modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 18:29:29
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 18:25:24
card
stringlengths
11
1.01M
ravirajoshi/wav2vec2-large-xls-r-300m-hindi
ravirajoshi
2022-03-24T11:56:00Z
22
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "hi", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hi license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard model-index: - name: wav2vec2-large-xls-r-300m-hindi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7049 - Wer: 0.3200
masapasa/xls-r-300m-sv-cv8
masapasa
2022-03-24T11:55:57Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "robust-speech-event", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - sv-SE license: apache-2.0 tags: - robust-speech-event - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: sv-SE metrics: - name: Test WER type: wer value: 102.43 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 2.3347 - Wer: 1.0286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 10.7838 | 0.01 | 5 | 14.5035 | 1.0 | | 13.0582 | 0.03 | 10 | 13.6658 | 1.0 | | 7.3034 | 0.04 | 15 | 9.7898 | 1.0 | | 6.1847 | 0.05 | 20 | 6.9148 | 1.0 | | 5.3371 | 0.07 | 25 | 5.3661 | 1.0 | | 4.4274 | 0.08 | 30 | 4.6945 | 1.0 | | 4.0918 | 0.1 | 35 | 4.3172 | 1.0 | | 4.1734 | 0.11 | 40 | 4.0759 | 1.0 | | 3.7332 | 0.12 | 45 | 3.9039 | 1.0 | | 3.6871 | 0.14 | 50 | 3.7777 | 1.0 | | 3.4428 | 0.15 | 55 | 3.6718 | 1.0 | | 3.5514 | 0.16 | 60 | 3.5947 | 1.0 | | 3.4307 | 0.18 | 65 | 3.5144 | 1.0 | | 3.4102 | 0.19 | 70 | 3.4432 | 1.0 | | 3.4964 | 0.21 | 75 | 3.3890 | 1.0 | | 3.3936 | 0.22 | 80 | 3.3467 | 1.0 | | 3.3051 | 0.23 | 85 | 3.3102 | 1.0 | | 3.278 | 0.25 | 90 | 3.2801 | 1.0 | | 3.2223 | 0.26 | 95 | 3.2440 | 1.0 | | 3.1888 | 0.27 | 100 | 3.2900 | 1.0 | | 3.218 | 0.29 | 105 | 3.2627 | 1.0 | | 3.1308 | 0.3 | 110 | 3.2152 | 1.0 | | 3.109 | 0.31 | 115 | 3.1686 | 1.0 | | 3.1188 | 0.33 | 120 | 3.1734 | 1.0 | | 3.1132 | 0.34 | 125 | 3.1431 | 1.0 | | 3.0667 | 0.36 | 130 | 3.1686 | 1.0 | | 3.1167 | 0.37 | 135 | 3.1885 | 1.0 | | 3.0592 | 0.38 | 140 | 3.1100 | 1.0 | | 3.0531 | 0.4 | 145 | 3.1149 | 1.0 | | 3.1224 | 0.41 | 150 | 3.1205 | 1.0 | | 3.0651 | 0.42 | 155 | 3.1101 | 1.0 | | 3.0077 | 0.44 | 160 | 3.0980 | 1.0 | | 3.0027 | 0.45 | 165 | 3.1132 | 1.0 | | 3.0423 | 0.47 | 170 | 3.0886 | 1.0 | | 3.0462 | 0.48 | 175 | 3.0865 | 1.0 | | 3.0701 | 0.49 | 180 | 3.0863 | 1.0 | | 3.0871 | 0.51 | 185 | 3.0825 | 1.0 | | 3.0585 | 0.52 | 190 | 3.0720 | 1.0 | | 3.0274 | 0.53 | 195 | 3.0736 | 1.0 | | 3.0983 | 0.55 | 200 | 3.0658 | 1.0 | | 3.0538 | 0.56 | 205 | 3.1241 | 1.0 | | 3.0862 | 0.57 | 210 | 3.0573 | 1.0 | | 3.0041 | 0.59 | 215 | 3.0608 | 1.0 | | 3.027 | 0.6 | 220 | 3.0614 | 1.0 | | 2.9916 | 0.62 | 225 | 3.0527 | 1.0 | | 3.0157 | 0.63 | 230 | 3.0514 | 1.0 | | 3.0429 | 0.64 | 235 | 3.0391 | 1.0 | | 2.999 | 0.66 | 240 | 3.0462 | 1.0 | | 3.0053 | 0.67 | 245 | 3.0438 | 1.0 | | 2.9812 | 0.68 | 250 | 3.0447 | 1.0 | | 3.0062 | 0.7 | 255 | 3.0660 | 1.0 | | 3.0045 | 0.71 | 260 | 3.0103 | 1.0 | | 2.9684 | 0.73 | 265 | 3.0106 | 1.0 | | 2.9885 | 0.74 | 270 | 3.0014 | 1.0 | | 3.0062 | 0.75 | 275 | 2.9885 | 1.0 | | 2.9736 | 0.77 | 280 | 3.0330 | 1.0 | | 2.9766 | 0.78 | 285 | 2.9910 | 1.0 | | 2.9545 | 0.79 | 290 | 2.9972 | 1.0 | | 2.9936 | 0.81 | 295 | 2.9872 | 1.0 | | 3.0832 | 0.82 | 300 | 2.9978 | 1.0 | | 2.974 | 0.83 | 305 | 2.9978 | 1.0 | | 2.9846 | 0.85 | 310 | 2.9849 | 1.0 | | 2.9554 | 0.86 | 315 | 2.9810 | 1.0 | | 2.9524 | 0.88 | 320 | 2.9731 | 1.0 | | 2.9426 | 0.89 | 325 | 2.9824 | 1.0 | | 2.9416 | 0.9 | 330 | 2.9731 | 1.0 | | 2.9705 | 0.92 | 335 | 2.9830 | 1.0 | | 2.9502 | 0.93 | 340 | 2.9713 | 1.0 | | 2.9393 | 0.94 | 345 | 2.9790 | 1.0 | | 2.9336 | 0.96 | 350 | 2.9684 | 1.0 | | 2.9542 | 0.97 | 355 | 2.9689 | 1.0 | | 2.9408 | 0.98 | 360 | 2.9556 | 1.0 | | 2.9544 | 1.0 | 365 | 2.9563 | 1.0 | | 2.9187 | 1.01 | 370 | 2.9624 | 1.0 | | 2.9935 | 1.03 | 375 | 2.9500 | 1.0 | | 2.9803 | 1.04 | 380 | 2.9558 | 1.0 | | 2.9867 | 1.05 | 385 | 2.9473 | 1.0 | | 2.8925 | 1.07 | 390 | 2.9444 | 1.0 | | 2.9633 | 1.08 | 395 | 2.9490 | 1.0 | | 2.9191 | 1.1 | 400 | 2.9362 | 1.0 | | 2.9081 | 1.11 | 405 | 2.9394 | 1.0 | | 2.9381 | 1.12 | 410 | 2.9846 | 1.0 | | 2.9271 | 1.14 | 415 | 2.9638 | 1.0 | | 2.959 | 1.15 | 420 | 2.9835 | 1.0 | | 2.9486 | 1.16 | 425 | 2.9361 | 1.0 | | 2.9246 | 1.18 | 430 | 2.9615 | 1.0 | | 2.923 | 1.19 | 435 | 2.9313 | 1.0 | | 2.8908 | 1.21 | 440 | 2.9362 | 1.0 | | 2.8976 | 1.22 | 445 | 2.9224 | 1.0 | | 2.9278 | 1.23 | 450 | 2.9276 | 1.0 | | 2.8429 | 1.25 | 455 | 2.9299 | 1.0 | | 2.867 | 1.26 | 460 | 2.9258 | 1.0 | | 2.9734 | 1.27 | 465 | 2.9281 | 1.0000 | | 2.934 | 1.29 | 470 | 2.9229 | 1.0 | | 2.9521 | 1.3 | 475 | 2.9134 | 1.0 | | 2.9098 | 1.31 | 480 | 2.9051 | 0.9993 | | 2.9112 | 1.33 | 485 | 2.9028 | 0.9999 | | 2.8799 | 1.34 | 490 | 2.9101 | 0.9986 | | 2.857 | 1.36 | 495 | 2.9005 | 0.9992 | | 2.8525 | 1.37 | 500 | 2.8937 | 1.0 | | 2.8682 | 1.38 | 505 | 2.8904 | 1.0000 | | 2.8899 | 1.4 | 510 | 2.8914 | 0.9964 | | 2.7475 | 1.41 | 515 | 2.8842 | 0.9950 | | 2.9263 | 1.42 | 520 | 2.8852 | 0.9972 | | 2.8603 | 1.44 | 525 | 2.8762 | 0.9966 | | 2.864 | 1.45 | 530 | 2.8680 | 0.9978 | | 2.8632 | 1.47 | 535 | 2.8602 | 0.9964 | | 2.9289 | 1.48 | 540 | 2.8584 | 0.9952 | | 2.8689 | 1.49 | 545 | 2.8587 | 0.9956 | | 2.8304 | 1.51 | 550 | 2.8511 | 0.9993 | | 2.8024 | 1.52 | 555 | 2.8460 | 1.0 | | 2.7649 | 1.53 | 560 | 2.8460 | 1.0000 | | 2.8756 | 1.55 | 565 | 2.8348 | 0.9987 | | 2.8808 | 1.56 | 570 | 2.8539 | 0.9993 | | 2.9027 | 1.57 | 575 | 2.8282 | 0.9975 | | 2.8586 | 1.59 | 580 | 2.8288 | 0.9976 | | 2.8193 | 1.6 | 585 | 2.8101 | 1.0051 | | 2.811 | 1.62 | 590 | 2.7965 | 1.0014 | | 2.7332 | 1.63 | 595 | 2.7884 | 1.0026 | | 2.7717 | 1.64 | 600 | 2.7883 | 1.0060 | | 2.6901 | 1.66 | 605 | 2.7801 | 0.9974 | | 2.6905 | 1.67 | 610 | 2.8113 | 0.9968 | | 2.7442 | 1.68 | 615 | 2.8113 | 1.0007 | | 2.8431 | 1.7 | 620 | 2.8152 | 1.0343 | | 2.8028 | 1.71 | 625 | 2.7790 | 1.0250 | | 2.7151 | 1.73 | 630 | 2.7653 | 1.0287 | | 2.7405 | 1.74 | 635 | 2.7714 | 1.1303 | | 2.7566 | 1.75 | 640 | 2.7488 | 1.0312 | | 2.7337 | 1.77 | 645 | 2.7498 | 1.0176 | | 2.7486 | 1.78 | 650 | 2.7496 | 1.0760 | | 2.6918 | 1.79 | 655 | 2.7391 | 1.0353 | | 2.7142 | 1.81 | 660 | 2.7500 | 1.0283 | | 2.7057 | 1.82 | 665 | 2.7612 | 1.0127 | | 2.8348 | 1.83 | 670 | 2.7441 | 1.0056 | | 2.705 | 1.85 | 675 | 2.7473 | 1.0519 | | 2.7547 | 1.86 | 680 | 2.7216 | 1.0218 | | 2.7045 | 1.88 | 685 | 2.7261 | 1.1414 | | 2.7121 | 1.89 | 690 | 2.7223 | 1.0287 | | 2.6877 | 1.9 | 695 | 2.7283 | 1.0274 | | 2.6879 | 1.92 | 700 | 2.7451 | 1.1322 | | 2.6958 | 1.93 | 705 | 2.7166 | 1.0364 | | 2.6692 | 1.94 | 710 | 2.7148 | 1.0074 | | 2.5786 | 1.96 | 715 | 2.7101 | 1.0504 | | 2.6919 | 1.97 | 720 | 2.6963 | 1.0454 | | 2.7256 | 1.98 | 725 | 2.7201 | 1.0349 | | 2.6507 | 2.0 | 730 | 2.7099 | 1.1339 | | 2.7833 | 2.01 | 735 | 2.7111 | 1.0124 | | 2.7521 | 2.03 | 740 | 2.7024 | 1.0275 | | 2.6732 | 2.04 | 745 | 2.7058 | 1.0647 | | 2.719 | 2.05 | 750 | 2.7200 | 1.0211 | | 2.701 | 2.07 | 755 | 2.7024 | 1.0808 | | 2.6444 | 2.08 | 760 | 2.6813 | 1.0582 | | 2.5592 | 2.1 | 765 | 2.6783 | 1.1010 | | 2.6444 | 2.11 | 770 | 2.6707 | 1.0946 | | 2.6944 | 2.12 | 775 | 2.7012 | 1.1315 | | 2.6733 | 2.14 | 780 | 2.7072 | 1.1144 | | 2.6998 | 2.15 | 785 | 2.7132 | 1.0206 | | 2.796 | 2.16 | 790 | 2.7076 | 1.1262 | | 2.6881 | 2.18 | 795 | 2.6953 | 1.0841 | | 2.7382 | 2.19 | 800 | 2.6605 | 1.1234 | | 2.5814 | 2.21 | 805 | 2.6814 | 1.1865 | | 2.6695 | 2.22 | 810 | 2.6531 | 1.0985 | | 2.6415 | 2.23 | 815 | 2.6590 | 1.0804 | | 2.646 | 2.25 | 820 | 2.6514 | 1.0853 | | 2.6028 | 2.26 | 825 | 2.6723 | 1.1411 | | 2.6429 | 2.27 | 830 | 2.6729 | 1.0395 | | 2.6736 | 2.29 | 835 | 2.7039 | 1.0355 | | 2.6959 | 2.3 | 840 | 2.6510 | 1.0414 | | 2.6426 | 2.31 | 845 | 2.6660 | 1.1591 | | 2.7152 | 2.33 | 850 | 2.6361 | 1.0276 | | 2.7148 | 2.34 | 855 | 2.6723 | 1.2461 | | 2.6336 | 2.36 | 860 | 2.6332 | 1.0310 | | 2.665 | 2.37 | 865 | 2.6365 | 1.1312 | | 2.5607 | 2.38 | 870 | 2.6344 | 1.1301 | | 2.5614 | 2.4 | 875 | 2.6437 | 1.1513 | | 2.4899 | 2.41 | 880 | 2.6418 | 1.1532 | | 2.6794 | 2.42 | 885 | 2.6403 | 1.0272 | | 2.6814 | 2.44 | 890 | 2.6420 | 1.1323 | | 2.6614 | 2.45 | 895 | 2.6183 | 1.0525 | | 2.6629 | 2.47 | 900 | 2.6414 | 1.1569 | | 2.6166 | 2.48 | 905 | 2.6167 | 1.0265 | | 2.6374 | 2.49 | 910 | 2.6299 | 1.1720 | | 2.6035 | 2.51 | 915 | 2.6139 | 1.1565 | | 2.595 | 2.52 | 920 | 2.6126 | 1.0557 | | 2.6416 | 2.53 | 925 | 2.6190 | 1.0414 | | 2.6785 | 2.55 | 930 | 2.6352 | 1.0289 | | 2.6986 | 2.56 | 935 | 2.6268 | 1.0077 | | 2.6145 | 2.57 | 940 | 2.6166 | 1.0445 | | 2.6961 | 2.59 | 945 | 2.6142 | 1.0185 | | 2.6852 | 2.6 | 950 | 2.6072 | 1.0122 | | 2.5792 | 2.62 | 955 | 2.6078 | 1.1165 | | 2.6118 | 2.63 | 960 | 2.6177 | 1.1210 | | 2.5472 | 2.64 | 965 | 2.6126 | 1.0044 | | 2.577 | 2.66 | 970 | 2.6051 | 1.0881 | | 2.5602 | 2.67 | 975 | 2.5992 | 1.0178 | | 2.695 | 2.68 | 980 | 2.6023 | 1.0248 | | 2.7017 | 2.7 | 985 | 2.6190 | 1.0041 | | 2.6327 | 2.71 | 990 | 2.6024 | 1.0142 | | 2.6193 | 2.73 | 995 | 2.5897 | 1.0148 | | 2.5939 | 2.74 | 1000 | 2.5900 | 1.0329 | | 2.5477 | 2.75 | 1005 | 2.5971 | 1.0338 | | 2.6089 | 2.77 | 1010 | 2.5969 | 1.0064 | | 2.5625 | 2.78 | 1015 | 2.5899 | 1.0648 | | 2.5745 | 2.79 | 1020 | 2.5861 | 1.0627 | | 2.5702 | 2.81 | 1025 | 2.5923 | 1.0526 | | 2.645 | 2.82 | 1030 | 2.6053 | 1.0199 | | 2.6869 | 2.83 | 1035 | 2.6227 | 1.0011 | | 2.6678 | 2.85 | 1040 | 2.6094 | 1.0179 | | 2.6787 | 2.86 | 1045 | 2.5978 | 1.0028 | | 2.6246 | 2.88 | 1050 | 2.5965 | 1.0093 | | 2.5676 | 2.89 | 1055 | 2.5927 | 1.0627 | | 2.6773 | 2.9 | 1060 | 2.5907 | 1.0817 | | 2.6114 | 2.92 | 1065 | 2.5932 | 1.1013 | | 2.6227 | 2.93 | 1070 | 2.5840 | 1.0402 | | 2.594 | 2.94 | 1075 | 2.5997 | 1.1371 | | 2.751 | 2.96 | 1080 | 2.5909 | 1.0972 | | 2.6366 | 2.97 | 1085 | 2.6081 | 1.0598 | | 2.577 | 2.98 | 1090 | 2.5915 | 1.0410 | | 2.579 | 3.0 | 1095 | 2.5953 | 1.1433 | | 2.6706 | 3.01 | 1100 | 2.5913 | 1.0456 | | 2.6161 | 3.03 | 1105 | 2.6079 | 1.1009 | | 2.6397 | 3.04 | 1110 | 2.5951 | 1.1771 | | 2.6246 | 3.05 | 1115 | 2.5730 | 1.0299 | | 2.5637 | 3.07 | 1120 | 2.5622 | 1.0848 | | 2.5692 | 3.08 | 1125 | 2.5561 | 1.1472 | | 2.5948 | 3.1 | 1130 | 2.5568 | 1.0802 | | 2.5372 | 3.11 | 1135 | 2.5638 | 1.1261 | | 2.4995 | 3.12 | 1140 | 2.5727 | 1.1395 | | 2.6304 | 3.14 | 1145 | 2.5671 | 1.0259 | | 2.6395 | 3.15 | 1150 | 2.5778 | 1.0212 | | 2.6127 | 3.16 | 1155 | 2.5609 | 1.0457 | | 2.5919 | 3.18 | 1160 | 2.5604 | 1.0902 | | 2.6111 | 3.19 | 1165 | 2.5463 | 1.0014 | | 2.5971 | 3.21 | 1170 | 2.5429 | 1.0022 | | 2.5887 | 3.22 | 1175 | 2.5394 | 1.0412 | | 2.5644 | 3.23 | 1180 | 2.5342 | 1.0469 | | 2.4805 | 3.25 | 1185 | 2.6066 | 1.2668 | | 2.5324 | 3.26 | 1190 | 2.5395 | 1.0234 | | 2.5491 | 3.27 | 1195 | 2.5431 | 1.0644 | | 2.6302 | 3.29 | 1200 | 2.5558 | 1.0680 | | 2.6139 | 3.3 | 1205 | 2.5711 | 1.0565 | | 2.5607 | 3.31 | 1210 | 2.5635 | 1.0415 | | 2.6535 | 3.33 | 1215 | 2.5505 | 1.0613 | | 2.6129 | 3.34 | 1220 | 2.5403 | 1.0724 | | 2.5157 | 3.36 | 1225 | 2.5294 | 1.0585 | | 2.551 | 3.37 | 1230 | 2.5242 | 1.1599 | | 2.5527 | 3.38 | 1235 | 2.5474 | 1.2327 | | 2.4964 | 3.4 | 1240 | 2.5244 | 1.0857 | | 2.5781 | 3.41 | 1245 | 2.5299 | 1.0470 | | 2.6143 | 3.42 | 1250 | 2.5313 | 1.0019 | | 2.6566 | 3.44 | 1255 | 2.5431 | 1.0488 | | 2.5373 | 3.45 | 1260 | 2.5281 | 1.0901 | | 2.6597 | 3.47 | 1265 | 2.5300 | 1.0610 | | 2.5457 | 3.48 | 1270 | 2.5130 | 1.0420 | | 2.5632 | 3.49 | 1275 | 2.5306 | 1.1418 | | 2.5267 | 3.51 | 1280 | 2.5021 | 1.0293 | | 2.507 | 3.52 | 1285 | 2.5013 | 1.0196 | | 2.5713 | 3.53 | 1290 | 2.4978 | 1.0664 | | 2.4783 | 3.55 | 1295 | 2.4958 | 1.0530 | | 2.5874 | 3.56 | 1300 | 2.4968 | 1.0059 | | 2.5744 | 3.57 | 1305 | 2.5078 | 1.0287 | | 2.5701 | 3.59 | 1310 | 2.4971 | 1.0366 | | 2.5366 | 3.6 | 1315 | 2.4897 | 1.0191 | | 2.5679 | 3.62 | 1320 | 2.4830 | 1.0223 | | 2.5239 | 3.63 | 1325 | 2.4833 | 1.0784 | | 2.5411 | 3.64 | 1330 | 2.4851 | 1.1522 | | 2.5037 | 3.66 | 1335 | 2.4792 | 1.0928 | | 2.5907 | 3.67 | 1340 | 2.4750 | 1.0187 | | 2.5107 | 3.68 | 1345 | 2.4805 | 1.0873 | | 2.5908 | 3.7 | 1350 | 2.4753 | 1.0098 | | 2.6274 | 3.71 | 1355 | 2.4765 | 1.0045 | | 2.5708 | 3.73 | 1360 | 2.4597 | 1.0456 | | 2.6039 | 3.74 | 1365 | 2.4503 | 1.0485 | | 2.5305 | 3.75 | 1370 | 2.4439 | 1.0126 | | 2.4878 | 3.77 | 1375 | 2.4407 | 1.0162 | | 2.5055 | 3.78 | 1380 | 2.4421 | 1.0605 | | 2.5249 | 3.79 | 1385 | 2.4499 | 1.1163 | | 2.5508 | 3.81 | 1390 | 2.4654 | 1.1472 | | 2.5827 | 3.82 | 1395 | 2.4510 | 1.0561 | | 2.6148 | 3.83 | 1400 | 2.4496 | 0.9998 | | 2.5763 | 3.85 | 1405 | 2.4417 | 1.0067 | | 2.6077 | 3.86 | 1410 | 2.4458 | 1.0682 | | 2.5388 | 3.88 | 1415 | 2.4352 | 1.0820 | | 2.5235 | 3.89 | 1420 | 2.4277 | 1.0784 | | 2.4996 | 3.9 | 1425 | 2.4245 | 1.0671 | | 2.5601 | 3.92 | 1430 | 2.4202 | 1.0650 | | 2.5805 | 3.93 | 1435 | 2.4199 | 1.0530 | | 2.5841 | 3.94 | 1440 | 2.4228 | 1.0797 | | 2.4877 | 3.96 | 1445 | 2.4284 | 1.1159 | | 2.5542 | 3.97 | 1450 | 2.4190 | 1.0575 | | 2.5961 | 3.98 | 1455 | 2.4162 | 1.0676 | | 2.495 | 4.0 | 1460 | 2.4165 | 1.0821 | | 2.6157 | 4.01 | 1465 | 2.4119 | 1.0117 | | 2.5415 | 4.03 | 1470 | 2.4089 | 1.0110 | | 2.4916 | 4.04 | 1475 | 2.4032 | 1.0498 | | 2.5445 | 4.05 | 1480 | 2.3997 | 1.0429 | | 2.4941 | 4.07 | 1485 | 2.4008 | 1.0141 | | 2.5113 | 4.08 | 1490 | 2.3975 | 1.0357 | | 2.4707 | 4.1 | 1495 | 2.3938 | 1.0288 | | 2.4952 | 4.11 | 1500 | 2.3910 | 1.0300 | | 2.5017 | 4.12 | 1505 | 2.3861 | 1.0813 | | 2.5566 | 4.14 | 1510 | 2.3919 | 1.1082 | | 2.5754 | 4.15 | 1515 | 2.3947 | 1.0074 | | 2.6138 | 4.16 | 1520 | 2.4040 | 0.9989 | | 2.5024 | 4.18 | 1525 | 2.3949 | 1.0039 | | 2.5136 | 4.19 | 1530 | 2.3993 | 1.0496 | | 2.5646 | 4.21 | 1535 | 2.3981 | 1.0729 | | 2.4556 | 4.22 | 1540 | 2.3952 | 1.0494 | | 2.5774 | 4.23 | 1545 | 2.3924 | 1.0345 | | 2.5126 | 4.25 | 1550 | 2.3888 | 1.0306 | | 2.4596 | 4.26 | 1555 | 2.3960 | 1.0775 | | 2.521 | 4.27 | 1560 | 2.3978 | 1.1025 | | 2.6304 | 4.29 | 1565 | 2.3885 | 1.0433 | | 2.543 | 4.3 | 1570 | 2.3849 | 1.0072 | | 2.5601 | 4.31 | 1575 | 2.3855 | 1.0110 | | 2.6304 | 4.33 | 1580 | 2.3878 | 1.0369 | | 2.4121 | 4.34 | 1585 | 2.3783 | 1.0366 | | 2.4261 | 4.36 | 1590 | 2.3746 | 1.0307 | | 2.5038 | 4.37 | 1595 | 2.3789 | 1.0611 | | 2.5391 | 4.38 | 1600 | 2.3849 | 1.0738 | | 2.4341 | 4.4 | 1605 | 2.3779 | 1.0573 | | 2.5306 | 4.41 | 1610 | 2.3751 | 1.0460 | | 2.5818 | 4.42 | 1615 | 2.3743 | 1.0251 | | 2.5531 | 4.44 | 1620 | 2.3723 | 1.0209 | | 2.51 | 4.45 | 1625 | 2.3755 | 1.0316 | | 2.5788 | 4.47 | 1630 | 2.3725 | 1.0396 | | 2.5701 | 4.48 | 1635 | 2.3663 | 1.0292 | | 2.4194 | 4.49 | 1640 | 2.3641 | 1.0261 | | 2.5439 | 4.51 | 1645 | 2.3629 | 1.0376 | | 2.4527 | 4.52 | 1650 | 2.3629 | 1.0563 | | 2.5705 | 4.53 | 1655 | 2.3654 | 1.0766 | | 2.4552 | 4.55 | 1660 | 2.3708 | 1.0802 | | 2.5657 | 4.56 | 1665 | 2.3638 | 1.0248 | | 2.5371 | 4.57 | 1670 | 2.3639 | 1.0053 | | 2.5365 | 4.59 | 1675 | 2.3626 | 1.0072 | | 2.5383 | 4.6 | 1680 | 2.3584 | 1.0170 | | 2.546 | 4.62 | 1685 | 2.3574 | 1.0469 | | 2.6006 | 4.63 | 1690 | 2.3517 | 1.0509 | | 2.4894 | 4.64 | 1695 | 2.3489 | 1.0452 | | 2.4732 | 4.66 | 1700 | 2.3489 | 1.0586 | | 2.4933 | 4.67 | 1705 | 2.3501 | 1.0694 | | 2.4784 | 4.68 | 1710 | 2.3472 | 1.0647 | | 2.5349 | 4.7 | 1715 | 2.3419 | 1.0299 | | 2.553 | 4.71 | 1720 | 2.3420 | 1.0115 | | 2.5035 | 4.73 | 1725 | 2.3415 | 1.0117 | | 2.561 | 4.74 | 1730 | 2.3418 | 1.0242 | | 2.4773 | 4.75 | 1735 | 2.3420 | 1.0325 | | 2.4691 | 4.77 | 1740 | 2.3422 | 1.0394 | | 2.4959 | 4.78 | 1745 | 2.3405 | 1.0418 | | 2.4928 | 4.79 | 1750 | 2.3394 | 1.0449 | | 2.5058 | 4.81 | 1755 | 2.3392 | 1.0489 | | 2.5193 | 4.82 | 1760 | 2.3390 | 1.0506 | | 2.5369 | 4.83 | 1765 | 2.3392 | 1.0384 | | 2.4843 | 4.85 | 1770 | 2.3398 | 1.0236 | | 2.5074 | 4.86 | 1775 | 2.3400 | 1.0150 | | 2.4941 | 4.88 | 1780 | 2.3386 | 1.0150 | | 2.4352 | 4.89 | 1785 | 2.3370 | 1.0172 | | 2.4372 | 4.9 | 1790 | 2.3362 | 1.0208 | | 2.4855 | 4.92 | 1795 | 2.3358 | 1.0238 | | 2.4516 | 4.93 | 1800 | 2.3355 | 1.0276 | | 2.5281 | 4.94 | 1805 | 2.3356 | 1.0312 | | 2.5519 | 4.96 | 1810 | 2.3352 | 1.0318 | | 2.4641 | 4.97 | 1815 | 2.3349 | 1.0294 | | 2.4515 | 4.98 | 1820 | 2.3348 | 1.0284 | | 2.553 | 5.0 | 1825 | 2.3347 | 1.0286 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
kapilkd13/xls-r-hi-test
kapilkd13
2022-03-24T11:55:50Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "generated_from_trainer", "hf-asr-leaderboard", "hi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - robust-speech-event - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 38.18 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.7346 - Wer: 1.0479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.36 | 400 | 1.4595 | 1.0039 | | 4.7778 | 2.71 | 800 | 0.8082 | 1.0115 | | 0.6408 | 4.07 | 1200 | 0.7032 | 1.0079 | | 0.3937 | 5.42 | 1600 | 0.6889 | 1.0433 | | 0.3 | 6.78 | 2000 | 0.6820 | 1.0069 | | 0.3 | 8.14 | 2400 | 0.6670 | 1.0196 | | 0.226 | 9.49 | 2800 | 0.7216 | 1.0422 | | 0.197 | 10.85 | 3200 | 0.7669 | 1.0534 | | 0.165 | 12.2 | 3600 | 0.7517 | 1.0200 | | 0.1486 | 13.56 | 4000 | 0.7125 | 1.0357 | | 0.1486 | 14.92 | 4400 | 0.7447 | 1.0347 | | 0.122 | 16.27 | 4800 | 0.6899 | 1.0440 | | 0.1069 | 17.63 | 5200 | 0.7212 | 1.0350 | | 0.0961 | 18.98 | 5600 | 0.7417 | 1.0408 | | 0.086 | 20.34 | 6000 | 0.7402 | 1.0356 | | 0.086 | 21.69 | 6400 | 0.7761 | 1.0420 | | 0.0756 | 23.05 | 6800 | 0.7346 | 1.0369 | | 0.0666 | 24.41 | 7200 | 0.7506 | 1.0449 | | 0.0595 | 25.76 | 7600 | 0.7319 | 1.0476 | | 0.054 | 27.12 | 8000 | 0.7346 | 1.0479 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
jcmc/wav2vec-cv7-1b-ir
jcmc
2022-03-24T11:55:47Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ga-IE", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ga-IE license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - ga-IE - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec-cv7-1b-ir results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ga-IE metrics: - name: Test WER type: wer value: 39.1 - name: Test CER type: cer value: 16.4 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - GA-IE dataset. It achieves the following results on the evaluation set: - Loss: 0.9562 - Wer: 0.4801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.3731 | 15.62 | 500 | 1.5517 | 0.9499 | | 1.3312 | 31.25 | 1000 | 0.8717 | 0.6189 | | 0.9135 | 46.86 | 1500 | 0.8299 | 0.5310 | | 0.6719 | 62.49 | 2000 | 0.8842 | 0.5044 | | 0.5583 | 78.12 | 2500 | 0.9093 | 0.4801 | | 0.4728 | 93.74 | 3000 | 0.9488 | 0.4813 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
jcmc/wav2vec-1b-cv8-ir
jcmc
2022-03-24T11:55:44Z
6
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "ga-IE", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ga-IE license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - ga-IE - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec-1b-cv8-ir results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ga-IE metrics: - name: Test WER type: wer value: 43.7 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - GA-IE dataset. It achieves the following results on the evaluation set: - Loss: 0.8445 - Wer: 0.5585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.7135 | 31.24 | 500 | 0.9609 | 0.6926 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-chuvash
infinitejoy
2022-03-24T11:55:42Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "cv", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - cv license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - cv - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Chuvash results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: cv metrics: - name: Test WER type: wer value: 60.31 - name: Test CER type: cer value: 15.08 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-chuvash This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - CV dataset. It achieves the following results on the evaluation set: - Loss: 0.7651 - Wer: 0.6166 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.8032 | 8.77 | 500 | 0.8059 | 0.8352 | | 1.2608 | 17.54 | 1000 | 0.5828 | 0.6769 | | 1.1337 | 26.32 | 1500 | 0.6892 | 0.6908 | | 1.0457 | 35.09 | 2000 | 0.7077 | 0.6781 | | 0.97 | 43.86 | 2500 | 0.5993 | 0.6228 | | 0.8767 | 52.63 | 3000 | 0.7213 | 0.6604 | | 0.8223 | 61.4 | 3500 | 0.8161 | 0.6968 | | 0.7441 | 70.18 | 4000 | 0.7057 | 0.6184 | | 0.7011 | 78.95 | 4500 | 0.7027 | 0.6024 | | 0.6542 | 87.72 | 5000 | 0.7092 | 0.5979 | | 0.6081 | 96.49 | 5500 | 0.7917 | 0.6324 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
emre/wav2vec2-xls-r-300m-bas-CV8-v2
emre
2022-03-24T11:55:34Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "bas", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: bas tags: - automatic-speech-recognition - common_voice - generated_from_trainer - bas - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-300m-bas-CV8-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: bas metrics: - name: Test WER type: wer value: 56.97 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-bas-CV8-v2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.6121 - Wer: 0.5697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 90 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.5211 | 16.13 | 500 | 1.2661 | 0.9153 | | 0.7026 | 32.25 | 1000 | 0.6245 | 0.6516 | | 0.3752 | 48.38 | 1500 | 0.6039 | 0.6148 | | 0.2752 | 64.51 | 2000 | 0.6080 | 0.5808 | | 0.2155 | 80.63 | 2500 | 0.6121 | 0.5697 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
emre/wav2vec2-xls-r-300m-Br-small
emre
2022-03-24T11:55:29Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "br", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: br tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-Br-small results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice br type: common_voice args: br metrics: - name: Test WER type: wer value: 66.75 --- # wav2vec2-xls-r-300m-Br-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.0573 - Wer: 0.6675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.7464 | 2.79 | 400 | 1.7474 | 1.1018 | | 1.1117 | 5.59 | 800 | 0.9434 | 0.8697 | | 0.6481 | 8.39 | 1200 | 0.9251 | 0.7910 | | 0.4754 | 11.19 | 1600 | 0.9208 | 0.7412 | | 0.3602 | 13.98 | 2000 | 0.9284 | 0.7232 | | 0.2873 | 16.78 | 2400 | 0.9299 | 0.6940 | | 0.2386 | 19.58 | 2800 | 1.0182 | 0.6927 | | 0.1971 | 22.38 | 3200 | 1.0456 | 0.6898 | | 0.1749 | 25.17 | 3600 | 1.0208 | 0.6769 | | 0.1487 | 27.97 | 4000 | 1.0573 | 0.6675 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
chmanoj/xls-r-2B-te
chmanoj
