modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-11 18:29:29
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 555
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-11 18:25:24
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
husnu/xtremedistil-l6-h256-uncased-TQUAD-finetuned_lr-2e-05_epochs-3
|
husnu
| 2022-01-15T03:58:24Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: xtremedistil-l6-h256-uncased-TQUAD-finetuned_lr-2e-05_epochs-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xtremedistil-l6-h256-uncased-TQUAD-finetuned_lr-2e-05_epochs-3
This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on the turkish squad dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6510
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.0113 | 1.0 | 1050 | 2.7529 |
| 2.838 | 2.0 | 2100 | 2.6510 |
| 2.8168 | 3.0 | 3150 | 2.6510 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
husnu/xtremedistil-l6-h256-uncased-finetuned_lr-2e-05_epochs-6
|
husnu
| 2022-01-14T20:57:15Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: xtremedistil-l6-h256-uncased-finetuned_lr-2e-05_epochs-6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xtremedistil-l6-h256-uncased-finetuned_lr-2e-05_epochs-6
This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2578
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.3828 | 1.0 | 1845 | 1.7946 |
| 1.5827 | 2.0 | 3690 | 1.4123 |
| 1.404 | 3.0 | 5535 | 1.3142 |
| 1.346 | 4.0 | 7380 | 1.2819 |
| 1.2871 | 5.0 | 9225 | 1.2630 |
| 1.2538 | 6.0 | 11070 | 1.2578 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
anuragshas/wav2vec2-large-xlsr-as
|
anuragshas
| 2022-01-14T16:41:25Z | 21 | 0 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"as",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
language: as
datasets:
- common_voice
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Anurag Singh XLSR Wav2Vec2 Large 53 Assamese
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice as
type: common_voice
args: as
metrics:
- name: Test WER
type: wer
value: 69.63
---
# Wav2Vec2-Large-XLSR-53-Assamese
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Assamese using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "as", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-as")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-as")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Assamese test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "as", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-as")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-as")
model.to("cuda")
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\”\\়\\।]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub('’ ',' ',batch["sentence"])
batch["sentence"] = re.sub(' ‘',' ',batch["sentence"])
batch["sentence"] = re.sub('’|‘','\'',batch["sentence"])
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 69.63 %
## Training
The Common Voice `train` and `validation` datasets were used for training.
|
vennify/t5-base-grammar-correction
|
vennify
| 2022-01-14T16:35:23Z | 13,051 | 165 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"grammar",
"en",
"dataset:jfleg",
"arxiv:1702.04066",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language: en
tags:
- grammar
- text2text-generation
license: cc-by-nc-sa-4.0
datasets:
- jfleg
---
# T5 Grammar Correction
This model generates a revised version of inputted text with the goal of containing fewer grammatical errors.
It was trained with [Happy Transformer](https://github.com/EricFillion/happy-transformer)
using a dataset called [JFLEG](https://arxiv.org/abs/1702.04066). Here's a [full article](https://www.vennify.ai/fine-tune-grammar-correction/) on how to train a similar model.
## Usage
`pip install happytransformer `
```python
from happytransformer import HappyTextToText, TTSettings
happy_tt = HappyTextToText("T5", "vennify/t5-base-grammar-correction")
args = TTSettings(num_beams=5, min_length=1)
# Add the prefix "grammar: " before each input
result = happy_tt.generate_text("grammar: This sentences has has bads grammar.", args=args)
print(result.text) # This sentence has bad grammar.
```
|
erwanlc/t5-coktails_recipe-small
|
erwanlc
| 2022-01-14T14:32:10Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: t5-coktails_recipe-small
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-coktails_recipe-small
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
lewtun/distilbert-base-uncased-finetuned-emotion-test-01
|
lewtun
| 2022-01-14T10:29:26Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion-test-01
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.39
- name: F1
type: f1
value: 0.21884892086330932
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion-test-01
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7510
- Accuracy: 0.39
- F1: 0.2188
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 2 | 1.7634 | 0.39 | 0.2188 |
| No log | 2.0 | 4 | 1.7510 | 0.39 | 0.2188 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
bob80333/speechbrain_ja2en_st_63M_yt600h
|
bob80333
| 2022-01-14T00:45:47Z | 18 | 1 |
speechbrain
|
[
"speechbrain",
"speech-translation",
"CTC",
"Attention",
"Transformer",
"pytorch",
"automatic-speech-recognition",
"en",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
language: "en"
thumbnail:
tags:
- speech-translation
- CTC
- Attention
- Transformer
- pytorch
- speechbrain
- automatic-speech-recognition
metrics:
- BLEU
---
# Conformer Encoder/Decoder for Speech Translation
This model was trained with [SpeechBrain](https://speechbrain.github.io), and is based on the Fisher Callhome recipie.
The performance of the model is the following:
| Release | CoVoSTv2 JA->EN Test BLEU | Custom Dataset Validation BLEU | Custom Dataset Test BLEU | GPUs |
|:-------------:|:--------------:|:--------------:|:--------------:|:--------:|
| 01-13-21 | 9.73 | 8.38 | 12.01 | 1xRTX 3090 |
This model was trained on subtitled audio downloaded from YouTube, and was not fine-tuned on the CoVoSTv2 training set.
When calculating the BLEU score for CoVoSTv2, the utterances were first preprocessed by the same pipeline that preprocessed the original data for the model, which includes removing all punctuation outside of apostrophes, and removing capitalization, similar to the data preprocessing done for the Fisher Callhome dataset in the speechbrain recipe.
## Pipeline description
The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.
## Install SpeechBrain
First of all, install SpeechBrain with the following command:
```
pip install speechbrain
```
### Transcribing your own audio files (Spoken Japanese, to written English)
```python
from speechbrain.pretrained import EncoderDecoderASR
st_model = EncoderDecoderASR.from_hparams(source="bob80333/speechbrain_ja2en_st_63M_yt600h")
st_model.transcribe_file("your_file_here.wav")
```
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Limitations:
The model is likely to get caught in repetitions. The model is not very good at translation, which is reflected by its low BLEU scores.
The outputs of this model are unlikely to be correct, do not rely on it for any serious purpose.
This model was trained on data from Youtube, and has inherited whatever biases can be found in Youtube audio/subtitles.
The creator of this model doesn't actually know Japanese.
|
Suzana/new-york-tokyo-london
|
Suzana
| 2022-01-13T17:53:58Z | 70 | 5 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-02T23:29:05Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: new-york-tokyo-london
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9104477763175964
---
# new-york-tokyo-london
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### London

#### New York

#### Tokyo

|
alaggung/bart-rl
|
alaggung
| 2022-01-13T17:18:17Z | 180 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"bart",
"text2text-generation",
"summarization",
"ko",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-03-02T23:29:05Z |
---
language:
- ko
tags:
- summarization
widget:
- text: "[BOS]밥 ㄱ?[SEP]고고고고 뭐 먹을까?[SEP]어제 김치찌개 먹어서 한식말고 딴 거[SEP]그럼 돈까스 어때?[SEP]오 좋다 1시 학관 앞으로 오셈[SEP]ㅇㅋ[EOS]"
inference:
parameters:
max_length: 64
top_k: 5
---
# BART R3F
[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.
[bart-r3f](https://huggingface.co/alaggung/bart-r3f) 모델에 [2021-dialogue-summary-competition](https://github.com/cosmoquester/2021-dialogue-summary-competition) 레포지토리의 RL 기법을 적용해 대화요약 Task를 학습한 모델입니다.
데이터는 [AIHub 한국어 대화요약](https://aihub.or.kr/aidata/30714) 데이터를 사용하였습니다.
|
keras-io/deep-dream
|
keras-io
| 2022-01-13T14:53:54Z | 10 | 3 |
tf-keras
|
[
"tf-keras",
"gan",
"generative adversarial networks",
"deep dream",
"license:cc0-1.0",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
tags:
- gan
- generative adversarial networks
- deep dream
license:
- cc0-1.0
---
## Keras Implementation of Deep Dream 🦚🌌
This repo contains the model and the notebook [for this Deep Dream implementation of Keras](https://keras.io/examples/generative/deep_dream/).
Full credits to: [François Chollet](https://twitter.com/fchollet)

## Background Information
"Deep dream" is an image-filtering technique which consists of taking an image classification model, and running gradient ascent over an input image to try to maximize the activations of specific layers (and sometimes, specific units in specific layers) for this input. It produces hallucination-like visuals.
It was first introduced by Alexander Mordvintsev from Google in July 2015.
Process:
- Load the original image.
- Define a number of processing scales ("octaves"), from smallest to largest.
- Resize the original image to the smallest scale.
- For every scale, starting with the smallest (i.e. current one): - Run gradient ascent - Upscale image to the next scale - Re-inject the detail that was lost at upscaling time
- Stop when we are back to the original size. To obtain the detail lost during upscaling, we simply take the original image, shrink it down, upscale it, and compare the result to the (resized) original image.
|
keras-io/deep-deterministic-policy-gradient
|
keras-io
| 2022-01-13T14:53:44Z | 7 | 0 |
tf-keras
|
[
"tf-keras",
"reinforcement learning",
"cartpole",
"deep deterministic policy gradient",
"license:cc0-1.0",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
tags:
- reinforcement learning
- cartpole
- deep deterministic policy gradient
license:
- cc0-1.0
---
## Keras Implementation of Deep Deterministic Policy Gradient ⏱🤖
This repo contains the model and the notebook [to this Keras example on Deep Deterministic Policy Gradient on pendulum](https://keras.io/examples/rl/ddpg_pendulum/).
Full credits to: [Hemant Singh](https://github.com/amifunny)

## Background Information
Deep Deterministic Policy Gradient (DDPG) is a model-free off-policy algorithm for learning continous actions.
It combines ideas from DPG (Deterministic Policy Gradient) and DQN (Deep Q-Network). It uses Experience Replay and slow-learning target networks from DQN, and it is based on DPG, which can operate over continuous action spaces.
This tutorial closely follow this paper - Continuous control with deep reinforcement learning
We are trying to solve the classic Inverted Pendulum control problem. In this setting, we can take only two actions: swing left or swing right.
What make this problem challenging for Q-Learning Algorithms is that actions are continuous instead of being discrete. That is, instead of using two discrete actions like -1 or +1, we have to select from infinite actions ranging from -2 to +2.
Just like the Actor-Critic method, we have two networks:
Actor - It proposes an action given a state.
Critic - It predicts if the action is good (positive value) or bad (negative value) given a state and an action.
DDPG uses two more techniques not present in the original DQN:
First, it uses two Target networks.
Why? Because it add stability to training. In short, we are learning from estimated targets and Target networks are updated slowly, hence keeping our estimated targets stable.
Conceptually, this is like saying, "I have an idea of how to play this well, I'm going to try it out for a bit until I find something better", as opposed to saying "I'm going to re-learn how to play this entire game after every move". See this StackOverflow answer.
Second, it uses Experience Replay.
We store list of tuples (state, action, reward, next_state), and instead of learning only from recent experience, we learn from sampling all of our experience accumulated so far.
|
keras-io/time-series-anomaly-detection-autoencoder
|
keras-io
| 2022-01-13T14:52:51Z | 14 | 13 |
tf-keras
|
[
"tf-keras",
"autoencoder",
"time series",
"anomaly detection",
"license:cc0-1.0",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
tags:
- autoencoder
- time series
- anomaly detection
license:
- cc0-1.0
---
## Keras Implementation of time series anomaly detection using an Autoencoder ⌛
This repo contains the model and the notebook [for this time series anomaly detection implementation of Keras](https://keras.io/examples/timeseries/timeseries_anomaly_detection/).
Full credits to: [Pavithra Vijay](https://github.com/pavithrasv)
## Background Information
This notebook demonstrates how you can use a reconstruction convolutional autoencoder model to detect anomalies in timeseries data.
|
mahaamami/distilroberta-base-model-transcript
|
mahaamami
| 2022-01-13T13:28:24Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilroberta-base-model-transcript
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-model-transcript
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8922
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.1193 | 1.0 | 5570 | 1.9873 |
| 2.0502 | 2.0 | 11140 | 1.9304 |
| 1.9718 | 3.0 | 16710 | 1.8922 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
nikcook/distilbert-base-uncased-finetuned-squad
|
nikcook
| 2022-01-13T11:28:01Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1581
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.2199 | 1.0 | 5533 | 1.1525 |
| 0.9463 | 2.0 | 11066 | 1.1298 |
| 0.7636 | 3.0 | 16599 | 1.1581 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
junnyu/eHealth_pytorch
|
junnyu
| 2022-01-13T10:29:01Z | 1 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
https://github.com/PaddlePaddle/Research/tree/master/KG/eHealth
|
huggingtweets/tsuda
|
huggingtweets
| 2022-01-13T08:46:49Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/tsuda/1642063525628/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1433345543963508738/qEUwKlFD_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">津田大介</div>
<div style="text-align: center; font-size: 14px;">@tsuda</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 津田大介.
| Data | 津田大介 |
| --- | --- |
| Tweets downloaded | 3244 |
| Retweets | 2873 |
| Short tweets | 227 |
| Tweets kept | 144 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/o0sc3rb4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tsuda's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1qjnl0op) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1qjnl0op/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/tsuda')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/h_ototake-hirox246-ochyai
|
huggingtweets
| 2022-01-13T07:45:50Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/h_ototake-hirox246-ochyai/1642059945521/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/646595746905620480/oeKI14gB_400x400.png')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1072419376668782597/hhmhNVER_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1481142443068198912/NCrXoLUB_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">ひろゆき, Hiroyuki Nishimura & 落合陽一 Yoichi OCHIAI & 乙武 洋匡</div>
<div style="text-align: center; font-size: 14px;">@h_ototake-hirox246-ochyai</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from ひろゆき, Hiroyuki Nishimura & 落合陽一 Yoichi OCHIAI & 乙武 洋匡.
| Data | ひろゆき, Hiroyuki Nishimura | 落合陽一 Yoichi OCHIAI | 乙武 洋匡 |
| --- | --- | --- | --- |
| Tweets downloaded | 3248 | 3240 | 3238 |
| Retweets | 281 | 2238 | 1259 |
| Short tweets | 1980 | 574 | 1437 |
| Tweets kept | 987 | 428 | 542 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3k39l31f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @h_ototake-hirox246-ochyai's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1d9okxed) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1d9okxed/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/h_ototake-hirox246-ochyai')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
flboehm/youtube-bert
|
flboehm
| 2022-01-12T21:29:46Z | 10 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: youtube-bert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# youtube-bert
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4771
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.691 | 1.0 | 1077 | 2.5445 |
| 2.5768 | 2.0 | 2154 | 2.5226 |
| 2.5227 | 3.0 | 3231 | 2.5027 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu113
- Datasets 1.17.0
- Tokenizers 0.10.3
|
ju-bezdek/slovakbert-conll2003-sk-ner
|
ju-bezdek
| 2022-01-12T20:37:34Z | 9 | 1 |
transformers
|
[
"transformers",
"pytorch",
"generated_from_trainer",
"dataset:ju-bezdek/conll2003-SK-NER",
"license:mit",
"model-index",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- ju-bezdek/conll2003-SK-NER
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: outputs
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ju-bezdek/conll2003-SK-NER
type: ju-bezdek/conll2003-SK-NER
args: conll2003-SK-NER
metrics:
- name: Precision
type: precision
value: 0.8189727994593682
- name: Recall
type: recall
value: 0.8389581169955002
- name: F1
type: f1
value: 0.8288450029922203
- name: Accuracy
type: accuracy
value: 0.9526157920337243
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# outputs
This model is a fine-tuned version of [gerulata/slovakbert](https://huggingface.co/gerulata/slovakbert) on the [ju-bezdek/conll2003-SK-NER](https://huggingface.co/datasets/ju-bezdek/conll2003-SK-NER) dataset.
