/google/ul2), using R-Denoising, S-Denoising, and X-Denoising, and with dropout rate of 0.0.*
*Unlike the original work of UL2, a prefix token for S-Denoising was not used. For R-Denoising and X-Denoising, the tokens '<|NLU|>' and '<|NLG|>' and were used, respectively.*
*A context window of 1024 tokens was used. Also, a GPT2 tokenizer with a Portuguese vocabulary trained with Wikipedia was used to increase the amount of text that can be processed.*
## Uses
O uso recomendado é para fine-tunning.
Foi disponibilizado um tutorial em formato de notebook para fine-tune de modelos decoder e encoder-decoder (T5): [Fine-tune Large Language Models](endereço aqui)
Os modos de *span corruption* podem ser acionados adicionado ao início do text os prefixos '<|NLU|>' e '<|NLG|>'.
Os autores do UL2 apontam uma possivel diferença no resultado do fine-tune dependendo do modo ativado.
Porém, para o ult5-pt, não se notou diferença nos testes de benchmark.
*Fine-tunning is the recommended use for the model.*
*A tutorial (in portuguse) in notebook format for decoder and encoder-decoder (T5) model fine-tuning was provided: [Fine-tune Large Language Models](link here).*
*Span corruption modes can be activated by adding the prefixes '<|NLU|>' and '<|NLG|>' to the beginning of the text. The UL2 authors point out a possible difference in the fine-tuning result depending on the activated mode. However, for ult5-pt, no difference was noticed in benchmark tests.*
Special tokens:
- pad: '<|pad|>'
- end of text: '<|endoftext|>'
- R denoising: '<|NLU|>'
- S denoising: '<|NLG|>'
### Direct Use
Exemplo de geração de texto com top_k de 30
*Example of text generation with top_k of 30*
```python
from transformers import GPT2TokenizerFast, AutoModelForSeq2SeqLM
tokenizer = GPT2TokenizerFast.from_pretrained("tgsc/ult5-pt-small")
model = AutoModelForSeq2SeqLM.from_pretrained("tgsc/ult5-pt-small")
text='Um modelo de linguagem é um sistema de inteligência artificial que'
pred=model.generate(tokenizer.encode(text,return_tensors='pt'),max_new_tokens=30, eos_token_id=tokenizer.eos_token_id, top_k=30, do_sample=True)
print('input:',text)
print('generated:',tokenizer.batch_decode(pred, skip_special_tokens=True))
# input: Um modelo de linguagem é um sistema de inteligência artificial que
# generated: [' geraria a quantidade de informações por clique. Além das capacidades humanas, elas seriam muito mais produtivas do que as do cérebro humano.\nO que']
```
Embora seja possível obter embeddings com o modelo, melhores embeddings podem ser obtidos com o modelo [tgsc/sentence-transformer-ult5-pt-small](https://huggingface.co/tgsc/sentence-transformer-ult5-pt-small).
*Altough you can get embeddings from this model, better embeddings can be obtained with [tgsc/sentence-transformer-ult5-pt-small](https://huggingface.co/tgsc/sentence-transformer-ult5-pt-small).*
Embeddings:
```python
from transformers import T5EncoderModel, GPT2TokenizerFast
tokenizer = GPT2TokenizerFast.from_pretrained("tgsc/ult5-pt-small")
model = T5EncoderModel.from_pretrained("tgsc/ult5-pt-small")
text = 'Um modelo de linguagem é um sistema de inteligência artificial que aprende a gerar ou processar texto baseado em exemplos de treinamento.'
input_ids = tokenizer(text, return_tensors="pt").input_ids
outputs = model(input_ids)
last_hidden_states = outputs.last_hidden_state
print(last_hidden_states)
```
## Bias, Risks, and Limitations
Os mesmos riscos, vieses e limitações dos outros modelos se aplicam a este, como o apontado em [GPT2](https://huggingface.co/gpt2).
