modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 18:29:29
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 18:25:24
card
stringlengths
11
1.01M
sebastian-hofstaetter/uni-colberter-128-1-msmarco
sebastian-hofstaetter
2022-03-27T15:21:06Z
5
2
transformers
[ "transformers", "pytorch", "ColBERT", "bag-of-words", "dense-passage-retrieval", "knowledge-distillation", "en", "dataset:ms_marco", "arxiv:2203.13088", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-27T15:09:28Z
--- license: apache-2.0 language: "en" tags: - bag-of-words - dense-passage-retrieval - knowledge-distillation datasets: - ms_marco --- # Uni-ColBERTer (Dim: 1) for Passage Retrieval If you want to know more about our (Uni-)ColBERTer architecture check out our paper: https://arxiv.org/abs/2203.13088 🎉 For more information, source code, and a minimal usage example please visit: https://github.com/sebastian-hofstaetter/colberter ## Limitations & Bias - The model is only trained on english text. - The model inherits social biases from both DistilBERT and MSMARCO. - The model is only trained on relatively short passages of MSMARCO (avg. 60 words length), so it might struggle with longer text. ## Citation If you use our model checkpoint please cite our work as: ``` @article{Hofstaetter2022_colberter, author = {Sebastian Hofst{\"a}tter and Omar Khattab and Sophia Althammer and Mete Sertkan and Allan Hanbury}, title = {Introducing Neural Bag of Whole-Words with ColBERTer: Contextualized Late Interactions using Enhanced Reduction}, publisher = {arXiv}, url = {https://arxiv.org/abs/2203.13088}, doi = {10.48550/ARXIV.2203.13088}, year = {2022}, } ```
sebastian-hofstaetter/colberter-128-32-msmarco
sebastian-hofstaetter
2022-03-27T15:07:44Z
5
2
transformers
[ "transformers", "pytorch", "ColBERT", "bag-of-words", "dense-passage-retrieval", "knowledge-distillation", "en", "dataset:ms_marco", "arxiv:2203.13088", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-27T14:59:48Z
--- license: apache-2.0 language: "en" tags: - bag-of-words - dense-passage-retrieval - knowledge-distillation datasets: - ms_marco --- # ColBERTer (Dim: 32) for Passage Retrieval If you want to know more about our ColBERTer architecture check out our paper: https://arxiv.org/abs/2203.13088 🎉 For more information, source code, and a minimal usage example please visit: https://github.com/sebastian-hofstaetter/colberter ## Limitations & Bias - The model is only trained on english text. - The model inherits social biases from both DistilBERT and MSMARCO. - The model is only trained on relatively short passages of MSMARCO (avg. 60 words length), so it might struggle with longer text. ## Citation If you use our model checkpoint please cite our work as: ``` @article{Hofstaetter2022_colberter, author = {Sebastian Hofst{\"a}tter and Omar Khattab and Sophia Althammer and Mete Sertkan and Allan Hanbury}, title = {Introducing Neural Bag of Whole-Words with ColBERTer: Contextualized Late Interactions using Enhanced Reduction}, publisher = {arXiv}, url = {https://arxiv.org/abs/2203.13088}, doi = {10.48550/ARXIV.2203.13088}, year = {2022}, } ```
perevalov/query-validation-rubq
perevalov
2022-03-27T14:14:28Z
0
0
tf-keras
[ "tf-keras", "kgqa", "question answering", "sparql", "bert-base-cased", "en", "license:apache-2.0", "region:us" ]
null
2022-03-27T10:52:12Z
--- language: en tags: - kgqa - question answering - sparql - bert-base-cased license: apache-2.0 --- # SPARQL Query Validation model ## Model description ## Intended uses & limitations ### How to use
EMBO/sd-smallmol-roles
EMBO
2022-03-27T13:28:53Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "token classification", "dataset:EMBO/sd-nlp", "license:agpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-19T11:14:58Z
--- language: - english thumbnail: tags: - token classification license: agpl-3.0 datasets: - EMBO/sd-nlp metrics: - --- # sd-smallmol-roles ## Model description This model is a [RoBERTa base model](https://huggingface.co/roberta-base) that was further trained using a masked language modeling task on a compendium of english scientific textual examples from the life sciences using the [BioLang dataset](https://huggingface.co/datasets/EMBO/biolang). It has then been fine-tuned for token classification on the SourceData [sd-nlp](https://huggingface.co/datasets/EMBO/sd-nlp) dataset with the `SMALL_MOL_ROLES` configuration to perform pure context-dependent semantic role classification of bioentities. ## Intended uses & limitations #### How to use The intended use of this model is to infer the semantic role of small molecules with regard to the causal hypotheses tested in experiments reported in scientific papers. To have a quick check of the model: ```python from transformers import pipeline, RobertaTokenizerFast, RobertaForTokenClassification example = """<s>The <mask> overexpression in cells caused an increase in <mask> expression.</s>""" tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_len=512) model = RobertaForTokenClassification.from_pretrained('EMBO/sd-smallmol-roles') ner = pipeline('ner', model, tokenizer=tokenizer) res = ner(example) for r in res: print(r['word'], r['entity']) ``` #### Limitations and bias The model must be used with the `roberta-base` tokenizer. ## Training data The model was trained for token classification using the [EMBO/sd-nlp dataset](https://huggingface.co/datasets/EMBO/sd-nlp) which includes manually annotated examples. ## Training procedure The training was run on a NVIDIA DGX Station with 4XTesla V100 GPUs. Training code is available at https://github.com/source-data/soda-roberta - Model fine tuned: EMBL/bio-lm - Tokenizer vocab size: 50265 - Training data: EMBO/sd-nlp - Dataset configuration: SMALL_MOL_ROLES - Training with 48771 examples. - Evaluating on 13801 examples. - Training on 15 features: O, I-CONTROLLED_VAR, B-CONTROLLED_VAR, I-MEASURED_VAR, B-MEASURED_VAR - Epochs: 0.33 - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 0.0001 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 ## Eval results On 7178 example of test set with `sklearn.metrics`: ``` precision recall f1-score support CONTROLLED_VAR 0.76 0.90 0.83 2946 MEASURED_VAR 0.60 0.71 0.65 852 micro avg 0.73 0.86 0.79 3798 macro avg 0.68 0.80 0.74 3798 weighted avg 0.73 0.86 0.79 3798 {'test_loss': 0.011743436567485332, 'test_accuracy_score': 0.9951612532624371, 'test_precision': 0.7261345852895149, 'test_recall': 0.8551869404949973, 'test_f1': 0.7853947527505744, 'test_runtime': 58.0378, 'test_samples_per_second': 123.678, 'test_steps_per_second': 1.947} ```
EMBO/sd-geneprod-roles
EMBO
2022-03-27T13:23:03Z
8
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "token classification", "dataset:EMBO/sd-nlp", "license:agpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-19T10:38:53Z
--- language: - english thumbnail: tags: - token classification license: agpl-3.0 datasets: - EMBO/sd-nlp metrics: - --- # sd-geneprod-roles ## Model description This model is a [RoBERTa base model](https://huggingface.co/roberta-base) that was further trained using a masked language modeling task on a compendium of English scientific textual examples from the life sciences using the [BioLang dataset](https://huggingface.co/datasets/EMBO/biolang). It was then fine-tuned for token classification on the SourceData [sd-nlp](https://huggingface.co/datasets/EMBO/sd-nlp) dataset with the `GENEPROD_ROLES` configuration to perform pure context-dependent semantic role classification of bioentities. ## Intended uses & limitations #### How to use The intended use of this model is to infer the semantic role of gene products (genes and proteins) with regard to the causal hypotheses tested in experiments reported in scientific papers. To have a quick check of the model: ```python from transformers import pipeline, RobertaTokenizerFast, RobertaForTokenClassification example = """<s>The <mask> overexpression in cells caused an increase in <mask> expression.</s>""" tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_len=512) model = RobertaForTokenClassification.from_pretrained('EMBO/sd-geneprod-roles') ner = pipeline('ner', model, tokenizer=tokenizer) res = ner(example) for r in res: print(r['word'], r['entity']) ``` #### Limitations and bias The model must be used with the `roberta-base` tokenizer. ## Training data The model was trained for token classification using the [EMBO/sd-nlp dataset](https://huggingface.co/datasets/EMBO/sd-nlp) which includes manually annotated examples. ## Training procedure The training was run on an NVIDIA DGX Station with 4XTesla V100 GPUs. Training code is available at https://github.com/source-data/soda-roberta - Model fine-tuned: EMBL/bio-lm - Tokenizer vocab size: 50265 - Training data: EMBO/sd-nlp - Dataset configuration: GENEPROD_ROLES - Training with 48771 examples. - Evaluating on 13801 examples. - Training on 15 features: O, I-CONTROLLED_VAR, B-CONTROLLED_VAR, I-MEASURED_VAR, B-MEASURED_VAR - Epochs: 0.9 - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 0.0001 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 ## Eval results On 7178 example of test set with `sklearn.metrics`: ``` precision recall f1-score support CONTROLLED_VAR 0.81 0.86 0.83 7835 MEASURED_VAR 0.82 0.85 0.84 9330 micro avg 0.82 0.85 0.83 17165 macro avg 0.82 0.85 0.83 17165 weighted avg 0.82 0.85 0.83 17165 {'test_loss': 0.03846803680062294, 'test_accuracy_score': 0.9854472664459946, 'test_precision': 0.8156312625250501, 'test_recall': 0.8535974366443344, 'test_f1': 0.8341825841897008, 'test_runtime': 58.7369, 'test_samples_per_second': 122.206, 'test_steps_per_second': 1.924} ```
Danik51002/Example
Danik51002
2022-03-27T08:55:29Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-27T07:58:16Z
--- tags: - generated_from_trainer model-index: - name: Example results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Example This model is a fine-tuned version of [sberbank-ai/rugpt3small_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3small_based_on_gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 42 - eval_batch_size: 42 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 840 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 15 - num_epochs: 300 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Tokenizers 0.11.6
PaddyP/distilbert-base-uncased-finetuned-emotion
PaddyP
2022-03-27T07:06:37Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-27T06:12:25Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2302 - Accuracy: 0.922 - F1: 0.9218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.3344 | 0.903 | 0.9004 | | No log | 2.0 | 500 | 0.2302 | 0.922 | 0.9218 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
Ayham/roberta_roberta_summarization_xsum
Ayham
2022-03-27T00:55:04Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:xsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-26T19:07:42Z
--- tags: - generated_from_trainer datasets: - xsum model-index: - name: roberta_roberta_summarization_xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta_roberta_summarization_xsum This model is a fine-tuned version of [](https://huggingface.co/) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.10.3
MONAI/example_spleen_segmentation
MONAI
2022-03-27T00:32:20Z
0
6
null
[ "monai", "arxiv:1811.12506", "region:us" ]
null
2022-03-02T23:29:04Z
--- tags: - monai --- # Description A pre-trained model for volumetric (3D) segmentation of the spleen from CT image. # Model Overview This model is trained using the runner-up [1] awarded pipeline of the "Medical Segmentation Decathlon Challenge 2018" using the UNet architecture [2] with 32 training images and 9 validation images. ## Data The training dataset is Task09_Spleen.tar from http://medicaldecathlon.com/. ## Training configuration The training was performed with at least 12GB-memory GPUs. Actual Model Input: 96 x 96 x 96 ## Input and output formats Input: 1 channel CT image Output: 2 channels: Label 1: spleen; Label 0: everything else ## Scores This model achieves the following Dice score on the validation data (our own split from the training dataset): Mean Dice = 0.96 ## commands example Execute inference: ``` python -m monai.bundle run evaluator --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf ``` Verify the metadata format: ``` python -m monai.bundle verify_metadata --meta_file configs/metadata.json --filepath eval/schema.json ``` Verify the data shape of network: ``` python -m monai.bundle verify_net_in_out network_def --meta_file configs/metadata.json --config_file configs/inference.json ``` Export checkpoint to TorchScript file: ``` python -m monai.bundle export network_def --filepath models/model.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json ``` # Disclaimer This is an example, not to be used for diagnostic purposes. # References [1] Xia, Yingda, et al. "3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training." arXiv preprint arXiv:1811.12506 (2018). https://arxiv.org/abs/1811.12506. [2] Kerfoot E., Clough J., Oksuz I., Lee J., King A.P., Schnabel J.A. (2019) Left-Ventricle Quantification Using Residual U-Net. In: Pop M. et al. (eds) Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science, vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_40
huggingtweets/mkobach-naval-shaneaparrish
huggingtweets
2022-03-27T00:07:05Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-27T00:04:05Z
--- language: en thumbnail: http://www.huggingtweets.com/mkobach-naval-shaneaparrish/1648339620049/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374075536595505154/1_1jV_AF_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1253758424292171778/48gD7Hne_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1256841238298292232/ycqwaMI2_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matthew Kobach & Shane Parrish & Naval</div> <div style="text-align: center; font-size: 14px;">@mkobach-naval-shaneaparrish</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matthew Kobach & Shane Parrish & Naval. | Data | Matthew Kobach | Shane Parrish | Naval | | --- | --- | --- | --- | | Tweets downloaded | 3248 | 3197 | 3249 | | Retweets | 135 | 102 | 181 | | Short tweets | 444 | 147 | 617 | | Tweets kept | 2669 | 2948 | 2451 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/17cy2tt4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mkobach-naval-shaneaparrish's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1zkb00dh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1zkb00dh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mkobach-naval-shaneaparrish') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Mnauel/wav2vec2-base-finetuned-ks
Mnauel
2022-03-26T20:53:27Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-12T10:51:33Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5766 - Accuracy: 0.8308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.7247 | 0.7462 | | No log | 2.0 | 14 | 0.6844 | 0.7615 | | 0.4279 | 3.0 | 21 | 0.7254 | 0.7462 | | 0.4279 | 4.0 | 28 | 0.5891 | 0.8 | | 0.4279 | 5.0 | 35 | 0.6991 | 0.7462 | | 0.4478 | 6.0 | 42 | 0.6579 | 0.7615 | | 0.4478 | 7.0 | 49 | 0.6164 | 0.8 | | 0.4478 | 8.0 | 56 | 0.6191 | 0.8077 | | 0.4194 | 9.0 | 63 | 0.5766 | 0.8308 | | 0.4194 | 10.0 | 70 | 0.5704 | 0.8154 | | 0.4194 | 11.0 | 77 | 0.6518 | 0.8 | | 0.3833 | 12.0 | 84 | 0.6190 | 0.8077 | | 0.3833 | 13.0 | 91 | 0.5693 | 0.8231 | | 0.3833 | 14.0 | 98 | 0.5628 | 0.8231 | | 0.3607 | 15.0 | 105 | 0.5741 | 0.8154 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.10.3
dannyvas23/electricidad-small-discriminator-finetuned-clasificacion-texto-suicida
dannyvas23
2022-03-26T19:22:14Z
25
1
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "sentiment", "emotion", "es", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-26T17:19:56Z
--- license: afl-3.0 language: "es" tags: - generated_from_trainer - sentiment - emotion widget: - text: "La vida no merece la pena" example_title: "Ejemplo 1" - text: "Para vivir así lo mejor es estar muerto" example_title: "Ejemplo 2" - text: "me siento triste por no poder viajar" example_title: "Ejemplo 3" - text: "Quiero terminar con todo" example_title: "Ejemplo 4" - text: "Disfruto de la vista" example_title: "Ejemplo 5" metrics: - accuracy model-index: - name: electricidad-small-discriminator-finetuned-clasificacion-texto-suicida results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electricidad-small-discriminator-finetuned-clasificacion-texto-suicida This model is a fine-tuned version of [mrm8488/electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0458 - Accuracy: 0.9916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Validation Loss | Accuracy | |:-------------:|:-----:|:---------------:|:--------:| | 0.161100 | 1.0 | 0.133057 | 0.952718 | | 0.134500 | 2.0 | 0.110966 | 0.960804 | | 0.108500 | 3.0 | 0.086417 | 0.970835 | | 0.099400 | 4.0 | 0.073618 | 0.974856 | | 0.090500 | 5.0 | 0.065231 | 0.979629 | | 0.080700 | 6.0 | 0.060849 | 0.982324 | | 0.069200 | 7.0 | 0.054718 | 0.986125 | | 0.060400 | 8.0 | 0.051153 | 0.985948 | | 0.048200 | 9.0 | 0.045747 | 0.989748 | | 0.045500 | 10.0 | 0.049992 | 0.988069 | | 0.043400 | 11.0 | 0.046325 | 0.990234 | | 0.034300 | 12.0 | 0.050746 | 0.989792 | | 0.032900 | 13.0 | 0.043434 | 0.991737 | | 0.028400 | 14.0 | 0.045003 | 0.991869 | | 0.022300 | 15.0 | 0.045819 | 0.991648 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
dannyvas23/clasificacion-texto-suicida-finetuned-amazon-review
dannyvas23
2022-03-26T17:12:23Z
24
2
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "sentiment", "emotion", "es", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-21T19:26:40Z
--- language: "es" tags: - generated_from_trainer - sentiment - emotion widget: - text: "no me gusta esta vida." example_title: "Ejemplo 1" - text: "odio estar ahi" example_title: "Ejemplo 2" - text: "me siento triste por no poder viajar" example_title: "Ejemplo 3" metrics: - accuracy model-index: - name: clasificacion-texto-suicida-finetuned-amazon-review results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificacion-texto-suicida-finetuned-amazon-review This model is a fine-tuned version of [mrm8488/electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1546 - Accuracy: 0.9488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1643 | 1.0 | 12022 | 0.1546 | 0.9488 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
bigmorning/distilbert1000e
bigmorning
2022-03-26T15:31:46Z
5
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-26T15:27:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert1000e results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert1000e This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
uw-madison/nystromformer-1024
uw-madison
2022-03-26T14:58:18Z
44
0
transformers
[ "transformers", "pytorch", "nystromformer", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-23T18:56:40Z
Nystromformer for sequence length 1024 trained on WikiText-103 v1 for 150 epochs.