It achieves the following results on the evaluation (validation) set:
- Loss: 0.1752
- Precision: 0.8190
- Recall: 0.8390
- F1: 0.8288
- Accuracy: 0.9526
## Model description
More information needed
## Code example
```python:
from transformers import pipeline, AutoModel, AutoTokenizer
from spacy import displacy
import os
model_path="ju-bezdek/slovakbert-conll2003-sk-ner"
aggregation_strategy="max"
ner_pipeline = pipeline(task='ner', model=model_path, aggregation_strategy=aggregation_strategy)
input_sentence= "Ruský premiér Viktor Černomyrdin v piatok povedal, že prezident Boris Jeľcin , ktorý je na dovolenke mimo Moskvy , podporil mierový plán šéfa bezpečnosti Alexandra Lebedu pre Čečensko, uviedla tlačová agentúra Interfax"
ner_ents = ner_pipeline(input_sentence)
print(ner_ents)
ent_group_labels = [ner_pipeline.model.config.id2label[i][2:] for i in ner_pipeline.model.config.id2label if i>0]
options = {"ents":ent_group_labels}
dicplacy_ents = [{"start":ent["start"], "end":ent["end"], "label":ent["entity_group"]} for ent in ner_ents]
displacy.render({"text":input_sentence, "ents":dicplacy_ents}, style="ent", options=options, jupyter=True, manual=True)
```
### Result:
<div>
<span class="tex2jax_ignore"><div class="entities" style="line-height: 2.5; direction: ltr">
<mark class="entity" style="background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
Ruský
<span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">MISC</span>
</mark>
premiér
<mark class="entity" style="background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
Viktor Černomyrdin
<span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">PER</span>
</mark>
v piatok povedal, že prezident
<mark class="entity" style="background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
Boris Jeľcin,
<span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">PER</span>
</mark>
, ktorý je na dovolenke mimo
<mark class="entity" style="background: #ff9561; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
Moskvy
<span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">LOC</span>
</mark>
, podporil mierový plán šéfa bezpečnosti
<mark class="entity" style="background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
Alexandra Lebedu
<span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">PER</span>
</mark>
pre
<mark class="entity" style="background: #ff9561; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
Čečensko,
<span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">LOC</span>
</mark>
uviedla tlačová agentúra
<mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
Interfax
<span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORG</span>
</mark>
</div></span>
</div>
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.3237 | 1.0 | 878 | 0.2541 | 0.7125 | 0.8059 | 0.7563 | 0.9283 |
| 0.1663 | 2.0 | 1756 | 0.2370 | 0.7775 | 0.8090 | 0.7929 | 0.9394 |
| 0.1251 | 3.0 | 2634 | 0.2289 | 0.7732 | 0.8029 | 0.7878 | 0.9385 |
| 0.0984 | 4.0 | 3512 | 0.2818 | 0.7294 | 0.8189 | 0.7715 | 0.9294 |
| 0.0808 | 5.0 | 4390 | 0.3138 | 0.7615 | 0.7900 | 0.7755 | 0.9326 |
| 0.0578 | 6.0 | 5268 | 0.3072 | 0.7548 | 0.8222 | 0.7871 | 0.9370 |
| 0.0481 | 7.0 | 6146 | 0.2778 | 0.7897 | 0.8156 | 0.8025 | 0.9408 |
| 0.0414 | 8.0 | 7024 | 0.3336 | 0.7695 | 0.8201 | 0.7940 | 0.9389 |
| 0.0268 | 9.0 | 7902 | 0.3294 | 0.7868 | 0.8140 | 0.8002 | 0.9409 |
| 0.0204 | 10.0 | 8780 | 0.3693 | 0.7657 | 0.8239 | 0.7938 | 0.9376 |
| 0.016 | 11.0 | 9658 | 0.3816 | 0.7932 | 0.8242 | 0.8084 | 0.9425 |
| 0.0108 | 12.0 | 10536 | 0.3607 | 0.7929 | 0.8256 | 0.8089 | 0.9431 |
| 0.0078 | 13.0 | 11414 | 0.3980 | 0.7915 | 0.8240 | 0.8074 | 0.9423 |
| 0.0062 | 14.0 | 12292 | 0.4096 | 0.7995 | 0.8247 | 0.8119 | 0.9436 |
| 0.0035 | 15.0 | 13170 | 0.4177 | 0.8006 | 0.8251 | 0.8127 | 0.9438 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu102
- Datasets 1.17.0
- Tokenizers 0.10.3
|
Rocketknight1/transformers-qa
|
Rocketknight1
| 2022-01-12T17:31:11Z | 4 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"question-answering",
"generated_from_keras_callback",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:04Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: transformers-qa
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# transformers-qa
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.9300
- Validation Loss: 1.1437
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.5145 | 1.1500 | 0 |
| 0.9300 | 1.1437 | 1 |
### Framework versions
- Transformers 4.16.0.dev0
- TensorFlow 2.6.0
- Datasets 1.16.2.dev0
- Tokenizers 0.10.3
|
Jainil30/wav2vec2-base-csa-10-rev3
|
Jainil30
| 2022-01-12T14:55:33Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-csa-10-rev3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-csa-10-rev3
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5869
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 18.7934 | 25.0 | 200 | 3.5869 | 1.0 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
justin871030/bert-base-uncased-goemotions-ekman-finetuned
|
justin871030
| 2022-01-12T12:44:49Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"go-emotion",
"text-classification",
"en",
"dataset:go_emotions",
"license:mit",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language: en
tags:
- go-emotion
- text-classification
- pytorch
datasets:
- go_emotions
metrics:
- f1
widget:
- text: "Thanks for giving advice to the people who need it! 👌🙏"
license: mit
---
## Model Description
1. Based on the uncased BERT pretrained model with a linear output layer.
2. Added several commonly-used emoji and tokens to the special token list of the tokenizer.
3. Did label smoothing while training.
4. Used weighted loss and focal loss to help the cases which trained badly.
|
anirudh21/distilbert-base-uncased-finetuned-qnli
|
anirudh21
| 2022-01-12T12:39:07Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-qnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: rte
metrics:
- name: Accuracy
type: accuracy
value: 0.6064981949458483
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-qnli
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8121
- Accuracy: 0.6065
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 156 | 0.6949 | 0.4874 |
| No log | 2.0 | 312 | 0.6596 | 0.5957 |
| No log | 3.0 | 468 | 0.7186 | 0.5812 |
| 0.6026 | 4.0 | 624 | 0.7727 | 0.6029 |
| 0.6026 | 5.0 | 780 | 0.8121 | 0.6065 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
anirudh21/distilbert-base-uncased-finetuned-rte
|
anirudh21
| 2022-01-12T11:32:17Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-rte
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: rte
metrics:
- name: Accuracy
type: accuracy
value: 0.6173285198555957
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-rte
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6661
- Accuracy: 0.6173
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 156 | 0.6921 | 0.5162 |
| No log | 2.0 | 312 | 0.6661 | 0.6173 |
| No log | 3.0 | 468 | 0.7794 | 0.5632 |
| 0.5903 | 4.0 | 624 | 0.8832 | 0.5921 |
| 0.5903 | 5.0 | 780 | 0.9376 | 0.5921 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
anirudh21/distilbert-base-uncased-finetuned-mrpc
|
anirudh21
| 2022-01-12T08:30:57Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8455882352941176
- name: F1
type: f1
value: 0.8958677685950412
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-mrpc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3830
- Accuracy: 0.8456
- F1: 0.8959
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 230 | 0.3826 | 0.8186 | 0.8683 |
| No log | 2.0 | 460 | 0.3830 | 0.8456 | 0.8959 |
| 0.4408 | 3.0 | 690 | 0.3835 | 0.8382 | 0.8866 |
| 0.4408 | 4.0 | 920 | 0.5036 | 0.8431 | 0.8919 |
| 0.1941 | 5.0 | 1150 | 0.5783 | 0.8431 | 0.8930 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
gpssohi/distilbart-qgen-3-3
|
gpssohi
| 2022-01-12T08:29:26Z | 14 | 3 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"question-generation",
"summarization",
"en",
"dataset:squad",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-03-02T23:29:05Z |
---
language: en
tags:
- question-generation
- summarization
license: apache-2.0
datasets:
- squad
---
# Introduction
This model checkpoint is obtained by first fine-tuning the sshleifer/distilbart-cnn-6-6 summarization checkpoint on the SQuAD dataset. After this, the 6-6 fine-tuned model is distilled down to a 3-3 model which gives us the final checkpoint. [GitHub Link for training scripts.](https://github.com/darth-c0d3r/bart-question-generation)
# Usage
The input format is as follows: `[answer] <s> [passage]`. The model will predict the question that corresponds to the answer from the passage.
# Plot

# Dataset
The goal of Question Generation is to generate a valid and fluent question according to a given passage and the target answer. Hence, the input to the model will be a passage context and an answer, and the output / target will be the question for the given answer. Question Generation can be used in many scenarios, such as automatic tutoring systems, improving the performance of Question Answering models and enabling chat-bots to lead a conversation. The final dataset is created by taking the union of the following Question Answering Datasets. The dataset must have the following three columns: context, question, answer.
## [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/)
Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowd-workers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. We use the SQuAD 1.1 variant which does not have unanswerable questions. So, every question will have a corresponding answer and vice-versa.
### Preprocessing
The first step is to remove questions which don't have answers. After that, we split the train set into Train and Eval sets and treat the dev set as the test set.
### Stats
**Original Dataset**
| Split | Num Docs | Num Contexts | Ques w/ Ans | Ques w/o Ans | Num Unique Ans |
| ----- | -------- | ------------ | ----------- | ------------ | -------------- |
| Train | 442 | 19035 | 86821 | 43498 | 86821 |
| Dev | 35 | 1204 | 5928 | 5945 | 10279 |
**After Preprocessing**
| Split | Num Rows | Context | Answer | Question |
| ----- | -------- | ---------- | ------ | -------- |
| Train | 80995 | 653,120,20 | 43,3,1 | 40,10,1 |
| Eval | 5826 | 445,123,67 | 28,3,1 | 29,10,3 |
| Test | 10297 | 629,129,25 | 29,4,1 | 31,10,3 |
The numbers in the columns indicate max, avg, min number of words.
|
anirudh21/distilbert-base-uncased-finetuned-wnli
|
anirudh21
| 2022-01-12T06:16:27Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-wnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: wnli
metrics:
- name: Accuracy
type: accuracy
value: 0.5633802816901409
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-wnli
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6883
- Accuracy: 0.5634
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 40 | 0.6883 | 0.5634 |
| No log | 2.0 | 80 | 0.6934 | 0.5634 |
| No log | 3.0 | 120 | 0.6960 | 0.5211 |
| No log | 4.0 | 160 | 0.6958 | 0.5634 |
| No log | 5.0 | 200 | 0.6964 | 0.5634 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
asakawa/wav2vec2-base-demo-colab
|
asakawa
| 2022-01-11T16:22:43Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4500
- Wer: 0.3391
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.5329 | 4.0 | 500 | 1.5741 | 1.0400 |
| 0.6432 | 8.0 | 1000 | 0.4571 | 0.4418 |
| 0.2214 | 12.0 | 1500 | 0.4381 | 0.3823 |
| 0.1294 | 16.0 | 2000 | 0.4706 | 0.3911 |
| 0.0868 | 20.0 | 2500 | 0.5252 | 0.3662 |
| 0.0616 | 24.0 | 3000 | 0.4828 | 0.3458 |
| 0.0461 | 28.0 | 3500 | 0.4500 | 0.3391 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
alaggung/bart-pretrained
|
alaggung
| 2022-01-11T16:07:39Z | 4 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"bart",
"text2text-generation",
"ko",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language:
- ko
widget:
- text: "[BOS]뭐 해?[SEP][MASK]하다가 이제 [MASK]려고[EOS]"
inference:
parameters:
max_length: 64
---
# BART Pretrained
[2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다.
[2021-dialogue-summary-competition](https://github.com/cosmoquester/2021-dialogue-summary-competition) 레포지토리의 BART Pretrain 단계를 학습한 모델입니다.
데이터는 [AIHub 한국어 대화요약](https://aihub.or.kr/aidata/30714) 데이터를 사용하였습니다.
|
uw-madison/nystromformer-512
|
uw-madison
| 2022-01-11T14:13:39Z | 1,365 | 2 |
transformers
|
[
"transformers",
"pytorch",
"nystromformer",
"fill-mask",
"arxiv:2102.03902",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
# Nyströmformer
Nyströmformer model for masked language modeling (MLM) pretrained on BookCorpus and English Wikipedia for sequence length 512.
## About Nyströmformer
The Nyströmformer model was proposed in [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and Vikas Singh.
The abstract from the paper is the following:
Transformers have emerged as a powerful tool for a broad range of natural language processing tasks. A key component that drives the impressive performance of Transformers is the self-attention mechanism that encodes the influence or dependence of other tokens on each specific token. While beneficial, the quadratic complexity of self-attention on the input sequence length has limited its application to longer sequences — a topic being actively studied in the community. To address this limitation, we propose Nyströmformer — a model that exhibits favorable scalability as a function of sequence length. Our idea is based on adapting the Nyström method to approximate standard self-attention with O(n) complexity. The scalability of Nyströmformer enables application to longer sequences with thousands of tokens. We perform evaluations on multiple downstream tasks on the GLUE benchmark and IMDB reviews with standard sequence length, and find that our Nyströmformer performs comparably, or in a few cases, even slightly better, than standard self-attention. On longer sequence tasks in the Long Range Arena (LRA) benchmark, Nyströmformer performs favorably relative to other efficient self-attention methods. Our code is available at this https URL.
## Usage
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='uw-madison/nystromformer-512')
>>> unmasker("Paris is the [MASK] of France.")
[{'score': 0.829957902431488,
'token': 1030,
'token_str': 'capital',
'sequence': 'paris is the capital of france.'},
{'score': 0.022157637402415276,
'token': 16081,
'token_str': 'birthplace',
'sequence': 'paris is the birthplace of france.'},
{'score': 0.01904447190463543,
'token': 197,
'token_str': 'name',
'sequence': 'paris is the name of france.'},
{'score': 0.017583081498742104,
'token': 1107,
'token_str': 'kingdom',
'sequence': 'paris is the kingdom of france.'},
{'score': 0.005948934704065323,
'token': 148,
'token_str': 'city',
'sequence': 'paris is the city of france.'}]
```
|
andreiliphdpr/bert-base-multilingual-uncased-finetuned-cola
|
andreiliphdpr
| 2022-01-11T13:22:43Z | 10 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: andreiliphdpr/bert-base-multilingual-uncased-finetuned-cola
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# andreiliphdpr/bert-base-multilingual-uncased-finetuned-cola
This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0423
- Train Accuracy: 0.9869
- Validation Loss: 0.0303
- Validation Accuracy: 0.9913
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 43750, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0423 | 0.9869 | 0.0303 | 0.9913 | 0 |
### Framework versions
- Transformers 4.15.0.dev0
- TensorFlow 2.6.2
- Datasets 1.15.1
- Tokenizers 0.10.3
|
andreiliphdpr/distilbert-base-uncased-finetuned-cola
|
andreiliphdpr
| 2022-01-11T12:11:00Z | 5 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: andreiliphdpr/distilbert-base-uncased-finetuned-cola
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# andreiliphdpr/distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0015
- Train Accuracy: 0.9995
- Validation Loss: 0.0570
- Validation Accuracy: 0.9915
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 43750, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.0399 | 0.9870 | 0.0281 | 0.9908 | 0 |
| 0.0182 | 0.9944 | 0.0326 | 0.9901 | 1 |
| 0.0089 | 0.9971 | 0.0396 | 0.9912 | 2 |
| 0.0040 | 0.9987 | 0.0486 | 0.9918 | 3 |
| 0.0015 | 0.9995 | 0.0570 | 0.9915 | 4 |
### Framework versions
- Transformers 4.15.0.dev0
- TensorFlow 2.6.2
- Datasets 1.15.1
- Tokenizers 0.10.3
|
huang0624/Taiwan_House_Prediction
|
huang0624
| 2022-01-11T11:12:21Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-03-02T23:29:05Z |
Hi, this is Taiwan_House_Prediction.
|
0x7o/keyt5-base
|
0x7o
| 2022-01-11T03:52:53Z | 28 | 1 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"ru",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:04Z |
---
language:
- ru
license: mit
inference:
parameters:
top_p: 0.9
widget:
- text: "В России может появиться новый штамм коронавируса «омикрон», что может привести к подъему заболеваемости в январе, заявил доцент кафедры инфекционных болезней РУДН Сергей Вознесенский. Он отметил, что вариант «дельта» вызывал больше летальных случаев, чем омикрон, именно на фоне «дельты» была максимальная летальность."
example_title: "Коронавирус"
- text: "Начальника штаба обороны Великобритании адмирала Тони Радакина заставили имитировать активность во время визита в ангар с тяжелым вооружением, сообщила британская пресса. В приказе говорилось, что военнослужащим было велено подбегать к автомобилям, открывать все люки, затворы, листать руководство по эксплуатации и осматриваться машины, будто проводится функциональный тест для обеспечения правильной работы оборудования."
example_title: "Британия"
- text: "Для воспроизведения музыки достаточно нажимать на кнопки клавиатуры. Каждой клавише соответствует определенный семпл — есть маракасы и футуристичные звуки, напоминающие выстрелы бластеров. Из всего многообразия можно формировать собственные паттерны и наблюдать за визуализацией с анимированными геометрическими фигурами. Что интересно, нажатием клавиши пробел можно полностью переменить оформление, цвета на экране и звучание семплов."
