modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 18:29:29
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 18:25:24
card
stringlengths
11
1.01M
tadejmagajna/flair-sl-pos
tadejmagajna
2022-01-05T15:07:06Z
2
0
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "sl", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - flair - token-classification - sequence-tagger-model language: sl widget: - text: "Danes je lep dan." --- ## Slovene Part-of-speech (PoS) Tagging for Flair This is a Slovene part-of-speech (PoS) tagger trained on the [Slovenian UD Treebank](https://github.com/UniversalDependencies/UD_Slovenian-SSJ) using Flair NLP framework. The tagger is trained using a combination of forward Slovene contextual string embeddings, backward Slovene contextual string embeddings and classic Slovene FastText embeddings. F-score (micro): **94,96** The model is trained on a large (500+) number of different tags that described at [https://universaldependencies.org/tagset-conversion/sl-multext-uposf.html](https://universaldependencies.org/tagset-conversion/sl-multext-uposf.html). Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("tadejmagajna/flair-sl-pos") # make example sentence sentence = Sentence("Danes je lep dan.") # predict PoS tags tagger.predict(sentence) # print sentence print(sentence) # print predicted PoS spans print('The following PoS tags are found:') # iterate over parts of speech and print for tag in sentence.get_spans('pos'): print(tag) ``` This prints out the following output: ``` Sentence: "Danes je lep dan ." [− Tokens: 5 − Token-Labels: "Danes <Rgp> je <Va-r3s-n> lep <Agpmsnn> dan <Ncmsn> . <Z>"] The following PoS tags are found: Span [1]: "Danes" [− Labels: Rgp (1.0)] Span [2]: "je" [− Labels: Va-r3s-n (1.0)] Span [3]: "lep" [− Labels: Agpmsnn (0.9999)] Span [4]: "dan" [− Labels: Ncmsn (1.0)] Span [5]: "." [− Labels: Z (1.0)] ``` --- ### Training: Script to train this model The following standard Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import UD_SLOVENIAN from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the corpus corpus: Corpus = UD_SLOVENIAN() # 2. what tag do we want to predict? tag_type = 'pos' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize embeddings embedding_types = [ WordEmbeddings('sl'), FlairEmbeddings('sl-forward'), FlairEmbeddings('sl-backward'), ] embeddings: StackedEmbeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger: SequenceTagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer: ModelTrainer = ModelTrainer(tagger, corpus) # 7. start training trainer.train('resources/taggers/pos-slovene', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
jonfd/electra-small-igc-is
jonfd
2022-01-05T14:56:02Z
47
0
transformers
[ "transformers", "pytorch", "electra", "pretraining", "is", "dataset:igc", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - is license: cc-by-4.0 datasets: - igc --- # Icelandic ELECTRA-Small This model was pretrained on the [Icelandic Gigaword Corpus](http://igc.arnastofnun.is/), which contains approximately 1.69B tokens, using default settings. The model uses a WordPiece tokenizer with a vocabulary size of 32,105. # Acknowledgments This research was supported with Cloud TPUs from Google's TPU Research Cloud (TRC). This project was funded by the Language Technology Programme for Icelandic 2019-2023. The programme, which is managed and coordinated by [Almannarómur](https://almannaromur.is/), is funded by the Icelandic Ministry of Education, Science and Culture.
Icelandic-lt/electra-small-igc-is
Icelandic-lt
2022-01-05T14:56:02Z
5
0
transformers
[ "transformers", "pytorch", "electra", "pretraining", "is", "dataset:igc", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2024-05-27T11:38:14Z
--- language: - is license: cc-by-4.0 datasets: - igc --- # Icelandic ELECTRA-Small This model was pretrained on the [Icelandic Gigaword Corpus](http://igc.arnastofnun.is/), which contains approximately 1.69B tokens, using default settings. The model uses a WordPiece tokenizer with a vocabulary size of 32,105. # Acknowledgments This research was supported with Cloud TPUs from Google's TPU Research Cloud (TRC). This project was funded by the Language Technology Programme for Icelandic 2019-2023. The programme, which is managed and coordinated by [Almannarómur](https://almannaromur.is/), is funded by the Icelandic Ministry of Education, Science and Culture.
