modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 18:29:29
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 18:25:24
card
stringlengths
11
1.01M
RASMUS/wav2vec2-xlsr-1b-ru
RASMUS
2022-03-23T18:29:08Z
43
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "audio", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "speech", "ru", "dataset:mozilla-foundation/common_voice_8_0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: ru datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event - speech model-index: - name: XLS-R 1B Wav2Vec2 Russian by Rasmus Toivanen results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ru metrics: - name: Test WER type: wer value: 10.83 - name: Test CER type: cer value: 2.41 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ru metrics: - name: Test WER type: wer value: 37.71 - name: Test CER type: cer value: 12.98 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ru metrics: - name: Test WER type: wer value: 31.89 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-1b-ru This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1352 - Wer: 0.0971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.5462 | 0.35 | 500 | 0.4027 | 0.3575 | | 0.498 | 0.69 | 1000 | 0.2588 | 0.2513 | | 0.4279 | 1.04 | 1500 | 0.2265 | 0.2204 | | 0.4099 | 1.38 | 2000 | 0.2189 | 0.1979 | | 0.4688 | 1.73 | 2500 | 0.2100 | 0.1920 | | 0.2241 | 2.07 | 3000 | 0.1980 | 0.1767 | | 0.2056 | 2.42 | 3500 | 0.2020 | 0.1683 | | 0.3423 | 2.76 | 4000 | 0.1862 | 0.1606 | | 0.2478 | 3.11 | 4500 | 0.1787 | 0.1563 | | 0.3079 | 3.45 | 5000 | 0.1759 | 0.1555 | | 0.2477 | 3.8 | 5500 | 0.1713 | 0.1423 | | 0.1718 | 4.14 | 6000 | 0.1695 | 0.1391 | | 0.1675 | 4.49 | 6500 | 0.1677 | 0.1372 | | 0.1631 | 4.83 | 7000 | 0.1652 | 0.1333 | | 0.1429 | 5.18 | 7500 | 0.1605 | 0.1308 | | 0.1505 | 5.52 | 8000 | 0.1612 | 0.1245 | | 0.1385 | 5.87 | 8500 | 0.1487 | 0.1225 | | 0.1285 | 6.22 | 9000 | 0.1526 | 0.1201 | | 0.1153 | 6.56 | 9500 | 0.1464 | 0.1172 | | 0.1159 | 6.91 | 10000 | 0.1505 | 0.1143 | | 0.1061 | 7.25 | 10500 | 0.1444 | 0.1106 | | 0.1016 | 7.6 | 11000 | 0.1427 | 0.1075 | | 0.1125 | 7.94 | 11500 | 0.1386 | 0.1045 | | 0.0937 | 8.29 | 12000 | 0.1403 | 0.1022 | | 0.1059 | 8.63 | 12500 | 0.1406 | 0.1022 | | 0.0857 | 8.98 | 13000 | 0.1372 | 0.0992 | | 0.0901 | 9.32 | 13500 | 0.1380 | 0.0977 | | 0.0913 | 9.67 | 14000 | 0.1352 | 0.0971 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
samitizerxu/wav2vec2-xls-r-300m-eo
samitizerxu
2022-03-23T18:29:06Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "eo", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - eo license: apache-2.0 tags: - automatic-speech-recognition - common_voice - eo - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-eo results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: eo metrics: - name: Test WER type: wer value: 34.72 - name: Test CER type: cer value: 7.54 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-eo This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - EO dataset. It achieves the following results on the evaluation set: - Loss: 0.2584 - Wer: 0.3114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.1701 | 0.8 | 500 | 2.8105 | 1.0 | | 1.9143 | 1.6 | 1000 | 0.5977 | 0.7002 | | 1.1259 | 2.4 | 1500 | 0.5063 | 0.6157 | | 0.9732 | 3.2 | 2000 | 0.4264 | 0.5673 | | 0.8983 | 4.0 | 2500 | 0.4249 | 0.4902 | | 0.8507 | 4.8 | 3000 | 0.3811 | 0.4536 | | 0.8064 | 5.6 | 3500 | 0.3643 | 0.4467 | | 0.7866 | 6.4 | 4000 | 0.3600 | 0.4453 | | 0.7773 | 7.2 | 4500 | 0.3724 | 0.4470 | | 0.747 | 8.0 | 5000 | 0.3501 | 0.4189 | | 0.7279 | 8.8 | 5500 | 0.3500 | 0.4261 | | 0.7153 | 9.6 | 6000 | 0.3328 | 0.3966 | | 0.7 | 10.4 | 6500 | 0.3314 | 0.3869 | | 0.6784 | 11.2 | 7000 | 0.3396 | 0.4051 | | 0.6582 | 12.0 | 7500 | 0.3236 | 0.3899 | | 0.6478 | 12.8 | 8000 | 0.3263 | 0.3832 | | 0.6277 | 13.6 | 8500 | 0.3139 | 0.3769 | | 0.6053 | 14.4 | 9000 | 0.2955 | 0.3536 | | 0.5777 | 15.2 | 9500 | 0.2793 | 0.3413 | | 0.5631 | 16.0 | 10000 | 0.2789 | 0.3353 | | 0.5446 | 16.8 | 10500 | 0.2709 | 0.3264 | | 0.528 | 17.6 | 11000 | 0.2693 | 0.3234 | | 0.5169 | 18.4 | 11500 | 0.2656 | 0.3193 | | 0.5041 | 19.2 | 12000 | 0.2575 | 0.3102 | | 0.4971 | 20.0 | 12500 | 0.2584 | 0.3114 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id samitizerxu/wav2vec2-xls-r-300m-eo --dataset mozilla-foundation/common_voice_7_0 --config eo --split test ```
mpoyraz/wav2vec2-xls-r-300m-cv8-turkish
mpoyraz
2022-03-23T18:29:03Z
54
3
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "tr", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: tr tags: - automatic-speech-recognition - common_voice - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event - tr datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: mpoyraz/wav2vec2-xls-r-300m-cv8-turkish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: tr metrics: - name: Test WER type: wer value: 10.61 - name: Test CER type: cer value: 2.67 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: tr metrics: - name: Test WER type: wer value: 36.46 - name: Test CER type: cer value: 12.38 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: tr metrics: - name: Test WER type: wer value: 40.91 --- # wav2vec2-xls-r-300m-cv8-turkish ## Model description This ASR model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on Turkish language. ## Training and evaluation data The following datasets were used for finetuning: - [Common Voice 8.0 TR](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) All `validated` split except `test` split was used for training. ## Training procedure To support the datasets above, custom pre-processing and loading steps was performed and [wav2vec2-turkish](https://github.com/mpoyraz/wav2vec2-turkish) repo was used for that purpose. ### Training hyperparameters The following hypermaters were used for finetuning: - learning_rate 2.5e-4 - num_train_epochs 20 - warmup_steps 500 - freeze_feature_extractor - mask_time_prob 0.1 - mask_feature_prob 0.1 - feat_proj_dropout 0.05 - attention_dropout 0.05 - final_dropout 0.1 - activation_dropout 0.05 - per_device_train_batch_size 8 - per_device_eval_batch_size 8 - gradient_accumulation_steps 8 ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3 ## Language Model N-gram language model is trained on a Turkish Wikipedia articles using KenLM and [ngram-lm-wiki](https://github.com/mpoyraz/ngram-lm-wiki) repo was used to generate arpa LM and convert it into binary format. ## Evaluation Commands Please install [unicode_tr](https://pypi.org/project/unicode_tr/) package before running evaluation. It is used for Turkish text processing. 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv8-turkish --dataset mozilla-foundation/common_voice_8_0 --config tr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv8-turkish --dataset speech-recognition-community-v2/dev_data --config tr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Evaluation results: | Dataset | WER | CER | |---|---|---| |Common Voice 8 TR test split| 10.61 | 2.67 | |Speech Recognition Community dev data| 36.46 | 12.38 |
lgris/sew-tiny-portuguese-cv8
lgris
2022-03-23T18:29:00Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "sew", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "pt", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - pt license: apache-2.0 tags: - generated_from_trainer - hf-asr-leaderboard - pt - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sew-tiny-portuguese-cv8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pt metrics: - name: Test WER type: wer value: 33.71 - name: Test CER type: cer value: 10.69 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 52.79 - name: Test CER type: cer value: 20.98 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 53.18 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 55.23 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-tiny-portuguese-cv8 This model is a fine-tuned version of [lgris/sew-tiny-pt](https://huggingface.co/lgris/sew-tiny-pt) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4082 - Wer: 0.3053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 1.93 | 1000 | 2.9134 | 0.9767 | | 2.9224 | 3.86 | 2000 | 2.8405 | 0.9789 | | 2.9224 | 5.79 | 3000 | 2.8094 | 0.9800 | | 2.8531 | 7.72 | 4000 | 2.7439 | 0.9891 | | 2.8531 | 9.65 | 5000 | 2.7057 | 1.0159 | | 2.7721 | 11.58 | 6000 | 2.7235 | 1.0709 | | 2.7721 | 13.51 | 7000 | 2.5931 | 1.1035 | | 2.6566 | 15.44 | 8000 | 2.2171 | 0.9884 | | 2.6566 | 17.37 | 9000 | 1.2399 | 0.8081 | | 1.9558 | 19.31 | 10000 | 0.9045 | 0.6353 | | 1.9558 | 21.24 | 11000 | 0.7705 | 0.5533 | | 1.4987 | 23.17 | 12000 | 0.7068 | 0.5165 | | 1.4987 | 25.1 | 13000 | 0.6641 | 0.4718 | | 1.3811 | 27.03 | 14000 | 0.6043 | 0.4470 | | 1.3811 | 28.96 | 15000 | 0.5532 | 0.4268 | | 1.2897 | 30.89 | 16000 | 0.5371 | 0.4101 | | 1.2897 | 32.82 | 17000 | 0.5924 | 0.4150 | | 1.225 | 34.75 | 18000 | 0.4949 | 0.3894 | | 1.225 | 36.68 | 19000 | 0.5591 | 0.4045 | | 1.193 | 38.61 | 20000 | 0.4927 | 0.3731 | | 1.193 | 40.54 | 21000 | 0.4922 | 0.3712 | | 1.1482 | 42.47 | 22000 | 0.4799 | 0.3662 | | 1.1482 | 44.4 | 23000 | 0.4846 | 0.3648 | | 1.1201 | 46.33 | 24000 | 0.4770 | 0.3623 | | 1.1201 | 48.26 | 25000 | 0.4530 | 0.3426 | | 1.0892 | 50.19 | 26000 | 0.4523 | 0.3527 | | 1.0892 | 52.12 | 27000 | 0.4573 | 0.3443 | | 1.0583 | 54.05 | 28000 | 0.4488 | 0.3353 | | 1.0583 | 55.98 | 29000 | 0.4295 | 0.3285 | | 1.0319 | 57.92 | 30000 | 0.4321 | 0.3220 | | 1.0319 | 59.85 | 31000 | 0.4244 | 0.3236 | | 1.0076 | 61.78 | 32000 | 0.4197 | 0.3201 | | 1.0076 | 63.71 | 33000 | 0.4230 | 0.3208 | | 0.9851 | 65.64 | 34000 | 0.4090 | 0.3127 | | 0.9851 | 67.57 | 35000 | 0.4088 | 0.3133 | | 0.9695 | 69.5 | 36000 | 0.4123 | 0.3088 | | 0.9695 | 71.43 | 37000 | 0.4017 | 0.3090 | | 0.9514 | 73.36 | 38000 | 0.4184 | 0.3086 | | 0.9514 | 75.29 | 39000 | 0.4075 | 0.3043 | | 0.944 | 77.22 | 40000 | 0.4082 | 0.3053 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-abkhaz
infinitejoy
2022-03-23T18:28:58Z
6
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ab", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ab license: apache-2.0 tags: - ab - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Abkhaz results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ab metrics: - name: Test WER type: wer value: 60.07 - name: Test CER type: cer value: 12.5 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-abkhaz This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 0.5359 - Wer: 0.6192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.8617 | 22.73 | 500 | 2.6264 | 1.0013 | | 1.2716 | 45.45 | 1000 | 0.6218 | 0.6942 | | 1.049 | 68.18 | 1500 | 0.5442 | 0.6368 | | 0.9632 | 90.91 | 2000 | 0.5364 | 0.6242 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
Harveenchadha/hindi_large_wav2vec2
Harveenchadha
2022-03-23T18:28:53Z
44
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "hi", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:Harveenchadha/indic-voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 language: - hi tags: - automatic-speech-recognition - hf-asr-leaderboard - hi - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - Harveenchadha/indic-voice model-index: - name: Hindi Large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice type: common_voice args: hi metrics: - name: Test WER type: wer value: 23.08 - name: Test CER type: cer value: 8.11 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice-7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 23.36 - name: Test CER type: cer value: 8.94 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice-8.0 type: mozilla-foundation/common_voice_8_0 args: hi metrics: - name: Test WER type: wer value: 24.85 - name: Test CER type: cer value: 9.99 ---
anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm
anuragshas
2022-03-23T18:28:35Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sk", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - sk license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Slovak results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sk metrics: - name: Test WER type: wer value: 18.609 - name: Test CER type: cer value: 5.488 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sk metrics: - name: Test WER type: wer value: 40.548 - name: Test CER type: cer value: 17.733 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sk metrics: - name: Test WER type: wer value: 44.1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Slovak This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SK dataset. It achieves the following results on the evaluation set: - Loss: 0.3067 - Wer: 0.2678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.175 | 2.41 | 400 | 4.6909 | 1.0 | | 3.3785 | 4.82 | 800 | 3.3080 | 1.0 | | 2.6964 | 7.23 | 1200 | 2.0651 | 1.1055 | | 1.3008 | 9.64 | 1600 | 0.5845 | 0.6207 | | 1.1185 | 12.05 | 2000 | 0.4195 | 0.4193 | | 1.0252 | 14.46 | 2400 | 0.3824 | 0.3570 | | 0.935 | 16.87 | 2800 | 0.3693 | 0.3462 | | 0.8818 | 19.28 | 3200 | 0.3587 | 0.3318 | | 0.8534 | 21.69 | 3600 | 0.3420 | 0.3180 | | 0.8137 | 24.1 | 4000 | 0.3426 | 0.3130 | | 0.7968 | 26.51 | 4400 | 0.3349 | 0.3102 | | 0.7558 | 28.92 | 4800 | 0.3216 | 0.3019 | | 0.7313 | 31.33 | 5200 | 0.3451 | 0.3060 | | 0.7358 | 33.73 | 5600 | 0.3272 | 0.2967 | | 0.718 | 36.14 | 6000 | 0.3315 | 0.2882 | | 0.6991 | 38.55 | 6400 | 0.3299 | 0.2830 | | 0.6529 | 40.96 | 6800 | 0.3140 | 0.2836 | | 0.6225 | 43.37 | 7200 | 0.3128 | 0.2751 | | 0.633 | 45.78 | 7600 | 0.3211 | 0.2774 | | 0.5876 | 48.19 | 8000 | 0.3162 | 0.2764 | | 0.588 | 50.6 | 8400 | 0.3082 | 0.2722 | | 0.5915 | 53.01 | 8800 | 0.3120 | 0.2681 | | 0.5798 | 55.42 | 9200 | 0.3133 | 0.2709 | | 0.5736 | 57.83 | 9600 | 0.3086 | 0.2676 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sk --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sk --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sk", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 26.707 | 18.609 |
infinitejoy/wav2vec2-large-xls-r-300m-arabic
infinitejoy
2022-03-23T18:28:27Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ar license: apache-2.0 tags: - ar - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ar metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300m-SV This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AR dataset. It achieves the following results on the evaluation set: - Loss: NA - Wer: NA ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py \ --model_id infinitejoy/wav2vec2-large-xls-r-300m-arabic \ --dataset mozilla-foundation/common_voice_7_0 --config ar --split test --log_outputs ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py \ --model_id infinitejoy/wav2vec2-large-xls-r-300m-arabic --dataset speech-recognition-community-v2/dev_data \ --config ar --split validation --chunk_length_s 10 --stride_length_s 1 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "infinitejoy/wav2vec2-large-xls-r-300m-arabic" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "ar", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | NA | NA |
emre/wav2vec2-xls-r-300m-Russian-small
emre
2022-03-23T18:28:22Z
19
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "ru", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - ru tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-Russian-small results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ru type: common_voice args: ru metrics: - name: Test WER type: wer value: 48.38 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ru metrics: - name: Test WER type: wer value: 58.25 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ru metrics: - name: Test WER type: wer value: 56.83 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Russian-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3514 - Wer: 0.4838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.512 | 1.32 | 400 | 3.2207 | 1.0 | | 3.1562 | 2.65 | 800 | 3.0166 | 1.0 | | 1.5211 | 3.97 | 1200 | 0.7134 | 0.8275 | | 0.6724 | 5.3 | 1600 | 0.4713 | 0.6402 | | 0.4693 | 6.62 | 2000 | 0.3904 | 0.5668 | | 0.3693 | 7.95 | 2400 | 0.3609 | 0.5121 | | 0.3004 | 9.27 | 2800 | 0.3514 | 0.4838 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
FremyCompany/xls-r-2b-nl-v2_lm-5gram-os2_hunspell
FremyCompany
2022-03-23T18:28:16Z
9
4
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "nl", "nl_BE", "nl_NL", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - nl tags: - automatic-speech-recognition - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - nl - nl_BE - nl_NL - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-nl-v1-cv8-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: nl metrics: - name: Test WER type: wer value: 3.93 - name: Test CER type: cer value: 1.22 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: 16.35 - name: Test CER type: cer value: 9.64 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 15.81 --- # XLS-R-based CTC model with 5-gram language model from Open Subtitles This model is a version of [facebook/wav2vec2-xls-r-2b-22-to-16](https://huggingface.co/facebook/wav2vec2-xls-r-2b-22-to-16) fine-tuned mainly on the [CGN dataset](https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/), as well as the [MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL](https://commonvoice.mozilla.org) dataset (see details below), on which a large 5-gram language model is added based on the Open Subtitles Dutch corpus. This model achieves the following results on the evaluation set (of Common Voice 8.0): - Wer: 0.03931 - Cer: 0.01224 > **IMPORTANT NOTE**: The `hunspell` typo fixer is **not enabled** on the website, which returns raw CTC+LM results. Hunspell reranking is only available in the `eval.py` decoding script. For best results, please use the code in that file while using the model locally for inference. > **IMPORTANT NOTE**: Evaluating this model requires `apt install libhunspell-dev` and a pip install of `hunspell` in addition to pip installs of `pipy-kenlm` and `pyctcdecode` (see `install_requirements.sh`); in addition, the chunking lengths and strides were optimized for the model as `12s` and `2s` respectively (see `eval.sh`). > **QUICK REMARK**: The "Robust Speech Event" set does not contain cleaned transcription text, so its WER/CER are vastly over-estimated. For instance `2014` in the dev set is left as a number but will be recognized as `tweeduizend veertien`, which counts as 3 mistakes (`2014` missing, and both `tweeduizend` and `veertien` wrongly inserted). Other normalization problems in the dev set include the presence of single quotes around some words, that then end up as non-match despite being the correct word (but without quotes), and the removal of some speech words in the final transcript (`ja`, etc...). As a result, our real error rate on the dev set is significantly lower than reported. > > ![Image showing the difference between the prediction and target of the dev set](https://huggingface.co/FremyCompany/xls-r-2b-nl-v2_lm-5gram-os2_hunspell/resolve/main/dev_set_diff_4.png) > > You can compare the [predictions](https://huggingface.co/FremyCompany/xls-r-2b-nl-v2_lm-5gram-os2_hunspell/blob/main/log_speech-recognition-community-v2_dev_data_nl_validation_predictions.txt) with the [targets](https://huggingface.co/FremyCompany/xls-r-2b-nl-v2_lm-5gram-os2_hunspell/blob/main/log_speech-recognition-community-v2_dev_data_nl_validation_targets.txt) on the validation dev set yourself, for example using [this diffing tool](https://countwordsfree.com/comparetexts). > **WE DO SPEECH RECOGNITION**: Hello reader! If you are considering using this (or another) model in production, but would benefit from a model fine-tuned specifically for your use case (using text and/or labelled speech), feel free to [contact our team](https://www.ugent.be/ea/idlab/en/research/semantic-intelligence/speech-and-audio-processing.htm). This model was developped during the [Robust Speech Recognition challenge](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) event by [François REMY](https://www.linkedin.com/in/fremycompany/) [(twitter)](https://twitter.com/FremyCompany) and [Geoffroy VANDERREYDT](https://be.linkedin.com/in/geoffroy-vanderreydt-a4421460). > We would like to thank [OVH](https://www.ovhcloud.com/en/public-cloud/ai-training/) for providing us with a V100S GPU. ## Model description The model takes 16kHz sound input, and uses a Wav2Vec2ForCTC decoder with 48 letters to output the letter-transcription probabilities per frame. To improve accuracy, a beam-search decoder based on `pyctcdecode` is then used; it reranks the most promising alignments based on a 5-gram language model trained on the Open Subtitles Dutch corpus. To further deal with typos, `hunspell` is used to propose alternative spellings for words not in the unigrams of the language model. These alternatives are then reranked based on the language model trained above, and a penalty proportional to the levenshtein edit distance between the alternative and the recognized word. This for examples enables to correct `collegas` into `collega's` or `gogol` into `google`. ## Intended uses & limitations This model can be used to transcribe Dutch or Flemish spoken dutch to text (without punctuation). ## Training and evaluation data The model was: 0. initialized with [the 2B parameter model from Facebook](facebook/wav2vec2-xls-r-2b-22-to-16). 1. trained `5` epochs (6000 iterations of batch size 32) on [the `cv8/nl` dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0). 2. trained `1` epoch (36000 iterations of batch size 32) on [the `cgn` dataset](https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/). 3. trained `5` epochs (6000 iterations of batch size 32) on [the `cv8/nl` dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0). ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
FremyCompany/xls-r-2b-nl-v2_lm-5gram-os
FremyCompany
2022-03-23T18:28:14Z
5
3
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "nl", "nl_BE", "nl_NL", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - nl tags: - automatic-speech-recognition - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - nl - nl_BE - nl_NL - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-nl-v1-cv8-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: nl metrics: - name: Test WER type: wer value: 4.06 - name: Test CER type: cer value: 1.22 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: 17.77 - name: Test CER type: cer value: 9.77 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 16.32 --- # XLS-R-based CTC model with 5-gram language model from Open Subtitles This model is a version of [facebook/wav2vec2-xls-r-2b-22-to-16](https://huggingface.co/facebook/wav2vec2-xls-r-2b-22-to-16) fine-tuned mainly on the [CGN dataset](https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/), as well as the [MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL](https://commonvoice.mozilla.org) dataset (see details below), on which a large 5-gram language model is added based on the Open Subtitles Dutch corpus. This model achieves the following results on the evaluation set (of Common Voice 8.0): - Wer: 0.04057 - Cer: 0.01222 ## Model description The model takes 16kHz sound input, and uses a Wav2Vec2ForCTC decoder with 48 letters to output the letter-transcription probabilities per frame. To improve accuracy, a beam-search decoder based on `pyctcdecode` is then used; it reranks the most promising alignments based on a 5-gram language model trained on the Open Subtitles Dutch corpus. ## Intended uses & limitations This model can be used to transcribe Dutch or Flemish spoken dutch to text (without punctuation). ## Training and evaluation data The model was: 0. initialized with [the 2B parameter model from Facebook](facebook/wav2vec2-xls-r-2b-22-to-16). 1. trained `5` epochs (6000 iterations of batch size 32) on [the `cv8/nl` dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0). 2. trained `1` epoch (36000 iterations of batch size 32) on [the `cgn` dataset](https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/). 3. trained `5` epochs (6000 iterations of batch size 32) on [the `cv8/nl` dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0). ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
nouamanetazi/wav2vec2-xls-r-300m-ar-with-lm
nouamanetazi
2022-03-23T18:27:54Z
15
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ar license: apache-2.0 tags: - ar - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: XLS-R-300M - Arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: 1.0 - name: Test CER type: cer value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-ar This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - AR dataset. It achieves the following results on the evaluation set: - eval_loss: 3.0191 - eval_wer: 1.0 - eval_runtime: 252.2389 - eval_samples_per_second: 30.217 - eval_steps_per_second: 0.476 - epoch: 1.0 - step: 340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands Please use the evaluation script `eval.py` included in the repo. 1. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id nouamanetazi/wav2vec2-xls-r-300m-ar --dataset speech-recognition-community-v2/dev_data --config ar --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
arijitx/wav2vec2-xls-r-300m-bengali
arijitx
2022-03-23T18:27:52Z
427
6
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "bn", "hf-asr-leaderboard", "openslr_SLR53", "robust-speech-event", "dataset:openslr", "dataset:SLR53", "dataset:AI4Bharat/IndicCorp", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - bn license: apache-2.0 tags: - automatic-speech-recognition - bn - hf-asr-leaderboard - openslr_SLR53 - robust-speech-event datasets: - openslr - SLR53 - AI4Bharat/IndicCorp metrics: - wer - cer model-index: - name: arijitx/wav2vec2-xls-r-300m-bengali results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: openslr name: Open SLR args: SLR53 metrics: - type: wer value: 0.21726385291857586 name: Test WER - type: cer value: 0.04725010353701041 name: Test CER - type: wer value: 0.15322879016421437 name: Test WER with lm - type: cer value: 0.03413696666806267 name: Test CER with lm --- This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the OPENSLR_SLR53 - bengali dataset. It achieves the following results on the evaluation set. Without language model : - WER: 0.21726385291857586 - CER: 0.04725010353701041 With 5 gram language model trained on 30M sentences randomly chosen from [AI4Bharat IndicCorp](https://indicnlp.ai4bharat.org/corpora/) dataset : - WER: 0.15322879016421437 - CER: 0.03413696666806267 Note : 5% of a total 10935 samples have been used for evaluation. Evaluation set has 10935 examples which was not part of training training was done on first 95% and eval was done on last 5%. Training was stopped after 180k steps. Output predictions are available under files section. ### Training hyperparameters The following hyperparameters were used during training: - dataset_name="openslr" - model_name_or_path="facebook/wav2vec2-xls-r-300m" - dataset_config_name="SLR53" - output_dir="./wav2vec2-xls-r-300m-bengali" - overwrite_output_dir - num_train_epochs="50" - per_device_train_batch_size="32" - per_device_eval_batch_size="32" - gradient_accumulation_steps="1" - learning_rate="7.5e-5" - warmup_steps="2000" - length_column_name="input_length" - evaluation_strategy="steps" - text_column_name="sentence" - chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – - save_steps="2000" - eval_steps="3000" - logging_steps="100" - layerdrop="0.0" - activation_dropout="0.1" - save_total_limit="3" - freeze_feature_encoder - feat_proj_dropout="0.0" - mask_time_prob="0.75" - mask_time_length="10" - mask_feature_prob="0.25" - mask_feature_length="64" - preprocessing_num_workers 32 ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 Notes - Training and eval code modified from : https://github.com/huggingface/transformers/tree/master/examples/research_projects/robust-speech-event. - Bengali speech data was not available from common voice or librispeech multilingual datasets, so OpenSLR53 has been used. - Minimum audio duration of 0.5s has been used to filter the training data which excluded may be 10-20 samples. - OpenSLR53 transcripts are *not* part of LM training and LM used to evaluate.