example_title: "Технологии"
---
## keyT5. Base (small) version
[](https://github.com/0x7o/text2keywords "Go to GitHub repo")
[](https://github.com/0x7o/text2keywords)
[](https://github.com/0x7o/text2keywords)
Supported languages: ru
Github - [text2keywords](https://github.com/0x7o/text2keywords)
[Pretraining Large version](https://huggingface.co/0x7194633/keyt5-large)
|
[Pretraining Base version](https://huggingface.co/0x7194633/keyt5-base)
# Usage
Example usage (the code returns a list with keywords. duplicates are possible):
[](https://colab.research.google.com/github/0x7o/text2keywords/blob/main/example/keyT5_use.ipynb)
```
pip install transformers sentencepiece
```
```python
from itertools import groupby
import torch
from transformers import T5ForConditionalGeneration, T5Tokenizer
model_name = "0x7194633/keyt5-large" # or 0x7194633/keyt5-base
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
def generate(text, **kwargs):
inputs = tokenizer(text, return_tensors='pt')
with torch.no_grad():
hypotheses = model.generate(**inputs, num_beams=5, **kwargs)
s = tokenizer.decode(hypotheses[0], skip_special_tokens=True)
s = s.replace('; ', ';').replace(' ;', ';').lower().split(';')[:-1]
s = [el for el, _ in groupby(s)]
return s
article = """Reuters сообщил об отмене 3,6 тыс. авиарейсов из-за «омикрона» и погоды
Наибольшее число отмен авиарейсов 2 января пришлось на американские авиакомпании
SkyWest и Southwest, у каждой — более 400 отмененных рейсов. При этом среди
отмененных 2 января авиарейсов — более 2,1 тыс. рейсов в США. Также свыше 6400
рейсов были задержаны."""
print(generate(article, top_p=1.0, max_length=64))
# ['авиаперевозки', 'отмена авиарейсов', 'отмена рейсов', 'отмена авиарейсов', 'отмена рейсов', 'отмена авиарейсов']
```
# Training
Go to the training notebook and learn more about it:
[](https://colab.research.google.com/github/0x7o/text2keywords/blob/main/example/keyT5_train.ipynb)
|
ai-forever/ruclip-vit-base-patch16-384
|
ai-forever
| 2022-01-11T02:29:57Z | 11 | 1 |
transformers
|
[
"transformers",
"pytorch",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
# ruclip-vit-base-patch16-384
**RuCLIP** (**Ru**ssian **C**ontrastive **L**anguage–**I**mage **P**retraining) is a multimodal model
for obtaining images and text similarities and rearranging captions and pictures.
RuCLIP builds on a large body of work on zero-shot transfer, computer vision, natural language processing and
multimodal learning.
Model was trained by [Sber AI](https://github.com/sberbank-ai) and [SberDevices](https://sberdevices.ru/) teams.
* Task: `text ranking`; `image ranking`; `zero-shot image classification`;
* Type: `encoder`
* Num Parameters: `150M`
* Training Data Volume: `240 million text-image pairs`
* Language: `Russian`
* Context Length: `77`
* Transformer Layers: `12`
* Transformer Width: `512`
* Transformer Heads: `8`
* Image Size: `384`
* Vision Layers: `12`
* Vision Width: `768`
* Vision Patch Size: `16`
## Usage [Github](https://github.com/sberbank-ai/ru-clip)
```
pip install ruclip
```
```python
clip, processor = ruclip.load("ruclip-vit-base-patch16-384", device="cuda")
```
## Performance
We have evaluated the performance on the following datasets:
| Dataset | Metric Name | Metric Result |
|:--------------|:---------------|:--------------------|
| Food101 | acc | 0.689 |
| CIFAR10 | acc | 0.845 |
| CIFAR100 | acc | 0.569 |
| Birdsnap | acc | 0.195 |
| SUN397 | acc | 0.521 |
| Stanford Cars | acc | 0.626 |
| DTD | acc | 0.421 |
| MNIST | acc | 0.478 |
| STL10 | acc | 0.964 |
| PCam | acc | 0.501 |
| CLEVR | acc | 0.132 |
| Rendered SST2 | acc | 0.525 |
| ImageNet | acc | 0.482 |
| FGVC Aircraft | mean-per-class | 0.046 |
| Oxford Pets | mean-per-class | 0.635 |
| Caltech101 | mean-per-class | 0.835 |
| Flowers102 | mean-per-class | 0.452 |
| HatefulMemes | roc-auc | 0.543 |
# Authors
+ Alex Shonenkov: [Github](https://github.com/shonenkov), [Kaggle GM](https://www.kaggle.com/shonenkov)
+ Daniil Chesakov: [Github](https://github.com/Danyache)
+ Denis Dimitrov: [Github](https://github.com/denndimitrov)
+ Igor Pavlov: [Github](https://github.com/boomb0om)
|
Nasvai1702/Night
|
Nasvai1702
| 2022-01-11T02:14:52Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-03-02T23:29:04Z |
Говорили: "Погоди", уходил с дождём
Эта ночь нужна, переваривал сон
Вы порвали паруса, ожидая восторг
Это мой Тачтаун, это мой Гонконг
Надо созерцать, и не более того
Либо до конца переполох
Хитроматы пустот, наливай по сто
Забывай мой голос и меня самого
Забывай мой рай, я пропитый бадман
Добровольно приговаривал, а вам по делом
Заливал до дна, дабы дать по щам
Не хочу себя жалеть, и не буду прощать
Этот мир не смог меня сохранить
Потеряли головы, теряя нить
Во время дабы любить без обид и жить
Не забыть нам бед, и незачем творить
Ночи в одного, ночи в одного
Холили, лелеяли убитого меня собой
Ночи в одного, ночи в одного
Верили в меня, как никогда, никто и ни в кого
Ночи в одного, ночи в одного
Холили, лелеяли убитого меня собой
Ночи в одного, ночи в одного
Верили в меня, как никогда, никто и ни в кого
|
tscholak/2jrayxos
|
tscholak
| 2022-01-10T21:50:53Z | 12 | 2 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"text2sql",
"en",
"dataset:cosql",
"dataset:spider",
"arxiv:2109.05093",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language:
- en
thumbnail: "https://repository-images.githubusercontent.com/401779782/c2f46be5-b74b-4620-ad64-57487be3b1ab"
tags:
- text2sql
widget:
- "And the concert named Auditions? | concert_singer | stadium : stadium_id, location, name, capacity, highest, lowest, average | singer : sing er_id, name, country, song_name, song_release_year, age, is_male | concert : concert_id, concert_name ( Super bootcamp, Auditions ), theme, stadium_id, year | singer_in_concert : concert_id, singer_id || Which year did the concert Super bootcamp happen in? | Find the name and location of the stadiums which some concerts happened in the years of both 2014 and 2015."
- "How many singers do we have? | concert_singer | stadium : stadium_id, location, name, capacity, highest, lowest, average | singer : singer_id, name, country, song_name, song_release_year, age, is_male | concert : concert_id, concert_name, theme, stadium_id, year | singer_in_concert : concert_id, singer_id"
license: "apache-2.0"
datasets:
- cosql
- spider
metrics:
- cosql
---
## tscholak/2jrayxos
Fine-tuned weights for [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093) based on [t5.1.1.lm100k.large](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k).
### Training Data
The model has been fine-tuned on the 2,164 training dialogues in the [CoSQL SQL-grounded dialogue state tracking dataset](https://yale-lily.github.io/cosql) and the 7,000 training examples in the [Spider text-to-SQL dataset](https://yale-lily.github.io/spider). The model solves both, CoSQL's zero-shot text-to-SQL dialogue state tracking task and Spider's zero-shot text-to-SQL translation task. Zero-shot means that the model can generalize to unseen SQL databases.
### Training Objective
This model was initialized with [t5.1.1.lm100k.large](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k) and fine-tuned with the text-to-text generation objective.
A question is always grounded in both, a database schema and the preceiding questions in the dialogue. The model is trained to predict the SQL query that would be used to answer the user's current natural language question. The input to the model is composed of the user's current question, the database identifier, a list of tables and their columns, and a sequence of previous questions in reverse chronological order.
```
[current question] | [db_id] | [table] : [column] ( [content] , [content] ) , [column] ( ... ) , [...] | [table] : ... | ... || [previous question] | ... | [first question]
```
The sequence of previous questions is separated by `||` from the linearized schema. In the absence of previous questions (for example, for the first question in a dialogue or for Spider questions), this separator is omitted.
The model outputs the database identifier and the SQL query that will be executed on the database to answer the user's current question in the dialog.
```
[db_id] | [sql]
```
### Performance
Out of the box, this model achieves 52.5 % question match accuracy on the CoSQL development set.
Using the PICARD constrained decoding method (see [the official PICARD implementation](https://github.com/ElementAI/picard)), the model's performance can be improved to **54.2 %** question match accuracy on the CoSQL development set.
### Usage
Please see [the official repository](https://github.com/ElementAI/picard) for scripts and docker images that support evaluation and serving of this model.
### References
1. [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093)
2. [Official PICARD code](https://github.com/ElementAI/picard)
### Citation
```bibtex
@inproceedings{Scholak2021:PICARD,
author = {Torsten Scholak and Nathan Schucher and Dzmitry Bahdanau},
title = "{PICARD}: Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.779",
pages = "9895--9901",
}
```
|
tscholak/2e826ioa
|
tscholak
| 2022-01-10T21:50:39Z | 9 | 7 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"text2sql",
"en",
"dataset:cosql",
"dataset:spider",
"arxiv:2109.05093",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language:
- en
thumbnail: "https://repository-images.githubusercontent.com/401779782/c2f46be5-b74b-4620-ad64-57487be3b1ab"
tags:
- text2sql
widget:
- "And the concert named Auditions? | concert_singer | stadium : stadium_id, location, name, capacity, highest, lowest, average | singer : sing er_id, name, country, song_name, song_release_year, age, is_male | concert : concert_id, concert_name ( Super bootcamp, Auditions ), theme, stadium_id, year | singer_in_concert : concert_id, singer_id || Which year did the concert Super bootcamp happen in? | Find the name and location of the stadiums which some concerts happened in the years of both 2014 and 2015."
- "How many singers do we have? | concert_singer | stadium : stadium_id, location, name, capacity, highest, lowest, average | singer : singer_id, name, country, song_name, song_release_year, age, is_male | concert : concert_id, concert_name, theme, stadium_id, year | singer_in_concert : concert_id, singer_id"
license: "apache-2.0"
datasets:
- cosql
- spider
metrics:
- cosql
---
## tscholak/2e826ioa
Fine-tuned weights for [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093) based on [T5-3B](https://huggingface.co/t5-3b).
### Training Data
The model has been fine-tuned on the 2,164 training dialogues in the [CoSQL SQL-grounded dialogue state tracking dataset](https://yale-lily.github.io/cosql) and the 7,000 training examples in the [Spider text-to-SQL dataset](https://yale-lily.github.io/spider). The model solves both, CoSQL's zero-shot text-to-SQL dialogue state tracking task and Spider's zero-shot text-to-SQL translation task. Zero-shot means that the model can generalize to unseen SQL databases.
### Training Objective
This model was initialized with [T5-3B](https://huggingface.co/t5-3b) and fine-tuned with the text-to-text generation objective.
A question is always grounded in both, a database schema and the preceiding questions in the dialogue. The model is trained to predict the SQL query that would be used to answer the user's current natural language question. The input to the model is composed of the user's current question, the database identifier, a list of tables and their columns, and a sequence of previous questions in reverse chronological order.
```
[current question] | [db_id] | [table] : [column] ( [content] , [content] ) , [column] ( ... ) , [...] | [table] : ... | ... || [previous question] | ... | [first question]
```
The sequence of previous questions is separated by `||` from the linearized schema. In the absence of previous questions (for example, for the first question in a dialogue or for Spider questions), this separator is omitted.
The model outputs the database identifier and the SQL query that will be executed on the database to answer the user's current question in the dialog.
```
[db_id] | [sql]
```
### Performance
Out of the box, this model achieves 53.8 % question match accuracy and 21.8 % interaction match accuracy on the CoSQL development set. On the CoSQL test set, the model achieves 51.4 % question match accuracy and 21.7 % interaction match accuracy.
Using the PICARD constrained decoding method (see [the official PICARD implementation](https://github.com/ElementAI/picard)), the model's performance can be improved to **56.9 %** question match accuracy and **24.2 %** interaction match accuracy on the CoSQL development set. On the CoSQL test set and with PICARD, the model achieves **54.6 %** question match accuracy and **23.7 %** interaction match accuracy.
### Usage
Please see [the official repository](https://github.com/ElementAI/picard) for scripts and docker images that support evaluation and serving of this model.
### References
1. [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093)
2. [Official PICARD code](https://github.com/ElementAI/picard)
### Citation
```bibtex
@inproceedings{Scholak2021:PICARD,
author = {Torsten Scholak and Nathan Schucher and Dzmitry Bahdanau},
title = "{PICARD}: Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.779",
pages = "9895--9901",
}
```
|
tscholak/1wnr382e
|
tscholak
| 2022-01-10T21:50:25Z | 77 | 3 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"text2sql",
"en",
"dataset:spider",
"arxiv:2109.05093",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language:
- en
thumbnail: "https://repository-images.githubusercontent.com/401779782/c2f46be5-b74b-4620-ad64-57487be3b1ab"
tags:
- text2sql
widget:
- "How many singers do we have? | concert_singer | stadium : stadium_id, location, name, capacity, highest, lowest, average | singer : singer_id, name, country, song_name, song_release_year, age, is_male | concert : concert_id, concert_name, theme, stadium_id, year | singer_in_concert : concert_id, singer_id"
license: "apache-2.0"
datasets:
- spider
metrics:
- spider
---
## tscholak/1wnr382e
Fine-tuned weights for [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093) based on [T5-Large](https://huggingface.co/t5-large).
### Training Data
The model has been fine-tuned on the 7000 training examples in the [Spider text-to-SQL dataset](https://yale-lily.github.io/spider). The model solves Spider's zero-shot text-to-SQL translation task, and that means that it can generalize to unseen SQL databases.
### Training Objective
This model was initialized with [T5-Large](https://huggingface.co/t5-large) and fine-tuned with the text-to-text generation objective.
Questions are always grounded in a database schema, and the model is trained to predict the SQL query that would be used to answer the question. The input to the model is composed of the user's natural language question, the database identifier, and a list of tables and their columns:
```
[question] | [db_id] | [table] : [column] ( [content] , [content] ) , [column] ( ... ) , [...] | [table] : ... | ...
```
The model outputs the database identifier and the SQL query that will be executed on the database to answer the user's question:
```
[db_id] | [sql]
```
### Performance
Out of the box, this model achieves 65.3 % exact-set match accuracy and 67.2 % execution accuracy on the Spider development set.
Using the PICARD constrained decoding method (see [the official PICARD implementation](https://github.com/ElementAI/picard)), the model's performance can be improved to **69.1 %** exact-set match accuracy and **72.9 %** execution accuracy on the Spider development set.
### Usage
Please see [the official repository](https://github.com/ElementAI/picard) for scripts and docker images that support evaluation and serving of this model.
### References
1. [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093)
2. [Official PICARD code](https://github.com/ElementAI/picard)
### Citation
```bibtex
@inproceedings{Scholak2021:PICARD,
author = {Torsten Scholak and Nathan Schucher and Dzmitry Bahdanau},
title = "{PICARD}: Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.779",
pages = "9895--9901",
}
```
|
tscholak/3vnuv1vf
|
tscholak
| 2022-01-10T21:49:25Z | 162 | 10 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"text2sql",
"en",
"dataset:spider",
"arxiv:2109.05093",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language:
- en
thumbnail: "https://repository-images.githubusercontent.com/401779782/c2f46be5-b74b-4620-ad64-57487be3b1ab"
tags:
- text2sql
widget:
- "How many singers do we have? | concert_singer | stadium : stadium_id, location, name, capacity, highest, lowest, average | singer : singer_id, name, country, song_name, song_release_year, age, is_male | concert : concert_id, concert_name, theme, stadium_id, year | singer_in_concert : concert_id, singer_id"
license: "apache-2.0"
datasets:
- spider
metrics:
- spider
---
## tscholak/3vnuv1vf
Fine-tuned weights for [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093) based on [t5.1.1.lm100k.large](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k).
### Training Data
The model has been fine-tuned on the 7000 training examples in the [Spider text-to-SQL dataset](https://yale-lily.github.io/spider). The model solves Spider's zero-shot text-to-SQL translation task, and that means that it can generalize to unseen SQL databases.