*The same risks, biases, and limitations of other models apply to this one, as pointed out in [GPT2](https://huggingface.co/gpt2).*
## Citation
```bibtex
@misc{ult5-pt2023,
author = {Thacio Garcia Scandaroli},
title = {ULT5-pt: Portuguese Language Model trained with UL2},
year = {2023},
}
```
|
digiplay/fantasticmix2.5D_v3.0
|
digiplay
| 2023-07-20T17:07:52Z | 305 | 1 |
diffusers
|
[
"diffusers",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-07-20T15:31:29Z |
---
license: other
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
Model info :
https://civitai.com/models/20632?modelVersionId=121878
Sample image generated by huggingface's API :


|
jaygdesai/ppo-Huggy
|
jaygdesai
| 2023-07-20T17:04:12Z | 5 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-07-20T17:04:07Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: jaygdesai/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
KingKazma/cnn_dailymail_t5-small_lora_500_10_3000_8_e-1_s6789_v3_l4_manual
|
KingKazma
| 2023-07-20T16:58:48Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-20T16:58:46Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
MaximilianChen/Casper
|
MaximilianChen
| 2023-07-20T16:52:24Z | 77 | 1 |
transformers
|
[
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"ca",
"dataset:CommonVoice",
"dataset:ParlamentParla",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-07-20T13:31:10Z |
---
language: ca
datasets:
- CommonVoice
- ParlamentParla
---
# Casper: a Catalan Automatic Speech Recognition Model
## Table of Contents
- [Model Details](#model-details)
- [Uses](#uses)
- [Limitations](#risks-limitations-and-biases)
- [Training](#training)
- [Evaluation](#evaluation)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
## Model Details
- **Model Description:**
Casper is a state-of-the-art automatic speech recognition (ASR) model for Catalan by finetuning [whisper-small](https://huggingface.co/openai/whisper-small) on Catalan datasets.
- **Developed by:** Yongjian Chen, Xavier Bonet-Casals, Mireia Farrús.
- **Model Type:** Transformer-based encoder-decoder model
- **Language(s):** Catalan
- **Parent Model:** See the [whisper-small](https://huggingface.co/openai/whisper-small) for more information about the Whisper model.
## Uses
#### Direct Use
This model can be used for Catalan transcription task.
## Limitations
- This model does not do punctuation and casing.
- This model only supports audio samples of up to 30 seconds in duration as an inherent property from the parent model. To transcribe audio samples of more than 30 seconds, an additional chunking algorithm is needed to preprocess the samples.
## Training
#### Training Data
This model was fine-tuned on Common Voice and ParlamentParla Ctalan datasets.
The [Common Voice](https://labs.mozilla.org/projects/common-voice/) project seeks to provide a platform where everyone can contribute their own voice to an open source multilingual data bank. The model developers used the the version [mozilla-foundation/common_voice_11_0 ca](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) for training.
The [ParlamentParla](https://huggingface.co/datasets/projecte-aina/parlament_parla) speech corpus contains audio segments extracted from recordings from the Catalan Parliment plenary sessions between 2007/07/11 - 2018/07/1.
#### Training Procedure
| Step | Training Loss | Epoch | Validation Loss | Validation WER |
|:------:|:-------------:|:-----:|:---------------:|:--------------:|
| 10000 | 0.11 | 0.43 | 0.14 | 6.49% |
| 20000 | 0.09 | 0.86 | 0.13 | 6.28% |
| 30000 | 0.05 | 1.28 | 0.13 | 5.91% |
| 40000 | 0.06 | 1.71 | 0.12 | 5.90% |
| 50000 | 0.03 | 2.14 | 0.13 | 5.70% |
| 60000 | 0.03 | 2.57 | 0.13 | 5.82% |
| 70000 | 0.03 | 3.00 | 0.13 | 5.56% |
| 80000 | 0.01 | 3.43 | 0.14 | 5.64% |
| 90000 | 0.01 | 3.85 | 0.14 | 5.59% |
| 100000 | 0.01 | 4.28 | 0.14 | 5.50% |
| 110000 | 0.01 | 4.71 | 0.14 | 5.42% |
| 120000 | 0.01 | 5.14 | 0.15 | 5.83% |
| 130000 | 0.01 | 5.57 | 0.15 | 5.65% |
| 140000 | 0.01 | 6.00 | 0.15 | 5.54% |
| 150000 | 0.003 | 6.42 | 0.15 | 5.56% |
## Evaluation
#### Evaluation Data
The evaluation dataset was created by the developer Xavier using the webinars from the University of Barcelona and is mostly domain-specific, surrounding topics of linguistics and language policy.
The distribution of different specifications in the evaluation set is as follows:
| Specification | Category | # | % |
| ------------- | -------- | ---- | ------ |
| Register | Formal | 88 | 57.14% |
| | Informal | 66 | 42.86% |
| Accent | Central | 33 | 21.43% |
| | Balearic | 44 | 28.57% |
| | Valencian| 44 | 28.57% |
| | Western | 33 | 21.43% |
| Gender | Male | 66 | 42.86% |
| | Female | 88 | 57.14% |
#### Evaluation Metrics
The model developers evaluated Casper using two metrics: Word Error Rate (WER) and BLEU for machine translation (MT) from Catalan to Spanish and to English.