Icelandic-lt/electra-base-igc-is
Icelandic-lt
2022-01-05T14:54:23Z
4
0
transformers
[ "transformers", "pytorch", "electra", "pretraining", "is", "dataset:igc", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2024-05-27T13:01:43Z
--- language: - is license: cc-by-4.0 datasets: - igc --- # Icelandic ELECTRA-Base This model was pretrained on the [Icelandic Gigaword Corpus](http://igc.arnastofnun.is/), which contains approximately 1.69B tokens, using default settings. The model uses a WordPiece tokenizer with a vocabulary size of 32,105. # Acknowledgments This research was supported with Cloud TPUs from Google's TPU Research Cloud (TRC). This project was funded by the Language Technology Programme for Icelandic 2019-2023. The programme, which is managed and coordinated by [Almannarómur](https://almannaromur.is/), is funded by the Icelandic Ministry of Education, Science and Culture.
kurone/cp_tags_prediction
kurone
2022-01-05T13:32:49Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
This model can predict which categories a specific competitive problem falls into
MingZhong/DialogLED-base-16384
MingZhong
2022-01-05T09:15:06Z
80
6
transformers
[ "transformers", "pytorch", "led", "text2text-generation", "arxiv:2109.02492", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
[DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization](https://arxiv.org/abs/2109.02492). ## Introduction DialogLED is a pre-trained model for long dialogue understanding and summarization. It builds on the Longformer-Encoder-Decoder (LED) architecture and uses window-based denoising as the pre-training task on a large amount of long dialogue data for further training. Here is a base version of DialogLED, the input length is limited to 16,384 in the pre-training phase. ## Finetuning for Downstream Tasks Please refer to [our GitHub page](https://github.com/microsoft/DialogLM).
huggingtweets/sporeball
huggingtweets
2022-01-05T08:02:01Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/sporeball/1641369716297/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1365405536401776642/Z17NbuYy_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">lux</div> <div style="text-align: center; font-size: 14px;">@sporeball</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from lux. | Data | lux | | --- | --- | | Tweets downloaded | 1150 | | Retweets | 171 | | Short tweets | 120 | | Tweets kept | 859 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2w9y6gn1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sporeball's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2tg3n5a5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2tg3n5a5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sporeball') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Prasadi/wav2vec2-base-timit-demo-colab-1
Prasadi
2022-01-05T06:18:01Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab-1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3857 - Wer: 0.3874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4285 | 2.01 | 500 | 1.4732 | 0.9905 | | 0.7457 | 4.02 | 1000 | 0.5278 | 0.4960 | | 0.3463 | 6.02 | 1500 | 0.4245 | 0.4155 | | 0.2034 | 8.03 | 2000 | 0.3857 | 0.3874 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
abdelkader/distilbert-base-uncased-finetuned-emotion
abdelkader
2022-01-04T23:18:05Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9215 - name: F1 type: f1 value: 0.9215604730468001 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2162 - Accuracy: 0.9215 - F1: 0.9216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8007 | 1.0 | 250 | 0.3082 | 0.907 | 0.9045 | | 0.2438 | 2.0 | 500 | 0.2162 | 0.9215 | 0.9216 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
marioarteaga/distilbert-base-uncased-finetuned-squad
marioarteaga
2022-01-04T20:26:53Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2493 | 1.0 | 5533 | 1.2052 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
huawei-noah/JABER
huawei-noah
2022-01-04T20:19:57Z
1
0
null
[ "pytorch", "arxiv:2112.04329", "region:us" ]
null
2022-03-02T23:29:05Z
# Overview <p align="center"> <img src="https://avatars.githubusercontent.com/u/12619994?s=200&v=4" width="150"> </p> <!-- -------------------------------------------------------------------------------- --> JABER (Junior Arabic BERt) is a 12-layer Arabic pretrained Language Model. JABER obtained rank one on [ALUE leaderboard](https://www.alue.org/leaderboard) at `01/09/2021`. This model is **only compatible** with the code in [this github repo](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/JABER-PyTorch) (not supported by the [Transformers](https://github.com/huggingface/transformers) library) ## Citation Please cite the following [paper](https://arxiv.org/abs/2112.04329) when using our code and model: ``` bibtex @misc{ghaddar2021jaber, title={JABER: Junior Arabic BERt}, author={Abbas Ghaddar and Yimeng Wu and Ahmad Rashid and Khalil Bibi and Mehdi Rezagholizadeh and Chao Xing and Yasheng Wang and Duan Xinyu and Zhefeng Wang and Baoxing Huai and Xin Jiang and Qun Liu and Philippe Langlais}, year={2021}, eprint={2112.04329}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Anamika/autonlp-fa-473312409
Anamika