### Training Objective
This model was initialized with [t5.1.1.lm100k.large](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k) and fine-tuned with the text-to-text generation objective.
Questions are always grounded in a database schema, and the model is trained to predict the SQL query that would be used to answer the question. The input to the model is composed of the user's natural language question, the database identifier, and a list of tables and their columns:
```
[question] | [db_id] | [table] : [column] ( [content] , [content] ) , [column] ( ... ) , [...] | [table] : ... | ...
```
The model outputs the database identifier and the SQL query that will be executed on the database to answer the user's question:
```
[db_id] | [sql]
```
### Performance
Out of the box, this model achieves 71.2 % exact-set match accuracy and 74.4 % execution accuracy on the Spider development set.
Using the PICARD constrained decoding method (see [the official PICARD implementation](https://github.com/ElementAI/picard)), the model's performance can be improved to **74.8 %** exact-set match accuracy and **79.2 %** execution accuracy on the Spider development set.
### Usage
Please see [the official repository](https://github.com/ElementAI/picard) for scripts and docker images that support evaluation and serving of this model.
### References
1. [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093)
2. [Official PICARD code](https://github.com/ElementAI/picard)
### Citation
```bibtex
@inproceedings{Scholak2021:PICARD,
author = {Torsten Scholak and Nathan Schucher and Dzmitry Bahdanau},
title = "{PICARD}: Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.779",
pages = "9895--9901",
}
```
|
repro-rights-amicus-briefs/bert-base-uncased-finetuned-RRamicus
|
repro-rights-amicus-briefs
| 2022-01-10T21:19:34Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: reprorights-amicus-bert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# reprorights-amicus-bert
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5428
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7763 | 1.0 | 1479 | 1.6789 |
| 1.76 | 2.0 | 2958 | 1.6199 |
| 1.6881 | 3.0 | 4437 | 1.5683 |
| 1.6424 | 4.0 | 5916 | 1.5432 |
| 1.6131 | 5.0 | 7395 | 1.5269 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
huggingtweets/dril-hostagekiller-suicidepussy
|
huggingtweets
| 2022-01-10T10:25:29Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/dril-hostagekiller-suicidepussy/1641810324627/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1473236995497500675/FtwXDZld_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1322637724470358022/ccOsLDPE_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">HUSSY2K. & wint & I have 400 diseases</div>
<div style="text-align: center; font-size: 14px;">@dril-hostagekiller-suicidepussy</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from HUSSY2K. & wint & I have 400 diseases.
| Data | HUSSY2K. | wint | I have 400 diseases |
| --- | --- | --- | --- |
| Tweets downloaded | 3186 | 3226 | 3237 |
| Retweets | 819 | 480 | 121 |
| Short tweets | 395 | 304 | 1125 |
| Tweets kept | 1972 | 2442 | 1991 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bqo2ddu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-hostagekiller-suicidepussy's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/o4ya0wuw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/o4ya0wuw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril-hostagekiller-suicidepussy')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
longnhit07/distilbert-base-uncased-finetuned-imdb
|
longnhit07
| 2022-01-10T09:02:05Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"fill-mask",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
model-index:
- name: distilbert-base-uncased-finetuned-imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4722
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7117 | 1.0 | 157 | 2.4977 |
| 2.5783 | 2.0 | 314 | 2.4241 |
| 2.5375 | 3.0 | 471 | 2.4358 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
celtics1863/env-bert-chinese
|
celtics1863
| 2022-01-10T07:16:25Z | 62 | 3 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"pretrain",
"environment",
"zh",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
language: zh
widget:
- text: "总[MASK]是水环境中的重要污染物。"
- text: "气[MASK]变化是重要的全球环境问题。"
tags:
- pretrain
- pytorch
- environment
---
环境领域的中文预训练Bert模型,在hlf/chinese-bert-wwm-ext的基础上进行训练,旨在学习到中文表达后进一步学习到环境领域的专业知识。
1.5G的预训练语料包括水环境、大气环境、土壤环境、气候变化、中文期刊、国家政策等内容。
项目正在进行中,后续会陆续更新相关内容。
清华大学环境学院课题组
有相关需求、建议,联系bi.huaibin@foxmail.com
|
lianaling/title-generator-t5
|
lianaling
| 2022-01-10T06:51:36Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-03-02T23:29:05Z |
## Title Generator
References this [notebook](https://shivanandroy.com/transformers-generating-arxiv-papers-title-from-abstracts/)
Using `t5-small`, trained on a batch size of 16 for 4 epochs, utilising the ArXiV dataset through the `SimpleTransformers` library. Around 15k data was used for training and 3.7k data for evaluation.
This is a `.pkl` file.
### Prerequisites
Install `simpletransformers` library.
```bsh
pip install simpletransformers
```
### Example Usage
```py
import pickle
model = pickle.load(open("title-generator-t5-arxiv-16-4.pkl", "rb"))
# Prefix your text with 'summarize: '
text = ["summarize: " + """Venetian commodes imitated the curving lines and carved ornament of the French rocaille, but with a particular Venetian variation; the pieces were painted, often with landscapes or flowers or scenes from Guardi or other painters, or Chinoiserie, against a blue or green background, matching the colours of the Venetian school of painters whose work decorated the salons. 24] Ceiling of church of Santi Giovanni e Paolo in Venice, by Piazzetta (1727) Juno and Luna by Giovanni Battista Tiepolo (1735–45) Murano glass chandelier at the Ca Rezzonico (1758) Ballroom ceiling of the Ca Rezzonico with ceiling by Giovanni Battista Crosato (1753) In church construction, especially in the southern German-Austrian region, gigantic spatial creations are sometimes created for practical reasons alone, which, however, do not appear monumental, but are characterized by a unique fusion of architecture, painting, stucco, etc. ,."""]
print("Generated title: " + model.predict(text))
```
|
cook/cicero-similis
|
cook
| 2022-01-10T06:07:57Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"jax",
"bert",
"fill-mask",
"language model",
"la",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
language:
- la
tags:
- language model
license: apache-2.0
datasets:
- Tesserae
- Phi5
- Thomas Aquinas
- Patrologia Latina
---
# Cicero-Similis
## Model description
A Latin Language Model, trained on Latin texts, and evaluated using the corpus of Cicero, as described in the paper _What Would Cicero Write? -- Examining Critical Textual Decisions with a Language Model_ by Todd Cook,
Published in Ciceroniana On Line, Vol. V, #2.
## Intended uses & limitations
#### How to use
Normalize text using JV Replacement and tokenize using CLTK to separate enclitics such as "-que", then:
```
from transformers import BertForMaskedLM, AutoTokenizer, FillMaskPipeline
tokenizer = AutoTokenizer.from_pretrained("cook/cicero-similis")
model = BertForMaskedLM.from_pretrained("cook/cicero-similis")
fill_mask = FillMaskPipeline(model=model, tokenizer=tokenizer, top_k=10_000)
# Cicero, De Re Publica, VI, 32, 2
# "animal" is found in A, Q, PhD manuscripts
# 'anima' H^1 Macr. et codd. Tusc.
results = fill_mask("inanimum est enim omne quod pulsu agitatur externo; quod autem est [MASK],")
```
#### Limitations and bias
Currently the model training data excludes modern and 19th century texts, but that weakness is the model's strength; it's not aimed to be a one-size-fits-all model.
## Training data
Trained on the corpora Phi5, Tesserae, Thomas Aquinas, and Patrologes Latina.
## Training procedure
5 epochs, masked language modeling .15, effective batch size 32
## Eval results
A novel evaluation metric is proposed in the paper _What Would Cicero Write? -- Examining Critical Textual Decisions with a Language Model_ by Todd Cook,
Published in Ciceroniana On Line, Vol. V, #2.
### BibTeX entry and citation info
TODO
_What Would Cicero Write? -- Examining Critical Textual Decisions with a Language Model_ by Todd Cook,
Published in Ciceroniana On Line, Vol. V, #2.
|
huggingtweets/marylandmudflap-sniping_soup
|
huggingtweets
| 2022-01-10T00:52:48Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1412400542794539011/cnUXEkge_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/645703196602601472/2A41g0gW_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Soup & SCOTTY</div>
<div style="text-align: center; font-size: 14px;">@marylandmudflap-sniping_soup</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Soup & SCOTTY.
| Data | Soup | SCOTTY |
| --- | --- | --- |
| Tweets downloaded | 3237 | 3245 |
| Retweets | 106 | 146 |
| Short tweets | 1287 | 327 |
| Tweets kept | 1844 | 2772 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/u88yo4gm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @marylandmudflap-sniping_soup's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3dpmqtze) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3dpmqtze/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/marylandmudflap-sniping_soup')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
ai-forever/ruclip-vit-base-patch32-384
|
ai-forever
| 2022-01-10T00:21:50Z | 3,104 | 3 |
transformers
|
[
"transformers",
"pytorch",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
# ruclip-vit-base-patch32-384
**RuCLIP** (**Ru**ssian **C**ontrastive **L**anguage–**I**mage **P**retraining) is a multimodal model
for obtaining images and text similarities and rearranging captions and pictures.
RuCLIP builds on a large body of work on zero-shot transfer, computer vision, natural language processing and
multimodal learning.
Model was trained by [Sber AI](https://github.com/sberbank-ai) and [SberDevices](https://sberdevices.ru/) teams.
* Task: `text ranking`; `image ranking`; `zero-shot image classification`;
* Type: `encoder`
* Num Parameters: `150M`
* Training Data Volume: `240 million text-image pairs`
* Language: `Russian`
* Context Length: `77`
* Transformer Layers: `12`
* Transformer Width: `512`
* Transformer Heads: `8`
* Image Size: `384`
* Vision Layers: `12`
* Vision Width: `768`
* Vision Patch Size: `32`
## Usage [Github](https://github.com/sberbank-ai/ru-clip)
```
pip install ruclip
```
```python
clip, processor = ruclip.load("ruclip-vit-base-patch32-384", device="cuda")
```
## Performance
We have evaluated the performance on the following datasets:
| Dataset | Metric Name | Metric Result |
|:--------------|:---------------|:----------------------------|
| Food101 | acc | 0.642 |
| CIFAR10 | acc | 0.862 |
| CIFAR100 | acc | 0.529 |
| Birdsnap | acc | 0.161 |
| SUN397 | acc | 0.510 |
| Stanford Cars | acc | 0.572 |
| DTD | acc | 0.390 |
| MNIST | acc | 0.404 |
| STL10 | acc | 0.946 |
| PCam | acc | 0.506 |
| CLEVR | acc | 0.188 |
| Rendered SST2 | acc | 0.508 |
| ImageNet | acc | 0.451 |
| FGVC Aircraft | mean-per-class | 0.053 |
| Oxford Pets | mean-per-class | 0.587 |
| Caltech101 | mean-per-class | 0.834 |
| Flowers102 | mean-per-class | 0.449 |
| HatefulMemes | roc-auc | 0.537 |
# Authors
+ Alex Shonenkov: [Github](https://github.com/shonenkov), [Kaggle GM](https://www.kaggle.com/shonenkov)
+ Daniil Chesakov: [Github](https://github.com/Danyache)
+ Denis Dimitrov: [Github](https://github.com/denndimitrov)
+ Igor Pavlov: [Github](https://github.com/boomb0om)
|
tonyalves/wav2vec2-300m-teste4
|
tonyalves
| 2022-01-09T22:57:13Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-300m-teste4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-300m-teste4
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3276
- Wer: 0.3489
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 10.0237 | 0.49 | 100 | 4.2075 | 0.9792 |
| 3.313 | 0.98 | 200 | 3.0232 | 0.9792 |
| 2.9469 | 1.47 | 300 | 2.7591 | 0.9792 |
| 1.4217 | 1.96 | 400 | 0.8397 | 0.6219 |
| 0.5598 | 2.45 | 500 | 0.6085 | 0.5087 |
| 0.4507 | 2.94 | 600 | 0.4512 | 0.4317 |
| 0.2775 | 3.43 | 700 | 0.3839 | 0.3751 |
| 0.2047 | 3.92 | 800 | 0.3276 | 0.3489 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.1+cu102
- Datasets 1.17.0
- Tokenizers 0.10.3
|
ai-forever/ruclip-vit-large-patch14-224
|
ai-forever
| 2022-01-09T21:43:58Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
# ruclip-vit-large-patch14-224
**RuCLIP** (**Ru**ssian **C**ontrastive **L**anguage–**I**mage **P**retraining) is a multimodal model
for obtaining images and text similarities and rearranging captions and pictures.
RuCLIP builds on a large body of work on zero-shot transfer, computer vision, natural language processing and
multimodal learning.
Model was trained by [Sber AI](https://github.com/sberbank-ai) and [SberDevices](https://sberdevices.ru/) teams.
* Task: `text ranking`; `image ranking`; `zero-shot image classification`;
* Type: `encoder`
* Num Parameters: `430M`
* Training Data Volume: `240 million text-image pairs`
* Language: `Russian`
* Context Length: `77`
* Transformer Layers: `12`
* Transformer Width: `768`
* Transformer Heads: `12`
* Image Size: `224`
* Vision Layers: `24`
* Vision Width: `1024`
* Vision Patch Size: `14`
## Usage [Github](https://github.com/sberbank-ai/ru-clip)
```
pip install ruclip
```
```python
clip, processor = ruclip.load("ruclip-vit-large-patch14-224", device="cuda")
```
## Performance
We have evaluated the performance on the following datasets:
| Dataset | Metric Name | Metric Result |
|:--------------|:---------------|:--------------------|
| Food101 | acc | 0.597 |
| CIFAR10 | acc | 0.878 |
| CIFAR100 | acc | 0.511 |
| Birdsnap | acc | 0.172 |
| SUN397 | acc | 0.484 |
| Stanford Cars | acc | 0.559 |
| DTD | acc | 0.370 |
| MNIST | acc | 0.337 |
| STL10 | acc | 0.934 |
| PCam | acc | 0.520 |
| CLEVR | acc | 0.152 |
| Rendered SST2 | acc | 0.529 |
| ImageNet | acc | 0.426 |
| FGVC Aircraft | mean-per-class | 0.046 |
| Oxford Pets | mean-per-class | 0.604 |
| Caltech101 | mean-per-class | 0.777 |
| Flowers102 | mean-per-class | 0.455 |
| HatefulMemes | roc-auc | 0.530 |
# Authors
+ Alex Shonenkov: [Github](https://github.com/shonenkov), [Kaggle GM](https://www.kaggle.com/shonenkov)
+ Daniil Chesakov: [Github](https://github.com/Danyache)
+ Denis Dimitrov: [Github](https://github.com/denndimitrov)
+ Igor Pavlov: [Github](https://github.com/boomb0om)
|
ai-forever/ruclip-vit-base-patch32-224
|
ai-forever
| 2022-01-09T21:34:27Z | 76 | 0 |
transformers
|
[
"transformers",
"pytorch",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
# ruclip-vit-base-patch32-224
**RuCLIP** (**Ru**ssian **C**ontrastive **L**anguage–**I**mage **P**retraining) is a multimodal model
for obtaining images and text similarities and rearranging captions and pictures.
RuCLIP builds on a large body of work on zero-shot transfer, computer vision, natural language processing and
multimodal learning.
Model was trained by [Sber AI](https://github.com/sberbank-ai) and [SberDevices](https://sberdevices.ru/) teams.
* Task: `text ranking`; `image ranking`; `zero-shot image classification`;
* Type: `encoder`
* Num Parameters: `150M`
* Training Data Volume: `240 million text-image pairs`
* Language: `Russian`
* Context Length: `77`
* Transformer Layers: `12`
* Transformer Width: `512`
* Transformer Heads: `8`
* Image Size: `224`
* Vision Layers: `12`
* Vision Width: `768`
* Vision Patch Size: `32`
## Usage [Github](https://github.com/sberbank-ai/ru-clip)
```
pip install ruclip
```
```python
clip, processor = ruclip.load("ruclip-vit-base-patch32-224", device="cuda")
```
## Performance
We have evaluated the performance on the following datasets:
| Dataset | Metric Name | Metric Result |
|:--------------|:---------------|:--------------------|
| Food101 | acc | 0.505 |
| CIFAR10 | acc | 0.818 |
| CIFAR100 | acc | 0.504 |
| Birdsnap | acc | 0.115 |
| SUN397 | acc | 0.452 |
| Stanford Cars | acc | 0.433 |
| DTD | acc | 0.380 |
| MNIST | acc | 0.447 |
| STL10 | acc | 0.932 |
| PCam | acc | 0.501 |
| CLEVR | acc | 0.148 |
| Rendered SST2 | acc | 0.489 |
| ImageNet | acc | 0.375 |
| FGVC Aircraft | mean-per-class | 0.033 |
| Oxford Pets | mean-per-class | 0.560 |
| Caltech101 | mean-per-class | 0.786 |
| Flowers102 | mean-per-class | 0.401 |
| HatefulMemes | roc-auc | 0.564 |
# Authors
+ Alex Shonenkov: [Github](https://github.com/shonenkov), [Kaggle GM](https://www.kaggle.com/shonenkov)
+ Daniil Chesakov: [Github](https://github.com/Danyache)
+ Denis Dimitrov: [Github](https://github.com/denndimitrov)
+ Igor Pavlov: [Github](https://github.com/boomb0om)
|
ai-forever/ruclip-vit-base-patch16-224
|
ai-forever
| 2022-01-09T21:34:11Z | 14 | 1 |
transformers
|
[
"transformers",
"pytorch",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
# ruclip-vit-base-patch16-224
**RuCLIP** (**Ru**ssian **C**ontrastive **L**anguage–**I**mage **P**retraining) is a multimodal model
for obtaining images and text similarities and rearranging captions and pictures.