Our fine-tuned Whisper model Casper significantly outperforms the zero-shot performance of the pre-trained Whisper model across different specifications on the evaluation dataset and such improvements lead to better outcomes in the MT downstream task.
##### WER
| Specification | Category | Whisper-small | Fine-tuned Whisper-small |
|:-------------:|:--------:|:-------------:|:------------------------:|
| Register | Formal | 31.21% | 17.71% |
| | Informal | 53.10% | 22.10% |
| Accent | Central | 16.38% | 14.39% |
| | Balearic | 29.76% | 29.68% |
| | Valencian| 77.28% | 16.15% |
| | Western | 21.10% | 17.48% |
| Gender | Male | 57.49% | 15.14% |
| | Female | 24.60% | 23.39% |
| Total | / | 40.12% | 19.50% |
##### BLEU
| Language | Target | Correct Transcript | Whisper-small | Fine-tuned whisper-small |
|:--------:|:-------------------------:|:------------------:|:-------------:|:------------------------:|
| Spanish | Human Translation | 83.5498 | 54.0836 | 63.7367 |
| | Machine-assisted Translation | 84.219 | 54.5868 | 63.9436 |
| English | Human Translation | 32.7 | 29.5 | 30.8 |
| | Machine-assisted Translation | 33.5 | 30.3 | 31.6 |
## How to Get Started With the Model
```python
from transformers import WhisperProcessor, WhisperForConditionalGeneration, WhisperConfig
import torch
import torchaudio
# Load Casper and its processor :
processor = WhisperProcessor.from_pretrained("maximilianchen/casper")
model = WhisperForConditionalGeneration.from_pretrained("maximilianchen/casper")
# Load an audio sample
## Please make sure that the audio sample has been resampled to 16kHz before being loaded
sa, sr = torchaudio.load(filename)
sa = sa.squeeze(0)
# Convert input audio sample into features
inputs = processor(sa, sampling_rate=sr, return_tensors="pt").input_features
# Generate token ids
with torch.no_grad():
generated_ids = model.generate(inputs=inputs)
# Decode token ids to text
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)
print(transcription)
['miraré de destacar molt breument què té d específic i essencial la coordinació aquesta estructura aparentment trivial on diem que coordinem dues categories aparentment iguals què té d especial què té de específic perquè és complicat si té raó o eies per això es parla d equivalència sintàctica i semàntica i llavors el repte és veure exactament què què té de sintàctica què té de semàntica']
```
|
HasinMDG/XSent-deberta-COT
|
HasinMDG
| 2023-07-20T16:47:33Z | 4 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"deberta-v2",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-07-20T16:47:10Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# HasinMDG/XSent-deberta-COT
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("HasinMDG/XSent-deberta-COT")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
jakelcoop/Reinforce-Pixelcopter-PLE-v0
|
jakelcoop
| 2023-07-20T16:39:51Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-20T16:39:48Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 19.40 +/- 16.92
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
KatarLegacy/Sophitia_LoCon
|
KatarLegacy
| 2023-07-20T16:31:04Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-20T16:30:05Z |
---
license: creativeml-openrail-m
---
|
KatarLegacy/StandingVaginal-v1
|
KatarLegacy
| 2023-07-20T16:27:26Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-20T16:26:44Z |
---
license: creativeml-openrail-m
---
|
buxiangzhiren/asymmetric-autoencoder-kl-x-2
|
buxiangzhiren
| 2023-07-20T16:27:01Z | 1 | 0 |
diffusers
|
[
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"arxiv:2306.04632",
"region:us"
] | null | 2023-07-20T16:27:01Z |
---
tags:
- stable-diffusion
- stable-diffusion-diffusers
inference: false
library_name: diffusers
duplicated_from: cross-attention/asymmetric-autoencoder-kl-x-2
---
# Asymmetric Autoencoder KL
[Designing a Better Asymmetric VQGAN for StableDiffusion](https://arxiv.org/abs/2306.04632)