scasutt/wav2vec2-base_toy_train_data_masked_audio_10ms
scasutt
2022-03-26T14:57:09Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-26T12:28:41Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data_masked_audio_10ms results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_masked_audio_10ms This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2477 - Wer: 0.7145 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1337 | 1.05 | 250 | 3.4081 | 0.9982 | | 3.0792 | 2.1 | 500 | 3.2446 | 0.9982 | | 2.0577 | 3.15 | 750 | 1.5839 | 0.9492 | | 1.3639 | 4.2 | 1000 | 1.3279 | 0.8798 | | 1.0814 | 5.25 | 1250 | 1.1629 | 0.8294 | | 0.8722 | 6.3 | 1500 | 1.1305 | 0.8140 | | 0.7602 | 7.35 | 1750 | 1.1241 | 0.7972 | | 0.6982 | 8.4 | 2000 | 1.1429 | 0.7780 | | 0.6494 | 9.45 | 2250 | 1.1047 | 0.7620 | | 0.5924 | 10.5 | 2500 | 1.1756 | 0.7649 | | 0.5385 | 11.55 | 2750 | 1.2230 | 0.7736 | | 0.5026 | 12.6 | 3000 | 1.1783 | 0.7472 | | 0.4973 | 13.65 | 3250 | 1.1613 | 0.7287 | | 0.4726 | 14.7 | 3500 | 1.1923 | 0.7345 | | 0.4521 | 15.75 | 3750 | 1.2153 | 0.7171 | | 0.4552 | 16.81 | 4000 | 1.2485 | 0.7226 | | 0.422 | 17.86 | 4250 | 1.2664 | 0.7240 | | 0.3708 | 18.91 | 4500 | 1.2352 | 0.7148 | | 0.3516 | 19.96 | 4750 | 1.2477 | 0.7145 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
bigmorning/distilbert500e
bigmorning
2022-03-26T14:54:50Z
4
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-26T14:48:24Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert500e results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert500e This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
rahulacj/mbart-large-cc25-finetuned-hi-to-en
rahulacj
2022-03-26T14:06:02Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-18T10:19:49Z
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: mbart-large-cc25-finetuned-hi-to-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-cc25-finetuned-hi-to-en This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4710 - Bleu: 16.6154 - Gen Len: 42.6244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 1.5705 | 1.0 | 3955 | 1.4858 | 14.8984 | 47.6759 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
zuppif/versioning-test
zuppif
2022-03-26T13:35:30Z
0
0
null
[ "region:us" ]
null
2022-03-26T13:34:47Z
| | uid | hidden_size | |---:|:------------------------------------------------------------------------------------------------------------------------|--------------:| | 0 | [e87a4e028b11ec7bf770c6f3ab5c6349](https://huggingface.co/zuppif/versioning-test/tree/e87a4e028b11ec7bf770c6f3ab5c6349) | 8 | | 1 | [48f2a327cfb7cb0f9b519d9abf73a9be](https://huggingface.co/zuppif/versioning-test/tree/48f2a327cfb7cb0f9b519d9abf73a9be) | 16 | | 2 | [1c9d18df9ec06b5f7e2f49b2ef1cb826](https://huggingface.co/zuppif/versioning-test/tree/1c9d18df9ec06b5f7e2f49b2ef1cb826) | 32 |
Mr-Wick/Roberta
Mr-Wick
2022-03-26T12:39:55Z
3
0
transformers
[ "transformers", "tf", "roberta", "question-answering", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-23T16:08:46Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: Roberta results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Roberta This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16476, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
scasutt/wav2vec2-base_toy_train_data_fast_10pct
scasutt
2022-03-26T12:28:13Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-26T10:09:45Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data_fast_10pct results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_fast_10pct This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3087 - Wer: 0.7175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1309 | 1.05 | 250 | 3.4541 | 0.9982 | | 3.0499 | 2.1 | 500 | 3.0231 | 0.9982 | | 1.4839 | 3.15 | 750 | 1.4387 | 0.9257 | | 1.1697 | 4.2 | 1000 | 1.3729 | 0.8792 | | 0.9353 | 5.25 | 1250 | 1.2608 | 0.8445 | | 0.7298 | 6.3 | 1500 | 1.1867 | 0.8052 | | 0.6418 | 7.35 | 1750 | 1.2414 | 0.7997 | | 0.5698 | 8.4 | 2000 | 1.2240 | 0.7766 | | 0.5084 | 9.45 | 2250 | 1.1910 | 0.7687 | | 0.4912 | 10.5 | 2500 | 1.2241 | 0.7617 | | 0.4144 | 11.55 | 2750 | 1.2412 | 0.7477 | | 0.4153 | 12.6 | 3000 | 1.2736 | 0.7511 | | 0.405 | 13.65 | 3250 | 1.2827 | 0.7328 | | 0.3852 | 14.7 | 3500 | 1.1981 | 0.7331 | | 0.3829 | 15.75 | 3750 | 1.3035 | 0.7347 | | 0.3538 | 16.81 | 4000 | 1.3003 | 0.7240 | | 0.3385 | 17.86 | 4250 | 1.3354 | 0.7304 | | 0.3108 | 18.91 | 4500 | 1.2983 | 0.7229 | | 0.3037 | 19.96 | 4750 | 1.3087 | 0.7175 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
peterhsu/bert-finetuned-squad
peterhsu
2022-03-26T08:48:45Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-21T13:26:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
sanchit-gandhi/wav2vec2-2-rnd-regularisation
sanchit-gandhi
2022-03-26T06:45:45Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "generated_from_trainer", "dataset:librispeech_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-22T10:13:09Z
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.6977 - Wer: 0.1231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 25.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.1467 | 1.68 | 1500 | 6.0558 | 1.3243 | | 5.4388 | 3.36 | 3000 | 5.4711 | 1.5604 | | 3.3434 | 5.04 | 4500 | 3.4808 | 0.7461 | | 1.5259 | 6.73 | 6000 | 2.1931 | 0.3430 | | 1.4285 | 8.41 | 7500 | 1.5883 | 0.2784 | | 1.0687 | 10.09 | 9000 | 1.2481 | 0.2069 | | 0.6425 | 11.77 | 10500 | 1.0507 | 0.1758 | | 0.7147 | 13.45 | 12000 | 0.9397 | 0.1584 | | 0.5083 | 15.13 | 13500 | 0.8452 | 0.1453 | | 0.4287 | 16.82 | 15000 | 0.7915 | 0.1388 | | 0.3499 | 18.5 | 16500 | 0.7477 | 0.1315 | | 0.3733 | 20.18 | 18000 | 0.7307 | 0.1287 | | 0.2609 | 21.86 | 19500 | 0.7061 | 0.1263 | | 0.2602 | 23.54 | 21000 | 0.6977 | 0.1231 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
lichenda/chime4_fasnet_dprnn_tac
lichenda
2022-03-26T05:52:41Z
36
0
espnet
[ "espnet", "audio", "audio-to-audio", "dataset:chime4", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
audio-to-audio
2022-03-21T08:18:15Z
--- tags: - espnet - audio - audio-to-audio language: noinfo datasets: - chime4 license: cc-by-4.0 --- ## ESPnet2 ENH model ### `lichenda/chime4_fasnet_dprnn_tac` This model was trained by LiChenda using chime4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 98f5fb2185b98f9c08fd56492b3d3234504561e7 pip install -e . cd egs2/chime4/enh1 ./run.sh --skip_data_prep false --skip_train true --download_model lichenda/chime4_fasnet_dprnn_tac ``` <!-- Generated by ./scripts/utils/show_enh_score.sh --> # RESULTS ## Environments - date: `Sat Mar 19 07:17:45 CST 2022` - python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.8.1` - Git hash: `648b024d8fb262eb9923c06a698b9c6df5b16e51` - Commit date: `Wed Mar 16 18:47:21 2022 +0800` ## .. config: conf/tuning/train_enh_dprnntac_fasnet.yaml |dataset|STOI|SAR|SDR|SIR| |---|---|---|---|---| |enhanced_dt05_simu_isolated_6ch_track|0.95|15.75|15.75|0.00| |enhanced_et05_simu_isolated_6ch_track|0.94|15.40|15.40|0.00| ## ENH config <details><summary>expand</summary> ``` config: conf/tuning/train_enh_dprnntac_fasnet.yaml print_config: false log_level: INFO dry_run: false iterator_type: chunk output_dir: exp/enh_train_enh_dprnntac_fasnet_raw ngpu: 1 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: 10 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - si_snr - max - - valid - loss - min keep_nbest_models: 1 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 8 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/enh_stats_16k/train/speech_mix_shape - exp/enh_stats_16k/train/speech_ref1_shape valid_shape_file: - exp/enh_stats_16k/valid/speech_mix_shape - exp/enh_stats_16k/valid/speech_ref1_shape batch_type: folded valid_batch_type: null fold_length: - 80000 - 80000 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 32000 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr05_simu_isolated_6ch_track/wav.scp - speech_mix - sound - - dump/raw/tr05_simu_isolated_6ch_track/spk1.scp - speech_ref1 - sound valid_data_path_and_name_and_type: - - dump/raw/dt05_simu_isolated_6ch_track/wav.scp - speech_mix - sound - - dump/raw/dt05_simu_isolated_6ch_track/spk1.scp - speech_ref1 - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 eps: 1.0e-08 weight_decay: 0 scheduler: steplr scheduler_conf: step_size: 2 gamma: 0.98 init: xavier_uniform model_conf: stft_consistency: false loss_type: mask_mse mask_type: null criterions: - name: si_snr conf: eps: 1.0e-07 wrapper: fixed_order wrapper_conf: weight: 1.0 use_preprocessor: false encoder: same encoder_conf: {} separator: fasnet separator_conf: enc_dim: 64 feature_dim: 64 hidden_dim: 128 layer: 6 segment_size: 24 num_spk: 1 win_len: 16 context_len: 16 sr: 16000 fasnet_type: fasnet dropout: 0.2 decoder: same decoder_conf: {} required: - output_dir version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{ESPnet-SE, author = {Chenda Li and Jing Shi and Wangyou Zhang and Aswin Shanmugam Subramanian and Xuankai Chang and Naoyuki Kamo and Moto Hira and Tomoki Hayashi and Christoph B{"{o}}ddeker and Zhuo Chen and Shinji Watanabe}, title = {ESPnet-SE: End-To-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration}, booktitle = {{IEEE} Spoken Language Technology Workshop, {SLT} 2021, Shenzhen, China, January 19-22, 2021}, pages = {785--792}, publisher = {{IEEE}}, year = {2021}, url = {https://doi.org/10.1109/SLT48900.2021.9383615}, doi = {10.1109/SLT48900.2021.9383615}, timestamp = {Mon, 12 Apr 2021 17:08:59 +0200}, biburl = {https://dblp.org/rec/conf/slt/Li0ZSCKHHBC021.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
calebcsjm/reversed_harrypotter_generation
calebcsjm
2022-03-26T05:02:52Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-25T20:58:10Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: reversed_harrypotter_generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reversed_harrypotter_generation This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/atarifounders
huggingtweets
2022-03-26T03:45:11Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-10T18:31:26Z
--- language: en thumbnail: http://www.huggingtweets.com/atarifounders/1648266306699/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1507523916981583875/6n7ng67H_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">koala/claw/soppy</div> <div style="text-align: center; font-size: 14px;">@atarifounders</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from koala/claw/soppy. | Data | koala/claw/soppy | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 129 | | Short tweets | 883 | | Tweets kept | 2227 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2gsc0jwi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @atarifounders's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/tl1eu60e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/tl1eu60e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/atarifounders') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/_stevenshoe-mkobach
huggingtweets
2022-03-25T22:23:51Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-25T22:08:01Z
--- language: en thumbnail: http://www.huggingtweets.com/_stevenshoe-mkobach/1648247026634/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374075536595505154/1_1jV_AF_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1505053150478229505/wAa1lc04_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matthew Kobach & Steven Shoemaker</div> <div style="text-align: center; font-size: 14px;">@_stevenshoe-mkobach</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matthew Kobach & Steven Shoemaker. | Data | Matthew Kobach | Steven Shoemaker | | --- | --- | --- | | Tweets downloaded | 3242 | 1319 | | Retweets | 136 | 56 | | Short tweets | 443 | 125 | | Tweets kept | 2663 | 1138 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/48je6le3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_stevenshoe-mkobach's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3oih18qf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3oih18qf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/_stevenshoe-mkobach') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/huggingpuppy
huggingtweets
2022-03-25T18:42:54Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-25T18:41:40Z
--- language: en thumbnail: http://www.huggingtweets.com/huggingpuppy/1648233768787/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1504530325526900756/QOTZak3q_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">hug. (INGROUP INTERN)</div> <div style="text-align: center; font-size: 14px;">@huggingpuppy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from hug. (INGROUP INTERN). | Data | hug. (INGROUP INTERN) | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 97 | | Short tweets | 816 | | Tweets kept | 2336 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1wq0kiqq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @huggingpuppy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3aonv9kh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3aonv9kh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/huggingpuppy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
scasutt/wav2vec2-base_toy_train_data_augment_0.1
scasutt
2022-03-25T17:44:40Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-25T14:40:37Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data_augment_0.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_augment_0.1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3786 - Wer: 0.9954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1342 | 1.05 | 250 | 3.3901 | 0.9954 | | 3.0878 | 2.1 | 500 | 3.4886 | 0.9954 | | 3.0755 | 3.15 | 750 | 3.4616 | 0.9954 | | 3.0891 | 4.2 | 1000 | 3.5316 | 0.9954 | | 3.0724 | 5.25 | 1250 | 3.2608 | 0.9954 | | 3.0443 | 6.3 | 1500 | 3.3881 | 0.9954 | | 3.0421 | 7.35 | 1750 | 3.4507 | 0.9954 | | 3.0448 | 8.4 | 2000 | 3.4525 | 0.9954 | | 3.0455 | 9.45 | 2250 | 3.3342 | 0.9954 | | 3.0425 | 10.5 | 2500 | 3.3385 | 0.9954 | | 3.0457 | 11.55 | 2750 | 3.4411 | 0.9954 | | 3.0375 | 12.6 | 3000 | 3.4459 | 0.9954 | | 3.0459 | 13.65 | 3250 | 3.3883 | 0.9954 | | 3.0455 | 14.7 | 3500 | 3.3417 | 0.9954 | | 3.0524 | 15.75 | 3750 | 3.3908 | 0.9954 | | 3.0443 | 16.81 | 4000 | 3.3932 | 0.9954 | | 3.0446 | 17.86 | 4250 | 3.4052 | 0.9954 | | 3.0412 | 18.91 | 4500 | 3.3776 | 0.9954 | | 3.0358 | 19.96 | 4750 | 3.3786 | 0.9954 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
manandey/wav2vec2-large-xlsr-tamil
manandey
2022-03-25T16:52:49Z
22
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "hf-asr-leaderboard", "ta", "dataset:common_voice", "doi:10.57967/hf/0191", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: ta datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week - hf-asr-leaderboard license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Tamil by Manan Dey results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ta type: common_voice args: ta metrics: - name: Test WER type: wer value: 56.44 --- # Wav2Vec2-Large-XLSR-53-Tamil Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ta", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-tamil") model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-tamil") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ta", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-tamil") model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-tamil") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\’\–\(\)]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 56.44% ## Training The Common Voice `train`, `validation` datasets were used for training.