RuCLIP builds on a large body of work on zero-shot transfer, computer vision, natural language processing and
multimodal learning.
Model was trained by [Sber AI](https://github.com/sberbank-ai) and [SberDevices](https://sberdevices.ru/) teams.
* Task: `text ranking`; `image ranking`; `zero-shot image classification`;
* Type: `encoder`
* Num Parameters: `150M`
* Training Data Volume: `240 million text-image pairs`
* Language: `Russian`
* Context Length: `77`
* Transformer Layers: `12`
* Transformer Width: `512`
* Transformer Heads: `8`
* Image Size: `224`
* Vision Layers: `12`
* Vision Width: `768`
* Vision Patch Size: `16`
## Usage [Github](https://github.com/sberbank-ai/ru-clip)
```
pip install ruclip
```
```python
clip, processor = ruclip.load("ruclip-vit-base-patch16-224", device="cuda")
```
## Performance
We have evaluated the performance on the following datasets:
| Dataset | Metric Name | Metric Result |
|:--------------|:---------------|:--------------------|
| Food101 | acc | 0.552 |
| CIFAR10 | acc | 0.810 |
| CIFAR100 | acc | 0.496 |
| Birdsnap | acc | 0.117 |
| SUN397 | acc | 0.462 |
| Stanford Cars | acc | 0.487 |
| DTD | acc | 0.401 |
| MNIST | acc | 0.464 |
| STL10 | acc | 0.932 |
| PCam | acc | 0.505 |
| CLEVR | acc | 0.128 |
| Rendered SST2 | acc | 0.527 |
| ImageNet | acc | 0.401 |
| FGVC Aircraft | mean-per-class | 0.043 |
| Oxford Pets | mean-per-class | 0.595 |
| Caltech101 | mean-per-class | 0.775 |
| Flowers102 | mean-per-class | 0.388 |
| HatefulMemes | roc-auc | 0.516 |
# Authors
+ Alex Shonenkov: [Github](https://github.com/shonenkov), [Kaggle GM](https://www.kaggle.com/shonenkov)
+ Daniil Chesakov: [Github](https://github.com/Danyache)
+ Denis Dimitrov: [Github](https://github.com/denndimitrov)
+ Igor Pavlov: [Github](https://github.com/boomb0om)
|
nepp1d0/SMILES_tokenizer
|
nepp1d0
| 2022-01-09T20:25:30Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-03-02T23:29:05Z |
Tokenizer trained on BindingDB SMILES encodings.
Trained on 1008081 samples with one blank space after each character in the SMILES string
|
huggingtweets/elxokas-evilafm-ibaillanos
|
huggingtweets
| 2022-01-09T19:38:49Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/elxokas-evilafm-ibaillanos/1641757124234/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1476303212672131074/kuPm3Cvp_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1473427376696705024/mzWRw3ML_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1402480040877699075/LShUbbef_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Ibai & Alexelcapo & XOKAS</div>
<div style="text-align: center; font-size: 14px;">@elxokas-evilafm-ibaillanos</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Ibai & Alexelcapo & XOKAS.
| Data | Ibai | Alexelcapo | XOKAS |
| --- | --- | --- | --- |
| Tweets downloaded | 3250 | 3207 | 3245 |
| Retweets | 28 | 12 | 187 |
| Short tweets | 669 | 231 | 421 |
| Tweets kept | 2553 | 2964 | 2637 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ed2k4vcn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elxokas-evilafm-ibaillanos's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/169fwvwo) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/169fwvwo/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/elxokas-evilafm-ibaillanos')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/ibaillanos
|
huggingtweets
| 2022-01-09T18:36:11Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/ibaillanos/1641753367000/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1476303212672131074/kuPm3Cvp_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Ibai</div>
<div style="text-align: center; font-size: 14px;">@ibaillanos</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Ibai.
| Data | Ibai |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 28 |
| Short tweets | 669 |
| Tweets kept | 2553 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3qyv6lsf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ibaillanos's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/cxnkmkg6) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/cxnkmkg6/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/ibaillanos')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
tonyalves/wav2vec2-300M-teste2
|
tonyalves
| 2022-01-09T17:16:10Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-300M-teste2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-300M-teste2
This model was trained from scratch on the common_voice dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.1+cu102
- Datasets 1.17.0
- Tokenizers 0.10.3
|
raduion/bert-medium-luxembourgish
|
raduion
| 2022-01-09T12:54:17Z | 6 | 2 |
transformers
|
[
"transformers",
"tf",
"bert",
"fill-mask",
"text",
"MLM",
"lu",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
language:
- lu
tags:
- text
- MLM
license: mit
---
## BERT Medium for Luxembourgish
Created from a dataset with 1M Luxembourgish sentences from Wikipedia. Corpus has approx. 16M words.
The MLM objective was trained. The BERT model has parameters `L=8` and `H=512`. Vocabulary has 70K word pieces.
Final loss scores, after 3 epochs:
- Final train loss: 4.230
- Final train perplexity: 68.726
- Final validation loss: 4.074
- Final validation perplexity: 58.765
|
ying-tina/wav2vec2-base-timit-demo-colab-32-epochs30
|
ying-tina
| 2022-01-09T09:21:52Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-colab-32-epochs30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab-32-epochs30
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4615
- Wer: 0.3434
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.5243 | 4.0 | 500 | 1.4532 | 0.9540 |
| 0.6178 | 8.0 | 1000 | 0.5490 | 0.4627 |
| 0.223 | 12.0 | 1500 | 0.4513 | 0.3881 |
| 0.1299 | 16.0 | 2000 | 0.4573 | 0.3698 |
| 0.0875 | 20.0 | 2500 | 0.4950 | 0.3637 |
| 0.0613 | 24.0 | 3000 | 0.4327 | 0.3479 |
| 0.0478 | 28.0 | 3500 | 0.4615 | 0.3434 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
RenZHU/t5-small-finetuned-xsum-original
|
RenZHU
| 2022-01-09T06:04:38Z | 5 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:xsum",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- xsum
metrics:
- rouge
model-index:
- name: t5-small-finetuned-xsum-original
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: xsum
type: xsum
args: default
metrics:
- name: Rouge1
type: rouge
value: 28.8838
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-xsum-original
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4436
- Rouge1: 28.8838
- Rouge2: 8.1114
- Rougel: 22.8318
- Rougelsum: 22.8318
- Gen Len: 18.8141
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 2.6754 | 1.0 | 51012 | 2.4436 | 28.8838 | 8.1114 | 22.8318 | 22.8318 | 18.8141 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt
|
vuiseng9
| 2022-01-09T03:14:14Z | 31 | 0 |
transformers
|
[
"transformers",
"pytorch",
"onnx",
"bert",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
This model is a downstream optimization of [```vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt```](https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt) using [OpenVINO/NNCF](https://github.com/openvinotoolkit/nncf). Applied optimization includes:
1. magnitude sparsification at 60% upon initialization. Parameters are ranked globally via thier absolute norm. Only linear layers of self-attention and ffnn are targeted.
2. NNCF Quantize-Aware Training - Symmetric 8-bit for both weight and activation on all learnable layers.
3. Custom distillation with large model ```bert-large-uncased-whole-word-masking-finetuned-squad```
```
eval_exact_match = 80.3122
eval_f1 = 87.6162
eval_samples = 10784
```
# Setup
```bash
# OpenVINO/NNCF
git clone https://github.com/vuiseng9/nncf && cd nncf
git checkout tld-poc
git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2
python setup.py develop
pip install -r examples/torch/requirements.txt
# Huggingface nn_pruning
git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning
git checkout reproduce-evaluation
git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446
pip install -e ".[dev]"
# Huggingface Transformers
git clone https://github.com/vuiseng9/transformers && cd transformers
git checkout tld-poc
git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5
pip install -e .
head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {}
# Additional dependencies
pip install onnx
```
# Train
```bash
git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt
BASE_MODEL=/path/to/cloned_repo_above #to-revise
wget https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt/raw/main/nncf_bert_squad_sparsity.json
NNCF_CFG=/path/to/downloaded_nncf_cfg_above #to-revise
OUTROOT=/path/to/train_output_root #to-revise
WORKDIR=transformers/examples/pytorch/question-answering #to-revise
RUNID=bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt
cd $WORKDIR
OUTDIR=$OUTROOT/$RUNID
mkdir -p $OUTDIR
export CUDA_VISIBLE_DEVICES=0
NEPOCH=5
python run_qa.py \
--model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \
--optimize_model_before_eval \
--optimized_checkpoint $BASE_MODEL \
--dataset_name squad \
--do_eval \
--do_train \
--evaluation_strategy steps \
--eval_steps 250 \
--learning_rate 3e-5 \
--lr_scheduler_type cosine_with_restarts \
--warmup_ratio 0.25 \
--cosine_cycles 1 \
--teacher bert-large-uncased-whole-word-masking-finetuned-squad \
--teacher_ratio 0.9 \
--num_train_epochs $NEPOCH \
--per_device_eval_batch_size 128 \
--per_device_train_batch_size 16 \
--max_seq_length 384 \
--doc_stride 128 \
--save_steps 250 \
--nncf_config $NNCF_CFG \
--logging_steps 1 \
--overwrite_output_dir \
--run_name $RUNID \
--output_dir $OUTDIR
```
# Eval
This repo must be cloned locally.
```bash
git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt
MODELROOT=/path/to/cloned_repo_above #to-revise
export CUDA_VISIBLE_DEVICES=0
OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt
WORKDIR=transformers/examples/pytorch/question-answering #to-revise
cd $WORKDIR
mkdir $OUTDIR
nohup python run_qa.py \
--model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \
--dataset_name squad \
--optimize_model_before_eval \
--qat_checkpoint $MODELROOT/checkpoint-22000 \
--nncf_config $MODELROOT/nncf_bert_squad_sparsity.json \
--to_onnx $OUTDIR/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt.onnx \
--do_eval \
--per_device_eval_batch_size 128 \
--max_seq_length 384 \
--doc_stride 128 \
--overwrite_output_dir \
--output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log &
```
|
vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt
|
vuiseng9
| 2022-01-09T03:11:21Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"question-answering",
"arxiv:2109.04838",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
This model is a downstream fine-tuning of [```vuiseng9/bert-base-squadv1-block-pruning-hybrid```](https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid). "filled" means unstructured fine-grained sparsified parameters are allowed to learn during fine-tuning. "lt" means distillation of larger model as teacher, i.e. ```bert-large-uncased-whole-word-masking-finetuned-squad```
```
eval_exact_match = 80.3311
eval_f1 = 87.69
eval_samples = 10784
```
This model is a replication of [block pruning paper](https://arxiv.org/abs/2109.04838) with its open-sourced codebase (forked and modified).
To reproduce this model, pls follow [documentation here](https://github.com/vuiseng9/nn_pruning/blob/reproduce-evaluation/reproduce-eval/readme.md) until step 3.
# Eval
The model cannot be evaluated with HF QA example out-of-the-box as the final dimension of the model architecture has been realized. Follow the custom setup below.
```bash
# OpenVINO/NNCF
git clone https://github.com/vuiseng9/nncf && cd nncf
git checkout tld-poc
git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2
python setup.py develop
pip install -r examples/torch/requirements.txt
# Huggingface nn_pruning
git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning
git checkout reproduce-evaluation
git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446
pip install -e ".[dev]"
# Huggingface Transformers
git clone https://github.com/vuiseng9/transformers && cd transformers
git checkout tld-poc
git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5
pip install -e .
head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {}
```
This repo must be cloned locally.
```bash
git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt
```
Add ```--optimize_model_before_eval``` and ```--optimized_checkpoint /path/to/clone``` during evaluation.
```bash
export CUDA_VISIBLE_DEVICES=0
OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-filled-lt-cropped
WORKDIR=transformers/examples/pytorch/question-answering
cd $WORKDIR
mkdir $OUTDIR
nohup python run_qa.py \
--model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \
--dataset_name squad \
--optimize_model_before_eval \
--optimized_checkpoint /path/to/clone/bert-base-squadv1-block-pruning-hybrid-filled-lt \
--do_eval \
--per_device_eval_batch_size 128 \
--max_seq_length 384 \
--doc_stride 128 \
--overwrite_output_dir \
--output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log &
```
|
vuiseng9/bert-base-uncased-squad
|
vuiseng9
| 2022-01-08T18:08:11Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
This model is developed with transformers v4.10.3.
# Train
```bash
#!/usr/bin/env bash
export CUDA_VISIBLE_DEVICES=0
OUTDIR=bert-base-uncased-squad
WORKDIR=transformers/examples/pytorch/question-answering
cd $WORKDIR
nohup python run_qa.py \
--model_name_or_path bert-base-uncased \
--dataset_name squad \
--do_eval \
--do_train \
--per_device_train_batch_size 16 \
--per_device_eval_batch_size 16 \
--doc_stride 128 \
--max_seq_length 384 \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--eval_steps 250 \
--save_steps 2500 \
--logging_steps 1 \
--overwrite_output_dir \
--output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log &
```
# Eval
```bash
export CUDA_VISIBLE_DEVICES=0
OUTDIR=eval-bert-base-uncased-squad
WORKDIR=transformers/examples/pytorch/question-answering
cd $WORKDIR
nohup python run_qa.py \
--model_name_or_path vuiseng9/bert-base-uncased-squad \
--dataset_name squad \
--do_eval \
--per_device_eval_batch_size 16 \
--max_seq_length 384 \
--doc_stride 128 \
--overwrite_output_dir \
--output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log &
```
|
LeverageX/scibert-wechsel-korean
|
LeverageX
| 2022-01-08T12:14:38Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
# scibert-wechsel-korean
Scibert(🇺🇸) converted into Korean(🇰🇷) using WECHSEL technique.
### Description
- SciBERT is trained on papers from the corpus of semanticscholar.org. Corpus size is 1.14M papers, 3.1B tokens.
- Wechsel is converting embedding layer's subword tokens from source language to target language.
- SciBERT trained with English language is converted into Korean langauge using Wechsel technique.
- Korean tokenizer is selected with KLUE PLMs' tokenizers due to its similar vocab size(32000) and performance.
### Reference
- [Scibert](https://github.com/allenai/scibert)
- [WECHSEL](https://github.com/CPJKU/wechsel)
- [Korean Language Understanding Evaluation](https://github.com/KLUE-benchmark/KLUE)
|
begar/xlm-roberta-base-finetuned-marc
|
begar
| 2022-01-08T11:35:02Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
model-index:
- name: xlm-roberta-base-finetuned-marc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-marc
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0276
- Mae: 0.5310
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1582 | 1.0 | 308 | 1.0625 | 0.5221 |
| 1.0091 | 2.0 | 616 | 1.0276 | 0.5310 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
eliwill/rare-puppers
|
eliwill
| 2022-01-08T01:40:43Z | 69 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-02T23:29:05Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: rare-puppers
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.4895833432674408
---
# rare-puppers
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### algebra

#### arithmetic

#### calculus

#### geometry

#### trigonometry

|
gborn/autonlp-news-summarization-483413089
|
gborn
| 2022-01-07T23:10:47Z | 106 | 1 |
transformers
|
[
"transformers",
"pytorch",
"pegasus",
"text2text-generation",
"autonlp",
"en",
"dataset:gborn/autonlp-data-news-summarization",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- gborn/autonlp-data-news-summarization
co2_eq_emissions: 210.6348731063569
---
# Model Trained Using AutoNLP
- Problem type: Summarization
- Model ID: 483413089
- CO2 Emissions (in grams): 210.6348731063569
## Validation Metrics
- Loss: 1.8478657007217407
- Rouge1: 50.5981
- Rouge2: 26.2167
- RougeL: 46.0513
- RougeLsum: 46.061
- Gen Len: 13.5987
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/gborn/autonlp-news-summarization-483413089
```
|
gatecitypreservation/architectural_styles
|
gatecitypreservation
| 2022-01-07T18:41:50Z | 72 | 4 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-02T23:29:05Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: architectural_styles
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.7796609997749329
---
### What style is that?
This model can help identify five architectural styles that were prominent in the early to mid 20th century. Check back for updates including more architectural styles and more accurate predictions as this model diversifies and improves its training.