## Abstract
*StableDiffusion is a revolutionary text-to-image generator that is causing a stir in the world of image generation and editing. Unlike traditional methods that learn a diffusion model in pixel space, StableDiffusion learns a diffusion model in the latent space via a VQGAN, ensuring both efficiency and quality. It not only supports image generation tasks, but also enables image editing for real images, such as image inpainting and local editing. However, we have observed that the vanilla VQGAN used in StableDiffusion leads to significant information loss, causing distortion artifacts even in non-edited image regions. To this end, we propose a new asymmetric VQGAN with two simple designs. Firstly, in addition to the input from the encoder, the decoder contains a conditional branch that incorporates information from task-specific priors, such as the unmasked image region in inpainting. Secondly, the decoder is much heavier than the encoder, allowing for more detailed recovery while only slightly increasing the total inference cost. The training cost of our asymmetric VQGAN is cheap, and we only need to retrain a new asymmetric decoder while keeping the vanilla VQGAN encoder and StableDiffusion unchanged. Our asymmetric VQGAN can be widely used in StableDiffusion-based inpainting and local editing methods. Extensive experiments demonstrate that it can significantly improve the inpainting and editing performance, while maintaining the original text-to-image capability. The code is available at https://github.com/buxiangzhiren/Asymmetric_VQGAN/tree/main*
## Scales
* https://huggingface.co/cross-attention/asymmetric-autoencoder-kl-x-1-5
* https://huggingface.co/cross-attention/asymmetric-autoencoder-kl-x-2
## Diffusers
```python
from io import BytesIO
from PIL import Image
import requests
from diffusers import AsymmetricAutoencoderKL, StableDiffusionInpaintPipeline
def download_image(url: str) -> Image.Image:
response = requests.get(url)
return Image.open(BytesIO(response.content)).convert("RGB")
prompt = "a photo of a person"
img_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/celeba_hq_256.png"
mask_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png"
image = download_image(img_url).resize((256, 256))
mask_image = download_image(mask_url).resize((256, 256))
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
pipe.vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-2")
pipe.to("cuda")
image = pipe(prompt=prompt, image=image, mask_image=mask_image).images[0]
image.save("image.jpeg")
```
### Visual
_Visualization of VAE perfomance on 512x512 image with runwayml/stable-diffusion-inpainting_
<p align="center">
<br>original image, masked image, mask
<br><b>runwayml/stable-diffusion-inpainting original VAE</b>
<br><b>stabilityai/sd-vae-ft-mse VAE</b>
<br><b>Asymmetric Autoencoder KL x1.5 VAE</b>
<br><b>Asymmetric Autoencoder KL x2 VAE</b>
</p>
<p align="center">
<img src=https://huggingface.co/cross-attention/asymmetric-autoencoder-kl-x-2/resolve/main/compare.jpeg width="50%"/>
</p>
|
KatarLegacy/shenhe_genshin
|
KatarLegacy
| 2023-07-20T16:26:16Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-20T16:25:10Z |
---
license: creativeml-openrail-m
---
|
niceanyh/falcon-7i-adapter_v0.3
|
niceanyh
| 2023-07-20T16:25:38Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-19T14:09:06Z |
---
library_name: peft
---
## Training procedure
8 epoch
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
- PEFT 0.5.0.dev0
|
KatarLegacy/nightdress_v2
|
KatarLegacy
| 2023-07-20T16:24:47Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-20T16:23:58Z |
---
license: creativeml-openrail-m
---
|
jakelcoop/dqn-SpaceInvadersNoFrameskip-v4
|
jakelcoop
| 2023-07-20T16:04:47Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-20T16:04:09Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 587.50 +/- 130.06
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jakelcoop -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jakelcoop -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jakelcoop
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 500000),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
openai/shap-e-img2img
|
openai
| 2023-07-20T16:02:43Z | 330 | 51 |
diffusers
|
[
"diffusers",
"image-to-image",
"text-to-3d",
"shap-e",
"arxiv:2305.02463",
"license:mit",
"diffusers:ShapEImg2ImgPipeline",
"region:us"
] |
image-to-image
| 2023-07-04T13:25:57Z |
---
license: mit
tags:
- image-to-image
- text-to-3d
- diffusers
- shap-e
---
# Shap-E
Shap-E introduces a diffusion process that can generate a 3D image from a text prompt. It was introduced in [Shap-E: Generating Conditional 3D Implicit Functions](https://arxiv.org/abs/2305.02463) by Heewoo Jun and Alex Nichol from OpenAI.
Original repository of Shap-E can be found here: https://github.com/openai/shap-e.