Wende/bert-finetuned-ner
Wende
2022-03-25T16:19:13Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-25T15:21:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9321670242614293 - name: Recall type: recall value: 0.9505217098619994 - name: F1 type: f1 value: 0.9412548954253812 - name: Accuracy type: accuracy value: 0.9860334373344322 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0575 - Precision: 0.9322 - Recall: 0.9505 - F1: 0.9413 - Accuracy: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2219 | 1.0 | 878 | 0.0716 | 0.9076 | 0.9288 | 0.9181 | 0.9808 | | 0.0453 | 2.0 | 1756 | 0.0597 | 0.9297 | 0.9477 | 0.9386 | 0.9852 | | 0.0239 | 3.0 | 2634 | 0.0575 | 0.9322 | 0.9505 | 0.9413 | 0.9860 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.8.2+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
ianMconversica/autotrain-parrot_finetune_v1-667919695
ianMconversica
2022-03-25T15:41:11Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain", "unk", "dataset:McIan91/autotrain-data-parrot_finetune_v1", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-25T12:27:52Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - McIan91/autotrain-data-parrot_finetune_v1 co2_eq_emissions: 207.64739623144084 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 667919695 - CO2 Emissions (in grams): 207.64739623144084 ## Validation Metrics - Loss: 0.06461456418037415 - Rouge1: 70.5184 - Rouge2: 66.9204 - RougeL: 70.4464 - RougeLsum: 70.4705 - Gen Len: 18.5385 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/McIan91/autotrain-parrot_finetune_v1-667919695 ```
Rocketknight1/temp-colab-upload-test4
Rocketknight1
2022-03-25T15:06:46Z
5
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-25T15:06:07Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Rocketknight1/temp-colab-upload-test4 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Rocketknight1/temp-colab-upload-test4 This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Validation Loss: 0.0000 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0000 | 0.0000 | 0 | | 0.0000 | 0.0000 | 1 | ### Framework versions - Transformers 4.18.0.dev0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/rivatez
huggingtweets
2022-03-25T14:57:29Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-25T14:51:51Z
--- language: en thumbnail: http://www.huggingtweets.com/rivatez/1648220244511/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1421403684085374979/SoqYa6o3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Riva</div> <div style="text-align: center; font-size: 14px;">@rivatez</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Riva. | Data | Riva | | --- | --- | | Tweets downloaded | 3178 | | Retweets | 780 | | Short tweets | 405 | | Tweets kept | 1993 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2qe0i10s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rivatez's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rspxzzv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rspxzzv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rivatez') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
azizbarank/mbert-finnic-ner
azizbarank
2022-03-25T13:55:16Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-25T12:43:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: mbert-finnic-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbert-finnic-ner This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the Finnish and Estonian parts of the "WikiANN" dataset. It achieves the following results on the evaluation set: - Loss: 0.1427 - Precision: 0.9090 - Recall: 0.9156 - F1: 0.9123 - Accuracy: 0.9672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1636 | 1.0 | 2188 | 0.1385 | 0.8906 | 0.9000 | 0.8953 | 0.9601 | | 0.0991 | 2.0 | 4376 | 0.1346 | 0.9099 | 0.9095 | 0.9097 | 0.9660 | | 0.0596 | 3.0 | 6564 | 0.1427 | 0.9090 | 0.9156 | 0.9123 | 0.9672 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
ssardorf/pegasus-xsum-new-dataset
ssardorf
2022-03-25T13:12:00Z
4
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-25T13:07:00Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-xsum-new-dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-xsum-new-dataset This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8355 - Rouge1: 48.7306 - Rouge2: 34.1291 - Rougel: 44.0778 - Rougelsum: 45.7139 - Gen Len: 30.8889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cpu - Datasets 1.18.3 - Tokenizers 0.11.6
vumichien/mobilebert-uncased-squad-v2
vumichien
2022-03-25T13:09:07Z
72
0
transformers
[ "transformers", "tf", "mobilebert", "question-answering", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-25T13:07:29Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: tf-mobilebert-uncased-squad-v2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tf-mobilebert-uncased-squad-v2 This model is a fine-tuned version of [csarron/mobilebert-uncased-squad-v2](https://huggingface.co/csarron/mobilebert-uncased-squad-v2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Tokenizers 0.11.6
vumichien/emo-mobilebert
vumichien
2022-03-25T13:01:20Z
65
0
transformers
[ "transformers", "tf", "mobilebert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-25T12:59:51Z
--- tags: - generated_from_keras_callback model-index: - name: tf-emo-mobilebert results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tf-emo-mobilebert This model is a fine-tuned version of [lordtt13/emo-mobilebert](https://huggingface.co/lordtt13/emo-mobilebert) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Tokenizers 0.11.6
vumichien/albert-base-v2-squad2
vumichien
2022-03-25T12:48:59Z
76
0
transformers
[ "transformers", "tf", "albert", "question-answering", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
question-answering
2022-03-25T12:48:04Z
--- tags: - generated_from_keras_callback model-index: - name: tf-albert-base-v2-squad2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tf-albert-base-v2-squad2 This model is a fine-tuned version of [twmkn9/albert-base-v2-squad2](https://huggingface.co/twmkn9/albert-base-v2-squad2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Tokenizers 0.11.6
vumichien/tf-albert-base-v2
vumichien
2022-03-25T12:42:56Z
3
0
transformers
[ "transformers", "tf", "albert", "token-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-25T12:42:00Z
--- tags: - generated_from_keras_callback model-index: - name: tf-albert-base-v2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tf-albert-base-v2 This model is a fine-tuned version of [vumichien/albert-base-v2](https://huggingface.co/vumichien/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Tokenizers 0.11.6
bigmorning/try-m-e
bigmorning
2022-03-25T12:37:22Z
4
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-25T06:42:40Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: try-m-e results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # try-m-e This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
scasutt/wav2vec2-large-xlsr-53_toy_train_data_augment_0.1.csv
scasutt
2022-03-25T12:18:08Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-25T11:45:23Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_toy_train_data_augment_0.1.csv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_toy_train_data_augment_0.1.csv This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4695 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.2456 | 0.84 | 200 | 3.6215 | 1.0 | | 3.0637 | 1.68 | 400 | 3.3918 | 1.0 | | 3.046 | 2.52 | 600 | 3.4168 | 1.0 | | 3.0627 | 3.36 | 800 | 3.4695 | 1.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
microsoft/wavlm-base-sd
microsoft
2022-03-25T12:05:11Z
76
0
transformers
[ "transformers", "pytorch", "wavlm", "audio-frame-classification", "speech", "en", "arxiv:2110.13900", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - en tags: - speech --- # WavLM-Base for Speaker Diarization [Microsoft's WavLM](https://github.com/microsoft/unilm/tree/master/wavlm) The model was pretrained on 16kHz sampled speech audio with utterance and speaker contrastive loss. When using the model, make sure that your speech input is also sampled at 16kHz. The model was pre-trained on 960h of [Librispeech](https://huggingface.co/datasets/librispeech_asr). [Paper: WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) Authors: Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei **Abstract** *Self-supervised learning (SSL) achieves great success in speech recognition, while limited exploration has been attempted for other speech processing tasks. As speech signal contains multi-faceted information including speaker identity, paralinguistics, spoken content, etc., learning universal representations for all speech tasks is challenging. In this paper, we propose a new pre-trained model, WavLM, to solve full-stack downstream speech tasks. WavLM is built based on the HuBERT framework, with an emphasis on both spoken content modeling and speaker identity preservation. We first equip the Transformer structure with gated relative position bias to improve its capability on recognition tasks. For better speaker discrimination, we propose an utterance mixing training strategy, where additional overlapped utterances are created unsupervisely and incorporated during model training. Lastly, we scale up the training dataset from 60k hours to 94k hours. WavLM Large achieves state-of-the-art performance on the SUPERB benchmark, and brings significant improvements for various speech processing tasks on their representative benchmarks.* The original model can be found under https://github.com/microsoft/unilm/tree/master/wavlm. # Fine-tuning details The model is fine-tuned on the [LibriMix dataset](https://github.com/JorisCos/LibriMix) using just a linear layer for mapping the network outputs. # Usage ## Speaker Diarization ```python from transformers import Wav2Vec2FeatureExtractor, WavLMForAudioFrameClassification from datasets import load_dataset import torch dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/wavlm-base-sd') model = WavLMForAudioFrameClassification.from_pretrained('microsoft/wavlm-base-sd') # audio file is decoded on the fly inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt") logits = model(**inputs).logits probabilities = torch.sigmoid(logits[0]) # labels is a one-hot array of shape (num_frames, num_speakers) labels = (probabilities > 0.5).long() ``` # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/wavlm.png)
Jezia/pytorch-pretrained-BigGAN
Jezia
2022-03-25T10:53:53Z
0
2
pytorch
[ "pytorch", "biggan", "dataset:ImageNet", "license:apache-2.0", "region:us" ]
null
2022-03-25T10:05:00Z
--- license: apache-2.0 library_name: pytorch tags: - biggan datasets: - ImageNet --- ## Model description This is an op-for-op PyTorch reimplementation of DeepMind's BigGAN model with the pre-trained weights from DeepMind [biggan-deep-128](https://tfhub.dev/deepmind/biggan-deep-128/1). ## Training and evaluation data Model is trained on [ImageNet dataset](https://tfhub.dev/s?dataset=imagenet-ilsvrc-2012-cls). The dataset consists of 10000 classes. All images are resized to 64 * 64 for the sake of convenience. The model takes noise as input and then Conv2DTranspose is used to do upsampling. The output shape consists of 128, 256, or 512 images depending on the model. ## How to use this model You can use this model to generate new images. ``` import torch from pytorch_pretrained_biggan import (BigGAN, one_hot_from_names, truncated_noise_sample, save_as_images, display_in_terminal) model = BigGAN.from_pretrained('biggan-deep-256') ``` You can generate examples using a noise vector. ``` with torch.no_grad(): output = model(noise_vector, class_vector, truncation) ``` ## Intended use and biases This model is not intended for production. ### Generated images ![Example](./example.png) ### Credits @thomwolf Thomas Wolf @vfdev-5 vfdev
patrickvonplaten/deberta_v3_amazon_reviews
patrickvonplaten
2022-03-25T10:46:41Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-20T18:23:47Z
--- license: mit tags: - generated_from_trainer model-index: - name: deberta_v3_amazon_reviews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta_v3_amazon_reviews This model is a fine-tuned version of [patrickvonplaten/deberta_v3_amazon_reviews](https://huggingface.co/patrickvonplaten/deberta_v3_amazon_reviews) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 2 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
eliasws/openApiT5-distilled-description-v3
eliasws
2022-03-25T09:30:37Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "t5", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-25T09:25:50Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5547 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1109, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
RomanEnikeev/distilbert-base-uncased-finetuned-cola
RomanEnikeev
2022-03-25T09:13:46Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-25T06:47:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5670814703238499 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8265 - Matthews Correlation: 0.5671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5216 | 1.0 | 535 | 0.5536 | 0.4041 | | 0.3481 | 2.0 | 1070 | 0.5242 | 0.5206 | | 0.2372 | 3.0 | 1605 | 0.6162 | 0.5311 | | 0.1701 | 4.0 | 2140 | 0.7704 | 0.5461 | | 0.1304 | 5.0 | 2675 | 0.8265 | 0.5671 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Mr-Wick/Albert
Mr-Wick
2022-03-25T07:59:38Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "albert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-24T19:29:49Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Mr-Wick/Albert results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Mr-Wick/Albert This model is a fine-tuned version of [Mr-Wick/Albert](https://huggingface.co/Mr-Wick/Albert) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4248 - Train End Logits Accuracy: 0.3423 - Train Loss Accuracy: 0.0664 - Train Start Logits Accuracy: 0.3437 - Validation Loss: 0.9468 - Validation End Logits Accuracy: 0.4724 - Validation Loss Accuracy: 0.0591 - Validation Start Logits Accuracy: 0.4772 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16494, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Loss Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Loss Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:-------------------:|:---------------------------:|:---------------:|:------------------------------:|:------------------------:|:--------------------------------:|:-----:| | 0.6581 | 0.3488 | 0.0671 | 0.3529 | 0.9366 | 0.4415 | 0.0657 | 0.4486 | 0 | | 0.4248 | 0.3423 | 0.0664 | 0.3437 | 0.9468 | 0.4724 | 0.0591 | 0.4772 | 1 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
csukuangfj/transducer-loss-benchmarking
csukuangfj
2022-03-25T07:46:33Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# Introduction This repo contains the benchmark results for <https://github.com/csukuangfj/transducer-loss-benchmarking> ## Usage First, install `git-lfs`. Second, use the following command to clone this repo: ```bash git lfs install git clone https://huggingface.co/csukuangfj/transducer-loss-benchmarking ``` **Caution**: You have to run `git lfs install` first. Otherwise, you will be **SAD** later. Third, ``` pip install torch-tb-profiler cd transducer-loss-benchmarking tensorboard --logdir ./log/torchaudio-30 --port 6006 tensorboard --logdir ./log/optimized_transducer-30 --port 6007 ``` Fourth, open your browser and go to - <http://localhost:6006/#pytorch_profiler> - <http://localhost:6006/#pytorch_profiler> You will see the following images: ![](./torchaudio-30.png) ![](./optimized_transducer-30.png)
Ebtihal/AraBertMo_base_V9
Ebtihal
2022-03-25T07:25:05Z
18
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Arabic Model AraBertMo_base_V9 --- language: ar tags: Fill-Mask datasets: OSCAR widget: - text: " السلام عليكم ورحمة[MASK] وبركاتة" - text: " اهلا وسهلا بكم في [MASK] من سيربح المليون" - text: " مرحبا بك عزيزي الزائر [MASK] موقعنا " --- # Arabic BERT Model **AraBERTMo** is an Arabic pre-trained language model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERTMo_base uses the same BERT-Base config. AraBERTMo_base now comes in 10 new variants All models are available on the `HuggingFace` model page under the [Ebtihal](https://huggingface.co/Ebtihal/) name. Checkpoints are available in PyTorch formats. ## Pretraining Corpus `AraBertMo_base_V9' model was pre-trained on ~3 million words: - [OSCAR](https://traces1.inria.fr/oscar/) - Arabic version "unshuffled_deduplicated_ar". ## Training results this model achieves the following results: | Task | Num examples | Num Epochs | Batch Size | steps | Wall time | training loss| |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:| | Fill-Mask| 30024| 9 | 64 | 4230 | 7h 57m 42s | 7.3264 | ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Ebtihal/AraBertMo_base_V9") model = AutoModelForMaskedLM.from_pretrained("Ebtihal/AraBertMo_base_V9") ``` ## This model was built for master's degree research in an organization: - [University of kufa](https://uokufa.edu.iq/). - [Faculty of Computer Science and Mathematics](https://mathcomp.uokufa.edu.iq/). - **Department of Computer Science**
clisi2000/distilbert-base-uncased-finetuned-clinc
clisi2000
2022-03-25T06:23:40Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-22T05:03:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9158064516129032 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7796 - Accuracy: 0.9158 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2883 | 1.0 | 318 | 3.2778 | 0.7390 | | 2.6185 | 2.0 | 636 | 1.8740 | 0.8232 | | 1.5423 | 3.0 | 954 | 1.1579 | 0.8890 | | 1.0131 | 4.0 | 1272 | 0.8629 | 0.9077 | | 0.7964 | 5.0 | 1590 | 0.7796 | 0.9158 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.2+cpu - Datasets 1.18.4 - Tokenizers 0.10.3
bigmorning/try-m
bigmorning
2022-03-25T04:01:22Z
4