lgris/sew-tiny-portuguese-cv
lgris
2022-03-23T18:27:49Z
5
0
transformers
[ "transformers", "pytorch", "sew", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "pt", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - pt license: apache-2.0 tags: - generated_from_trainer - hf-asr-leaderboard - pt - robust-speech-event datasets: - common_voice model-index: - name: sew-tiny-portuguese-cv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6 type: common_voice args: pt metrics: - name: Test WER type: wer value: 30.02 - name: Test CER type: cer value: 10.34 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 56.46 - name: Test CER type: cer value: 22.94 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 57.17 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 61.3 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-tiny-portuguese-cv This model is a fine-tuned version of [lgris/sew-tiny-pt](https://huggingface.co/lgris/sew-tiny-pt) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5110 - Wer: 0.2842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | No log | 4.92 | 1000 | 0.8468 | 0.6494 | | 3.4638 | 9.85 | 2000 | 0.4978 | 0.3815 | | 3.4638 | 14.78 | 3000 | 0.4734 | 0.3417 | | 0.9904 | 19.7 | 4000 | 0.4577 | 0.3344 | | 0.9904 | 24.63 | 5000 | 0.4376 | 0.3170 | | 0.8849 | 29.55 | 6000 | 0.4225 | 0.3118 | | 0.8849 | 34.48 | 7000 | 0.4354 | 0.3080 | | 0.819 | 39.41 | 8000 | 0.4434 | 0.3004 | | 0.819 | 44.33 | 9000 | 0.4710 | 0.3132 | | 0.7706 | 49.26 | 10000 | 0.4497 | 0.3064 | | 0.7706 | 54.19 | 11000 | 0.4598 | 0.3100 | | 0.7264 | 59.11 | 12000 | 0.4271 | 0.3013 | | 0.7264 | 64.04 | 13000 | 0.4333 | 0.2959 | | 0.6909 | 68.96 | 14000 | 0.4554 | 0.3019 | | 0.6909 | 73.89 | 15000 | 0.4444 | 0.2888 | | 0.6614 | 78.81 | 16000 | 0.4734 | 0.3081 | | 0.6614 | 83.74 | 17000 | 0.4820 | 0.3058 | | 0.6379 | 88.67 | 18000 | 0.4416 | 0.2950 | | 0.6379 | 93.59 | 19000 | 0.4614 | 0.2974 | | 0.6055 | 98.52 | 20000 | 0.4812 | 0.3018 | | 0.6055 | 103.45 | 21000 | 0.4700 | 0.3018 | | 0.5823 | 108.37 | 22000 | 0.4726 | 0.2999 | | 0.5823 | 113.3 | 23000 | 0.4979 | 0.2887 | | 0.5597 | 118.23 | 24000 | 0.4813 | 0.2980 | | 0.5597 | 123.15 | 25000 | 0.4968 | 0.2972 | | 0.542 | 128.08 | 26000 | 0.5331 | 0.3059 | | 0.542 | 133.0 | 27000 | 0.5046 | 0.2978 | | 0.5185 | 137.93 | 28000 | 0.4882 | 0.2922 | | 0.5185 | 142.85 | 29000 | 0.4945 | 0.2938 | | 0.499 | 147.78 | 30000 | 0.4971 | 0.2913 | | 0.499 | 152.71 | 31000 | 0.4948 | 0.2873 | | 0.4811 | 157.63 | 32000 | 0.4924 | 0.2918 | | 0.4811 | 162.56 | 33000 | 0.5128 | 0.2911 | | 0.4679 | 167.49 | 34000 | 0.5098 | 0.2892 | | 0.4679 | 172.41 | 35000 | 0.4966 | 0.2863 | | 0.456 | 177.34 | 36000 | 0.5033 | 0.2839 | | 0.456 | 182.27 | 37000 | 0.5114 | 0.2875 | | 0.4453 | 187.19 | 38000 | 0.5154 | 0.2859 | | 0.4453 | 192.12 | 39000 | 0.5102 | 0.2847 | | 0.4366 | 197.04 | 40000 | 0.5110 | 0.2842 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
pablouribe/xls-r-spanish-test
pablouribe
2022-03-23T18:27:46Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: xls-r-spanish-test results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: es metrics: - name: Test WER type: wer value: 13.89 - name: Test CER type: cer value: 3.85 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: es metrics: - name: Test WER type: wer value: 37.66 - name: Test CER type: cer value: 15.32 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: es metrics: - name: Test WER type: wer value: 41.17 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - ES dataset. It achieves the following results on the evaluation set: - Loss: 0.1461 - Wer: 1.0063 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.953 | 0.15 | 1000 | 2.9528 | 1.0 | | 1.1519 | 0.3 | 2000 | 0.3735 | 1.0357 | | 1.0278 | 0.45 | 3000 | 0.2529 | 1.0390 | | 0.9922 | 0.61 | 4000 | 0.2208 | 1.0270 | | 0.9618 | 0.76 | 5000 | 0.2088 | 1.0294 | | 0.9364 | 0.91 | 6000 | 0.2019 | 1.0214 | | 0.9179 | 1.06 | 7000 | 0.1940 | 1.0294 | | 0.9154 | 1.21 | 8000 | 0.1915 | 1.0290 | | 0.8985 | 1.36 | 9000 | 0.1837 | 1.0211 | | 0.9055 | 1.51 | 10000 | 0.1838 | 1.0273 | | 0.8861 | 1.67 | 11000 | 0.1765 | 1.0139 | | 0.892 | 1.82 | 12000 | 0.1723 | 1.0188 | | 0.8778 | 1.97 | 13000 | 0.1735 | 1.0092 | | 0.8645 | 2.12 | 14000 | 0.1707 | 1.0106 | | 0.8595 | 2.27 | 15000 | 0.1713 | 1.0186 | | 0.8392 | 2.42 | 16000 | 0.1686 | 1.0053 | | 0.8436 | 2.57 | 17000 | 0.1653 | 1.0096 | | 0.8405 | 2.73 | 18000 | 0.1689 | 1.0077 | | 0.8382 | 2.88 | 19000 | 0.1645 | 1.0114 | | 0.8247 | 3.03 | 20000 | 0.1647 | 1.0078 | | 0.8219 | 3.18 | 21000 | 0.1611 | 1.0026 | | 0.8024 | 3.33 | 22000 | 0.1580 | 1.0062 | | 0.8087 | 3.48 | 23000 | 0.1578 | 1.0038 | | 0.8097 | 3.63 | 24000 | 0.1556 | 1.0057 | | 0.8094 | 3.79 | 25000 | 0.1552 | 1.0035 | | 0.7836 | 3.94 | 26000 | 0.1516 | 1.0052 | | 0.8042 | 4.09 | 27000 | 0.1515 | 1.0054 | | 0.7925 | 4.24 | 28000 | 0.1499 | 1.0031 | | 0.7855 | 4.39 | 29000 | 0.1490 | 1.0041 | | 0.7814 | 4.54 | 30000 | 0.1482 | 1.0068 | | 0.7859 | 4.69 | 31000 | 0.1460 | 1.0066 | | 0.7819 | 4.85 | 32000 | 0.1464 | 1.0062 | | 0.7784 | 5.0 | 33000 | 0.1460 | 1.0063 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0
w11wo/wav2vec2-xls-r-300m-zh-HK-v2
w11wo
2022-03-23T18:27:41Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "arxiv:2111.09296", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: zh-HK license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: Wav2Vec2 XLS-R 300M Cantonese (zh-HK) results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice type: common_voice args: zh-HK metrics: - name: Test CER type: cer value: 31.73 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: zh-HK metrics: - name: Test CER type: cer value: 23.11 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: zh-HK metrics: - name: Test CER type: cer value: 23.02 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: zh-HK metrics: - name: Test CER type: cer value: 56.6 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: zh-HK metrics: - name: Test CER type: cer value: 55.11 --- # Wav2Vec2 XLS-R 300M Cantonese (zh-HK) Wav2Vec2 XLS-R 300M Cantonese (zh-HK) is an automatic speech recognition model based on the [XLS-R](https://arxiv.org/abs/2111.09296) architecture. This model is a fine-tuned version of [Wav2Vec2-XLS-R-300M](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the `zh-HK` subset of the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. This model was trained using HuggingFace's PyTorch framework and is part of the [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by HuggingFace. All training was done on a Tesla V100, sponsored by OVH. All necessary scripts used for training could be found in the [Files and versions](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-zh-HK-v2/tree/main) tab, as well as the [Training metrics](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-zh-HK-v2/tensorboard) logged via Tensorboard. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------------------ | ------- | ----- | ------------------------------- | | `wav2vec2-xls-r-300m-zh-HK-v2` | 300M | XLS-R | `Common Voice zh-HK` Dataset | ## Evaluation Results The model achieves the following results on evaluation: | Dataset | Loss | CER | | -------------------------------- | ------ | ------ | | `Common Voice` | 0.8089 | 31.73% | | `Common Voice 7` | N/A | 23.11% | | `Common Voice 8` | N/A | 23.02% | | `Robust Speech Event - Dev Data` | N/A | 56.60% | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 0.0001 - `train_batch_size`: 8 - `eval_batch_size`: 8 - `seed`: 42 - `gradient_accumulation_steps`: 4 - `total_train_batch_size`: 32 - `optimizer`: Adam with `betas=(0.9, 0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `lr_scheduler_warmup_steps`: 2000 - `num_epochs`: 100.0 - `mixed_precision_training`: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | | :-----------: | :---: | :---: | :-------------: | :----: | :----: | | 69.8341 | 1.34 | 500 | 80.0722 | 1.0 | 1.0 | | 6.6418 | 2.68 | 1000 | 6.6346 | 1.0 | 1.0 | | 6.2419 | 4.02 | 1500 | 6.2909 | 1.0 | 1.0 | | 6.0813 | 5.36 | 2000 | 6.1150 | 1.0 | 1.0 | | 5.9677 | 6.7 | 2500 | 6.0301 | 1.1386 | 1.0028 | | 5.9296 | 8.04 | 3000 | 5.8975 | 1.2113 | 1.0058 | | 5.6434 | 9.38 | 3500 | 5.5404 | 2.1624 | 1.0171 | | 5.1974 | 10.72 | 4000 | 4.5440 | 2.1702 | 0.9366 | | 4.3601 | 12.06 | 4500 | 3.3839 | 2.2464 | 0.8998 | | 3.9321 | 13.4 | 5000 | 2.8785 | 2.3097 | 0.8400 | | 3.6462 | 14.74 | 5500 | 2.5108 | 1.9623 | 0.6663 | | 3.5156 | 16.09 | 6000 | 2.2790 | 1.6479 | 0.5706 | | 3.32 | 17.43 | 6500 | 2.1450 | 1.8337 | 0.6244 | | 3.1918 | 18.77 | 7000 | 1.8536 | 1.9394 | 0.6017 | | 3.1139 | 20.11 | 7500 | 1.7205 | 1.9112 | 0.5638 | | 2.8995 | 21.45 | 8000 | 1.5478 | 1.0624 | 0.3250 | | 2.7572 | 22.79 | 8500 | 1.4068 | 1.1412 | 0.3367 | | 2.6881 | 24.13 | 9000 | 1.3312 | 2.0100 | 0.5683 | | 2.5993 | 25.47 | 9500 | 1.2553 | 2.0039 | 0.6450 | | 2.5304 | 26.81 | 10000 | 1.2422 | 2.0394 | 0.5789 | | 2.4352 | 28.15 | 10500 | 1.1582 | 1.9970 | 0.5507 | | 2.3795 | 29.49 | 11000 | 1.1160 | 1.8255 | 0.4844 | | 2.3287 | 30.83 | 11500 | 1.0775 | 1.4123 | 0.3780 | | 2.2622 | 32.17 | 12000 | 1.0704 | 1.7445 | 0.4894 | | 2.2225 | 33.51 | 12500 | 1.0272 | 1.7237 | 0.5058 | | 2.1843 | 34.85 | 13000 | 0.9756 | 1.8042 | 0.5028 | | 2.1 | 36.19 | 13500 | 0.9527 | 1.8909 | 0.6055 | | 2.0741 | 37.53 | 14000 | 0.9418 | 1.9026 | 0.5880 | | 2.0179 | 38.87 | 14500 | 0.9363 | 1.7977 | 0.5246 | | 2.0615 | 40.21 | 15000 | 0.9635 | 1.8112 | 0.5599 | | 1.9448 | 41.55 | 15500 | 0.9249 | 1.7250 | 0.4914 | | 1.8966 | 42.89 | 16000 | 0.9023 | 1.5829 | 0.4319 | | 1.8662 | 44.24 | 16500 | 0.9002 | 1.4833 | 0.4230 | | 1.8136 | 45.58 | 17000 | 0.9076 | 1.1828 | 0.2987 | | 1.7908 | 46.92 | 17500 | 0.8774 | 1.5773 | 0.4258 | | 1.7354 | 48.26 | 18000 | 0.8727 | 1.5037 | 0.4024 | | 1.6739 | 49.6 | 18500 | 0.8636 | 1.1239 | 0.2789 | | 1.6457 | 50.94 | 19000 | 0.8516 | 1.2269 | 0.3104 | | 1.5847 | 52.28 | 19500 | 0.8399 | 1.3309 | 0.3360 | | 1.5971 | 53.62 | 20000 | 0.8441 | 1.3153 | 0.3335 | | 1.602 | 54.96 | 20500 | 0.8590 | 1.2932 | 0.3433 | | 1.5063 | 56.3 | 21000 | 0.8334 | 1.1312 | 0.2875 | | 1.4631 | 57.64 | 21500 | 0.8474 | 1.1698 | 0.2999 | | 1.4997 | 58.98 | 22000 | 0.8638 | 1.4279 | 0.3854 | | 1.4301 | 60.32 | 22500 | 0.8550 | 1.2737 | 0.3300 | | 1.3798 | 61.66 | 23000 | 0.8266 | 1.1802 | 0.2934 | | 1.3454 | 63.0 | 23500 | 0.8235 | 1.3816 | 0.3711 | | 1.3678 | 64.34 | 24000 | 0.8550 | 1.6427 | 0.5035 | | 1.3761 | 65.68 | 24500 | 0.8510 | 1.6709 | 0.4907 | | 1.2668 | 67.02 | 25000 | 0.8515 | 1.5842 | 0.4505 | | 1.2835 | 68.36 | 25500 | 0.8283 | 1.5353 | 0.4221 | | 1.2961 | 69.7 | 26000 | 0.8339 | 1.5743 | 0.4369 | | 1.2656 | 71.05 | 26500 | 0.8331 | 1.5331 | 0.4217 | | 1.2556 | 72.39 | 27000 | 0.8242 | 1.4708 | 0.4109 | | 1.2043 | 73.73 | 27500 | 0.8245 | 1.4469 | 0.4031 | | 1.2722 | 75.07 | 28000 | 0.8202 | 1.4924 | 0.4096 | | 1.202 | 76.41 | 28500 | 0.8290 | 1.3807 | 0.3719 | | 1.1679 | 77.75 | 29000 | 0.8195 | 1.4097 | 0.3749 | | 1.1967 | 79.09 | 29500 | 0.8059 | 1.2074 | 0.3077 | | 1.1241 | 80.43 | 30000 | 0.8137 | 1.2451 | 0.3270 | | 1.1414 | 81.77 | 30500 | 0.8117 | 1.2031 | 0.3121 | | 1.132 | 83.11 | 31000 | 0.8234 | 1.4266 | 0.3901 | | 1.0982 | 84.45 | 31500 | 0.8064 | 1.3712 | 0.3607 | | 1.0797 | 85.79 | 32000 | 0.8167 | 1.3356 | 0.3562 | | 1.0119 | 87.13 | 32500 | 0.8215 | 1.2754 | 0.3268 | | 1.0216 | 88.47 | 33000 | 0.8163 | 1.2512 | 0.3184 | | 1.0375 | 89.81 | 33500 | 0.8137 | 1.2685 | 0.3290 | | 0.9794 | 91.15 | 34000 | 0.8220 | 1.2724 | 0.3255 | | 1.0207 | 92.49 | 34500 | 0.8165 | 1.2906 | 0.3361 | | 1.0169 | 93.83 | 35000 | 0.8153 | 1.2819 | 0.3305 | | 1.0127 | 95.17 | 35500 | 0.8187 | 1.2832 | 0.3252 | | 0.9978 | 96.51 | 36000 | 0.8111 | 1.2612 | 0.3210 | | 0.9923 | 97.85 | 36500 | 0.8076 | 1.2278 | 0.3122 | | 1.0451 | 99.2 | 37000 | 0.8086 | 1.2451 | 0.3156 | ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors Wav2Vec2 XLS-R 300M Cantonese (zh-HK) was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on OVH Cloud. ## Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
lgris/sew-tiny-portuguese-cv7
lgris
2022-03-23T18:27:38Z
24
2
transformers
[ "transformers", "pytorch", "tensorboard", "sew", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "pt", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - pt license: apache-2.0 tags: - generated_from_trainer - hf-asr-leaderboard - pt - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: sew-tiny-portuguese-cv7 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: pt metrics: - name: Test WER type: wer value: 28.9 - name: Test CER type: cer value: 9.41 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 47.27 - name: Test CER type: cer value: 19.62 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 47.3 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 49.83 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-tiny-portuguese-cv7 This model is a fine-tuned version of [lgris/sew-tiny-pt](https://huggingface.co/lgris/sew-tiny-pt) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4232 - Wer: 0.2745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | No log | 2.6 | 1000 | 1.0034 | 0.7308 | | 4.1307 | 5.19 | 2000 | 0.6274 | 0.4721 | | 4.1307 | 7.79 | 3000 | 0.5541 | 0.4130 | | 1.3117 | 10.39 | 4000 | 0.5302 | 0.3880 | | 1.3117 | 12.99 | 5000 | 0.5082 | 0.3644 | | 1.2047 | 15.58 | 6000 | 0.4818 | 0.3539 | | 1.2047 | 18.18 | 7000 | 0.4822 | 0.3477 | | 1.14 | 20.78 | 8000 | 0.4781 | 0.3428 | | 1.14 | 23.38 | 9000 | 0.4840 | 0.3401 | | 1.0818 | 25.97 | 10000 | 0.4613 | 0.3251 | | 1.0818 | 28.57 | 11000 | 0.4569 | 0.3257 | | 1.0451 | 31.17 | 12000 | 0.4494 | 0.3132 | | 1.0451 | 33.77 | 13000 | 0.4560 | 0.3201 | | 1.011 | 36.36 | 14000 | 0.4687 | 0.3174 | | 1.011 | 38.96 | 15000 | 0.4397 | 0.3122 | | 0.9785 | 41.56 | 16000 | 0.4605 | 0.3173 | | 0.9785 | 44.16 | 17000 | 0.4380 | 0.3064 | | 0.9458 | 46.75 | 18000 | 0.4372 | 0.3048 | | 0.9458 | 49.35 | 19000 | 0.4426 | 0.3039 | | 0.9126 | 51.95 | 20000 | 0.4317 | 0.2962 | | 0.9126 | 54.54 | 21000 | 0.4345 | 0.2960 | | 0.8926 | 57.14 | 22000 | 0.4365 | 0.2948 | | 0.8926 | 59.74 | 23000 | 0.4306 | 0.2940 | | 0.8654 | 62.34 | 24000 | 0.4303 | 0.2928 | | 0.8654 | 64.93 | 25000 | 0.4351 | 0.2915 | | 0.8373 | 67.53 | 26000 | 0.4340 | 0.2909 | | 0.8373 | 70.13 | 27000 | 0.4279 | 0.2907 | | 0.83 | 72.73 | 28000 | 0.4214 | 0.2867 | | 0.83 | 75.32 | 29000 | 0.4256 | 0.2849 | | 0.8062 | 77.92 | 30000 | 0.4281 | 0.2826 | | 0.8062 | 80.52 | 31000 | 0.4398 | 0.2865 | | 0.7846 | 83.12 | 32000 | 0.4218 | 0.2812 | | 0.7846 | 85.71 | 33000 | 0.4227 | 0.2791 | | 0.7697 | 88.31 | 34000 | 0.4200 | 0.2767 | | 0.7697 | 90.91 | 35000 | 0.4285 | 0.2791 | | 0.7539 | 93.51 | 36000 | 0.4238 | 0.2777 | | 0.7539 | 96.1 | 37000 | 0.4288 | 0.2757 | | 0.7413 | 98.7 | 38000 | 0.4205 | 0.2748 | | 0.7413 | 101.3 | 39000 | 0.4241 | 0.2761 | | 0.7348 | 103.89 | 40000 | 0.4232 | 0.2745 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
reichenbach/wav2vec2-large-xls-r-300m-hi
reichenbach
2022-03-23T18:27:23Z
41
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "hi", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - hi tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 2.4749 - Wer: 0.9420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.8626 | 4.76 | 400 | 3.6151 | 1.0 | | 3.5463 | 9.52 | 800 | 3.5778 | 1.0 | | 3.4415 | 14.28 | 1200 | 3.4525 | 1.0 | | 3.0927 | 19.05 | 1600 | 2.6220 | 0.9860 | | 2.0573 | 23.8 | 2000 | 2.3974 | 0.9610 | | 1.5905 | 28.57 | 2400 | 2.4427 | 0.9558 | | 1.426 | 33.33 | 2800 | 2.4736 | 0.9475 | | 1.3147 | 38.09 | 3200 | 2.4494 | 0.9417 | | 1.2642 | 42.85 | 3600 | 2.4665 | 0.9450 | | 1.2289 | 47.62 | 4000 | 2.4749 | 0.9420 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3
infinitejoy/wav2vec2-large-xls-r-300m-abkhaz-cv8
infinitejoy
2022-03-23T18:27:00Z
8
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ab", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ab license: apache-2.0 tags: - ab - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Abkhaz results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ab metrics: - name: Test WER type: wer value: 27.6 - name: Test CER type: cer value: 4.577 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-abkhaz-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 0.1614 - Wer: 0.2907 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.2881 | 4.26 | 4000 | 0.3764 | 0.6461 | | 1.0767 | 8.53 | 8000 | 0.2657 | 0.5164 | | 0.9841 | 12.79 | 12000 | 0.2330 | 0.4445 | | 0.9274 | 17.06 | 16000 | 0.2134 | 0.3929 | | 0.8781 | 21.32 | 20000 | 0.1945 | 0.3886 | | 0.8381 | 25.59 | 24000 | 0.1840 | 0.3737 | | 0.8054 | 29.85 | 28000 | 0.1756 | 0.3523 | | 0.7763 | 34.12 | 32000 | 0.1745 | 0.3299 | | 0.7474 | 38.38 | 36000 | 0.1677 | 0.3074 | | 0.7298 | 42.64 | 40000 | 0.1649 | 0.2963 | | 0.7125 | 46.91 | 44000 | 0.1617 | 0.2931 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
anuragshas/wav2vec2-xls-r-1b-hi-with-lm
anuragshas
2022-03-23T18:26:47Z
10
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "hi", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: XLS-R-1B - Hindi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hi metrics: - name: Test WER type: wer value: 15.899 - name: Test CER type: cer value: 5.83 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-1B - Hindi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.6921 - Wer: 0.3547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.0674 | 2.07 | 400 | 1.3411 | 0.8835 | | 1.324 | 4.15 | 800 | 0.9311 | 0.7142 | | 1.2023 | 6.22 | 1200 | 0.8060 | 0.6170 | | 1.1573 | 8.29 | 1600 | 0.7415 | 0.4972 | | 1.1117 | 10.36 | 2000 | 0.7248 | 0.4588 | | 1.0672 | 12.44 | 2400 | 0.6729 | 0.4350 | | 1.0336 | 14.51 | 2800 | 0.7117 | 0.4346 | | 1.0025 | 16.58 | 3200 | 0.7019 | 0.4272 | | 0.9578 | 18.65 | 3600 | 0.6792 | 0.4118 | | 0.9272 | 20.73 | 4000 | 0.6863 | 0.4156 | | 0.9321 | 22.8 | 4400 | 0.6535 | 0.3972 | | 0.8802 | 24.87 | 4800 | 0.6766 | 0.3906 | | 0.844 | 26.94 | 5200 | 0.6782 | 0.3949 | | 0.8387 | 29.02 | 5600 | 0.6916 | 0.3921 | | 0.8042 | 31.09 | 6000 | 0.6806 | 0.3797 | | 0.793 | 33.16 | 6400 | 0.7120 | 0.3831 | | 0.7567 | 35.23 | 6800 | 0.6862 | 0.3808 | | 0.7463 | 37.31 | 7200 | 0.6893 | 0.3709 | | 0.7053 | 39.38 | 7600 | 0.7096 | 0.3701 | | 0.6906 | 41.45 | 8000 | 0.6921 | 0.3676 | | 0.6891 | 43.52 | 8400 | 0.7167 | 0.3663 | | 0.658 | 45.6 | 8800 | 0.6833 | 0.3580 | | 0.6576 | 47.67 | 9200 | 0.6914 | 0.3569 | | 0.6358 | 49.74 | 9600 | 0.6922 | 0.3551 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-1b-hi-with-lm --dataset mozilla-foundation/common_voice_8_0 --config hi --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-1b-hi-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "hi", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "तुम्हारे पास तीन महीने बचे हैं" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 26.209 | 15.899 |
mpoyraz/wav2vec2-xls-r-300m-cv6-turkish
mpoyraz
2022-03-23T18:26:27Z
9
7
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "hf-asr-leaderboard", "robust-speech-event", "tr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: tr tags: - automatic-speech-recognition - common_voice - hf-asr-leaderboard - robust-speech-event - tr datasets: - common_voice model-index: - name: mpoyraz/wav2vec2-xls-r-300m-cv6-turkish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: common_voice args: tr metrics: - name: Test WER type: wer value: 8.83 - name: Test CER type: cer value: 2.37 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: tr metrics: - name: Test WER type: wer value: 32.81 - name: Test CER type: cer value: 11.22 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: tr metrics: - name: Test WER type: wer value: 34.86 --- # wav2vec2-xls-r-300m-cv6-turkish ## Model description This ASR model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on Turkish language. ## Training and evaluation data The following datasets were used for finetuning: - [Common Voice 6.1 TR](https://huggingface.co/datasets/common_voice) All `validated` split except `test` split was used for training. - [MediaSpeech](https://www.openslr.org/108/) ## Training procedure To support both of the datasets above, custom pre-processing and loading steps was performed and [wav2vec2-turkish](https://github.com/mpoyraz/wav2vec2-turkish) repo was used for that purpose. ### Training hyperparameters The following hypermaters were used for finetuning: - learning_rate 2e-4 - num_train_epochs 10 - warmup_steps 500 - freeze_feature_extractor - mask_time_prob 0.1 - mask_feature_prob 0.1 - feat_proj_dropout 0.05 - attention_dropout 0.05 - final_dropout 0.1 - activation_dropout 0.05 - per_device_train_batch_size 8 - per_device_eval_batch_size 8 - gradient_accumulation_steps 8 ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1 - Datasets 1.18.3 - Tokenizers 0.10.3 ## Language Model N-gram language model is trained on a Turkish Wikipedia articles using KenLM and [ngram-lm-wiki](https://github.com/mpoyraz/ngram-lm-wiki) repo was used to generate arpa LM and convert it into binary format. ## Evaluation Commands Please install [unicode_tr](https://pypi.org/project/unicode_tr/) package before running evaluation. It is used for Turkish text processing. 1. To evaluate on `common_voice` with split `test` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv6-turkish --dataset common_voice --config tr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv6-turkish --dataset speech-recognition-community-v2/dev_data --config tr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Evaluation results: | Dataset | WER | CER | |---|---|---| |Common Voice 6.1 TR test split| 8.83 | 2.37 | |Speech Recognition Community dev data| 32.81 | 11.22 |
samitizerxu/wav2vec2-xls-r-300m-zh-CN
samitizerxu
2022-03-23T18:26:06Z
5
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "zh", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - zh-CN license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - robust-speech-event - zh datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-zh-CN results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: zh-CN metrics: - name: Test WER type: wer value: 80 - name: Test CER type: cer value: 40.11 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: zh-CN metrics: - name: Test CER type: cer value: 69.1 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: zh-CN metrics: - name: Test CER type: cer value: 43.08 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-zh-CN This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - ZH-CN dataset. It achieves the following results on the evaluation set: - Loss: 0.8828 - Wer: 2.0604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 60.2112 | 0.74 | 500 | 64.8189 | 1.0 | | 8.1128 | 1.48 | 1000 | 6.8997 | 1.0 | | 6.0492 | 2.22 | 1500 | 5.9677 | 1.9495 | | 5.9326 | 2.95 | 2000 | 5.8845 | 1.4092 | | 5.8763 | 3.69 | 2500 | 5.8460 | 1.6126 | | 5.7888 | 4.43 | 3000 | 5.7545 | 2.2034 | | 5.735 | 5.17 | 3500 | 5.6777 | 2.3350 | | 5.6861 | 5.91 | 4000 | 5.5179 | 2.2232 | | 5.381 | 6.65 | 4500 | 5.1420 | 2.1816 | | 4.625 | 7.39 | 5000 | 3.9020 | 2.0722 | | 4.214 | 8.12 | 5500 | 3.3394 | 2.1430 | | 3.8992 | 8.86 | 6000 | 2.9085 | 2.1534 | | 3.6481 | 9.6 | 6500 | 2.6208 | 2.3538 | | 3.4658 | 10.34 | 7000 | 2.3172 | 2.2271 | | 3.257 | 11.08 | 7500 | 2.0916 | 2.1351 | | 3.1294 | 11.82 | 8000 | 1.8954 | 2.2133 | | 3.0266 | 12.56 | 8500 | 1.7673 | 2.0896 | | 2.9451 | 13.29 | 9000 | 1.6659 | 2.1381 | | 2.8802 | 14.03 | 9500 | 1.5637 | 2.1969 | | 2.78 | 14.77 | 10000 | 1.4921 | 2.2335 | | 2.7049 | 15.51 | 10500 | 1.4132 | 2.2217 | | 2.6768 | 16.25 | 11000 | 1.3667 | 2.2232 | | 2.6358 | 16.99 | 11500 | 1.3111 | 2.1286 | | 2.5802 | 17.72 | 12000 | 1.2679 | 2.1430 | | 2.5012 | 18.46 | 12500 | 1.2365 | 2.1153 | | 2.458 | 19.2 | 13000 | 1.2118 | 2.1573 | | 2.4433 | 19.94 | 13500 | 1.1992 | 2.1336 | | 2.438 | 20.68 | 14000 | 1.1803 | 2.1509 | | 2.418 | 21.42 | 14500 | 1.1601 | 2.1232 | | 2.3322 | 22.16 | 15000 | 1.1418 | 2.1930 | | 2.3387 | 22.89 | 15500 | 1.1172 | 2.2464 | | 2.3349 | 23.63 | 16000 | 1.1144 | 2.1856 | | 2.291 | 24.37 | 16500 | 1.1018 | 2.1930 | | 2.2766 | 25.11 | 17000 | 1.0883 | 2.1762 | | 2.2534 | 25.85 | 17500 | 1.0744 | 2.1875 | | 2.2393 | 26.59 | 18000 | 1.0561 | 2.1846 | | 2.2085 | 27.33 | 18500 | 1.0466 | 2.1445 | | 2.1966 | 28.06 | 19000 | 1.0382 | 2.1089 | | 2.1794 | 28.8 | 19500 | 1.0264 | 1.9861 | | 2.1423 | 29.54 | 20000 | 1.0246 | 1.9678 | | 2.1649 | 30.28 | 20500 | 0.9982 | 2.0005 | | 2.143 | 31.02 | 21000 | 0.9985 | 2.0450 | | 2.1338 | 31.76 | 21500 | 0.9932 | 2.0025 | | 2.1076 | 32.5 | 22000 | 0.9903 | 2.0505 | | 2.0519 | 33.23 | 22500 | 0.9834 | 2.0737 | | 2.0534 | 33.97 | 23000 | 0.9756 | 2.0247 | | 2.0121 | 34.71 | 23500 | 0.9688 | 2.1440 | | 2.0161 | 35.45 | 24000 | 0.9582 | 2.1232 | | 2.0178 | 36.19 | 24500 | 0.9480 | 2.0896 | | 2.0154 | 36.93 | 25000 | 0.9483 | 2.0787 | | 1.9966 | 37.67 | 25500 | 0.9406 | 2.0297 | | 1.9753 | 38.4 | 26000 | 0.9419 | 2.0346 | | 1.9524 | 39.14 | 26500 | 0.9274 | 2.0698 | | 1.9427 | 39.88 | 27000 | 0.9233 | 2.0787 | | 1.9258 | 40.62 | 27500 | 0.9182 | 2.0529 | | 1.9031 | 41.36 | 28000 | 0.9150 | 2.0787 | | 1.9297 | 42.1 | 28500 | 0.9040 | 2.0505 | | 1.9041 | 42.84 | 29000 | 0.9009 | 2.0579 | | 1.8929 | 43.57 | 29500 | 0.8968 | 2.0327 | | 1.9077 | 44.31 | 30000 | 0.8954 | 2.0619 | | 1.8504 | 45.05 | 30500 | 0.8922 | 2.0737 | | 1.8732 | 45.79 | 31000 | 0.8898 | 2.0683 | | 1.877 | 46.53 | 31500 | 0.8849 | 2.0589 | | 1.8587 | 47.27 | 32000 | 0.8843 | 2.0450 | | 1.8236 | 48.01 | 32500 | 0.8810 | 2.0554 | | 1.8392 | 48.74 | 33000 | 0.8820 | 2.0574 | | 1.8428 | 49.48 | 33500 | 0.8816 | 2.0668 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id samitizerxu/wav2vec2-xls-r-300m-zh-CN --dataset mozilla-foundation/common_voice_7_0 --config zh-CN --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id samitizerxu/wav2vec2-xls-r-300m-zh-CN --dataset speech-recognition-community-v2/dev_data --config zh-CN --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