_The authors of Shap-E didn't author this model card. They provide a separate model card [here](https://github.com/openai/shap-e/blob/main/model-card.md)._
## Introduction
The abstract of the Shap-E paper:
*We present Shap-E, a conditional generative model for 3D assets. Unlike recent work on 3D generative models which produce a single output representation, Shap-E directly generates the parameters of implicit functions that can be rendered as both textured meshes and neural radiance fields. We train Shap-E in two stages: first, we train an encoder that deterministically maps 3D assets into the parameters of an implicit function; second, we train a conditional diffusion model on outputs of the encoder. When trained on a large dataset of paired 3D and text data, our resulting models are capable of generating complex and diverse 3D assets in a matter of seconds. When compared to Point-E, an explicit generative model over point clouds, Shap-E converges faster and reaches comparable or better sample quality despite modeling a higher-dimensional, multi-representation output space. We release model weights, inference code, and samples at [this https URL](https://github.com/openai/shap-e).*
## Released checkpoints
The authors released the following checkpoints:
* [openai/shap-e](https://hf.co/openai/shap-e): produces a 3D image from a text input prompt
* [openai/shap-e-img2img](https://hf.co/openai/shap-e-img2img): samples a 3D image from synthetic 2D image
## Usage examples in 🧨 diffusers
First make sure you have installed all the dependencies:
```bash
pip install transformers accelerate -q
pip install git+https://github.com/huggingface/diffusers@@shap-ee
```
Once the dependencies are installed, use the code below:
```python
import torch
from diffusers import ShapEImg2ImgPipeline
from diffusers.utils import export_to_gif, load_image
ckpt_id = "openai/shap-e-img2img"
pipe = ShapEImg2ImgPipeline.from_pretrained(repo).to("cuda")
img_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"
image = load_image(img_url)
generator = torch.Generator(device="cuda").manual_seed(0)
batch_size = 4
guidance_scale = 3.0
images = pipe(
image,
num_images_per_prompt=batch_size,
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=64,
size=256,
output_type="pil"
).images
gif_path = export_to_gif(images, "corgi_sampled_3d.gif")
```
## Results
<table>
<tbody>
<tr>
<td align="center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" alt="Reference corgi image in 2D">
</td>
<td align="center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi_sampled_3d.gif" alt="Sampled image in 3D (one)">
</td align="center">
<td align="center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi_sampled_3d_two.gif" alt="Sampled image in 3D (two)">
</td>
</tr>
<tr>
<td align="center">Reference corgi image in 2D</td>
<td align="center">Sampled image in 3D (one)</td>
<td align="center">Sampled image in 3D (two)</td>
</tr>
</tr>
</tbody>
<table>
## Training details
Refer to the [original paper](https://arxiv.org/abs/2305.02463).
## Known limitations and potential biases
Refer to the [original model card](https://github.com/openai/shap-e/blob/main/model-card.md).
## Citation
```bibtex
@misc{jun2023shape,
title={Shap-E: Generating Conditional 3D Implicit Functions},
author={Heewoo Jun and Alex Nichol},
year={2023},
eprint={2305.02463},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
|
neseudin/nhabbb
|
neseudin
| 2023-07-20T16:01:57Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-20T16:00:27Z |
---
license: creativeml-openrail-m
---
|
ndtest/distilbert-base-uncased-finetuned-emotion
|
ndtest
| 2023-07-20T15:55:35Z | 108 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-07-20T14:58:21Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.9145
- name: F1
type: f1
value: 0.9142322884703892
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2761
- Accuracy: 0.9145
- F1: 0.9142
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 63 | 0.3414 | 0.901 | 0.8990 |
| No log | 2.0 | 126 | 0.2761 | 0.9145 | 0.9142 |
### Framework versions
- Transformers 4.30.2
- Pytorch 1.13.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|
Wyzard1004/ppo-SnowballTarget
|
Wyzard1004
| 2023-07-20T15:42:55Z | 10 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"SnowballTarget",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-07-20T15:42:47Z |
---
library_name: ml-agents
tags:
- SnowballTarget
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: Wyzard1004/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
tobijen/distilgpt2_right_headings
|
tobijen
| 2023-07-20T15:38:26Z | 67 | 0 |
transformers
|
[
"transformers",
"tf",
"gpt2",
"text-generation",
"generated_from_keras_callback",
"base_model:distilbert/distilgpt2",
"base_model:finetune:distilbert/distilgpt2",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-20T14:12:05Z |
---
license: apache-2.0
base_model: distilgpt2
tags:
- generated_from_keras_callback
model-index:
- name: tobijen/distilgpt2_right_headings
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# tobijen/distilgpt2_right_headings
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.5151
- Validation Loss: 7.3029
- Epoch: 5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.8208 | 6.9815 | 0 |
| 2.7172 | 7.0894 | 1 |
| 2.6835 | 7.1183 | 2 |
| 2.6252 | 7.2063 | 3 |
| 2.5612 | 7.2448 | 4 |
| 2.5151 | 7.3029 | 5 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.13.1
- Tokenizers 0.13.3
|
kinkpunk/whisper-tiny-en-US
|
kinkpunk
| 2023-07-20T15:36:31Z | 81 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:PolyAI/minds14",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-07-20T15:14:27Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-en-US
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train[450:]
args: en-US
metrics:
- name: Wer
type: wer
value: 0.34297520661157027
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-en-US
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6362
- Wer Ortho: 0.3473
- Wer: 0.3430
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 0.0013 | 17.54 | 500 | 0.6362 | 0.3473 | 0.3430 |
### Framework versions
- Transformers 4.31.0
- Pytorch 1.13.0+cu117
- Datasets 2.13.1
- Tokenizers 0.11.6
|
hhuynhlam/riley-v1-0
|
hhuynhlam
| 2023-07-20T15:35:38Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-07-19T19:10:09Z |
## Automatic installation
### New install:
1. If Homebrew is not installed, follow the instructions at https://brew.sh to install it. Keep the terminal window open and follow the instructions under "Next steps" to add Homebrew to your PATH.