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T16:02:27Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: try-m results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # try-m This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
sanchit-gandhi/wav2vec2-2-rnd-no-adapter-regularisation
sanchit-gandhi
2022-03-25T03:10:23Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "generated_from_trainer", "dataset:librispeech_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-22T10:13:48Z
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.7177 - Wer: 0.1283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 25.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.1228 | 1.68 | 1500 | 6.0490 | 1.1433 | | 5.4173 | 3.36 | 3000 | 5.3453 | 1.4878 | | 4.1635 | 5.04 | 4500 | 4.4185 | 0.9644 | | 2.1246 | 6.73 | 6000 | 3.2089 | 0.5026 | | 1.88 | 8.41 | 7500 | 1.9886 | 0.3438 | | 1.2606 | 10.09 | 9000 | 1.4472 | 0.2487 | | 0.7492 | 11.77 | 10500 | 1.1716 | 0.1949 | | 0.8868 | 13.45 | 12000 | 1.0146 | 0.1702 | | 0.5078 | 15.13 | 13500 | 0.8821 | 0.1548 | | 0.4515 | 16.82 | 15000 | 0.8181 | 0.1417 | | 0.3902 | 18.5 | 16500 | 0.7765 | 0.1364 | | 0.3575 | 20.18 | 18000 | 0.7367 | 0.1333 | | 0.2903 | 21.86 | 19500 | 0.7211 | 0.1301 | | 0.2698 | 23.54 | 21000 | 0.7177 | 0.1283 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
Aureliano/distilbert-base-uncased-if
Aureliano
2022-03-25T00:06:03Z
7
0
transformers
[ "transformers", "pytorch", "tf", "distilbert", "text-classification", "en", "dataset:bookcorpus", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-21T17:46:18Z
--- language: en license: apache-2.0 datasets: - bookcorpus - wikipedia --- # DistilBERT base model (uncased) for Interactive Fiction [`distilbert-base-uncased`](https://huggingface.co/distilbert-base-uncased) finetuned on a dataset of Interactive Fiction commands. Details on the datasets can be found [here](https://github.com/aporporato/jericho-corpora). The resulting model scored an accuracy of 0.976253 on the WordNet task test set. ## How to use the discriminator in `transformers` ```python import tensorflow as tf from transformers import TFAutoModelForSequenceClassification, AutoTokenizer discriminator = TFAutoModelForSequenceClassification.from_pretrained("Aureliano/distilbert-base-uncased-if") tokenizer = AutoTokenizer.from_pretrained("Aureliano/distilbert-base-uncased-if") text = "get lamp" encoded_input = tokenizer(text, return_tensors='tf') output = discriminator(encoded_input) prediction = tf.nn.softmax(output["logits"][0], -1) label = discriminator.config.id2label[tf.math.argmax(prediction).numpy()] print(text, ":", label) # take.v.04 -> "get into one's hands, take physically" ``` ## How to use the discriminator in `transformers` on a custom dataset (Heavily based on: https://github.com/huggingface/notebooks/blob/master/examples/text_classification-tf.ipynb) ```python import math import numpy as np import tensorflow as tf from datasets import load_metric, Dataset, DatasetDict from transformers import TFAutoModel, TFAutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, create_optimizer from transformers.keras_callbacks import KerasMetricCallback # This example shows how this model can be used: # you should finetune the model of your specific corpus if commands, bigger than this dict_train = { "idx": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20"], "sentence": ["e", "get pen", "drop book", "x paper", "i", "south", "get paper", "drop the pen", "x book", "inventory", "n", "get the book", "drop paper", "look at Pen", "inv", "g", "s", "get sandwich", "drop sandwich", "x sandwich", "agin"], "label": ["travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "repeat.v.01", "travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "repeat.v.01"] } dict_val = { "idx": ["0", "1", "2", "3", "4", "5"], "sentence": ["w", "get shield", "drop sword", "x spikes", "i", "repeat"], "label": ["travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "repeat.v.01"] } raw_train_dataset = Dataset.from_dict(dict_train) raw_val_dataset = Dataset.from_dict(dict_val) raw_dataset = DatasetDict() raw_dataset["train"] = raw_train_dataset raw_dataset["val"] = raw_val_dataset raw_dataset = raw_dataset.class_encode_column("label") print(raw_dataset) print(raw_dataset["train"].features) print(raw_dataset["val"].features) print(raw_dataset["train"][1]) label2id = {} id2label = {} for i, l in enumerate(raw_dataset["train"].features["label"].names): label2id[l] = i id2label[i] = l discriminator = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", label2id=label2id, id2label=id2label) discriminator.distilbert = TFAutoModel.from_pretrained("Aureliano/distilbert-base-uncased-if") tokenizer = AutoTokenizer.from_pretrained("Aureliano/distilbert-base-uncased-if") tokenize_function = lambda example: tokenizer(example["sentence"], truncation=True) pre_tokenizer_columns = set(raw_dataset["train"].features) encoded_dataset = raw_dataset.map(tokenize_function, batched=True) tokenizer_columns = list(set(encoded_dataset["train"].features) - pre_tokenizer_columns) data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="tf") batch_size = len(encoded_dataset["train"]) tf_train_dataset = encoded_dataset["train"].to_tf_dataset( columns=tokenizer_columns, label_cols=["labels"], shuffle=True, batch_size=batch_size, collate_fn=data_collator ) tf_validation_dataset = encoded_dataset["val"].to_tf_dataset( columns=tokenizer_columns, label_cols=["labels"], shuffle=False, batch_size=batch_size, collate_fn=data_collator ) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) num_epochs = 20 batches_per_epoch = math.ceil(len(encoded_dataset["train"]) / batch_size) total_train_steps = int(batches_per_epoch * num_epochs) optimizer, schedule = create_optimizer( init_lr=2e-5, num_warmup_steps=total_train_steps // 5, num_train_steps=total_train_steps ) metric = load_metric("accuracy") def compute_metrics(eval_predictions): logits, labels = eval_predictions predictions = np.argmax(logits, axis=-1) return metric.compute(predictions=predictions, references=labels) metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_dataset) callbacks = [metric_callback] discriminator.compile(optimizer=optimizer, loss=loss, metrics=["sparse_categorical_accuracy"]) discriminator.fit( tf_train_dataset, epochs=num_epochs, validation_data=tf_validation_dataset, callbacks=callbacks ) print("Evaluate on test data") results = discriminator.evaluate(tf_validation_dataset) print("test loss, test acc:", results) text = "i" encoded_input = tokenizer(text, return_tensors='tf') output = discriminator(encoded_input) prediction = tf.nn.softmax(output["logits"][0], -1) label = id2label[tf.math.argmax(prediction).numpy()] print("\n", text, ":", label, "\n") # ideally 'inventory.v.01' (-> "make or include in an itemized record or report"), but probably only with a better finetuning dataset text = "get lamp" encoded_input = tokenizer(text, return_tensors='tf') output = discriminator(encoded_input) prediction = tf.nn.softmax(output["logits"][0], -1) label = id2label[tf.math.argmax(prediction).numpy()] print("\n", text, ":", label, "\n") # ideally 'take.v.04' (-> "get into one's hands, take physically"), but probably only with a better finetuning dataset text = "w" encoded_input = tokenizer(text, return_tensors='tf') output = discriminator(encoded_input) prediction = tf.nn.softmax(output["logits"][0], -1) label = id2label[tf.math.argmax(prediction).numpy()] print("\n", text, ":", label, "\n") # ideally 'travel.v.01' (-> "change location; move, travel, or proceed, also metaphorically"), but probably only with a better finetuning dataset ``` ## How to use in a Rasa pipeline The model can integrated in a Rasa pipeline through a [`LanguageModelFeaturizer`](https://rasa.com/docs/rasa/components#languagemodelfeaturizer) ```yaml recipe: default.v1 language: en pipeline: # See https://rasa.com/docs/rasa/tuning-your-model for more information. ... - name: "WhitespaceTokenizer" ... - name: LanguageModelFeaturizer model_name: "distilbert" model_weights: "Aureliano/distilbert-base-uncased-if" ... ```
tbosse/distilbert-base-uncased-finetuned-pos
tbosse
2022-03-25T00:02:11Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-20T21:29:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-pos results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9109037731744458 - name: Recall type: recall value: 0.9143515710299648 - name: F1 type: f1 value: 0.9126244157605404 - name: Accuracy type: accuracy value: 0.9245555785025498 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-pos This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.3165 - Precision: 0.9109 - Recall: 0.9144 - F1: 0.9126 - Accuracy: 0.9246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7941 | 1.0 | 878 | 0.3504 | 0.8995 | 0.9026 | 0.9011 | 0.9176 | | 0.2533 | 2.0 | 1756 | 0.3216 | 0.9091 | 0.9104 | 0.9098 | 0.9233 | | 0.2047 | 3.0 | 2634 | 0.3165 | 0.9109 | 0.9144 | 0.9126 | 0.9246 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
voidful/wav2vec2-large-xlsr-53-tw-gpt
voidful
2022-03-24T23:08:57Z
37
3
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "robust-speech-event", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: zh-TW datasets: - common_voice tags: - audio - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Taiwanese Mandarin(zh-tw) by Voidful results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice zh-TW type: common_voice args: zh-TW metrics: - name: Test CER type: cer value: 18.36 --- # Wav2Vec2-Large-XLSR-53-tw-gpt Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on zh-tw using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage [Colab trial](https://colab.research.google.com/drive/1e_z5jQHYbO2YKEaUgzb1ww1WwiAyydAj?usp=sharing) ``` import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, AutoTokenizer, AutoModelWithLMHead ) import torch import re import sys model_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" device = "cuda" processor_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]" model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(processor_name) tokenizer = AutoTokenizer.from_pretrained("ckiplab/gpt2-base-chinese") gpt_model = AutoModelWithLMHead.from_pretrained("ckiplab/gpt2-base-chinese").to(device) resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def load_file_to_data(file): batch = {} speech, _ = torchaudio.load(file) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq return batch def predict(data): features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits decoded_results = [] for logit in logits: pred_ids = torch.argmax(logit, dim=-1) mask = pred_ids.ge(1).unsqueeze(-1).expand(logit.size()) vocab_size = logit.size()[-1] voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1) gpt_input = torch.cat((torch.tensor([tokenizer.cls_token_id]).to(device),pred_ids[pred_ids>0]), 0) gpt_prob = torch.nn.functional.softmax(gpt_model(gpt_input).logits, dim=-1)[:voice_prob.size()[0],:] comb_pred_ids = torch.argmax(gpt_prob*voice_prob, dim=-1) decoded_results.append(processor.decode(comb_pred_ids)) return decoded_results ``` Predict ```python predict(load_file_to_data('voice file path')) ``` ## Evaluation The model can be evaluated as follows on the zh-tw test data of Common Voice. CER calculation refer to https://huggingface.co/ctl/wav2vec2-large-xlsr-cantonese env setup: ``` !pip install editdistance !pip install torchaudio !pip install datasets transformers ``` ## Evaluation without LM: ```python import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import torch import re import sys from transformers import AutoTokenizer, AutoModelWithLMHead from datasets import Audio from math import log model_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" device = "cuda" processor_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]" tokenizer = AutoTokenizer.from_pretrained("ckiplab/gpt2-base-chinese") lm_model = AutoModelWithLMHead.from_pretrained("ckiplab/gpt2-base-chinese").to(device) model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(processor_name) ds = load_dataset("common_voice", 'zh-TW', split="test") ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) def map_to_array(batch): audio = batch["audio"] batch["speech"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0] batch["sampling_rate"] = audio["sampling_rate"] batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ds = ds.map(map_to_array) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) batch["target"] = batch["sentence"] return batch result = ds.map(map_to_pred, batched=True, batch_size=3, remove_columns=list(ds.features.keys())) def cer_cal(groundtruth, hypothesis): err = 0 tot = 0 for p, t in zip(hypothesis, groundtruth): err += float(ed.eval(p.lower(), t.lower())) tot += len(t) return err / tot print("CER: {:2f}".format(100 * cer_cal(result["target"],result["predicted"]))) ``` `CER: 28.70`. `TIME: 04:08 min` ## Evaluation with GPT: ```python import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import torch import re import sys from transformers import AutoTokenizer, AutoModelWithLMHead from datasets import Audio from math import log model_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" device = "cuda" processor_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]" tokenizer = AutoTokenizer.from_pretrained("ckiplab/gpt2-base-chinese") lm_model = AutoModelWithLMHead.from_pretrained("ckiplab/gpt2-base-chinese").to(device) model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(processor_name) ds = load_dataset("common_voice", 'zh-TW', split="test") ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) def map_to_array(batch): audio = batch["audio"] batch["speech"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0] batch["sampling_rate"] = audio["sampling_rate"] batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ds = ds.map(map_to_array) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits decoded_results = [] for logit in logits: pred_ids = torch.argmax(logit, dim=-1) mask = pred_ids.ge(1).unsqueeze(-1).expand(logit.size()) vocab_size = logit.size()[-1] voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1) lm_input = torch.cat((torch.tensor([tokenizer.cls_token_id]).to(device),pred_ids[pred_ids>0]), 0) lm_prob = torch.nn.functional.softmax(lm_model(lm_input).logits, dim=-1)[:voice_prob.size()[0],:] comb_pred_ids = torch.argmax(lm_prob*voice_prob, dim=-1) decoded_results.append(processor.decode(comb_pred_ids)) batch["predicted"] = decoded_results batch["target"] = batch["sentence"] return batch result = ds.map(map_to_pred, batched=True, batch_size=3, remove_columns=list(ds.features.keys())) def cer_cal(groundtruth, hypothesis): err = 0 tot = 0 for p, t in zip(hypothesis, groundtruth): err += float(ed.eval(p.lower(), t.lower())) tot += len(t) return err / tot print("CER: {:2f}".format(100 * cer_cal(result["target"],result["predicted"]))) ``` `CER 25.70`. `TIME: 06:04 min` ## Evaluation with GPT + beam search: ```python import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import torch import re import sys from transformers import AutoTokenizer, AutoModelWithLMHead from datasets import Audio from math import log model_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" device = "cuda" processor_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]" tokenizer = AutoTokenizer.from_pretrained("ckiplab/gpt2-base-chinese") lm_model = AutoModelWithLMHead.from_pretrained("ckiplab/gpt2-base-chinese").to(device) model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(processor_name) ds = load_dataset("common_voice", 'zh-TW', split="test") ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) def map_to_array(batch): audio = batch["audio"] batch["speech"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0] batch["sampling_rate"] = audio["sampling_rate"] batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ds = ds.map(map_to_array) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits decoded_results = [] for logit in logits: sequences = [[[], 1.0]] pred_ids = torch.argmax(logit, dim=-1) mask = pred_ids.ge(1).unsqueeze(-1).expand(logit.size()) vocab_size = logit.size()[-1] voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1) while True: all_candidates = list() exceed = False for seq in sequences: tokens, score = seq gpt_input = torch.tensor([tokenizer.cls_token_id]+tokens).to(device) gpt_prob = torch.nn.functional.softmax(lm_model(gpt_input).logits, dim=-1)[:len(gpt_input),:] if len(gpt_input) >= len(voice_prob): exceed = True comb_pred_ids = gpt_prob*voice_prob[:len(gpt_input)] v,i = torch.topk(comb_pred_ids,50,dim=-1) for tok_id,tok_prob in zip(i.tolist()[-1],v.tolist()[-1]): candidate = [tokens + [tok_id], score + -log(tok_prob)] all_candidates.append(candidate) ordered = sorted(all_candidates, key=lambda tup: tup[1]) sequences = ordered[:10] if exceed: break decoded_results.append(processor.decode(sequences[0][0])) batch["predicted"] = decoded_results batch["target"] = batch["sentence"] return batch result = ds.map(map_to_pred, batched=True, batch_size=3, remove_columns=list(ds.features.keys())) def cer_cal(groundtruth, hypothesis): err = 0 tot = 0 for p, t in zip(hypothesis, groundtruth): err += float(ed.eval(p.lower(), t.lower())) tot += len(t) return err / tot print("CER: {:2f}".format(100 * cer_cal(result["target"],result["predicted"]))) ``` `CER 18.36`. ## Evaluation with BERT: ```python import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import torch import re import sys from transformers import AutoTokenizer, AutoModelForMaskedLM model_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" device = "cuda" processor_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]" tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese") lm_model = AutoModelForMaskedLM.from_pretrained("bert-base-chinese").to(device) model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(processor_name) ds = load_dataset("common_voice", 