2022-03-24T11:55:22Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "openslr_SLR66", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "te", "dataset:openslr", "dataset:SLR66", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - te license: apache-2.0 tags: - automatic-speech-recognition - openslr_SLR66 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - openslr - SLR66 metrics: - wer model-index: - name: xls-r-1B-te results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: openslr name: Open SLR args: SLR66 metrics: - type: wer value: 0.51 name: Test WER - type: cer value: 0.097 name: Test CER --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-2b](https://huggingface.co/facebook/wav2vec2-xls-r-2b) on the OPENSLR_SLR66 - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.4253 - Wer: 0.5109 ### Evaluation metrics | Metric | Split | Decode with LM | Value | |:------:|:------:|:--------------:|:---------:| | WER | Train | No | | | CER | Train | No | | | WER | Test | No | | | CER | Test | No | | | WER | Train | Yes | | | CER | Train | Yes | | | WER | Test | Yes | | | CER | Test | Yes | | ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 12 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - learning_rate: 3e-6 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 150.0 - hidden_dropout: 0.15 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
anuragshas/wav2vec2-large-xls-r-300m-mr
anuragshas
2022-03-24T11:55:19Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "mr", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mr license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-mr results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: mr metrics: - type: wer value: 32.811 name: Test WER - name: Test CER type: cer value: 7.692 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-mr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5479 - Wer: 0.5740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.7378 | 18.18 | 400 | 3.5047 | 1.0 | | 3.1707 | 36.36 | 800 | 2.6166 | 0.9912 | | 1.4942 | 54.55 | 1200 | 0.5778 | 0.6927 | | 1.2058 | 72.73 | 1600 | 0.5168 | 0.6362 | | 1.0558 | 90.91 | 2000 | 0.5105 | 0.6069 | | 0.9488 | 109.09 | 2400 | 0.5151 | 0.6089 | | 0.8588 | 127.27 | 2800 | 0.5157 | 0.5989 | | 0.7991 | 145.45 | 3200 | 0.5179 | 0.5740 | | 0.7545 | 163.64 | 3600 | 0.5348 | 0.5740 | | 0.7144 | 181.82 | 4000 | 0.5518 | 0.5724 | | 0.7041 | 200.0 | 4400 | 0.5479 | 0.5740 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-mr --dataset mozilla-foundation/common_voice_8_0 --config mr --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-mr" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "mr", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "या पानास लेखाचे स्वरूप यायला हावे" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 49.177 | 32.811 |
Saitomar/wav2vec2-large-xls-r-300m-hindi-kaggle
Saitomar
2022-03-24T11:55:14Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "hi", "dataset:common_voice", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - hi tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hindi-kaggle results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi-kaggle This model was trained from scratch on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
RuudVelo/wav2vec2-large-xls-r-1b-nl-lm
RuudVelo
2022-03-24T11:55:12Z
20
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "nl", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - nl - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-1b-nl-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: nl metrics: - name: Test WER type: wer value: 9.73 - name: Test CER type: cer value: 2.89 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: 27.27 - name: Test CER type: cer value: 13.23 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 27.67 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1b-nl-lm This model is a fine-tuned version of [wav2vec2-large-xls-r-1b-nl-lm](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice 8 dataset. It achieves the following results on the test set: - Loss: 0.1479 - Wer: 0.1156 Note that the above test results come from the original model without LM (language model) which can be found at https://huggingface.co/RuudVelo/wav2vec2-large-xls-r-1b-nl. The results with the LM model can be found on the right side of this model card. ## Model description Model RuudVelo/wav2vec2-large-xls-r-1b-nl which has been improved with a KenLM 5-gram. ## Intended uses & limitations More information needed ## Training and evaluation data Common Voice 8 nl dataset has been used for the model ## Training procedure ### Training hyperparameters Parameters can be found in the run.sh file at https://huggingface.co/RuudVelo/wav2vec2-large-xls-r-1b-nl ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
RASMUS/wav2vec2-xlsr-1b-et
RASMUS
2022-03-24T11:55:09Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "mozilla-foundation/common_voice_8_0", "audio", "speech", "robust-speech-event", "hf-asr-leaderboard", "et", "dataset:mozilla-foundation/common_voice_8_0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: et datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer tags: - generated_from_trainer - mozilla-foundation/common_voice_8_0 - audio - automatic-speech-recognition - speech - robust-speech-event - hf-asr-leaderboard model-index: - name: XLS-R 1B Wav2Vec2 Estonian by Rasmus Toivanen results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: et metrics: - name: Test WER type: wer value: 20.12 - name: Test CER type: cer value: 3.82 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: et metrics: - name: Test WER type: wer value: 40.77 - name: Test CER type: cer value: 12.32 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: et metrics: - name: Test WER type: wer value: 41.97 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-et-lm-1B This model was finetuned with mozilla_foundation/common_voice_8_0 et with train+other+validation splits. It achieves the following results on the test set: (Loss reported with last eval step at step 2000/2040 during training) - Loss: 0.2150 - Wer: 0.2012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00005 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 1 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
Plim/xls-r-1b-cv_8-fr
Plim
2022-03-24T11:55:06Z
19
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "fr", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-1B - French results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: fr metrics: - name: Test WER (with LM) type: wer value: 15.4 - name: Test CER (with LM) type: cer value: 5.36 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER (with LM) type: wer value: 25.05 - name: Test CER (with LM) type: cer value: 12.45 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: fr metrics: - name: Test WER type: wer value: 27.1 --- ## Model description This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FR dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 6.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.9827 | 0.29 | 1000 | inf | 0.2937 | | 1.0203 | 0.57 | 2000 | inf | 0.2711 | | 1.0048 | 0.86 | 3000 | inf | 0.2620 | | 0.9858 | 1.15 | 4000 | inf | 0.2522 | | 0.9709 | 1.43 | 5000 | inf | 0.2365 | | 0.9347 | 1.72 | 6000 | inf | 0.2332 | | 0.9256 | 2.01 | 7000 | inf | 0.2261 | | 0.8936 | 2.29 | 8000 | inf | 0.2203 | | 0.877 | 2.58 | 9000 | inf | 0.2096 | | 0.8393 | 2.87 | 10000 | inf | 0.2017 | | 0.8156 | 3.15 | 11000 | inf | 0.1936 | | 0.8015 | 3.44 | 12000 | inf | 0.1880 | | 0.774 | 3.73 | 13000 | inf | 0.1834 | | 0.8372 | 4.01 | 14000 | inf | 0.1934 | | 0.8075 | 4.3 | 15000 | inf | 0.1923 | | 0.8069 | 4.59 | 16000 | inf | 0.1877 | | 0.8064 | 4.87 | 17000 | inf | 0.1955 | | 0.801 | 5.16 | 18000 | inf | 0.1891 | | 0.8022 | 5.45 | 19000 | inf | 0.1895 | | 0.792 | 5.73 | 20000 | inf | 0.1854 | It achieves the best result on the validation set on STEP 13000: - Wer: 0.1834 Some problem occurs when calculating the validation loss. ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0 ### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8` with split `test` ```bash python eval.py --model_id Plim/xls-r-1b-cv_8-fr --dataset mozilla-foundation/common_voice_8_0 --config fr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id Plim/xls-r-1b-cv_8-fr --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Evaluation Results Without LM: | Dataset | WER | CER | |:----------:|:-----:|:-----:| | TEST CV | 18.33 | 5.60 | | DEV audio | 31.33 | 13.20 | | TEST audio | / | / | With LM: | Dataset | WER | CER | |:----------:|:-----:|:-----:| | TEST CV | 15.40 | 5.36 | | DEV audio | 25.05 | 12.45 | | TEST audio | / | / |
NbAiLab/wav2vec2-xls-r-1b-npsc-bokmaal-low-27k
NbAiLab
2022-03-24T11:55:02Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:NbAiLab/NPSC", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - automatic-speech-recognition - NbAiLab/NPSC - robust-speech-event - false - nb-NO - hf-asr-leaderboard datasets: - NbAiLab/NPSC language: - nb-NO model-index: - name: wav2vec2-xls-r-1b-npsc-bokmaal-low-27k results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: NPSC type: NbAiLab/NPSC args: 16K_mp3_bokmaal metrics: - name: "Test (Bokm\xE5l) WER" type: wer value: 0.06332329423537675 - name: "Test (Bokm\xE5l) CER" type: cer value: 0.02480899861950731 ---
DrishtiSharma/wav2vec2-large-xls-r-300m-mr-v2
DrishtiSharma
2022-03-24T11:54:45Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "mr", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - mr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - mr - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-mr-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: mr metrics: - name: Test WER type: wer value: 0.49378259125551544 - name: Test CER type: cer value: 0.12470799640610962 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: mr metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-mr-v2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset. It achieves the following results on the evaluation set: - Loss: 0.8729 - Wer: 0.4942 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-mr-v2 --dataset mozilla-foundation/common_voice_8_0 --config mr --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-mr-v2 --dataset speech-recognition-community-v2/dev_data --config mr --split validation --chunk_length_s 10 --stride_length_s 1 Note: Marathi language not found in speech-recognition-community-v2/dev_data! ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000333 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 8.4934 | 9.09 | 200 | 3.7326 | 1.0 | | 3.4234 | 18.18 | 400 | 3.3383 | 0.9996 | | 3.2628 | 27.27 | 600 | 2.7482 | 0.9992 | | 1.7743 | 36.36 | 800 | 0.6755 | 0.6787 | | 1.0346 | 45.45 | 1000 | 0.6067 | 0.6193 | | 0.8137 | 54.55 | 1200 | 0.6228 | 0.5612 | | 0.6637 | 63.64 | 1400 | 0.5976 | 0.5495 | | 0.5563 | 72.73 | 1600 | 0.7009 | 0.5383 | | 0.4844 | 81.82 | 1800 | 0.6662 | 0.5287 | | 0.4057 | 90.91 | 2000 | 0.6911 | 0.5303 | | 0.3582 | 100.0 | 2200 | 0.7207 | 0.5327 | | 0.3163 | 109.09 | 2400 | 0.7107 | 0.5118 | | 0.2761 | 118.18 | 2600 | 0.7538 | 0.5118 | | 0.2415 | 127.27 | 2800 | 0.7850 | 0.5178 | | 0.2127 | 136.36 | 3000 | 0.8016 | 0.5034 | | 0.1873 | 145.45 | 3200 | 0.8302 | 0.5187 | | 0.1723 | 154.55 | 3400 | 0.9085 | 0.5223 | | 0.1498 | 163.64 | 3600 | 0.8396 | 0.5126 | | 0.1425 | 172.73 | 3800 | 0.8776 | 0.5094 | | 0.1258 | 181.82 | 4000 | 0.8651 | 0.5014 | | 0.117 | 190.91 | 4200 | 0.8772 | 0.4970 | | 0.1093 | 200.0 | 4400 | 0.8729 | 0.4942 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8
DrishtiSharma
2022-03-24T11:54:40Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hi", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - hi - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-hi-cv8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hi metrics: - name: Test WER type: wer value: 0.3628727037755008 - name: Test CER type: cer value: 0.11933724247521164 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hi metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.6510 - Wer: 0.3179 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8 --dataset mozilla-foundation/common_voice_8_0 --config hi --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8 --dataset speech-recognition-community-v2/dev_data --config hi --split validation --chunk_length_s 10 --stride_length_s 1 Note: Hindi language not found in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 12.5576 | 1.04 | 200 | 6.6594 | 1.0 | | 4.4069 | 2.07 | 400 | 3.6011 | 1.0 | | 3.4273 | 3.11 | 600 | 3.3370 | 1.0 | | 2.1108 | 4.15 | 800 | 1.0641 | 0.6562 | | 0.8817 | 5.18 | 1000 | 0.7178 | 0.5172 | | 0.6508 | 6.22 | 1200 | 0.6612 | 0.4839 | | 0.5524 | 7.25 | 1400 | 0.6458 | 0.4889 | | 0.4992 | 8.29 | 1600 | 0.5791 | 0.4382 | | 0.4669 | 9.33 | 1800 | 0.6039 | 0.4352 | | 0.4441 | 10.36 | 2000 | 0.6276 | 0.4297 | | 0.4172 | 11.4 | 2200 | 0.6183 | 0.4474 | | 0.3872 | 12.44 | 2400 | 0.5886 | 0.4231 | | 0.3692 | 13.47 | 2600 | 0.6448 | 0.4399 | | 0.3385 | 14.51 | 2800 | 0.6344 | 0.4075 | | 0.3246 | 15.54 | 3000 | 0.5896 | 0.4087 | | 0.3026 | 16.58 | 3200 | 0.6158 | 0.4016 | | 0.284 | 17.62 | 3400 | 0.6038 | 0.3906 | | 0.2682 | 18.65 | 3600 | 0.6165 | 0.3900 | | 0.2577 | 19.69 | 3800 | 0.5754 | 0.3805 | | 0.2509 | 20.73 | 4000 | 0.6028 | 0.3925 | | 0.2426 | 21.76 | 4200 | 0.6335 | 0.4138 | | 0.2346 | 22.8 | 4400 | 0.6128 | 0.3870 | | 0.2205 | 23.83 | 4600 | 0.6223 | 0.3831 | | 0.2104 | 24.87 | 4800 | 0.6122 | 0.3781 | | 0.1992 | 25.91 | 5000 | 0.6467 | 0.3792 | | 0.1916 | 26.94 | 5200 | 0.6277 | 0.3636 | | 0.1835 | 27.98 | 5400 | 0.6317 | 0.3773 | | 0.1776 | 29.02 | 5600 | 0.6124 | 0.3614 | | 0.1751 | 30.05 | 5800 | 0.6475 | 0.3628 | | 0.1662 | 31.09 | 6000 | 0.6266 | 0.3504 | | 0.1584 | 32.12 | 6200 | 0.6347 | 0.3532 | | 0.1494 | 33.16 | 6400 | 0.6636 | 0.3491 | | 0.1457 | 34.2 | 6600 | 0.6334 | 0.3507 | | 0.1427 | 35.23 | 6800 | 0.6397 | 0.3442 | | 0.1397 | 36.27 | 7000 | 0.6468 | 0.3496 | | 0.1283 | 37.31 | 7200 | 0.6291 | 0.3416 | | 0.1255 | 38.34 | 7400 | 0.6652 | 0.3461 | | 0.1195 | 39.38 | 7600 | 0.6587 | 0.3342 | | 0.1169 | 40.41 | 7800 | 0.6478 | 0.3319 | | 0.1126 | 41.45 | 8000 | 0.6280 | 0.3291 | | 0.1112 | 42.49 | 8200 | 0.6434 | 0.3290 | | 0.1069 | 43.52 | 8400 | 0.6542 | 0.3268 | | 0.1027 | 44.56 | 8600 | 0.6536 | 0.3239 | | 0.0993 | 45.6 | 8800 | 0.6622 | 0.3257 | | 0.0973 | 46.63 | 9000 | 0.6572 | 0.3192 | | 0.0911 | 47.67 | 9200 | 0.6522 | 0.3175 | | 0.0897 | 48.7 | 9400 | 0.6521 | 0.3200 | | 0.0905 | 49.74 | 9600 | 0.6510 | 0.3179 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-as-v9
DrishtiSharma
2022-03-24T11:54:35Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "as", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - as license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - as - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-as-v9 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hsb metrics: - name: Test WER type: wer value: 0.6163737676810973 - name: Test CER type: cer value: 0.19496397642093005 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: as metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: as metrics: - name: Test WER type: wer value: 61.64 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-as-v9 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.1679 - Wer: 0.5761 ### Evaluation Command 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-as-v9 --dataset mozilla-foundation/common_voice_8_0 --config as --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Assamese (as) language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000111 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 8.3852 | 10.51 | 200 | 3.6402 | 1.0 | | 3.5374 | 21.05 | 400 | 3.3894 | 1.0 | | 2.8645 | 31.56 | 600 | 1.3143 | 0.8303 | | 1.1784 | 42.1 | 800 | 0.9417 | 0.6661 | | 0.7805 | 52.62 | 1000 | 0.9292 | 0.6237 | | 0.5973 | 63.15 | 1200 | 0.9489 | 0.6014 | | 0.4784 | 73.67 | 1400 | 0.9916 | 0.5962 | | 0.4138 | 84.21 | 1600 | 1.0272 | 0.6121 | | 0.3491 | 94.72 | 1800 | 1.0412 | 0.5984 | | 0.3062 | 105.26 | 2000 | 1.0769 | 0.6005 | | 0.2707 | 115.77 | 2200 | 1.0708 | 0.5752 | | 0.2459 | 126.31 | 2400 | 1.1285 | 0.6009 | | 0.2234 | 136.82 | 2600 | 1.1209 | 0.5949 | | 0.2035 | 147.36 | 2800 | 1.1348 | 0.5842 | | 0.1876 | 157.87 | 3000 | 1.1480 | 0.5872 | | 0.1669 | 168.41 | 3200 | 1.1496 | 0.5838 | | 0.1595 | 178.92 | 3400 | 1.1721 | 0.5778 | | 0.1505 | 189.46 | 3600 | 1.1654 | 0.5744 | | 0.1486 | 199.97 | 3800 | 1.1679 | 0.5761 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-ab-CV7
DrishtiSharma
2022-03-24T11:54:32Z
9
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ab", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ab license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - ab - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-large-xls-r-300m-ab-CV7 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ab metrics: - name: Test WER type: wer value: 0.5291160452450775 - name: Test CER type: cer value: 0.10630270750110964 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ab metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 0.5620 - Wer: 0.5651 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-ab-CV7 --dataset mozilla-foundation/common_voice_7_0 --config ab --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data NA ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.6445 | 13.64 | 300 | 4.3963 | 1.0 | | 3.6459 | 27.27 | 600 | 3.2267 | 1.0 | | 3.0978 | 40.91 | 900 | 3.0927 | 1.0 | | 2.8357 | 54.55 | 1200 | 2.1462 | 1.0029 | | 1.2723 | 68.18 | 1500 | 0.6747 | 0.6996 | | 0.6528 | 81.82 | 1800 | 0.5928 | 0.6422 | | 0.4905 | 95.45 | 2100 | 0.5587 | 0.5681 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
AndrewMcDowell/wav2vec2-xls-r-1B-german
AndrewMcDowell
2022-03-24T11:54:30Z
65
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "de", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - de - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - German results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: de metrics: - name: Test WER type: wer value: 15.25 - name: Test CER type: cer value: 3.78 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: de metrics: - name: Test WER type: wer value: 35.29 - name: Test CER type: cer value: 13.83 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: de metrics: - name: Test WER type: wer value: 36.2 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - DE dataset. It achieves the following results on the evaluation set: - Loss: 0.1355 - Wer: 0.1532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 2.5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.0826 | 0.07 | 1000 | 0.4637 | 0.4654 | | 1.118 | 0.15 | 2000 | 0.2595 | 0.2687 | | 1.1268 | 0.22 | 3000 | 0.2635 | 0.2661 | | 1.0919 | 0.29 | 4000 | 0.2417 | 0.2566 | | 1.1013 | 0.37 | 5000 | 0.2414 | 0.2567 | | 1.0898 | 0.44 | 6000 | 0.2546 | 0.2731 | | 1.0808 | 0.51 | 7000 | 0.2399 | 0.2535 | | 1.0719 | 0.59 | 8000 | 0.2353 | 0.2528 | | 1.0446 | 0.66 | 9000 | 0.2427 | 0.2545 | | 1.0347 | 0.73 | 10000 | 0.2266 | 0.2402 | | 1.0457 | 0.81 | 11000 | 0.2290 | 0.2448 | | 1.0124 | 0.88 | 12000 | 0.2295 | 0.2448 | | 1.025 | 0.95 | 13000 | 0.2138 | 0.2345 | | 1.0107 | 1.03 | 14000 | 0.2108 | 0.2294 | | 0.9758 | 1.1 | 15000 | 0.2019 | 0.2204 | | 0.9547 | 1.17 | 16000 | 0.2000 | 0.2178 | | 0.986 | 1.25 | 17000 | 0.2018 | 0.2200 | | 0.9588 | 1.32 | 18000 | 0.1992 | 0.2138 | | 0.9413 | 1.39 | 19000 | 0.1898 | 0.2049 | | 0.9339 | 1.47 | 20000 | 0.1874 | 0.2056 | | 0.9268 | 1.54 | 21000 | 0.1797 | 0.1976 | | 0.9194 | 1.61 | 22000 | 0.1743 | 0.1905 | | 0.8987 | 1.69 | 23000 | 0.1738 | 0.1932 | | 0.8884 | 1.76 | 24000 | 0.1703 | 0.1873 | | 0.8939 | 1.83 | 25000 | 0.1633 | 0.1831 | | 0.8629 | 1.91 | 26000 | 0.1549 | 0.1750 | | 0.8607 | 1.98 | 27000 | 0.1550 | 0.1738 | | 0.8316 | 2.05 | 28000 | 0.1512 | 0.1709 | | 0.8321 | 2.13 | 29000 | 0.1481 | 0.1657 | | 0.825 | 2.2 | 30000 | 0.1446 | 0.1627 | | 0.8115 | 2.27 | 31000 | 0.1396 | 0.1583 | | 0.7959 | 2.35 | 32000 | 0.1389 | 0.1569 | | 0.7835 | 2.42 | 33000 | 0.1362 | 0.1545 | | 0.7959 | 2.49 | 34000 | 0.1355 | 0.1531 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-1B-german --dataset mozilla-foundation/common_voice_8_0 --config de --split test --log_outputs ``` 2. To evaluate on test dev data ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-1B-german --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
AlexN/xls-r-300m-fr-0
AlexN
2022-03-24T11:54:27Z
9
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "fr", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-300m-fr results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 fr type: mozilla-foundation/common_voice_8_0 args: fr metrics: - name: Test WER type: wer value: 36.81 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER type: wer value: 35.55 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: fr metrics: - name: Test WER type: wer value: 39.94 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FR dataset. It achieves the following results on the evaluation set: - Loss: 0.2388 - Wer: 0.3681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.3748 | 0.07 | 500 | 3.8784 | 1.0 | | 2.8068 | 0.14 | 1000 | 2.8289 | 0.9826 | | 1.6698 | 0.22 | 1500 | 0.8811 | 0.7127 | | 1.3488 | 0.29 | 2000 | 0.5166 | 0.5369 | | 1.2239 | 0.36 | 2500 | 0.4105 | 0.4741 | | 1.1537 | 0.43 | 3000 | 0.3585 | 0.4448 | | 1.1184 | 0.51 | 3500 | 0.3336 | 0.4292 | | 1.0968 | 0.58 | 4000 | 0.3195 | 0.4180 | | 1.0737 | 0.65 | 4500 | 0.3075 | 0.4141 | | 1.0677 | 0.72 | 5000 | 0.3015 | 0.4089 | | 1.0462 | 0.8 | 5500 | 0.2971 | 0.4077 | | 1.0392 | 0.87 | 6000 | 0.2870 | 0.3997 | | 1.0178 | 0.94 | 6500 | 0.2805 | 0.3963 | | 0.992 | 1.01 | 7000 | 0.2748 | 0.3935 | | 1.0197 | 1.09 | 7500 | 0.2691 | 0.3884 | | 1.0056 | 1.16 | 8000 | 0.2682 | 0.3889 | | 0.9826 | 1.23 | 8500 | 0.2647 | 0.3868 | | 0.9815 | 1.3 | 9000 | 0.2603 | 0.3832 | | 0.9717 | 1.37 | 9500 | 0.2561 | 0.3807 | | 0.9605 | 1.45 | 10000 | 0.2523 | 0.3783 | | 0.96 | 1.52 | 10500 | 0.2494 | 0.3788 | | 0.9442 | 1.59 | 11000 | 0.2478 | 0.3760 | | 0.9564 | 1.66 | 11500 | 0.2454 | 0.3733 | | 0.9436 | 1.74 | 12000 | 0.2439 | 0.3747 | | 0.938 | 1.81 | 12500 | 0.2411 | 0.3716 | | 0.9353 | 1.88 | 13000 | 0.2397 | 0.3698 | | 0.9271 | 1.95 | 13500 | 0.2388 | 0.3681 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
shpotes/xls-r-eus
shpotes