ravirajoshi/wav2vec2-large-xls-r-300m-marathi
ravirajoshi
2022-03-23T18:25:45Z
20
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "mr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mr license: apache-2.0 tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event model-index: - name: wav2vec2-large-xls-r-300m-marathi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-marathi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5656 - Wer: 0.2156
huggingtweets/rickyflows
huggingtweets
2022-03-23T18:12:17Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T17:53:20Z
--- language: en thumbnail: http://www.huggingtweets.com/rickyflows/1648058984275/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1385231541278855171/lgH-Kso5_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">∞ ricky flowstate ∞</div> <div style="text-align: center; font-size: 14px;">@rickyflows</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ∞ ricky flowstate ∞. | Data | ∞ ricky flowstate ∞ | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 86 | | Short tweets | 506 | | Tweets kept | 2657 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/gn0lyrdk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rickyflows's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2fkt1gts) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2fkt1gts/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rickyflows') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/metakuna
huggingtweets
2022-03-23T17:48:52Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T17:35:38Z
--- language: en thumbnail: http://www.huggingtweets.com/metakuna/1648057688512/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1493720826935398408/hB4ndxdj_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">metakuna (8/100 blog posts)</div> <div style="text-align: center; font-size: 14px;">@metakuna</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from metakuna (8/100 blog posts). | Data | metakuna (8/100 blog posts) | | --- | --- | | Tweets downloaded | 3235 | | Retweets | 242 | | Short tweets | 524 | | Tweets kept | 2469 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9uv1luph/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @metakuna's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1k1mb79h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1k1mb79h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/metakuna') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
muhammedshihebi/bert-base-multilingual-cased-squad
muhammedshihebi
2022-03-23T17:48:47Z
3
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-23T17:48:32Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: bert-base-multilingual-cased-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-squad This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5271 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18600, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.1256 | 0 | | 0.7252 | 1 | | 0.5271 | 2 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
machde-edu/test_ML_HF
machde-edu
2022-03-23T17:27:24Z
0
0
null
[ "joblib", "license:apache-2.0", "region:us" ]
null
2022-03-23T17:13:20Z
--- license: apache-2.0 ---
huggingtweets/stedmanhalliday
huggingtweets
2022-03-23T17:16:45Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T17:16:37Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500999718331199496/yhpq7J8H_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">SODI</div> <div style="text-align: center; font-size: 14px;">@stedmanhalliday</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from SODI. | Data | SODI | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 59 | | Short tweets | 559 | | Tweets kept | 2632 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4ry6l5q3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @stedmanhalliday's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1lxo4zkg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1lxo4zkg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/stedmanhalliday') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/pierreavdb
huggingtweets
2022-03-23T16:50:02Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T16:43:47Z
--- language: en thumbnail: http://www.huggingtweets.com/pierreavdb/1648054135143/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1479780096483512323/LmKFSR3X_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pierre</div> <div style="text-align: center; font-size: 14px;">@pierreavdb</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pierre. | Data | Pierre | | --- | --- | | Tweets downloaded | 1064 | | Retweets | 172 | | Short tweets | 133 | | Tweets kept | 759 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21bimkjn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pierreavdb's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ji40nkbv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ji40nkbv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pierreavdb') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Rocketknight1/temp-colab-upload-test
Rocketknight1
2022-03-23T16:29:27Z
4
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-23T16:28:11Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Rocketknight1/temp-colab-upload-test results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Rocketknight1/temp-colab-upload-test This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5386 - Validation Loss: 0.0000 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.5386 | 0.0000 | 0 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/seanmombo
huggingtweets
2022-03-23T16:22:13Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/seanmombo/1648052490598/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1494366913090273285/lmJtNNT2_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">mo bombo</div> <div style="text-align: center; font-size: 14px;">@seanmombo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from mo bombo. | Data | mo bombo | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 5 | | Short tweets | 560 | | Tweets kept | 2684 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bl9qwdw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @seanmombo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3p8cy5st) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3p8cy5st/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/seanmombo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Zarkit/classificationEsp2
Zarkit
2022-03-23T15:47:33Z
4
0
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-23T14:22:12Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Zarkit/classificationEsp2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Zarkit/classificationEsp2 This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1649 - Validation Loss: 0.7498 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 8979, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.6010 | 0.5679 | 0 | | 0.4173 | 0.5552 | 1 | | 0.1649 | 0.7498 | 2 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
joe5campbell/Horovod_Tweet_Sentiment_10k_2eps
joe5campbell
2022-03-23T15:08:07Z
3
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-23T15:07:55Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Horovod_Tweet_Sentiment_10k_2eps results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Horovod_Tweet_Sentiment_10k_2eps This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.701302 - Train Accuracy: 0.49375 - Validation Loss: 0.69441336 - Validation Accuracy: 0.51171875 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'clipnorm': 1.0, 'learning_rate': 0.0003, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.7017118 | 0.50769234 | 0.6944223 | 0.503125 | 0 | | 0.701302 | 0.49375 | 0.69441336 | 0.51171875 | 1 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.6.0 - Tokenizers 0.11.6
apoorvumang/kgt5-base-wikikg90mv2
apoorvumang
2022-03-23T15:02:38Z
4
1
transformers
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-23T13:16:50Z
--- license: mit widget: - text: "Apoorv Umang Saxena| family name" example_title: "Family name prediction" - text: "Apoorv Saxena| country" example_title: "Country prediction" - text: "World War 2| followed by" example_title: "followed by" --- This is a t5-base model (init from pretrained weights) and finetuned on WikiKG90Mv2 dataset. Please see https://github.com/apoorvumang/kgt5/ for more details on the method. This model was trained on the tail entity prediction task ie. given subject entity and relation, predict the object entity. Input should be provided in the form of "\<entity text\>| \<relation text\>". We used the raw text title and descriptions to get entity and relation textual representations. These raw texts were obtained from ogb dataset itself (dataset/wikikg90m-v2/mapping/entity.csv and relation.csv). Entity representation was set to the title, and description was used to disambiguate if 2 entities had the same title. If still no disambiguation was possible, we used the wikidata ID (eg. Q123456). We trained the model on WikiKG90Mv2 for approx 1.5 epochs on 4x1080Ti GPUs. The training time for 1 epoch was approx 5.5 days. To evaluate the model, we sample 300 times from the decoder for each input (s,r) pair. We then remove predictions which do not map back to a valid entity, and then rank the predictions by their log probabilities. Filtering was performed subsequently. **We achieve 0.239 validation MRR** (the full leaderboard is here https://ogb.stanford.edu/docs/lsc/leaderboards/#wikikg90mv2) You can try the following code in an ipython notebook to evaluate the pre-trained model. The full procedure of mapping entity to ids, filtering etc. is not included here for sake of simplicity but can be provided on request if needed. Please contact Apoorv (apoorvumang@gmail.com) for clarifications/details. --------- ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("apoorvumang/kgt5-base-wikikg90mv2") model = AutoModelForSeq2SeqLM.from_pretrained("apoorvumang/kgt5-base-wikikg90mv2") ``` ``` import torch def getScores(ids, scores, pad_token_id): """get sequence scores from model.generate output""" scores = torch.stack(scores, dim=1) log_probs = torch.log_softmax(scores, dim=2) # remove start token ids = ids[:,1:] # gather needed probs x = ids.unsqueeze(-1).expand(log_probs.shape) needed_logits = torch.gather(log_probs, 2, x) final_logits = needed_logits[:, :, 0] padded_mask = (ids == pad_token_id) final_logits[padded_mask] = 0 final_scores = final_logits.sum(dim=-1) return final_scores.cpu().detach().numpy() def topkSample(input, model, tokenizer, num_samples=5, num_beams=1, max_output_length=30): tokenized = tokenizer(input, return_tensors="pt") out = model.generate(**tokenized, do_sample=True, num_return_sequences = num_samples, num_beams = num_beams, eos_token_id = tokenizer.eos_token_id, pad_token_id = tokenizer.pad_token_id, output_scores = True, return_dict_in_generate=True, max_length=max_output_length,) out_tokens = out.sequences out_str = tokenizer.batch_decode(out_tokens, skip_special_tokens=True) out_scores = getScores(out_tokens, out.scores, tokenizer.pad_token_id) pair_list = [(x[0], x[1]) for x in zip(out_str, out_scores)] sorted_pair_list = sorted(pair_list, key=lambda x:x[1], reverse=True) return sorted_pair_list def greedyPredict(input, model, tokenizer): input_ids = tokenizer([input], return_tensors="pt").input_ids out_tokens = model.generate(input_ids) out_str = tokenizer.batch_decode(out_tokens, skip_special_tokens=True) return out_str[0] ``` ``` # an example from validation set that the model predicts correctly # you can try your own examples here. what's your noble title? input = "Sophie Valdemarsdottir| noble title" out = topkSample(input, model, tokenizer, num_samples=5) out ``` You can further load the list of entity aliases, then filter only those predictions which are valid entities then create a reverse mapping from alias -> integer id to get final predictions in required format. However, loading these aliases in memory as a dictionary requires a lot of RAM + you need to download the aliases file (made available here https://storage.googleapis.com/kgt5-wikikg90mv2/ent_alias_list.pickle) (relation file: https://storage.googleapis.com/kgt5-wikikg90mv2/rel_alias_list.pickle) The submitted validation/test results for were obtained by sampling 300 times for each input, then applying above procedure, followed by filtering known entities. The final MRR can vary slightly due to this sampling nature (we found that although beam search gives deterministic output, the results are inferior to sampling large number of times). ``` # download valid.txt. you can also try same url with test.txt. however test does not contain the correct tails !wget https://storage.googleapis.com/kgt5-wikikg90mv2/valid.txt ``` ``` fname = 'valid.txt' valid_lines = [] f = open(fname) for line in f: valid_lines.append(line.rstrip()) f.close() print(valid_lines[0]) ``` ``` from tqdm.auto import tqdm # try unfiltered hits@k. this is approximation since model can sample same seq multiple times # you should run this on gpu if you want to evaluate on all points with 300 samples each k = 1 count_at_k = 0 max_predictions = k max_points = 1000 for line in tqdm(valid_lines[:max_points]): input, target = line.split('\t') model_output = topkSample(input, model, tokenizer, num_samples=max_predictions) prediction_strings = [x[0] for x in model_output] if target in prediction_strings: count_at_k += 1 print('Hits at {0} unfiltered: {1}'.format(k, count_at_k/max_points)) ```
Zarkit/classificationEsp1
Zarkit
2022-03-23T12:58:27Z
3
0
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-22T17:07:31Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: classificationEsp1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # classificationEsp1 This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3864, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
Gare/opus-mt-en-ro-finetuned-en-to-ro
Gare
2022-03-23T12:51:55Z
4
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-23T07:47:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-en-ro-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 28.0527 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.2878 - Bleu: 28.0527 - Gen Len: 34.079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.7445 | 1.0 | 38145 | 1.2878 | 28.0527 | 34.079 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
jcollado/english-tweet-tokenizer
jcollado
2022-03-23T12:41:02Z
0
0
null
[ "region:us" ]
null
2022-03-23T12:10:39Z
# Text preprocessing This tokenizer has been trained with tweets that have been preprocessed as follows: 1) User mentions (@user_name) have been replaced with the word *user*. 2) URLs have been replace with the word *url*. 3) WIP. If you are going to use this tokenizer, we recommend you to preprocess your own dataset in the same manner.
willcai/wav2vec2_common_voice_accents_us
willcai
2022-03-23T11:03:06Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-22T18:14:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_common_voice_accents_us results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_common_voice_accents_us This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 48 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 384 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.549 | 1.28 | 400 | 0.8521 | | 0.4066 | 2.56 | 800 | 0.2407 | | 0.2262 | 3.83 | 1200 | 0.2070 | | 0.1828 | 5.11 | 1600 | 0.2134 | | 0.1565 | 6.39 | 2000 | 0.2060 | | 0.1448 | 7.67 | 2400 | 0.2100 | | 0.1333 | 8.95 | 2800 | 0.2036 | | 0.121 | 10.22 | 3200 | 0.2192 | | 0.1146 | 11.5 | 3600 | 0.2154 | | 0.1108 | 12.78 | 4000 | 0.2223 | | 0.1017 | 14.06 | 4400 | 0.2331 | | 0.094 | 15.34 | 4800 | 0.2257 | | 0.0896 | 16.61 | 5200 | 0.2229 | | 0.0825 | 17.89 | 5600 | 0.2229 | | 0.0777 | 19.17 | 6000 | 0.2417 | | 0.0719 | 20.45 | 6400 | 0.2433 | | 0.0659 | 21.73 | 6800 | 0.2447 | | 0.0651 | 23.0 | 7200 | 0.2446 | | 0.0587 | 24.28 | 7600 | 0.2542 | | 0.056 | 25.56 | 8000 | 0.2587 | | 0.0521 | 26.84 | 8400 | 0.2640 | | 0.0494 | 28.12 | 8800 | 0.2753 | | 0.0465 | 29.39 | 9200 | 0.2722 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
Newt007/multi-class-attacks
Newt007
2022-03-23T10:30:59Z
0
0
null
[ "license:afl-3.0", "region:us" ]
null
2022-03-23T10:28:31Z
--- license: afl-3.0 --- --- language: - python 3.7 --- libraries: - keras==2.0.2 - tensorflow==2.4.1
Daniele/italian-spellchecker
Daniele
2022-03-23T10:19:19Z
35
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "seq2seq", "it", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-21T14:33:20Z
--- language: - it tags: - seq2seq license: mit --- # Italian Contextual Spellchecker The model is a fine-tuned version of [IT5](https://huggingface.co/models?search=it5)[1], specifically modelled for computing a spellchecking in the shape of a sequence-to-sequence task. ### USAGE The input sequence should have the structure <b>seq: <i>your text</i>.</b>. Missing the seq token at the beginning or the final punctuation mark may lead to bad performances.
Alvenir/bert-punct-restoration-da
Alvenir
2022-03-23T09:05:15Z
17,347
4
transformers
[ "transformers", "pytorch", "bert", "token-classification", "punctuation restoration", "da", "dataset:custom", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-22T17:33:25Z
--- language: da tags: - bert - punctuation restoration license: apache-2.0 datasets: - custom --- # Bert Punctuation Restoration Danish This model performs the punctuation restoration task in Danish. The method used is sequence classification similar to how NER models are trained. ## Model description TODO ### How to use The model requires some additional inference code, hence we created an awesome little pip package for inference. The inference code is based on the `TokenClassificationPipeline` pipeline from huggingface. First, install the little package by running ``` pip install punctfix ``` Then restoration is as simple as the following snippet: ```python >>> from punctfix import PunctFixer >>> fixer = PunctFixer(language="da") >>> example_text = "mit navn det er rasmus og jeg kommer fra firmaet alvenir det er mig som har trænet denne lækre model" >>> print(fixer.punctuate(example_text)) 'Mit navn det er Rasmus og jeg kommer fra firmaet Alvenir. Det er mig som har trænet denne lækre model.' >>> example_text = "en dag bliver vi sku glade for at vi nu kan sætte punktummer og kommaer i en sætning det fungerer da meget godt ikke" >>> print(fixer.punctuate(example_text)) 'En dag bliver vi sku glade for, at vi nu kan sætte punktummer og kommaer i en sætning. Det fungerer da meget godt, ikke?' ``` ## Training data To Do ## Training procedure To Do ### Preprocessing TODO ## Evaluation results TODO
bigmorning/my-gpt-model-3
bigmorning
2022-03-23T08:22:22Z
3
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T05:52:35Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my-gpt-model-3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-gpt-model-3 This model is a fine-tuned version of [bigmorning/my-gpt-model](https://huggingface.co/bigmorning/my-gpt-model) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.1163 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 5.1163 | 0 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
jkhan447/sentiment-model-sample-group-emotion
jkhan447
2022-03-23T08:19:54Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-18T06:53:19Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: sentiment-model-sample-group-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-model-sample-group-emotion This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4604 - Accuracy: 0.7004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
cammy/led-base-16384-100-MDS
cammy
2022-03-23T06:55:50Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "led", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-23T05:32:16Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: led-base-16384-100-MDS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # led-base-16384-100-MDS This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.1425 - Rouge1: 16.7324 - Rouge2: 5.8501 - Rougel: 13.908 - Rougelsum: 13.8469 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 25 | 3.6187 | 15.1426 | 4.2468 | 13.4488 | 13.38 | 20.0 | | No log | 2.0 | 50 | 3.9873 | 13.4341 | 3.3283 | 10.2739 | 10.8229 | 20.0 | | No log | 3.0 | 75 | 4.0264 | 18.1891 | 5.3395 | 15.0797 | 15.3586 | 20.0 | | No log | 4.0 | 100 | 4.0929 | 17.0091 | 5.5336 | 14.4381 | 14.5149 | 19.5 | | No log | 5.0 | 125 | 4.1425 | 16.7324 | 5.8501 | 13.908 | 13.8469 | 20.0 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
mimicheng/codeparrot-ds-sample
mimicheng
2022-03-23T05:30:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-22T22:13:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds-sample results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-sample This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5057 | 0.93 | 5000 | 1.6003 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Axon/resnet18-v1
Axon
2022-03-22T23:30:27Z
0
1
null
[ "Axon", "Elixir", "dataset:ImageNet", "arxiv:1512.03385", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - Axon - Elixir datasets: - ImageNet --- # ResNet This ResNet18 model was translated from the ONNX ResNetv1 model found at https://github.com/onnx/models/tree/main/vision/classification/resnet into Axon using [AxonOnnx](https://github.com/elixir-nx/axon_onnx) The following description is copied from the relevant description at the ONNX repository. ## Use cases These ResNet models perform image classification - they take images as input and classify the major object in the image into a set of pre-defined classes. They are trained on ImageNet dataset which contains images from 1000 classes. ResNet models provide very high accuracies with affordable model sizes. They are ideal for cases when high accuracy of classification is required. ImageNet trained models are often used as the base layers for a transfer learning approach to training a model in your domain. Transfer learning can significantly reduce the processing necessary to train an accurate model in your domain. This model was published here with the expectation that it would be useful to the Elixir community for transfer learning and other similar approaches. ## Description Deeper neural networks are more difficult to train. Residual learning framework ease the training of networks that are substantially deeper. The research explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. It also provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset the residual nets were evaluated with a depth of up to 152 layers — 8× deeper than VGG nets but still having lower complexity. ## Model ResNet models consists of residual blocks and came up to counter the effect of deteriorating accuracies with more layers due to network not learning the initial layers. ResNet v1 uses post-activation for the residual blocks. ### Input All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape (N x 3 x H x W), where N is the batch size, and H and W are expected to be at least 224. The inference was done using jpeg image. ### Preprocessing The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. The transformation should preferably happen at preprocessing. ### Output The model outputs image scores for each of the 1000 classes of ImageNet. ### Postprocessing The post-processing involves calculating the softmax probability scores for each class. You can also sort them to report the most probable classes. Check [imagenet_postprocess.py](../imagenet_postprocess.py) for code. ## Dataset Dataset used for train and validation: [ImageNet (ILSVRC2012)](http://www.image-net.org/challenges/LSVRC/2012/). Check [imagenet_prep](../imagenet_prep.md) for guidelines on preparing the dataset. ## References * **ResNetv1** [Deep residual learning for image recognition](https://arxiv.org/abs/1512.03385) He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016. * **ONNX source model** [onnx/models vision/classification/resnet resnet18-v1-7.onnx](https://github.com/onnx/models/tree/main/vision/classification/resnet/README)
bigmorning/my-gpt-model
bigmorning
2022-03-22T20:32:08Z
3
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-22T14:15:39Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my-gpt-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-gpt-model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.3002 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 5.3002 | 0 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
blckwdw61/sysformver1
blckwdw61
2022-03-22T19:46:14Z
3
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-22T18:35:28Z
# CES BERT sysform model Fine-tuned BERT cased model
elihoole/distilgpt2-ttds
elihoole
2022-03-22T19:41:05Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-22T12:52:20Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-ttds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-ttds This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.3666 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 40 | 4.5807 | | No log | 2.0 | 80 | 4.4023 | | No log | 3.0 | 120 | 4.3666 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.7.1 - Datasets 2.0.0 - Tokenizers 0.11.6
anthonny/dehatebert-mono-spanish-finetuned-sentiments_reviews_politicos
anthonny