'zh-TW', data_dir="./cv-corpus-6.1-2020-12-11", split="test") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ds = ds.map(map_to_array) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits decoded_results = [] for logit in logits: pred_ids = torch.argmax(logit, dim=-1) mask = ~pred_ids.eq(tokenizer.pad_token_id).unsqueeze(-1).expand(logit.size()) vocab_size = logit.size()[-1] voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1) lm_input = torch.masked_select(pred_ids, ~pred_ids.eq(tokenizer.pad_token_id)).unsqueeze(0) mask_lm_prob = voice_prob.clone() for i in range(lm_input.shape[-1]): masked_lm_input = lm_input.clone() masked_lm_input[0][i] = torch.tensor(tokenizer.mask_token_id).to('cuda') lm_prob = torch.nn.functional.softmax(lm_model(masked_lm_input).logits, dim=-1).squeeze(0) mask_lm_prob[i] = lm_prob[i] comb_pred_ids = torch.argmax(mask_lm_prob*voice_prob, dim=-1) decoded_results.append(processor.decode(comb_pred_ids)) batch["predicted"] = decoded_results batch["target"] = batch["sentence"] return batch result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) def cer_cal(groundtruth, hypothesis): err = 0 tot = 0 for p, t in zip(hypothesis, groundtruth): err += float(ed.eval(p.lower(), t.lower())) tot += len(t) return err / tot print("CER: {:2f}".format(100 * cer_cal(result["target"],result["predicted"]))) ``` `CER 25.57`. `TIME: 09:49 min` ## Evaluation with T-TA: setup ``` !git clone https://github.com/voidful/pytorch-tta.git !mv ./pytorch-tta/tta ./tta !wget https://github.com/voidful/pytorch-tta/releases/download/wiki_zh/wiki_zh.pt ``` ```python import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import torch import re import sys from tta.modeling_tta import TTALMModel from transformers import AutoTokenizer import torch model_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" device = "cuda" processor_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt" chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]" tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese") lm_model = TTALMModel("bert-base-chinese") tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese") lm_model.load_state_dict(torch.load("./wiki_zh.pt",map_location=torch.device('cuda'))) lm_model.to('cuda') lm_model.eval() model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(processor_name) ds = load_dataset("common_voice", 'zh-TW', data_dir="./cv-corpus-6.1-2020-12-11", split="test") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ds = ds.map(map_to_array) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits decoded_results = [] for logit in logits: pred_ids = torch.argmax(logit, dim=-1) mask = ~pred_ids.eq(tokenizer.pad_token_id).unsqueeze(-1).expand(logit.size()) vocab_size = logit.size()[-1] voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1) lm_input = torch.masked_select(pred_ids, ~pred_ids.eq(tokenizer.pad_token_id)).unsqueeze(0) lm_prob = torch.nn.functional.softmax(lm_model.forward(lm_input)[0], dim=-1).squeeze(0) comb_pred_ids = torch.argmax(lm_prob*voice_prob, dim=-1) decoded_results.append(processor.decode(comb_pred_ids)) batch["predicted"] = decoded_results batch["target"] = batch["sentence"] return batch result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys())) def cer_cal(groundtruth, hypothesis): err = 0 tot = 0 for p, t in zip(hypothesis, groundtruth): err += float(ed.eval(p.lower(), t.lower())) tot += len(t) return err / tot print("CER: {:2f}".format(100 * cer_cal(result["target"],result["predicted"]))) ``` `CER: 25.77`. `TIME: 06:01 min`
Paul-Vinh/bert-base-multilingual-cased-finetuned-squad
Paul-Vinh
2022-03-24T22:47:39Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-24T19:22:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-multilingual-cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-squad This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.0122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.9982 | 1.0 | 5555 | 0.9436 | | 0.7694 | 2.0 | 11110 | 0.9356 | | 0.5627 | 3.0 | 16665 | 1.0122 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
cdinh2022/distilbert-base-uncased-finetuned-emotion
cdinh2022
2022-03-24T21:44:36Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-24T21:15:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 0.1 | 25 | 1.4889 | 0.5195 | 0.3976 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
mp6kv/pump_intent_test
mp6kv
2022-03-24T18:40:12Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-05T19:25:45Z
--- license: mit tags: - generated_from_trainer model-index: - name: pump_intent_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pump_intent_test This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. ## Model description Custom data generated labeling text according to these three categories. These three categories are the subcategories of Pump - essentially when a user asks a question and expects an answer in response - Value: a slot value or a calculation - Clarification: Asking for further information on a previous answer - Testing: Testing for knowledge of facts and definitions Takes a user input of string text and classifies it according to one of three categories. ## Intended uses & limitations from transformers import pipeline classifier = pipeline("text-classification",model="mp6kv/pump_intent_test") output = classifier("What is the value of the length of the blue object?") score = output[0]['score'] label = output[0]['label'] ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
huggingtweets/janieclone-wretched_worm
huggingtweets
2022-03-24T16:50:55Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T16:50:13Z
--- language: en thumbnail: http://www.huggingtweets.com/janieclone-wretched_worm/1648140650284/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1478043369578266624/vWL3TXE0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1504460028270501895/uqbdF11C_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wretched worm & Columbine Janie</div> <div style="text-align: center; font-size: 14px;">@janieclone-wretched_worm</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wretched worm & Columbine Janie. | Data | wretched worm | Columbine Janie | | --- | --- | --- | | Tweets downloaded | 3226 | 544 | | Retweets | 313 | 197 | | Short tweets | 572 | 60 | | Tweets kept | 2341 | 287 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jmx6vuf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @janieclone-wretched_worm's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/kpqts6sn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/kpqts6sn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/janieclone-wretched_worm') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
optimum/distilbert-base-uncased-mnli
optimum
2022-03-24T16:19:12Z
11
3
transformers
[ "transformers", "onnx", "text-classification", "distilbert", "zero-shot-classification", "en", "dataset:multi_nli", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-24T16:17:54Z
--- language: en pipeline_tag: zero-shot-classification tags: - distilbert datasets: - multi_nli metrics: - accuracy --- # ONNX convert typeform/distilbert-base-uncased-mnli ## Conversion of [typeform/distilbert-base-uncased-mnli](typeform/distilbert-base-uncased-mnli) This is the [uncased DistilBERT model](https://huggingface.co/distilbert-base-uncased) fine-tuned on [Multi-Genre Natural Language Inference](https://huggingface.co/datasets/multi_nli) (MNLI) dataset for the zero-shot classification task. The model is not case-sensitive, i.e., it does not make a difference between "english" and "English". ## Training Training is done on a [p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) AWS EC2 instance (1 NVIDIA Tesla V100 GPUs), with the following hyperparameters: ``` $ run_glue.py \ --model_name_or_path distilbert-base-uncased \ --task_name mnli \ --do_train \ --do_eval \ --max_seq_length 128 \ --per_device_train_batch_size 16 \ --learning_rate 2e-5 \ --num_train_epochs 5 \ --output_dir /tmp/distilbert-base-uncased_mnli/ ``` ## Evaluation results | Task | MNLI | MNLI-mm | |:----:|:----:|:----:| | | 82.0 | 82.0 |
optimum/all-MiniLM-L6-v2
optimum
2022-03-24T16:16:57Z
74,671
17
sentence-transformers
[ "sentence-transformers", "onnx", "feature-extraction", "sentence-similarity", "en", "arxiv:1904.06472", "arxiv:2102.07033", "arxiv:2104.08727", "arxiv:1704.05179", "arxiv:1810.09305", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-24T16:15:58Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en license: apache-2.0 --- # ONNX convert all-MiniLM-L6-v2 ## Conversion of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L6-v2) ------ ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. By default, input text longer than 256 word pieces is truncated. ## Training procedure ### Pre-training We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure. ### Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. #### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`. #### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |--------------------------------------------------------|:----------------------------------------:|:--------------------------:| | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 | | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | **Total** | | **1,170,060,424** |
optimum/bert-base-NER
optimum
2022-03-24T16:14:52Z
26
2
transformers
[ "transformers", "onnx", "token-classification", "en", "dataset:conll2003", "arxiv:1810.04805", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-24T16:13:41Z
--- language: en datasets: - conll2003 license: mit --- # ONNX convert of bert-base-NER ## Conversion of [bert-base-NER](https://huggingface.co/dslim/bert-base-NER) ## Model description **bert-base-NER** is a fine-tuned BERT model that is ready to use for **Named Entity Recognition** and achieves **state-of-the-art performance** for the NER task. It has been trained to recognize four types of entities: location (LOC), organizations (ORG), person (PER) and Miscellaneous (MISC). Specifically, this model is a *bert-base-cased* model that was fine-tuned on the English version of the standard [CoNLL-2003 Named Entity Recognition](https://www.aclweb.org/anthology/W03-0419.pdf) dataset. If you'd like to use a larger BERT-large model fine-tuned on the same dataset, a [**bert-large-NER**](https://huggingface.co/dslim/bert-large-NER/) version is also available. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER") model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "My name is Wolfgang and I live in Berlin" ner_results = nlp(example) print(ner_results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases. ## Training data This model was fine-tuned on English version of the standard [CoNLL-2003 Named Entity Recognition](https://www.aclweb.org/anthology/W03-0419.pdf) dataset. The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes: Abbreviation|Description -|- O|Outside of a named entity B-MIS |Beginning of a miscellaneous entity right after another miscellaneous entity I-MIS | Miscellaneous entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organization right after another organization I-ORG |organization B-LOC |Beginning of a location right after another location I-LOC |Location ### CoNLL-2003 English Dataset Statistics This dataset was derived from the Reuters corpus which consists of Reuters news stories. You can read more about how this dataset was created in the CoNLL-2003 paper. #### # of training examples per entity type Dataset|LOC|MISC|ORG|PER -|-|-|-|- Train|7140|3438|6321|6600 Dev|1837|922|1341|1842 Test|1668|702|1661|1617 #### # of articles/sentences/tokens per dataset Dataset |Articles |Sentences |Tokens -|-|-|- Train |946 |14,987 |203,621 Dev |216 |3,466 |51,362 Test |231 |3,684 |46,435 ## Training procedure This model was trained on a single NVIDIA V100 GPU with recommended hyperparameters from the [original BERT paper](https://arxiv.org/pdf/1810.04805) which trained & evaluated the model on CoNLL-2003 NER task. ## Eval results metric|dev|test -|-|- f1 |95.1 |91.3 precision |95.0 |90.7 recall |95.3 |91.9 The test metrics are a little lower than the official Google BERT results which encoded document context & experimented with CRF. More on replicating the original results [here](https://github.com/google-research/bert/issues/223). ### BibTeX entry and citation info ``` @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` ``` @inproceedings{tjong-kim-sang-de-meulder-2003-introduction, title = "Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition", author = "Tjong Kim Sang, Erik F. and De Meulder, Fien", booktitle = "Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003", year = "2003", url = "https://www.aclweb.org/anthology/W03-0419", pages = "142--147", } ```
huggingtweets/untiltrees
huggingtweets
2022-03-24T16:08:51Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T15:42:21Z
--- language: en thumbnail: http://www.huggingtweets.com/untiltrees/1648138126631/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1350186722596974593/lANAV_Xj_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dancing Box</div> <div style="text-align: center; font-size: 14px;">@untiltrees</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dancing Box. | Data | Dancing Box | | --- | --- | | Tweets downloaded | 994 | | Retweets | 41 | | Short tweets | 91 | | Tweets kept | 862 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/36kia24g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @untiltrees's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8md8jogv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8md8jogv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/untiltrees') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/temujin9
huggingtweets
2022-03-24T15:12:42Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/temujin9/1648134757659/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1336188666792833027/j0wP6bb0_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Prose and Khans</div> <div style="text-align: center; font-size: 14px;">@temujin9</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Prose and Khans. | Data | Prose and Khans | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 100 | | Short tweets | 292 | | Tweets kept | 2855 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8v2q4o1o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @temujin9's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31lwo8dx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31lwo8dx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/temujin9') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
K024/mt5-zh-ja-en-trimmed
K024
2022-03-24T14:57:22Z
217
57
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "translation", "zh", "ja", "en", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:04Z
--- language: - zh - ja - en tags: - translation widget: - text: "ja2zh: 吾輩は猫である。名前はまだ無い。" license: cc-by-nc-sa-4.0 --- This model is finetuned from [mt5-base](https://huggingface.co/google/mt5-base). The model vocabulary is trimmed to ~1/3 by selecting top 85000 tokens in the training data. The code to trim the vocabulary can be found [here](https://gist.github.com/K024/4a100a0f4f4b07208958e0f3244da6ad). Usage: ```python from transformers import ( T5Tokenizer, MT5ForConditionalGeneration, Text2TextGenerationPipeline, ) path = "K024/mt5-zh-ja-en-trimmed" pipe = Text2TextGenerationPipeline( model=MT5ForConditionalGeneration.from_pretrained(path), tokenizer=T5Tokenizer.from_pretrained(path), ) sentence = "ja2zh: 吾輩は猫である。名前はまだ無い。" res = pipe(sentence, max_length=100, num_beams=4) res[0]['generated_text'] ``` Training data: ``` wikimedia-en-ja wikimedia-en-zh wikimedia-ja-zh wikititles-ja-en wikititles-zh-en wikimatrix-ja-zh news-commentary-en-ja news-commentary-en-zh news-commentary-ja-zh ted2020-en-ja ted2020-en-zh ted2020-ja-zh ``` License: [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ [cc-by-nc-sa-image]: https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png
gayanin/t5-small-med-term-conditional-masking
gayanin
2022-03-24T14:54:49Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-23T20:16:40Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-med-term-conditional-masking results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-med-term-conditional-masking This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6808 - Rouge2 Precision: 0.6855 - Rouge2 Recall: 0.486 - Rouge2 Fmeasure: 0.5507 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:------:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.9303 | 1.0 | 15827 | 0.8262 | 0.6603 | 0.4698 | 0.5318 | | 0.8677 | 2.0 | 31654 | 0.7679 | 0.6695 | 0.4762 | 0.539 | | 0.8315 | 3.0 | 47481 | 0.7393 | 0.6741 | 0.4783 | 0.5418 | | 0.7999 | 4.0 | 63308 | 0.7194 | 0.6774 | 0.4811 | 0.5448 | | 0.7746 | 5.0 | 79135 | 0.7059 | 0.6804 | 0.4815 | 0.5459 | | 0.7785 | 6.0 | 94962 | 0.6958 | 0.6827 | 0.4841 | 0.5485 | | 0.7592 | 7.0 | 110789 | 0.6893 | 0.6841 | 0.4849 | 0.5494 | | 0.745 | 8.0 | 126616 | 0.6849 | 0.6846 | 0.4852 | 0.5498 | | 0.7443 | 9.0 | 142443 | 0.6818 | 0.6854 | 0.4865 | 0.551 | | 0.7417 | 10.0 | 158270 | 0.6808 | 0.6855 | 0.486 | 0.5507 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
beston91/gpt2-xl_ft_logits_25k
beston91
2022-03-24T12:59:29Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-22T17:03:46Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_logits_25k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_logits_25k This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 136 | 6.2712 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 17.583023071289062
huggingtweets/rronigj
huggingtweets
2022-03-24T12:47:01Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T12:37:39Z