2022-03-24T11:54:17Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "et", "hf-asr-leaderboard", "eu", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - eu license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - et - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-eus results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: eu metrics: - name: Test WER type: wer value: 0.17871523648578164 - name: Test CER type: cer value: 0.032624506085144 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - EU dataset. It achieves the following results on the evaluation set: - Loss: 0.2278 - Wer: 0.1787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 72 - eval_batch_size: 72 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 144 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2548 | 4.24 | 500 | 0.2470 | 0.3663 | | 0.1435 | 8.47 | 1000 | 0.2000 | 0.2791 | | 0.1158 | 12.71 | 1500 | 0.2030 | 0.2652 | | 0.1094 | 16.95 | 2000 | 0.2096 | 0.2605 | | 0.1004 | 21.19 | 2500 | 0.2150 | 0.2477 | | 0.0945 | 25.42 | 3000 | 0.2072 | 0.2369 | | 0.0844 | 29.66 | 3500 | 0.1981 | 0.2328 | | 0.0877 | 33.89 | 4000 | 0.2041 | 0.2425 | | 0.0741 | 38.14 | 4500 | 0.2353 | 0.2421 | | 0.0676 | 42.37 | 5000 | 0.2092 | 0.2213 | | 0.0623 | 46.61 | 5500 | 0.2217 | 0.2250 | | 0.0574 | 50.84 | 6000 | 0.2152 | 0.2179 | | 0.0583 | 55.08 | 6500 | 0.2207 | 0.2186 | | 0.0488 | 59.32 | 7000 | 0.2225 | 0.2159 | | 0.0456 | 63.56 | 7500 | 0.2293 | 0.2031 | | 0.041 | 67.79 | 8000 | 0.2277 | 0.2013 | | 0.0379 | 72.03 | 8500 | 0.2287 | 0.1991 | | 0.0381 | 76.27 | 9000 | 0.2233 | 0.1954 | | 0.0308 | 80.51 | 9500 | 0.2195 | 0.1835 | | 0.0291 | 84.74 | 10000 | 0.2266 | 0.1825 | | 0.0266 | 88.98 | 10500 | 0.2285 | 0.1801 | | 0.0266 | 93.22 | 11000 | 0.2292 | 0.1801 | | 0.0262 | 97.46 | 11500 | 0.2278 | 0.1788 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
shpotes/xls-r-et
shpotes
2022-03-24T11:54:15Z
29
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "robust-speech-event", "et", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - robust-speech-event - et - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: et metrics: - name: Test WER type: wer value: 0.34753420299077314 - name: Test CER type: cer value: 0.07542956089330906 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: et metrics: - name: Test WER type: wer value: 47.17 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: et metrics: - name: Test WER type: wer value: 54.72 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - ET dataset. It achieves the following results on the evaluation set: - Loss: 0.4835 - Wer: 0.3475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 72 - eval_batch_size: 72 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 144 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3825 | 12.5 | 500 | 0.4022 | 0.5059 | | 0.1592 | 25.0 | 1000 | 0.4585 | 0.4456 | | 0.1215 | 37.5 | 1500 | 0.4550 | 0.4164 | | 0.0972 | 50.0 | 2000 | 0.4725 | 0.4088 | | 0.0731 | 62.5 | 2500 | 0.4568 | 0.3824 | | 0.0527 | 75.0 | 3000 | 0.4712 | 0.3653 | | 0.0428 | 87.5 | 3500 | 0.4813 | 0.3520 | | 0.0383 | 100.0 | 4000 | 0.4835 | 0.3475 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
sammy786/wav2vec2-xlsr-Basaa
sammy786
2022-03-24T11:54:12Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "bas", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - bas license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - bas - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-basaa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: bas metrics: - name: Test WER type: wer value: 41.23 - name: Test CER type: cer value: 13.54 --- # sammy786/wav2vec2-xlsr-basaa This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - bas dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 21.39 - Wer: 30.99 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 70 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 200 | 6.734100 | 1.605006 | 0.980456 | | 400 | 1.011200 | 0.364686 | 0.442997 | | 600 | 0.709300 | 0.300204 | 0.377850 | | 800 | 0.469800 | 0.315612 | 0.405537 | | 1000 | 0.464700 | 0.352494 | 0.372964 | | 1200 | 0.421900 | 0.342533 | 0.368078 | | 1400 | 0.401900 | 0.351398 | 0.343648 | | 1600 | 0.429800 | 0.350570 | 0.348534 | | 1800 | 0.352600 | 0.356601 | 0.358306 | | 2000 | 0.387200 | 0.355814 | 0.356678 | | 2200 | 0.362400 | 0.345573 | 0.355049 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-basaa --dataset mozilla-foundation/common_voice_8_0 --config bas --split test ```
patrickvonplaten/xls-r-300m-sv-cv8
patrickvonplaten
2022-03-24T11:54:05Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "sv", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - sv-SE license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - sv - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Swedish - CV8 - v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sv-SE metrics: - name: Test WER type: wer value: 17.33 - name: Test CER type: cer value: 5.8 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 27.01 - name: Test CER type: cer value: 12.92 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.2779 - Wer: 0.2525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.3224 | 1.37 | 500 | 3.3354 | 1.0 | | 2.9318 | 2.74 | 1000 | 2.9361 | 1.0000 | | 2.1371 | 4.11 | 1500 | 1.1157 | 0.8359 | | 1.6883 | 5.48 | 2000 | 0.6003 | 0.6314 | | 1.5812 | 6.85 | 2500 | 0.4746 | 0.4725 | | 1.5145 | 8.22 | 3000 | 0.4376 | 0.4736 | | 1.4763 | 9.59 | 3500 | 0.4006 | 0.3863 | | 1.4215 | 10.96 | 4000 | 0.3783 | 0.3629 | | 1.3638 | 12.33 | 4500 | 0.3555 | 0.3425 | | 1.3561 | 13.7 | 5000 | 0.3340 | 0.3228 | | 1.3406 | 15.07 | 5500 | 0.3373 | 0.3295 | | 1.3055 | 16.44 | 6000 | 0.3432 | 0.3210 | | 1.3048 | 17.81 | 6500 | 0.3282 | 0.3118 | | 1.2863 | 19.18 | 7000 | 0.3226 | 0.3018 | | 1.2389 | 20.55 | 7500 | 0.3050 | 0.2986 | | 1.2361 | 21.92 | 8000 | 0.3048 | 0.2980 | | 1.2263 | 23.29 | 8500 | 0.3011 | 0.2977 | | 1.2225 | 24.66 | 9000 | 0.3017 | 0.2959 | | 1.2044 | 26.03 | 9500 | 0.2977 | 0.2782 | | 1.2017 | 27.4 | 10000 | 0.2966 | 0.2781 | | 1.1912 | 28.77 | 10500 | 0.2999 | 0.2786 | | 1.1658 | 30.14 | 11000 | 0.2991 | 0.2757 | | 1.148 | 31.51 | 11500 | 0.2915 | 0.2684 | | 1.1423 | 32.88 | 12000 | 0.2913 | 0.2643 | | 1.123 | 34.25 | 12500 | 0.2777 | 0.2630 | | 1.1297 | 35.62 | 13000 | 0.2873 | 0.2646 | | 1.0987 | 36.98 | 13500 | 0.2829 | 0.2619 | | 1.0873 | 38.36 | 14000 | 0.2864 | 0.2608 | | 1.0848 | 39.73 | 14500 | 0.2827 | 0.2577 | | 1.0628 | 41.1 | 15000 | 0.2896 | 0.2581 | | 1.0815 | 42.47 | 15500 | 0.2814 | 0.2561 | | 1.0587 | 43.83 | 16000 | 0.2738 | 0.2542 | | 1.0709 | 45.21 | 16500 | 0.2785 | 0.2578 | | 1.0512 | 46.57 | 17000 | 0.2793 | 0.2539 | | 1.0396 | 47.94 | 17500 | 0.2788 | 0.2525 | | 1.0481 | 49.31 | 18000 | 0.2777 | 0.2534 | ### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id patrickvonplaten/xls-r-300m-sv-cv8 --dataset mozilla-foundation/common_voice_8_0 --config sv-SE --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id patrickvonplaten/xls-r-300m-sv-cv8 --dataset speech-recognition-community-v2/dev_data --config sv --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.4.dev0 - Tokenizers 0.10.3
lgris/wav2vec2-xls-r-300m-gn-cv8
lgris
2022-03-24T11:54:03Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "gn", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - gn license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - gn - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-300m-gn-cv8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pt metrics: - name: Test WER type: wer value: 69.05 - name: Test CER type: cer value: 14.7 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: gn metrics: - name: Test WER type: wer value: 69.05 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-gn-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9392 - Wer: 0.7033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 20.0601 | 5.54 | 100 | 5.1622 | 1.0 | | 3.7052 | 11.11 | 200 | 3.2869 | 1.0 | | 3.3275 | 16.65 | 300 | 3.2162 | 1.0 | | 3.2984 | 22.22 | 400 | 3.1638 | 1.0 | | 3.1111 | 27.76 | 500 | 2.5541 | 1.0 | | 2.238 | 33.32 | 600 | 1.2198 | 0.9616 | | 1.5284 | 38.86 | 700 | 0.9571 | 0.8593 | | 1.2735 | 44.43 | 800 | 0.8719 | 0.8363 | | 1.1269 | 49.97 | 900 | 0.8334 | 0.7954 | | 1.0427 | 55.54 | 1000 | 0.7700 | 0.7749 | | 1.0152 | 61.11 | 1100 | 0.7747 | 0.7877 | | 0.943 | 66.65 | 1200 | 0.7151 | 0.7442 | | 0.9132 | 72.22 | 1300 | 0.7224 | 0.7289 | | 0.8397 | 77.76 | 1400 | 0.7354 | 0.7059 | | 0.8577 | 83.32 | 1500 | 0.7285 | 0.7263 | | 0.7931 | 88.86 | 1600 | 0.7863 | 0.7084 | | 0.7995 | 94.43 | 1700 | 0.7562 | 0.6880 | | 0.799 | 99.97 | 1800 | 0.7905 | 0.7059 | | 0.7373 | 105.54 | 1900 | 0.7791 | 0.7161 | | 0.749 | 111.11 | 2000 | 0.8125 | 0.7161 | | 0.6925 | 116.65 | 2100 | 0.7722 | 0.6905 | | 0.7034 | 122.22 | 2200 | 0.8989 | 0.7136 | | 0.6745 | 127.76 | 2300 | 0.8270 | 0.6982 | | 0.6837 | 133.32 | 2400 | 0.8569 | 0.7161 | | 0.6689 | 138.86 | 2500 | 0.8339 | 0.6982 | | 0.6471 | 144.43 | 2600 | 0.8441 | 0.7110 | | 0.615 | 149.97 | 2700 | 0.9038 | 0.7212 | | 0.6477 | 155.54 | 2800 | 0.9089 | 0.7059 | | 0.6047 | 161.11 | 2900 | 0.9149 | 0.7059 | | 0.5613 | 166.65 | 3000 | 0.8582 | 0.7263 | | 0.6017 | 172.22 | 3100 | 0.8787 | 0.7084 | | 0.5546 | 177.76 | 3200 | 0.8753 | 0.6957 | | 0.5747 | 183.32 | 3300 | 0.9167 | 0.7212 | | 0.5535 | 188.86 | 3400 | 0.8448 | 0.6905 | | 0.5331 | 194.43 | 3500 | 0.8644 | 0.7161 | | 0.5428 | 199.97 | 3600 | 0.8730 | 0.7033 | | 0.5219 | 205.54 | 3700 | 0.9047 | 0.6982 | | 0.5158 | 211.11 | 3800 | 0.8706 | 0.7033 | | 0.5107 | 216.65 | 3900 | 0.9139 | 0.7084 | | 0.4903 | 222.22 | 4000 | 0.9456 | 0.7315 | | 0.4772 | 227.76 | 4100 | 0.9475 | 0.7161 | | 0.4713 | 233.32 | 4200 | 0.9237 | 0.7059 | | 0.4743 | 238.86 | 4300 | 0.9305 | 0.6957 | | 0.4705 | 244.43 | 4400 | 0.9561 | 0.7110 | | 0.4908 | 249.97 | 4500 | 0.9389 | 0.7084 | | 0.4717 | 255.54 | 4600 | 0.9234 | 0.6982 | | 0.4462 | 261.11 | 4700 | 0.9323 | 0.6957 | | 0.4556 | 266.65 | 4800 | 0.9432 | 0.7033 | | 0.4691 | 272.22 | 4900 | 0.9389 | 0.7059 | | 0.4601 | 277.76 | 5000 | 0.9392 | 0.7033 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-maltese
infinitejoy
2022-03-24T11:53:52Z
13
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "mt", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - mt - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Maltese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: mt metrics: - name: Test WER type: wer value: 23.503 - name: Test CER type: cer value: 5.065 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-maltese This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - MT dataset. It achieves the following results on the evaluation set: - Loss: 0.2005 - Wer: 0.1897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.2238 | 18.02 | 2000 | 0.3911 | 0.4310 | | 0.7871 | 36.04 | 4000 | 0.2063 | 0.2309 | | 0.6653 | 54.05 | 6000 | 0.1960 | 0.2091 | | 0.5861 | 72.07 | 8000 | 0.1986 | 0.2000 | | 0.5283 | 90.09 | 10000 | 0.1993 | 0.1909 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-greek
infinitejoy
2022-03-24T11:53:50Z
12
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "el", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - el license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - el - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Greek results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: el metrics: - name: Test WER type: wer value: 102.23963133640552 - name: Test CER type: cer value: 146.28 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: el metrics: - name: Test WER type: wer value: 99.92 - name: Test CER type: cer value: 132.38 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-greek This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - EL dataset. It achieves the following results on the evaluation set: - Loss: 0.6592 - Wer: 0.4564 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0928 | 4.42 | 500 | 3.0804 | 1.0073 | | 1.4505 | 8.85 | 1000 | 0.9038 | 0.7330 | | 1.2207 | 13.27 | 1500 | 0.7375 | 0.6045 | | 1.0695 | 17.7 | 2000 | 0.7119 | 0.5441 | | 1.0104 | 22.12 | 2500 | 0.6069 | 0.5296 | | 0.9299 | 26.55 | 3000 | 0.6168 | 0.5206 | | 0.8588 | 30.97 | 3500 | 0.6382 | 0.5171 | | 0.7942 | 35.4 | 4000 | 0.6048 | 0.4988 | | 0.7808 | 39.82 | 4500 | 0.6730 | 0.5084 | | 0.743 | 44.25 | 5000 | 0.6749 | 0.5012 | | 0.6652 | 48.67 | 5500 | 0.6491 | 0.4735 | | 0.6386 | 53.1 | 6000 | 0.6928 | 0.4954 | | 0.5945 | 57.52 | 6500 | 0.6359 | 0.4798 | | 0.5561 | 61.95 | 7000 | 0.6409 | 0.4799 | | 0.5464 | 66.37 | 7500 | 0.6452 | 0.4691 | | 0.5119 | 70.8 | 8000 | 0.6376 | 0.4657 | | 0.474 | 75.22 | 8500 | 0.6541 | 0.4700 | | 0.45 | 79.65 | 9000 | 0.6374 | 0.4571 | | 0.4315 | 84.07 | 9500 | 0.6568 | 0.4625 | | 0.3967 | 88.5 | 10000 | 0.6636 | 0.4605 | | 0.3937 | 92.92 | 10500 | 0.6537 | 0.4597 | | 0.3788 | 97.35 | 11000 | 0.6614 | 0.4589 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
comodoro/wav2vec2-xls-r-300m-hsb-cv8
comodoro
2022-03-24T11:53:37Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "xlsr-fine-tuning-week", "hf-asr-leaderboard", "hsb", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hsb license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - xlsr-fine-tuning-week - hf-asr-leaderboard datasets: - common_voice model-index: - name: Upper Sorbian comodoro Wav2Vec2 XLSR 300M CV8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hsb metrics: - name: Test WER type: wer value: 56.3 - name: Test CER type: cer value: 14.3 --- # Upper Sorbian wav2vec2-xls-r-300m-hsb-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9643 - Wer: 0.5037 - Cer: 0.1278 ## Evaluation The model can be evaluated using the attached `eval.py` script: ``` python eval.py --model_id comodoro/wav2vec2-xls-r-300m-hsb-cv8 --dataset mozilla-foundation/common-voice_8_0 --split test --config hsb ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:-----:|:---------------:|:------:|:------:| | 4.3121 | 19.35 | 1200 | 3.2059 | 1.0 | 1.0 | | 2.6525 | 38.71 | 2400 | 1.1324 | 0.9387 | 0.3204 | | 1.3644 | 58.06 | 3600 | 0.8767 | 0.8099 | 0.2271 | | 1.093 | 77.42 | 4800 | 0.8739 | 0.7603 | 0.2090 | | 0.9546 | 96.77 | 6000 | 0.8454 | 0.6983 | 0.1882 | | 0.8554 | 116.13 | 7200 | 0.8197 | 0.6484 | 0.1708 | | 0.775 | 135.48 | 8400 | 0.8452 | 0.6345 | 0.1681 | | 0.7167 | 154.84 | 9600 | 0.8551 | 0.6241 | 0.1631 | | 0.6609 | 174.19 | 10800 | 0.8442 | 0.5821 | 0.1531 | | 0.616 | 193.55 | 12000 | 0.8892 | 0.5864 | 0.1527 | | 0.5815 | 212.9 | 13200 | 0.8839 | 0.5772 | 0.1503 | | 0.55 | 232.26 | 14400 | 0.8905 | 0.5665 | 0.1436 | | 0.5173 | 251.61 | 15600 | 0.8995 | 0.5471 | 0.1417 | | 0.4969 | 270.97 | 16800 | 0.8633 | 0.5325 | 0.1334 | | 0.4803 | 290.32 | 18000 | 0.9074 | 0.5253 | 0.1352 | | 0.4596 | 309.68 | 19200 | 0.9159 | 0.5146 | 0.1294 | | 0.4415 | 329.03 | 20400 | 0.9055 | 0.5189 | 0.1314 | | 0.434 | 348.39 | 21600 | 0.9435 | 0.5208 | 0.1314 | | 0.4199 | 367.74 | 22800 | 0.9199 | 0.5136 | 0.1290 | | 0.4008 | 387.1 | 24000 | 0.9342 | 0.5174 | 0.1303 | | 0.4051 | 406.45 | 25200 | 0.9436 | 0.5132 | 0.1292 | | 0.3861 | 425.81 | 26400 | 0.9417 | 0.5084 | 0.1283 | | 0.3738 | 445.16 | 27600 | 0.9573 | 0.5079 | 0.1299 | | 0.3768 | 464.52 | 28800 | 0.9682 | 0.5062 | 0.1289 | | 0.3647 | 483.87 | 30000 | 0.9643 | 0.5037 | 0.1278 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
chmanoj/xls-r-300m-te
chmanoj
2022-03-24T11:53:34Z
17
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "openslr_SLR66", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "te", "dataset:openslr", "dataset:SLR66", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - te license: apache-2.0 tags: - automatic-speech-recognition - openslr_SLR66 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - openslr - SLR66 metrics: - wer model-index: - name: xls-r-300m-te results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: openslr name: Open SLR args: SLR66 metrics: - type: wer value: 24.695121951219512 name: Test WER - type: cer value: 4.861934182322532 name: Test CER --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the OPENSLR_SLR66 - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.2680 - Wer: 0.3467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0304 | 4.81 | 500 | 1.5676 | 1.0554 | | 1.5263 | 9.61 | 1000 | 0.4693 | 0.8023 | | 1.5299 | 14.42 | 1500 | 0.4368 | 0.7311 | | 1.5063 | 19.23 | 2000 | 0.4360 | 0.7302 | | 1.455 | 24.04 | 2500 | 0.4213 | 0.6692 | | 1.4755 | 28.84 | 3000 | 0.4329 | 0.5943 | | 1.352 | 33.65 | 3500 | 0.4074 | 0.5765 | | 1.3122 | 38.46 | 4000 | 0.3866 | 0.5630 | | 1.2799 | 43.27 | 4500 | 0.3860 | 0.5480 | | 1.212 | 48.08 | 5000 | 0.3590 | 0.5317 | | 1.1645 | 52.88 | 5500 | 0.3283 | 0.4757 | | 1.0854 | 57.69 | 6000 | 0.3162 | 0.4687 | | 1.0292 | 62.5 | 6500 | 0.3126 | 0.4416 | | 0.9607 | 67.31 | 7000 | 0.2990 | 0.4066 | | 0.9156 | 72.12 | 7500 | 0.2870 | 0.4009 | | 0.8329 | 76.92 | 8000 | 0.2791 | 0.3909 | | 0.7979 | 81.73 | 8500 | 0.2770 | 0.3670 | | 0.7144 | 86.54 | 9000 | 0.2841 | 0.3661 | | 0.6997 | 91.35 | 9500 | 0.2721 | 0.3485 | | 0.6568 | 96.15 | 10000 | 0.2681 | 0.3437 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
RuudVelo/wav2vec2-large-xls-r-1b-nl
RuudVelo
2022-03-24T11:53:24Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "nl", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - nl - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-1b-nl results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: nl metrics: - name: Test WER type: wer value: 11.12 - name: Test CER type: cer value: 3.2 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: 31.92 - name: Test CER type: cer value: 13.87 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 32.17 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL dataset. This model is also available with a language model which improves these results. This model can be found at https://huggingface.co/RuudVelo/wav2vec2-large-xls-r-1b-nl-lm. The Common Voice 8 Dutch test Wer is 9.73 of that model. It achieves the following results on the evaluation set: - Loss: 0.1479 - Wer: 0.1156 ## Model description Model fine-tuned using the wav2vec-als-r-1b model architecture ## Intended uses & limitations More information needed ## Training and evaluation data Model has been trained on Common Voice 8 Dutch ## Training procedure ### Training hyperparameters Model parameters can be found under Files and versions in the run.sh file. ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.2223 | 0.52 | 500 | 0.3866 | 0.3425 | | 1.0748 | 1.03 | 1000 | 0.2574 | 0.2169 | | 1.0416 | 1.55 | 1500 | 0.2177 | 0.1946 | | 0.9951 | 2.06 | 2000 | 0.2008 | 0.1760 | | 0.975 | 2.58 | 2500 | 0.1961 | 0.1751 | | 0.9461 | 3.1 | 3000 | 0.1989 | 0.1782 | | 0.9381 | 3.61 | 3500 | 0.1928 | 0.1699 | | 0.934 | 4.13 | 4000 | 0.1923 | 0.1633 | | 0.9322 | 4.64 | 4500 | 0.1871 | 0.1634 | | 0.9012 | 5.16 | 5000 | 0.1890 | 0.1702 | | 0.9045 | 5.68 | 5500 | 0.1882 | 0.1740 | | 0.8826 | 6.19 | 6000 | 0.1856 | 0.1575 | | 0.8848 | 6.71 | 6500 | 0.1861 | 0.1617 | | 0.8723 | 7.22 | 7000 | 0.1927 | 0.1646 | | 0.8725 | 7.74 | 7500 | 0.1798 | 0.1531 | | 0.8573 | 8.26 | 8000 | 0.1781 | 0.1587 | | 0.8633 | 8.77 | 8500 | 0.1852 | 0.1628 | | 0.8603 | 9.29 | 9000 | 0.1833 | 0.1601 | | 0.8421 | 9.8 | 9500 | 0.1788 | 0.1543 | | 0.8404 | 10.32 | 10000 | 0.1844 | 0.1556 | | 0.8342 | 10.84 | 10500 | 0.1770 | 0.1538 | | 0.8161 | 11.35 | 11000 | 0.1821 | 0.1567 | | 0.8371 | 11.87 | 11500 | 0.1909 | 0.1629 | | 0.8083 | 12.38 | 12000 | 0.1778 | 0.1498 | | 0.806 | 12.9 | 12500 | 0.1802 | 0.1547 | | 0.8013 | 13.42 | 13000 | 0.1859 | 0.1584 | | 0.7913 | 13.93 | 13500 | 0.1875 | 0.1517 | | 0.8063 | 14.45 | 14000 | 0.1799 | 0.1571 | | 0.7991 | 14.96 | 14500 | 0.1792 | 0.1538 | | 0.7843 | 15.48 | 15000 | 0.1753 | 0.1464 | | 0.7905 | 16.0 | 15500 | 0.1784 | 0.1508 | | 0.7808 | 16.51 | 16000 | 0.1771 | 0.1485 | | 0.7743 | 17.03 | 16500 | 0.1795 | 0.1491 | | 0.7833 | 17.54 | 17000 | 0.1722 | 0.1484 | | 0.7763 | 18.06 | 17500 | 0.1767 | 0.1518 | | 0.7698 | 18.58 | 18000 | 0.1720 | 0.1460 | | 0.7571 | 19.09 | 18500 | 0.1735 | 0.1478 | | 0.7673 | 19.61 | 19000 | 0.1817 | 0.1511 | | 0.7415 | 20.12 | 19500 | 0.1763 | 0.1481 | | 0.751 | 20.64 | 20000 | 0.1742 | 0.1484 | | 0.7563 | 21.16 | 20500 | 0.1810 | 0.1611 | | 0.7423 | 21.67 | 21000 | 0.1817 | 0.1557 | | 0.7242 | 22.19 | 21500 | 0.1690 | 0.1446 | | 0.7251 | 22.7 | 22000 | 0.1684 | 0.1446 | | 0.7302 | 23.22 | 22500 | 0.1735 | 0.1430 | | 0.733 | 23.74 | 23000 | 0.1720 | 0.1454 | | 0.7128 | 24.25 | 23500 | 0.1668 | 0.1383 | | 0.7184 | 24.77 | 24000 | 0.1635 | 0.1377 | | 0.7015 | 25.28 | 24500 | 0.1646 | 0.1389 | | 0.7198 | 25.8 | 25000 | 0.1775 | 0.1462 | | 0.7178 | 26.32 | 25500 | 0.1705 | 0.1419 | | 0.7199 | 26.83 | 26000 | 0.1649 | 0.1416 | | 0.6981 | 27.35 | 26500 | 0.1724 | 0.1418 | | 0.6886 | 27.86 | 27000 | 0.1633 | 0.1382 | | 0.6922 | 28.38 | 27500 | 0.1698 | 0.1420 | | 0.6833 | 28.9 | 28000 | 0.1611 | 0.1351 | | 0.6798 | 29.41 | 28500 | 0.1639 | 0.1365 | | 0.6711 | 29.93 | 29000 | 0.1668 | 0.1358 | | 0.6762 | 30.44 | 29500 | 0.1682 | 0.1355 | | 0.6594 | 30.96 | 30000 | 0.1629 | 0.1345 | | 0.6664 | 31.48 | 30500 | 0.1625 | 0.1321 | | 0.6838 | 31.99 | 31000 | 0.1597 | 0.1372 | | 0.6603 | 32.51 | 31500 | 0.1583 | 0.1302 | | 0.6468 | 33.02 | 32000 | 0.1595 | 0.1322 | | 0.6464 | 33.54 | 32500 | 0.1609 | 0.1315 | | 0.6623 | 34.06 | 33000 | 0.1622 | 0.1366 | | 0.6414 | 34.57 | 33500 | 0.1587 | 0.1330 | | 0.6242 | 35.09 | 34000 | 0.1614 | 0.1337 | | 0.632 | 35.6 | 34500 | 0.1568 | 0.1272 | | 0.6346 | 36.12 | 35000 | 0.1583 | 0.1274 | | 0.6143 | 36.64 | 35500 | 0.1576 | 0.1264 | | 0.6208 | 37.15 | 36000 | 0.1621 | 0.1263 | | 0.6185 | 37.67 | 36500 | 0.1623 | 0.1270 | | 0.6128 | 38.18 | 37000 | 0.1604 | 0.1268 | | 0.6151 | 38.7 | 37500 | 0.1593 | 0.1246 | | 0.6082 | 39.22 | 38000 | 0.1532 | 0.1238 | | 0.6 | 39.73 | 38500 | 0.1524 | 0.1224 | | 0.6032 | 40.25 | 39000 | 0.1521 | 0.1212 | | 0.6016 | 40.76 | 39500 | 0.1551 | 0.1215 | | 0.6009 | 41.28 | 40000 | 0.1523 | 0.1215 | | 0.5875 | 41.8 | 40500 | 0.1541 | 0.1216 | | 0.608 | 42.31 | 41000 | 0.1536 | 0.1209 | | 0.5876 | 42.83 | 41500 | 0.1567 | 0.1211 | | 0.5714 | 43.34 | 42000 | 0.1532 | 0.1217 | | 0.5756 | 43.86 | 42500 | 0.1516 | 0.1196 | | 0.5719 | 44.38 | 43000 | 0.1491 | 0.1191 | | 0.5829 | 44.89 | 43500 | 0.1497 | 0.1193 | | 0.5664 | 45.41 | 44000 | 0.1487 | 0.1173 | | 0.5707 | 45.92 | 44500 | 0.1470 | 0.1164 | | 0.5696 | 46.44 | 45000 | 0.1479 | 0.1161 | | 0.5767 | 46.96 | 45500 | 0.1492 | 0.1175 | | 0.5573 | 47.47 | 46000 | 0.1471 | 0.1165 | | 0.5625 | 47.99 | 46500 | 0.1484 | 0.1168 | | 0.5671 | 48.5 | 47000 | 0.1474 | 0.1162 | | 0.5484 | 49.02 | 47500 | 0.1479 | 0.1158 | | 0.555 | 49.54 | 48000 | 0.1477 | 0.1157 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
NbAiLab/XLSR-300M-bokmaal
NbAiLab