2022-03-22T17:57:11Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-22T15:44:18Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: robertuito-sentiment-analysis-hate-finetuned-sentiments_reviews_politicos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robertuito-sentiment-analysis-hate-finetuned-sentiments_reviews_politicos This model is a fine-tuned version of [Hate-speech-CNERG/dehatebert-mono-spanish](https://huggingface.co/Hate-speech-CNERG/dehatebert-mono-spanish) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2559 - Accuracy: 0.9368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.29 | 1.0 | 3595 | 0.2559 | 0.9368 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/garyshort
huggingtweets
2022-03-22T17:44:45Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/garyshort/1647971079915/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1326680694370734082/wjLz-oO4_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Gary Short</div> <div style="text-align: center; font-size: 14px;">@garyshort</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Gary Short. | Data | Gary Short | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 94 | | Short tweets | 321 | | Tweets kept | 2833 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2vtmlhlj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @garyshort's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2pfbf1ys) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2pfbf1ys/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/garyshort') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Dahn/wav2vec2-large-xls-r-300m-turkish-colab
Dahn
2022-03-22T17:29:07Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-22T12:52:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3965 - Wer: 0.3807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.974 | 3.67 | 400 | 0.7102 | 0.7318 | | 0.4216 | 7.34 | 800 | 0.4273 | 0.4941 | | 0.1891 | 11.01 | 1200 | 0.4548 | 0.4864 | | 0.1267 | 14.68 | 1600 | 0.4208 | 0.4082 | | 0.0958 | 18.35 | 2000 | 0.4236 | 0.4033 | | 0.0799 | 22.02 | 2400 | 0.4052 | 0.3829 | | 0.0624 | 25.69 | 2800 | 0.4088 | 0.3875 | | 0.0491 | 29.36 | 3200 | 0.3965 | 0.3807 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
msamogh/autonlp-cai-out-of-scope-649919116
msamogh
2022-03-22T15:27:18Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:msamogh/autonlp-data-cai-out-of-scope", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-19T21:40:42Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - msamogh/autonlp-data-cai-out-of-scope co2_eq_emissions: 2.438401649319185 --- # What do the class labels mean? 0 - out of scope 1 - in scope # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 649919116 - CO2 Emissions (in grams): 2.438401649319185 ## Validation Metrics - Loss: 0.5314930081367493 - Accuracy: 0.7526881720430108 - Precision: 0.8490566037735849 - Recall: 0.75 - AUC: 0.8515151515151514 - F1: 0.7964601769911505 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/msamogh/autonlp-cai-out-of-scope-649919116 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919116", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919116", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
esiebomajeremiah/autonlp-email-classification-657119381
esiebomajeremiah
2022-03-22T13:57:29Z
11
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:esiebomajeremiah/autonlp-data-email-classification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-22T13:54:29Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - esiebomajeremiah/autonlp-data-email-classification co2_eq_emissions: 3.516233232503715 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 657119381 - CO2 Emissions (in grams): 3.516233232503715 ## Validation Metrics - Loss: 0.00037395773688331246 - Accuracy: 1.0 - Precision: 1.0 - Recall: 1.0 - AUC: 1.0 - F1: 1.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/esiebomajeremiah/autonlp-email-classification-657119381 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("esiebomajeremiah/autonlp-email-classification-657119381", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("esiebomajeremiah/autonlp-email-classification-657119381", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
edwardjross/xlm-roberta-base-finetuned-panx-en
edwardjross
2022-03-22T13:33:38Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-22T13:30:48Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6918378678511938 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3792 - F1: 0.6918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0639 | 1.0 | 74 | 0.5075 | 0.5539 | | 0.491 | 2.0 | 148 | 0.4118 | 0.6510 | | 0.355 | 3.0 | 222 | 0.3792 | 0.6918 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
edwardjross/xlm-roberta-base-finetuned-panx-de-fr
edwardjross
2022-03-22T13:22:21Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-22T13:12:05Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1686 - F1: 0.8606 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2819 | 1.0 | 1073 | 0.1800 | 0.8231 | | 0.1484 | 2.0 | 2146 | 0.1655 | 0.8488 | | 0.0928 | 3.0 | 3219 | 0.1686 | 0.8606 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
edwardjross/xlm-roberta-base-finetuned-panx-de
edwardjross
2022-03-22T13:06:25Z
8
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-22T12:33:44Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8644809364168419 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1360 - F1: 0.8645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2528 | 1.0 | 787 | 0.1657 | 0.8244 | | 0.1298 | 2.0 | 1574 | 0.1369 | 0.8555 | | 0.0787 | 3.0 | 2361 | 0.1360 | 0.8645 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
willcai/wav2vec2_common_voice_accents_indian
willcai
2022-03-22T10:58:05Z
5
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-21T23:09:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_common_voice_accents_indian results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_common_voice_accents_indian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 48 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 384 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.5186 | 1.28 | 400 | 0.6937 | | 0.3485 | 2.56 | 800 | 0.2323 | | 0.2229 | 3.83 | 1200 | 0.2195 | | 0.1877 | 5.11 | 1600 | 0.2147 | | 0.1618 | 6.39 | 2000 | 0.2058 | | 0.1434 | 7.67 | 2400 | 0.2077 | | 0.132 | 8.95 | 2800 | 0.1995 | | 0.1223 | 10.22 | 3200 | 0.2146 | | 0.1153 | 11.5 | 3600 | 0.2117 | | 0.1061 | 12.78 | 4000 | 0.2071 | | 0.1003 | 14.06 | 4400 | 0.2219 | | 0.0949 | 15.34 | 4800 | 0.2204 | | 0.0889 | 16.61 | 5200 | 0.2162 | | 0.0824 | 17.89 | 5600 | 0.2243 | | 0.0784 | 19.17 | 6000 | 0.2323 | | 0.0702 | 20.45 | 6400 | 0.2325 | | 0.0665 | 21.73 | 6800 | 0.2334 | | 0.0626 | 23.0 | 7200 | 0.2411 | | 0.058 | 24.28 | 7600 | 0.2473 | | 0.054 | 25.56 | 8000 | 0.2591 | | 0.0506 | 26.84 | 8400 | 0.2577 | | 0.0484 | 28.12 | 8800 | 0.2633 | | 0.0453 | 29.39 | 9200 | 0.2692 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
saattrupdan/voxpopuli-wav2vec2-large-cv8-da
saattrupdan
2022-03-22T09:58:54Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "da", "dataset:common_voice_8_0", "license:cc-by-nc-4.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - da license: cc-by-nc-4.0 tasks: - automatic-speech-recognition datasets: - common_voice_8_0 metrics: - wer model-index: - name: voxpopuli-wav2vec2-large-cv8-da results: - task: type: automatic-speech-recognition dataset: type: mozilla-foundation/common_voice_8_0 args: da name: Danish Common Voice 8.0 metrics: - type: wer value: 40.54 - task: type: automatic-speech-recognition dataset: type: Alvenir/alvenir_asr_da_eval name: Alvenir ASR test dataset metrics: - type: wer value: 40.66 --- # VoxPopuli-Wav2vec2-large-CV8-da ## Model description This model is a fine-tuned version of the Swedish acoustic model [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) on the Danish part of [Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), containing ~6 crowdsourced hours of read-aloud Danish speech. ## Performance The model achieves the following WER scores (lower is better): | **Dataset** | **WER without LM** | **WER with 5-gram LM** | | :---: | ---: | ---: | | [Danish part of Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0/viewer/da/train) | 48.04 | 40.54 | | [Alvenir test set](https://huggingface.co/datasets/Alvenir/alvenir_asr_da_eval) | 48.43 | 40.66 |
celine98/canine-s-finetuned-sst2
celine98
2022-03-22T09:47:45Z
4
2
transformers
[ "transformers", "pytorch", "tensorboard", "canine", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-21T22:35:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: canine-s-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8577981651376146 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # canine-s-finetuned-sst2 This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5259 - Accuracy: 0.8578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3524 | 1.0 | 4210 | 0.4762 | 0.8257 | | 0.2398 | 2.0 | 8420 | 0.4169 | 0.8567 | | 0.1797 | 3.0 | 12630 | 0.5259 | 0.8578 | | 0.152 | 4.0 | 16840 | 0.5996 | 0.8532 | | 0.1026 | 5.0 | 21050 | 0.6676 | 0.8578 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Yaxin/xlm-roberta-base-conll2003-ner
Yaxin
2022-03-22T08:11:52Z
81
3
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-22T07:36:34Z
--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: test-conll2003-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9459188783174762 - name: Recall type: recall value: 0.9537192864355436 - name: F1 type: f1 value: 0.94980306712478 - name: Accuracy type: accuracy value: 0.9911218410498034 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-conll2003-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0470 - Precision: 0.9459 - Recall: 0.9537 - F1: 0.9498 - Accuracy: 0.9911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
aaraki/wav2vec2-base-demo-colab
aaraki
2022-03-22T07:43:43Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-22T04:44:41Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
lazyturtl/WEC-types
lazyturtl
2022-03-22T04:54:04Z
60
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-22T04:53:55Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: WEC-types results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.7830188870429993 --- # WEC-types Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Attenuators ![Attenuators](images/Attenuators.jpg) #### Oscillating water column ![Oscillating water column](images/Oscillating_water_column.png) #### Overtopping Devices ![Overtopping Devices](images/Overtopping_Devices.jpg) #### Point Absorber ![Point Absorber](images/Point_Absorber.jpg)
mimicheng/codeparrot-ds
mimicheng
2022-03-22T03:45:36Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-21T19:59:48Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.7397 - eval_runtime: 603.8598 - eval_samples_per_second: 154.281 - eval_steps_per_second: 4.822 - epoch: 0.08 - step: 5000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
BigSalmon/InformalToFormalLincoln29
BigSalmon
2022-03-22T03:35:02Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-22T03:29:31Z
``` original: chrome extensions [MASK] accomplish everyday tasks. infill: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. original: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. original: ```
StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_EN
StivenLancheros
2022-03-21T22:07:55Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-21T20:11:24Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_EN results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_EN This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-biomedical-clinical-es](https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es) on the CRAFT dataset. It achieves the following results on the evaluation set: - Loss: 0.2276 - Precision: 0.8078 - Recall: 0.8258 - F1: 0.8167 - Accuracy: 0.9629 ## Model description This model performs Named Entity Recognition for 6 entity tags: Sequence, Cell, Protein, Gene, Taxon, and Chemical from the CRAFT(Colorado Richly Annotated Full Text) Corpus in English. Entity tags have been normalized and replaced from the original three letter code to a full name e.g. B-Protein, I-Chemical. This model is trained on augmented data created using Entity Replacement. 20% of the entities were replaced using a list of entities for each entity tag obtained from the official ontologies for each entity class. Both datasets (original, augmented) were concatenated. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0842 | 1.0 | 2719 | 0.1765 | 0.7606 | 0.7785 | 0.7695 | 0.9542 | | 0.0392 | 2.0 | 5438 | 0.1971 | 0.7990 | 0.7958 | 0.7974 | 0.9596 | | 0.0138 | 3.0 | 8157 | 0.2094 | 0.8013 | 0.8196 | 0.8103 | 0.9620 | | 0.0082 | 4.0 | 10876 | 0.2276 | 0.8078 | 0.8258 | 0.8167 | 0.9629 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/elonmusk-garyvee
huggingtweets
2022-03-21T19:57:10Z
4
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-21T19:55:22Z
--- language: en thumbnail: http://www.huggingtweets.com/elonmusk-garyvee/1647892564866/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1503591435324563456/foUrqiEw_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1493524673962852353/qRxbC9Xq_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Gary Vaynerchuk</div> <div style="text-align: center; font-size: 14px;">@elonmusk-garyvee</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Gary Vaynerchuk. | Data | Elon Musk | Gary Vaynerchuk | | --- | --- | --- | | Tweets downloaded | 2200 | 3247 | | Retweets | 102 | 712 | | Short tweets | 671 | 842 | | Tweets kept | 1427 | 1693 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/abt9l46e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-garyvee's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/4wls4y5v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/4wls4y5v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-garyvee') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
rurupang/bert-base-finetuned-sts
rurupang
2022-03-21T19:23:42Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:klue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-21T15:10:45Z
--- tags: - generated_from_trainer datasets: - klue metrics: - pearsonr model-index: - name: bert-base-finetuned-sts results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: sts metrics: - name: Pearsonr type: pearsonr value: 0.8722017849942011 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-sts This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.4274 - Pearsonr: 0.8722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearsonr | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 365 | 0.5106 | 0.8429 | | 0.1092 | 2.0 | 730 | 0.5466 | 0.8497 | | 0.0958 | 3.0 | 1095 | 0.4123 | 0.8680 | | 0.0958 | 4.0 | 1460 | 0.4336 | 0.8719 | | 0.0661 | 5.0 | 1825 | 0.4274 | 0.8722 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Datadave09/DA-RoBERTa
Datadave09
2022-03-21T18:59:26Z
0
2
null
[ "license:apache-2.0", "region:us" ]
null
2022-03-21T17:42:40Z
--- license: apache-2.0 --- # Model description This model corresponds to the paper "A Domain-adaptive Pre-training Approach for Language Bias Detection in News" (Krieger et al.,2022): https://github.com/Media-Bias-Group/A-Domain-adaptive-Pre-training-Approach-for-Language-BiasDetection-in-News The model can be used for sequence classification tasks of biased and non-biased language in news and media. It is initialized with *roberta-base* weights and fine-tuned on the *Wiki Neutrality Corpus* (Pryzant et al., 2020). More details on the training setup and experiments can be found in our paper. # How to use You can use the model with the PyTorch framework ``` #imports !pip install transformers !pip install openpyxl import torch import torch.nn as nn import numpy as np from transformers import RobertaTokenizer,RobertaModel #define model class including binary classification layer class RobertaClass(torch.nn.Module): def __init__(self): super(RobertaClass, self).__init__() self.roberta = RobertaModel.from_pretrained("roberta-base") self.vocab_transform = torch.nn.Linear(768, 768) self.dropout = torch.nn.Dropout(0.2) self.classifier1 = torch.nn.Linear(768,2) def forward(self, input_ids, attention_mask): output_1 = self.roberta(input_ids=input_ids, attention_mask=attention_mask) hidden_state = output_1[0] pooler = hidden_state[:, 0] pooler = self.vocab_transform(pooler) pooler = self.dropout(pooler) output = self.classifier1(pooler) return output #load model parameters weight_dict = torch.load('DA-Roberta.bin') #initialize model with fine-tuned parameters model = RobertaClass() model.load_state_dict(weight_dict) #exemplary bias classification with instance extracted from BABE dataset (Spinde et al.,2021) tokenizer = RobertaTokenizer.from_pretrained('roberta-base') inputs = tokenizer("A cop shoots a Black man, and a police union flexes its muscle", return_tensors="pt") outputs = model(**inputs) if int(torch.argmax(outputs)) == 1: print("Biased") else: print("Non-biased") ``` # Cite as ``` @InProceedings{Krieger2022, author={Krieger, David and Spinde, Timo and Ruas, Terry and Kulshrestha, Juhi and Gipp, Bela}, booktitle={2022 ACM/IEEE Joint Conference on Digital Libraries (JCDL)}, title={A Domain-adaptive Pre-training Appraoch for Language Bias Detection in News}, year={2022}, address = "Cologne,Germany" } ```
Yanjie/message-preamble
Yanjie
2022-03-21T18:33:28Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
This is the concierge preamble model. Fined tuned on DistilBert uncased model.
Yanjie/message-intent
Yanjie
2022-03-21T18:08:08Z
4
2
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
This is the concierge intent model. Fined tuned on DistilBert uncased model.
ianMconversica/autonlp-test-654919306
ianMconversica
2022-03-21T17:29:34Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autonlp", "unk", "dataset:McIan91/autonlp-data-test", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-21T17:28:50Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - McIan91/autonlp-data-test co2_eq_emissions: 0.7013851565380207 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 654919306 - CO2 Emissions (in grams): 0.7013851565380207 ## Validation Metrics - Loss: 2.5570242404937744 - Rouge1: 72.7273 - Rouge2: 44.4444 - RougeL: 72.7273 - RougeLsum: 72.7273 - Gen Len: 17.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/McIan91/autonlp-test-654919306 ```
espnet/marathi_openslr64
espnet
2022-03-21T16:23:56Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "dataset:mr_openslr64", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-21T16:17:30Z
--- tags: - espnet - audio - automatic-speech-recognition language: noinfo datasets: - mr_openslr64 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/marathi_openslr64` This model was trained by Sujay Suresh Kumar using mr_openslr64 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 91325a1e58ca0b13494b94bf79b186b095fe0b58 pip install -e . cd egs2/mr_openslr64/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/marathi_openslr64 ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Mon Mar 21 16:06:03 UTC 2022` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.11.0+cu102` - Git hash: `91325a1e58ca0b13494b94bf79b186b095fe0b58` - Commit date: `Mon Mar 21 00:40:52 2022 +0000` ## asr_train_asr_conformer_xlsr_raw_bpe150_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_batch_size1_asr_model_valid.acc.ave/marathi_test|299|3625|72.9|22.5|4.7|1.7|28.9|88.6| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_batch_size1_asr_model_valid.acc.ave/marathi_test|299|20557|91.4|3.1|5.5|1.9|10.5|88.6| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_batch_size1_asr_model_valid.acc.ave/marathi_test|299|13562|86.5|6.3|7.1|1.4|14.9|88.6| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer_xlsr.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_xlsr_raw_bpe150_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 60 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 5 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 3 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 10000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_bpe150_sp/train/speech_shape - exp/asr_stats_raw_bpe150_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_bpe150_sp/valid/speech_shape - exp/asr_stats_raw_bpe150_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/marathi_train_sp/wav.scp - speech - sound - - dump/raw/marathi_train_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/marathi_dev/wav.scp - speech - sound - - dump/raw/marathi_dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0005 scheduler: warmuplr scheduler_conf: warmup_steps: 20000 token_list: - <blank> - <unk> - ▁ - ा - ी - े - त - र - ं - न - क - ् - व - ि - ल - ▁म - स - ो - श - द - च - म - ▁अ - ▁आ - ण - ु - ला - ह - ▁आहे - य - ▁स - ग - ▁ह - ्या - चा - ▁प - ड - ▁क - प - ट - ▁ब - ज - र् - ्र - ▁? - ▁ज - ब - ून - वा - ▁एक - ▁या - ळ - ात - ख - ध - ▁ति - ठ - ल्या - ले - ू - ▁तुम्हाला - ां - ार - घ - ची - ▁अस - थ - ▁का - ने - णि - ॅ - ▁त - ▁परवा - ▁ते - ली - ▁गेल - ळा - ष - ▁कर - . - च्या - ▁न - वर - ▁त्या - ▁प्र - ▁करू - ▁ग - ्ट - ई - झ - ▁फ - ाय - क्ष - ▁काय - पूर - ▁होती - मध - ▁तिथ - ▁काही - ए - ▁वि - ▁दोन - ▁महिन्या - व्हा - तील - जार - ▁नाही - ँ - ▁पुत - ॉ - ▁झाला - ▁दिसल - ▁साल - ▁रस्त्यावर - स्त - जवळ - न्म - मध्य - ऊ - ▁इथे - ▁तुमच - ▁शकते - मान - ▁उद् - फ - ै - ढ - ',' - इ - ौ - ‍ - ृ - ओ - ः - ॲ - आ - '-' - ञ - औ - '!' - ऑ - ऱ - ऐ - छ - उ - '?' - भ - अ - ऋ - <sos/eos> init: xavier_uniform input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null use_preprocessor: true token_type: bpe bpemodel: data/token_list/bpe_unigram150/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: wav2vec2_xlsr download_dir: ./hub multilayer_feature: true fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} model: espnet model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: conformer encoder_conf: output_size: 512 attention_heads: 4 linear_units: 1024 num_blocks: 3 dropout_rate: 0.3 positional_dropout_rate: 0.3 attention_dropout_rate: 0.3 input_layer: conv2d normalize_before: true macaron_style: false pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 17 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 1024 num_blocks: 3 dropout_rate: 0.3 positional_dropout_rate: 0.3 self_attention_dropout_rate: 0.3 src_attention_dropout_rate: 0.3 required: - output_dir - token_list version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
huggingtweets/rupertboneham-rupertskids-survivorcbs
huggingtweets
2022-03-21T13:31:40Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-21T13:26:08Z
--- language: en thumbnail: http://www.huggingtweets.com/rupertboneham-rupertskids-survivorcbs/1647869465531/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/2879716355/bd3a0d75f2ec004c61cf470e66895eda_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/984777181963448321/GZEqLnVr_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1488244197467381765/3F2BzfCJ_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rupert Boneham & Rupert Boneham & SURVIVOR</div> <div style="text-align: center; font-size: 14px;">@rupertboneham-rupertskids-survivorcbs</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rupert Boneham & Rupert Boneham & SURVIVOR. | Data | Rupert Boneham | Rupert Boneham | SURVIVOR | | --- | --- | --- | --- | | Tweets downloaded | 3139 | 352 | 3222 | | Retweets | 710 | 151 | 551 | | Short tweets | 142 | 17 | 540 | | Tweets kept | 2287 | 184 | 2131 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2m3rl64a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rupertboneham-rupertskids-survivorcbs's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1o5vktei) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1o5vktei/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rupertboneham-rupertskids-survivorcbs') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Dahn/wav2vec2-base-timit-demo-colab
Dahn
2022-03-21T13:04:57Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-21T11:09:52Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4796 - Wer: 0.3434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4323 | 4.0 | 500 | 1.3259 | 0.9859 | | 0.5966 | 8.0 | 1000 | 0.4682 | 0.4442 | | 0.2187 | 12.0 | 1500 | 0.4490 | 0.3875 | | 0.1274 | 16.0 | 2000 | 0.4595 | 0.3727 | | 0.0859 | 20.0 | 2500 | 0.4819 | 0.3683 | | 0.0602 | 24.0 | 3000 | 0.4524 | 0.3514 | | 0.0449 | 28.0 | 3500 | 0.4796 | 0.3434 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
beston91/gpt2-xl_ft_logits_1k_2
beston91
2022-03-21T11:27:12Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-20T22:16:05Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_logits_1k_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_logits_1k_2 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.4793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.91 | 5 | 6.0743 | | No log | 1.91 | 10 | 6.1649 | | No log | 2.91 | 15 | 6.3068 | | No log | 3.91 | 20 | 6.4793 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 17.59307861328125
beston91/gpt2-xl_ft_logits_5k_2
beston91
2022-03-21T10:16:30Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-20T23:02:24Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_logits_5k_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_logits_5k_2 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.2407 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 27 | 6.1106 | | No log | 1.99 | 54 | 6.1400 | | No log | 2.99 | 81 | 6.1875 | | No log | 3.99 | 108 | 6.2407 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 17.59415626525879
Ameer05/test
Ameer05
2022-03-21T09:35:03Z