--- language: en thumbnail: http://www.huggingtweets.com/rronigj/1648126016294/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1251916496307175424/rFilH506_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rron Gjinovci</div> <div style="text-align: center; font-size: 14px;">@rronigj</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rron Gjinovci. | Data | Rron Gjinovci | | --- | --- | | Tweets downloaded | 173 | | Retweets | 45 | | Short tweets | 24 | | Tweets kept | 104 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/33ceg6s6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rronigj's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3nokbt1r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3nokbt1r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rronigj') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
espnet/Karthik_DSTC2_asr_train_asr_wav2vec_conformer_2
espnet
2022-03-24T12:42:03Z
1
0
espnet
[ "espnet", "tensorboard", "audio", "automatic-speech-recognition", "en", "dataset:DSTC2", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-24T12:03:09Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - DSTC2 license: cc-by-4.0 --- ## ESPnet2 ASR pretrained model ### `espnet/Karthik_DSTC2_asr_train_asr_wav2vec_conformer_2` This model was trained by Karthik using DSTC2/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Thant123/distilbert-base-uncased-finetuned-emotion
Thant123
2022-03-24T12:17:39Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-24T12:02:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9241019999324234 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2270 - Accuracy: 0.924 - F1: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8204 | 1.0 | 250 | 0.3160 | 0.9035 | 0.9008 | | 0.253 | 2.0 | 500 | 0.2270 | 0.924 | 0.9241 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
stmnk/wav2vec2-large-xls-r-300m-dutch-colab
stmnk
2022-03-24T11:58:54Z
0
0
null
[ "nl", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - nl license: apache-2.0 tags: - nl - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 ---
DrishtiSharma/wav2vec2-large-xls-r-300m-as-with-LM-v2
DrishtiSharma
2022-03-24T11:58:51Z
0
1
null
[ "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "as", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:common_voice", "license:apache-2.0", "model-index", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - as license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - as - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-as-with-LM-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hsb metrics: - name: Test WER type: wer value: [] - name: Test CER type: cer value: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> ### Note: Files are missing. Probably, didn't get (git)pushed properly. :( This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.1679 - Wer: 0.5761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000111 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 8.3852 | 10.51 | 200 | 3.6402 | 1.0 | | 3.5374 | 21.05 | 400 | 3.3894 | 1.0 | | 2.8645 | 31.56 | 600 | 1.3143 | 0.8303 | | 1.1784 | 42.1 | 800 | 0.9417 | 0.6661 | | 0.7805 | 52.62 | 1000 | 0.9292 | 0.6237 | | 0.5973 | 63.15 | 1200 | 0.9489 | 0.6014 | | 0.4784 | 73.67 | 1400 | 0.9916 | 0.5962 | | 0.4138 | 84.21 | 1600 | 1.0272 | 0.6121 | | 0.3491 | 94.72 | 1800 | 1.0412 | 0.5984 | | 0.3062 | 105.26 | 2000 | 1.0769 | 0.6005 | | 0.2707 | 115.77 | 2200 | 1.0708 | 0.5752 | | 0.2459 | 126.31 | 2400 | 1.1285 | 0.6009 | | 0.2234 | 136.82 | 2600 | 1.1209 | 0.5949 | | 0.2035 | 147.36 | 2800 | 1.1348 | 0.5842 | | 0.1876 | 157.87 | 3000 | 1.1480 | 0.5872 | | 0.1669 | 168.41 | 3200 | 1.1496 | 0.5838 | | 0.1595 | 178.92 | 3400 | 1.1721 | 0.5778 | | 0.1505 | 189.46 | 3600 | 1.1654 | 0.5744 | | 0.1486 | 199.97 | 3800 | 1.1679 | 0.5761 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
sammy786/wav2vec2-xlsr-romansh_sursilvan
sammy786
2022-03-24T11:58:43Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "rm-sursilv", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - rm-sursilv license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - rm-sursilv - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-romansh_sursilvan results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: rm-sursilv metrics: - name: Test WER type: wer value: 13.82 - name: Test CER type: cer value: 3.02 --- # sammy786/wav2vec2-xlsr-romansh_sursilvan This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - rm-sursilv dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 16.38 - Wer: 21.25 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 200 | 4.825500 | 2.932350 | 1.000000 | | 400 | 1.325600 | 0.292645 | 0.415436 | | 600 | 0.709800 | 0.219167 | 0.324451 | | 800 | 0.576800 | 0.174390 | 0.275477 | | 1000 | 0.538100 | 0.183737 | 0.272116 | | 1200 | 0.475200 | 0.159078 | 0.253871 | | 1400 | 0.420400 | 0.167277 | 0.240907 | | 1600 | 0.393500 | 0.167216 | 0.247269 | | 1800 | 0.407500 | 0.178282 | 0.239827 | | 2000 | 0.374400 | 0.184590 | 0.239467 | | 2200 | 0.382600 | 0.164106 | 0.227824 | | 2400 | 0.363100 | 0.162543 | 0.228544 | | 2600 | 0.199000 | 0.172903 | 0.231665 | | 2800 | 0.150800 | 0.160117 | 0.222662 | | 3000 | 0.101100 | 0.169553 | 0.222662 | | 3200 | 0.104200 | 0.161056 | 0.220622 | | 3400 | 0.096900 | 0.161562 | 0.216781 | | 3600 | 0.092200 | 0.163880 | 0.212580 | | 3800 | 0.089200 | 0.162288 | 0.214140 | | 4000 | 0.076200 | 0.160470 | 0.213540 | | 4200 | 0.087900 | 0.162827 | 0.213060 | | 4400 | 0.066200 | 0.161096 | 0.213300 | | 4600 | 0.076000 | 0.162060 | 0.213660 | | 4800 | 0.071400 | 0.162045 | 0.213300 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-romansh_sursilvan --dataset mozilla-foundation/common_voice_8_0 --config rm-sursilv --split test ```
sammy786/wav2vec2-xlsr-kyrgyz
sammy786
2022-03-24T11:58:41Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "ky", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ky license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - ky - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-kyrgyz results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ky metrics: - name: Test WER type: wer value: 25.24 - name: Test CER type: cer value: 6.25 --- # sammy786/wav2vec2-xlsr-kyrgyz This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ky dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 43.06 - Wer: 39.19 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 200 | 5.357800 | 2.700367 | 1.000000 | | 400 | 1.513600 | 0.642542 | 0.598820 | | 600 | 0.961900 | 0.530665 | 0.502739 | | 800 | 0.776000 | 0.507709 | 0.462705 | | 1000 | 0.646100 | 0.453115 | 0.444164 | | 1200 | 0.581200 | 0.454797 | 0.438264 | | 1400 | 0.437900 | 0.459389 | 0.426464 | | 1600 | 0.348600 | 0.401247 | 0.416351 | | 1800 | 0.312800 | 0.436135 | 0.409608 | | 2000 | 0.294100 | 0.440911 | 0.398651 | | 2200 | 0.281400 | 0.432729 | 0.394016 | | 2400 | 0.258400 | 0.429860 | 0.393595 | | 2600 | 0.263700 | 0.432689 | 0.395280 | | 2800 | 0.256900 | 0.430672 | 0.391909 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-kyrgyz --dataset mozilla-foundation/common_voice_8_0 --config ky --split test ```
reichenbach/wav2vec2-large-xls-r-300m-as
reichenbach
2022-03-24T11:58:33Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "as", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - as tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-as results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-as This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.8318 - Wer: 0.5174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.882 | 25.0 | 400 | 1.2290 | 0.8182 | | 0.8275 | 50.0 | 800 | 0.6835 | 0.5398 | | 0.337 | 75.0 | 1200 | 0.7789 | 0.5107 | | 0.2113 | 100.0 | 1600 | 0.8318 | 0.5174 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 ### Test Evaluation Common Voice Assamese Test Set (v7.0) - WER: 0.7224 - CER: 0.2882
lgris/wav2vec2-xls-r-gn-cv7
lgris
2022-03-24T11:58:25Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "gn", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - gn license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - gn - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xls-r-gn-cv7 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: pt metrics: - name: Validation WER type: wer value: 73.02 - name: Validation CER type: cer value: 17.79 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: gn metrics: - name: Test WER type: wer value: 62.65 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-gn-cv7 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.7197 - Wer: 0.7434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 13000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 3.4669 | 6.24 | 100 | 3.3003 | 1.0 | | 3.3214 | 12.48 | 200 | 3.2090 | 1.0 | | 3.1619 | 18.73 | 300 | 2.6322 | 1.0 | | 1.751 | 24.97 | 400 | 1.4089 | 0.9803 | | 0.7997 | 31.24 | 500 | 0.9996 | 0.9211 | | 0.4996 | 37.48 | 600 | 0.9879 | 0.8553 | | 0.3677 | 43.73 | 700 | 0.9543 | 0.8289 | | 0.2851 | 49.97 | 800 | 1.0627 | 0.8487 | | 0.2556 | 56.24 | 900 | 1.0933 | 0.8355 | | 0.2268 | 62.48 | 1000 | 0.9191 | 0.8026 | | 0.1914 | 68.73 | 1100 | 0.9582 | 0.7961 | | 0.1749 | 74.97 | 1200 | 1.0502 | 0.8092 | | 0.157 | 81.24 | 1300 | 0.9998 | 0.7632 | | 0.1505 | 87.48 | 1400 | 1.0076 | 0.7303 | | 0.1278 | 93.73 | 1500 | 0.9321 | 0.75 | | 0.1078 | 99.97 | 1600 | 1.0383 | 0.7697 | | 0.1156 | 106.24 | 1700 | 1.0302 | 0.7763 | | 0.1107 | 112.48 | 1800 | 1.0419 | 0.7763 | | 0.091 | 118.73 | 1900 | 1.0694 | 0.75 | | 0.0829 | 124.97 | 2000 | 1.0257 | 0.7829 | | 0.0865 | 131.24 | 2100 | 1.2108 | 0.7368 | | 0.0907 | 137.48 | 2200 | 1.0458 | 0.7697 | | 0.0897 | 143.73 | 2300 | 1.1504 | 0.7895 | | 0.0766 | 149.97 | 2400 | 1.1663 | 0.7237 | | 0.0659 | 156.24 | 2500 | 1.1320 | 0.7632 | | 0.0699 | 162.48 | 2600 | 1.2586 | 0.7434 | | 0.0613 | 168.73 | 2700 | 1.1815 | 0.8158 | | 0.0598 | 174.97 | 2800 | 1.3299 | 0.75 | | 0.0577 | 181.24 | 2900 | 1.2035 | 0.7171 | | 0.0576 | 187.48 | 3000 | 1.2134 | 0.7434 | | 0.0518 | 193.73 | 3100 | 1.3406 | 0.7566 | | 0.0524 | 199.97 | 3200 | 1.4251 | 0.75 | | 0.0467 | 206.24 | 3300 | 1.3533 | 0.7697 | | 0.0428 | 212.48 | 3400 | 1.2463 | 0.7368 | | 0.0453 | 218.73 | 3500 | 1.4532 | 0.7566 | | 0.0473 | 224.97 | 3600 | 1.3152 | 0.7434 | | 0.0451 | 231.24 | 3700 | 1.2232 | 0.7368 | | 0.0361 | 237.48 | 3800 | 1.2938 | 0.7171 | | 0.045 | 243.73 | 3900 | 1.4148 | 0.7434 | | 0.0422 | 249.97 | 4000 | 1.3786 | 0.7961 | | 0.036 | 256.24 | 4100 | 1.4488 | 0.7697 | | 0.0352 | 262.48 | 4200 | 1.2294 | 0.6776 | | 0.0326 | 268.73 | 4300 | 1.2796 | 0.6974 | | 0.034 | 274.97 | 4400 | 1.3805 | 0.7303 | | 0.0305 | 281.24 | 4500 | 1.4994 | 0.7237 | | 0.0325 | 287.48 | 4600 | 1.4330 | 0.6908 | | 0.0338 | 293.73 | 4700 | 1.3091 | 0.7368 | | 0.0306 | 299.97 | 4800 | 1.2174 | 0.7171 | | 0.0299 | 306.24 | 4900 | 1.3527 | 0.7763 | | 0.0287 | 312.48 | 5000 | 1.3651 | 0.7368 | | 0.0274 | 318.73 | 5100 | 1.4337 | 0.7368 | | 0.0258 | 324.97 | 5200 | 1.3831 | 0.6908 | | 0.022 | 331.24 | 5300 | 1.3556 | 0.6974 | | 0.021 | 337.48 | 5400 | 1.3836 | 0.7237 | | 0.0241 | 343.73 | 5500 | 1.4352 | 0.7039 | | 0.0229 | 349.97 | 5600 | 1.3904 | 0.7105 | | 0.026 | 356.24 | 5700 | 1.4131 | 0.7171 | | 0.021 | 362.48 | 5800 | 1.5426 | 0.6974 | | 0.0191 | 368.73 | 5900 | 1.5960 | 0.7632 | | 0.0227 | 374.97 | 6000 | 1.6240 | 0.7368 | | 0.0204 | 381.24 | 6100 | 1.4301 | 0.7105 | | 0.0175 | 387.48 | 6200 | 1.5554 | 0.75 | | 0.0183 | 393.73 | 6300 | 1.6044 | 0.7697 | | 0.0183 | 399.97 | 6400 | 1.5963 | 0.7368 | | 0.016 | 406.24 | 6500 | 1.5679 | 0.7829 | | 0.0178 | 412.48 | 6600 | 1.5928 | 0.7697 | | 0.014 | 418.73 | 6700 | 1.7000 | 0.7632 | | 0.0182 | 424.97 | 6800 | 1.5340 | 0.75 | | 0.0148 | 431.24 | 6900 | 1.9274 | 0.7368 | | 0.0148 | 437.48 | 7000 | 1.6437 | 0.7697 | | 0.0173 | 443.73 | 7100 | 1.5468 | 0.75 | | 0.0109 | 449.97 | 7200 | 1.6083 | 0.75 | | 0.0167 | 456.24 | 7300 | 1.6732 | 0.75 | | 0.0139 | 462.48 | 7400 | 1.5097 | 0.7237 | | 0.013 | 468.73 | 7500 | 1.5947 | 0.7171 | | 0.0128 | 474.97 | 7600 | 1.6260 | 0.7105 | | 0.0166 | 481.24 | 7700 | 1.5756 | 0.7237 | | 0.0127 | 487.48 | 7800 | 1.4506 | 0.6908 | | 0.013 | 493.73 | 7900 | 1.4882 | 0.7368 | | 0.0125 | 499.97 | 8000 | 1.5589 | 0.7829 | | 0.0141 | 506.24 | 8100 | 1.6328 | 0.7434 | | 0.0115 | 512.48 | 8200 | 1.6586 | 0.7434 | | 0.0117 | 518.73 | 8300 | 1.6043 | 0.7105 | | 0.009 | 524.97 | 8400 | 1.6508 | 0.7237 | | 0.0108 | 531.24 | 8500 | 1.4507 | 0.6974 | | 0.011 | 537.48 | 8600 | 1.5942 | 0.7434 | | 0.009 | 543.73 | 8700 | 1.8121 | 0.7697 | | 0.0112 | 549.97 | 8800 | 1.6923 | 0.7697 | | 0.0073 | 556.24 | 8900 | 1.7096 | 0.7368 | | 0.0098 | 562.48 | 9000 | 1.7052 | 0.7829 | | 0.0088 | 568.73 | 9100 | 1.6956 | 0.7566 | | 0.0099 | 574.97 | 9200 | 1.4909 | 0.7171 | | 0.0075 | 581.24 | 9300 | 1.6307 | 0.7697 | | 0.0077 | 587.48 | 9400 | 1.6196 | 0.7961 | | 0.0088 | 593.73 | 9500 | 1.6119 | 0.7566 | | 0.0085 | 599.97 | 9600 | 1.4512 | 0.7368 | | 0.0086 | 606.24 | 9700 | 1.5992 | 0.7237 | | 0.0109 | 612.48 | 9800 | 1.4706 | 0.7368 | | 0.0098 | 618.73 | 9900 | 1.3824 | 0.7171 | | 0.0091 | 624.97 | 10000 | 1.4776 | 0.6974 | | 0.0072 | 631.24 | 10100 | 1.4896 | 0.7039 | | 0.0087 | 637.48 | 10200 | 1.5467 | 0.7368 | | 0.007 | 643.73 | 10300 | 1.5493 | 0.75 | | 0.0076 | 649.97 | 10400 | 1.5706 | 0.7303 | | 0.0085 | 656.24 | 10500 | 1.5748 | 0.7237 | | 0.0075 | 662.48 | 10600 | 1.5081 | 0.7105 | | 0.0068 | 668.73 | 10700 | 1.4967 | 0.6842 | | 0.0117 | 674.97 | 10800 | 1.4986 | 0.7105 | | 0.0054 | 681.24 | 10900 | 1.5587 | 0.7303 | | 0.0059 | 687.48 | 11000 | 1.5886 | 0.7171 | | 0.0071 | 693.73 | 11100 | 1.5746 | 0.7171 | | 0.0048 | 699.97 | 11200 | 1.6166 | 0.7237 | | 0.0048 | 706.24 | 11300 | 1.6098 | 0.7237 | | 0.0056 | 712.48 | 11400 | 1.5834 | 0.7237 | | 0.0048 | 718.73 | 11500 | 1.5653 | 0.7171 | | 0.0045 | 724.97 | 11600 | 1.6252 | 0.7237 | | 0.0068 | 731.24 | 11700 | 1.6794 | 0.7171 | | 0.0044 | 737.48 | 11800 | 1.6881 | 0.7039 | | 0.008 | 743.73 | 11900 | 1.7393 | 0.75 | | 0.0045 | 749.97 | 12000 | 1.6869 | 0.7237 | | 0.0047 | 756.24 | 12100 | 1.7105 | 0.7303 | | 0.0057 | 762.48 | 12200 | 1.7439 | 0.7303 | | 0.004 | 768.73 | 12300 | 1.7871 | 0.7434 | | 0.0061 | 774.97 | 12400 | 1.7812 | 0.7303 | | 0.005 | 781.24 | 12500 | 1.7410 | 0.7434 | | 0.0056 | 787.48 | 12600 | 1.7220 | 0.7303 | | 0.0064 | 793.73 | 12700 | 1.7141 | 0.7434 | | 0.0042 | 799.97 | 12800 | 1.7139 | 0.7368 | | 0.0049 | 806.24 | 12900 | 1.7211 | 0.7434 | | 0.0044 | 812.48 | 13000 | 1.7197 | 0.7434 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
infinitejoy/wav2vec2-large-xls-r-300m-sakha
infinitejoy
2022-03-24T11:58:14Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "sah", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - sah license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - sah - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Sakha results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: sah metrics: - name: Test WER type: wer value: 44.196 - name: Test CER type: cer value: 10.271 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-sakha This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SAH dataset. It achieves the following results on the evaluation set: - Loss: 0.4995 - Wer: 0.4421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.8597 | 8.47 | 500 | 0.7731 | 0.7211 | | 1.2508 | 16.95 | 1000 | 0.5368 | 0.5989 | | 1.1066 | 25.42 | 1500 | 0.5034 | 0.5533 | | 1.0064 | 33.9 | 2000 | 0.4686 | 0.5114 | | 0.9324 | 42.37 | 2500 | 0.4927 | 0.5056 | | 0.876 | 50.85 | 3000 | 0.4734 | 0.4795 | | 0.8082 | 59.32 | 3500 | 0.4748 | 0.4799 | | 0.7604 | 67.8 | 4000 | 0.4949 | 0.4691 | | 0.7241 | 76.27 | 4500 | 0.5090 | 0.4627 | | 0.6739 | 84.75 | 5000 | 0.4967 | 0.4452 | | 0.6447 | 93.22 | 5500 | 0.5071 | 0.4437 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-lithuanian
infinitejoy
2022-03-24T11:58:06Z
20
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "lt", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - lt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - lt - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Lithuanian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: lt metrics: - name: Test WER type: wer value: 24.859 - name: Test CER type: cer value: 4.764 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-lithuanian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - LT dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Wer: 0.2486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.6837 | 8.0 | 2000 | 0.6649 | 0.7515 | | 1.1105 | 16.0 | 4000 | 0.2386 | 0.3436 | | 1.0069 | 24.0 | 6000 | 0.2008 | 0.2968 | | 0.9417 | 32.0 | 8000 | 0.1915 | 0.2774 | | 0.887 | 40.0 | 10000 | 0.1819 | 0.2616 | | 0.8563 | 48.0 | 12000 | 0.1729 | 0.2475 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-hausa
infinitejoy
2022-03-24T11:58:04Z
5
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ha", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ha license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - ha - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Hausa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ha metrics: - name: Test WER type: wer value: 100 - name: Test CER type: cer value: 132.32 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hausa This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HA dataset. It achieves the following results on the evaluation set: - Loss: 0.5756 - Wer: 0.6014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.7064 | 11.36 | 500 | 2.7112 | 1.0 | | 1.3079 | 22.73 | 1000 | 0.7337 | 0.7776 | | 1.0919 | 34.09 | 1500 | 0.5938 | 0.7023 | | 0.9546 | 45.45 | 2000 | 0.5698 | 0.6133 | | 0.8895 | 56.82 | 2500 | 0.5739 | 0.6142 | | 0.8152 | 68.18 | 3000 | 0.5579 | 0.6091 | | 0.7703 | 79.55 | 3500 | 0.5813 | 0.6210 | | 0.732 | 90.91 | 4000 | 0.5756 | 0.5860 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-breton-cv8
infinitejoy