2022-03-24T11:53:12Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:NbAiLab/NPSC", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer - automatic-speech-recognition - NbAiLab/NPSC - robust-speech-event - false - nb-NO - hf-asr-leaderboard datasets: - NbAiLab/NPSC language: - nb-NO model-index: - name: XLSR-300M-bokmaal results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: NPSC type: NbAiLab/NPSC args: 16K_mp3_bokmaal metrics: - name: "Test (Bokm\xE5l) WER" type: wer value: 0.07699635320946434 - name: "Test (Bokm\xE5l) CER" type: cer value: 0.0284288464829 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLSR-300M-bokmaal This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the NBAILAB/NPSC - 16K_MP3_BOKMAAL dataset. It achieves the following results on the evaluation set: - Loss: 0.1635 - Wer: 0.1005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0307 | 0.32 | 500 | 3.0026 | 1.0 | | 2.7865 | 0.64 | 1000 | 2.4849 | 0.9926 | | 0.7522 | 0.95 | 1500 | 0.4567 | 0.3594 | | 0.5703 | 1.27 | 2000 | 0.3440 | 0.2586 | | 0.4762 | 1.59 | 2500 | 0.2925 | 0.2178 | | 0.4585 | 1.91 | 3000 | 0.2442 | 0.1981 | | 0.4013 | 2.23 | 3500 | 0.2495 | 0.1818 | | 0.449 | 2.54 | 4000 | 0.2152 | 0.1808 | | 0.355 | 2.86 | 4500 | 0.2179 | 0.1670 | | 0.3142 | 3.18 | 5000 | 0.1953 | 0.1542 | | 0.3242 | 3.5 | 5500 | 0.2103 | 0.1526 | | 0.3016 | 3.82 | 6000 | 0.1911 | 0.1477 | | 0.2713 | 4.13 | 6500 | 0.1836 | 0.1422 | | 0.2807 | 4.45 | 7000 | 0.1924 | 0.1447 | | 0.2929 | 4.77 | 7500 | 0.1848 | 0.1402 | | 0.2595 | 5.09 | 8000 | 0.1783 | 0.1330 | | 0.2289 | 5.41 | 8500 | 0.1901 | 0.1313 | | 0.2567 | 5.72 | 9000 | 0.1784 | 0.1298 | | 0.2401 | 6.04 | 9500 | 0.1956 | 0.1298 | | 0.2098 | 6.36 | 10000 | 0.1748 | 0.1277 | | 0.2246 | 6.68 | 10500 | 0.1777 | 0.1254 | | 0.2197 | 7.0 | 11000 | 0.1703 | 0.1222 | | 0.2122 | 7.32 | 11500 | 0.1917 | 0.1221 | | 0.2746 | 7.63 | 12000 | 0.1769 | 0.1215 | | 0.2148 | 7.95 | 12500 | 0.1736 | 0.1193 | | 0.1915 | 8.27 | 13000 | 0.1814 | 0.1161 | | 0.2462 | 8.59 | 13500 | 0.1748 | 0.1166 | | 0.1872 | 8.91 | 14000 | 0.1769 | 0.1133 | | 0.1886 | 9.22 | 14500 | 0.1852 | 0.1143 | | 0.1789 | 9.54 | 15000 | 0.1696 | 0.1126 | | 0.1692 | 9.86 | 15500 | 0.1817 | 0.1122 | | 0.1765 | 10.18 | 16000 | 0.1769 | 0.1093 | | 0.1699 | 10.5 | 16500 | 0.1604 | 0.1084 | | 0.1591 | 10.81 | 17000 | 0.1777 | 0.1080 | | 0.1499 | 11.13 | 17500 | 0.1645 | 0.1074 | | 0.163 | 11.45 | 18000 | 0.1704 | 0.1065 | | 0.1597 | 11.77 | 18500 | 0.1576 | 0.1064 | | 0.1484 | 12.09 | 19000 | 0.1637 | 0.1041 | | 0.1464 | 12.4 | 19500 | 0.1631 | 0.1047 | | 0.156 | 12.72 | 20000 | 0.1686 | 0.1029 | | 0.1625 | 13.04 | 20500 | 0.1648 | 0.1023 | | 0.1395 | 13.36 | 21000 | 0.1688 | 0.1027 | | 0.1387 | 13.68 | 21500 | 0.1670 | 0.1013 | | 0.1434 | 13.99 | 22000 | 0.1677 | 0.1017 | | 0.1442 | 14.31 | 22500 | 0.1688 | 0.1008 | | 0.1439 | 14.63 | 23000 | 0.1647 | 0.1004 | | 0.137 | 14.95 | 23500 | 0.1636 | 0.1006 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
Iskaj/xlsr300m_cv_8.0_nl
Iskaj
2022-03-24T11:53:05Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "mozilla-foundation/common_voice_7_0", "nl", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - mozilla-foundation/common_voice_7_0 - nl - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Dutch results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 NL type: mozilla-foundation/common_voice_8_0 args: nl metrics: - name: Test WER type: wer value: 46.94 - name: Test CER type: cer value: 21.65 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: ??? - name: Test CER type: cer value: ??? - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 42.56 --- # xlsr300m_cv_8.0_nl #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id Iskaj/xlsr300m_cv_8.0_nl --dataset mozilla-foundation/common_voice_8_0 --config nl --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id Iskaj/xlsr300m_cv_8.0_nl --dataset speech-recognition-community-v2/dev_data --config nl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "Iskaj/xlsr300m_cv_8.0_nl" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "nl", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) inputs = processor(resampled_audio, sampling_rate=16_000, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) transcription[0].lower() #'het kontine schip lag aangemeert in de aven' ```
DrishtiSharma/wav2vec2-large-xls-r-300m-hi-d3
DrishtiSharma
2022-03-24T11:52:54Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "hi", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - hi - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-large-xls-r-300m-hi-d3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: vot metrics: - name: Test WER type: wer value: 0.4204111781361566 - name: Test CER type: cer value: 0.13869169624556316 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hi metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 42.04 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi-d3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.7988 - Wer: 0.3713 ###Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-d3 --dataset mozilla-foundation/common_voice_7_0 --config hi --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Hindi language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000388 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 750 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.2826 | 1.36 | 200 | 3.5253 | 1.0 | | 2.7019 | 2.72 | 400 | 1.1744 | 0.7360 | | 0.7358 | 4.08 | 600 | 0.7781 | 0.5501 | | 0.4942 | 5.44 | 800 | 0.7590 | 0.5345 | | 0.4056 | 6.8 | 1000 | 0.6885 | 0.4776 | | 0.3243 | 8.16 | 1200 | 0.7195 | 0.4861 | | 0.2785 | 9.52 | 1400 | 0.7473 | 0.4930 | | 0.2448 | 10.88 | 1600 | 0.7201 | 0.4574 | | 0.2155 | 12.24 | 1800 | 0.7686 | 0.4648 | | 0.2039 | 13.6 | 2000 | 0.7440 | 0.4624 | | 0.1792 | 14.96 | 2200 | 0.7815 | 0.4658 | | 0.1695 | 16.33 | 2400 | 0.7678 | 0.4557 | | 0.1598 | 17.68 | 2600 | 0.7468 | 0.4393 | | 0.1568 | 19.05 | 2800 | 0.7440 | 0.4422 | | 0.1391 | 20.41 | 3000 | 0.7656 | 0.4317 | | 0.1283 | 21.77 | 3200 | 0.7892 | 0.4299 | | 0.1194 | 23.13 | 3400 | 0.7646 | 0.4192 | | 0.1116 | 24.49 | 3600 | 0.8156 | 0.4330 | | 0.1111 | 25.85 | 3800 | 0.7661 | 0.4322 | | 0.1023 | 27.21 | 4000 | 0.7419 | 0.4276 | | 0.1007 | 28.57 | 4200 | 0.8488 | 0.4245 | | 0.0925 | 29.93 | 4400 | 0.8062 | 0.4070 | | 0.0918 | 31.29 | 4600 | 0.8412 | 0.4218 | | 0.0813 | 32.65 | 4800 | 0.8045 | 0.4087 | | 0.0805 | 34.01 | 5000 | 0.8411 | 0.4113 | | 0.0774 | 35.37 | 5200 | 0.7664 | 0.3943 | | 0.0666 | 36.73 | 5400 | 0.8082 | 0.3939 | | 0.0655 | 38.09 | 5600 | 0.7948 | 0.4000 | | 0.0617 | 39.45 | 5800 | 0.8084 | 0.3932 | | 0.0606 | 40.81 | 6000 | 0.8223 | 0.3841 | | 0.0569 | 42.18 | 6200 | 0.7892 | 0.3832 | | 0.0544 | 43.54 | 6400 | 0.8326 | 0.3834 | | 0.0508 | 44.89 | 6600 | 0.7952 | 0.3774 | | 0.0492 | 46.26 | 6800 | 0.7923 | 0.3756 | | 0.0459 | 47.62 | 7000 | 0.7925 | 0.3701 | | 0.0423 | 48.98 | 7200 | 0.7988 | 0.3713 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8-b2
DrishtiSharma
2022-03-24T11:52:52Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "robust-speech-event", "hf-asr-leaderboard", "hi", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-hi-cv8-b2 results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 7 args: hi metrics: - type: wer value: 0.3891350503092403 name: Test WER - name: Test CER type: cer value: 0.13016327327131985 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hi metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi-cv8-b2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.7322 - Wer: 0.3469 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8-b2 --dataset mozilla-foundation/common_voice_8_0 --config hi --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Hindi language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 700 - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.6226 | 1.04 | 200 | 3.8855 | 1.0 | | 3.4678 | 2.07 | 400 | 3.4283 | 1.0 | | 2.3668 | 3.11 | 600 | 1.0743 | 0.7175 | | 0.7308 | 4.15 | 800 | 0.7663 | 0.5498 | | 0.4985 | 5.18 | 1000 | 0.6957 | 0.5001 | | 0.3817 | 6.22 | 1200 | 0.6932 | 0.4866 | | 0.3281 | 7.25 | 1400 | 0.7034 | 0.4983 | | 0.2752 | 8.29 | 1600 | 0.6588 | 0.4606 | | 0.2475 | 9.33 | 1800 | 0.6514 | 0.4328 | | 0.219 | 10.36 | 2000 | 0.6396 | 0.4176 | | 0.2036 | 11.4 | 2200 | 0.6867 | 0.4162 | | 0.1793 | 12.44 | 2400 | 0.6943 | 0.4196 | | 0.1724 | 13.47 | 2600 | 0.6862 | 0.4260 | | 0.1554 | 14.51 | 2800 | 0.7615 | 0.4222 | | 0.151 | 15.54 | 3000 | 0.7058 | 0.4110 | | 0.1335 | 16.58 | 3200 | 0.7172 | 0.3986 | | 0.1326 | 17.62 | 3400 | 0.7182 | 0.3923 | | 0.1225 | 18.65 | 3600 | 0.6995 | 0.3910 | | 0.1146 | 19.69 | 3800 | 0.7075 | 0.3875 | | 0.108 | 20.73 | 4000 | 0.7297 | 0.3858 | | 0.1048 | 21.76 | 4200 | 0.7413 | 0.3850 | | 0.0979 | 22.8 | 4400 | 0.7452 | 0.3793 | | 0.0946 | 23.83 | 4600 | 0.7436 | 0.3759 | | 0.0897 | 24.87 | 4800 | 0.7289 | 0.3754 | | 0.0854 | 25.91 | 5000 | 0.7271 | 0.3667 | | 0.0803 | 26.94 | 5200 | 0.7378 | 0.3656 | | 0.0752 | 27.98 | 5400 | 0.7488 | 0.3680 | | 0.0718 | 29.02 | 5600 | 0.7185 | 0.3619 | | 0.0702 | 30.05 | 5800 | 0.7428 | 0.3554 | | 0.0653 | 31.09 | 6000 | 0.7447 | 0.3559 | | 0.0638 | 32.12 | 6200 | 0.7327 | 0.3523 | | 0.058 | 33.16 | 6400 | 0.7339 | 0.3488 | | 0.0594 | 34.2 | 6600 | 0.7322 | 0.3469 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
lgris/wav2vec2-large-xls-r-300m-pt-cv
lgris
2022-03-24T11:52:39Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "pt", "hf-asr-leaderboard", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - robust-speech-event - pt - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-pt-cv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6 type: common_voice args: pt metrics: - name: Test WER type: wer value: 24.29 - name: Test CER type: cer value: 7.51 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 55.72 - name: Test CER type: cer value: 21.82 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 47.88 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 50.78 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-pt-cv This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3418 - Wer: 0.3581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 10.9035 | 0.2 | 100 | 4.2750 | 1.0 | | 3.3275 | 0.41 | 200 | 3.0334 | 1.0 | | 3.0016 | 0.61 | 300 | 2.9494 | 1.0 | | 2.1874 | 0.82 | 400 | 1.4355 | 0.8721 | | 1.09 | 1.02 | 500 | 0.9987 | 0.7165 | | 0.8251 | 1.22 | 600 | 0.7886 | 0.6406 | | 0.6927 | 1.43 | 700 | 0.6753 | 0.5801 | | 0.6143 | 1.63 | 800 | 0.6300 | 0.5509 | | 0.5451 | 1.84 | 900 | 0.5586 | 0.5156 | | 0.5003 | 2.04 | 1000 | 0.5493 | 0.5027 | | 0.3712 | 2.24 | 1100 | 0.5271 | 0.4872 | | 0.3486 | 2.45 | 1200 | 0.4953 | 0.4817 | | 0.3498 | 2.65 | 1300 | 0.4619 | 0.4538 | | 0.3112 | 2.86 | 1400 | 0.4570 | 0.4387 | | 0.3013 | 3.06 | 1500 | 0.4437 | 0.4147 | | 0.2136 | 3.27 | 1600 | 0.4176 | 0.4124 | | 0.2131 | 3.47 | 1700 | 0.4281 | 0.4194 | | 0.2099 | 3.67 | 1800 | 0.3864 | 0.3949 | | 0.1925 | 3.88 | 1900 | 0.3926 | 0.3913 | | 0.1709 | 4.08 | 2000 | 0.3764 | 0.3804 | | 0.1406 | 4.29 | 2100 | 0.3787 | 0.3742 | | 0.1342 | 4.49 | 2200 | 0.3645 | 0.3693 | | 0.1305 | 4.69 | 2300 | 0.3463 | 0.3625 | | 0.1298 | 4.9 | 2400 | 0.3418 | 0.3581 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
infinitejoy/wav2vec2-large-xls-r-300m-kyrgyz
infinitejoy
2022-03-24T11:52:31Z
11
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ky", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ky license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - ky - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Kyrgyz results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ky metrics: - name: Test WER type: wer value: 40.908 - name: Test CER type: cer value: 10.999 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-kyrgyz This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - KY dataset. It achieves the following results on the evaluation set: - Loss: 0.5817 - Wer: 0.4096 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.5412 | 18.69 | 2000 | 0.6161 | 0.5747 | | 1.311 | 37.38 | 4000 | 0.5707 | 0.5070 | | 1.1367 | 56.07 | 6000 | 0.5372 | 0.4664 | | 0.9696 | 74.77 | 8000 | 0.5443 | 0.4328 | | 0.8163 | 93.46 | 10000 | 0.5916 | 0.4124 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-georgian
infinitejoy
2022-03-24T11:52:25Z
18
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ka", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ka license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - ka - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Georgian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ka metrics: - name: Test WER type: wer value: 42.09 - name: Test CER type: cer value: 8.01 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ka metrics: - name: Test WER type: wer value: 65.32 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ka metrics: - name: Test WER type: wer value: 65.03 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-georgian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - KA dataset. It achieves the following results on the evaluation set: - Loss: 0.3666 - Wer: 0.4211 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.8805 | 5.95 | 500 | 0.7547 | 0.8438 | | 1.2123 | 11.9 | 1000 | 0.4732 | 0.6542 | | 1.0822 | 17.86 | 1500 | 0.4027 | 0.5778 | | 0.9938 | 23.81 | 2000 | 0.3847 | 0.5524 | | 0.9383 | 29.76 | 2500 | 0.3845 | 0.5204 | | 0.8932 | 35.71 | 3000 | 0.3833 | 0.5297 | | 0.8495 | 41.67 | 3500 | 0.3759 | 0.5036 | | 0.8201 | 47.62 | 4000 | 0.3616 | 0.4859 | | 0.7794 | 53.57 | 4500 | 0.3874 | 0.4938 | | 0.735 | 59.52 | 5000 | 0.3748 | 0.4782 | | 0.7082 | 65.48 | 5500 | 0.3615 | 0.4675 | | 0.669 | 71.43 | 6000 | 0.3797 | 0.4601 | | 0.6457 | 77.38 | 6500 | 0.3812 | 0.4515 | | 0.6098 | 83.33 | 7000 | 0.3660 | 0.4343 | | 0.5874 | 89.29 | 7500 | 0.3640 | 0.4257 | | 0.5627 | 95.24 | 8000 | 0.3661 | 0.4239 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
glob-asr/wav2vec2-large-xls-r-300m-guarani-small
glob-asr
2022-03-24T11:52:10Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "gn", "hf-asr-leaderboard", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - gn license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - gn - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-guarani-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-guarani-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4964 - Wer: 0.5957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 6.65 | 100 | 1.1326 | 1.0 | | 1.6569 | 13.32 | 200 | 0.5264 | 0.6478 | | 1.6569 | 19.97 | 300 | 0.5370 | 0.6261 | | 0.2293 | 26.65 | 400 | 0.4964 | 0.5957 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
comodoro/wav2vec2-xls-r-300m-pl-cv8
comodoro
2022-03-24T11:52:06Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "xlsr-fine-tuning-week", "hf-asr-leaderboard", "pl", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - pl license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - robust-speech-event - xlsr-fine-tuning-week - hf-asr-leaderboard datasets: - common_voice model-index: - name: Polish comodoro Wav2Vec2 XLSR 300M CV8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pl metrics: - name: Test WER type: wer value: 17.0 - name: Test CER type: cer value: 3.8 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pl metrics: - name: Test WER type: wer value: 38.97 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pl metrics: - name: Test WER type: wer value: 46.05 --- # wav2vec2-xls-r-300m-pl-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice 8.0 dataset. It achieves the following results on the evaluation set while training: - Loss: 0.1716 - Wer: 0.1697 - Cer: 0.0385 The `eval.py` script results are: WER: 0.16970531733661967 CER: 0.03839135416519316 ## Model description Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Polish using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "pl", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-pl-cv8") model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-pl-cv8") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated using the attached `eval.py` script: ``` python eval.py --model_id comodoro/wav2vec2-xls-r-300m-pl-cv8 --dataset mozilla-foundation/common-voice_8_0 --split test --config pl ``` ## Training and evaluation data The Common Voice 8.0 `train` and `validation` datasets were used for training ## Training procedure ### Training hyperparameters The following hyperparameters were used: - learning_rate: 1e-4 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 1 - total_train_batch_size: 640 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 - mixed_precision_training: Native AMP The training was interrupted after 3250 steps. ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
RASMUS/wav2vec2-xlsr-fi-lm-1B
RASMUS
2022-03-24T11:51:54Z
8
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "fi", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - fi license: apache-2.0 tags: - generated_from_trainer - automatic-speech-recognition - robust-speech-event - hf-asr-leaderboard model-index: - name: wav2vec2-xlsr-fi-lm-1B results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-fi-lm-1B This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common voice train/dev/other datasets. It achieves the following results on the evaluation set without language model: - Loss: 0.1853 - Wer: 0.2205 With language model: - Wer: 0.1026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8158 | 0.67 | 400 | 0.4835 | 0.6310 | | 0.5679 | 1.33 | 800 | 0.4806 | 0.5538 | | 0.6055 | 2.0 | 1200 | 0.3888 | 0.5083 | | 0.5353 | 2.67 | 1600 | 0.3258 | 0.4365 | | 0.4883 | 3.33 | 2000 | 0.3313 | 0.4204 | | 0.4513 | 4.0 | 2400 | 0.2924 | 0.3904 | | 0.3753 | 4.67 | 2800 | 0.2593 | 0.3608 | | 0.3478 | 5.33 | 3200 | 0.2832 | 0.3551 | | 0.3796 | 6.0 | 3600 | 0.2495 | 0.3402 | | 0.2556 | 6.67 | 4000 | 0.2342 | 0.3106 | | 0.229 | 7.33 | 4400 | 0.2181 | 0.2812 | | 0.205 | 8.0 | 4800 | 0.2041 | 0.2523 | | 0.1654 | 8.67 | 5200 | 0.2015 | 0.2416 | | 0.152 | 9.33 | 5600 | 0.1942 | 0.2294 | | 0.1569 | 10.0 | 6000 | 0.1853 | 0.2205 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
HarrisDePerceptron/xls-r-300m-ur
HarrisDePerceptron
2022-03-24T11:51:43Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "ur", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - ur - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: ur metrics: - name: Test WER type: wer value: 47.38 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [HarrisDePerceptron/xls-r-300m-ur](https://huggingface.co/HarrisDePerceptron/xls-r-300m-ur) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 1.0517 - WER: 0.5151291512915129 - CER: 0.23689640940982254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.2991 | 1.96 | 100 | 0.9769 | 0.6627 | | 1.3415 | 3.92 | 200 | 0.9701 | 0.6594 | | 1.2998 | 5.88 | 300 | 0.9678 | 0.6668 | | 1.2881 | 7.84 | 400 | 0.9650 | 0.6613 | | 1.2369 | 9.8 | 500 | 0.9392 | 0.6502 | | 1.2293 | 11.76 | 600 | 0.9536 | 0.6480 | | 1.1709 | 13.73 | 700 | 0.9265 | 0.6402 | | 1.1492 | 15.69 | 800 | 0.9636 | 0.6506 | | 1.1044 | 17.65 | 900 | 0.9305 | 0.6351 | | 1.0704 | 19.61 | 1000 | 0.9329 | 0.6280 | | 1.0039 | 21.57 | 1100 | 0.9413 | 0.6295 | | 0.9756 | 23.53 | 1200 | 0.9718 | 0.6185 | | 0.9633 | 25.49 | 1300 | 0.9731 | 0.6133 | | 0.932 | 27.45 | 1400 | 0.9659 | 0.6199 | | 0.9252 | 29.41 | 1500 | 0.9766 | 0.6196 | | 0.9172 | 31.37 | 1600 | 1.0052 | 0.6199 | | 0.8733 | 33.33 | 1700 | 0.9955 | 0.6203 | | 0.868 | 35.29 | 1800 | 1.0069 | 0.6240 | | 0.8547 | 37.25 | 1900 | 0.9783 | 0.6258 | | 0.8451 | 39.22 | 2000 | 0.9845 | 0.6052 | | 0.8374 | 41.18 | 2100 | 0.9496 | 0.6137 | | 0.8153 | 43.14 | 2200 | 0.9756 | 0.6122 | | 0.8134 | 45.1 | 2300 | 0.9712 | 0.6096 | | 0.8019 | 47.06 | 2400 | 0.9565 | 0.5970 | | 0.7746 | 49.02 | 2500 | 0.9864 | 0.6096 | | 0.7664 | 50.98 | 2600 | 0.9988 | 0.6092 | | 0.7708 | 52.94 | 2700 | 1.0181 | 0.6255 | | 0.7468 | 54.9 | 2800 | 0.9918 | 0.6148 | | 0.7241 | 56.86 | 2900 | 1.0150 | 0.6018 | | 0.7165 | 58.82 | 3000 | 1.0439 | 0.6063 | | 0.7104 | 60.78 | 3100 | 1.0016 | 0.6037 | | 0.6954 | 62.75 | 3200 | 1.0117 | 0.5970 | | 0.6753 | 64.71 | 3300 | 1.0191 | 0.6037 | | 0.6803 | 66.67 | 3400 | 1.0190 | 0.6033 | | 0.661 | 68.63 | 3500 | 1.0284 | 0.6007 | | 0.6597 | 70.59 | 3600 | 1.0060 | 0.5967 | | 0.6398 | 72.55 | 3700 | 1.0372 | 0.6048 | | 0.6105 | 74.51 | 3800 | 1.0048 | 0.6044 | | 0.6164 | 76.47 | 3900 | 1.0398 | 0.6148 | | 0.6354 | 78.43 | 4000 | 1.0272 | 0.6133 | | 0.5952 | 80.39 | 4100 | 1.0364 | 0.6081 | | 0.5814 | 82.35 | 4200 | 1.0418 | 0.6092 | | 0.6079 | 84.31 | 4300 | 1.0277 | 0.5967 | | 0.5748 | 86.27 | 4400 | 1.0362 | 0.6041 | | 0.5624 | 88.24 | 4500 | 1.0427 | 0.6007 | | 0.5767 | 90.2 | 4600 | 1.0370 | 0.5919 | | 0.5793 | 92.16 | 4700 | 1.0442 | 0.6011 | | 0.547 | 94.12 | 4800 | 1.0516 | 0.5982 | | 0.5513 | 96.08 | 4900 | 1.0461 | 0.5989 | | 0.5429 | 98.04 | 5000 | 1.0504 | 0.5996 | | 0.5404 | 100.0 | 5100 | 1.0517 | 0.5967 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
lsb/wav2vec2-base-it-latin
lsb
2022-03-24T11:51:21Z
15
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "robust-speech-event", "hf-asr-leaderboard", "la", "dataset:lsb/poetaexmachina-mp3-recitations", "license:agpl-3.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - la license: agpl-3.0 tags: - robust-speech-event - hf-asr-leaderboard datasets: - lsb/poetaexmachina-mp3-recitations metrics: - wer model-index: - name: wav2vec2-base-it-latin results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: lsb/poetaexmachina-mp3-recitations name: Poeta Ex Machina mp3 recitations metrics: - type: wer value: 0.398 name: Test WER --- --- # wav2vec2-base-it-latin This model is a fine-tuned version of [wav2vec2-base-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-base-it-voxpopuli) The dataset used is the [poetaexmachina-mp3-recitations](https://github.com/lsb/poetaexmachina-mp3-recitations), all of the 2-series texts (vergil) and every tenth 1-series text (words from Poeta Ex Machina's [database](https://github.com/lsb/poetaexmachina/blob/master/merged-scansions.db) of words with scansions). It achieves the following [results](https://github.com/lsb/tironiculum/blame/trunk/wav2vec2%20base%20it%20latin.ipynb#L1234) on the evaluation set: - Loss: 0.1943 - WER: 0.398
infinitejoy/wav2vec2-large-xls-r-300m-bulgarian
infinitejoy
2022-03-24T11:47:30Z
445
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "bg", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - bg license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - bg - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Bulgarian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: bg metrics: - name: Test WER type: wer value: 46.68 - name: Test CER type: cer value: 10.75 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: bg metrics: - name: Test WER type: wer value: 63.68 - name: Test CER type: cer value: 19.88 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: bg metrics: - name: Test WER type: wer value: 64.08 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-bulgarian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BG dataset. It achieves the following results on the evaluation set: - Loss: 0.4487 - Wer: 0.4674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9774 | 6.33 | 500 | 2.9769 | 1.0 | | 1.3453 | 12.66 | 1000 | 0.6523 | 0.6980 | | 1.1658 | 18.99 | 1500 | 0.5636 | 0.6359 | | 1.0797 | 25.32 | 2000 | 0.5004 | 0.5759 | | 1.044 | 31.65 | 2500 | 0.4958 | 0.5569 | | 0.9915 | 37.97 | 3000 | 0.4971 | 0.5350 | | 0.9429 | 44.3 | 3500 | 0.4829 | 0.5229 | | 0.9266 | 50.63 | 4000 | 0.4515 | 0.5074 | | 0.8965 | 56.96 | 4500 | 0.4599 | 0.5039 | | 0.878 | 63.29 | 5000 | 0.4735 | 0.4954 | | 0.8494 | 69.62 | 5500 | 0.4460 | 0.4878 | | 0.8343 | 75.95 | 6000 | 0.4510 | 0.4795 | | 0.8236 | 82.28 | 6500 | 0.4538 | 0.4789 | | 0.8069 | 88.61 | 7000 | 0.4526 | 0.4748 | | 0.7958 | 94.94 | 7500 | 0.4496 | 0.4700 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