18
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "summarization", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-21T08:16:45Z
--- tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test This model is a fine-tuned version of [Ameer05/tokenizer-repo](https://huggingface.co/Ameer05/tokenizer-repo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6109 - Rouge1: 54.9442 - Rouge2: 45.3299 - Rougel: 50.5219 - Rougelsum: 53.6475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 0.91 | 5 | 2.3705 | 53.62 | 44.3835 | 49.6135 | 52.693 | | No log | 1.91 | 10 | 1.9035 | 47.478 | 37.0934 | 39.7935 | 45.1881 | | No log | 2.91 | 15 | 1.7990 | 54.2488 | 45.0782 | 49.8421 | 52.7564 | | No log | 3.91 | 20 | 1.7125 | 55.7903 | 46.7554 | 52.2733 | 54.9389 | | 2.4456 | 4.91 | 25 | 1.6421 | 52.2279 | 43.4391 | 49.6955 | 51.2915 | | 2.4456 | 5.91 | 30 | 1.6102 | 55.8598 | 47.3293 | 53.1337 | 54.8596 | | 2.4456 | 6.91 | 35 | 1.6164 | 53.7902 | 44.6622 | 49.5045 | 52.2304 | | 2.4456 | 7.91 | 40 | 1.6015 | 51.5597 | 42.0333 | 47.9639 | 50.1154 | | 1.239 | 8.91 | 45 | 1.6067 | 53.0301 | 43.7214 | 49.0227 | 51.8109 | | 1.239 | 9.91 | 50 | 1.6109 | 54.9442 | 45.3299 | 50.5219 | 53.6475 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
nickmuchi/segformer-b4-finetuned-segments-sidewalk
nickmuchi
2022-03-21T07:32:43Z
66
6
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "dataset:segments/sidewalk-semantic", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-segmentation
2022-03-20T06:54:20Z
--- license: apache-2.0 tags: - vision - image-segmentation - generated_from_trainer widget: - src: https://drive.google.com/uc?id=1-ae6Vtvs-fO1j0D2kxEDX4rKxRipda2j example_title: Sidewalk with traffic - src: https://drive.google.com/uc?id=1-dwxxF6LzbEvATr_mwvrAjot-DdBLAM4 example_title: Sidewalk with buildings datasets: - segments/sidewalk-semantic model-index: - name: segformer-b4-finetuned-segments-sidewalk results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b4-finetuned-segments-sidewalk This model is a fine-tuned version of [nvidia/mit-b4](https://huggingface.co/nvidia/mit-b4) on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set: - Loss: 0.6463 - Mean Accuracy: 0.5168 - Mean Iou: 0.4317 - Overall Accuracy: 0.8895 - Per Category Accuracy: [nan, 0.9354022848098984, 0.9601675641402632, 0.5369719626168225, 0.8337939300328185, 0.6403441237446122, nan, 0.7582108280375539, 0.8834986003700717, 0.24187000289987157, 0.948116751458167, 0.5520704700749156, 0.0, 0.7381320949432405, 0.19649388321352, 0.888963759173865, 0.0, 0.07624433796769041, 0.9231866922167408, 0.1182221559959602, 0.6801081993642044, 0.5121910497873957, 0.04447175819878205, nan, 0.19406837841548813, 0.5788088135238394, 0.5379894086104895, 0.008460918614020952, 0.9391146435745414, 0.9050362370798539, 0.9765451034803329, 0.015450806083965353, 0.41939482614968804, 0.4941702933568719, 0.0] - Per Category Iou: [nan, 0.8640678937775673, 0.895377615265056, 0.442350332594235, 0.7643727945096741, 0.4849891658522591, nan, 0.6340492784936108, 0.6910083381883088, 0.21346568681218236, 0.8895978581938467, 0.46446072065520405, 0.0, 0.601404187337089, 0.08586860670194003, 0.6029780227646933, 0.0, 0.07410800631139614, 0.7995575849393181, 0.09964415294445995, 0.4716975388811325, 0.4492564945882909, 0.04216548363174065, nan, 0.13932260862707987, 0.43292556418938755, 0.4516033033256454, 0.00821917808219178, 0.8889508587805682, 0.7461158390782254, 0.954070468766836, 0.012555965083260888, 0.23512657506778772, 0.3742610137901782, 0.0] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Accuracy | Mean Iou | Overall Accuracy | Per Category Accuracy | Per Category Iou | |:-------------:|:-----:|:-----:|:---------------:|:-------------:|:--------:|:----------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 1.0086 | 0.25 | 100 | 0.9195 | 0.2302 | 0.1742 | 0.7405 | [nan, 0.754391784765388, 0.8738098328493714, 0.0, 0.6095047025690915, 0.04406067496837279, nan, 0.11344860810198232, 0.03344878303363856, 0.0, 0.9451322667227594, 0.0, 0.0, 0.0, 0.0, 8.118464635968046e-06, 0.0, 0.0, 0.8406900175689528, 0.0, 0.33313290995723815, 0.007980320315659196, 0.0, nan, 0.0, 0.01001465431517245, 0.0, 0.0, 0.9094842682836028, 0.9104621468677264, 0.9500069670140131, 0.0, 0.0, 0.030522857924993155, 0.0] | [nan, 0.5181348731869903, 0.7666613623083653, 0.0, 0.3145052392920833, 0.040279298027504136, nan, 0.09896279300890763, 0.0332534621335044, 0.0, 0.707185048053476, 0.0, 0.0, 0.0, 0.0, 8.11839872703508e-06, 0.0, 0.0, 0.6129636976206597, 0.0, 0.21304181051016494, 0.007979819175153202, 0.0, nan, 0.0, 0.009972716399085856, 0.0, 0.0, 0.8032595523715207, 0.5644424403160349, 0.8548000615746258, 0.0, 0.0, 0.02810796628175876, 0.0] | | 0.6465 | 0.5 | 200 | 0.7250 | 0.2963 | 0.2416 | 0.7963 | [nan, 0.8965158332325365, 0.9203420775747997, 0.0005677570093457944, 0.42947876549598557, 0.20108992228390948, nan, 0.6149826174335852, 0.6106893770460692, 0.0, 0.9320756176369465, 0.0, 0.0, 0.0, 0.0, 0.23413652010131844, 0.0, 0.0, 0.9437607244807804, 0.0, 0.2033741348512844, 0.2597617238717267, 0.0, nan, 0.0, 0.21746480347516617, 0.0, 0.0, 0.8793454644762622, 0.8380851985041863, 0.9445753860505853, 0.0, 0.0, 0.35629926758549024, 0.0] | [nan, 0.6645359168510458, 0.8064416600263559, 0.000566105647428005, 0.4116417722563792, 0.17504073239500048, nan, 0.34611894249410324, 0.4768988514264542, 0.0, 0.7872815412923856, 0.0, 0.0, 0.0, 0.0, 0.22760454893418883, 0.0, 0.0, 0.6497218142931416, 0.0, 0.16433182458127107, 0.24025960226620707, 0.0, nan, 0.0, 0.1865917623179034, 0.0, 0.0, 0.8237045305017561, 0.6485287252686867, 0.8916263487480074, 0.0, 0.0, 0.23161660227979464, 0.0] | | 0.6777 | 1.0 | 400 | 0.6645 | 0.3343 | 0.2755 | 0.8205 | [nan, 0.8955600256602996, 0.9528284776336102, 0.20619042056074766, 0.4578573681184769, 0.34171859852352976, nan, 0.5150824142204389, 0.8000759121317076, 0.0, 0.9308408861203066, 0.0, 0.0, 0.0, 0.0, 0.8202247191011236, 0.0, 0.0, 0.931415684238172, 0.0, 0.22729327499111263, 0.2807173404242283, 0.0, nan, 0.0, 0.3332993143873973, 0.0, 0.0, 0.904612735522824, 0.9085503237620377, 0.9531456202767545, 0.0, 0.0, 0.2395403274915222, 0.0] | [nan, 0.7091852218081763, 0.8215012473174504, 0.20316384883142716, 0.449169741519482, 0.2820828827399737, nan, 0.4034439348068946, 0.5801054036574794, 0.0, 0.8406284073872154, 0.0, 0.0, 0.0, 0.0, 0.5491287380561565, 0.0, 0.0, 0.6833033543785748, 0.0, 0.196701947180513, 0.26816266986235426, 0.0, nan, 0.0, 0.2624543573765898, 0.0, 0.0, 0.8319417451247856, 0.6328739755697549, 0.9148380247362377, 0.0, 0.0, 0.18610354253000033, 0.0] | | 0.4931 | 1.25 | 500 | 0.6513 | 0.3693 | 0.2930 | 0.8232 | [nan, 0.8195930838546497, 0.9565826472101743, 0.3660338785046729, 0.502483997738174, 0.5101274819814215, nan, 0.6120499018406388, 0.8168524932390757, 0.0, 0.9680832750475287, 0.0, 0.0, 0.0, 0.0, 0.7678687406637656, 0.0, 0.0, 0.9132467503439181, 0.07463699730127982, 0.3080053777834345, 0.3700341269744017, 0.0, nan, 0.0, 0.3144554351808238, 0.0, 0.0, 0.8719933435243034, 0.9280312013943278, 0.9461371807749148, 0.0, 0.3623930581804142, 0.40862556355693114, 0.0] | [nan, 0.7255301419742964, 0.8322765227346863, 0.3328323011716717, 0.4866977152337555, 0.31646114214929966, nan, 0.4116248877039441, 0.584768070212383, 0.0, 0.7940437031847611, 0.0, 0.0, 0.0, 0.0, 0.5384221282312557, 0.0, 0.0, 0.7148576049798162, 0.06922710729587371, 0.23689839512021127, 0.330131038978254, 0.0, nan, 0.0, 0.25964434649208096, 0.0, 0.0, 0.8276496500163791, 0.5924934568973941, 0.9145898275185997, 0.0, 0.10460157785142388, 0.3046522912622977, 0.0] | | 0.1718 | 2.0 | 800 | 0.5338 | 0.3766 | 0.3117 | 0.8521 | [nan, 0.9149980619048741, 0.9439616375983239, 0.49970093457943926, 0.7343188057936092, 0.4654595153245685, nan, 0.4401632944315461, 0.7951368790624852, 0.0, 0.9516775700030986, 0.0, 0.0, 0.0, 0.0, 0.7842599207637851, 0.0, 0.0, 0.9120325078402151, 0.0, 0.5436783980174178, 0.289193941696178, 0.0, nan, 0.0, 0.4040691893023499, 0.04438191043850125, 0.0, 0.9289921718405059, 0.9105179916825697, 0.9579859465374478, 0.0, 0.00014225040134934668, 0.5310102962619485, 0.0] | [nan, 0.7682867926029272, 0.863978713337328, 0.3619354489331745, 0.619807980106986, 0.4001297195410576, nan, 0.37693255173950874, 0.6055069405805374, 0.0, 0.8443884543167844, 0.0, 0.0, 0.0, 0.0, 0.5757144134211389, 0.0, 0.0, 0.7512958252799772, 0.0, 0.35684944134400076, 0.2822025918120264, 0.0, nan, 0.0, 0.3086991377431782, 0.04423000485801351, 0.0, 0.8578322873273115, 0.6920597473565505, 0.9258143343645202, 0.0, 0.00013209541062801931, 0.3399454223242722, 0.0] | | 1.7925 | 2.25 | 900 | 0.5745 | 0.3877 | 0.3157 | 0.8463 | [nan, 0.9373443718928436, 0.8936817705653165, 0.5237184579439252, 0.785620810686892, 0.5932309765570626, nan, 0.5731998228133042, 0.7751909664563268, 0.0, 0.9330254836699918, 0.0, 0.0, 0.0, 0.0, 0.8874780801454829, 0.0, 0.0, 0.9253989025665076, 0.0, 0.49743326413606553, 0.3720606075459213, 0.0, nan, 0.0, 0.362670748940179, 0.2263189382021227, 0.0, 0.9355852115710428, 0.9121195658169062, 0.9653801272784691, 0.0, 0.09587677050945966, 0.21074794549629322, 0.0] | [nan, 0.7666762008063966, 0.8459820722288737, 0.35589376130270695, 0.6602856629180212, 0.391087786259542, nan, 0.4283483218139711, 0.618615992154992, 0.0, 0.8563419873974479, 0.0, 0.0, 0.0, 0.0, 0.4695442264821982, 0.0, 0.0, 0.7387838557909564, 0.0, 0.3568544684209477, 0.3548962568907604, 0.0, nan, 0.0, 0.28509334019028026, 0.21794051124482566, 0.0, 0.8588025306782998, 0.6960344960020876, 0.927551192360457, 0.0, 0.09183812508516147, 0.18221393560509547, 0.0] | | 0.4287 | 2.5 | 1000 | 0.5140 | 0.4156 | 0.3337 | 0.8596 | [nan, 0.9114284539509796, 0.9599424299786812, 0.3729602803738318, 0.6955020648206622, 0.6337076451002155, nan, 0.648796319756489, 0.9076149357119134, 0.0, 0.9333320442069727, 0.0, 0.0, 0.0, 0.0, 0.837638825745275, 0.0, 0.0, 0.8487128760410935, 0.14962168247818672, 0.7450834097721757, 0.4416333770387344, 0.0, nan, 0.005162707675408485, 0.4304364892447794, 0.29855310097272386, 0.0, 0.9243997842101966, 0.9100753698167738, 0.9780073694330464, 0.0, 0.3377837387469772, 0.3283183517042185, 0.0] | [nan, 0.8056652041667661, 0.868478873207236, 0.36872340720413566, 0.648560287656455, 0.4227995307199668, nan, 0.5211383920382058, 0.5417303836612635, 0.0, 0.8614512323591124, 0.0, 0.0, 0.0, 0.0, 0.4902451772308277, 0.0, 0.0, 0.7414797203702529, 0.1034994187677877, 0.37103542329614997, 0.38941938864817555, 0.0, nan, 0.004775330844065127, 0.3339817219387496, 0.27392303157209946, 0.0, 0.8695462814099766, 0.7123344518279238, 0.9249476057387171, 0.0, 0.15441354067963511, 0.2686663032210652, 0.0] | | 0.2477 | 2.75 | 1100 | 0.5852 | 0.3976 | 0.3245 | 0.8501 | [nan, 0.9240898770490549, 0.9130342916084687, 0.5360268691588785, 0.6767027987344469, 0.5151102302165186, nan, 0.6523417772790812, 0.8782321962328604, 0.0, 0.9459085723287141, 0.01212233473285585, 0.0, 0.0, 0.0, 0.8298613366240176, 0.0, 0.0, 0.8996769125664682, 0.0046441166244474245, 0.58637589184745, 0.4359797566385237, 0.0, nan, 0.0, 0.4451038886272047, 0.26994748620682013, 0.0, 0.9522730369995648, 0.9058973503358962, 0.9744264856283144, 0.024141075054913176, 0.024040317828039587, 0.315675681715336, 0.0] | [nan, 0.7635041179698989, 0.8504428879888529, 0.32134395517814934, 0.5814428391874907, 0.4398125968608028, nan, 0.5183108660060791, 0.5876442483214019, 0.0, 0.8637126471579993, 0.010904378413403684, 0.0, 0.0, 0.0, 0.5582717546245474, 0.0, 0.0, 0.7543635882159604, 0.004548919124920941, 0.3707771520336274, 0.37139606254827867, 0.0, nan, 0.0, 0.32640450731902027, 0.25674365674787153, 0.0, 0.8589069009951039, 0.7216899081490464, 0.9303705560523882, 0.023933704665274814, 0.02273469779955799, 0.24717820737291407, 0.0] | | 0.2092 | 3.5 | 1400 | 0.5305 | 0.4215 | 0.3450 | 0.8615 | [nan, 0.8854690236777607, 0.9752597083363964, 0.4837301401869159, 0.7543174059151941, 0.32120495047431574, nan, 0.6121067808383275, 0.8640129050623903, 0.006110443680351299, 0.9472197081638014, 0.22567300568041493, 0.0, 0.0, 0.0, 0.849337533285705, 0.0, 0.0, 0.9323370763681338, 0.09924833192602527, 0.4992824257958052, 0.5897763059541461, 0.0, nan, 0.005025401620211451, 0.5194038833935207, 0.26516141898030177, 0.0, 0.9098213390526053, 0.9140251839431679, 0.9696367307434691, 0.0, 0.46129773009002417, 0.39953043905763785, 0.0] | [nan, 0.8279523588823188, 0.8503094621684615, 0.4166789099025304, 0.6531647345358885, 0.2970569371138754, nan, 0.4891076127233826, 0.6267720763107083, 0.0060749588138385505, 0.8628731375345856, 0.1638621555382868, 0.0, 0.0, 0.0, 0.5868382377688277, 0.0, 0.0, 0.766351782387915, 0.08906272053962098, 0.3548571571167739, 0.42844759670807536, 0.0, nan, 0.004661470273574813, 0.3559905085937402, 0.24649831094998764, 0.0, 0.8706735405566627, 0.7172875061476175, 0.937101627261161, 0.0, 0.18277266944717308, 0.30403604315996224, 0.0] | | 0.1763 | 3.75 | 1500 | 0.5284 | 0.4184 | 0.3549 | 0.8725 | [nan, 0.9155522786024052, 0.9647682266779387, 0.44949532710280377, 0.7917047766525447, 0.5148885009996292, nan, 0.6544609508444807, 0.8639037813730607, 0.006400430838062886, 0.9591118988406824, 0.21581460442907713, 0.0, 0.0, 0.0, 0.8629440800155874, 0.0, 0.0, 0.9189088001847752, 0.0, 0.553022223587637, 0.46456492702831864, 0.0, nan, 0.09048469037484554, 0.4453708065107029, 0.3956482240588509, 0.0, 0.9463804808607508, 0.8827003794689641, 0.9646183286805874, 0.0, 0.10191225182385336, 0.42574316887992536, 0.0] | [nan, 0.8411073731152799, 0.8690976727110442, 0.4122661523625844, 0.6761261173524866, 0.4325420396336731, nan, 0.5235010874548043, 0.6267662599177323, 0.006377182482354398, 0.8589461626478264, 0.21441570391575504, 0.0, 0.0, 0.0, 0.5785872529434498, 0.0, 0.0, 0.7644870697544361, 0.0, 0.3931242258826368, 0.4137160566746283, 0.0, nan, 0.07477420233286435, 0.3486446014515762, 0.35308773803167826, 0.0, 0.8775350307334798, 0.7615382190401359, 0.9362335277343948, 0.0, 0.08161239401780339, 0.3123361865981938, 0.0] | | 0.227 | 4.0 | 1600 | 0.5923 | 0.4426 | 0.3538 | 0.8544 | [nan, 0.9577374173182539, 0.9166854278467985, 0.1959217289719626, 0.7810987315371373, 0.5809225413617377, nan, 0.5835888579214346, 0.8662428239312995, 0.024607481668668958, 0.960621119945819, 0.44992590763151397, 0.0, 0.0, 0.0, 0.890757939858414, 0.0, 0.0, 0.8824976680624833, 0.23107998476795974, 0.6677916708726317, 0.5485129952087443, 0.0, nan, 0.13447755045997528, 0.4840215627780395, 0.4094524827723738, 0.0, 0.9258667409261705, 0.8784809934585728, 0.9680485743444954, 0.0, 0.5403279887825397, 0.2843078375615234, 0.0] | [nan, 0.732742632898181, 0.85248637631468, 0.1937195271972472, 0.6916132972252533, 0.4613544304478555, nan, 0.5019837033874182, 0.6339381818434339, 0.024391746227286727, 0.8507334888775837, 0.3399262956570416, 0.0, 0.0, 0.0, 0.5118086361876507, 0.0, 0.0, 0.7596215991272331, 0.14059847786558677, 0.3924964359231432, 0.4511581321221818, 0.0, nan, 0.11381225741975969, 0.3543174804464886, 0.36413975210357263, 0.0, 0.8783724167054704, 0.7445500851078998, 0.9377100490542223, 0.0, 0.1494074611014649, 0.24185599444907813, 0.0] | | | 0.3219 | 4.75 | 1900 | 0.5306 | 0.4360 | 0.3684 | 0.8771 | [nan, 0.9383015101174155, 0.9581139041020363, 0.4607803738317757, 0.811509517207101, 0.6291153866526402, nan, 0.6505845609717001, 0.814323670351568, 0.021541903144289325, 0.9406027168809682, 0.41314727916357946, 0.0, 0.0, 0.0, 0.8354955510813795, 0.0, 0.0, 0.9418887586641801, 0.05121773539297008, 0.6343575406735104, 0.518250578994449, 0.0, nan, 0.027131676506933957, 0.4585466059559324, 0.39812988854667525, 0.0, 0.9202410996786, 0.895342680330491, 0.9736189575948254, 0.00016059513448547392, 0.336889593367067, 0.32415208076113006, 0.0] | [nan, 0.8286943759948178, 0.8911330146359255, 0.44085585238189445, 0.7563455702043241, 0.44281982228819555, nan, 0.5389345827619121, 0.6390151642075557, 0.02125355077350663, 0.8721853143259732, 0.34406869718732325, 0.0, 0.0, 0.0, 0.6106328062420269, 0.0, 0.0, 0.7642481786905918, 0.04822404265103627, 0.40217085841005906, 0.4365575304022451, 0.0, nan, 0.02300777793302594, 0.35943746679548483, 0.36207556675062974, 0.0, 0.8758467465629671, 0.7286601531442717, 0.9422882468777368, 0.00016028416831905857, 0.18664925297515172, 0.274341743647937, 0.0] | | | 0.3758 | 5.25 | 2100 | 0.5413 | 0.4400 | 0.3618 | 0.8749 | [nan, 0.9446099997724584, 0.9535776804748952, 0.5333586448598131, 0.7118822151738956, 0.5725146926401914, nan, 0.637704053404208, 0.8958248327560848, 0.02011268072413936, 0.9449676672959805, 0.4536305260558163, 0.0, 0.0, 0.0, 0.8527716438267194, 0.0, 0.0, 0.9263943868758329, 0.13527541846719315, 0.6231382204452325, 0.5343291629394538, 0.0, nan, 0.07845667993958534, 0.48360548490082167, 0.39496133478097095, 0.0, 0.9342636737434504, 0.9081380373512183, 0.9754223113378334, 0.0, 0.0686053364221992, 0.4949887428280921, 0.0] | [nan, 0.8421459412186475, 0.884886678991681, 0.3243137842681656, 0.6975183850797184, 0.4470212561315764, nan, 0.5491953906967838, 0.5880944000946866, 0.01971493543409405, 0.8720965863289499, 0.2829941580535405, 0.0, 0.0, 0.0, 0.5648458841496203, 0.0, 0.0, 0.7876641278543601, 0.11773309221380866, 0.4507472099997672, 0.4306682617343027, 0.0, nan, 0.053795025325274436, 0.35687388479928317, 0.3506028598965402, 0.0, 0.8763044901374653, 0.7342806685419377, 0.9417441335611155, 0.0, 0.05263732322996086, 0.3527909231538019, 0.0] | | 0.1962 | 6.0 | 2400 | 0.5252 | 0.4591 | 0.3755 | 0.8678 | [nan, 0.8788767058796604, 0.9301585587737999, 0.5368457943925233, 0.8328600223823257, 0.6594750437607246, nan, 0.7274099889861577, 0.8314845566257058, 0.20671941671154564, 0.9452567774639331, 0.5536552235119783, 0.0, 0.0, 0.0, 0.8969685653049295, 0.0, 0.0, 0.9273548947094251, 0.04859351976026093, 0.6165535079211122, 0.5024186037962429, 0.0, nan, 0.07840175751750653, 0.49256293504998166, 0.4105160532671556, 0.0, 0.928572042963352, 0.9119196275909236, 0.976082967184019, 0.09759262712918065, 0.23430673250828102, 0.4679128700481014, 0.0] | [nan, 0.8020983983063393, 0.8683865888896747, 0.4544978013913642, 0.6680523786513721, 0.4517445785165809, nan, 0.5857034011566181, 0.6746845091894639, 0.18334129404416358, 0.8638403093611754, 0.3497406295097313, 0.0, 0.0, 0.0, 0.5136113874503752, 0.0, 0.0, 0.7818072530904586, 0.04626054062573883, 0.40338464571865573, 0.41853055526845995, 0.0, nan, 0.05885020509966401, 0.3764221220090192, 0.37385233165849424, 0.0, 0.8760216287329546, 0.7184759765101966, 0.9447723343539753, 0.07888984275215143, 0.17396158662623154, 0.3506487661563549, 0.0] | | 0.2721 | 6.25 | 2500 | 0.5120 | 0.4726 | 0.3905 | 0.8834 | [nan, 0.9352277032235452, 0.9553332100455781, 0.5201098130841122, 0.8315588432600179, 0.6507746356557826, nan, 0.7171028251625792, 0.8676946434502064, 0.12399022329011143, 0.9414992885437384, 0.5631225817074175, 0.0, 0.0, 0.0, 0.8815434824965902, 0.0, 0.0, 0.9265160801760165, 0.12371893574396928, 0.6983379489227609, 0.496123187961817, 0.0, nan, 0.1353837704242757, 0.5335426806929398, 0.5267111298220735, 0.0, 0.9267000099723489, 0.9157963608485102, 0.9708294620227798, 0.0039371710389987154, 0.44802779979272084, 0.43061615557802646, 0.0] | [nan, 0.847290915944923, 0.8918843187400161, 0.4215259288995603, 0.7694117638497967, 0.498788432969163, nan, 0.5567520477680967, 0.6726198795136411, 0.11618337797445752, 0.8753637372987935, 0.42321077786886513, 0.0, 0.0, 0.0, 0.581673157378788, 0.0, 0.0, 0.7933263418076343, 0.10532064834390416, 0.437053368284101, 0.4288208971032145, 0.0, nan, 0.09955372468245795, 0.3973712316699539, 0.442531089433316, 0.0, 0.880946087123613, 0.7345359613309864, 0.9452321649786941, 0.003849095209395844, 0.23329171252010497, 0.3386007935784502, 0.0] | | 0.2409 | 6.5 | 2600 | 0.5224 | 0.4636 | 0.3840 | 0.8786 | [nan, 0.8731382676849351, 0.9738163801183563, 0.5331343457943926, 0.8196854363098576, 0.6540081867354192, nan, 0.6300072908533401, 0.8875978554822792, 0.13449190107295247, 0.955765201040042, 0.6083600889108421, 0.0, 0.03281733746130031, 0.0, 0.8703400012989544, 0.0, 0.0, 0.9262836625295774, 0.08389211741916257, 0.6663345782989761, 0.5452994228436286, 0.0, nan, 0.13288480021968968, 0.47811535039514313, 0.4147924929649243, 0.0, 0.9382028859601423, 0.8756597961457425, 0.965266610679491, 0.010467176426706453, 0.4342701538336483, 0.3917412023665201, 0.0] | [nan, 0.8209592404927408, 0.8860938595226477, 0.41218836114746504, 0.7196016259460952, 0.4954368536125842, nan, 0.545313357840212, 0.6491223200313668, 0.12371625097650668, 0.8633659080664855, 0.4708871648638746, 0.0, 0.03281733746130031, 0.0, 0.5802203868677137, 0.0, 0.0, 0.7907500494259085, 0.06952381605757291, 0.447113968783744, 0.44327869995554786, 0.0, nan, 0.08728984775236309, 0.38119151688382136, 0.37855655092920265, 0.0, 0.8832564638909316, 0.7526222693644393, 0.9416404778849121, 0.009589327157183334, 0.18190330268981955, 0.32252322488728213, 0.0] | | | 0.1524 | 10.5 | 4200 | 0.5353 | 0.5128 | 0.4237 | 0.8872 | [nan, 0.9268517790355991, 0.9602839791773874, 0.537267523364486, 0.8456677302072528, 0.6567083558655384, nan, 0.7076703913792123, 0.8633391848934858, 0.3143875056961763, 0.9515964493686976, 0.6206264921379765, 0.0, 0.7490196078431373, 0.08954470929499306, 0.8721747743066831, 0.0, 0.005131830440133009, 0.9147190737070242, 0.11450520703985165, 0.6915674424660561, 0.5259122991900205, 0.0019833510251969382, nan, 0.2044761773994233, 0.5593918459203433, 0.4851432496510159, 0.0, 0.9463960710558084, 0.8834918590669917, 0.9670624325154579, 0.012832069294210286, 0.5599179011969355, 0.44183701402816805, 0.0] | [nan, 0.8497898154944094, 0.8911284588944798, 0.4558941463477496, 0.7715538102169041, 0.5041805687956784, nan, 0.5916295134976238, 0.6664176289411136, 0.25352865518566153, 0.8836310493548173, 0.5013133395398324, 0.0, 0.6053882725832013, 0.05452311472892029, 0.5946321429362145, 0.0, 0.005111887747118043, 0.802846410488875, 0.09434940383618455, 0.47282749487636766, 0.44441582446257716, 0.001977936260307555, nan, 0.14078808047194072, 0.4107132907440319, 0.42875046507529324, 0.0, 0.8865359213150946, 0.7513094837462199, 0.9478585417349973, 0.011508324602586469, 0.19474424489161243, 0.34180230893483227, 0.0] | | 0.052 | 10.75 | 4300 | 0.5611 | 0.5030 | 0.4222 | 0.8855 | [nan, 0.932148839850802, 0.9568949634271852, 0.5225233644859814, 0.8511642191077112, 0.6031687568751455, nan, 0.7201923889006668, 0.8793424111590834, 0.1743029951530718, 0.9511564170902311, 0.5728369144644768, 0.018116900290928325, 0.7155830753353973, 0.08790515827973262, 0.8945492628434111, 0.0, 0.0, 0.9018928482213427, 0.19409261742744086, 0.6978142148450815, 0.5187192887865012, 0.004106374657802112, nan, 0.18591239873678428, 0.5679096666143298, 0.48372515565797347, 0.0, 0.9465148790940053, 0.8887757437702006, 0.9729464658947179, 0.03061668531642422, 0.3269727082444268, 0.4968253657882534, 0.0] | [nan, 0.8544673632153686, 0.8915093314898118, 0.4824501321862451, 0.7281104549174552, 0.4796578889108752, nan, 0.5955885392390377, 0.6806501724220245, 0.15806082007550856, 0.8869557339277052, 0.5018390970394144, 0.017487873372478938, 0.5719234576047509, 0.08299595141700405, 0.5743453150410742, 0.0, 0.0, 0.7988127196821454, 0.14769412965284384, 0.4636640495670947, 0.44194705232908676, 0.004079706927175844, nan, 0.14373978216098007, 0.4138202592132837, 0.4263783910470499, 0.0, 0.8825003483580057, 0.7459231292221788, 0.9497549296351595, 0.022555788364877087, 0.19864442770898405, 0.36609089056617755, 0.0] | | 0.0897 | 11.0 | 4400 | 0.5797 | 0.4966 | 0.4137 | 0.8864 | [nan, 0.9266090680496935, 0.9675701132103213, 0.5286179906542056, 0.8135055236213754, 0.6141498963415911, nan, 0.7310209435363914, 0.8153911847037054, 0.24547412900285845, 0.9446611067589995, 0.6598542850086441, 0.0, 0.5599071207430341, 0.13658721150208097, 0.8912937585243879, 0.0, 0.004870002356452753, 0.9252981123672058, 0.10847033891289591, 0.6586394910124014, 0.4795176884335903, 0.01181630258673669, nan, 0.18618701084717837, 0.5559088292248914, 0.4992355587068755, 0.0, 0.9406880436912528, 0.9118086274033954, 0.9573602602596679, 0.003960483235940155, 0.3327033672702148, 0.4804871031358067, 0.0] | [nan, 0.8565575968459415, 0.8928102104157912, 0.43275555700074025, 0.7654702047573079, 0.47074416606474334, nan, 0.6054622841435586, 0.6863363711152467, 0.21403286978508218, 0.8828456438079144, 0.4322928605137194, 0.0, 0.4530688935281837, 0.09709521247982786, 0.5749041704195555, 0.0, 0.004865289040020926, 0.7951008940737603, 0.09395592969976839, 0.4548604901862724, 0.41665801557197046, 0.011736958934517204, nan, 0.1216732767438939, 0.41094472698150475, 0.430227229329769, 0.0, 0.8867287999971621, 0.7466484878252573, 0.9415279772911855, 0.0036285882442284325, 0.19204917359734425, 0.36246293958863207, 0.0] | | 0.0936 | 11.25 | 4500 | 0.5731 | 0.5011 | 0.4193 | 0.8864 | [nan, 0.9324196276009762, 0.9569564158641476, 0.5246004672897197, 0.8364710008894733, 0.6578250088383729, nan, 0.7038215792022807, 0.8665369834416663, 0.21309913418120055, 0.9410960435297098, 0.49318761834197744, 0.028167151547209734, 0.5808565531475748, 0.11010215664018161, 0.8849288822497889, 0.0, 0.0565548660749352, 0.9216694582309478, 0.11269226311693903, 0.6871508134702065, 0.5262584704743466, 0.01969383764456115, nan, 0.2076616778799945, 0.571397916993772, 0.476856262879174, 0.0, 0.9377623285515337, 0.907275545210859, 0.973954665451519, 0.050830950308757096, 0.38818102379646, 0.4678081196891568, 0.0] | [nan, 0.858380886499719, 0.8914561596816896, 0.45129869803574746, 0.786844102694609, 0.48464472942061587, nan, 0.6094618696875397, 0.6854209198991233, 0.18657623184200503, 0.8857526637100221, 0.394797106941035, 0.023946037099494097, 0.49684424239749303, 0.062077792789589706, 0.5615273263032089, 0.0, 0.055464256368118324, 0.7962485307269822, 0.09311408578835408, 0.4733745462314789, 0.44196131097098196, 0.019312422955759485, nan, 0.14722087024238295, 0.4185961804636968, 