2022-03-24T11:58:01Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "br", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - br license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - br - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Breton results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: br metrics: - name: Test WER type: wer value: 54.855 - name: Test CER type: cer value: 17.865 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Breton This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BR dataset. It achieves the following results on the evaluation set: - Loss: NA - Wer: NA ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: ### Training results NA ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id infinitejoy/wav2vec2-large-xls-r-300m-breton-cv8 --dataset mozilla-foundation/common_voice_8_0 --config br --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id infinitejoy/wav2vec2-large-xls-r-300m-breton-cv8 --dataset speech-recognition-community-v2/dev_data --config br --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "infinitejoy/wav2vec2-large-xls-r-300m-breton-cv8" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "br", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text ``` ### Eval results on Common Voice 7 "test" (WER): NA
azuur/wav2vec2-base-gn-demo
azuur
2022-03-24T11:57:52Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "hf-asr-leaderboard", "gn", "dataset:common_voice", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - gn tags: - generated_from_trainer - mozilla-foundation/common_voice_8_0 - robust-speech-event - hf-asr-leaderboard datasets: - common_voice - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-base-gn-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-gn-demo This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.7426 - Wer: 0.7256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 50 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 4.0 | 100 | 0.7045 | 0.7409 | | No log | 8.0 | 200 | 0.7200 | 0.75 | | No log | 12.0 | 300 | 0.7400 | 0.7439 | | No log | 16.0 | 400 | 0.7677 | 0.7515 | | 0.0846 | 20.0 | 500 | 0.7765 | 0.7271 | | 0.0846 | 24.0 | 600 | 0.7821 | 0.7287 | | 0.0846 | 28.0 | 700 | 0.7671 | 0.7180 | | 0.0846 | 32.0 | 800 | 0.7594 | 0.7180 | | 0.0846 | 36.0 | 900 | 0.7500 | 0.7165 | | 0.0713 | 40.0 | 1000 | 0.7351 | 0.7287 | | 0.0713 | 44.0 | 1100 | 0.7361 | 0.7241 | | 0.0713 | 48.0 | 1200 | 0.7389 | 0.7378 | | 0.0713 | 52.0 | 1300 | 0.7424 | 0.7210 | | 0.0713 | 56.0 | 1400 | 0.7425 | 0.7256 | | 0.0669 | 60.0 | 1500 | 0.7426 | 0.7256 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3
anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm
anuragshas
2022-03-24T11:57:47Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "lv", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - lv license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Latvian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: lv metrics: - name: Test WER type: wer value: 9.633 - name: Test CER type: cer value: 2.614 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: lv metrics: - name: Test WER type: wer value: 36.11 - name: Test CER type: cer value: 14.244 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: lv metrics: - name: Test WER type: wer value: 44.12 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Latvian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - LV dataset. It achieves the following results on the evaluation set: - Loss: 0.1660 - Wer: 0.1705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.489 | 2.56 | 400 | 3.3590 | 1.0 | | 2.9903 | 5.13 | 800 | 2.9704 | 1.0001 | | 1.6712 | 7.69 | 1200 | 0.6179 | 0.6566 | | 1.2635 | 10.26 | 1600 | 0.3176 | 0.4531 | | 1.0819 | 12.82 | 2000 | 0.2517 | 0.3508 | | 1.0136 | 15.38 | 2400 | 0.2257 | 0.3124 | | 0.9625 | 17.95 | 2800 | 0.1975 | 0.2311 | | 0.901 | 20.51 | 3200 | 0.1986 | 0.2097 | | 0.8842 | 23.08 | 3600 | 0.1904 | 0.2039 | | 0.8542 | 25.64 | 4000 | 0.1847 | 0.1981 | | 0.8244 | 28.21 | 4400 | 0.1805 | 0.1847 | | 0.7689 | 30.77 | 4800 | 0.1736 | 0.1832 | | 0.7825 | 33.33 | 5200 | 0.1698 | 0.1821 | | 0.7817 | 35.9 | 5600 | 0.1758 | 0.1803 | | 0.7488 | 38.46 | 6000 | 0.1663 | 0.1760 | | 0.7171 | 41.03 | 6400 | 0.1636 | 0.1721 | | 0.7222 | 43.59 | 6800 | 0.1663 | 0.1729 | | 0.7156 | 46.15 | 7200 | 0.1633 | 0.1715 | | 0.7121 | 48.72 | 7600 | 0.1666 | 0.1718 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config lv --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config lv --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "lv", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "domāju ka viņam viss labi" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 16.997 | 9.633 |
anuragshas/wav2vec2-large-xls-r-300m-ur-cv8
anuragshas
2022-03-24T11:57:44Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "ur", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ur license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-ur-cv8 results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: ur metrics: - type: wer value: 42.376 name: Test WER - name: Test CER type: cer value: 18.18 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ur-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.1443 - Wer: 0.5677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.6269 | 15.98 | 400 | 3.3246 | 1.0 | | 3.0546 | 31.98 | 800 | 2.8148 | 0.9963 | | 1.4589 | 47.98 | 1200 | 1.0237 | 0.6584 | | 1.0911 | 63.98 | 1600 | 0.9524 | 0.5966 | | 0.8879 | 79.98 | 2000 | 0.9827 | 0.5822 | | 0.7467 | 95.98 | 2400 | 0.9923 | 0.5840 | | 0.6427 | 111.98 | 2800 | 0.9988 | 0.5714 | | 0.5685 | 127.98 | 3200 | 1.0872 | 0.5807 | | 0.5068 | 143.98 | 3600 | 1.1194 | 0.5822 | | 0.463 | 159.98 | 4000 | 1.1138 | 0.5692 | | 0.4212 | 175.98 | 4400 | 1.1232 | 0.5714 | | 0.4056 | 191.98 | 4800 | 1.1443 | 0.5677 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-ur-cv8 --dataset mozilla-foundation/common_voice_8_0 --config ur --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-ur-cv8" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ur", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "اب نے ٹ پیس ان لیتے ہیں" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 52.146 | 42.376 |
anuragshas/wav2vec2-large-xls-r-300m-or
anuragshas
2022-03-24T11:57:41Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "robust-speech-event", "hf-asr-leaderboard", "or", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - or license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-or results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_7_0 name: Common Voice 7 args: or metrics: - type: wer value: 47.186 name: Test WER - name: Test CER type: cer value: 11.82 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-or This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.6618 - Wer: 0.5166 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 240 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.0493 | 23.53 | 400 | 2.9728 | 1.0 | | 0.5306 | 47.06 | 800 | 1.2895 | 0.6138 | | 0.1253 | 70.59 | 1200 | 1.6854 | 0.5703 | | 0.0763 | 94.12 | 1600 | 1.9433 | 0.5870 | | 0.0552 | 117.65 | 2000 | 1.4393 | 0.5575 | | 0.0382 | 141.18 | 2400 | 1.4665 | 0.5537 | | 0.0286 | 164.71 | 2800 | 1.5441 | 0.5320 | | 0.0212 | 188.24 | 3200 | 1.6502 | 0.5115 | | 0.0168 | 211.76 | 3600 | 1.6411 | 0.5332 | | 0.0129 | 235.29 | 4000 | 1.6618 | 0.5166 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-or --dataset mozilla-foundation/common_voice_7_0 --config or --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-or" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "or", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "ପରରାଏ ବାଲା ଗସ୍ତି ଫାଣ୍ଡି ଗୋପାଳ ପରଠାରୁ ଦେଢ଼କଶ ଦୂର" ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 51.92 | 47.186 |
anuragshas/wav2vec2-large-xls-r-300m-ha-cv8
anuragshas
2022-03-24T11:57:39Z
18
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "ha", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ha license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: XLS-R-300M - Hausa results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: ha metrics: - type: wer value: 36.295 name: Test WER - name: Test CER type: cer value: 11.073 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Hausa This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.6094 - Wer: 0.5234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9599 | 6.56 | 400 | 2.8650 | 1.0 | | 2.7357 | 13.11 | 800 | 2.7377 | 0.9951 | | 1.3012 | 19.67 | 1200 | 0.6686 | 0.7111 | | 1.0454 | 26.23 | 1600 | 0.5686 | 0.6137 | | 0.9069 | 32.79 | 2000 | 0.5576 | 0.5815 | | 0.82 | 39.34 | 2400 | 0.5502 | 0.5591 | | 0.7413 | 45.9 | 2800 | 0.5970 | 0.5586 | | 0.6872 | 52.46 | 3200 | 0.5817 | 0.5428 | | 0.634 | 59.02 | 3600 | 0.5636 | 0.5314 | | 0.6022 | 65.57 | 4000 | 0.5780 | 0.5229 | | 0.5705 | 72.13 | 4400 | 0.6036 | 0.5323 | | 0.5408 | 78.69 | 4800 | 0.6119 | 0.5336 | | 0.5225 | 85.25 | 5200 | 0.6105 | 0.5270 | | 0.5265 | 91.8 | 5600 | 0.6034 | 0.5231 | | 0.5154 | 98.36 | 6000 | 0.6094 | 0.5234 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-ha-cv8 --dataset mozilla-foundation/common_voice_8_0 --config ha --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-ha-cv8" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ha", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "kakin hade ya ke da kyautar" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 47.821 | 36.295 |
RuudVelo/wav2vec2-large-xls-r-1b-cv8-mt
RuudVelo
2022-03-24T11:57:36Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "mt", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - mt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - mt - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-1b-cv8-mt results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: mt metrics: - name: Test WER type: wer value: 17.57 - name: Test CER type: cer value: 3.86 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: mt metrics: - name: Test WER type: wer value: null - name: Test CER type: cer value: null --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1b-cv8-mt This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2210 - Wer: 0.1974 ## Model description Note: another version of this model is available with a KenLM 3gram model. This model performs better than this model. See https://huggingface.co/RuudVelo/wav2vec2-large-xls-r-1b-cv8-mt-lm ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following config and hyperparameters were used during training: model = Wav2Vec2ForCTC.from_pretrained( "facebook/wav2vec2-xls-r-1b", attention_dropout=0.05, hidden_dropout=0.05, feat_proj_dropout=0.05, mask_time_prob=0.55, mask_feature_prob=0.10, layerdrop=0.05, ctc_zero_infinity=True, ctc_loss_reduction="mean", pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer), ) from transformers import TrainingArguments training_args = TrainingArguments( output_dir=repo_name, group_by_length=True, per_device_train_batch_size=32, gradient_accumulation_steps=2, evaluation_strategy="steps", num_train_epochs=50, gradient_checkpointing=True, fp16=True, save_steps=400, eval_steps=400, logging_steps=400, learning_rate=5.5e-05, warmup_steps=500, save_total_limit=2, push_to_hub=True, report_to="tensorboard") ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4564 | 13.33 | 400 | 0.3783 | 0.3981 | | 0.7931 | 26.66 | 800 | 0.2377 | 0.2298 | | 0.5364 | 39.98 | 1200 | 0.2210 | 0.1974 | Note that the test WER of 19.74 is different than the above reported 17.57. This was due to a bug which was found while processing files with an older version of the datasets library. The right library is listed below. ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
NbAiLab/wav2vec2-xls-r-1b-npsc-bokmaal
NbAiLab
2022-03-24T11:57:25Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:NbAiLab/NPSC", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer - automatic-speech-recognition - NbAiLab/NPSC - robust-speech-event - false - nb-NO - hf-asr-leaderboard datasets: - NbAiLab/NPSC language: - nb-NO model-index: - name: wav2vec2-xls-r-1b-npsc-bokmaal results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: NPSC type: NbAiLab/NPSC args: 16K_mp3_bokmaal metrics: - name: "Test (Bokm\xE5l) WER" type: wer value: 0.07901700231893541 - name: "Test (Bokm\xE5l) CER" type: cer value: 0.029734583252347752 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-npsc This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the [NbAiLab/NPSC (16K_mp3_bokmaal)](https://huggingface.co/datasets/NbAiLab/NPSC/viewer/16K_mp3_bokmaal/train) dataset. It achieves the following results on the evaluation set: - Loss: 0.1598 - WER: 0.0966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.8361 | 0.32 | 500 | 0.6304 | 0.4970 | | 0.5703 | 0.64 | 1000 | 0.3195 | 0.2775 | | 0.5451 | 0.97 | 1500 | 0.2700 | 0.2246 | | 0.47 | 1.29 | 2000 | 0.2564 | 0.2329 | | 0.4063 | 1.61 | 2500 | 0.2459 | 0.2099 | | 0.374 | 1.93 | 3000 | 0.2175 | 0.1894 | | 0.3297 | 2.26 | 3500 | 0.2036 | 0.1755 | | 0.3145 | 2.58 | 4000 | 0.1957 | 0.1757 | | 0.3989 | 2.9 | 4500 | 0.1923 | 0.1723 | | 0.271 | 3.22 | 5000 | 0.1889 | 0.1649 | | 0.2758 | 3.55 | 5500 | 0.1768 | 0.1588 | | 0.2683 | 3.87 | 6000 | 0.1720 | 0.1534 | | 0.2341 | 4.19 | 6500 | 0.1689 | 0.1471 | | 0.2316 | 4.51 | 7000 | 0.1706 | 0.1405 | | 0.2383 | 4.84 | 7500 | 0.1637 | 0.1426 | | 0.2148 | 5.16 | 8000 | 0.1584 | 0.1347 | | 0.2085 | 5.48 | 8500 | 0.1601 | 0.1387 | | 0.2944 | 5.8 | 9000 | 0.1566 | 0.1294 | | 0.1944 | 6.13 | 9500 | 0.1494 | 0.1271 | | 0.1853 | 6.45 | 10000 | 0.1561 | 0.1247 | | 0.235 | 6.77 | 10500 | 0.1461 | 0.1215 | | 0.2286 | 7.09 | 11000 | 0.1447 | 0.1167 | | 0.1781 | 7.41 | 11500 | 0.1502 | 0.1199 | | 0.1714 | 7.74 | 12000 | 0.1425 | 0.1179 | | 0.1725 | 8.06 | 12500 | 0.1427 | 0.1173 | | 0.143 | 8.38 | 13000 | 0.1448 | 0.1142 | | 0.154 | 8.7 | 13500 | 0.1392 | 0.1104 | | 0.1447 | 9.03 | 14000 | 0.1404 | 0.1094 | | 0.1471 | 9.35 | 14500 | 0.1404 | 0.1088 | | 0.1479 | 9.67 | 15000 | 0.1414 | 0.1133 | | 0.1607 | 9.99 | 15500 | 0.1458 | 0.1171 | | 0.166 | 10.32 | 16000 | 0.1652 | 0.1264 | | 0.188 | 10.64 | 16500 | 0.1713 | 0.1322 | | 0.1461 | 10.96 | 17000 | 0.1423 | 0.1111 | | 0.1289 | 11.28 | 17500 | 0.1388 | 0.1097 | | 0.1273 | 11.61 | 18000 | 0.1438 | 0.1074 | | 0.1317 | 11.93 | 18500 | 0.1312 | 0.1066 | | 0.1448 | 12.25 | 19000 | 0.1446 | 0.1042 | | 0.1424 | 12.57 | 19500 | 0.1386 | 0.1015 | | 0.1392 | 12.89 | 20000 | 0.1379 | 0.1005 | | 0.1408 | 13.22 | 20500 | 0.1408 | 0.0992 | | 0.1239 | 13.54 | 21000 | 0.1338 | 0.0968 | | 0.1244 | 13.86 | 21500 | 0.1335 | 0.0957 | | 0.1254 | 14.18 | 22000 | 0.1382 | 0.0950 | | 0.1597 | 14.51 | 22500 | 0.1544 | 0.0970 | | 0.1566 | 14.83 | 23000 | 0.1589 | 0.0963 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0
NbAiLab/wav2vec2-large-voxrex-npsc-bokmaal
NbAiLab
2022-03-24T11:57:23Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:NbAiLab/NPSC", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer - automatic-speech-recognition - NbAiLab/NPSC - robust-speech-event - false - nb-NO - hf-asr-leaderboard datasets: - NbAiLab/NPSC language: - nb-NO model-index: - name: wav2vec2-large-voxrex-npsc-bokmaal results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: NPSC type: NbAiLab/NPSC args: 16K_mp3_bokmaal metrics: - name: "Test (Bokm\xE5l) WER" type: wer value: 0.07028972259374369 - name: "Test (Bokm\xE5l) CER" type: cer value: 0.026870600821650645 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-voxrex-npsc-bokmaal This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1311 - Wer: 0.1038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8.379967082059723e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2127 | 0.32 | 500 | 0.1335 | 0.1047 | | 0.1976 | 0.64 | 1000 | 0.1309 | 0.1039 | | 0.1887 | 0.97 | 1500 | 0.1306 | 0.1040 | | 0.18 | 1.29 | 2000 | 0.1311 | 0.1038 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-xls-r-300m-rm-vallader-d1
DrishtiSharma
2022-03-24T11:57:12Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "rm-vallader", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - rm-vallader license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - rm-vallader - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-300m-rm-vallader-d1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: rm-vallader metrics: - name: Test WER type: wer value: 0.26472007722007723 - name: Test CER type: cer value: 0.05860608074430969 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: vot metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - RM-VALLADER dataset. It achieves the following results on the evaluation set: - Loss: 0.2754 - Wer: 0.2831 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-rm-vallader-d1 --dataset mozilla-foundation/common_voice_8_0 --config rm-vallader --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Romansh-Vallader language not found in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.927 | 15.15 | 500 | 2.9196 | 1.0 | | 1.3835 | 30.3 | 1000 | 0.5879 | 0.5866 | | 0.7415 | 45.45 | 1500 | 0.3077 | 0.3316 | | 0.5575 | 60.61 | 2000 | 0.2735 | 0.2954 | | 0.4581 | 75.76 | 2500 | 0.2707 | 0.2802 | | 0.3977 | 90.91 | 3000 | 0.2785 | 0.2809 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-xls-r-300m-mt-o1
DrishtiSharma
2022-03-24T11:57:03Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "mt", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - mt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - mt - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-300m-mt-o1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: mt metrics: - name: Test WER type: wer value: 0.2378369069146646 - name: Test CER type: cer value: 0.050364163712536256 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: mt metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset. It achieves the following results on the evaluation set: - Loss: 0.1987 - Wer: 0.1920 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-mt-o1 --dataset mozilla-foundation/common_voice_8_0 --config mt --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Maltese language not found in speech-recognition-community-v2/dev_data! ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.1721 | 18.02 | 2000 | 0.3831 | 0.4066 | | 0.7849 | 36.04 | 4000 | 0.2191 | 0.2417 | | 0.6723 | 54.05 | 6000 | 0.2056 | 0.2134 | | 0.6015 | 72.07 | 8000 | 0.2008 | 0.2031 | | 0.5386 | 90.09 | 10000 | 0.1967 | 0.1953 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-vot-final-a2