JustAdvanceTechonology/bert-fine-tuned-medical-insurance-ner
JustAdvanceTechonology
2022-03-24T11:33:03Z
5
4
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-24T10:20:14Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: JustAdvanceTechonology/bert-fine-tuned-medical-insurance-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # JustAdvanceTechonology/bert-fine-tuned-medical-insurance-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0269 - Validation Loss: 0.0551 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1775 | 0.0646 | 0 | | 0.0454 | 0.0580 | 1 | | 0.0269 | 0.0551 | 2 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.5.0 - Datasets 1.18.3 - Tokenizers 0.11.6
joe5campbell/Horovod_Tweet_Sentiment_1k_5eps
joe5campbell
2022-03-24T11:01:59Z
4
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-24T11:01:49Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Horovod_Tweet_Sentiment_1k_5eps results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Horovod_Tweet_Sentiment_1k_5eps This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5216092 - Train Accuracy: 0.784375 - Validation Loss: 0.92405033 - Validation Accuracy: 0.4875 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'clipnorm': 1.0, 'learning_rate': 0.0003, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.7129049 | 0.50937504 | 0.7314203 | 0.490625 | 0 | | 0.73165804 | 0.47343752 | 0.6929074 | 0.484375 | 1 | | 0.6827939 | 0.55 | 0.6864271 | 0.50625 | 2 | | 0.66076773 | 0.5578125 | 0.60817575 | 0.69687504 | 3 | | 0.5216092 | 0.784375 | 0.92405033 | 0.4875 | 4 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.6.0 - Tokenizers 0.11.6
huggingtweets/vi0linheart
huggingtweets
2022-03-24T10:11:28Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T10:09:41Z
--- language: en thumbnail: http://www.huggingtweets.com/vi0linheart/1648116634962/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500859213622300673/izXwf0KK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sal</div> <div style="text-align: center; font-size: 14px;">@vi0linheart</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sal. | Data | sal | | --- | --- | | Tweets downloaded | 3114 | | Retweets | 421 | | Short tweets | 541 | | Tweets kept | 2152 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21y9qo98/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vi0linheart's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3t019c6m) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3t019c6m/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/vi0linheart') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/madeleine
huggingtweets
2022-03-24T09:38:39Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T09:37:42Z
--- language: en thumbnail: http://www.huggingtweets.com/madeleine/1648114714373/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1227670393453936642/6rdB_DqU_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Madeleine Albright</div> <div style="text-align: center; font-size: 14px;">@madeleine</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Madeleine Albright. | Data | Madeleine Albright | | --- | --- | | Tweets downloaded | 1111 | | Retweets | 249 | | Short tweets | 3 | | Tweets kept | 859 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2a3z3e8y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @madeleine's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2q01k6dh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2q01k6dh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/madeleine') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/kytalli-vi0linheart
huggingtweets
2022-03-24T09:38:01Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T09:25:29Z
--- language: en thumbnail: http://www.huggingtweets.com/kytalli-vi0linheart/1648114676311/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500859213622300673/izXwf0KK_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1376749372831002627/2B9FZTnI_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sal & G</div> <div style="text-align: center; font-size: 14px;">@kytalli-vi0linheart</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sal & G. | Data | sal | G | | --- | --- | --- | | Tweets downloaded | 3114 | 3249 | | Retweets | 421 | 55 | | Short tweets | 541 | 226 | | Tweets kept | 2152 | 2968 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1tj76wad/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kytalli-vi0linheart's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1a1bludi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1a1bludi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kytalli-vi0linheart') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
niksmer/PolicyBERTa-7d
niksmer
2022-03-24T09:19:57Z
5
2
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit language: - en metrics: - accuracy - precision - recall model-index: - name: PolicyBERTa-7d results: [] widget: - text: "Russia must end the war." - text: "Democratic institutions must be supported." - text: "The state must fight political corruption." - text: "Our energy economy must be nationalised." - text: "We must increase social spending." --- # PolicyBERTa-7d This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on data from the [Manifesto Project](https://manifesto-project.wzb.eu/). It was inspired by the model from [Laurer (2020)](https://huggingface.co/MoritzLaurer/policy-distilbert-7d). It achieves the following results on the evaluation set: - Loss: 0.8549 - Accuracy: 0.7059 - F1-micro: 0.7059 - F1-macro: 0.6683 - F1-weighted: 0.7033 - Precision: 0.7059 - Recall: 0.7059 ## Model description This model was trained on 115,943 manually annotated sentences to classify text into one of seven political categories: "external relations", "freedom and democracy", "political system", "economy", "welfare and quality of life", "fabric of society" and "social groups". ## Intended uses & limitations The model output reproduces the limitations of the dataset in terms of country coverage, time span, domain definitions and potential biases of the annotators - as any supervised machine learning model would. Applying the model to other types of data (other types of texts, countries etc.) will reduce performance. ```python from transformers import pipeline import pandas as pd classifier = pipeline( task="text-classification", model="niksmer/PolicyBERTa-7d") # Load text data you want to classify text = pd.read_csv("example.csv")["text_you_want_to_classify"].to_list() # Inference output = classifier(text) # Print output pd.DataFrame(output).head() ``` ## Training and evaluation data PolicyBERTa-7d was trained on the English-speaking subset of the [Manifesto Project Dataset (MPDS2021a)](https://manifesto-project.wzb.eu/datasets). The model was trained on 115,943 sentences from 163 political manifestos in 7 English-speaking countries (Australia, Canada, Ireland, New Zealand, South Africa, United Kingdom, United States). The manifestos were published between 1992 - 2020. | Country | Count manifestos | Count sentences | Time span | |----------------|------------------|-----------------|--------------------| | Australia | 18 | 14,887 | 2010-2016 | | Ireland | 23 | 24,966 | 2007-2016 | | Canada | 14 | 12,344 | 2004-2008 & 2015 | | New Zealand | 46 | 35,079 | 1993-2017 | | South Africa | 29 | 13,334 | 1994-2019 | | USA | 9 | 13,188 | 1992 & 2004-2020 | | United Kingdom | 34 | 30,936 | 1997-2019 | Canadian manifestos between 2004 and 2008 are used as test data. The Manifesto Project mannually annotates individual sentences from political party manifestos in 7 main political domains: 'Economy', 'External Relations', 'Fabric of Society', 'Freedom and Democracy', 'Political System', 'Welfare and Quality of Life' or 'Social Groups' - see the [codebook](https://manifesto-project.wzb.eu/down/papers/handbook_2021_version_5.pdf) for the exact definitions of each domain. ### Tain data Train data was higly imbalanced. | Label | Description | Count | |------------|--------------|--------| | 0 | external relations | 7,640 | | 1 | freedom and democracy | 5,880 | | 2 | political system | 11,234 | | 3 | economy | 29,218 | | 4 | welfare and quality of life | 37,200 | | 5 | fabric of society | 13,594 | | 6 | social groups | 11,177 | Overall count: 115,943 ### Validation data The validation was created by chance. | Label | Description | Count | |------------|--------------|--------| | 0 | external relations | 1,345 | | 1 | freedom and democracy | 1,043 | | 2 | political system | 2,038 | | 3 | economy | 5,140 | | 4 | welfare and quality of life | 6,554 | | 5 | fabric of society | 2,384 | | 6 | social groups | 1,957 | Overall count: 20,461 ## Test data The test dataset contains ten canadian manifestos between 2004 and 2008. | Label | Description | Count | |------------|--------------|--------| | 0 | external relations | 824 | | 1 | freedom and democracy | 296 | | 2 | political system | 1,041 | | 3 | economy | 2,188 | | 4 | welfare and quality of life | 2,654 | | 5 | fabric of society | 940 | | 6 | social groups | 387 | Overall count: 8,330 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: ``` training_args = TrainingArguments( warmup_steps=0, weight_decay=0.1, learning_rate=1e-05, fp16 = True, evaluation_strategy="epoch", num_train_epochs=5, per_device_train_batch_size=16, overwrite_output_dir=True, per_device_eval_batch_size=16, save_strategy="no", logging_dir='logs', logging_strategy= 'steps', logging_steps=10, push_to_hub=True, hub_strategy="end") ``` ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-micro | F1-macro | F1-weighted | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:-----------:|:---------:|:------:| | 0.9154 | 1.0 | 1812 | 0.8984 | 0.6785 | 0.6785 | 0.6383 | 0.6772 | 0.6785 | 0.6785 | | 0.8374 | 2.0 | 3624 | 0.8569 | 0.6957 | 0.6957 | 0.6529 | 0.6914 | 0.6957 | 0.6957 | | 0.7053 | 3.0 | 5436 | 0.8582 | 0.7019 | 0.7019 | 0.6594 | 0.6967 | 0.7019 | 0.7019 | | 0.7178 | 4.0 | 7248 | 0.8488 | 0.7030 | 0.7030 | 0.6662 | 0.7011 | 0.7030 | 0.7030 | | 0.6688 | 5.0 | 9060 | 0.8549 | 0.7059 | 0.7059 | 0.6683 | 0.7033 | 0.7059 | 0.7059 | ### Validation evaluation | Model | Micro F1-Score | Macro F1-Score | Weighted F1-Score | |----------------|----------------|----------------|-------------------| | PolicyBERTa-7d | 0.71 | 0.67 | 0.70 | ### Test evaluation | Model | Micro F1-Score | Macro F1-Score | Weighted F1-Score | |----------------|----------------|----------------|-------------------| | PolicyBERTa-7d | 0.65 | 0.60 | 0.65 | ### Evaluation per category | Label | Validation F1-Score | Test F1-Score | |-----------------------------|---------------------|---------------| | external relations | 0.76 | 0.70 | | freedom and democracy | 0.61 | 0.55 | | political system | 0.55 | 0.55 | | economy | 0.74 | 0.67 | | welfare and quality of life | 0.77 | 0.72 | | fabric of society | 0.67 | 0.60 | | social groups | 0.58 | 0.41 | ### Evaluation based on saliency theory Saliency theory is a theory to analyse politial text data. In sum, parties tend to write about policies in which they think that they are seen as competent. Voters tend to assign advantages in policy competence in line to the assumed ideology of parties. Therefore you can analyze the share of policies parties tend to write about in their manifestos to analyze the party ideology. The Manifesto Project presented for such an analysis the rile-index. For a quick overview, check [this](https://manifesto-project.wzb.eu/down/tutorials/main-dataset.html#measuring-parties-left-right-positions). But PolicyBERTa isn't fine-tuned to predict the rile-index, if you're interested in that, check [ManiBERT](https://huggingface.co/niksmer/ManiBERT) or [RoBERTa-RILE](https://huggingface.co/niksmer/RoBERTa-RILE). In the following table, the predicted and original share of the individual policy domains are shown per manifesto in the test dataset. Overall the pearson correlation between the predicted and original shares is 0.965. | Party-ID | Year | Type | Share external relations | Share freedom and democracy | Share political system | Share economy | Share welfare and quality of life | Share fabric of society | Share social groups | |--------------|-------------|---------------|--------------------------|-----------------------------|------------------------|----------------|-----------------------------------|-------------------------|---------------------| | 62320 | 2004 | Predicted | 7.1% | 4.8% | 13.2% | 20.3% | 35.2% | 9.6% | 9.8% | | | | Original | 10.2% | 2.5% | 13.7% | 23.8% | 31.7% | 11.6% | 6.4% | | 62320 | 2006 | Predicted | 2.9% | 4.7% | 16.4% | 18.9% | 38.3% | 11.9% | 6.9% | | | | Original | 5.6% | 5.0% | 15.8% | 20.7% | 38.7% | 9.3% | 4.9% | | 62320 | 2008 | Predicted | 6.8% | 4.7% | 6.2% | 24.7% | 38.3% | 10.3% | 9.0% | | | | Original | 5.6% | 3.7% | 8.2% | 33.1% | 29.5% | 11.7% | 4.3% | | 62420 | 2004 | Predicted | 9.7% | 3.5% | 14.5% | 24.7% | 34.8% | 8.5% | 4.3% | | | | Original | 12.6% | 1.3% | 18.8% | 23.0% | 33.2% | 9.0% | 2.0% | | 62420 | 2006 | Predicted | 9.5% | 2.2% | 7.9% | 27.8% | 34.8% | 9.2% | 8.7% | | | | Original | 10.6% | 2.5% | 9.6% | 29.7% | 33.1% | 8.3% | 6.2% | | 62420 | 2008 | Predicted | 0.7% | 0.5% | 3.5% | 41.7% | 46.4% | 3.7% | 3.5% | | | | Original | 2.0% | 0.2% | 4.4% | 33.3% | 45.9% | 7.7% | 6.4% | | 62623 | 2004 | Predicted | 7.1% | 11.4% | 24.5% | 17.6% | 21.5% | 13.6% | 4.3% | | | | Original | 8.4% | 6.7% | 28.8% | 17.4% | 18.7% | 15.5% | 4.5% | | 62623 | 2006 | Predicted | 5.6% | 8.5% | 23.6% | 15.6% | 14.8% | 24.3% | 7.6% | | | | Original | 5.0% | 8.9% | 22.2% | 17.4% | 17.2% | 25.7% | 3.6% | | 62623 | 2008 | Predicted | 5.0% | 4.4% | 12.2% | 33.1% | 21.9% | 17.5% | 5.9% | | | | Original | 5.6% | 2.2% | 11.6% | 37.8% | 17.8% | 20.9% | 4.1% | | 62110 | 2008 | Predicted | 10.0% | 3.1% | 6.8% | 22.7% | 41.3% | 10.1% | 6.0% | | | | Original | 13.4% | 3.3% | 7.7% | 26.9% | 35.6% | 8.9% | 4.3% | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
niksmer/RoBERTa-RILE
niksmer
2022-03-24T09:19:40Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit metrics: - accuracy - precision - recall model-index: - name: RoBERTa-RILE results: [] widget: - text: "Russia must end the war." - text: "Democratic institutions must be supported." - text: "The state must fight political corruption." - text: "Our energy economy must be nationalised." - text: "We must increase social spending." --- # RoBERTa-RILE This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on data from the [Manifesto Project](https://manifesto-project.wzb.eu/). ## Model description This model was trained on 115,943 manually annotated sentences to classify text into one of three political categories: "neutral", "left", "right". ## Intended uses & limitations The model output reproduces the limitations of the dataset in terms of country coverage, time span, domain definitions and potential biases of the annotators - as any supervised machine learning model would. Applying the model to other types of data (other types of texts, countries etc.) will reduce performance. ```python from transformers import pipeline import pandas as pd classifier = pipeline( task="text-classification", model="niksmer/RoBERTa-RILE") # Load text data you want to classify text = pd.read_csv("example.csv")["text_you_want_to_classify"].to_list() # Inference output = classifier(text) # Print output pd.DataFrame(output).head() ``` ## Training and evaluation data ## Training and evaluation data RoBERTa-RILE was trained on the English-speaking subset of the [Manifesto Project Dataset (MPDS2021a)](https://manifesto-project.wzb.eu/datasets). The model was trained on 115,943 sentences from 163 political manifestos in 7 English-speaking countries (Australia, Canada, Ireland, New Zealand, South Africa, United Kingdom, United States). The manifestos were published between 1992 - 2020. | Country | Count manifestos | Count sentences | Time span | |----------------|------------------|-----------------|--------------------| | Australia | 18 | 14,887 | 2010-2016 | | Ireland | 23 | 24,966 | 2007-2016 | | Canada | 14 | 12,344 | 2004-2008 & 2015 | | New Zealand | 46 | 35,079 | 1993-2017 | | South Africa | 29 | 13,334 | 1994-2019 | | USA | 9 | 13,188 | 1992 & 2004-2020 | | United Kingdom | 34 | 30,936 | 1997-2019 | Canadian manifestos between 2004 and 2008 are used as test data. The Manifesto Project mannually annotates individual sentences from political party manifestos in over 50 main categories - see the [codebook](https://manifesto-project.wzb.eu/down/papers/handbook_2021_version_5.pdf) for the exact definitions of each categorie. It has created a valid left-right-scale, the rile-index, to aaggregate manifesto in a standardized, onde-dimensional political space from left to right based on saliency-theory. RoBERTa-RILE classifies texts based on the rile index. ### Tain data Train data was slightly imbalanced. | Label | Description | Count | |------------|--------------|--------| | 0 | neutral | 52,277 | | 1 | left | 37,106 | | 2 | right | 26,560 | Overall count: 115,943 ### Validation data The validation was created by chance. | Label | Description | Count | |------------|--------------|--------| | 0 | neutral | 9,198 | | 1 | left | 6,637 | | 2 | right | 4,626 | Overall count: 20,461 ### Test data The test dataset contains ten canadian manifestos between 2004 and 2008. | Label | Description | Count | |------------|--------------|--------| | 0 | neutral | 3,881 | | 1 | left | 2,611 | | 2 | right | 1,838 | Overall count: 8,330 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: ``` training_args = TrainingArguments( warmup_ratio=0.05, weight_decay=0.1, learning_rate=1e-05, fp16 = True, evaluation_strategy="epoch", num_train_epochs=5, per_device_train_batch_size=16, per_device_eval_batch_size=16, save_strategy="no", logging_dir='logs', logging_strategy= 'steps', logging_steps=10, push_to_hub=True, hub_strategy="end") ``` ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-micro | F1-macro | F1-weighted | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:-----------:|:---------:|:------:| | 0.7442 | 1.0 | 1812 | 0.6827 | 0.7120 | 0.7120 | 0.7007 | 0.7126 | 0.7120 | 0.7120 | | 0.6447 | 2.0 | 3624 | 0.6618 | 0.7281 | 0.7281 | 0.7169 | 0.7281 | 0.7281 | 0.7281 | | 0.5467 | 3.0 | 5436 | 0.6657 | 0.7309 | 0.7309 | 0.7176 | 0.7295 | 0.7309 | 0.7309 | | 0.5179 | 4.0 | 7248 | 0.6654 | 0.7346 | 0.7346 | 0.7240 | 0.7345 | 0.7346 | 0.7346 | | 0.4787 | 5.0 | 9060 | 0.6757 | 0.7350 | 0.7350 | 0.7241 | 0.7347 | 0.7350 | 0.7350 | ### Validation evaluation | Model | Micro F1-Score | Macro F1-Score | Weighted F1-Score | |----------------|----------------|----------------|-------------------| | RoBERTa-RILE | 0.74 | 0.72 | 0.73 | ### Test evaluation | Model | Micro F1-Score | Macro F1-Score | Weighted F1-Score | |----------------|----------------|----------------|-------------------| | RoBERTa-RILE | 0.69 | 0.67 | 0.69 | ### Evaluation per category | Label | Validation F1-Score | Test F1-Score | |-----------------------------|---------------------|---------------| | neutral | 0.77 | 0.74 | | left | 0.73 | 0.65 | | right | 0.67 | 0.62 | ### Evaluation based on saliency theory Saliency theory is a theory to analyse politial text data. In sum, parties tend to write about policies in which they think that they are seen as competent. Voters tend to assign advantages in policy competence in line to the assumed ideology of parties. Therefore you can analyze the share of policies parties tend to write about in their manifestos to analyze the party ideology. The Manifesto Project presented for such an analysis the rile-index. For a quick overview, check [this](https://manifesto-project.wzb.eu/down/tutorials/main-dataset.html#measuring-parties-left-right-positions). In the following plot, the predicted and original rile-indices are shown per manifesto in the test dataset. Overall the pearson correlation between the predicted and original rile-indices is 0.95. As alternative, you can use [ManiBERT](https://huggingface.co/niksmer/ManiBERT). ![image](english_robertarile_manifesto.png) ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
buvnswrn/daml-t5-pretrain
buvnswrn
2022-03-24T09:08:34Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "translation", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2022-03-24T07:11:08Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - imdb model-index: - name: daml-t5-pretrain-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # daml-t5-pretrain-imdb This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
tartuNLP/liv4ever-hugging-mt
tartuNLP
2022-03-24T07:33:01Z
5
0
transformers
[ "transformers", "pytorch", "fsmt", "text2text-generation", "translation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-24T01:38:25Z
--- license: apache-2.0 tags: - translation widget: - text: "<2li> Let us generate some Livonian text!" ---
tiennvcs/distilbert-base-uncased-finetuned-ner
tiennvcs
2022-03-24T07:29:26Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-24T07:17:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9264836138175376 - name: Recall type: recall value: 0.9361226087929299 - name: F1 type: f1 value: 0.9312781703856213 - name: Accuracy type: accuracy value: 0.9836529143565221 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0616 - Precision: 0.9265 - Recall: 0.9361 - F1: 0.9313 - Accuracy: 0.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2437 | 1.0 | 878 | 0.0745 | 0.9144 | 0.9173 | 0.9158 | 0.9799 | | 0.0518 | 2.0 | 1756 | 0.0621 | 0.9177 | 0.9353 | 0.9264 | 0.9826 | | 0.03 | 3.0 | 2634 | 0.0616 | 0.9265 | 0.9361 | 0.9313 | 0.9837 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
Pavithra/codeparrot-ds-sample
Pavithra
2022-03-24T06:41:47Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T05:12:32Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds-sample results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-sample This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.5219 - eval_runtime: 603.3856 - eval_samples_per_second: 154.402 - eval_steps_per_second: 4.826 - epoch: 0.15 - step: 10000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
FuriouslyAsleep/unhappyZebra100
FuriouslyAsleep