1. Open a new terminal window and run `brew install cmake protobuf rust python@3.10 git wget`
1. Clone the web UI repository by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui`
1. Place Stable Diffusion models/checkpoints you want to use into `stable-diffusion-webui/models/Stable-diffusion`.
1. `cd stable-diffusion-webui` and then `./webui.sh` to run the web UI. A Python virtual environment will be created and activated using venv and any remaining missing dependencies will be automatically downloaded and installed.
1. To relaunch the web UI process later, run `./webui.sh` again. Note that it doesn't auto update the web UI; to update, run git pull before running `./webui.sh`.
### Existing Install:
If you have an existing install of web UI that was created with `setup_mac.sh`, delete the run_webui_mac.sh file and repositories folder from your stable-diffusion-webui folder. Then run git pull to update web UI and then ./webui.sh to run it.
|
flozi00/open_llama_7b_v2-german-assistant
|
flozi00
| 2023-07-20T15:32:31Z | 11 | 1 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"de",
"dataset:flozi00/conversations",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-13T18:15:33Z |
---
datasets:
- flozi00/conversations
language:
- en
- de
---
## This project is sponsored by [  ](https://www.primeline-solutions.com/de/server/nach-einsatzzweck/gpu-rendering-hpc/)
## Model Card
This model is an finetuned version for german instructions and conversations in style of Open Assistant tokens. "<|prompter|>" "<|endoftext|>" "<|assistant|>"
The dataset used is deduplicated and cleaned, with no codes inside. The focus is on instruction following and conversational tasks.
The model archictecture is based on OpenLlama with 7B parameters, trained on 100% renewable energy powered hardware.
This work is contributed by private research of [flozi00](https://huggingface.co/flozi00)
|
gFulvio/moralstories-bart-consequences.context-action_gen
|
gFulvio
| 2023-07-20T15:31:09Z | 102 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"dataset:demelin/moral_stories",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-07-20T15:17:37Z |
---
datasets:
- demelin/moral_stories
---
|
tongthongsa/Reinforce-cartpole
|
tongthongsa
| 2023-07-20T15:28:58Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-20T15:28:48Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-cartpole
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
engkufizz/falcon-7b-qlora-datacom
|
engkufizz
| 2023-07-20T15:12:59Z | 3 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-20T15:12:55Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.4.0
|
diffusers/lora-trained-xl-starbucks
|
diffusers
| 2023-07-20T15:08:48Z | 4 | 0 |
diffusers
|
[
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:diffusers/stable-diffusion-xl-base-0.9",
"base_model:adapter:diffusers/stable-diffusion-xl-base-0.9",
"license:other",
"region:us"
] |
text-to-image
| 2023-06-29T10:02:44Z |
---
license: other
base_model: diffusers/stable-diffusion-xl-base-0.9
instance_prompt: a photo of sks logo
tags:
- 'stable-diffusion-xl'
- 'stable-diffusion-xl-diffusers'
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - sayakpaul/lora-trained-xl-starbucks
These are LoRA adaption weights for diffusers/stable-diffusion-xl-base-0.9. The weights were trained on a photo of sks logo using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.




LoRA for the text encoder was enabled: False.
## License
[SDXL 0.9 Research License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9/blob/main/LICENSE.md)
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.