Upload a photograph of a building to the File Uploader on the right. The Image Classifier will predict its architectural style using a database of over 700 images. Scroll down to read more about each style.
### Classical Revival (1895 - 1950)
The Classical Revival or Neoclassical style is one of the most commonly seen across the state and the country. This style was inspired by the World's Columbian Exposition in Chicago held in 1893 which promoted a renewed interest in the classical forms. This style encompasses many different styles, including Colonial Revival, Greek Revival, Neoclassical Revival and Mediterranean Revival. Colonial Revival is most commonly used in residential dwellings, while Greek and Neoclassical Revival styles are commonly used in commercial buildings like banks, post offices, and municipal buildings.

#### Queen Anne (1880-1910)
The Queen Anne style was one of a number of popular architectural styles that emerged in the United States during the Victorian Period. It ranges from high style, like the image pictured here, to more vernacular styles that exhibit the Queen Anne form without its high style architectural details.

#### Craftsman Bungalow (1900-1930)
The terms “craftsman” and “bungalow” are often used interchangably, however, “craftsman” refers to the Arts and Crafts movement and is considered an architectural style, whereas “bungalow” is the form of house. Bungalows often exhibit a craftsman style.

#### Tudor Cottage (1910-1950)
Tudor homes are inspired by the Medieval period and can range is size and style. In general, the Tudor style features steeply pitched roofs, often with a cat-slide roof line, predominately brick construction, sometimes accented with half-timber framing, front-facing, prominently placed brick or stone chimneys, and tall windows with rectangular or diamond-shaped panes. Front doors are typically off-center with a round arch at the top of the door or doorway.

#### Mid-Century Modern Ranch (1930-1970)
The Ranch style originated in southern California in the mid-1930s. In the 1940s, the Ranch was one of the small house types financed by the Federal Housing Administration (FHA), along with Minimal Traditional and other small house styles. The Ranch house began to pick up popularity as the financial controls that encouraged small house building lifted following WWII; by the 1950s it was the most predominant residential style in the country.

This model was created with HuggingPics🤗🖼️ Image Classifier!
Make your own!: [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
|
lincoln/2021twitchfr-conv-bert-small-mlm-simcse
|
lincoln
| 2022-01-07T18:00:43Z | 4 | 1 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"convbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"twitch",
"fr",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:05Z |
---
language:
- fr
license: mit
pipeline_tag: sentence-similarity
widget:
- source_sentence: "Bonsoir"
sentences:
- "Salut !"
- "Hello"
- "Bonsoir!"
- "Bonsouar!"
- "Bonsouar !"
- "De rien"
- "LUL LUL"
example_title: "Coucou"
- source_sentence: "elle s'en sort bien"
sentences:
- "elle a raison"
- "elle a tellement raison"
- "Elle a pas tort"
- "C'est bien ce qu'elle dit là"
- "Hello"
example_title: "Raison or not"
- source_sentence: "et la question énergétique n'est pas politique ?"
sentences:
- "C'est le nucléaire militaire qui a entaché le nucléaire pour l'énergie."
- "La fusion nucléaire c'est pas pour maintenant malheureusement"
- "le pro nucléaire redevient acceptable à gauche j'ai l'impression"
- "La mer à Nantes?"
- "c'est bien un olivier pour l'upr"
- "Moi je vois juste sa lavallière"
example_title: "Nucléaire"
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- twitch
- convbert
---
## Modèle de représentation d'un message Twitch à l'aide de ConvBERT
Modèle [sentence-transformers](https://www.SBERT.net): cela permet de mapper une séquence de texte en un vecteur numérique de dimension 256 et peut être utilisé pour des tâches de clustering ou de recherche sémantique.
L'expérimentation menée au sein de Lincoln avait pour principal objectif de mettre en œuvre des techniques NLP from scratch sur un corpus de messages issus d’un chat Twitch. Ces derniers sont exprimés en français, mais sur une plateforme internet avec le vocabulaire internet que cela implique (fautes, vocabulaire communautaires, abréviations, anglicisme, emotes, ...).
Après avoir entrainé un modèle `ConvBert` puis `MLM` (cf section smodèles), nous avons entrainé un modèle _sentence-transformers_ à l'aide du framework d'apprentissage [SimCSE](https://www.sbert.net/examples/unsupervised_learning/SimCSE/README.html) en non supervisée.
L'objectif est de spécialiser la moyenne des tokens _CLS_ de chaque token de la séquence pour représenter un vecteur numérique cohérent avec l'ensemble du corpus. _SimCSE_ crée fictivement des exemples positifs et négatifs supervisées à l'aide du dropout pour revenir à une tâche classique.
_Nous garantissons pas la stabilité du modèle sur le long terme. Modèle réalisé dans le cadre d'un POC._
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('2021twitchfr-conv-bert-small-mlm-simcse')
embeddings = model.encode(sentences)
print(embeddings)
```
## Semantic Textual Similarity
```python
from sentence_transformers import SentenceTransformer, models, util
# Two lists of sentences
sentences1 = ['zackFCZack',
'Team bons petits plats',
'sa commence a quelle heure de base popcorn ?',
'BibleThump']
sentences2 = ['zack titulaire',
'salade de pates c une dinguerie',
'ça commence à être long la',
'NotLikeThis']
# Compute embedding for both lists
embeddings1 = model.encode(sentences1, convert_to_tensor=True)
embeddings2 = model.encode(sentences2, convert_to_tensor=True)
# Compute cosine-similarits
cosine_scores = util.cos_sim(embeddings1, embeddings2)
# Output the pairs with their score
for i in range(len(sentences1)):
print("Score: {:.4f} | \"{}\" -vs- \"{}\" ".format(cosine_scores[i][i], sentences1[i], sentences2[i]))
# Score: 0.5783 | "zackFCZack" -vs- "zack titulaire"
# Score: 0.2881 | "Team bons petits plats" -vs- "salade de pates c une dinguerie"
# Score: 0.4529 | "sa commence a quelle heure de base popcorn ?" -vs- "ça commence à être long la"
# Score: 0.5805 | "BibleThump" -vs- "NotLikeThis"
```
## Entrainement
* 500 000 messages twitchs échantillonnés (cf description données des modèles de bases)
* Batch size: 24
* Epochs: 24
* Loss: MultipleNegativesRankingLoss
_A noter:_
* _ConvBert a été entrainé avec un longueur de 128 tokens max, mais est utilisé pour 512 dans ce modèle. Pas de problème._
* _La loss d'apprentissage n'est pas encore disponible: peu de visibilité sur les performances._
L'ensemble du code d'entrainement sur le github public [lincoln/twitchatds](https://github.com/Lincoln-France/twitchatds).
## Application:
Nous avons utilisé une approche détournée de [BERTopic](https://maartengr.github.io/BERTopic/) pour réaliser un clustering d'un stream en prenant en compte la dimension temporelle: i.e. le nombre de seconde écoulée depuis le début du stream.

Globalement, l'approche donnes des résultats satisfaisant pour identifier des messages dit "similaires" récurrents. L'approche en revanche est fortement influencée par la ponctuation et la structure d'un message. Cela est largement explicable par le manque d'entrainement de l'ensemble des modèles et une volumétrie faible.
### Clustering émission "Backseat":
Entre 19h30 et 20h00:

🎞️ en vidéo: [youtu.be/EcjvlE9aTls](https://youtu.be/EcjvlE9aTls)
### Exemple regroupement émission "PopCorn":
```txt
-------------------- LABEL 106 --------------------
circus (0.88)/sulli (0.23)/connu (0.19)/jure (0.12)/aime (0.11)
silouhette moyenne: 0.04
-------------------- LABEL 106 --------------------
2021-03-30 20:10:22 0.01: les gosse c est des animaux
2021-03-30 20:12:11 -0.03: oue c connu
2021-03-30 20:14:15 0.03: oh le circus !! <3
2021-03-30 20:14:19 0.12: le circus l'anciennnee
2021-03-30 20:14:22 0.06: jure le circus !
2021-03-30 20:14:27 -0.03: le sulli
2021-03-30 20:14:31 0.09: le circus??? j'aime po
2021-03-30 20:14:34 0.11: le Circus, hors de prix !
2021-03-30 20:14:35 -0.09: le Paddock a Rignac en Aveyron
2021-03-30 20:14:39 0.11: le circus ><
2021-03-30 20:14:39 0.04: le Titty Twister de Besançon
-------------------- LABEL 17 --------------------
pates (0.12)/riz (0.09)/pâtes (0.09)/salade (0.07)/emission (0.07)
silouhette moyenne: -0.05
-------------------- LABEL 17 --------------------
2021-03-30 20:11:18 -0.03: Des nanimaux trop beaux !
2021-03-30 20:13:11 -0.01: episode des simpsons ça...
2021-03-30 20:13:41 -0.01: des le debut d'emission ca tue mdrrrrr
2021-03-30 20:13:50 0.03: des "lasagnes"
2021-03-30 20:14:37 -0.18: poubelle la vie
2021-03-30 20:15:13 0.03: Une omelette
2021-03-30 20:15:35 -0.19: salade de bite
2021-03-30 20:15:36 -0.00: hahaha ce gastronome
2021-03-30 20:15:43 -0.08: salade de pates c une dinguerie
2021-03-30 20:17:00 -0.11: Une bonne femme !
2021-03-30 20:17:06 -0.05: bouffe des graines
2021-03-30 20:17:08 -0.06: des pokeball ?
2021-03-30 20:17:11 -0.12: le choux fleur cru
2021-03-30 20:17:15 0.05: des pockeball ?
2021-03-30 20:17:27 -0.00: du chou fleur crue
2021-03-30 20:17:36 -0.09: un râgout de Meynia !!!!
2021-03-30 20:17:43 -0.07: une line up Sa rd o ch Zack Ponce my dream
2021-03-30 20:17:59 -0.10: Pâtes/10
2021-03-30 20:18:09 -0.05: Team bons petits plats
2021-03-30 20:18:13 -0.10: pate level
2021-03-30 20:18:19 -0.03: que des trucs très basiques
2021-03-30 20:18:24 0.03: des pates et du jambon c'est de la cuisine?
2021-03-30 20:18:30 0.05: Des pates et du riz ouai
2021-03-30 20:18:37 -0.02: des gnocchis à la poele c'est cuisiner ?
2021-03-30 20:18:50 -0.03: Pâtes à pizzas, pulled pork, carbonade flamande, etc..
2021-03-30 20:19:01 -0.11: Des pâtes ou du riz ça compte ?
2021-03-30 20:19:22 -0.21: le noob
2021-03-30 20:19:47 -0.02: Une bonne escalope de milanaise les gars
2021-03-30 20:20:05 -0.04: faites des gratins et des quiches
-------------------- LABEL 67 --------------------
1 1 (0.25)/1 (0.19)/ (0.0)/ (0.0)/ (0.0)
silouhette moyenne: 0.96
-------------------- LABEL 67 --------------------
2021-03-30 20:24:17 0.94: +1
2021-03-30 20:24:37 0.97: +1
2021-03-30 20:24:37 0.97: +1
2021-03-30 20:24:38 0.97: +1
2021-03-30 20:24:39 0.97: +1
2021-03-30 20:24:43 0.97: +1
2021-03-30 20:24:44 0.97: +1
2021-03-30 20:24:47 0.97: +1
2021-03-30 20:24:49 0.97: +1
2021-03-30 20:25:00 0.97: +1
2021-03-30 20:25:21 0.95: +1
2021-03-30 20:25:25 0.95: +1
2021-03-30 20:25:28 0.94: +1
2021-03-30 20:25:30 0.94: +1
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ConvBertModel
(1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Modèles:
* [2021twitchfr-conv-bert-small](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small)
* [2021twitchfr-conv-bert-small-mlm](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small-mlm)
* [2021twitchfr-conv-bert-small-mlm-simcse](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small-mlm-simcse)
|
huggingtweets/melspurgatory
|
huggingtweets
| 2022-01-07T16:32:41Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/melspurgatory/1641573097526/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1435429688831135746/t5TELThj_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">matthew</div>
<div style="text-align: center; font-size: 14px;">@melspurgatory</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from matthew.
| Data | matthew |
| --- | --- |
| Tweets downloaded | 3220 |
| Retweets | 429 |
| Short tweets | 541 |
| Tweets kept | 2250 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/29yvc0bm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @melspurgatory's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/w9infsn0) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/w9infsn0/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/melspurgatory')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
s87204/distilbert-base-uncased-finetuned-cola
|
s87204
| 2022-01-07T14:03:20Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.5365264430934975
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8505
- Matthews Correlation: 0.5365
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5201 | 1.0 | 535 | 0.5345 | 0.4153 |
| 0.3469 | 2.0 | 1070 | 0.5033 | 0.5109 |
| 0.2367 | 3.0 | 1605 | 0.6589 | 0.5209 |
| 0.1705 | 4.0 | 2140 | 0.7778 | 0.5354 |
| 0.125 | 5.0 | 2675 | 0.8505 | 0.5365 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
hs788/wav2vec2-base-timit-demo-colab
|
hs788
| 2022-01-07T13:34:11Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4125
- Wer: 0.3607
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.2018 | 7.94 | 500 | 1.3144 | 0.8508 |
| 0.4671 | 15.87 | 1000 | 0.4737 | 0.4160 |
| 0.1375 | 23.81 | 1500 | 0.4125 | 0.3607 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
ietz/distilroberta-base-finetuned-jira-qt-issue-title
|
ietz
| 2022-01-07T12:27:11Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"fill-mask",
"jira",
"code",
"issue",
"development",
"en",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
language:
- en
tags:
- jira
- code
- issue
- development
license: mit
---
`distilroberta-base` finetuned for masked language modeling on 126213 Qt jira issue titles for up to 50 epochs.
|
doc2query/reddit-t5-small-v1
|
doc2query
| 2022-01-07T08:55:11Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"en",
"arxiv:1904.08375",
"arxiv:2104.08663",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language: en
datasets:
- datasets/sentence-transformers/reddit-title-body
widget:
- text: "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects."
license: apache-2.0
---
# doc2query/reddit-t5-small-v1
This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)).
It can be used for:
- **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini.
- **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models.
## Usage
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
model_name = 'doc2query/reddit-t5-small-v1'
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects."
input_ids = tokenizer.encode(text, max_length=384, truncation=True, return_tensors='pt')
outputs = model.generate(
input_ids=input_ids,
max_length=64,
do_sample=True,
top_p=0.95,
num_return_sequences=5)
print("Text:")
print(text)
print("\nGenerated Queries:")
for i in range(len(outputs)):
query = tokenizer.decode(outputs[i], skip_special_tokens=True)
print(f'{i + 1}: {query}')
```
**Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it.
## Training
This model fine-tuned [google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small) for 547k training steps. For the training script, see the `train_script.py` in this repository.
The input-text was truncated to 384 word pieces. Output text was generated up to 64 word pieces.
This model was trained on a (title, body) from Reddit.
|
doc2query/stackexchange-title-body-t5-base-v1
|
doc2query
| 2022-01-07T08:48:22Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"en",
"dataset:flax-sentence-embeddings/stackexchange_title_body_jsonl",
"arxiv:1904.08375",
"arxiv:2104.08663",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language: en
datasets:
- flax-sentence-embeddings/stackexchange_title_body_jsonl
widget:
- text: "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects."
license: apache-2.0
---
# doc2query/stackexchange-title-body-t5-base-v1
This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)).
It can be used for:
- **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini.
- **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models.
## Usage
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
model_name = 'doc2query/stackexchange-title-body-t5-base-v1'
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects."
input_ids = tokenizer.encode(text, max_length=320, truncation=True, return_tensors='pt')
outputs = model.generate(
input_ids=input_ids,
max_length=64,
do_sample=True,
top_p=0.95,
num_return_sequences=5)
print("Text:")
print(text)
print("\nGenerated Queries:")
for i in range(len(outputs)):
query = tokenizer.decode(outputs[i], skip_special_tokens=True)
print(f'{i + 1}: {query}')
```
**Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it.
## Training
This model fine-tuned [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) for 550k training steps. For the training script, see the `train_script.py` in this repository.