2022-03-24T04:39:04Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:FuriouslyAsleep/autotrain-data-techDataClassifeier", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-24T04:38:22Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - FuriouslyAsleep/autotrain-data-techDataClassifeier co2_eq_emissions: 0.6969569001670619 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 664919631 - CO2 Emissions (in grams): 0.6969569001670619 ## Validation Metrics - Loss: 0.022509008646011353 - Accuracy: 1.0 - Precision: 1.0 - Recall: 1.0 - AUC: 1.0 - F1: 1.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/FuriouslyAsleep/autotrain-techDataClassifeier-664919631 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("FuriouslyAsleep/autotrain-techDataClassifeier-664919631", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("FuriouslyAsleep/autotrain-techDataClassifeier-664919631", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
rurupang/roberta-base-finetuned-sts
rurupang
2022-03-24T01:54:26Z
25
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:klue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-22T14:13:32Z
--- tags: - generated_from_trainer datasets: - klue metrics: - pearsonr model-index: - name: roberta-base-finetuned-sts results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: sts metrics: - name: Pearsonr type: pearsonr value: 0.956039443806831 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-sts This model is a fine-tuned version of [klue/roberta-base](https://huggingface.co/klue/roberta-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.1999 - Pearsonr: 0.9560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearsonr | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 329 | 0.2462 | 0.9478 | | 1.2505 | 2.0 | 658 | 0.1671 | 0.9530 | | 1.2505 | 3.0 | 987 | 0.1890 | 0.9525 | | 0.133 | 4.0 | 1316 | 0.2360 | 0.9548 | | 0.0886 | 5.0 | 1645 | 0.2265 | 0.9528 | | 0.0886 | 6.0 | 1974 | 0.2097 | 0.9518 | | 0.0687 | 7.0 | 2303 | 0.2281 | 0.9523 | | 0.0539 | 8.0 | 2632 | 0.2212 | 0.9542 | | 0.0539 | 9.0 | 2961 | 0.1843 | 0.9532 | | 0.045 | 10.0 | 3290 | 0.1999 | 0.9560 | | 0.0378 | 11.0 | 3619 | 0.2357 | 0.9533 | | 0.0378 | 12.0 | 3948 | 0.2134 | 0.9541 | | 0.033 | 13.0 | 4277 | 0.2273 | 0.9540 | | 0.03 | 14.0 | 4606 | 0.2148 | 0.9533 | | 0.03 | 15.0 | 4935 | 0.2207 | 0.9534 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/btohtoh
huggingtweets
2022-03-24T01:35:56Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T01:35:48Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1506402743296020484/X79Yfcx5_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BToh</div> <div style="text-align: center; font-size: 14px;">@btohtoh</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BToh. | Data | BToh | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 347 | | Short tweets | 480 | | Tweets kept | 2414 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1xnk5832/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @btohtoh's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2gdcu3k6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2gdcu3k6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/btohtoh') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
microsoft/amos
microsoft
2022-03-24T01:24:38Z
13
1
transformers
[ "transformers", "pytorch", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-24T01:16:31Z
--- license: mit --- # Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators This model card contains the AMOS model (**base++** version) proposed in [this paper](). The official GitHub repository can be found [here](https://github.com/microsoft/AMOS). # Citation If you find this model card useful for your research, please cite the following paper: ``` @inproceedings{meng2022amos, title={Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators}, author={Meng, Yu and Xiong, Chenyan and Bajaj, Payal and Tiwary, Saurabh and Bennett, Paul and Han, Jiawei and Song, Xia}, booktitle={ICLR}, year={2022} } ```
negfir/distilbert-base-uncased-finetuned-cola
negfir
2022-03-24T00:39:00Z
11
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-15T15:29:20Z
--- tags: - generated_from_keras_callback model-index: - name: negfir/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # negfir/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [negfir/uncased_L-12_H-128_A-2](https://huggingface.co/negfir/uncased_L-12_H-128_A-2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6077 - Validation Loss: 0.6185 - Train Matthews Correlation: 0.0 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2670, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.6116 | 0.6187 | 0.0 | 0 | | 0.6070 | 0.6190 | 0.0 | 1 | | 0.6077 | 0.6185 | 0.0 | 2 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
public-data/dlib_face_landmark_model
public-data
2022-03-23T22:54:12Z
0
0
null
[ "region:us" ]
null
2022-03-23T22:52:02Z
# dlib face landmark model - http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
ydshieh/roberta-large-ner-english
ydshieh
2022-03-23T22:24:57Z
36
2
transformers
[ "transformers", "tf", "roberta", "token-classification", "en", "dataset:conll2003", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-23T22:13:16Z
--- language: en datasets: - conll2003 widget: - text: "My name is jean-baptiste and I live in montreal" - text: "My name is clara and I live in berkeley, california." - text: "My name is wolfgang and I live in berlin" --- # roberta-large-ner-english: model fine-tuned from roberta-large for NER task ## Introduction [roberta-large-ner-english] is an english NER model that was fine-tuned from roberta-large on conll2003 dataset. Model was validated on emails/chat data and outperformed other models on this type of data specifically. In particular the model seems to work better on entity that don't start with an upper case. ## Training data Training data was classified as follow: Abbreviation|Description -|- O |Outside of a named entity MISC |Miscellaneous entity PER |Person’s name ORG |Organization LOC |Location In order to simplify, the prefix B- or I- from original conll2003 was removed. I used the train and test dataset from original conll2003 for training and the "validation" dataset for validation. This resulted in a dataset of size: Train | Validation -|- 17494 | 3250 ## How to use camembert-ner with HuggingFace ##### Load camembert-ner and its sub-word tokenizer : ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/roberta-large-ner-english") model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/roberta-large-ner-english") ##### Process text sample (from wikipedia) from transformers import pipeline nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") nlp("Apple was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald Wayne to develop and sell Wozniak's Apple I personal computer") [{'entity_group': 'ORG', 'score': 0.99381506, 'word': ' Apple', 'start': 0, 'end': 5}, {'entity_group': 'PER', 'score': 0.99970853, 'word': ' Steve Jobs', 'start': 29, 'end': 39}, {'entity_group': 'PER', 'score': 0.99981767, 'word': ' Steve Wozniak', 'start': 41, 'end': 54}, {'entity_group': 'PER', 'score': 0.99956465, 'word': ' Ronald Wayne', 'start': 59, 'end': 71}, {'entity_group': 'PER', 'score': 0.9997918, 'word': ' Wozniak', 'start': 92, 'end': 99}, {'entity_group': 'MISC', 'score': 0.99956393, 'word': ' Apple I', 'start': 102, 'end': 109}] ``` ## Model performances Model performances computed on conll2003 validation dataset (computed on the tokens predictions) entity|precision|recall|f1 -|-|-|- PER|0.9914|0.9927|0.9920 ORG|0.9627|0.9661|0.9644 LOC|0.9795|0.9862|0.9828 MISC|0.9292|0.9262|0.9277 Overall|0.9740|0.9766|0.9753 On private dataset (email, chat, informal discussion), computed on word predictions: entity|precision|recall|f1 -|-|-|- PER|0.8823|0.9116|0.8967 ORG|0.7694|0.7292|0.7487 LOC|0.8619|0.7768|0.8171 By comparison on the same private dataset, Spacy (en_core_web_trf-3.2.0) was giving: entity|precision|recall|f1 -|-|-|- PER|0.9146|0.8287|0.8695 ORG|0.7655|0.6437|0.6993 LOC|0.8727|0.6180|0.7236
huggingtweets/coscorrodrift
huggingtweets
2022-03-23T22:21:11Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T21:14:41Z
--- language: en thumbnail: http://www.huggingtweets.com/coscorrodrift/1648073956402/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1363260889164623877/vz-U9f3l_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">coscorrodrift</div> <div style="text-align: center; font-size: 14px;">@coscorrodrift</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from coscorrodrift. | Data | coscorrodrift | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 192 | | Short tweets | 405 | | Tweets kept | 2650 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3elna51z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @coscorrodrift's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2mof7q9s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2mof7q9s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/coscorrodrift') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
bigmorning/my-gpt-model-4
bigmorning
2022-03-23T20:00:04Z
4
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T19:52:49Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my-gpt-model-4 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-gpt-model-4 This model is a fine-tuned version of [bigmorning/my-gpt-model-3](https://huggingface.co/bigmorning/my-gpt-model-3) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.0556 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 5.0556 | 0 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/interrogami
huggingtweets
2022-03-23T19:41:31Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T19:19:40Z
--- language: en thumbnail: http://www.huggingtweets.com/interrogami/1648064415193/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1502292592914046984/F1N4kjHh_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">interrobang</div> <div style="text-align: center; font-size: 14px;">@interrogami</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from interrobang. | Data | interrobang | | --- | --- | | Tweets downloaded | 1453 | | Retweets | 20 | | Short tweets | 139 | | Tweets kept | 1294 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1awhdfgt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @interrogami's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ibo4fum) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ibo4fum/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/interrogami') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
BigSalmon/MASKGPT2
BigSalmon
2022-03-23T19:26:53Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T19:20:45Z
``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ```
DrishtiSharma/wav2vec2-xls-r-sl-a1
DrishtiSharma
2022-03-23T18:35:30Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sl", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - sl license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event - sl datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-sl-a1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sl metrics: - name: Test WER type: wer value: 0.20626555409164105 - name: Test CER type: cer value: 0.051648321634392154 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Test WER type: wer value: 0.5406156320830592 - name: Test CER type: cer value: 0.22249723590310583 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sl metrics: - name: Test WER type: wer value: 55.24 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2756 - Wer: 0.2279 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-sl-a1 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-sl-a1 --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3881 | 6.1 | 500 | 2.9710 | 1.0 | | 2.6401 | 12.2 | 1000 | 1.7677 | 0.9734 | | 1.5152 | 18.29 | 1500 | 0.5564 | 0.6011 | | 1.2191 | 24.39 | 2000 | 0.4319 | 0.4390 | | 1.0237 | 30.49 | 2500 | 0.3141 | 0.3175 | | 0.8892 | 36.59 | 3000 | 0.2748 | 0.2689 | | 0.8296 | 42.68 | 3500 | 0.2680 | 0.2534 | | 0.7602 | 48.78 | 4000 | 0.2820 | 0.2506 | | 0.7186 | 54.88 | 4500 | 0.2672 | 0.2398 | | 0.6887 | 60.98 | 5000 | 0.2729 | 0.2402 | | 0.6507 | 67.07 | 5500 | 0.2767 | 0.2361 | | 0.6226 | 73.17 | 6000 | 0.2817 | 0.2332 | | 0.6024 | 79.27 | 6500 | 0.2679 | 0.2279 | | 0.5787 | 85.37 | 7000 | 0.2837 | 0.2316 | | 0.5744 | 91.46 | 7500 | 0.2838 | 0.2284 | | 0.5556 | 97.56 | 8000 | 0.2763 | 0.2281 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-xls-r-300m-rm-sursilv-d11
DrishtiSharma
2022-03-23T18:35:27Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - rm-sursilv license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-xls-r-300m-rm-sursilv-d11 results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: rm-sursilv metrics: - type: wer value: 0.24094169578811844 name: Test WER - name: Test CER type: cer value: 0.049832791672554284 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: rm-sursilv metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - RM-SURSILV dataset. It achieves the following results on the evaluation set: - Loss: 0.2511 - Wer: 0.2415 #### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-rm-sursilv-d11 --dataset mozilla-foundation/common_voice_8_0 --config rm-sursilv --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Romansh-Sursilv language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 125.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 2.3958 | 17.44 | 1500 | 0.6808 | 0.6521 | | 0.9663 | 34.88 | 3000 | 0.3023 | 0.3718 | | 0.7963 | 52.33 | 4500 | 0.2588 | 0.3046 | | 0.6893 | 69.77 | 6000 | 0.2436 | 0.2718 | | 0.6148 | 87.21 | 7500 | 0.2521 | 0.2572 | | 0.5556 | 104.65 | 9000 | 0.2490 | 0.2442 | | 0.5258 | 122.09 | 10500 | 0.2515 | 0.2442 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v1
DrishtiSharma
2022-03-23T18:35:19Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sl", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - sl license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event - sl datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-sl-with-LM-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sl metrics: - name: Test WER type: wer value: 0.20626555409164105 - name: Test CER type: cer value: 0.051648321634392154 - name: Test WER (+LM) type: wer value: 0.13482652613087395 - name: Test CER (+LM) type: cer value: 0.038838663862562475 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Dev WER type: wer value: 0.5406156320830592 - name: Dev CER type: cer value: 0.22249723590310583 - name: Dev WER (+LM) type: wer value: 0.49783147459727384 - name: Dev CER (+LM) type: cer value: 0.1591062599627158 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sl metrics: - name: Test WER type: wer value: 46.17 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2756 - Wer: 0.2279 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v1 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v1 --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3881 | 6.1 | 500 | 2.9710 | 1.0 | | 2.6401 | 12.2 | 1000 | 1.7677 | 0.9734 | | 1.5152 | 18.29 | 1500 | 0.5564 | 0.6011 | | 1.2191 | 24.39 | 2000 | 0.4319 | 0.4390 | | 1.0237 | 30.49 | 2500 | 0.3141 | 0.3175 | | 0.8892 | 36.59 | 3000 | 0.2748 | 0.2689 | | 0.8296 | 42.68 | 3500 | 0.2680 | 0.2534 | | 0.7602 | 48.78 | 4000 | 0.2820 | 0.2506 | | 0.7186 | 54.88 | 4500 | 0.2672 | 0.2398 | | 0.6887 | 60.98 | 5000 | 0.2729 | 0.2402 | | 0.6507 | 67.07 | 5500 | 0.2767 | 0.2361 | | 0.6226 | 73.17 | 6000 | 0.2817 | 0.2332 | | 0.6024 | 79.27 | 6500 | 0.2679 | 0.2279 | | 0.5787 | 85.37 | 7000 | 0.2837 | 0.2316 | | 0.5744 | 91.46 | 7500 | 0.2838 | 0.2284 | | 0.5556 | 97.56 | 8000 | 0.2763 | 0.2281 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
masapasa/xls-r-300m-it-cv8-ds13
masapasa
2022-03-23T18:35:02Z
7
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "it", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - it license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: it metrics: - name: Test WER type: wer value: 100.0 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: it metrics: - name: Test WER type: wer value: 100.0 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: it metrics: - name: Test WER type: wer value: 100.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.3549 - Wer: 0.3827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4129 | 5.49 | 500 | 3.3224 | 1.0 | | 2.9323 | 10.98 | 1000 | 2.9128 | 1.0000 | | 1.6839 | 16.48 | 1500 | 0.7740 | 0.6854 | | 1.485 | 21.97 | 2000 | 0.5830 | 0.5976 | | 1.362 | 27.47 | 2500 | 0.4866 | 0.4905 | | 1.2752 | 32.96 | 3000 | 0.4240 | 0.4967 | | 1.1957 | 38.46 | 3500 | 0.3899 | 0.4258 | | 1.1646 | 43.95 | 4000 | 0.3597 | 0.4014 | | 1.1265 | 49.45 | 4500 | 0.3559 | 0.3829 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
manifoldix/xlsr-sg-lm
manifoldix
2022-03-23T18:34:59Z
9
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event", "gsw", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: gsw tags: - hf-asr-leaderboard - robust-speech-event widget: - example_title: swiss parliament sample 1 src: https://huggingface.co/manifoldix/xlsr-sg-lm/resolve/main/07e73bcaa2ab192aea9524d72db45f34f274d1b3d5672434c462d32d44d792be.mp3 - example_title: swiss parliament sample 2 src: https://huggingface.co/manifoldix/xlsr-sg-lm/resolve/main/14a2f855363920f111c7b30e8632c19e5f340ab5031e1ed2621db39baf452ae0.mp3 model-index: - name: XLS-R-1b Wav2Vec2 Swiss German results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test WER on Swiss parliament type: wer value: 34.6% - name: Test WER on Swiss dialect test set type: wer value: 40% --- ## XLSR-1b Swiss German Fine-tuned on the Swiss parliament dataset from FHNW v1 (70h). Tested on the Swiss parliament test set with a WER of 34.6% Tested on the "Swiss German Dialects" with a WER of 40% Both test sets can be accessed here: [fhnw_datasets](https://www.cs.technik.fhnw.ch/i4ds-datasets) The Swiss German dialect private test set has been uploaded on huggingface: [huggingface_swiss_dialects](https://huggingface.co/datasets/manifoldix/swg_parliament_fhnw)
infinitejoy/wav2vec2-large-xls-r-300m-hungarian
infinitejoy
2022-03-23T18:34:54Z
9
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "hu", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hu license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - hu - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Hungarian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: hu metrics: - name: Test WER type: wer value: 31.099 - name: Test CER type: cer value: 6.737 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hu metrics: - name: Test WER type: wer value: 45.469 - name: Test CER type: cer value: 15.727 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: hu metrics: - name: Test WER type: wer value: 48.2 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hungarian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HU dataset. It achieves the following results on the evaluation set: - Loss: 0.2562 - Wer: 0.3112 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.3964 | 3.52 | 1000 | 1.2251 | 0.8781 | | 1.3176 | 7.04 | 2000 | 0.3872 | 0.4462 | | 1.1999 | 10.56 | 3000 | 0.3244 | 0.3922 | | 1.1633 | 14.08 | 4000 | 0.3014 | 0.3704 | | 1.1132 | 17.61 | 5000 | 0.2913 | 0.3623 | | 1.0888 | 21.13 | 6000 | 0.2864 | 0.3498 | | 1.0487 | 24.65 | 7000 | 0.2821 | 0.3435 | | 1.0431 | 28.17 | 8000 | 0.2739 | 0.3308 | | 0.9896 | 31.69 | 9000 | 0.2629 | 0.3243 | | 0.9839 | 35.21 | 10000 | 0.2806 | 0.3308 | | 0.9586 | 38.73 | 11000 | 0.2650 | 0.3235 | | 0.9501 | 42.25 | 12000 | 0.2585 | 0.3173 | | 0.938 | 45.77 | 13000 | 0.2561 | 0.3117 | | 0.921 | 49.3 | 14000 | 0.2559 | 0.3115 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-hindi
infinitejoy
2022-03-23T18:34:51Z
19
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "hi", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - hi - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Hindi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 100 - name: Test CER type: cer value: 92.98 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.5414 - Wer: 1.0194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.6095 | 3.38 | 500 | 4.5881 | 0.9999 | | 3.3396 | 6.76 | 1000 | 3.3301 | 1.0001 | | 2.0061 | 10.14 | 1500 | 1.2096 | 1.0063 | | 1.523 | 13.51 | 2000 | 0.7836 | 1.0051 | | 1.3868 | 16.89 | 2500 | 0.6837 | 1.0080 | | 1.2807 | 20.27 | 3000 | 0.6568 | 1.0112 | | 1.231 | 23.65 | 3500 | 0.6120 | 1.0105 | | 1.1673 | 27.03 | 4000 | 0.5972 | 1.0089 | | 1.1416 | 30.41 | 4500 | 0.5780 | 1.0132 | | 1.0738 | 33.78 | 5000 | 0.5806 | 1.0123 | | 1.0771 | 37.16 | 5500 | 0.5586 | 1.0067 | | 1.0287 | 40.54 | 6000 | 0.5464 | 1.0058 | | 1.0106 | 43.92 | 6500 | 0.5407 | 1.0062 | | 0.9538 | 47.3 | 7000 | 0.5334 | 1.0089 | | 0.9607 | 50.68 | 7500 | 0.5395 | 1.0110 | | 0.9108 | 54.05 | 8000 | 0.5502 | 1.0137 | | 0.9252 | 57.43 | 8500 | 0.5498 | 1.0062 | | 0.8943 | 60.81 | 9000 | 0.5448 | 1.0158 | | 0.8728 | 64.19 | 9500 | 0.5257 | 1.0113 | | 0.8577 | 67.57 | 10000 | 0.5550 | 1.0178 | | 0.8332 | 70.95 | 10500 | 0.5607 | 1.0166 | | 0.8174 | 74.32 | 11000 | 0.5429 | 1.0145 | | 0.8168 | 77.7 | 11500 | 0.5561 | 1.0116 | | 0.7872 | 81.08 | 12000 | 0.5478 | 1.0164 | | 0.7707 | 84.46 | 12500 | 0.5412 | 1.0216 | | 0.7742 | 87.84 | 13000 | 0.5391 | 1.0207 | | 0.7594 | 91.22 | 13500 | 0.5379 | 1.0208 | | 0.7678 | 94.59 | 14000 | 0.5415 | 1.0198 | | 0.7502 | 97.97 | 14500 | 0.5409 | 1.0191 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-galician
infinitejoy
2022-03-23T18:34:49Z
32
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "gl", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - gl license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - gl - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Galician results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: gl metrics: - name: Test WER type: wer value: 101.54 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: gl metrics: - name: Test WER type: wer value: 105.69 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: gl metrics: - name: Test WER type: wer value: 101.95 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-galician This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - GL dataset. It achieves the following results on the evaluation set: - Loss: 0.1525 - Wer: 0.1542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0067 | 4.35 | 500 | 2.9632 | 1.0 | | 1.4939 | 8.7 | 1000 | 0.5005 | 0.4157 | | 0.9982 | 13.04 | 1500 | 0.1967 | 0.1857 | | 0.8726 | 17.39 | 2000 | 0.1587 | 0.1564 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
Harveenchadha/odia_large_wav2vec2
Harveenchadha
2022-03-23T18:34:27Z
21