0.4181839379748557, 0.0, 0.8886792481667263, 0.7473472827679579, 0.9501856968302422, 0.031198480139267574, 0.2030701847638892, 0.3556589318498682, 0.0] | | 0.033 | 14.25 | 5700 | 0.5935 | 0.5181 | 0.4292 | 0.8880 | [nan, 0.9232290780535377, 0.9550432923803572, 0.5331775700934579, 0.8469649770868216, 0.6796985960845084, nan, 0.7591958688611619, 0.8564643924657209, 0.21028211607771655, 0.9524029393967549, 0.6051700008232486, 0.0, 0.6860681114551084, 0.21654685332324378, 0.8960592972657011, 0.0, 0.03558243657214673, 0.9155229117646998, 0.140697693670425, 0.711005584058588, 0.5227324249145294, 0.037180848092072186, nan, 0.2080186736235068, 0.5726225990474695, 0.5346435930956549, 0.0, 0.9410130186192625, 0.9154633602859255, 0.9760592954761752, 0.01645064030834266, 0.4608913003718832, 0.4701447510293469, 0.0] | [nan, 0.8573293198744064, 0.8916240779976521, 0.48186665258934697, 0.7676170029872194, 0.4823511054134466, nan, 0.6260715377125842, 0.6901341142647419, 0.1894206549118388, 0.8862935130575381, 0.49201833941300493, 0.0, 0.5435813573180703, 0.1092586700604518, 0.5822497006272321, 0.0, 0.035439538946984116, 0.8016860332567224, 0.11209233305853257, 0.4701563285996208, 0.45173968006036097, 0.03573442156415282, nan, 0.1250185671139278, 0.43006031638093856, 0.44816121842496287, 0.0, 0.8878007481353359, 0.7386750898148962, 0.9519721480330992, 0.013876810802543318, 0.25855582662623405, 0.3720678838361397, 0.0] | | 0.0548 | 14.5 | 5800 | 0.5902 | 0.5151 | 0.4174 | 0.8882 | [nan, 0.9249082282350853, 0.9577153821767257, 0.5438259345794393, 0.8625692959476665, 0.6265525664540941, nan, 0.7491911978889274, 0.8432461925321441, 0.249306102158333, 0.951930364538209, 0.6013830575450728, 0.0, 0.7704850361197111, 0.20002522386177324, 0.8704780151977658, 0.0, 0.0013615060351373288, 0.9208633435979287, 0.11193893938641368, 0.6970564096712325, 0.4979168453686571, 0.03908039555282418, nan, 0.18904297679527668, 0.5623985973726906, 0.5131506060136048, 0.0, 0.9399214361687687, 0.9123994793332818, 0.9756660223299524, 0.04515831571967342, 0.4303481070535878, 0.49404040291178064, 0.0] | [0.0, 0.8607762479438139, 0.8922939816555095, 0.45337232891467816, 0.7416336434657338, 0.4957900790517687, nan, 0.6227225352163122, 0.6905205002583658, 0.2142437565638406, 0.8883435707029895, 0.4944664432937354, 0.0, 0.5822804554671658, 0.1227364185110664, 0.6143083859952676, 0.0, 0.0013572770933389015, 0.7986526753983755, 0.09318127002721979, 0.47663610300281495, 0.44101175423554057, 0.037423427761281866, nan, 0.14246983588236511, 0.42780903014161104, 0.4432599000899573, 0.0, 0.8868797486244817, 0.7354235169834137, 0.9525392249964284, 0.03855126495647117, 0.2526545610728006, 0.37165059315614124, 0.0] | | 0.1047 | 14.75 | 5900 | 0.5997 | 0.5159 | 0.4159 | 0.8881 | [nan, 0.9210892560336101, 0.9617335675034919, 0.5317464953271028, 0.8683264925417152, 0.6381114337134347, nan, 0.7416693813461018, 0.862755610380984, 0.2719665271966527, 0.9489817238040484, 0.570408331275212, 0.0005289605924358636, 0.6938596491228071, 0.22575356287047546, 0.8948821198934858, 0.0, 0.011022962322938758, 0.9258684979714679, 0.17593834335005545, 0.6548460763101033, 0.4725421838812847, 0.04097994301357618, nan, 0.22218865851984074, 0.5752629926205056, 0.5366821032106535, 0.0, 0.936931478673554, 0.9021336855923136, 0.9725860103434604, 0.020141738157403954, 0.43632262391026033, 0.4934216774582814, 0.0] | [0.0, 0.8607109591035689, 0.8928295853674818, 0.4670190706507743, 0.7523185639791471, 0.4845338501499847, nan, 0.6282224979925543, 0.6928170564904808, 0.23142272983643541, 0.8873278318309525, 0.46953884728763595, 0.0005215803885773895, 0.5542412002308136, 0.10845198424719782, 0.5869154300379641, 0.0, 0.010907018316536697, 0.793456051943224, 0.12649239962384984, 0.4589822701689517, 0.42143872921678477, 0.03893105461493551, nan, 0.13440869146302972, 0.4245448084603441, 0.46174816509389, 0.0, 0.8878226827336242, 0.7447736277446672, 0.951929183073613, 0.018382891806658124, 0.25878028202964926, 0.37484668044597425, 0.0] | | 0.1363 | 15.0 | 6000 | 0.6052 | 0.5193 | 0.4155 | 0.8887 | [nan, 0.9281772418265013, 0.9663767872895684, 0.5342161214953272, 0.8447924129735698, 0.6015187219527939, nan, 0.7291077408868643, 0.8812164919106135, 0.23211400637971746, 0.9479408328730995, 0.633386844488351, 0.0030415234065062154, 0.789422084623323, 0.21314163198385672, 0.8954179385594596, 0.0, 0.0066242505171104655, 0.9164480291997693, 0.1360949684597427, 0.6964961019847766, 0.4960711090960334, 0.03860550868763618, nan, 0.19802279280516272, 0.5609541005914063, 0.5661075535662848, 0.0, 0.9376398917610389, 0.9059173441584945, 0.9782134208899593, 0.041454266650089104, 0.43892377410636263, 0.49969692229478707, 0.0] | [0.0, 0.8633930449091305, 0.8952460293484353, 0.42706756384454103, 0.7593774610091322, 0.47377891058119026, nan, 0.6217821374684249, 0.6898326802726141, 0.20124995510218743, 0.8868864734587292, 0.4952526552944963, 0.0028388052332757345, 0.6066698390038862, 0.10356026717323365, 0.5863739068024136, 0.0, 0.00656256484747873, 0.7990222508044155, 0.11130896362146828, 0.4768559231889487, 0.4358850122678166, 0.03689958080794596, nan, 0.14020726799012267, 0.42208907144066693, 0.46374312526092243, 0.0, 0.889531203939725, 0.7432560391610733, 0.952160090573041, 0.03558025789239662, 0.21245893254116582, 0.3712419453581397, 0.0] | | 0.0804 | 15.25 | 6100 | 0.6205 | 0.5110 | 0.4268 | 0.8877 | [nan, 0.9338093608996594, 0.9656453309931633, 0.5360116822429907, 0.8032054069910557, 0.6059132718486427, nan, 0.7301936126609202, 0.8766143189258433, 0.22587928248891834, 0.9574923159422327, 0.619350456902939, 0.0011901613329806928, 0.7703818369453045, 0.07655442048177576, 0.8504335260115607, 0.0, 0.020239310868483754, 0.9198111518664089, 0.12485306048113379, 0.7319227623900414, 0.495000428884777, 0.03547684228169171, nan, 0.1875600713991487, 0.5538912440466844, 0.5455451906671689, 0.0, 0.9362906678973961, 0.9101525873385327, 0.9729007364591106, 0.02293143105806291, 0.4597532971610884, 0.48345782331547454, 0.0] | [nan, 0.856464729269542, 0.8942823604125036, 0.4347924144963024, 0.7282825257603309, 0.4836585626064097, nan, 0.6163747573889081, 0.6892970262677814, 0.20072891932188414, 0.888225522138808, 0.5066929332727181, 0.0011893749174045195, 0.6024777046931117, 0.05147557666214383, 0.6220782459974346, 0.0, 0.020031615227137266, 0.7981944383082095, 0.09975989363883506, 0.476298280003313, 0.4345003764655265, 0.03419217618393775, nan, 0.1330243066375818, 0.42041703246719714, 0.45861972618049734, 0.0, 0.8892991369897043, 0.7440154875361404, 0.9524152608652374, 0.021443727473549588, 0.22949422815524131, 0.36944182958821886, 0.0] | | 0.0627 | 15.5 | 6200 | 0.6244 | 0.5088 | 0.4226 | 0.8864 | [nan, 0.9363099227676078, 0.9557843398515034, 0.5258376168224299, 0.8250218829308421, 0.6537759869721766, nan, 0.7370216777925434, 0.8573990605873701, 0.24421061352997225, 0.944441326435564, 0.6453651107269285, 0.0, 0.574406604747162, 0.202547610039097, 0.9001834773007729, 0.0, 0.08682219254837274, 0.9295308868150898, 0.08372655176410206, 0.6741101275248591, 0.4846229490117269, 0.03799094921503995, nan, 0.18766991624330634, 0.5747971947453813, 0.5357957944650019, 0.0, 0.9393777953152539, 0.9065412893119918, 0.9711350422513085, 0.01408833768494343, 0.423479444817005, 0.43092900998340755, 0.0] | [nan, 0.8597774723874926, 0.8905873458192073, 0.4468008441348313, 0.7358981742624778, 0.4808541172889169, nan, 0.6284059730270303, 0.6908370828825592, 0.2063894967177243, 0.8877064612239235, 0.5085303752716421, 0.0, 0.4786515887689728, 0.07696731524968849, 0.5910784632525015, 0.0, 0.08625308882819613, 0.7927730663764808, 0.07191564097641445, 0.4573643410852713, 0.43199170940310977, 0.036449399656946824, nan, 0.12474672799956191, 0.42888997799442735, 0.45055805027110624, 0.0, 0.8884059722861457, 0.7421115189770542, 0.9513756980737487, 0.012830765528906378, 0.21910649885920366, 0.3464300992446894, 0.0] | | 0.0906 | 15.75 | 6300 | 0.6277 | 0.5077 | 0.4232 | 0.8874 | [nan, 0.9291486180310576, 0.9587963707454238, 0.5362032710280373, 0.8561640657502444, 0.6342631999714216, nan, 0.7070024940578683, 0.8671632585282536, 0.2429056713202701, 0.9448969225566771, 0.5583271589692929, 0.0010579211848717272, 0.6710010319917441, 0.23294236347584815, 0.9067513151912711, 0.0, 0.020684418610740187, 0.9250756288677204, 0.07677279425156046, 0.6503387447644879, 0.5319197495312902, 0.03860550868763618, nan, 0.18569270904846905, 0.5416470403517035, 0.5072344951363807, 0.0, 0.9414354322663816, 0.9037269864207472, 0.9731874869200364, 0.013277591280202247, 0.39988619967892053, 0.4915501377118052, 0.0] | [nan, 0.8573471144295101, 0.892101583588469, 0.4449642809016976, 0.7400242676373722, 0.48442379031764893, nan, 0.6140014998720169, 0.6924650683478314, 0.21178574008524165, 0.8871035802257583, 0.4782118177972077, 0.00099601593625498, 0.5315565729234794, 0.08438028233359221, 0.5871221081515825, 0.0, 0.020441960358122443, 0.7966462351239197, 0.06850549580427845, 0.4652701824381677, 0.4532145005879428, 0.03686906413403052, nan, 0.1488673139158576, 0.4142177021859072, 0.4423489401170992, 0.0, 0.888882064716084, 0.7468477974750474, 0.9515378343546987, 0.012387656809223801, 0.2237051521076804, 0.3671609871108074, 0.0] | | 0.0798 | 16.0 | 6400 | 0.6190 | 0.5286 | 0.4172 | 0.8869 | [nan, 0.926680657145317, 0.9583277241233551, 0.5414509345794393, 0.8395448350384849, 0.6163055970613488, nan, 0.729106879083869, 0.8763296484319401, 0.26653962467376446, 0.94462856417892, 0.6354449658351856, 0.0, 0.7736326109391125, 0.21591625677891285, 0.8849045268558811, 0.34363411619283063, 0.10316026497002069, 0.9218656576332847, 0.10944717627775294, 0.7009902670312324, 0.5122599776979916, 0.038968657466897594, nan, 0.1919538651654538, 0.5525226356832574, 0.538875717356141, 0.0, 0.9457572762531493, 0.901183634297817, 0.9780756945897774, 0.023115338389489825, 0.3853969802271942, 0.4585034944719744, 0.0] | [0.0, 0.8564334135192141, 0.8938306198574103, 0.41026489890361634, 0.7353951913707414, 0.47809949912634986, nan, 0.6215698951590981, 0.6951678039270297, 0.23431724238396126, 0.8861469346690092, 0.5033256170323759, 0.0, 0.5823655078656049, 0.06725329981143935, 0.60684460181721, 0.013995167136528394, 0.10232968859569384, 0.80017144909153, 0.09089721553798556, 0.48491411153457703, 0.44620918590626235, 0.03736540418921091, nan, 0.14435885256397019, 0.42539846918525115, 0.4624629192971781, 0.0, 0.8873440144497453, 0.7475156108906514, 0.9524719380738451, 0.01972869725160058, 0.22189851053623036, 0.35861227450389216, 0.0] | | 0.0901 | 16.25 | 6500 | 0.5917 | 0.5200 | 0.4299 | 0.8896 | [nan, 0.9258199912150333, 0.9603701848856869, 0.5186892523364486, 0.8721793039773063, 0.647948819969426, nan, 0.7465402918754385, 0.8815201404374436, 0.21442478975931065, 0.9491194402298921, 0.6424219972009549, 0.00039672044432689763, 0.7311661506707946, 0.1943498549627948, 0.8921543157758005, 0.15327564894932014, 0.07967428586390177, 0.9293905669893677, 0.12015927416016821, 0.6698895330720515, 0.5201315450880439, 0.040560925191351474, nan, 0.17654812577234655, 0.5835060449050087, 0.5231215794021847, 0.0, 0.9400508616673928, 0.8957790972168599, 0.9722137189382809, 0.011464420406979153, 0.38557987360035767, 0.46186248931546336, 0.0] | [nan, 0.866351138156412, 0.8939541036386832, 0.46360912979965524, 0.7507890322152613, 0.48660598648618647, nan, 0.6225598103833513, 0.6911588008377322, 0.19347001326929186, 0.887840691207522, 0.5082802755206722, 0.00036527456471447707, 0.5638678869876641, 0.0832837918175431, 0.6045529063562446, 0.006450606044842116, 0.07925304719241588, 0.7975401296695107, 0.09911841629051973, 0.4713279486495917, 0.45141671341630396, 0.03856573705179283, nan, 0.12819285757013818, 0.4279405668488608, 0.45535903716704923, 0.0, 0.8891564381205536, 0.7534260714863522, 0.9520390401591446, 0.010587073054631307, 0.21693992819738858, 0.3621346900827125, 0.0] | | 0.0653 | 16.5 | 6600 | 0.6069 | 0.5188 | 0.4270 | 0.8875 | [nan, 0.9290124922971863, 0.9589720557965155, 0.5377873831775701, 0.8408719669628694, 0.6464453726960179, nan, 0.7621001449552638, 0.8857807088295299, 0.2068851236588094, 0.9480908117204224, 0.6177862846793447, 0.0, 0.7590299277605779, 0.18791777021061926, 0.9075956355134117, 0.0, 0.058230565810488834, 0.9227427600247443, 0.14023410983625556, 0.6694696680432973, 0.503836987023172, 0.03972288954690206, nan, 0.19629273650968007, 0.5403046004082274, 0.5528350801001529, 0.0, 0.9376581699207615, 0.901014031526811, 0.9752275577414824, 0.015813440258609972, 0.5130362332093723, 0.44827147941026946, 0.0] | [nan, 0.8616804147441266, 0.8938918495590652, 0.4436595217282778, 0.7588707802865634, 0.4758728817247983, nan, 0.628730181301102, 0.688001179245283, 0.18745190773792766, 0.8877420745200684, 0.49290617097441625, 0.0, 0.5890833366705378, 0.07141145458902469, 0.5823605098793022, 0.0, 0.05773773981671383, 0.7947286013642479, 0.11004573329175761, 0.45664170004530313, 0.44804481905654414, 0.037985842126352344, nan, 0.1362925675933341, 0.4181863845162963, 0.46249953657361065, 0.0, 0.888743313770925, 0.7487091113564399, 0.952506386954324, 0.013629087889199198, 0.23068137169799252, 0.34552559761867596, 0.0] | | 0.0946 | 16.75 | 6700 | 0.6065 | 0.5143 | 0.4299 | 0.8883 | [nan, 0.9366806425081413, 0.9542471674446813, 0.5289754672897197, 0.8420186089455377, 0.6348452391657562, nan, 0.7554582292706217, 0.8872989514636808, 0.24603338994987364, 0.95065695923075, 0.5426442743064132, 0.0, 0.6714138286893705, 0.17089166351368396, 0.8694632071182697, 0.0, 0.019113450108658656, 0.9217120922782911, 0.13903375883706684, 0.6740194249750934, 0.5118203708015244, 0.03178948544611431, nan, 0.20950157901963476, 0.5704453865075627, 0.5623407413972658, 0.0, 0.9411122045154043, 0.9100815747962009, 0.9743145830094165, 0.0857785237680799, 0.4308967871730781, 0.48645508025274165, 0.0] | [nan, 0.8651947384722789, 0.8930717543250574, 0.4526545293143849, 0.7524401466986995, 0.4887861010723328, nan, 0.6214073859834178, 0.6850152009083916, 0.21553648224427951, 0.8870252213407757, 0.45774305555555556, 0.0, 0.5674414547991802, 0.07292395457725634, 0.6296601151175575, 0.0, 0.018957592126106943, 0.7990749594007368, 0.11146433406780111, 0.4733450112755498, 0.44892412444043184, 0.03086520206129645, nan, 0.14343460931037075, 0.423674789416196, 0.4623610858079796, 0.0, 0.8878002154581935, 0.7401265142858424, 0.9527410923966566, 0.060905676756307404, 0.2440383021821195, 0.37124052036090577, 0.0] | | 0.0849 | 17.0 | 6800 | 0.6239 | 0.5140 | 0.4277 | 0.8874 | [nan, 0.9305970330977147, 0.9554562297838712, 0.5320046728971962, 0.8489963736857462, 0.6542095907740937, nan, 0.7229605001215142, 0.8664610713099588, 0.28969717055387545, 0.9528962660454964, 0.4980859471474438, 0.0, 0.7176470588235294, 0.20759238239374447, 0.8862034811976359, 0.0, 0.031864477783887096, 0.9191836449171626, 0.12003509991887283, 0.6955934653201726, 0.5165258494982048, 0.04092407397061288, nan, 0.19217355485376905, 0.5895090804417229, 0.503489840686003, 0.0, 0.9408365537389992, 0.904218558679801, 0.9778653391859837, 0.011972108251481619, 0.48105021439167633, 0.4599672061542931, 0.0] | [nan, 0.8636437394553574, 0.8929500733790351, 0.4345244853931126, 0.7599993804727837, 0.46696218452852767, nan, 0.6206510046358703, 0.6983976442693793, 0.2497009515987931, 0.8874926753329814, 0.43156730923551545, 0.0, 0.5706314364255529, 0.11078207026517702, 0.6145475017593244, 0.0, 0.03131271548397056, 0.8003820861050736, 0.10237293400828867, 0.4670301606353909, 0.4459244664251144, 0.038865601952565394, nan, 0.13528195016335132, 0.4290314962729347, 0.43912572952498746, 0.0, 0.8877216097613865, 0.738180307717246, 0.9528556585267144, 0.010467599586006663, 0.24685847767824554, 0.3594826033565289, 0.0] | | 0.0623 | 17.25 | 6900 | 0.6172 | 0.5119 | 0.4289 | 0.8887 | [nan, 0.9328785695913208, 0.9578098581195325, 0.5317383177570093, 0.8561058685577084, 0.6304827168234579, nan, 0.7396010541574238, 0.8636618114532428, 0.2868801524503915, 0.9518605630620964, 0.4947929529925084, 0.0009256810367627612, 0.7112487100103199, 0.18766553159288688, 0.8812836916282393, 0.0, 0.01743775037310502, 0.9291997485832975, 0.11260120200665574, 0.6826961479212292, 0.49109604568235565, 0.042125258394323704, nan, 0.18536317451599615, 0.5637959909980635, 0.5345549622210897, 0.0, 0.9375897612200349, 0.9104269853176398, 0.9785152351649676, 0.016857308632765553, 0.471885224247597, 0.4792468588859031, 0.0] | [nan, 0.8649230898296971, 0.8934913832615394, 0.4476893494179728, 0.7525214888224941, 0.47904609433387446, nan, 0.6239313691633799, 0.6925921698436251, 0.24592492631130367, 0.887597908356459, 0.43200359389038634, 0.000914435009797518, 0.5808680994521702, 0.10441372535260683, 0.6200052546206393, 0.0, 0.01701975415910659, 0.7967171468468032, 0.09773096322694678, 0.46324810420871126, 0.4373241271317872, 0.03999681722939819, nan, 0.13242564545240523, 0.42549338304851775, 0.45084188297733174, 0.0, 0.888754441570771, 0.7411121674604253, 0.9532170914369867, 0.015176070871411481, 0.2681904277926638, 0.37097400203468917, 0.0] | | 0.087 | 17.5 | 7000 | 0.5958 | 0.5165 | 0.4323 | 0.8903 | [nan, 0.9358029442279695, 0.9581817889436154, 0.5173516355140186, 0.8565989717971686, 0.667348278703771, nan, 0.7453587599689061, 0.8783982540209707, 0.2597456398359501, 0.9499820544177967, 0.5674240553223018, 0.0, 0.7777605779153767, 0.14150586454786226, 0.8944761966616873, 0.0, 0.04935459377372817, 0.9190064859631538, 0.13516780079140384, 0.6902990697136872, 0.5223050718688348, 0.039750824068383706, nan, 0.1931621584511877, 0.5658763803841524, 0.501960958099754, 0.0, 0.9402762475045608, 0.9019702878007346, 0.9759436269037568, 0.012736230262339924, 0.4254506289499888, 0.5057514930417828, 0.0] | [nan, 0.8672982432946728, 0.8947683772895187, 0.45221659685446863, 0.7622893195763734, 0.4902560352855047, nan, 0.6223052874324095, 0.6932109212359029, 0.22966612333107453, 0.8909383965244376, 0.46376665320952765, 0.0, 0.5938460326215428, 0.08434187777193114, 0.602773750581284, 0.0, 0.048440150074523305, 0.8000458716174862, 0.11235893201211121, 0.479082966550413, 0.45730325325150806, 0.03797907547774101, nan, 0.13441877352901832, 0.42968388297967464, 0.43185024209844064, 0.0, 0.8885136898541194, 0.7448990572757507, 0.9530770665482792, 0.011476439106252173, 0.27282086031874275, 0.3826734258440253, 0.0] | | 0.0493 | 17.75 | 7100 | 0.6044 | 0.5187 | 0.4325 | 0.8897 | [nan, 0.9240685866116948, 0.9622943353488201, 0.5353317757009346, 0.853514520592762, 0.6373741840672775, nan, 0.7478235165354141, 0.8836883806993405, 0.21751108165209826, 0.9509281473980792, 0.5420474191158311, 0.0, 0.7930340557275541, 0.22083490982469417, 0.8908310060401377, 0.0, 0.0858534286387558, 0.9207060529378274, 0.1411447209390884, 0.681761326480902, 0.5542661781464825, 0.03930387172467736, nan, 0.1931621584511877, 0.5752080389386088, 0.49312002836187985, 0.0, 0.9390712329452002, 0.9078367511279274, 0.9729394719810368, 0.022296821252434828, 0.4083602593021602, 0.5050154471862657, 0.0] | [nan, 0.8665364871726114, 0.892965816013915, 0.4547348114599635, 0.7642413653965189, 0.4857421136997843, nan, 0.6253954022706847, 0.6870444418213474, 0.19578268327242895, 0.8874360309454634, 0.462182366980205, 0.0, 0.6077345881608605, 0.08939146416173167, 0.6003337345442609, 0.0, 0.0839241381075478, 0.8010272384750775, 0.11626241894020498, 0.4793339806464354, 0.46760060321222136, 0.03759519038076152, nan, 0.13732648718299134, 0.4276941756073643, 0.42612058896739236, 0.0, 0.8882284916106664, 0.7388891943971531, 0.9525770980335972, 0.01913195000088903, 0.25993428881875097, 0.3840528604415517, 0.0] | | 0.0609 | 18.0 | 7200 | 0.6040 | 0.5216 | 0.4331 | 0.8892 | [nan, 0.9227158454479248, 0.9619075870212453, 0.5316542056074767, 0.8629644863429278, 0.6514016366079864, nan, 0.7428586694795917, 0.8715519286425962, 0.2045030862918928, 0.9466966687245525, 0.5841977442990038, 0.005950806664903465, 0.7702786377708978, 0.22789759112120064, 0.8969036175878418, 0.0, 0.10873720315241013, 0.9154051507310187, 0.16112021722213943, 0.6850397847716271, 0.5074181749114659, 0.04494664506397005, nan, 0.19590827955512838, 0.5833045480713874, 0.5258912942323458, 0.0, 0.940934664449275, 0.8882331527914135, 0.9774381724580755, 0.014391396245182146, 0.43477819098132453, 0.5255548975681157, 0.0] | [nan, 0.8627327541149343, 0.8943888286230383, 0.44826842363954605, 0.7637335274754071, 0.48244240753868006, nan, 0.625331534198079, 0.6944541055496749, 0.18654700047236655, 0.8893611006867107, 0.4845014167207183, 0.005280450598451068, 0.5995903120857935, 0.10169968482665466, 0.5777541863213714, 0.0, 0.10625831542319107, 0.8006913747953047, 0.12712606139777924, 0.4783386384345389, 0.44333322627096416, 0.042293134265587215, nan, 0.148674558186062, 0.4270657907089471, 0.4375414792419438, 0.0, 0.8881646826265218, 0.746841100561318, 0.9521439225045568, 0.01294715575036877, 0.24666520631333802, 0.38409386690619945, 0.0] | | 0.0594 | 18.25 | 7300 | 0.6184 | 0.5184 | 0.4328 | 0.8884 | [nan, 0.9404973526006469, 0.9537239028155554, 0.5275303738317757, 0.8254461719223712, 0.6778219046293364, nan, 0.7472383523016173, 0.8659581534373962, 0.2943783918140768, 0.9543757743601257, 0.5650160533465053, 0.0, 0.7537667698658411, 0.19283642325640055, 0.8840439696044684, 0.0, 0.053517660304244236, 0.9223867864255677, 0.14299077799301313, 0.6933990487935829, 0.5170742093202789, 0.040644728755796417, nan, 0.19868186187010847, 0.5769927251792537, 0.5184906162061554, 0.005237711522965351, 0.936523983230326, 0.8965774712364731, 0.9780089834131267, 0.013717932777984998, 0.4056981446483367, 0.5054707620798113, 0.0] | [nan, 0.8646951423015076, 0.8916557550473645, 0.4456280068092665, 0.7798208455321158, 0.4668012972723517, nan, 0.6275296552822227, 0.693191442493572, 0.24416726797924612, 0.8882015249296725, 0.4734908589168679, 0.0, 0.6010533245556287, 0.10449699289229086, 0.6037870806764625, 0.0, 0.0522041170761608, 0.8024731726060429, 0.12131790023739622, 0.47577199080928667, 0.44858497899759875, 0.038707102952913006, nan, 0.1414826837710464, 0.42720162129381883, 0.43218883327484625, 0.005164878823996822, 0.8886286814206171, 0.7396195316490108, 0.952706951959097, 0.011655776057680246, 0.24503522596165647, 0.3835704565398948, 0.0] | | 0.0616 | 18.5 | 7400 | 0.6177 | 0.5082 | 0.4272 | 0.8887 | [nan, 0.9388723599691342, 0.9564944313754319, 0.5251226635514019, 0.8417103211148066, 0.6482573931295971, nan, 0.7321895483979944, 0.8855861839920293, 0.2417250093210158, 0.9506753528629689, 0.5459990121017535, 0.0, 0.656656346749226, 0.11275066212637155, 0.8765912190686498, 0.0, 0.07320713219699945, 0.9230813488667519, 0.11395056209539893, 0.703570900866502, 0.5234722511549255, 0.043466115425442764, nan, 0.1751201427982974, 0.5677919087245512, 0.4888879041013937, 0.00040290088638195, 0.9391572478144832, 0.8977247029883181, 0.9766107386702634, 0.018289713622611795, 0.4217114755430917, 0.4846827041793997, 0.0] | [nan, 0.8641564182971058, 0.8921133993393542, 0.4501424016407233, 0.7647378890792713, 0.4769587373086239, nan, 0.6209624017506187, 0.6859163987138264, 0.20884410959394406, 0.8903311694707657, 0.45434149683164926, 0.0, 0.5354933726067747, 0.07164035579774021, 0.6122940826221327, 0.0, 0.06951938138690669, 0.8003213370838211, 0.09716584900998836, 0.4828652554046836, 0.45382137270368395, 0.04121417598135297, nan, 0.13381035314854062, 0.43221966358833797, 0.42342013855571975, 0.00040160642570281126, 0.8881950211846364, 0.7398417591158966, 0.9530845970447974, 0.014810386777414213, 0.2365547272188405, 0.37402163767775426, 0.0] | | 0.0611 | 18.75 | 7500 | 0.6099 | 0.5177 | 0.4324 | 0.8902 | [nan, 0.9345079533755389, 0.9638643589649342, 0.5356553738317757, 0.8422997643013702, 0.6257334001805861, nan, 0.7471220088972541, 0.8814537173221996, 0.2763370479307345, 0.9466207360377004, 0.6049436074750967, 0.0, 0.7059855521155831, 0.14970361962416445, 0.8782149119958433, 0.0, 0.0958028958186055, 0.9234898906602255, 0.14089637245649764, 0.6854742792438918, 0.5173606430820885, 0.04232080004469523, nan, 0.19343677056158176, 0.5813811692050034, 0.5071015488245331, 0.00040290088638195, 0.9400356746670351, 0.8951641148114238, 0.9764509546423178, 0.03372756848605413, 0.4723729399093662, 0.4701335776577261, 0.0] | [nan, 0.8647971283970989, 0.8977857991553266, 0.4345779290016539, 0.7684148484664771, 0.4855945598832977, nan, 0.6259089780170273, 0.686933822387541, 0.2366516479228013, 0.8888089337936385, 0.48289741736216074, 0.0, 0.5985650538104821, 0.061681563084597796, 0.6094675222969052, 0.0, 0.09345866005976859, 0.7993214394154491, 0.11438556403104944, 0.4762232900770807, 0.45242021144786737, 0.04009209272785011, nan, 0.14212501513256123, 0.43339055459103054, 0.4277836968915307, 0.00040032025620496394, 0.8873505568836287, 0.7422385564869821, 0.9528040989243474, 0.029041136219678652, 0.23652292476444373, 0.3661642120469451, 0.0] | | 0.0526 | 19.0 | 7600 | 0.6228 | 0.5108 | 0.4297 | 0.8909 | [nan, 0.9405315503656566, 0.9623814025398809, 0.5330642523364486, 0.8317861268903274, 0.6622725273804787, nan, 0.7263120519701678, 0.8674004839398396, 0.27552922656282364, 0.9455175897361646, 0.5819338108174859, 0.0, 0.6111971104231166, 0.16710808424769832, 0.8864145612781711, 0.0, 0.0827900400596968, 0.930233313789279, 0.11843739134753886, 0.6995346374019279, 0.5042107294717365, 0.042153192915805354, nan, 0.18371550185363175, 0.5630920605013869, 0.5005871795439941, 0.0056406124093473006, 0.9407823912509976, 0.8985265242187241, 0.9751204970628252, 0.012990074184591156, 0.42681216850576115, 0.4687243361620586, 0.0] | [nan, 0.8642299686902748, 0.8983701844671692, 0.4505770666371748, 0.7744797343632894, 0.49247659714013137, nan, 0.623426329007179, 0.696151825084343, 0.23867367627796818, 0.8898312419634539, 0.48430193720774883, 0.0, 0.5244863620262132, 0.07708866651151966, 0.5993412927130506, 0.0, 0.08080962968642183, 0.7977044198782267, 0.10166926045153175, 