The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces.
This model was trained on a (title, question_body) from StackExchange.
|
jiobiala24/wav2vec2-base-checkpoint-2
|
jiobiala24
| 2022-01-07T06:08:49Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-base-TPU-cv-fine-tune-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-TPU-cv-fine-tune-2
This model is a fine-tuned version of [jiobiala24/wav2vec2-base-TPU-cv-fine-tune](https://huggingface.co/jiobiala24/wav2vec2-base-TPU-cv-fine-tune) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6051
- Wer: 0.5484
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.522 | 6.45 | 400 | 1.2550 | 0.5649 |
| 0.2874 | 12.9 | 800 | 1.4235 | 0.6054 |
| 0.152 | 19.35 | 1200 | 1.5743 | 0.5806 |
| 0.0857 | 25.8 | 1600 | 1.6051 | 0.5484 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
huggingartists/obladaet
|
huggingartists
| 2022-01-07T01:09:32Z | 6 | 1 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/obladaet",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
datasets:
- huggingartists/obladaet
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/4411ffc50a3cd07d303d09a5db3b7cf5.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">OBLADAET</div>
<a href="https://genius.com/artists/obladaet">
<div style="text-align: center; font-size: 14px;">@obladaet</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from OBLADAET.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/obladaet).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/obladaet")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1mtsuuwr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on OBLADAET's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1s9epb35) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1s9epb35/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/obladaet')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/obladaet")
model = AutoModelWithLMHead.from_pretrained("huggingartists/obladaet")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
BigSalmon/InformalToFormalLincoln18
|
BigSalmon
| 2022-01-06T22:00:50Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:04Z |
Informal to Formal:
```
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln18")
model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln18")
```
```
https://huggingface.co/spaces/BigSalmon/GPT2 (The model for this space changes over time)
```
```
https://huggingface.co/spaces/BigSalmon/GPT2_Most_Probable (The model for this space changes over time)
```
```
https://huggingface.co/spaces/BigSalmon/GPT2Space (The model for this space changes over time)
```
```
How To Make Prompt:
informal english: i am very ready to do that just that.
Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end.
Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task.
informal english: space is huge and needs to be explored.
Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless.
Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration.
informal english: corn fields are all across illinois, visible once you leave chicago.
Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.
informal english:
````
|
Apoorva/k2t-test
|
Apoorva
| 2022-01-06T19:38:56Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"keytotext",
"k2t",
"Keywords to Sentences",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:04Z |
---
language: "en"
thumbnail: "Keywords to Sentences"
tags:
- keytotext
- k2t
- Keywords to Sentences
model-index:
- name: k2t-test
---
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.
Potential use case can include:
- Marketing
- Search Engine Optimization
- Topic generation etc.
- Fine tuning of topic modeling models
|
Waynehillsdev/Waynehills-STT-doogie-server
|
Waynehillsdev
| 2022-01-06T17:18:49Z | 87 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
name: Waynehills-STT-doogie-server
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Waynehills-STT-doogie-server
This model is a fine-tuned version of [Doogie/Waynehills-STT-doogie-server](https://huggingface.co/Doogie/Waynehills-STT-doogie-server) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 60
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu113
- Datasets 1.17.0
- Tokenizers 0.10.3
|
shaina/covid_qa_distillBert
|
shaina
| 2022-01-06T15:41:08Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:covid_qa_deepset",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- covid_qa_deepset
widget:
- text: "What is COVID-19?"
context: "Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in December 2019.[7] The disease has since spread worldwide, leading to an ongoing pandemic."
- text: "Where was COVID-19 first discovered?"
context: "The first known infections from SARS-CoV-2 were discovered in Wuhan, China. The original source of viral transmission to humans remains unclear, as does whether the virus became pathogenic before or after the spillover event."
- text: "What is Post-COVID syndrome?"
context: "Long COVID, also known as post-COVID-19 syndrome, post-acute sequelae of COVID-19 (PASC), or chronic COVID syndrome (CCS) is a condition characterized by long-term sequelae appearing or persisting after the typical convalescence period of COVID-19. Long COVID can affect nearly every organ system, with sequelae including respiratory system disorders, nervous system and neurocognitive disorders, mental health disorders, metabolic disorders, cardiovascular disorders, gastrointestinal disorders, malaise, fatigue, musculoskeletal pain, and anemia. A wide range of symptoms are commonly reported, including fatigue, headaches, shortness of breath, anosmia (loss of smell), parosmia (distorted smell), muscle weakness, low fever and cognitive dysfunction."
model-index:
- name: CoQUAD_DistilBERT_v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# covid_qa_distillBert
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the covid_qa_deepset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0971
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.2537 | 1.0 | 3880 | 0.1871 |
| 0.2005 | 2.0 | 7760 | 0.1257 |
| 0.1395 | 3.0 | 11640 | 0.0971 |
### Framework versions
- Transformers 4.14.1
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
emillykkejensen/daT5-large
|
emillykkejensen
| 2022-01-06T11:15:26Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"da",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language:
- da
license: apache-2.0
---
## daT5-large
A smaller version of [Google's mt5-large](https://huggingface.co/google/mt5-base) model, where the original model is reduced to only include Danish embeddings.
## How to use
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("emillykkejensen/daT5-large")
model = AutoModel.from_pretrained("emillykkejensen/daT5-large")
```
## Further reading
[Gist](https://gist.github.com/emillykkejensen/8bf1b323495efc7252dee966e6bc1b5c) showing (in Danish) how the embeddings are extracted (for mt5-base)
[Article](https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90) explaining how to do it by [David Dale](https://huggingface.co/cointegrated)
## Also check out
[daT5-base](https://huggingface.co/emillykkejensen/daT5-base)
|
emillykkejensen/daT5-base
|
emillykkejensen
| 2022-01-06T11:14:19Z | 114 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"da",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language:
- da
license: apache-2.0
---
## daT5-base
A smaller version of [Google's mt5-base](https://huggingface.co/google/mt5-base) model, where the original model is reduced to only include Danish embeddings.
## How to use
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("emillykkejensen/daT5-base")
model = AutoModel.from_pretrained("emillykkejensen/daT5-base")
```
## Further reading
[Gist](https://gist.github.com/emillykkejensen/8bf1b323495efc7252dee966e6bc1b5c) showing (in Danish) how the embeddings are extracted
[Article](https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90) explaining how to do it by [David Dale](https://huggingface.co/cointegrated)
## Also check out
[daT5-large](https://huggingface.co/emillykkejensen/daT5-large)
|
huggingtweets/snorapp
|
huggingtweets
| 2022-01-06T10:19:49Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/snorapp/1641464385407/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/213231109/hrabzaichik_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Линор Горалик</div>
<div style="text-align: center; font-size: 14px;">@snorapp</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Линор Горалик.
| Data | Линор Горалик |
| --- | --- |
| Tweets downloaded | 260 |
| Retweets | 1 |
| Short tweets | 3 |
| Tweets kept | 256 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1c6n7gkc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @snorapp's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ni4sakh) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ni4sakh/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/snorapp')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Niciu/testtest1
|
Niciu
| 2022-01-06T09:56:58Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-03-02T23:29:04Z |
this project was created to use in wav2vec
|
jiobiala24/wav2vec2-base-checkpoint-1
|
jiobiala24
| 2022-01-06T09:39:38Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-base-TPU-cv-fine-tune
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-TPU-cv-fine-tune
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6987
- Wer: 0.6019
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.1017 | 8.88 | 400 | 1.4635 | 0.7084 |
| 0.436 | 17.77 | 800 | 1.4765 | 0.6231 |
| 0.1339 | 26.66 | 1200 | 1.6987 | 0.6019 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
sam890914/autonlp-roberta-large2-479012819
|
sam890914
| 2022-01-06T08:46:51Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autonlp",
"unk",
"dataset:sam890914/autonlp-data-roberta-large2",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
tags: autonlp
language: unk
widget:
- text: "I love AutoNLP 🤗"
datasets:
- sam890914/autonlp-data-roberta-large2
co2_eq_emissions: 71.60954851696604
---
# Model Trained Using AutoNLP
- Problem type: Binary Classification
- Model ID: 479012819
- CO2 Emissions (in grams): 71.60954851696604
## Validation Metrics
- Loss: 0.22774338722229004
- Accuracy: 0.9395126938149599
- Precision: 0.9677075940383251
- Recall: 0.9117352056168505
- AUC: 0.9862377263827619
- F1: 0.9388879325185058
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/sam890914/autonlp-roberta-large2-479012819
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("sam890914/autonlp-roberta-large2-479012819", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("sam890914/autonlp-roberta-large2-479012819", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
mimi/Waynehills-NLP-doogie-AIHub-paper-summary
|
mimi
| 2022-01-06T08:05:30Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"generated_from_trainer",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
model-index:
- name: Waynehills-NLP-doogie-AIHub-paper-summary
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Waynehills-NLP-doogie-AIHub-paper-summary
This model is a fine-tuned version of [mimi/Waynehills-NLP-doogie](https://huggingface.co/mimi/Waynehills-NLP-doogie) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 2.6206
- eval_runtime: 309.223
- eval_samples_per_second: 38.167
- eval_steps_per_second: 4.773
- epoch: 3.75
- step: 60000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Framework versions
- Transformers 4.12.2
- Pytorch 1.10.0+cu111
- Datasets 1.5.0
- Tokenizers 0.10.3
|
mimi/Waynehills-NLP-doogie
|
mimi
| 2022-01-06T08:02:38Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
model-index:
- name: Waynehills-NLP-doogie
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Waynehills-NLP-doogie
This model is a fine-tuned version of [KETI-AIR/ke-t5-base-ko](https://huggingface.co/KETI-AIR/ke-t5-base-ko) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9188
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 28.2167 | 0.06 | 1000 | 9.7030 |
| 10.4479 | 0.12 | 2000 | 7.5450 |
| 8.0306 | 0.19 | 3000 | 6.1969 |
| 6.503 | 0.25 | 4000 | 5.3015 |
| 5.5406 | 0.31 | 5000 | 4.6363 |
| 4.7299 | 0.38 | 6000 | 4.0431 |
| 3.9263 | 0.44 | 7000 | 3.6313 |
| 3.4111 | 0.5 | 8000 | 3.4830 |
| 3.0517 | 0.56 | 9000 | 3.3294 |
| 2.7524 | 0.62 | 10000 | 3.2077 |
| 2.5402 | 0.69 | 11000 | 3.1094 |
| 2.3228 | 0.75 | 12000 | 3.1099 |
| 2.1513 | 0.81 | 13000 | 3.0284 |
| 2.0418 | 0.88 | 14000 | 3.0155 |
| 1.8875 | 0.94 | 15000 | 3.0241 |
| 1.756 | 1.0 | 16000 | 3.0165 |
| 1.6489 | 1.06 | 17000 | 2.9849 |
| 1.5788 | 1.12 | 18000 | 2.9496 |
| 1.5368 | 1.19 | 19000 | 2.9500 |
| 1.4467 | 1.25 | 20000 | 3.0133 |
| 1.381 | 1.31 | 21000 | 2.9631 |
| 1.3451 | 1.38 | 22000 | 3.0159 |
| 1.2917 | 1.44 | 23000 | 2.9906 |
| 1.2605 | 1.5 | 24000 | 3.0006 |
| 1.2003 | 1.56 | 25000 | 2.9797 |
| 1.1987 | 1.62 | 26000 | 2.9253 |
| 1.1703 | 1.69 | 27000 | 3.0044 |
| 1.1474 | 1.75 | 28000 | 2.9216 |
| 1.0816 | 1.81 | 29000 | 2.9645 |
| 1.0709 | 1.88 | 30000 | 3.0439 |
| 1.0476 | 1.94 | 31000 | 3.0844 |
| 1.0645 | 2.0 | 32000 | 2.9434 |
| 1.0204 | 2.06 | 33000 | 2.9386 |
| 0.9901 | 2.12 | 34000 | 3.0452 |
| 0.9911 | 2.19 | 35000 | 2.9798 |
| 0.9706 | 2.25 | 36000 | 2.9919 |
| 0.9461 | 2.31 | 37000 | 3.0279 |
| 0.9577 | 2.38 | 38000 | 2.9615 |
| 0.9466 | 2.44 | 39000 | 2.9988 |
| 0.9486 | 2.5 | 40000 | 2.9133 |
| 0.9201 | 2.56 | 41000 | 3.0004 |
| 0.896 | 2.62 | 42000 | 2.9626 |
| 0.8893 | 2.69 | 43000 | 2.9667 |
| 0.9028 | 2.75 | 44000 | 2.9543 |
| 0.897 | 2.81 | 45000 | 2.8760 |
| 0.8664 | 2.88 | 46000 | 2.9894 |
| 0.8719 | 2.94 | 47000 | 2.8456 |
| 0.8491 | 3.0 | 48000 | 2.9713 |
| 0.8402 | 3.06 | 49000 | 2.9738 |
| 0.8484 | 3.12 | 50000 | 2.9361 |
| 0.8304 | 3.19 | 51000 | 2.8945 |
| 0.8208 | 3.25 | 52000 | 2.9625 |
| 0.8074 | 3.31 | 53000 | 3.0054 |
| 0.8226 | 3.38 | 54000 | 2.9405 |
| 0.8185 | 3.44 | 55000 | 2.9047 |
| 0.8352 | 3.5 | 56000 | 2.9016 |
| 0.8289 | 3.56 | 57000 | 2.9490 |
| 0.7918 | 3.62 | 58000 | 2.9621 |
| 0.8212 | 3.69 | 59000 | 2.9341 |
| 0.7955 | 3.75 | 60000 | 2.9167 |
| 0.7724 | 3.81 | 61000 | 2.9409 |
| 0.8169 | 3.88 | 62000 | 2.8925 |
| 0.7862 | 3.94 | 63000 | 2.9314 |
| 0.803 | 4.0 | 64000 | 2.9271 |
| 0.7595 | 4.06 | 65000 | 2.9263 |
| 0.7931 | 4.12 | 66000 | 2.9400 |
| 0.7759 | 4.19 | 67000 | 2.9501 |
| 0.7859 | 4.25 | 68000 | 2.9133 |
| 0.805 | 4.31 | 69000 | 2.8785 |
| 0.7649 | 4.38 | 70000 | 2.9060 |
| 0.7692 | 4.44 | 71000 | 2.8868 |
| 0.7692 | 4.5 | 72000 | 2.9045 |
| 0.7798 | 4.56 | 73000 | 2.8951 |
| 0.7812 | 4.62 | 74000 | 2.9068 |
| 0.7533 | 4.69 | 75000 | 2.9129 |
| 0.7527 | 4.75 | 76000 | 2.9157 |
| 0.7652 | 4.81 | 77000 | 2.9053 |
| 0.7633 | 4.88 | 78000 | 2.9190 |
| 0.7437 | 4.94 | 79000 | 2.9251 |
| 0.7653 | 5.0 | 80000 | 2.9188 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.5.0
- Tokenizers 0.10.3
|
Tahsin/distilbert-base-uncased-finetuned-emotion
|
Tahsin
| 2022-01-06T07:43:40Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9285
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1561
- Accuracy: 0.9285
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 250 | 0.1635 | 0.9295 |
| 0.111 | 2.0 | 500 | 0.1515 | 0.936 |
| 0.111 | 3.0 | 750 | 0.1561 | 0.9285 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
XYHY/autonlp-123-478412765
|
XYHY
| 2022-01-06T06:22:38Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autonlp",
"unk",
"dataset:XYHY/autonlp-data-123",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
tags: autonlp
language: unk
widget:
- text: "I love AutoNLP 🤗"
datasets:
- XYHY/autonlp-data-123
co2_eq_emissions: 69.86520391863117
---
# Model Trained Using AutoNLP
- Problem type: Binary Classification
- Model ID: 478412765
- CO2 Emissions (in grams): 69.86520391863117
## Validation Metrics
- Loss: 0.186362624168396
- Accuracy: 0.9539955699437723
- Precision: 0.9527454242928453
- Recall: 0.9572049481778669
- AUC: 0.9903929997079495
- F1: 0.9549699799866577
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/XYHY/autonlp-123-478412765
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("XYHY/autonlp-123-478412765", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("XYHY/autonlp-123-478412765", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
ValkyriaLenneth/longformer_zh
|
ValkyriaLenneth
| 2022-01-06T03:50:20Z | 1,826 | 22 |
transformers
|
[
"transformers",
"pytorch",
"longformer",
"feature-extraction",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-03-02T23:29:05Z |
# 中文预训练Longformer模型 | Longformer_ZH with PyTorch
相比于Transformer的O(n^2)复杂度,Longformer提供了一种以线性复杂度处理最长4K字符级别文档序列的方法。Longformer Attention包括了标准的自注意力与全局注意力机制,方便模型更好地学习超长序列的信息。
Compared with O(n^2) complexity for Transformer model, Longformer provides an efficient method for processing long-document level sequence in Linear complexity. Longformer’s attention mechanism is a drop-in replacement for the standard self-attention and combines a local windowed attention with a task motivated global attention.