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "or", "robust-speech-event", "dataset:Harveenchadha/indic-voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 language: - or tags: - automatic-speech-recognition - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - or - robust-speech-event datasets: - Harveenchadha/indic-voice model-index: - name: Hindi Large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice type: common_voice args: or metrics: - name: Test WER type: wer value: 54.26 - name: Test CER type: cer value: 11.36 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice-7.0 type: mozilla-foundation/common_voice_7_0 args: or metrics: - name: Test WER type: wer value: 53.58 - name: Test CER type: cer value: 11.26 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice-8.0 type: mozilla-foundation/common_voice_8_0 args: or metrics: - name: Test WER type: wer value: 55.26 - name: Test CER type: cer value: 13.01 ---
AndrewMcDowell/wav2vec2-xls-r-300m-japanese
AndrewMcDowell
2022-03-23T18:34:20Z
38
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "ja", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - ja - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300-m results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER type: wer value: 95.82 - name: Test CER type: cer value: 23.64 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: de metrics: - name: Test WER type: wer value: 100.0 - name: Test CER type: cer value: 30.99 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Test CER type: cer value: 30.37 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 34.42 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA dataset. Kanji are converted into Hiragana using the [pykakasi](https://pykakasi.readthedocs.io/en/latest/index.html) library during training and evaluation. The model can output both Hiragana and Katakana characters. Since there is no spacing, WER is not a suitable metric for evaluating performance and CER is more suitable. On mozilla-foundation/common_voice_8_0 it achieved: - cer: 23.64% On speech-recognition-community-v2/dev_data it achieved: - cer: 30.99% It achieves the following results on the evaluation set: - Loss: 0.5212 - Wer: 1.3068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 48 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.0974 | 4.72 | 1000 | 4.0178 | 1.9535 | | 2.1276 | 9.43 | 2000 | 0.9301 | 1.2128 | | 1.7622 | 14.15 | 3000 | 0.7103 | 1.5527 | | 1.6397 | 18.87 | 4000 | 0.6729 | 1.4269 | | 1.5468 | 23.58 | 5000 | 0.6087 | 1.2497 | | 1.4885 | 28.3 | 6000 | 0.5786 | 1.3222 | | 1.451 | 33.02 | 7000 | 0.5726 | 1.3768 | | 1.3912 | 37.74 | 8000 | 0.5518 | 1.2497 | | 1.3617 | 42.45 | 9000 | 0.5352 | 1.2694 | | 1.3113 | 47.17 | 10000 | 0.5228 | 1.2781 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-japanese --dataset mozilla-foundation/common_voice_8_0 --config ja --split test --log_outputs ``` 2. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-japanese --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
vutankiet2901/wav2vec2-xls-r-1b-ja
vutankiet2901
2022-03-23T18:34:17Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common-voice", "hf-asr-leaderboard", "ja", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - ja tags: - automatic-speech-recognition - common-voice - hf-asr-leaderboard - ja - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-1b results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 11.77 - name: Test CER (with LM) type: cer value: 5.22 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 12.23 - name: Test CER (with LM) type: cer value: 5.33 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Test WER (with LM) type: wer value: 29.35 - name: Test CER (with LM) type: cer value: 16.43 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 19.48 --- ## Model description This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA ### Benchmark WER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 16.97 | 17.95 | |with 4-grams LM| 11.77 | 12.23| ### Benchmark CER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 6.82 | 7.05 | |with 4-grams LM| 5.22 | 5.33 | ## Evaluation Please use the eval.py file to run the evaluation: ```python pip install mecab-python3 unidic-lite pykakasi python eval.py --model_id vutankiet2901/wav2vec2-xls-r-1b-ja --dataset mozilla-foundation/common_voice_8_0 --config ja --split test --log_outputs ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 3.484 | 9.49 | 1500 | 1.1849 | 0.7543 | 0.4099 | | 1.3582 | 18.98 | 3000 | 0.4320 | 0.3489 | 0.1591 | | 1.1716 | 28.48 | 4500 | 0.3835 | 0.3175 | 0.1454 | | 1.0951 | 37.97 | 6000 | 0.3732 | 0.3033 | 0.1405 | | 1.04 | 47.47 | 7500 | 0.3485 | 0.2898 | 0.1360 | | 0.9768 | 56.96 | 9000 | 0.3386 | 0.2787 | 0.1309 | | 0.9129 | 66.45 | 10500 | 0.3363 | 0.2711 | 0.1272 | | 0.8614 | 75.94 | 12000 | 0.3386 | 0.2676 | 0.1260 | | 0.8092 | 85.44 | 13500 | 0.3356 | 0.2610 | 0.1240 | | 0.7658 | 94.93 | 15000 | 0.3316 | 0.2564 | 0.1218 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
shahukareem/xls-r-300m-dv
shahukareem
2022-03-23T18:34:14Z
57
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "dv", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - dv license: apache-2.0 tags: - automatic-speech-recognition - dv - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Dhivehi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: dv metrics: - name: Test WER type: wer value: 21.31 - name: Test CER type: cer value: 3.82 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-dv This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2855 - Wer: 0.2665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.3386 | 0.66 | 400 | 1.1411 | 0.9432 | | 0.6543 | 1.33 | 800 | 0.5099 | 0.6749 | | 0.4646 | 1.99 | 1200 | 0.4133 | 0.5968 | | 0.3748 | 2.65 | 1600 | 0.3534 | 0.5515 | | 0.3323 | 3.32 | 2000 | 0.3635 | 0.5527 | | 0.3269 | 3.98 | 2400 | 0.3587 | 0.5423 | | 0.2984 | 4.64 | 2800 | 0.3340 | 0.5073 | | 0.2841 | 5.31 | 3200 | 0.3279 | 0.5004 | | 0.2664 | 5.97 | 3600 | 0.3114 | 0.4845 | | 0.2397 | 6.63 | 4000 | 0.3174 | 0.4920 | | 0.2332 | 7.3 | 4400 | 0.3110 | 0.4911 | | 0.2304 | 7.96 | 4800 | 0.3123 | 0.4785 | | 0.2134 | 8.62 | 5200 | 0.2984 | 0.4557 | | 0.2066 | 9.29 | 5600 | 0.3013 | 0.4723 | | 0.1951 | 9.95 | 6000 | 0.2934 | 0.4487 | | 0.1806 | 10.61 | 6400 | 0.2802 | 0.4547 | | 0.1727 | 11.28 | 6800 | 0.2842 | 0.4333 | | 0.1666 | 11.94 | 7200 | 0.2873 | 0.4272 | | 0.1562 | 12.6 | 7600 | 0.3042 | 0.4373 | | 0.1483 | 13.27 | 8000 | 0.3122 | 0.4313 | | 0.1465 | 13.93 | 8400 | 0.2760 | 0.4226 | | 0.1335 | 14.59 | 8800 | 0.3112 | 0.4243 | | 0.1293 | 15.26 | 9200 | 0.3002 | 0.4133 | | 0.1264 | 15.92 | 9600 | 0.2985 | 0.4145 | | 0.1179 | 16.58 | 10000 | 0.2925 | 0.4012 | | 0.1171 | 17.25 | 10400 | 0.3127 | 0.4012 | | 0.1141 | 17.91 | 10800 | 0.2980 | 0.3908 | | 0.108 | 18.57 | 11200 | 0.3108 | 0.3951 | | 0.1045 | 19.24 | 11600 | 0.3269 | 0.3908 | | 0.1047 | 19.9 | 12000 | 0.2998 | 0.3868 | | 0.0937 | 20.56 | 12400 | 0.2918 | 0.3875 | | 0.0949 | 21.23 | 12800 | 0.2906 | 0.3657 | | 0.0879 | 21.89 | 13200 | 0.2974 | 0.3731 | | 0.0854 | 22.55 | 13600 | 0.2943 | 0.3711 | | 0.0851 | 23.22 | 14000 | 0.2919 | 0.3580 | | 0.0789 | 23.88 | 14400 | 0.2983 | 0.3560 | | 0.0796 | 24.54 | 14800 | 0.3131 | 0.3544 | | 0.0761 | 25.21 | 15200 | 0.2996 | 0.3616 | | 0.0755 | 25.87 | 15600 | 0.2972 | 0.3506 | | 0.0726 | 26.53 | 16000 | 0.2902 | 0.3474 | | 0.0707 | 27.2 | 16400 | 0.3083 | 0.3480 | | 0.0669 | 27.86 | 16800 | 0.3035 | 0.3330 | | 0.0637 | 28.52 | 17200 | 0.2963 | 0.3370 | | 0.0596 | 29.19 | 17600 | 0.2830 | 0.3326 | | 0.0583 | 29.85 | 18000 | 0.2969 | 0.3287 | | 0.0566 | 30.51 | 18400 | 0.3002 | 0.3480 | | 0.0574 | 31.18 | 18800 | 0.2916 | 0.3296 | | 0.0536 | 31.84 | 19200 | 0.2933 | 0.3225 | | 0.0548 | 32.5 | 19600 | 0.2900 | 0.3179 | | 0.0506 | 33.17 | 20000 | 0.3073 | 0.3225 | | 0.0511 | 33.83 | 20400 | 0.2925 | 0.3275 | | 0.0483 | 34.49 | 20800 | 0.2919 | 0.3245 | | 0.0456 | 35.16 | 21200 | 0.2859 | 0.3105 | | 0.0445 | 35.82 | 21600 | 0.2864 | 0.3080 | | 0.0437 | 36.48 | 22000 | 0.2989 | 0.3084 | | 0.04 | 37.15 | 22400 | 0.2887 | 0.3060 | | 0.0406 | 37.81 | 22800 | 0.2870 | 0.3013 | | 0.0397 | 38.47 | 23200 | 0.2793 | 0.3020 | | 0.0383 | 39.14 | 23600 | 0.2955 | 0.2943 | | 0.0345 | 39.8 | 24000 | 0.2813 | 0.2905 | | 0.0331 | 40.46 | 24400 | 0.2845 | 0.2845 | | 0.0338 | 41.13 | 24800 | 0.2832 | 0.2925 | | 0.0333 | 41.79 | 25200 | 0.2889 | 0.2849 | | 0.0325 | 42.45 | 25600 | 0.2808 | 0.2847 | | 0.0314 | 43.12 | 26000 | 0.2867 | 0.2801 | | 0.0288 | 43.78 | 26400 | 0.2865 | 0.2834 | | 0.0291 | 44.44 | 26800 | 0.2863 | 0.2806 | | 0.0269 | 45.11 | 27200 | 0.2941 | 0.2736 | | 0.0275 | 45.77 | 27600 | 0.2897 | 0.2736 | | 0.0271 | 46.43 | 28000 | 0.2857 | 0.2695 | | 0.0251 | 47.1 | 28400 | 0.2881 | 0.2702 | | 0.0243 | 47.76 | 28800 | 0.2901 | 0.2684 | | 0.0244 | 48.42 | 29200 | 0.2849 | 0.2679 | | 0.0232 | 49.09 | 29600 | 0.2849 | 0.2677 | | 0.0224 | 49.75 | 30000 | 0.2855 | 0.2665 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-welsh
infinitejoy
2022-03-23T18:33:58Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "cy", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - cy license: apache-2.0 tags: - automatic-speech-recognition - cy - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Welsh results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: cy metrics: - name: Test WER type: wer value: 31.003 - name: Test CER type: cer value: 7.775 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-welsh This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - CY dataset. It achieves the following results on the evaluation set: - Loss: 0.2650 - Wer: 0.2702 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 3000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.3454 | 8.2 | 3000 | 0.4926 | 0.5703 | | 1.1202 | 16.39 | 6000 | 0.3529 | 0.3944 | | 1.0058 | 24.59 | 9000 | 0.3143 | 0.3341 | | 0.9287 | 32.79 | 12000 | 0.2896 | 0.2980 | | 0.8849 | 40.98 | 15000 | 0.2727 | 0.2798 | | 0.8665 | 49.18 | 18000 | 0.2662 | 0.2696 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-romanian
infinitejoy
2022-03-23T18:33:55Z
471
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "ro", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ro license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - ro - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Romanian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ro metrics: - name: Test WER type: wer value: 14.194 - name: Test CER type: cer value: 3.288 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ro metrics: - name: Test WER type: wer value: 40.869 - name: Test CER type: cer value: 12.049 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ro metrics: - name: Test WER type: wer value: 47.2 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-romanian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - RO dataset. It achieves the following results on the evaluation set: - Loss: 0.1167 - Wer: 0.1421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.1973 | 8.89 | 2000 | 0.4481 | 0.4849 | | 0.6005 | 17.78 | 4000 | 0.1420 | 0.1777 | | 0.5248 | 26.67 | 6000 | 0.1303 | 0.1651 | | 0.4871 | 35.56 | 8000 | 0.1207 | 0.1523 | | 0.4428 | 44.44 | 10000 | 0.1143 | 0.1425 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-mongolian
infinitejoy
2022-03-23T18:33:52Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mn", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mn license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mn - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Mongolian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: mn metrics: - name: Test WER type: wer value: 44.709 - name: Test CER type: cer value: 13.532 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: mn metrics: - name: Test WER type: wer value: 76.643 - name: Test CER type: cer value: 36.997 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: mn metrics: - name: Test WER type: wer value: 78.45 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-mongolian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - MN dataset. It achieves the following results on the evaluation set: - Loss: 0.6003 - Wer: 0.4473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.3677 | 15.87 | 2000 | 0.6432 | 0.6198 | | 1.1379 | 31.75 | 4000 | 0.6196 | 0.5592 | | 1.0093 | 47.62 | 6000 | 0.5828 | 0.5117 | | 0.8888 | 63.49 | 8000 | 0.5754 | 0.4822 | | 0.7985 | 79.37 | 10000 | 0.5987 | 0.4690 | | 0.697 | 95.24 | 12000 | 0.6014 | 0.4471 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-basaa
infinitejoy
2022-03-23T18:33:50Z
10
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "bas", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - bas license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Basaa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: bas metrics: - name: Test WER type: wer value: 104.08 - name: Test CER type: cer value: 228.48 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-basaa This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BAS dataset. It achieves the following results on the evaluation set: - Loss: 0.5975 - Wer: 0.4981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 2.9287 | 15.62 | 500 | 2.8774 | 1.0 | | 1.1182 | 31.25 | 1000 | 0.6248 | 0.7131 | | 0.8329 | 46.88 | 1500 | 0.5573 | 0.5792 | | 0.7109 | 62.5 | 2000 | 0.5420 | 0.5683 | | 0.6295 | 78.12 | 2500 | 0.5166 | 0.5395 | | 0.5715 | 93.75 | 3000 | 0.5487 | 0.5629 | | 0.5016 | 109.38 | 3500 | 0.5370 | 0.5471 | | 0.4661 | 125.0 | 4000 | 0.5621 | 0.5395 | | 0.423 | 140.62 | 4500 | 0.5658 | 0.5248 | | 0.3793 | 156.25 | 5000 | 0.5921 | 0.4981 | | 0.3651 | 171.88 | 5500 | 0.5987 | 0.4888 | | 0.3351 | 187.5 | 6000 | 0.6017 | 0.4948 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
LegolasTheElf/Wav2Vec2_xls_r_lm_300m_hi
LegolasTheElf
2022-03-23T18:33:41Z
11
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "Openslr Multilingual", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "hi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - hi license: apache-2.0 tags: - Openslr Multilingual - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: Wav2Vec2_xls_r_300m_hi_final results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 34.21 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Wav2Vec2_xls_r_300m_hi_final This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the ['Openslr Multilingual and code-switching ASR challenge'](http://www.openslr.org/103/) dataset and ['mozilla-foundation/common_voice_7_0'](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) dataset. It achieves the following results on the evaluation set: - Loss: 0.3035 - Wer: 0.3137 - Cer: 0.0972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.9821 | 0.64 | 400 | 0.5059 | 0.4783 | 0.1573 | | 0.6861 | 1.28 | 800 | 0.4201 | 0.4247 | 0.1356 | | 0.585 | 1.92 | 1200 | 0.3797 | 0.3811 | 0.1210 | | 0.5193 | 2.56 | 1600 | 0.3577 | 0.3652 | 0.1152 | | 0.4583 | 3.21 | 2000 | 0.3422 | 0.3519 | 0.1111 | | 0.4282 | 3.85 | 2400 | 0.3261 | 0.3450 | 0.1071 | | 0.3951 | 4.49 | 2800 | 0.3201 | 0.3325 | 0.1048 | | 0.3619 | 5.13 | 3200 | 0.3167 | 0.3296 | 0.1030 | | 0.345 | 5.77 | 3600 | 0.3157 | 0.3210 | 0.1013 | | 0.338 | 6.41 | 4000 | 0.3051 | 0.3143 | 0.0982 | | 0.3155 | 7.05 | 4400 | 0.3059 | 0.3154 | 0.0986 | | 0.3057 | 7.69 | 4800 | 0.3035 | 0.3137 | 0.0972 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
Harveenchadha/vakyansh_hindi_base_pretrained
Harveenchadha
2022-03-23T18:33:38Z
5
1
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "hf-asr-leaderboard", "hi", "model_for_talk", "pretrained", "robust-speech-event", "speech", "arxiv:2107.07402", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04Z
--- language: hi tags: - hf-asr-leaderboard - hi - model_for_talk - pretrained - robust-speech-event - speech license: apache-2.0 --- Hindi Pretrained model on 4200 hours. [Link](https://arxiv.org/abs/2107.07402)
Akashpb13/xlsr_hungarian_new
Akashpb13
2022-03-23T18:33:33Z
41
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "hu", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - hu license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - hu - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: Akashpb13/xlsr_hungarian_new results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hu metrics: - name: Test WER type: wer value: 0.2851621517163838 - name: Test CER type: cer value: 0.06112982522287432 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hu metrics: - name: Test WER type: wer value: 0.2851621517163838 - name: Test CER type: cer value: 0.06112982522287432 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: hu metrics: - name: Test WER type: wer value: 47.15 --- # Akashpb13/xlsr_hungarian_new This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - hu dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with invalidated data, reported, other and dev datasets): - Loss: 0.197464 - Wer: 0.330094 ## Model description "facebook/wav2vec2-xls-r-300m" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice hungarian train.tsv, dev.tsv, invalidated.tsv, reported.tsv, and other.tsv Only those points were considered where upvotes were greater than downvotes and duplicates were removed after concatenation of all the datasets given in common voice 7.0 ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000095637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 16 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 500 | 4.785300 | 0.952295 | 0.796236 | | 1000 | 0.535800 | 0.217474 | 0.381613 | | 1500 | 0.258400 | 0.205524 | 0.345056 | | 2000 | 0.202800 | 0.198680 | 0.336264 | | 2500 | 0.182700 | 0.197464 | 0.330094 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id Akashpb13/xlsr_hungarian_new --dataset mozilla-foundation/common_voice_8_0 --config hu --split test ```
shivam/wav2vec2-xls-r-hindi
shivam
2022-03-23T18:33:12Z
5
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "hi", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - hi - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer - cer model-index: - name: shivam/wav2vec2-xls-r-hindi results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice Corpus 7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 52.3 - name: Test CER type: cer value: 26.09 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 1.2282 - Wer: 0.6838 ## Evaluation results on Common Voice 7 "test" (Running ./eval.py): ### With LM - WER: 52.30 - CER: 26.09 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.3155 | 3.4 | 500 | 4.5582 | 1.0 | | 3.3369 | 6.8 | 1000 | 3.4269 | 1.0 | | 2.1785 | 10.2 | 1500 | 1.7191 | 0.8831 | | 1.579 | 13.6 | 2000 | 1.3604 | 0.7647 | | 1.3773 | 17.01 | 2500 | 1.2737 | 0.7519 | | 1.3165 | 20.41 | 3000 | 1.2457 | 0.7401 | | 1.2274 | 23.81 | 3500 | 1.3617 | 0.7301 | | 1.1787 | 27.21 | 4000 | 1.2068 | 0.7010 | | 1.1467 | 30.61 | 4500 | 1.2416 | 0.6946 | | 1.0801 | 34.01 | 5000 | 1.2312 | 0.6990 | | 1.0709 | 37.41 | 5500 | 1.2984 | 0.7138 | | 1.0307 | 40.81 | 6000 | 1.2049 | 0.6871 | | 1.0003 | 44.22 | 6500 | 1.1956 | 0.6841 | | 1.004 | 47.62 | 7000 | 1.2101 | 0.6793 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
samitizerxu/wav2vec2-xls-r-300m-fr
samitizerxu
2022-03-23T18:33:04Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "fr", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - fr - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-cls-r-300m-fr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER type: wer value: 56.62 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: fr metrics: - name: Test WER type: wer value: 58.22 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-cls-r-300m-fr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - FR dataset. It achieves the following results on the evaluation set: - Loss: 0.6521 - Wer: 0.4330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.6773 | 0.8 | 500 | 1.3907 | 0.9864 | | 0.9526 | 1.6 | 1000 | 0.7760 | 0.6448 | | 0.6418 | 2.4 | 1500 | 0.7605 | 0.6194 | | 0.5028 | 3.2 | 2000 | 0.6516 | 0.5322 | | 0.4133 | 4.0 | 2500 | 0.6303 | 0.5097 | | 0.3285 | 4.8 | 3000 | 0.6422 | 0.5062 | | 0.2764 | 5.6 | 3500 | 0.5936 | 0.4748 | | 0.2361 | 6.4 | 4000 | 0.6486 | 0.4683 | | 0.2049 | 7.2 | 4500 | 0.6321 | 0.4532 | | 0.176 | 8.0 | 5000 | 0.6230 | 0.4482 | | 0.1393 | 8.8 | 5500 | 0.6595 | 0.4403 | | 0.1141 | 9.6 | 6000 | 0.6552 | 0.4348 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-basaa-cv8
infinitejoy
2022-03-23T18:32:58Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "bas", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - bas license: apache-2.0 tags: - automatic-speech-recognition - bas - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Basaa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: bas metrics: - name: Test WER type: wer value: 38.057 - name: Test CER type: cer value: 11.233 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-basaa-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BAS dataset. It achieves the following results on the evaluation set: - Loss: 0.4648 - Wer: 0.5472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9421 | 12.82 | 500 | 2.8894 | 1.0 | | 1.1872 | 25.64 | 1000 | 0.6688 | 0.7460 | | 0.8894 | 38.46 | 1500 | 0.4868 | 0.6516 | | 0.769 | 51.28 | 2000 | 0.4960 | 0.6507 | | 0.6936 | 64.1 | 2500 | 0.4781 | 0.5384 | | 0.624 | 76.92 | 3000 | 0.4643 | 0.5430 | | 0.5966 | 89.74 | 3500 | 0.4530 | 0.5591 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
comodoro/wav2vec2-xls-r-300m-cs
comodoro
2022-03-23T18:32:48Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "xlsr-fine-tuning-week", "cs", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - cs license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - robust-speech-event - xlsr-fine-tuning-week datasets: - common_voice model-index: - name: Czech comodoro Wav2Vec2 XLSR 300M CV6.1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: common_voice args: cs metrics: - name: Test WER type: wer value: 22.2 - name: Test CER type: cer value: 5.1 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: cs metrics: - name: Test WER type: wer value: 66.78 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: cs metrics: - name: Test WER type: wer value: 57.52 --- # Wav2Vec2-Large-XLSR-53-Czech Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cs", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs") model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Czech test data of Common Voice 6.1 ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "cs", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs") model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\/\"\“\„\%\”\�\–\'\`\«\»\—\’\…]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 22.20 % ## Training The Common Voice `train` and `validation` datasets were used for training # TODO The script used for training can be found [here](...)