0.47672785170429793, 0.4451483954200063, 0.04006265597621197, nan, 0.1264172335600907, 0.43160647951283304, 0.42598284151975113, 0.00554016620498615, 0.8878311660408268, 0.74270285241124, 0.9536917187049466, 0.011887351052557973, 0.24007269734586106, 0.3689853153957455, 0.0] | | 0.054 | 19.25 | 7700 | 0.6199 | 0.5112 | 0.4157 | 0.8897 | [nan, 0.9383711032345364, 0.9577791893332354, 0.532998831775701, 0.8352225138198671, 0.6740592830016223, nan, 0.7513879337239024, 0.8669212886084358, 0.21351340154935997, 0.9451751851979368, 0.5077796986910348, 0.0, 0.7028895768833849, 0.18400807163576743, 0.8914236539585634, 0.0, 0.1072709658838007, 0.9291372462420467, 0.11183132171062435, 0.6577470949582549, 0.5160479493180732, 0.04262807978099335, nan, 0.1900590416037347, 0.5664154498351389, 0.5106689415257805, 0.0012087026591458502, 0.9410463493811095, 0.8949234994980861, 0.9775344732695309, 0.011246839902192383, 0.42160986811355644, 0.47790186427705494, 0.0] | [0.0, 0.8647432445871411, 0.896112476860621, 0.45036567465468447, 0.76789556797279, 0.4910576591298745, nan, 0.6249728507663073, 0.6958387758910245, 0.19385049365303245, 0.8887827463711233, 0.4413911550021468, 0.0, 0.5792159197210647, 0.08409221902017291, 0.5936591009850886, 0.0, 0.10176353700943865, 0.7979000623472865, 0.09749989173896098, 0.46787846117983983, 0.45133395403669296, 0.04032236755185625, nan, 0.1322593590552084, 0.4340972401884397, 0.4265909006774516, 0.0011904761904761906, 0.8880726081330668, 0.743872268803543, 0.953516990645358, 0.009541850530053972, 0.23069652626428858, 0.3703797514940341, 0.0] | | 0.0671 | 19.5 | 7800 | 0.6217 | 0.5094 | 0.4146 | 0.8892 | [nan, 0.9331891438463118, 0.9574927175990591, 0.5350619158878505, 0.834028291700058, 0.6744756411977813, nan, 0.7431025597272566, 0.8738719931679082, 0.2327354074319566, 0.9446516741270925, 0.5379723388490986, 0.0, 0.669969040247678, 0.18249463992937318, 0.8913668247061116, 0.0, 0.09954703741523316, 0.9238793920053711, 0.0888259739399659, 0.6886532573187448, 0.5368212898403323, 0.03941560981060394, nan, 0.18061238500617877, 0.5652404877793479, 0.5268662338525626, 0.0060435132957292505, 0.9420171078199074, 0.9042006331836784, 0.9732816357580515, 0.009485473911061379, 0.3114064500396269, 0.49469125180868956, 0.0] | [0.0, 0.8617017485872825, 0.8957626230741332, 0.4508312580591182, 0.7683050299189929, 0.4878950714613818, nan, 0.624948812708509, 0.6911476098809349, 0.20973251451290761, 0.8882723484572987, 0.46124933827421916, 0.0, 0.5501928047798635, 0.07156988821841923, 0.5965012359764214, 0.0, 0.09680704791974334, 0.7988314631673791, 0.07901907356948229, 0.4711932405689982, 0.46080549284533756, 0.03769502030348365, nan, 0.13494050061551088, 0.43071416464770335, 0.43780380026513477, 0.005912495072920773, 0.8877312783085815, 0.7390862578001592, 0.9533931934816451, 0.008087813065948142, 0.20454363437358178, 0.3783462459982845, 0.0] | | 0.0512 | 19.75 | 7900 | 0.6300 | 0.5080 | 0.4263 | 0.8887 | [nan, 0.9391756156362827, 0.957153465687716, 0.531875, 0.8363349452907067, 0.6442373192444947, nan, 0.7406369413577534, 0.8858234094036154, 0.26463399478023114, 0.9530349257345309, 0.5036634559973656, 0.0, 0.6101651186790505, 0.1925841846386682, 0.8746996168084692, 0.0, 0.0674207315476658, 0.9178750280173988, 0.11324690806139175, 0.6909895794473874, 0.5175153479480927, 0.042963294038773116, nan, 0.2016476726623644, 0.5813497671010625, 0.5020052735370366, 0.008058017727639, 0.9412167663408764, 0.897734355178538, 0.9747767193057303, 0.01633407932363546, 0.3496514865166941, 0.49998742995692663, 0.0] | [nan, 0.8625082043880324, 0.8957494129402008, 0.43782876705742063, 0.7496431303023787, 0.48514174134060595, nan, 0.6274006504670441, 0.6871961161760971, 0.2302687309626372, 0.8882991958037961, 0.4373045513839996, 0.0, 0.5170981283890153, 0.08045310853530031, 0.6189258899694966, 0.0, 0.06474078543772313, 0.7999986290910134, 0.09763826734899257, 0.47261393142851427, 0.4453505921742053, 0.040873817370043586, nan, 0.1437999373335422, 0.43193558986563074, 0.42771380026430056, 0.007840062720501764, 0.887320160440498, 0.7455157136812743, 0.9534156947680599, 0.013436060460141392, 0.21404224616226705, 0.3788044726196485, 0.0] | | 0.0535 | 20.0 | 8000 | 0.6326 | 0.5129 | 0.4292 | 0.8889 | [nan, 0.9375849538350132, 0.9591767441005661, 0.5300221962616822, 0.8259597228240738, 0.6596635135950806, nan, 0.7492101575548236, 0.8658110736822129, 0.2693152160404325, 0.9484445354169388, 0.5863176092862435, 0.0, 0.6744066047471621, 0.20784462101147685, 0.883142820029876, 0.0, 0.07781530646977194, 0.9271092315337143, 0.10147518998658918, 0.678314629589805, 0.497267391277709, 0.043242639253589586, nan, 0.18442949334065634, 0.576354215732454, 0.5145022268507234, 0.007252215954875101, 0.939646591781763, 0.9018448093278766, 0.9767371671098836, 0.012725869285921506, 0.41707817675628445, 0.45857891473041446, 0.0] | [nan, 0.8619435562270654, 0.8965635233177199, 0.4407369269775891, 0.7663725441548623, 0.48239880840583743, nan, 0.6305089171096815, 0.6940516487277982, 0.23291892085557667, 0.8902205646366161, 0.48581173260572985, 0.0, 0.5452649144764289, 0.09688988182726792, 0.6044686963431372, 0.0, 0.07672845562038519, 0.7962772336784573, 0.08572747363415112, 0.4690486788330029, 0.43758222088032955, 0.04117568825641708, nan, 0.13543326140878018, 0.4322105242501251, 0.4339781328847771, 0.007067137809187279, 0.8877484539815808, 0.7395098273111396, 0.9530623665306688, 0.010661406489721605, 0.2371072088724584, 0.3613527133617203, 0.0] | | 0.0467 | 20.25 | 8100 | 0.6268 | 0.5170 | 0.4303 | 0.8886 | [nan, 0.9395265086570245, 0.956900821509961, 0.5300023364485982, 0.8314043061203785, 0.6477819071422676, nan, 0.7464739330448017, 0.8916828770697918, 0.24499772152947513, 0.9451416993546665, 0.549950605087676, 0.0, 0.687203302373581, 0.1523521251103544, 0.8917889848671819, 0.0, 0.08004084518105412, 0.915062008738324, 0.1551515753572079, 0.6881485415176292, 0.526278382981852, 0.04472316889211688, nan, 0.18451187697377455, 0.5879677605066206, 0.549156898805699, 0.007655116841257051, 0.940224100990058, 0.9054685173132715, 0.9762965505479732, 0.02776741680135936, 0.449734804608913, 0.49033782689095345, 0.0] | [nan, 0.8644696780108341, 0.8944980656632955, 0.440104340976533, 0.7641389998117053, 0.4770745740308388, nan, 0.6297284505666034, 0.6844286473848664, 0.21773065311832707, 0.8890008282328474, 0.46004855121119775, 0.0, 0.5750680081177943, 0.06133536430566133, 0.6000371448704572, 0.0, 0.07885979620791951, 0.8006806868947128, 0.1252363801594355, 0.4706566275608475, 0.45444853884552, 0.04241284306453322, nan, 0.13328969033307544, 0.4323046138453842, 0.45063456852976475, 0.007448059584476676, 0.888463849852071, 0.7450400534159003, 0.9535229169698916, 0.021638336996913712, 0.23653075402126864, 0.371412309599829, 0.0] | | 0.0566 | 20.5 | 8200 | 0.6333 | 0.5121 | 0.4287 | 0.8890 | [nan, 0.9382327153916955, 0.9575874232706021, 0.5340771028037383, 0.8342787755625269, 0.6541523107263972, nan, 0.7406429739787204, 0.8870285144944726, 0.2079415054476159, 0.9479172512933317, 0.5500535111550177, 0.0, 0.7218266253869969, 0.17152226005801488, 0.8854728193803988, 0.0, 0.06920116251669153, 0.9246219694901651, 0.12077186708389212, 0.6759797704055135, 0.5097310892447952, 0.045561204536566285, nan, 0.1750377591651792, 0.5736405505835558, 0.5156101127827879, 0.00684931506849315, 0.9398823262828916, 0.9029458484550981, 0.9765633952545758, 0.017017903767251024, 0.4133390233493873, 0.48943837047548283, 0.0] | [nan, 0.8643736263008805, 0.8951902105356352, 0.44089650982245326, 0.7609522214327652, 0.4848458703216258, nan, 0.6265179780801705, 0.6811413623628766, 0.1878590542487696, 0.887796763348636, 0.46558542236468475, 0.0, 0.5934331650617232, 0.06971498872257535, 0.6047629609093429, 0.0, 0.06810626948746361, 0.7983954196511591, 0.10178182731484066, 0.4720678124715856, 0.44954610542241913, 0.0431413003227001, nan, 0.12741374485267662, 0.432512153928718, 0.4367328553732968, 0.006685017695635077, 0.8879940574069723, 0.7494547941207608, 0.9536808104413358, 0.013580974233357105, 0.23932508912918143, 0.374424364423531, 0.0] | | 0.0445 | 20.75 | 8300 | 0.6446 | 0.5134 | 0.4274 | 0.8856 | [nan, 0.9405399334753671, 0.9458917035764169, 0.5273960280373832, 0.8282526135651365, 0.6846166732980127, nan, 0.7372879749180856, 0.8847701285761731, 0.2182567629147852, 0.9486374327394391, 0.565180703054252, 0.0, 0.6657378740970072, 0.14856854584436877, 0.8831509384945119, 0.0, 0.06705417223051345, 0.9206841150299712, 0.12586301097700292, 0.6806553405515008, 0.5199094440427905, 0.04444382367730041, nan, 0.17805849237951393, 0.5833280996493432, 0.5248720391748466, 0.007252215954875101, 0.9356924613611799, 0.9010464353082633, 0.9759161892423923, 0.023617845745783083, 0.4449998983925705, 0.5172488924395381, 0.0] | [nan, 0.8666434932726657, 0.8860462410088557, 0.4516813574923211, 0.7742782740775649, 0.4555874524449895, nan, 0.6267926037830955, 0.6896407624091181, 0.1957204153277486, 0.8882182070612508, 0.46149838666308146, 0.0, 0.5469962267350659, 0.06421718273004798, 0.6011771207515888, 0.0, 0.06543011164763292, 0.79986647852113, 0.10526898843730527, 0.4713830230218466, 0.45188595346756627, 0.04203767801939388, nan, 0.1276553855846278, 0.42972506139948413, 0.441923808813104, 0.007075471698113208, 0.8884781477624152, 0.7456781431206605, 0.9535186762124032, 0.016432559463950374, 0.2430653450400151, 0.37996353686275436, 0.0] | | 0.0523 | 21.0 | 8400 | 0.6334 | 0.5087 | 0.4256 | 0.8903 | [nan, 0.933221079502352, 0.9637948085900169, 0.5297546728971962, 0.8356436570172051, 0.6448230539257773, nan, 0.7465713167832686, 0.8749679745694359, 0.2327354074319566, 0.9465962111947419, 0.5354408495924919, 0.0, 0.6270897832817337, 0.14024467145920042, 0.8939972072481652, 0.009888751545117428, 0.05998481397114654, 0.9259419692666467, 0.10259275815824766, 0.6911110038285254, 0.5109028637249255, 0.044248282026928876, nan, 0.19286008512975422, 0.5704035170356414, 0.5006314949812767, 0.0, 0.9387582194599503, 0.9072224581646499, 0.9775237134023292, 0.011000766712254964, 0.4426019630555386, 0.48799979887931083, 0.0] | [nan, 0.8627899844290204, 0.898045292380419, 0.4429741700156492, 0.7733528050732301, 0.48122023215814036, nan, 0.6285033134107889, 0.6922586045743415, 0.2067303269489062, 0.888126363728484, 0.4555339601828019, 0.0, 0.512374046123361, 0.062230678829257376, 0.5926462119703566, 0.00044943820224719103, 0.05796624750145485, 0.8002256522783529, 0.08795100349163994, 0.4798915494731881, 0.45172247073689, 0.0420103434557751, nan, 0.13598869181318254, 0.4315342675118884, 0.4297071129707113, 0.0, 0.8889534278458562, 0.7430008362351238, 0.9537407288817968, 0.009678051537276564, 0.23964350552896518, 0.3711983987778357, 0.0] | | 0.0715 | 21.25 | 8500 | 0.6366 | 0.5151 | 0.4287 | 0.8894 | [nan, 0.9370145031789949, 0.9615540919282511, 0.5349906542056074, 0.8234293246215806, 0.6427307923986297, nan, 0.7520265297434068, 0.877506286473407, 0.2407929077426571, 0.9458038701145451, 0.5871614390384458, 0.0, 0.6843137254901961, 0.1972505990667171, 0.8854890563096707, 0.054388133498145856, 0.06252454638284502, 0.9220868993644009, 0.11473699895693637, 0.6793299129694406, 0.505244648130675, 0.04341024638247947, nan, 0.19102018399011397, 0.5753257968283875, 0.5107132569630631, 0.0, 0.9400241164189752, 0.9050651936505135, 0.9789779094546415, 0.014533859670935389, 0.41945579060740923, 0.49523735034665384, 0.0] | [nan, 0.8636190041686136, 0.8961979040679402, 0.44008160621637177, 0.7735135302856915, 0.47552992149378714, nan, 0.6295369121222396, 0.6946632262523146, 0.2137970353477765, 0.8882677382290695, 0.4793581450054608, 0.0, 0.555406650473239, 0.08438545376065609, 0.5980720618958058, 0.002378506946321423, 0.06108823002737203, 0.7997681127577295, 0.0970839783417272, 0.47365876347968716, 0.44734126160727244, 0.041260653691952316, nan, 0.13688871396241267, 0.4310366799265186, 0.42952982613070945, 0.0, 0.8887487055026462, 0.7433844306901257, 0.9533070831491001, 0.012093141544284045, 0.23472485984284203, 0.3736148179836323, 0.0] | | 0.0856 | 21.5 | 8600 | 0.6332 | 0.5104 | 0.4282 | 0.8891 | [nan, 0.9354302285089335, 0.9598914301992207, 0.5326285046728972, 0.8348257505275104, 0.6418013774311685, nan, 0.7519851631996333, 0.8757413294112065, 0.2316790256431501, 0.9473149777460632, 0.5441672841030707, 0.0, 0.6676986584107327, 0.19119687224114013, 0.8908797168279535, 0.0, 0.05576938182389443, 0.9230974918555517, 0.1150019040050332, 0.6832652332737915, 0.5057945396840957, 0.04410860941952064, nan, 0.19250308938624194, 0.5698984665305908, 0.50395515277747, 0.0040290088638195, 0.9408126308534799, 0.8986623443239606, 0.9766785258336341, 0.01867306975009325, 0.40035359385478264, 0.4951898635172656, 0.0] | [nan, 0.8652175117062043, 0.8949487144681932, 0.4437434730009742, 0.7611759319446382, 0.47865894832193984, nan, 0.6331643341293494, 0.6931150372692965, 0.2068423485899214, 0.8889820786499946, 0.4611976486594917, 0.0, 0.5675936485656636, 0.08603859250851305, 0.595085736597217, 0.0, 0.05421502748930971, 0.799696203512091, 0.09667497111998775, 0.4707822447654798, 0.4485026865801383, 0.041887733446519526, nan, 0.13581323258742614, 0.4329091328339933, 0.42695701145109816, 0.003957261574990107, 0.8887286680634571, 0.7476012702986532, 0.953293396822863, 0.014771330218834523, 0.23667139184546263, 0.3740649694565481, 0.0] | | | 0.0426 | 22.25 | 8900 | 0.6388 | 0.5153 | 0.4321 | 0.8907 | [nan, 0.9365843032790866, 0.9619280328787767, 0.5323341121495327, 0.832118008177492, 0.6589330390083284, nan, 0.7530012289310712, 0.8876025999905109, 0.2356145656406645, 0.9495151391383951, 0.5967728657281633, 0.0, 0.6851909184726522, 0.16698196493883213, 0.8856433071377541, 0.0, 0.046160291152829054, 0.9249913955800083, 0.14087981589099158, 0.6780864102710397, 0.5070796622838727, 0.043214704732107936, nan, 0.19390361114925167, 0.577557963050191, 0.5263122908865303, 0.009266720386784852, 0.9401577082628303, 0.9045005405226523, 0.9759350190099954, 0.014261884039951924, 0.44343514397772765, 0.48190053464583205, 0.0] | [nan, 0.8638275353000382, 0.8975929370440341, 0.44847327680807825, 0.7680456934961463, 0.4896127563059361, nan, 0.6344922288860472, 0.6906430201049919, 0.21071058091286307, 0.8908914064913077, 0.4893922260291313, 0.0, 0.5741773684438103, 0.0915502696722445, 0.6133303348044865, 0.0, 0.045543787135107205, 0.799706519605589, 0.11493135050077327, 0.47303106132662764, 0.44896719237169413, 0.04119511090991399, nan, 0.13769769301273427, 0.43323479414732197, 0.4435750434181777, 0.008966861598440545, 0.8892865533176849, 0.7464162172003368, 0.9537521470921787, 0.012501163611760084, 0.24370386088743454, 0.37164396457569027, 0.0] | | 0.0544 | 22.5 | 9000 | 0.6275 | 0.5126 | 0.4297 | 0.8902 | [nan, 0.9362912936349177, 0.962198079008307, 0.5305654205607476, 0.829452734049054, 0.6501778145136554, nan, 0.7606583485441561, 0.8785880343502396, 0.2379137495339492, 0.9477460490242178, 0.5748332921709064, 0.0, 0.6779153766769865, 0.15399167612561482, 0.8968792621939339, 0.0, 0.062053255832220565, 0.9268894385323623, 0.11712114438980778, 0.6830882170073133, 0.515366328868847, 0.046119894966199226, nan, 0.1939585335713305, 0.5666535824566913, 0.5097161596242051, 0.0064464141821112, 0.9399919952412273, 0.8983810519232679, 0.9745475341343337, 0.015694289029798168, 0.43490011989676686, 0.47604289457365206, 0.0] | [nan, 0.8648796447130465, 0.8972780355218145, 0.44448663694053075, 0.7723828909831303, 0.4856595115662902, nan, 0.6367705951823552, 0.693571040656192, 0.2097133467226584, 0.8885713515050402, 0.47493538294109644, 0.0, 0.5753448653382964, 0.07485745815707191, 0.589861603519713, 0.0, 0.060925449871465295, 0.7986432258569581, 0.09907840555757864, 0.4719490094091225, 0.45171147174755927, 0.04363338442835245, nan, 0.13716960245479792, 0.4304074481173985, 0.4370060790273556, 0.00631163708086785, 0.8878797422918536, 0.748175287257327, 0.9535688641919678, 0.013234083170064194, 0.2360317635381052, 0.36728912241605793, 0.0] | | 0.0701 | 22.75 | 9100 | 0.6508 | 0.5132 | 0.4302 | 0.8902 | [nan, 0.9420095059141509, 0.9626173339520694, 0.5384521028037383, 0.8237863722622742, 0.6345902505663333, nan, 0.7493342571861443, 0.8728092233240025, 0.24462488089813164, 0.9462424874982255, 0.5649748909195687, 0.0, 0.6890092879256966, 0.18148568545844368, 0.8978859518087939, 0.0, 0.06417406331003063, 0.926905788482557, 0.10334608188877299, 0.6837845785184178, 0.5068636881640055, 0.044555561763226996, nan, 0.19329946450638474, 0.5856309206050139, 0.5353969555294587, 0.008058017727639, 0.9389002783925003, 0.9000722535382172, 0.9752872750044519, 0.01801255750341912, 0.4159604950313967, 0.4749814242696805, 0.0] | [nan, 0.8667971887550201, 0.8964523921395798, 0.43883250929953793, 0.7789739251684871, 0.4822597903246794, nan, 0.6338344499902683, 0.6949882507612449, 0.21506355392067597, 0.8897027195058894, 0.47454492022058187, 0.0, 0.5744214058332616, 0.09034404821697639, 0.5890266504761296, 0.0, 0.06334315397736083, 0.7983683031468644, 0.08797806890816708, 0.47160166966502776, 0.4468892814313033, 0.04230993686667728, nan, 0.13598253612549263, 0.43447527412791603, 0.442910823939144, 0.007836990595611285, 0.8890303591865106, 0.7479650947941834, 0.9538041433738902, 0.014260666277030976, 0.23761100470137558, 0.3677322595225377, 0.0] | | 0.0588 | 23.0 | 9200 | 0.6510 | 0.5156 | 0.4306 | 0.8898 | [nan, 0.9386450845503147, 0.9615407102293612, 0.5321039719626168, 0.8252994992682097, 0.646236577683447, nan, 0.7500099107344458, 0.8891493096740523, 0.2356145656406645, 0.948320024675765, 0.5611467852144563, 0.0, 0.7061919504643963, 0.15790137470046664, 0.8929012145223095, 0.0, 0.06268164323305318, 0.9247904360655894, 0.12226195797943674, 0.6746470281016981, 0.5158947761834156, 0.04522599027878652, nan, 0.1926953178635178, 0.5791620871931753, 0.5486694289955906, 0.014504431909750202, 0.9393220200484532, 0.9030809791181759, 0.9764800062837624, 0.014337001118985454, 0.46371598691296306, 0.476005184444432, 0.0] | [nan, 0.8636880663267268, 0.8963496684957871, 0.4393286431075093, 0.7694031519559503, 0.48618816019454364, nan, 0.6323091767222339, 0.6843731284418411, 0.20910695246148756, 0.8901931512501616, 0.4713865836791148, 0.0, 0.594294150853272, 0.07763859605605854, 0.5971841386537511, 0.0, 0.061455525606469004, 0.799169285452784, 0.10285033809898536, 0.4708681854568623, 0.4517361674617981, 0.04280237937871778, nan, 0.1379100253532753, 0.432983014903532, 0.45285296269202635, 0.013830195927775643, 0.8892098290384068, 0.7459428984706676, 0.9536680185853351, 0.012051498108992573, 0.23353802067342136, 0.36591936147117593, 0.0] | | 0.067 | 23.25 | 9300 | 0.6275 | 0.5128 | 0.4311 | 0.8905 | [nan, 0.9372797021893622, 0.9638153118797325, 0.5312441588785046, 0.8278251787794161, 0.6422768634184979, nan, 0.7515353020360958, 0.8786212459078616, 0.24139359542648825, 0.9490656742280216, 0.5420885815427677, 0.0, 0.7038183694530443, 0.17707150964812712, 0.8822822627784633, 0.0, 0.06734218312256172, 0.9252767953435341, 0.10501829500488419, 0.6879495810858851, 0.5059293320425944, 0.04416447846248394, nan, 0.19404091720444872, 0.5719029674988224, 0.5293478983403869, 0.008058017727639, 0.9393905631474131, 0.9031768115782158, 0.9770540451989742, 0.01500269385386879, 0.4205734723322969, 0.4884174036436365, 0.0] | [nan, 0.8641485198316792, 0.897149130251509, 0.4431534355853929, 0.7712457425720085, 0.4882715323914724, nan, 0.6318488634618116, 0.69528994349434, 0.21461061083181407, 0.890398769558611, 0.46117346313448776, 0.0, 0.5855585129217824, 0.08629909644108427, 0.608788204714529, 0.0, 0.0658912742737101, 0.7992632312490636, 0.09043857647998176, 0.47160302909046053, 0.44752081120336445, 0.04198645598194131, nan, 0.13798894682367646, 0.43383933729163815, 0.44664223751121745, 0.007836990595611285, 0.8889539638268134, 0.7463182889742939, 0.9538402391601662, 0.01284986599932556, 0.2406063988095238, 0.3716953276213374, 0.0] | | 0.0513 | 23.5 | 9400 | 0.6472 | 0.5144 | 0.4306 | 0.8897 | [nan, 0.938401309042541, 0.9600648179629494, 0.5333469626168225, 0.832045261686822, 0.6450022850427629, nan, 0.7455948939896135, 0.883593490534706, 0.23551099879862464, 0.9506135691239773, 0.5523380258500041, 0.0, 0.6968524251805985, 0.18312523647370413, 0.8904413197376112, 0.0, 0.06160814808996413, 0.9256348385566595, 0.12978691700193712, 0.6801915871922148, 0.5208407367015084, 0.04416447846248394, nan, 0.1951942880681038, 0.5735463442717329, 0.5357736367463606, 0.010072522159548751, 0.9380115028759878, 0.9056712133078884, 0.9770508172388136, 0.017681006258029756, 0.4195573980369445, 0.4783152790270228, 0.0] | [nan, 0.8645788687513425, 0.8959992534632647, 0.44551363683824813, 0.7647562903055005, 0.48403962995403316, nan, 0.6342904860496079, 0.6900071507171095, 0.2094308344078099, 0.8896775711392028, 0.4683431642874594, 0.0, 0.5778034484233945, 0.08829968377523717, 0.5990191205946445, 0.0, 0.060376680693831467, 0.7987594181280973, 0.10780592458123607, 0.47080665968645763, 0.45253694794349175, 0.04196862307876085, nan, 0.13750677087363616, 0.4326699094290159, 0.44833404409174343, 0.009754194303550527, 0.8891644113783483, 0.7456061236432407, 0.9539508207140677, 0.014409173235161254, 0.23587072008774035, 0.3678274990977986, 0.0] | | 0.0514 | 23.75 | 9500 | 0.6439 | 0.5126 | 0.4298 | 0.8893 | [nan, 0.9377822895762951, 0.9605358193045652, 0.5385, 0.8340916008081545, 0.6271635536295225, nan, 0.7452691324573968, 0.884822318166722, 0.22701851775135673, 0.9488086350085531, 0.537766526714415, 0.0, 0.6666150670794634, 0.20002522386177324, 0.8838085341300254, 0.0, 0.05781164087660042, 0.9238019884436897, 0.11829666054073742, 0.6694155391023081, 0.5142496967171933, 0.043549918989887706, nan, 0.19379376630509407, 0.5833176322813628, 0.5375905696749462, 0.014101531023368252, 0.9389680151020606, 0.9049790133806934, 0.9761012589582619, 0.02082556260101952, 0.414029953870227, 0.5005852053386369, 0.0] | [nan, 0.863411965165267, 0.894931428278196, 0.4402552004737254, 0.7611011560258087, 0.4837046157587918, nan, 0.6314089786667951, 0.6898753375504013, 0.2022476056909819, 0.8895664124405706, 0.4596777031068576, 0.0, 0.5673444293179922, 0.08523215821152193, 0.6083079089415631, 0.0, 0.056674965989886805, 0.7993862287218525, 0.09987768652804473, 0.4710007534678047, 0.450200875376809, 0.041379127295891285, nan, 0.1393342283999368, 0.4316562226473846, 0.44881423656073105, 0.013539651837524178, 0.8892954904899649, 0.7457058534465373, 0.9537927510495554, 0.016624966398544282, 0.24126375122858124, 0.37717282181124784, 0.0] | | 0.0396 | 24.0 | 9600 | 0.6535 | 0.5114 | 0.4293 | 0.8894 | [nan, 0.9355970923117436, 0.9613217787436595, 0.5374941588785047, 0.8288621111896686, 0.642493049404965, nan, 0.7527694039253403, 0.878070882952982, 0.22343510501677782, 0.9446323372316829, 0.5478719025273731, 0.0, 0.6478844169246646, 0.1983856728465128, 0.8865769305708905, 0.0, 0.07386170240620009, 0.92611209153323, 0.1052169737909568, 0.6754384809956214, 0.5089943264670923, 0.04279568690988323, nan, 0.19272277907455718, 0.5795022766525357, 0.533735126631362, 0.008058017727639, 0.9392768622420797, 0.9018779025514876, 0.9758392561919, 0.014779932860872808, 0.4110833384137048, 0.4900487159002665, 0.0] | [nan, 0.8639528354166897, 0.8950065886128323, 0.44207385913246505, 0.7660355663095111, 0.48472638815638147, nan, 0.632634318964356, 0.6931134697057083, 0.20094633110411506, 0.8905903659512103, 0.4648726053472574, 0.0, 0.5535911115030201, 0.08658556723729839, 0.604755865918694, 0.0, 0.0724857392466211, 0.7980282230680995, 0.09017126154632008, 0.4707250951496855, 0.44738482499754295, 0.04074793201585233, nan, 0.13850404578646142, 0.43285457950063133, 0.4469182529964006, 0.007840062720501764, 0.8885988668670501, 0.746866946124605, 0.9537924535842215, 0.012023161337086795, 0.24114295250810605, 0.37191019096397804, 0.0] | | 0.0572 | 24.25 | 9700 | 0.6468 | 0.5169 | 0.4312 | 0.8893 | [nan, 0.9401996856733055, 0.9583929096522826, 0.5344988317757009, 0.8275082400146594, 0.6494017622545427, nan, 0.7543103076809053, 0.8711154338852778, 0.24802187331703882, 0.9453213909924968, 0.5670947559068082, 0.0, 0.7040763673890609, 0.20204313280363223, 0.8891017730726765, 0.0, 0.06668761291336109, 0.9255172844843733, 0.1113677378764549, 0.6754443327730256, 0.5202249807001851, 0.044248282026928876, nan, 0.19305231360703007, 0.5827890301983566, 0.55261350291374, 0.014101531023368252, 0.9394324953961886, 0.9048990380903004, 0.9755035483352065, 0.0154197231547101, 0.45343331504399603, 0.47399118420979125, 0.0] | [nan, 0.863689319961114, 0.895499199129711, 0.4429491151299229, 0.765606502579043, 0.48571154804691785, nan, 0.6324972973597951, 0.6956526681114833, 0.21654760828284655, 0.8900625950293436, 0.47545424740738185, 0.0, 0.5803666368933691, 0.08725014977397745, 0.5992339680455242, 0.0, 0.06544361365913821, 0.7982999807741021, 0.09452243441114062, 0.4717078672807595, 0.4521680319629779, 0.04200588718873478, nan, 0.13927135130851676, 0.4339583670272156, 0.4507663389242337, 0.01348747591522158, 0.8884945203133995, 0.7465496843182982, 0.9537005332798949, 0.012399112712579277, 0.24028127759471044, 0.3662329926099869, 0.0] | | 0.1 | 24.5 | 9800 | 0.6434 | 0.5135 | 0.4300 | 0.8895 | [nan, 0.9377224102212196, 0.9606645248290818, 0.5361588785046729, 0.8331230894215592, 0.6375564947567199, nan, 0.7494747310743753, 0.8814869288798216, 0.23789303616554125, 0.9491298161249899, 0.5208281880299662, 0.0, 0.7291537667698659, 0.1923319460209358, 0.8872670000649477, 0.0, 0.058754221977849345, 0.9251466166261608, 0.10029967383565953, 0.684280516653427, 0.5108906098741529, 0.04338231186099782, nan, 0.1931896196622271, 0.581302663945151, 0.5429748953047794, 0.014101531023368252, 0.939044218900316, 0.9053540699149504, 0.9762874046608516, 0.016517986655062374, 0.4174033205307972, 0.4717006430275368, 0.0] | [nan, 0.8641608155359141, 0.8958643122776131, 0.4417664033758718, 0.7644541831979321, 0.4846296892790795, nan, 0.6335999382179972, 0.6905137105945841, 0.21054850773630565, 0.8890883354259757, 0.44958072768618534, 0.0, 0.6023700925018117, 0.08546290069491146, 0.6030192343768966, 0.0, 0.057282891713891865, 0.7981027891830667, 0.08634672672073433, 0.470738722708764, 0.44815859378883993, 0.04122753457750405, nan, 0.1376066035521477, 0.4340720968586592, 0.4532255678035067, 0.01352918438345574, 0.888563607775072, 0.7458284701692807, 0.9538944088343424, 0.01350879014029907, 0.2349899322716456, 0.3667384437299315, 0.0] | | 0.0547 | 24.75 | 9900 | 0.6482 | 0.5155 | 0.4313 | 0.8898 | [nan, 0.9397340904212859, 0.9603330836947732, 0.5307733644859813, 0.8309005858255233, 0.6429241895489165, nan, 0.7515697741559071, 0.8821369265075675, 0.23520029827250508, 0.948613379528076, 0.5628961883592657, 0.0, 0.7383384932920537, 0.19170134947660486, 0.8888176268104176, 0.0, 0.06747309716440185, 0.9241314709843229, 0.1176757893342605, 0.6804680836745651, 0.509839842170402, 0.04290742499580982, nan, 0.19313469724014828, 0.5775631967341812, 0.5366821032106535, 0.009669621273166801, 0.9403802717370998, 0.9035215326574961, 0.9734618635336802, 0.012358054623067678, 0.41701721229856326, 0.48626373626373626, 0.0] | [nan, 0.8640778611527823, 0.8958137823018933, 0.4460626314967881, 0.7641756445447411, 0.4858917928580605, nan, 0.6328187132466054, 0.6908867956078256, 0.20850548118768247, 0.8893168906380365, 0.47044860327507915, 0.0, 0.6030682345007797, 0.08536927829261444, 0.6011740028114567, 0.0, 0.06583048076431819, 0.7992350659678636, 0.09887388797306791, 0.4713607906006725, 0.44755617108819296, 0.040873892333484124, nan, 0.13801020408163264, 0.4335135793399971, 0.45185060816356987, 0.0093603744149766, 0.8886009280250379, 0.7464543006342957, 0.9536265277974683, 0.010431767147039596, 0.2352570275599578, 0.3719794479055262, 0.0] | | 0.0627 | 25.0 | 10000 | 0.6463 | 0.5168 | 0.4317 | 0.8895 | [nan, 0.9354022848098984, 0.9601675641402632, 0.5369719626168225, 0.8337939300328185, 0.6403441237446122, nan, 0.7582108280375539, 0.8834986003700717, 0.24187000289987157, 0.948116751458167, 0.5520704700749156, 0.0, 0.7381320949432405, 0.19649388321352, 0.888963759173865, 0.0, 0.07624433796769041, 0.9231866922167408, 0.1182221559959602, 0.6801081993642044, 0.5121910497873957, 0.04447175819878205, nan, 0.19406837841548813, 0.5788088135238394, 0.5379894086104895, 0.008460918614020952, 0.9391146435745414, 0.9050362370798539, 0.9765451034803329, 0.015450806083965353, 0.41939482614968804, 0.4941702933568719, 0.0] | [nan, 0.8640678937775673, 0.895377615265056, 0.442350332594235, 0.7643727945096741, 0.4849891658522591, nan, 0.6340492784936108, 0.6910083381883088, 0.21346568681218236, 0.8895978581938467, 0.46446072065520405, 0.0, 0.601404187337089, 0.08586860670194003, 0.6029780227646933, 0.0, 0.07410800631139614, 0.7995575849393181, 0.09964415294445995, 0.4716975388811325, 0.4492564945882909, 0.04216548363174065, nan, 0.13932260862707987, 0.43292556418938755, 0.4516033033256454, 0.00821917808219178, 0.8889508587805682, 0.7461158390782254, 0.954070468766836, 0.012555965083260888, 0.23512657506778772, 0.3742610137901782, 0.0] | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