DrishtiSharma
2022-03-24T11:57:00Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "vot", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - vot license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - vot - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-vot-final-a2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: vot metrics: - name: Test WER type: wer value: 0.8333333333333334 - name: Test CER type: cer value: 0.48672566371681414 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: vot metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-vot-final-a2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - VOT dataset. It achieves the following results on the evaluation set: - Loss: 2.8745 - Wer: 0.8333 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-vot-final-a2 --dataset mozilla-foundation/common_voice_8_0 --config vot --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Votic language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 340 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 11.1216 | 33.33 | 100 | 4.2848 | 1.0 | | 2.9982 | 66.67 | 200 | 2.8665 | 1.0 | | 1.5476 | 100.0 | 300 | 2.3022 | 0.8889 | | 0.2776 | 133.33 | 400 | 2.7480 | 0.8889 | | 0.1136 | 166.67 | 500 | 2.5383 | 0.8889 | | 0.0489 | 200.0 | 600 | 2.8745 | 0.8333 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-sat-a3
DrishtiSharma
2022-03-24T11:56:55Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "sat", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - sat license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - sat - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-sat-a3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sat metrics: - name: Test WER type: wer value: 0.357429718875502 - name: Test CER type: cer value: 0.14203730272596843 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sat metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-sat-a3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SAT dataset. It achieves the following results on the evaluation set: - Loss: 0.8961 - Wer: 0.3976 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sat-a3 --dataset mozilla-foundation/common_voice_8_0 --config sat --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Note: Santali (Ol Chiki) language not found in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 11.1266 | 33.29 | 100 | 2.8577 | 1.0 | | 2.1549 | 66.57 | 200 | 1.0799 | 0.5542 | | 0.5628 | 99.86 | 300 | 0.7973 | 0.4016 | | 0.0779 | 133.29 | 400 | 0.8424 | 0.4177 | | 0.0404 | 166.57 | 500 | 0.9048 | 0.4137 | | 0.0212 | 199.86 | 600 | 0.8961 | 0.3976 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-myv-v1
DrishtiSharma
2022-03-24T11:56:53Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "myv", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - myv license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - myv - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-myv-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: myv metrics: - name: Test WER type: wer value: 0.599548532731377 - name: Test CER type: cer value: 0.12953851902597 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: myv metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-myv-v1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MYV dataset. It achieves the following results on the evaluation set: - Loss: 0.8537 - Wer: 0.6160 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-myv-v1 --dataset mozilla-foundation/common_voice_8_0 --config myv --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Erzya language not found in speech-recognition-community-v2/dev_data! ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000222 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 150 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 19.453 | 1.92 | 50 | 16.4001 | 1.0 | | 9.6875 | 3.85 | 100 | 5.4468 | 1.0 | | 4.9988 | 5.77 | 150 | 4.3507 | 1.0 | | 4.1148 | 7.69 | 200 | 3.6753 | 1.0 | | 3.4922 | 9.62 | 250 | 3.3103 | 1.0 | | 3.2443 | 11.54 | 300 | 3.1741 | 1.0 | | 3.164 | 13.46 | 350 | 3.1346 | 1.0 | | 3.0954 | 15.38 | 400 | 3.0428 | 1.0 | | 3.0076 | 17.31 | 450 | 2.9137 | 1.0 | | 2.6883 | 19.23 | 500 | 2.1476 | 0.9978 | | 1.5124 | 21.15 | 550 | 0.8955 | 0.8225 | | 0.8711 | 23.08 | 600 | 0.6948 | 0.7591 | | 0.6695 | 25.0 | 650 | 0.6683 | 0.7636 | | 0.5606 | 26.92 | 700 | 0.6821 | 0.7435 | | 0.503 | 28.85 | 750 | 0.7220 | 0.7516 | | 0.4528 | 30.77 | 800 | 0.6638 | 0.7324 | | 0.4219 | 32.69 | 850 | 0.7120 | 0.7435 | | 0.4109 | 34.62 | 900 | 0.7122 | 0.7511 | | 0.3887 | 36.54 | 950 | 0.7179 | 0.7199 | | 0.3895 | 38.46 | 1000 | 0.7322 | 0.7525 | | 0.391 | 40.38 | 1050 | 0.6850 | 0.7364 | | 0.3537 | 42.31 | 1100 | 0.7571 | 0.7279 | | 0.3267 | 44.23 | 1150 | 0.7575 | 0.7257 | | 0.3195 | 46.15 | 1200 | 0.7580 | 0.6998 | | 0.2891 | 48.08 | 1250 | 0.7452 | 0.7101 | | 0.294 | 50.0 | 1300 | 0.7316 | 0.6945 | | 0.2854 | 51.92 | 1350 | 0.7241 | 0.6757 | | 0.2801 | 53.85 | 1400 | 0.7532 | 0.6887 | | 0.2502 | 55.77 | 1450 | 0.7587 | 0.6811 | | 0.2427 | 57.69 | 1500 | 0.7231 | 0.6851 | | 0.2311 | 59.62 | 1550 | 0.7288 | 0.6632 | | 0.2176 | 61.54 | 1600 | 0.7711 | 0.6664 | | 0.2117 | 63.46 | 1650 | 0.7914 | 0.6940 | | 0.2114 | 65.38 | 1700 | 0.8065 | 0.6918 | | 0.1913 | 67.31 | 1750 | 0.8372 | 0.6945 | | 0.1897 | 69.23 | 1800 | 0.8051 | 0.6869 | | 0.1865 | 71.15 | 1850 | 0.8076 | 0.6740 | | 0.1844 | 73.08 | 1900 | 0.7935 | 0.6708 | | 0.1757 | 75.0 | 1950 | 0.8015 | 0.6610 | | 0.1636 | 76.92 | 2000 | 0.7614 | 0.6414 | | 0.1637 | 78.85 | 2050 | 0.8123 | 0.6592 | | 0.1599 | 80.77 | 2100 | 0.7907 | 0.6566 | | 0.1498 | 82.69 | 2150 | 0.8641 | 0.6757 | | 0.1545 | 84.62 | 2200 | 0.7438 | 0.6682 | | 0.1433 | 86.54 | 2250 | 0.8014 | 0.6624 | | 0.1427 | 88.46 | 2300 | 0.7758 | 0.6646 | | 0.1423 | 90.38 | 2350 | 0.7741 | 0.6423 | | 0.1298 | 92.31 | 2400 | 0.7938 | 0.6414 | | 0.1111 | 94.23 | 2450 | 0.7976 | 0.6467 | | 0.1243 | 96.15 | 2500 | 0.7916 | 0.6481 | | 0.1215 | 98.08 | 2550 | 0.7594 | 0.6392 | | 0.113 | 100.0 | 2600 | 0.8236 | 0.6392 | | 0.1077 | 101.92 | 2650 | 0.7959 | 0.6347 | | 0.0988 | 103.85 | 2700 | 0.8189 | 0.6392 | | 0.0953 | 105.77 | 2750 | 0.8157 | 0.6414 | | 0.0889 | 107.69 | 2800 | 0.7946 | 0.6369 | | 0.0929 | 109.62 | 2850 | 0.8255 | 0.6360 | | 0.0822 | 111.54 | 2900 | 0.8320 | 0.6334 | | 0.086 | 113.46 | 2950 | 0.8539 | 0.6490 | | 0.0825 | 115.38 | 3000 | 0.8438 | 0.6418 | | 0.0727 | 117.31 | 3050 | 0.8568 | 0.6481 | | 0.0717 | 119.23 | 3100 | 0.8447 | 0.6512 | | 0.0815 | 121.15 | 3150 | 0.8470 | 0.6445 | | 0.0689 | 123.08 | 3200 | 0.8264 | 0.6249 | | 0.0726 | 125.0 | 3250 | 0.7981 | 0.6169 | | 0.0648 | 126.92 | 3300 | 0.8237 | 0.6200 | | 0.0632 | 128.85 | 3350 | 0.8416 | 0.6249 | | 0.06 | 130.77 | 3400 | 0.8276 | 0.6173 | | 0.0616 | 132.69 | 3450 | 0.8429 | 0.6209 | | 0.0614 | 134.62 | 3500 | 0.8485 | 0.6271 | | 0.0539 | 136.54 | 3550 | 0.8598 | 0.6218 | | 0.0555 | 138.46 | 3600 | 0.8557 | 0.6169 | | 0.0604 | 140.38 | 3650 | 0.8436 | 0.6186 | | 0.0556 | 142.31 | 3700 | 0.8428 | 0.6178 | | 0.051 | 144.23 | 3750 | 0.8440 | 0.6142 | | 0.0526 | 146.15 | 3800 | 0.8566 | 0.6142 | | 0.052 | 148.08 | 3850 | 0.8544 | 0.6178 | | 0.0519 | 150.0 | 3900 | 0.8537 | 0.6160 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v3
DrishtiSharma
2022-03-24T11:56:50Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hsb", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - hsb license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - hsb - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-hsb-v3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hsb metrics: - name: Test WER type: wer value: 0.4763681592039801 - name: Test CER type: cer value: 0.11194945177476305 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hsb metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hsb-v3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HSB dataset. It achieves the following results on the evaluation set: - Loss: 0.6549 - Wer: 0.4827 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v3 --dataset mozilla-foundation/common_voice_8_0 --config hsb --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Upper Sorbian (hsb) language not found in speech-recognition-community-v2/dev_data! ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00045 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.8951 | 3.23 | 100 | 3.6396 | 1.0 | | 3.314 | 6.45 | 200 | 3.2331 | 1.0 | | 3.1931 | 9.68 | 300 | 3.0947 | 0.9906 | | 1.7079 | 12.9 | 400 | 0.8865 | 0.8499 | | 0.6859 | 16.13 | 500 | 0.7994 | 0.7529 | | 0.4804 | 19.35 | 600 | 0.7783 | 0.7069 | | 0.3506 | 22.58 | 700 | 0.6904 | 0.6321 | | 0.2695 | 25.81 | 800 | 0.6519 | 0.5926 | | 0.222 | 29.03 | 900 | 0.7041 | 0.5720 | | 0.1828 | 32.26 | 1000 | 0.6608 | 0.5513 | | 0.1474 | 35.48 | 1100 | 0.7129 | 0.5319 | | 0.1269 | 38.71 | 1200 | 0.6664 | 0.5056 | | 0.1077 | 41.94 | 1300 | 0.6712 | 0.4942 | | 0.0934 | 45.16 | 1400 | 0.6467 | 0.4879 | | 0.0819 | 48.39 | 1500 | 0.6549 | 0.4827 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v1
DrishtiSharma
2022-03-24T11:56:45Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hsb", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - hsb license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - hsb - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-hsb-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hsb metrics: - name: Test WER type: wer value: 0.4393 - name: Test CER type: cer value: 0.1036 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hsb metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hsb-v1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HSB dataset. It achieves the following results on the evaluation set: - Loss: 0.5684 - Wer: 0.4402 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v1 --dataset mozilla-foundation/common_voice_8_0 --config hsb --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Upper Sorbian language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00045 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.972 | 3.23 | 100 | 3.7498 | 1.0 | | 3.3401 | 6.45 | 200 | 3.2320 | 1.0 | | 3.2046 | 9.68 | 300 | 3.1741 | 0.9806 | | 2.4031 | 12.9 | 400 | 1.0579 | 0.8996 | | 1.0427 | 16.13 | 500 | 0.7989 | 0.7557 | | 0.741 | 19.35 | 600 | 0.6405 | 0.6299 | | 0.5699 | 22.58 | 700 | 0.6129 | 0.5928 | | 0.4607 | 25.81 | 800 | 0.6548 | 0.5695 | | 0.3827 | 29.03 | 900 | 0.6268 | 0.5190 | | 0.3282 | 32.26 | 1000 | 0.5919 | 0.5016 | | 0.2764 | 35.48 | 1100 | 0.5953 | 0.4805 | | 0.2335 | 38.71 | 1200 | 0.5717 | 0.4728 | | 0.2106 | 41.94 | 1300 | 0.5674 | 0.4569 | | 0.1859 | 45.16 | 1400 | 0.5685 | 0.4502 | | 0.1592 | 48.39 | 1500 | 0.5684 | 0.4402 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-as-g1
DrishtiSharma
2022-03-24T11:56:37Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "as", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - as license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - as - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-as-g1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: as metrics: - name: Test WER type: wer value: 0.6540934419202743 - name: Test CER type: cer value: 0.21454042646095625 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: as metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-as-g1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - AS dataset. It achieves the following results on the evaluation set: - Loss: 1.3327 - Wer: 0.5744 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-as-g1 --dataset mozilla-foundation/common_voice_8_0 --config as --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Assamese language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 14.1958 | 5.26 | 100 | 7.1919 | 1.0 | | 5.0035 | 10.51 | 200 | 3.9362 | 1.0 | | 3.6193 | 15.77 | 300 | 3.4451 | 1.0 | | 3.4852 | 21.05 | 400 | 3.3536 | 1.0 | | 2.8489 | 26.31 | 500 | 1.6451 | 0.9100 | | 0.9568 | 31.56 | 600 | 1.0514 | 0.7561 | | 0.4865 | 36.82 | 700 | 1.0434 | 0.7184 | | 0.322 | 42.1 | 800 | 1.0825 | 0.7210 | | 0.2383 | 47.36 | 900 | 1.1304 | 0.6897 | | 0.2136 | 52.62 | 1000 | 1.1150 | 0.6854 | | 0.179 | 57.87 | 1100 | 1.2453 | 0.6875 | | 0.1539 | 63.15 | 1200 | 1.2211 | 0.6704 | | 0.1303 | 68.41 | 1300 | 1.2859 | 0.6747 | | 0.1183 | 73.67 | 1400 | 1.2775 | 0.6721 | | 0.0994 | 78.92 | 1500 | 1.2321 | 0.6404 | | 0.0991 | 84.21 | 1600 | 1.2766 | 0.6524 | | 0.0887 | 89.46 | 1700 | 1.3026 | 0.6344 | | 0.0754 | 94.72 | 1800 | 1.3199 | 0.6704 | | 0.0693 | 99.97 | 1900 | 1.3044 | 0.6361 | | 0.0568 | 105.26 | 2000 | 1.3541 | 0.6254 | | 0.0536 | 110.51 | 2100 | 1.3320 | 0.6249 | | 0.0529 | 115.77 | 2200 | 1.3370 | 0.6271 | | 0.048 | 121.05 | 2300 | 1.2757 | 0.6031 | | 0.0419 | 126.31 | 2400 | 1.2661 | 0.6172 | | 0.0349 | 131.56 | 2500 | 1.2897 | 0.6048 | | 0.0309 | 136.82 | 2600 | 1.2688 | 0.5962 | | 0.0278 | 142.1 | 2700 | 1.2885 | 0.5954 | | 0.0254 | 147.36 | 2800 | 1.2988 | 0.5915 | | 0.0223 | 152.62 | 2900 | 1.3153 | 0.5941 | | 0.0216 | 157.87 | 3000 | 1.2936 | 0.5937 | | 0.0186 | 163.15 | 3100 | 1.2906 | 0.5877 | | 0.0156 | 168.41 | 3200 | 1.3476 | 0.5962 | | 0.0158 | 173.67 | 3300 | 1.3363 | 0.5847 | | 0.0142 | 178.92 | 3400 | 1.3367 | 0.5847 | | 0.0153 | 184.21 | 3500 | 1.3105 | 0.5757 | | 0.0119 | 189.46 | 3600 | 1.3255 | 0.5705 | | 0.0115 | 194.72 | 3700 | 1.3340 | 0.5787 | | 0.0103 | 199.97 | 3800 | 1.3327 | 0.5744 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
AndrewMcDowell/wav2vec2-xls-r-1b-japanese-hiragana-katakana
AndrewMcDowell
2022-03-24T11:56:32Z
21
3
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "ja", "hf-asr-leaderboard", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - ja - hf-asr-leaderboard datasets: - common_voice model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER type: wer value: 95.33 - name: Test CER type: cer value: 22.27 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: de metrics: - name: Test WER type: wer value: 100.0 - name: Test CER type: cer value: 30.33 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Test CER type: cer value: 29.63 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 32.69 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA dataset. It achieves the following results on the evaluation set: - Loss: 0.5500 - Wer: 1.0132 - Cer: 0.1609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.7019 | 12.65 | 1000 | 1.0510 | 0.9832 | 0.2589 | | 1.6385 | 25.31 | 2000 | 0.6670 | 0.9915 | 0.1851 | | 1.4344 | 37.97 | 3000 | 0.6183 | 1.0213 | 0.1797 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-1b-japanese-hiragana-katakana --dataset mozilla-foundation/common_voice_8_0 --config ja --split test --log_outputs ``` 2. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-1b-japanese-hiragana-katakana --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
sammy786/wav2vec2-xlsr-interlingua
sammy786
2022-03-24T11:56:13Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "ia", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ia license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - ia - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-interlingua results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ia metrics: - name: Test WER type: wer value: 16.81 - name: Test CER type: cer value: 4.76 --- # sammy786/wav2vec2-xlsr-interlingua This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ia dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 5.44 - Wer: 19.78 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 200 | 4.649200 | 0.483339 | 0.511322 | | 400 | 0.764700 | 0.133428 | 0.251288 | | 600 | 0.563700 | 0.099292 | 0.227745 | | 800 | 0.438800 | 0.087545 | 0.217445 | | 1000 | 0.406800 | 0.072313 | 0.213848 | | 1200 | 0.237500 | 0.066965 | 0.213766 | | 1400 | 0.177800 | 0.064419 | 0.208126 | | 1600 | 0.157100 | 0.065962 | 0.214011 | | 1800 | 0.146600 | 0.059477 | 0.202076 | | 2000 | 0.132800 | 0.055015 | 0.201831 | | 2200 | 0.122000 | 0.055421 | 0.201749 | | 2400 | 0.115700 | 0.054462 | 0.197826 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-interlingua --dataset mozilla-foundation/common_voice_8_0 --config ia --split test ```
sammy786/wav2vec2-xlsr-georgian
sammy786
2022-03-24T11:56:11Z
7
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "ka", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ka license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - ka - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-czech results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ka metrics: - name: Test WER type: wer value: 23.9 - name: Test CER type: cer value: 3.59 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ka metrics: - name: Test WER type: wer value: 75.07 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ka metrics: - name: Test WER type: wer value: 74.41 --- # sammy786/wav2vec2-xlsr-georgian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ka dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 10.54 - Wer: 27.53 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:----:|:-------------:|:---------------:|:--------:| | 200 | 4.152100 | 0.823672 | 0.967814 | | 400 | 0.889500 | 0.196740 | 0.444792 | | 600 | 0.493700 | 0.155659 | 0.366115 | | 800 | 0.328000 | 0.138066 | 0.358069 | | 1000 | 0.260600 | 0.119236 | 0.324989 | | 1200 | 0.217200 | 0.114050 | 0.313366 | | 1400 | 0.188800 | 0.112600 | 0.302190 | | 1600 | 0.166900 | 0.111154 | 0.295485 | | 1800 | 0.155500 | 0.109963 | 0.286544 | | 2000 | 0.140400 | 0.107587 | 0.277604 | | 2200 | 0.142600 | 0.105662 | 0.277157 | | 2400 | 0.135400 | 0.105414 | 0.275369 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-georgian --dataset mozilla-foundation/common_voice_8_0 --config ka --split test ```