AlexN/xls-r-300m-fr
AlexN
2022-03-23T18:32:43Z
56
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "fr", "dataset:mozilla-foundation/common_voice_8_0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - fr tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-300m-fr results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 fr type: mozilla-foundation/common_voice_8_0 args: fr metrics: - name: Test WER type: wer value: 21.58 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER type: wer value: 36.03 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: fr metrics: - name: Test WER type: wer value: 38.86 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FR dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2700 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
sammy786/wav2vec2-xlsr-tatar
sammy786
2022-03-23T18:32:40Z
4
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "tt", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - tt license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event - tt datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-tatar results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: tt metrics: - name: Test WER type: wer value: 16.87 - name: Test CER type: cer value: 3.64 --- # sammy786/wav2vec2-xlsr-tatar This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - tt dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 7.66 - Wer: 7.08 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |-------|---------------|-----------------|----------| | 200 | 4.849400 | 1.874908 | 0.995232 | | 400 | 1.105700 | 0.257292 | 0.367658 | | 600 | 0.723000 | 0.181150 | 0.250513 | | 800 | 0.660600 | 0.167009 | 0.226078 | | 1000 | 0.568000 | 0.135090 | 0.177339 | | 1200 | 0.721200 | 0.117469 | 0.166413 | | 1400 | 0.416300 | 0.115142 | 0.153765 | | 1600 | 0.346000 | 0.105782 | 0.153963 | | 1800 | 0.279700 | 0.102452 | 0.146149 | | 2000 | 0.273800 | 0.095818 | 0.128468 | | 2200 | 0.252900 | 0.102302 | 0.133766 | | 2400 | 0.255100 | 0.096592 | 0.121316 | | 2600 | 0.229600 | 0.091263 | 0.124561 | | 2800 | 0.213900 | 0.097748 | 0.125687 | | 3000 | 0.210700 | 0.091244 | 0.125422 | | 3200 | 0.202600 | 0.084076 | 0.106284 | | 3400 | 0.200900 | 0.093809 | 0.113238 | | 3600 | 0.192700 | 0.082918 | 0.108139 | | 3800 | 0.182000 | 0.084487 | 0.103371 | | 4000 | 0.167700 | 0.091847 | 0.104960 | | 4200 | 0.183700 | 0.085223 | 0.103040 | | 4400 | 0.174400 | 0.083862 | 0.100589 | | 4600 | 0.163100 | 0.086493 | 0.099728 | | 4800 | 0.162000 | 0.081734 | 0.097543 | | 5000 | 0.153600 | 0.077223 | 0.092974 | | 5200 | 0.153700 | 0.086217 | 0.090789 | | 5400 | 0.140200 | 0.093256 | 0.100457 | | 5600 | 0.142900 | 0.086903 | 0.097742 | | 5800 | 0.131400 | 0.083068 | 0.095225 | | 6000 | 0.126000 | 0.086642 | 0.091252 | | 6200 | 0.135300 | 0.083387 | 0.091186 | | 6400 | 0.126100 | 0.076479 | 0.086352 | | 6600 | 0.127100 | 0.077868 | 0.086153 | | 6800 | 0.118000 | 0.083878 | 0.087676 | | 7000 | 0.117600 | 0.085779 | 0.091054 | | 7200 | 0.113600 | 0.084197 | 0.084233 | | 7400 | 0.112000 | 0.078688 | 0.081319 | | 7600 | 0.110200 | 0.082534 | 0.086087 | | 7800 | 0.106400 | 0.077245 | 0.080988 | | 8000 | 0.102300 | 0.077497 | 0.079332 | | 8200 | 0.109500 | 0.079083 | 0.088339 | | 8400 | 0.095900 | 0.079721 | 0.077809 | | 8600 | 0.094700 | 0.079078 | 0.079730 | | 8800 | 0.097400 | 0.078785 | 0.079200 | | 9000 | 0.093200 | 0.077445 | 0.077015 | | 9200 | 0.088700 | 0.078207 | 0.076617 | | 9400 | 0.087200 | 0.078982 | 0.076485 | | 9600 | 0.089900 | 0.081209 | 0.076021 | | 9800 | 0.081900 | 0.078158 | 0.075757 | | 10000 | 0.080200 | 0.078074 | 0.074498 | | 10200 | 0.085000 | 0.078830 | 0.073373 | | 10400 | 0.080400 | 0.078144 | 0.073373 | | 10600 | 0.078200 | 0.077163 | 0.073902 | | 10800 | 0.080900 | 0.076394 | 0.072446 | | 11000 | 0.080700 | 0.075955 | 0.071585 | | 11200 | 0.076800 | 0.077031 | 0.072313 | | 11400 | 0.076300 | 0.077401 | 0.072777 | | 11600 | 0.076700 | 0.076613 | 0.071916 | | 11800 | 0.076000 | 0.076672 | 0.071916 | | 12000 | 0.077200 | 0.076490 | 0.070989 | | 12200 | 0.076200 | 0.076688 | 0.070856 | | 12400 | 0.074400 | 0.076780 | 0.071055 | | 12600 | 0.076300 | 0.076768 | 0.071320 | | 12800 | 0.077600 | 0.076727 | 0.071055 | | 13000 | 0.077700 | 0.076714 | 0.071254 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-tatar --dataset mozilla-foundation/common_voice_8_0 --config tt --split test ```
infinitejoy/wav2vec2-large-xls-r-300m-urdu
infinitejoy
2022-03-23T18:30:21Z
9
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "ur", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event - ur datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Urdu results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ur metrics: - name: Test WER type: wer value: 105.66 - name: Test CER type: cer value: 434.011 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> infinitejoy/wav2vec2-large-xls-r-300m-urdu This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - -UR dataset. It achieves the following results on the evaluation set: - Loss: NA - Wer: NA ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py \ --model_id infinitejoy/wav2vec2-large-xls-r-300m-urdu --dataset speech-recognition-community-v2/dev_data \ --config ur --split validation --chunk_length_s 10 --stride_length_s 1 ``` ### Inference ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "infinitejoy/wav2vec2-large-xls-r-300m-urdu" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "ur", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text ``` ### Eval results on Common Voice 7 "test" (WER):
infinitejoy/wav2vec2-large-xls-r-300m-bashkir
infinitejoy
2022-03-23T18:30:18Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "ba", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ba license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Bashkir results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ba metrics: - name: Test WER type: wer value: 24.2 - name: Test CER type: cer value: 5.08 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-bashkir This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BA dataset. It achieves the following results on the evaluation set: - Loss: 0.1892 - Wer: 0.2421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.4792 | 0.5 | 2000 | 0.4598 | 0.5404 | | 1.449 | 1.0 | 4000 | 0.4650 | 0.5610 | | 1.3742 | 1.49 | 6000 | 0.4001 | 0.4977 | | 1.3375 | 1.99 | 8000 | 0.3916 | 0.4894 | | 1.2961 | 2.49 | 10000 | 0.3641 | 0.4569 | | 1.2714 | 2.99 | 12000 | 0.3491 | 0.4488 | | 1.2399 | 3.48 | 14000 | 0.3151 | 0.3986 | | 1.2067 | 3.98 | 16000 | 0.3081 | 0.3923 | | 1.1842 | 4.48 | 18000 | 0.2875 | 0.3703 | | 1.1644 | 4.98 | 20000 | 0.2840 | 0.3670 | | 1.161 | 5.48 | 22000 | 0.2790 | 0.3597 | | 1.1303 | 5.97 | 24000 | 0.2552 | 0.3272 | | 1.0874 | 6.47 | 26000 | 0.2405 | 0.3142 | | 1.0613 | 6.97 | 28000 | 0.2352 | 0.3055 | | 1.0498 | 7.47 | 30000 | 0.2249 | 0.2910 | | 1.021 | 7.96 | 32000 | 0.2118 | 0.2752 | | 1.0002 | 8.46 | 34000 | 0.2046 | 0.2662 | | 0.9762 | 8.96 | 36000 | 0.1969 | 0.2530 | | 0.9568 | 9.46 | 38000 | 0.1917 | 0.2449 | | 0.953 | 9.96 | 40000 | 0.1893 | 0.2425 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
vitouphy/wav2vec2-xls-r-300m-japanese
vitouphy
2022-03-23T18:30:07Z
20
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "ja", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "doi:10.57967/hf/0124", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - ja - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Japanese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER type: wer value: 54.05 - name: Test CER type: cer value: 27.54 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Validation WER type: wer value: 48.77 - name: Validation CER type: cer value: 24.87 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 27.36 --- # This model is for transcribing audio into Hiragana, one format of Japanese language. This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the `mozilla-foundation/common_voice_8_0 dataset`. Note that the following results are achieved by: - Modify `eval.py` to suit the use case. - Since kanji and katakana shares the same sound as hiragana, we convert all texts to hiragana using [pykakasi](https://pykakasi.readthedocs.io) and tokenize them using [fugashi](https://github.com/polm/fugashi). It achieves the following results on the evaluation set: - Loss: 0.7751 - Cer: 0.2227 # Evaluation results (Running ./eval.py): | Model | Metric | Common-Voice-8/test | speech-recognition-community-v2/dev-data | |:--------:|:------:|:-------------------:|:------------------------------------------:| | w/o LM | WER | 0.5964 | 0.5532 | | | CER | 0.2944 | 0.2629 | | w/ LM | WER | 0.5405 | 0.4877 | | | CER | **0.2754** | **0.2487** | ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.4081 | 1.6 | 500 | 4.0983 | 1.0 | | 3.303 | 3.19 | 1000 | 3.3563 | 1.0 | | 3.1538 | 4.79 | 1500 | 3.2066 | 0.9239 | | 2.1526 | 6.39 | 2000 | 1.1597 | 0.3355 | | 1.8726 | 7.98 | 2500 | 0.9023 | 0.2505 | | 1.7817 | 9.58 | 3000 | 0.8219 | 0.2334 | | 1.7488 | 11.18 | 3500 | 0.7915 | 0.2222 | | 1.7039 | 12.78 | 4000 | 0.7751 | 0.2227 | | Stop & Train | | | | | | 1.6571 | 15.97 | 5000 | 0.6788 | 0.1685 | | 1.520400 | 19.16 | 6000 | 0.6095 | 0.1409 | | 1.448200 | 22.35 | 7000 | 0.5843 | 0.1430 | | 1.385400 | 25.54 | 8000 | 0.5699 | 0.1263 | | 1.354200 | 28.73 | 9000 | 0.5686 | 0.1219 | | 1.331500 | 31.92 | 10000 | 0.5502 | 0.1144 | | 1.290800 | 35.11 | 11000 | 0.5371 | 0.1140 | | Stop & Train | | | | | | 1.235200 | 38.30 | 12000 | 0.5394 | 0.1106 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
phantomcoder1996/wav2vec2-large-xls-r-300m-arabic-colab
phantomcoder1996
2022-03-23T18:30:02Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event", "ar", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ar thumbnail: wav2vec2-large-xls-r fine tuned on common voice data for Modern Standard Arabic tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event license: apache-2.0 datasets: - mozilla-foundation/common_voice_7_0 metrics: - WER model-index: - name: wav2vec2-large-xls-r-300m-arabic-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: ar metrics: - name: Test WER type: wer value: 64.38 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: 96.15 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ar metrics: - name: Test WER type: wer value: 94.96 ---
jsnfly/wav2vec2-large-xlsr-53-german-gpt2
jsnfly
2022-03-23T18:29:57Z
21
2
transformers
[ "transformers", "pytorch", "speech-encoder-decoder", "automatic-speech-recognition", "de", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: Wav2Vec2-Large-XLSR-53-German-GPT2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: de metrics: - name: Test WER type: wer value: 10.02 - name: Test CER type: cer value: 4.7 --- # Wav2Vec2-Large-XLSR-53-German-GPT2 This is an encoder-decoder model for automatic speech recognition trained on on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - DE dataset. The encoder was initialized from [jonatasgrosman/wav2vec2-large-xlsr-53-german](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german) and the decoder from [dbmdz/german-gpt2](https://huggingface.co/dbmdz/german-gpt2). It was trained using a two step process: * fine-tuning only the cross-attention weights and the decoder using the pre-computed outputs of the Wav2Vec-Modell * relatively fast training * also works on small GPU (eg. 8 GB) * but may take a lot of disk space * should already yield decent results * fine-tuning the model end-to-end * much slower * needs a bigger GPU There is also one trick, which seemed to improve performance significantly: adding position embeddings to the encoder outputs and initializing them with the pre-trained position embeddings of the GPT2 model (See `eval.py`). The training notebooks are still early drafts. Also results can probably improved a lot by using for example a learning rate schedule.
ubamba98/wav2vec2-xls-r-300m-CV8-ro
ubamba98
2022-03-23T18:29:44Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "ro", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ro license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-300m-CV8-ro results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-CV8-ro This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - RO dataset. It achieves the following results on the evaluation set: - Loss: 0.1578 - Wer: 0.6040 - Cer: 0.0475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 2.9736 | 3.62 | 500 | 2.9508 | 1.0 | 1.0 | | 1.3293 | 7.25 | 1000 | 0.3330 | 0.8407 | 0.0862 | | 0.956 | 10.87 | 1500 | 0.2042 | 0.6872 | 0.0602 | | 0.9509 | 14.49 | 2000 | 0.2184 | 0.7088 | 0.0652 | | 0.9272 | 18.12 | 2500 | 0.2312 | 0.7211 | 0.0703 | | 0.8561 | 21.74 | 3000 | 0.2158 | 0.6838 | 0.0631 | | 0.8258 | 25.36 | 3500 | 0.1970 | 0.6844 | 0.0601 | | 0.7993 | 28.98 | 4000 | 0.1895 | 0.6698 | 0.0577 | | 0.7525 | 32.61 | 4500 | 0.1845 | 0.6453 | 0.0550 | | 0.7211 | 36.23 | 5000 | 0.1781 | 0.6274 | 0.0531 | | 0.677 | 39.85 | 5500 | 0.1732 | 0.6188 | 0.0514 | | 0.6517 | 43.48 | 6000 | 0.1691 | 0.6177 | 0.0503 | | 0.6326 | 47.1 | 6500 | 0.1619 | 0.6045 | 0.0479 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
shivam/xls-r-300m-marathi
shivam
2022-03-23T18:29:32Z
18
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "mr", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mr license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - mr - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: '' results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice Corpus 8.0 type: mozilla-foundation/common_voice_8_0 args: mr metrics: - name: Test WER type: wer value: 38.27 - name: Test CER type: cer value: 8.91 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset. It achieves the following results on the mozilla-foundation/common_voice_8_0 mr test set: - Without LM + WER: 48.53 + CER: 10.63 - With LM + WER: 38.27 + CER: 8.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 400.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 4.2706 | 22.73 | 500 | 4.0174 | 1.0 | | 3.2492 | 45.45 | 1000 | 3.2309 | 0.9908 | | 1.9709 | 68.18 | 1500 | 1.0651 | 0.8440 | | 1.4088 | 90.91 | 2000 | 0.5765 | 0.6550 | | 1.1326 | 113.64 | 2500 | 0.4842 | 0.5760 | | 0.9709 | 136.36 | 3000 | 0.4785 | 0.6013 | | 0.8433 | 159.09 | 3500 | 0.5048 | 0.5419 | | 0.7404 | 181.82 | 4000 | 0.5052 | 0.5339 | | 0.6589 | 204.55 | 4500 | 0.5237 | 0.5897 | | 0.5831 | 227.27 | 5000 | 0.5166 | 0.5447 | | 0.5375 | 250.0 | 5500 | 0.5292 | 0.5487 | | 0.4784 | 272.73 | 6000 | 0.5480 | 0.5596 | | 0.4421 | 295.45 | 6500 | 0.5682 | 0.5467 | | 0.4047 | 318.18 | 7000 | 0.5681 | 0.5447 | | 0.3779 | 340.91 | 7500 | 0.5783 | 0.5347 | | 0.3525 | 363.64 | 8000 | 0.5856 | 0.5367 | | 0.3393 | 386.36 | 8500 | 0.5960 | 0.5359 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm
anuragshas
2022-03-23T18:29:27Z
9
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sl", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - sl license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Slovenian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sl metrics: - name: Test WER type: wer value: 12.736 - name: Test CER type: cer value: 3.605 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Test WER type: wer value: 45.587 - name: Test CER type: cer value: 20.886 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sl metrics: - name: Test WER type: wer value: 45.42 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Slovenian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2578 - Wer: 0.2273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1829 | 4.88 | 400 | 3.1228 | 1.0 | | 2.8675 | 9.76 | 800 | 2.8616 | 0.9993 | | 1.583 | 14.63 | 1200 | 0.6392 | 0.6239 | | 1.1959 | 19.51 | 1600 | 0.3602 | 0.3651 | | 1.0276 | 24.39 | 2000 | 0.3021 | 0.2981 | | 0.9671 | 29.27 | 2400 | 0.2872 | 0.2739 | | 0.873 | 34.15 | 2800 | 0.2593 | 0.2459 | | 0.8513 | 39.02 | 3200 | 0.2617 | 0.2473 | | 0.8132 | 43.9 | 3600 | 0.2548 | 0.2426 | | 0.7935 | 48.78 | 4000 | 0.2637 | 0.2353 | | 0.7565 | 53.66 | 4400 | 0.2629 | 0.2322 | | 0.7359 | 58.54 | 4800 | 0.2579 | 0.2253 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sl --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sl", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "zmago je divje od letel s helikopterjem visoko vzrak" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 19.938 | 12.736 |
anantoj/wav2vec2-xls-r-1b-korean
anantoj
2022-03-23T18:29:13Z
37
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "ko", "dataset:kresnik/zeroth_korean", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: ko license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - kresnik/zeroth_korean model-index: - name: Wav2Vec2 XLS-R 1B Korean results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ko metrics: - name: Test WER type: wer value: 82.07 - name: Test CER type: cer value: 42.12 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ko metrics: - name: Test WER type: wer value: 82.09 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the KRESNIK/ZEROTH_KOREAN - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0639 - Wer: 0.0449 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.603 | 0.72 | 500 | 4.6572 | 0.9985 | | 2.6314 | 1.44 | 1000 | 2.0424 | 0.9256 | | 2.2708 | 2.16 | 1500 | 0.9889 | 0.6989 | | 2.1769 | 2.88 | 2000 | 0.8366 | 0.6312 | | 2.1142 | 3.6 | 2500 | 0.7555 | 0.5998 | | 2.0084 | 4.32 | 3000 | 0.7144 | 0.6003 | | 1.9272 | 5.04 | 3500 | 0.6311 | 0.5461 | | 1.8687 | 5.75 | 4000 | 0.6252 | 0.5430 | | 1.8186 | 6.47 | 4500 | 0.5491 | 0.4988 | | 1.7364 | 7.19 | 5000 | 0.5463 | 0.4959 | | 1.6809 | 7.91 | 5500 | 0.4724 | 0.4484 | | 1.641 | 8.63 | 6000 | 0.4679 | 0.4461 | | 1.572 | 9.35 | 6500 | 0.4387 | 0.4236 | | 1.5256 | 10.07 | 7000 | 0.3970 | 0.4003 | | 1.5044 | 10.79 | 7500 | 0.3690 | 0.3893 | | 1.4563 | 11.51 | 8000 | 0.3752 | 0.3875 | | 1.394 | 12.23 | 8500 | 0.3386 | 0.3567 | | 1.3641 | 12.95 | 9000 | 0.3290 | 0.3467 | | 1.2878 | 13.67 | 9500 | 0.2893 | 0.3135 | | 1.2602 | 14.39 | 10000 | 0.2723 | 0.3029 | | 1.2302 | 15.11 | 10500 | 0.2603 | 0.2989 | | 1.1865 | 15.83 | 11000 | 0.2440 | 0.2794 | | 1.1491 | 16.55 | 11500 | 0.2500 | 0.2788 | | 1.093 | 17.27 | 12000 | 0.2279 | 0.2629 | | 1.0367 | 17.98 | 12500 | 0.2076 | 0.2443 | | 0.9954 | 18.7 | 13000 | 0.1844 | 0.2259 | | 0.99 | 19.42 | 13500 | 0.1794 | 0.2179 | | 0.9385 | 20.14 | 14000 | 0.1765 | 0.2122 | | 0.8952 | 20.86 | 14500 | 0.1706 | 0.1974 | | 0.8841 | 21.58 | 15000 | 0.1791 | 0.1969 | | 0.847 | 22.3 | 15500 | 0.1780 | 0.2060 | | 0.8669 | 23.02 | 16000 | 0.1608 | 0.1862 | | 0.8066 | 23.74 | 16500 | 0.1447 | 0.1626 | | 0.7908 | 24.46 | 17000 | 0.1457 | 0.1655 | | 0.7459 | 25.18 | 17500 | 0.1350 | 0.1445 | | 0.7218 | 25.9 | 18000 | 0.1276 | 0.1421 | | 0.703 | 26.62 | 18500 | 0.1177 | 0.1302 | | 0.685 | 27.34 | 19000 | 0.1147 | 0.1305 | | 0.6811 | 28.06 | 19500 | 0.1128 | 0.1244 | | 0.6444 | 28.78 | 20000 | 0.1120 | 0.1213 | | 0.6323 | 29.5 | 20500 | 0.1137 | 0.1166 | | 0.5998 | 30.22 | 21000 | 0.1051 | 0.1107 | | 0.5706 | 30.93 | 21500 | 0.1035 | 0.1037 | | 0.5555 | 31.65 | 22000 | 0.1031 | 0.0927 | | 0.5389 | 32.37 | 22500 | 0.0997 | 0.0900 | | 0.5201 | 33.09 | 23000 | 0.0920 | 0.0912 | | 0.5146 | 33.81 | 23500 | 0.0929 | 0.0947 | | 0.515 | 34.53 | 24000 | 0.1000 | 0.0953 | | 0.4743 | 35.25 | 24500 | 0.0922 | 0.0892 | | 0.4707 | 35.97 | 25000 | 0.0852 | 0.0808 | | 0.4456 | 36.69 | 25500 | 0.0855 | 0.0779 | | 0.443 | 37.41 | 26000 | 0.0843 | 0.0738 | | 0.4388 | 38.13 | 26500 | 0.0816 | 0.0699 | | 0.4162 | 38.85 | 27000 | 0.0752 | 0.0645 | | 0.3979 | 39.57 | 27500 | 0.0761 | 0.0621 | | 0.3889 | 40.29 | 28000 | 0.0771 | 0.0625 | | 0.3923 | 41.01 | 28500 | 0.0755 | 0.0598 | | 0.3693 | 41.73 | 29000 | 0.0730 | 0.0578 | | 0.3642 | 42.45 | 29500 | 0.0739 | 0.0598 | | 0.3532 | 43.17 | 30000 | 0.0712 | 0.0553 | | 0.3513 | 43.88 | 30500 | 0.0762 | 0.0516 | | 0.3349 | 44.6 | 31000 | 0.0731 | 0.0504 | | 0.3305 | 45.32 | 31500 | 0.0725 | 0.0507 | | 0.3285 | 46.04 | 32000 | 0.0709 | 0.0489 | | 0.3179 | 46.76 | 32500 | 0.0667 | 0.0467 | | 0.3158 | 47.48 | 33000 | 0.0653 | 0.0494 | | 0.3033 | 48.2 | 33500 | 0.0638 | 0.0456 | | 0.3023 | 48.92 | 34000 | 0.0644 | 0.0464 | | 0.2975 | 49.64 | 34500 | 0.0643 | 0.0455 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0