IsaacSST/gpt2-xl-ft-d4-0.15-n-3
IsaacSST
2022-03-21T07:29:50Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-21T04:55:00Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-d4-0.15-n-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-d4-0.15-n-3 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4877 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 156 | 1.3294 | | No log | 2.0 | 312 | 1.3466 | | No log | 3.0 | 468 | 1.4295 | | 1.1304 | 4.0 | 624 | 1.4877 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
IsaacSST/gpt2-xl-ft-d4-0.3
IsaacSST
2022-03-21T04:24:22Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-21T01:38:11Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-d4-0.3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-d4-0.3 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 156 | 1.2334 | | No log | 2.0 | 312 | 1.2392 | | No log | 3.0 | 468 | 1.2944 | | 1.1868 | 4.0 | 624 | 1.3401 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
beston91/gpt2-xl_ft_mult_10k
beston91
2022-03-20T22:27:58Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-18T15:46:08Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_mult_10k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_mult_10k This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 54 | 1.3358 | | No log | 1.99 | 108 | 0.7486 | | No log | 2.99 | 162 | 0.6997 | | No log | 3.99 | 216 | 0.6916 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 25.89222526550293 ### Dataset Size Size: 5000
jcai1/similarity6
jcai1
2022-03-20T21:38:25Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-20T21:32:15Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: similarity6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # similarity6 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 393 | 0.2287 | 0.9341 | 0.9112 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
KoboldAI/GPT-Neo-2.7B-Shinen
KoboldAI
2022-03-20T18:49:18Z
669
22
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: en license: mit --- # GPT-Neo 2.7B - Shinen ## Model Description GPT-Neo 2.7B-Shinen is a finetune created using EleutherAI's GPT-Neo 2.7B model. Compared to GPT-Neo-2.7-Horni, this model is much heavier on the sexual content. **Warning: THIS model is NOT suitable for use by minors. The model will output X-rated content.** ## Training data The training data contains user-generated stories from sexstories.com. All stories are tagged using the following way: ``` [Theme: <theme1>, <theme2> ,<theme3>] <Story goes here> ``` ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='KoboldAI/GPT-Neo-2.7B-Shinen') >>> generator("She was staring at me", do_sample=True, min_length=50) [{'generated_text': 'She was staring at me with a look that said it all. She wanted me so badly tonight that I wanted'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo-Shinen was trained on a dataset known to contain profanity, lewd, and otherwise abrasive language. GPT-Neo-Shinen *WILL* produce socially unacceptable text without warning. GPT-Neo-Shinen will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ### BibTeX entry and citation info The model is made using the following software: ```bibtex @software{gpt-neo, author = {Black, Sid and Leo, Gao and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}}, month = mar, year = 2021, note = {{If you use this software, please cite it using these metadata.}}, publisher = {Zenodo}, version = {1.0}, doi = {10.5281/zenodo.5297715}, url = {https://doi.org/10.5281/zenodo.5297715} } ```
KoboldAI/GPT-J-6B-Shinen
KoboldAI
2022-03-20T18:48:45Z
1,746
24
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "en", "arxiv:2101.00027", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: en license: mit --- # GPT-J 6B - Shinen ## Model Description GPT-J 6B-Shinen is a finetune created using EleutherAI's GPT-J 6B model. Compared to GPT-Neo-2.7-Horni, this model is much heavier on the sexual content. **Warning: THIS model is NOT suitable for use by minors. The model will output X-rated content.** ## Training data The training data contains user-generated stories from sexstories.com. All stories are tagged using the following way: ``` [Theme: <theme1>, <theme2> ,<theme3>] <Story goes here> ``` ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='KoboldAI/GPT-J-6B-Shinen') >>> generator("She was staring at me", do_sample=True, min_length=50) [{'generated_text': 'She was staring at me with a look that said it all. She wanted me so badly tonight that I wanted'}] ``` ### Limitations and Biases The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output. GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See [Sections 5 and 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ### BibTeX entry and citation info The model uses the following model as base: ```bibtex @misc{gpt-j, author = {Wang, Ben and Komatsuzaki, Aran}, title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/), as well as the Cloud TPU team for providing early access to the [Cloud TPU VM](https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms) Alpha.
beston91/gpt2-xl_ft_mult_5k
beston91
2022-03-20T17:31:57Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-19T08:50:34Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_mult_5k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_mult_5k This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 27 | 6.3035 | | No log | 1.99 | 54 | 1.2709 | | No log | 2.99 | 81 | 0.7482 | | No log | 3.99 | 108 | 0.6758 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 21.267963409423828 ### Dataset Size Size: 5000
cammy/pegasus-cnn_dailymail-1000-lit-evalMA-ga
cammy
2022-03-20T14:36:20Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-20T13:26:27Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-cnn_dailymail-1000-lit-evalMA-ga results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-cnn_dailymail-1000-lit-evalMA-ga This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6852 - Rouge1: 25.789 - Rouge2: 11.0694 - Rougel: 20.7716 - Rougelsum: 22.4851 - Gen Len: 46.32 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 250 | 1.7061 | 25.8286 | 10.8156 | 20.9502 | 22.6588 | 44.36 | | 1.4533 | 2.0 | 500 | 1.6876 | 26.0862 | 11.5197 | 21.1282 | 23.0963 | 45.65 | | 1.4533 | 3.0 | 750 | 1.6852 | 25.789 | 11.0694 | 20.7716 | 22.4851 | 46.32 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
KoboldAI/GPT-J-6B-Janeway
KoboldAI
2022-03-20T12:59:44Z
4,477
13
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "en", "arxiv:2101.00027", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: en license: mit --- # GPT-J 6B - Janeway ## Model Description GPT-J 6B-Janeway is a finetune created using EleutherAI's GPT-J 6B model. ## Training data The training data contains around 2210 ebooks, mostly in the sci-fi and fantasy genres. The dataset is based on the same dataset used by GPT-Neo-2.7B-Picard, with 20% more data in various genres. Some parts of the dataset have been prepended using the following text: `[Genre: <genre1>,<genre2>]` ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='KoboldAI/GPT-J-6B-Janeway') >>> generator("Welcome Captain Janeway, I apologize for the delay.", do_sample=True, min_length=50) [{'generated_text': 'Welcome Captain Janeway, I apologize for the delay."\nIt's all right," Janeway said. "I'm certain that you're doing your best to keep me informed of what\'s going on."'}] ``` ### Limitations and Biases The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output. GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See [Sections 5 and 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ### BibTeX entry and citation info The model uses the following model as base: ```bibtex @misc{gpt-j, author = {Wang, Ben and Komatsuzaki, Aran}, title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/), as well as the Cloud TPU team for providing early access to the [Cloud TPU VM](https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms) Alpha.
KoboldAI/GPT-Neo-2.7B-Janeway
KoboldAI
2022-03-20T12:57:50Z
124
6
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: en license: mit --- # GPT-Neo 2.7B - Janeway ## Model Description GPT-Neo 2.7B-Janeway is a finetune created using EleutherAI's GPT-Neo 2.7B model. ## Training data The training data contains around 2210 ebooks, mostly in the sci-fi and fantasy genres. The dataset is based on the same dataset used by GPT-Neo-2.7B-Picard, with 20% more data in various genres. Some parts of the dataset have been prepended using the following text: `[Genre: <genre1>,<genre2>]` ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='KoboldAI/GPT-Neo-2.7B-Janeway') >>> generator("Welcome Captain Janeway, I apologize for the delay.", do_sample=True, min_length=50) [{'generated_text': 'Welcome Captain Janeway, I apologize for the delay."\nIt's all right," Janeway said. "I'm certain that you're doing your best to keep me informed of what\'s going on."'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ### BibTeX entry and citation info The model is made using the following software: ```bibtex @software{gpt-neo, author = {Black, Sid and Leo, Gao and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}}, month = mar, year = 2021, note = {{If you use this software, please cite it using these metadata.}}, publisher = {Zenodo}, version = {1.0}, doi = {10.5281/zenodo.5297715}, url = {https://doi.org/10.5281/zenodo.5297715} } ```
mitiku/AmharicWICPostag10Tags
mitiku
2022-03-20T10:11:33Z
4
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-06T20:46:20Z
--- tags: - generated_from_trainer model-index: - name: AmharicWICPostag10Tags results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AmharicWICPostag10Tags This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
mitiku/AmharicCacoPostag
mitiku
2022-03-20T10:11:18Z
4
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-06T20:34:40Z
--- tags: - generated_from_trainer model-index: - name: AmharicCacoPostag results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AmharicCacoPostag This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
mitiku/AmharicWICPostag
mitiku
2022-03-20T10:10:58Z
3
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-06T20:42:53Z
--- tags: - generated_from_trainer model-index: - name: AmharicWICPostag results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AmharicWICPostag This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
mrp/simcse-model-wangchanberta
mrp
2022-03-20T09:00:47Z
6
0
transformers
[ "transformers", "pytorch", "camembert", "feature-extraction", "arxiv:2104.08821", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-20T08:34:14Z
# {mrp/simcse-model-wangchanberta} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> We use SimCSE [here](https://arxiv.org/pdf/2104.08821.pdf) by using mBERT as the baseline model and training the model with Thai Wikipedia [here](https://github.com/PyThaiNLP/ThaiWiki-clean/releases/tag/20210620?fbclid=IwAR1YcmZkb-xd1ibTWCJOcu98_FQ5x3ioZaGW1ME-VHy9fAQLhEr5tXTJygA) ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["ฉันนะคือคนรักชาติยังไงละ!", "พวกสามกีบล้มเจ้า!"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ```
espnet/ftshijt_espnet2_asr_dsing_hubert_conformer
espnet
2022-03-20T04:46:53Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "dataset:dsing", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-20T04:45:28Z
--- tags: - espnet - audio - automatic-speech-recognition language: noinfo datasets: - dsing license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/ftshijt_espnet2_asr_dsing_hubert_conformer` This model was trained by jiatong using dsing recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd egs2/dsing/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/ftshijt_espnet2_asr_dsing_hubert_conformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sat Mar 19 23:02:37 EDT 2022` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.10.1` - Git hash: `c1ed71c6899e54c0b3dad82687886b1183cd0885` - Commit date: `Wed Mar 16 23:34:49 2022 -0400` ## asr_train_asr_conformer7_hubert_ll60k_large_raw_bpe500_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_bpe500_valid.loss.ave_asr_model_latest/dev|482|4018|83.6|9.4|7.0|6.4|22.8|58.3| |decode_asr_lm_lm_train_lm_bpe500_valid.loss.ave_asr_model_latest/test|480|4632|81.4|12.3|6.3|4.5|23.1|52.1| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_bpe500_valid.loss.ave_asr_model_latest/dev|482|18692|88.5|3.1|8.4|5.9|17.4|58.3| |decode_asr_lm_lm_train_lm_bpe500_valid.loss.ave_asr_model_latest/test|480|21787|87.9|4.3|7.8|4.5|16.6|52.1| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_bpe500_valid.loss.ave_asr_model_latest/dev|482|6097|82.2|7.1|10.7|5.7|23.5|58.3| |decode_asr_lm_lm_train_lm_bpe500_valid.loss.ave_asr_model_latest/test|480|7736|81.7|9.2|9.1|4.0|22.3|52.1| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer7_hubert_ll60k_large.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer7_hubert_ll60k_large_raw_bpe500_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 35 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 8 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_bpe500_sp/train/speech_shape - exp/asr_stats_raw_bpe500_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_bpe500_sp/valid/speech_shape - exp/asr_stats_raw_bpe500_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train30_sp/wav.scp - speech - kaldi_ark - - dump/raw/train30_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0025 scheduler: warmuplr scheduler_conf: warmup_steps: 40000 token_list: - <blank> - <unk> - ▁I - '''' - ▁YOU - S - T - ▁THE - M - ▁ME - ▁A - ▁AND - ▁TO - E - A - ING - D - ▁MY - ▁ - O - ▁IT - I - N - RE - Y - ▁BE - ▁IN - ▁ON - ▁LOVE - U - ▁WE - LL - H - ▁YOUR - ▁S - IN - ▁OF - ▁DO - ▁THAT - ▁ALL - L - ▁DON - ▁OH - ▁LIKE - ▁KNOW - ▁FOR - ▁CAN - ▁JUST - P - ▁BUT - ED - K - ▁WHEN - ▁SO - R - ▁GO - ▁WHAT - ▁C - ▁WITH - W - ▁F - C - ▁NO - ER - ▁ONE - ▁LET - VE - ES - ▁NOW - ▁BABY - G - ▁GOT - ▁COME - CAUSE - LE - B - ▁B - AR - ▁UP - ▁' - ▁W - ▁SEE - ▁TIME - ▁ARE - ▁G - ▁LOOK - ▁THIS - F - ▁IS - ▁NEVER - ▁M - ▁P - AN - ▁WAS - ▁WAY - ▁IF - OR - ▁SAY - V - ▁R - ▁T - ▁DOWN - RA - ▁THERE - ▁HEART - ▁NOT - RO - ▁WILL - ▁OUT - CE - ▁WANT - ▁YEAH - ▁HAVE - ▁GIVE - ▁TOO - ▁GONNA - ▁HOW - ▁NEED - ▁GET - ▁TAKE - ▁EVERY - ▁FEEL - ▁HE - EN - ▁FROM - ▁HA - ▁K - ▁SHE - 'ON' - ▁DI - RI - ▁ONLY - NE - ▁WHO - ▁AWAY - ▁E - ▁D - ▁LIFE - ▁MAKE - IC - ▁BACK - ▁WHERE - ▁MADE - ▁DAY - ▁HERE - ▁LO - ▁HER - ▁AS - ▁GOOD - ▁WANNA - ▁OOH - ▁TELL - LY - TH - ▁WON - ▁LIGHT - ▁KEEP - ▁MA - ▁LA - ▁SH - ▁WORLD - ▁MORE - ▁LI - AL - ▁COULD - ▁GIRL - ▁NOTHING - ▁EVER - ▁THINK - IE - ▁BY - ▁AT - ▁TONIGHT - ▁THEY - ▁CALL - ▁HO - ▁WOULD - IL - ▁OUR - ▁FALL - ▁NIGHT - ▁THAN - ▁DE - ▁SOME - ▁WAIT - ▁RIGHT - ▁RE - ▁HALLELUJAH - ▁TH - NG - ▁CO - ▁WERE - ▁TALK - ET - ▁BO - ▁HOLD - UR - ▁BEEN - ▁US - ▁PA - VER - ▁EYES - ▁DREAM - ▁SONG - ▁SHOULD - ▁STILL - ▁OVER - TA - ▁ANYMORE - IGHT - ▁STAY - ▁BETTER - LESS - ▁THROUGH - ▁LITTLE - X - ▁GONE - ▁AIN - ▁DA - ▁HOLDING - ▁HURT - ▁TRY - ▁FIND - Z - DE - ▁LAST - ▁SAID - ▁ALWAYS - ▁BODY - ▁MIND - ▁CRY - ▁EVEN - ▁RUN - ▁HOPE - ▁WITHOUT - ▁MISS - ▁ABOUT - ▁HAND - ▁J - ▁AGAIN - ▁THOUGH - ▁NAH - ▁LIVE - ▁BA - ▁OLD - ▁HEAD - ▁FIRE - ▁MAN - ▁SOMETHING - ▁WHY - THER - ▁HOME - ▁OR - ▁INSIDE - ▁NEW - ▁HEY - TION - ▁EVERYTHING - ▁HAD - ▁SOMETIMES - ▁HARD - ▁TOUCH - ▁HEAR - ▁AM - ▁MUCH - ▁LONG - ▁STAR - GETTING - ▁WALK - ▁PEOPLE - ▁BEFORE - ▁CLOSE - ▁TWO - ▁FAR - ▁SHOW - ▁STAND - ▁LOSE - ▁HELP - ▁NAME - ▁BOY - ▁TRUE - ▁PLAY - ▁DARK - ▁THINGS - ▁NA - ▁TEAR - ▁END - ▁NOBODY - ▁SEA - ▁ROCKABYE - ▁BELIEVE - ▁BROKE - ▁AROUND - ▁START - ▁KISS - ▁FEELING - ▁BREAK - ▁SOMEONE - ▁FRIEND - ▁ALONE - ▁BEAUTIFUL - ▁CRAZY - ▁OWN - OSE - ▁STOP - ▁LOST - ▁HIM - ▁BAD - ▁CHANCE - ▁REALLY - ▁WISH - ▁MOVE - ▁SKY - ▁PLACE - AKE - ▁LEAVE - ▁YA - ▁STRONG - ▁PUT - ▁OPEN - ▁WRONG - ▁COLD - OCK - ▁USED - ▁FOUND - ▁LONELY - ▁DANCE - EACH - ▁ANOTHER - ▁SIDE - ▁UNDER - ▁MATTER - ▁THESE - ▁CARE - ▁MINE - ▁SHINE - ▁AFRAID - ▁TURN - ▁PLEASE - ▁SUN - ▁DIAMOND - ▁UNTIL - ▁FACE - ▁LEARN - ▁TRUST - ▁WONDER - ▁BREATH - ATE - ▁SORRY - ▁HU - ▁WATCH - ▁LATE - ROUND - ▁ARMS - ▁PERFECT - ▁MAYBE - ▁PULL - ▁REMEMBER - ▁FIGHT - ▁MYSELF - ▁INTO - ▁DARLING - ▁THUNDER - ▁FOLLOW - ▁REASON - ▁BURN - ▁HIS - ▁MUST - ▁FREE - ▁FLASHLIGHT - ▁1 - ▁ENOUGH - ▁DRINK - ▁WORDS - ▁HIDE - ▁UN - ▁FORGET - ▁SURE - ▁CHANGE - ▁SMILE - ▁PROMISE - ▁FOREVER - '2' - ▁SWEET - ▁SAME - ▁OOOH - ▁PART - ▁SOMEBODY - NESS - ▁BRIGHT - ▁HEAVEN - ▁DEEP - ▁HIGH - ▁INSTEAD - ▁MOMENT - ▁ALONG - ▁ALRIGHT - ▁SLOW - ▁TOMORROW - ▁SOUL - ▁QU - ▁PUSH - ▁CHANDELIER - ▁LEFT - SIDE - ▁TOLD - ▁KNEW - READY - ▁LOVING - ▁SAW - '3' - ▁WORK - ▁DANCING - ▁THREE - ▁SAVE - ▁SHOOT - ▁LEAD - ▁SKI - ▁WILD - ▁WIND - ▁WHILE - ▁EDGE - ▁HAPPY - ▁FEAR - STUCK - ▁MOST - ▁LISTEN - ▁WOAH - ▁FIRST - ▁JOLENE - ▁VOICE - ▁COMP - ▁MILLION - FUL - ▁OOOOOH - ▁CAME - ▁RISE - ▁NEXT - ▁COUNT - ▁MOUNTAIN - ▁ROOM - ▁BLUE - ▁HIT - ▁RAISE - J - ▁THOUSAND - ▁SHAP - ▁TREAT - ▁DRY - ▁FINALLY - ▁TITANIUM - ▁CARRY - ▁TRUTH - ▁WATER - ▁MORNING - TIME - ▁BELONG - ▁UMA - ▁ALIVE - ▁ELSE - ▁ANGEL - ▁BRAND - ▁APART - ▁EVERYBODY - ▁SOUND - ▁GUESS - ▁PRAY - ▁FAITH - ▁AFTER - ▁THROW - ▁TRIED - ▁SLEEP - ▁FOOL - ▁DISCOVERING - ▁FUCK - ▁TASTE - ▁UNDERSTAND - ▁SHAME - ▁POWER - ▁WELCOME - ▁FELT - ▁SAFE - ▁DESERVE - ▁GAME - ▁SUPERMA - ▁SWEAR - ▁BETWEEN - ▁GLASS - ▁CATCH - ▁TOGETHER - '0' - '4' - '6' - '5' - '1' - '8' - '7' - '9' - Q - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false use_preprocessor: true token_type: bpe bpemodel: data/token_list/bpe_unigram500/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: hubert_large_ll60k download_dir: ./hub multilayer_feature: true fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d2 normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
beston91/gpt2-xl_ft_mult_1k
beston91
2022-03-19T23:56:20Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-18T23:49:34Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_mult_1k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_mult_1k This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.1137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.91 | 5 | 6.7968 | | No log | 1.91 | 10 | 6.6621 | | No log | 2.91 | 15 | 6.4335 | | No log | 3.91 | 20 | 6.1137 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
beston91/gpt2-xl-ft-logits-1k
beston91
2022-03-19T22:46:27Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-18T12:21:42Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-logits-1k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-logits-1k This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.5341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.91 | 5 | 5.5302 | | No log | 1.91 | 10 | 5.5310 | | No log | 2.91 | 15 | 5.5323 | | No log | 3.91 | 20 | 5.5341 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 17.59481430053711 ### Dataset Size Size: 5000
Ketzu/koelectra-sts-v0.5
Ketzu
2022-03-19T22:19:46Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-19T13:07:38Z
--- tags: - generated_from_trainer metrics: - spearmanr model-index: - name: koelectra-sts-v0.5 results: - task: name: Text Classification type: text-classification metrics: - name: Spearmanr type: spearmanr value: 0.87026647480689 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # koelectra-sts-v0.5 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0213 - Pearson: 0.9958 - Spearmanr: 0.8703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:---------:| | 0.058 | 1.0 | 6250 | 0.0428 | 0.9915 | 0.8702 | | 0.0433 | 2.0 | 12500 | 0.0448 | 0.9911 | 0.8685 | | 0.0362 | 3.0 | 18750 | 0.0261 | 0.9950 | 0.8705 | | 0.0107 | 4.0 | 25000 | 0.0234 | 0.9953 | 0.8702 | | 0.0075 | 5.0 | 31250 | 0.0213 | 0.9958 | 0.8703 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.10.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
msamogh/autonlp-cai-out-of-scope-649919118
msamogh
2022-03-19T21:40:40Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autonlp", "en", "dataset:msamogh/autonlp-data-cai-out-of-scope", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-19T21:40:15Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - msamogh/autonlp-data-cai-out-of-scope co2_eq_emissions: 0.3996916853309825 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 649919118 - CO2 Emissions (in grams): 0.3996916853309825 ## Validation Metrics - Loss: 0.48289698362350464 - Accuracy: 0.8064516129032258 - Precision: 0.828125 - Recall: 0.8833333333333333 - AUC: 0.8353535353535354 - F1: 0.8548387096774193 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/msamogh/autonlp-cai-out-of-scope-649919118 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919118", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919118", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
huggingtweets/planetmoney
huggingtweets
2022-03-19T20:19:56Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/planetmoney/1647721191942/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/473888336449269761/vIurMh9f_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">NPR's Planet Money</div> <div style="text-align: center; font-size: 14px;">@planetmoney</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from NPR's Planet Money. | Data | NPR's Planet Money | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 601 | | Short tweets | 37 | | Tweets kept | 2608 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7jiqlr8t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @planetmoney's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1t6h63jy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1t6h63jy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/planetmoney') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
vinaykudari/distilGPT-ft-eli5
vinaykudari
2022-03-19T17:24:50Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-19T16:05:12Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilGPT-ft-eli5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilGPT-ft-eli5 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.5643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 30 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 281 | 5.8277 | | 5.7427 | 2.0 | 562 | 5.7525 | | 5.7427 | 3.0 | 843 | 5.7016 | | 5.5614 | 4.0 | 1124 | 5.6593 | | 5.5614 | 5.0 | 1405 | 5.6273 | | 5.4408 | 6.0 | 1686 | 5.6029 | | 5.4408 | 7.0 | 1967 | 5.5855 | | 5.3522 | 8.0 | 2248 | 5.5739 | | 5.2948 | 9.0 | 2529 | 5.5670 | | 5.2948 | 10.0 | 2810 | 5.5643 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6