我们注意到关于中文Longformer或超长序列任务的资源较少,因此在此开源了我们预训练的中文Longformer模型参数, 并提供了相应的加载方法,以及预训练脚本。
There are not so much resource for Chinese Longformer or long-sequence-level chinese task. Thus we open source our pretrained longformer model to help the researchers.
## 加载模型 | Load the model
您可以使用谷歌云盘或百度网盘下载我们的模型
You could get Longformer_zh from Google Drive or Baidu Yun.
- Google Drive: https://drive.google.com/file/d/1IDJ4aVTfSFUQLIqCYBtoRpnfbgHPoxB4/view?usp=sharing
- 百度云: 链接:https://pan.baidu.com/s/1HaVDENx52I7ryPFpnQmq1w 提取码:y601
我们同样提供了Huggingface的自动下载
We also provide auto load with HuggingFace.Transformers.
```
from Longformer_zh import LongformerZhForMaksedLM
LongformerZhForMaksedLM.from_pretrained('ValkyriaLenneth/longformer_zh')
```
## 注意事项 | Notice
- 直接使用 `transformers.LongformerModel.from_pretrained` 加载模型
- Please use `transformers.LongformerModel.from_pretrained` to load the model directly
- 以下内容已经被弃用
- The following notices are abondoned, please ignore them.
- 区别于英文原版Longformer, 中文Longformer的基础是Roberta_zh模型,其本质上属于 `Transformers.BertModel` 而非 `RobertaModel`, 因此无法使用原版代码直接加载。
- Different with origin English Longformer, Longformer_Zh is based on Roberta_zh which is a subclass of `Transformers.BertModel` not `RobertaModel`. Thus it is impossible to load it with origin code.
- 我们提供了修改后的中文Longformer文件,您可以使用其加载参数。
- We provide modified Longformer_zh class, you can use it directly to load the model.
- 如果您想将此参数用于更多任务,请参考`Longformer_zh.py`替换Attention Layer.
- If you want to use our model on more down-stream tasks, please refer to `Longformer_zh.py` and replace Attention layer with Longformer Attention layer.
## 关于预训练 | About Pretraining
- 我们的预训练语料来自 https://github.com/brightmart/nlp_chinese_corpus, 根据Longformer原文的设置,采用了多种语料混合的预训练数据。
- The corpus of pretraining is from https://github.com/brightmart/nlp_chinese_corpus. Based on the paper of Longformer, we use a mixture of 4 different chinese corpus for pretraining.
- 我们的模型是基于Roberta_zh_mid (https://github.com/brightmart/roberta_zh),训练脚本参考了https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb
- The basement of our model is Roberta_zh_mid (https://github.com/brightmart/roberta_zh). Pretraining scripts is modified from https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb.
- 同时我们在原版基础上,引入了 `Whole-Word-Masking` 机制,以便更好地适应中文特性。
- We introduce `Whole-Word-Masking` method into pretraining for better fitting Chinese language.
- `Whole-Word-Masking`代码改写自TensorFlow版本的Roberta_zh,据我们所知是第一个开源的Pytorch版本WWM.
- Our WWM scripts is refacted from Roberta_zh_Tensorflow, as far as we know, it is the first open source Whole-word-masking scripts in Pytorch.
- 模型 `max_seq_length = 4096`, 在 4 * Titan RTX 上预训练3K steps 大概用时4天。
- Max seuence length is 4096 and the pretraining took 4 days on 4 * Titan RTX.
- 我们使用了 `Nvidia.Apex` 引入了混合精度训练,以加速预训练。
- We use `Nvidia.Apex` to accelerate pretraining.
- 关于数据预处理, 我们采用 `Jieba` 分词与`JIONLP`进行数据清洗。
- We use `Jieba` Chinese tokenizer and `JIONLP` data cleaning.
- 更多细节可以参考我们的预训练脚本
- For more details, please check our pretraining scripts.
## 效果测试 | Evaluation
### CCF Sentiment Analysis
- 由于中文超长文本级别任务稀缺,我们采用了CCF-Sentiment-Analysis任务进行测试
- Since it is hard to acquire open-sourced long sequence level chinese NLP task, we use CCF-Sentiment-Analysis for evaluation.
|Model|Dev F|
|----|----|
|Bert|80.3|
|Bert-wwm-ext| 80.5|
|Roberta-mid|80.5|
|Roberta-large|81.25|
|Longformer_SC|79.37|
|Longformer_ZH|80.51|
### Pretraining BPC
- 我们提供了预训练BPC(bits-per-character), BPC越小,代表语言模型性能更优。可视作PPL.
- We also provide BPC scores of pretraining, the lower BPC score, the better performance Langugage Model has. You can also treat it as PPL.
|Model|BPC|
|---|---|
|Longformer before training| 14.78|
|Longformer after training| 3.10|
### CMRC(Chinese Machine Reading Comprehension)
|Model|F1|EM|
|---|---|---|
|Bert|85.87|64.90|
|Roberta|86.45|66.57|
|Longformer_zh|86.15|66.84|
### Chinese Coreference Resolution
|Model|Conll-F1|Precision|Recall|
|---|---|---|---|
|Bert|66.82|70.30|63.67|
|Roberta|67.77|69.28|66.32|
|Longformer_zh|67.81|70.13|65.64|
## 致谢
感谢东京工业大学 奥村·船越研究室 提供算力。
Thanks Okumula·Funakoshi Lab from Tokyo Institute of Technology who provides the devices and oppotunity for me to finish this project.
|
unicamp-dl/mt5-base-mmarco-v2
|
unicamp-dl
| 2022-01-05T23:21:26Z | 305 | 3 |
transformers
|
[
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"msmarco",
"t5",
"tensorflow",
"pt",
"pt-br",
"dataset:msmarco",
"arxiv:2108.13897",
"license:mit",
"autotrain_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language: pt
license: mit
tags:
- msmarco
- t5
- pytorch
- tensorflow
- pt
- pt-br
datasets:
- msmarco
widget:
- text: "Texto de exemplo em português"
inference: false
---
# mt5-base Reranker finetuned on mMARCO
## Introduction
mt5-base-mmarco-v2 is a mT5-based model fine-tuned on a multilingual translated version of MS MARCO passage dataset. This dataset, named Multi MS MARCO, is formed by 9 complete MS MARCO passages collection in 9 different languages. In the v2 version, the datasets were translated using Google Translate.
Further information about the dataset or the translation method can be found on our paper [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository.
## Usage
```python
from transformers import T5Tokenizer, MT5ForConditionalGeneration
model_name = 'unicamp-dl/mt5-base-mmarco-v2'
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = MT5ForConditionalGeneration.from_pretrained(model_name)
```
# Citation
If you use mt5-base-mmarco-v2, please cite:
@misc{bonifacio2021mmarco,
title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
eprint={2108.13897},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
|
unicamp-dl/mMiniLM-L6-v2-pt-v2
|
unicamp-dl
| 2022-01-05T22:59:11Z | 7 | 3 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"text-classification",
"msmarco",
"miniLM",
"tensorflow",
"pt",
"pt-br",
"dataset:msmarco",
"arxiv:2108.13897",
"license:mit",
"autotrain_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language: pt
license: mit
tags:
- msmarco
- miniLM
- pytorch
- tensorflow
- pt
- pt-br
datasets:
- msmarco
widget:
- text: "Texto de exemplo em português"
inference: false
---
# mMiniLM-L6-v2 Reranker finetuned on mMARCO
## Introduction
mMiniLM-L6-v2-pt-msmarco-v2 is a multilingual miniLM-based model finetuned on a Portuguese translated version of MS MARCO passage dataset. In the v2 version, the Portuguese dataset was translated using Google Translate.
Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository.
## Usage
```python
from transformers import AutoTokenizer, AutoModel
model_name = 'unicamp-dl/mMiniLM-L6-v2-pt-msmarco-v1'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
```
# Citation
If you use mMiniLM-L6-v2-pt-msmarco-v2, please cite:
@misc{bonifacio2021mmarco,
title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
eprint={2108.13897},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
|
unicamp-dl/mMiniLM-L6-v2-mmarco-v2
|
unicamp-dl
| 2022-01-05T22:45:15Z | 223 | 6 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"text-classification",
"msmarco",
"miniLM",
"tensorflow",
"pt",
"pt-br",
"dataset:msmarco",
"arxiv:2108.13897",
"license:mit",
"autotrain_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language: pt
license: mit
tags:
- msmarco
- miniLM
- pytorch
- tensorflow
- pt
- pt-br
datasets:
- msmarco
widget:
- text: "Texto de exemplo em português"
inference: false
---
# mMiniLM-L6-v2 Reranker finetuned on mMARCO
## Introduction
mMiniLM-L6-v2-mmarco-v2 is a multilingual miniLM-based model finetuned on a multilingual version of MS MARCO passage dataset. This dataset, named mMARCO, is formed by passages in 9 different languages, translated from English MS MARCO passages collection.
In the v2 version, the datasets were translated using Google Translate.
Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository.
## Usage
```python
from transformers import AutoTokenizer, AutoModel
model_name = 'unicamp-dl/mMiniLM-L6-v2-mmarco-v2'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
```
# Citation
If you use mMiniLM-L6-v2-mmarco-v2, please cite:
@misc{bonifacio2021mmarco,
title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
eprint={2108.13897},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
|
unicamp-dl/mMiniLM-L6-v2-en-pt-msmarco-v2
|
unicamp-dl
| 2022-01-05T22:41:18Z | 6 | 3 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"text-classification",
"msmarco",
"miniLM",
"tensorflow",
"pt",
"pt-br",
"dataset:msmarco",
"arxiv:2108.13897",
"license:mit",
"autotrain_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language: pt
license: mit
tags:
- msmarco
- miniLM
- pytorch
- tensorflow
- pt
- pt-br
datasets:
- msmarco
widget:
- text: "Texto de exemplo em português"
inference: false
---
# mMiniLM-L6-v2 Reranker finetuned on mMARCO
## Introduction
mMiniLM-L6-v2-en-pt-msmarco-v2 is a multilingual miniLM-based model finetuned on a bilingual version of MS MARCO passage dataset. This bilingual dataset version is formed by the original MS MARCO dataset (in English) and a Portuguese translated version. In the v2 version, the Portuguese dataset was translated using Google Translate.
Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository.
## Usage
```python
from transformers import AutoTokenizer, AutoModel
model_name = 'unicamp-dl/mMiniLM-L6-v2-en-pt-msmarco-v2'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
```
# Citation
If you use mMiniLM-L6-v2-en-pt-msmarco-v2, please cite:
@misc{bonifacio2021mmarco,
title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
eprint={2108.13897},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
|
unicamp-dl/ptt5-base-en-pt-msmarco-10k-v1
|
unicamp-dl
| 2022-01-05T21:31:05Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"msmarco",
"tensorflow",
"pt",
"pt-br",
"dataset:msmarco",
"arxiv:2108.13897",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language: pt
license: mit
tags:
- msmarco
- t5
- pytorch
- tensorflow
- pt
- pt-br
datasets:
- msmarco
widget:
- text: "Texto de exemplo em português"
inference: false
---
# PTT5-base Reranker finetuned on both English and Portuguese MS MARCO
## Introduction
ptt5-base-msmarco-en-pt-10k-v1 is a T5-based model pretrained in the BrWac corpus, fine-tuned on both English and Portuguese translated version of MS MARCO passage dataset. In the version v1, the Portuguese dataset was translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT model. This model was finetuned for 10k steps.
Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository.
## Usage
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
model_name = 'unicamp-dl/ptt5-base-msmarco-en-pt-10k-v1'
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
```
# Citation
If you use ptt5-base-msmarco-en-pt-10k-v1, please cite:
@misc{bonifacio2021mmarco,
title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
eprint={2108.13897},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
|
unicamp-dl/mMiniLM-L6-v2-mmarco-v1
|
unicamp-dl
| 2022-01-05T21:29:46Z | 16 | 1 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"text-classification",
"msmarco",
"miniLM",
"tensorflow",
"pt",
"pt-br",
"dataset:msmarco",
"arxiv:2108.13897",
"license:mit",
"autotrain_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language: pt
license: mit
tags:
- msmarco
- miniLM
- pytorch
- tensorflow
- pt
- pt-br
datasets:
- msmarco
widget:
- text: "Texto de exemplo em português"
inference: false
---
# mMiniLM-L6-v2 Reranker finetuned on mMARCO
## Introduction
mMiniLM-L6-v2-mmarco-v1 is a multilingual miniLM-based model finetuned on a multilingual version of MS MARCO passage dataset. This dataset, named mMARCO, is formed by passages in 9 different languages, translated from English MS MARCO passages collection.
In the version v1, the datasets were translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT model. Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository.
## Usage
```python
from transformers import AutoTokenizer, AutoModel
model_name = 'unicamp-dl/mMiniLM-L6-v2-mmarco-v1'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
```
# Citation
If you use mMiniLM-L6-v2-mmarco-v1, please cite:
@misc{bonifacio2021mmarco,
title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
eprint={2108.13897},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
|
unicamp-dl/ptt5-base-pt-msmarco-10k-v1
|
unicamp-dl
| 2022-01-05T21:29:26Z | 105 | 1 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"msmarco",
"tensorflow",
"pt",
"pt-br",
"dataset:msmarco",
"arxiv:2108.13897",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language: pt
license: mit
tags:
- msmarco
- t5
- pytorch
- tensorflow
- pt
- pt-br
datasets:
- msmarco
widget:
- text: "Texto de exemplo em português"
inference: false
---
# PTT5-base Reranker finetuned on Portuguese MS MARCO
## Introduction
ptt5-base-msmarco-pt-10k-v1 is a T5-based model pretrained in the BrWac corpus, finetuned on Portuguese translated version of MS MARCO passage dataset. In the version v1, the Portuguese dataset was translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT model. This model was finetuned for 10k steps.
Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository.
## Usage
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
model_name = 'unicamp-dl/ptt5-base-msmarco-pt-10k-v1'
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
```
# Citation
If you use ptt5-base-msmarco-pt-10k-v1, please cite:
@misc{bonifacio2021mmarco,
title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
eprint={2108.13897},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
|
unicamp-dl/ptt5-base-pt-msmarco-100k-v1
|
unicamp-dl
| 2022-01-05T21:29:11Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"msmarco",
"tensorflow",
"pt",
"pt-br",
"dataset:msmarco",
"arxiv:2108.13897",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language: pt
license: mit
tags:
- msmarco
- t5
- pytorch
- tensorflow
- pt
- pt-br
datasets:
- msmarco
widget:
- text: "Texto de exemplo em português"
inference: false
---
# PTT5-base Reranker finetuned on Portuguese MS MARCO
## Introduction
ptt5-base-msmarco-pt-100k-v1 is a T5-based model pretrained in the BrWac corpus, finetuned on Portuguese translated version of MS MARCO passage dataset. In the version v1, the Portuguese dataset was translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT model. This model was finetuned for 100k steps.
Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository.
## Usage
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
model_name = 'unicamp-dl/ptt5-base-msmarco-pt-100k-v1'
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
```
# Citation
If you use ptt5-base-msmarco-pt-100k-v1, please cite:
@misc{bonifacio2021mmarco,
title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
eprint={2108.13897},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
|
msavel-prnt/distilbert-base-uncased-finetuned-clinc
|
msavel-prnt
| 2022-01-05T15:37:05Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:clinc_oos",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model_index:
- name: distilbert-base-uncased-finetuned-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
args: plus
metric:
name: Accuracy
type: accuracy
value: 0.9180645161290323
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-clinc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7528
- Accuracy: 0.9181
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 318 | 3.3044 | 0.7623 |
| 3.7959 | 2.0 | 636 | 1.8674 | 0.8597 |
| 3.7959 | 3.0 | 954 | 1.1377 | 0.8948 |
| 1.6819 | 4.0 | 1272 | 0.8351 | 0.9126 |
| 0.8804 | 5.0 | 1590 | 0.7528 | 0.9181 |
### Framework versions
- Transformers 4.8.2
- Pytorch 1.9.0+cu102
- Datasets 1.9.0
- Tokenizers 0.10.3
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.