2022-01-04T20:08:00Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "en", "dataset:Anamika/autonlp-data-fa", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - Anamika/autonlp-data-fa co2_eq_emissions: 25.128735714898614 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 473312409 - CO2 Emissions (in grams): 25.128735714898614 ## Validation Metrics - Loss: 0.6010786890983582 - Accuracy: 0.7990650945370823 - Macro F1: 0.7429662929144928 - Micro F1: 0.7990650945370823 - Weighted F1: 0.7977660363770382 - Macro Precision: 0.7744390888231261 - Micro Precision: 0.7990650945370823 - Weighted Precision: 0.800444194278352 - Macro Recall: 0.7198278524814119 - Micro Recall: 0.7990650945370823 - Weighted Recall: 0.7990650945370823 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Anamika/autonlp-fa-473312409 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Anamika/autonlp-fa-473312409", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Anamika/autonlp-fa-473312409", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
huggingtweets/funnyordie
huggingtweets
2022-01-04T19:39:10Z
104
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/894956741573525504/YFg6jiNP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Funny Or Die</div> <div style="text-align: center; font-size: 14px;">@funnyordie</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Funny Or Die. | Data | Funny Or Die | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 237 | | Short tweets | 190 | | Tweets kept | 2823 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/zjkuy05u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @funnyordie's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2jaeb619) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2jaeb619/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/funnyordie') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Khanh/distilbert-base-multilingual-cased-finetuned-viquad
Khanh
2022-01-04T19:19:15Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-multilingual-cased-finetuned-viquad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-viquad This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 65 | 4.0975 | | No log | 2.0 | 130 | 3.9315 | | No log | 3.0 | 195 | 3.6742 | | No log | 4.0 | 260 | 3.4878 | | No log | 5.0 | 325 | 3.4241 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Khanh/bert-base-multilingual-cased-finetuned-viquad
Khanh
2022-01-04T19:07:54Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-multilingual-cased-finetuned-viquad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-viquad This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 65 | 2.5534 | | No log | 2.0 | 130 | 2.1165 | | No log | 3.0 | 195 | 1.9815 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ericRosello/distilbert-base-uncased-finetuned-squad-frozen-v2
ericRosello
2022-01-04T18:06:41Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2104 ## Model description Most base model weights were frozen leaving only to finetune the last layer (qa outputs) and 3 last layers of the encoder. ## Training and evaluation data Achieved EM: 73.519394512772, F1: 82.71779517079237 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.3937 | 1.0 | 5533 | 1.2915 | | 1.1522 | 2.0 | 11066 | 1.2227 | | 1.0055 | 3.0 | 16599 | 1.2104 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Khanh/xlm-roberta-base-finetuned-squad
Khanh
2022-01-04T17:49:35Z
105
1
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-roberta-base-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-squad This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5539 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7665 | 1.0 | 2295 | 0.5231 | | 0.5236 | 2.0 | 4590 | 0.5539 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ericRosello/bert-base-uncased-finetuned-squad-frozen-v1
ericRosello
2022-01-04T17:03:12Z
22
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 4.0178 ## Model description Base model weights were frozen leaving only to finetune the last layer (qa outputs). ## Training and evaluation data Achieved EM: 8.013245033112582, F1: 15.9706088498649 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.3602 | 1.0 | 5533 | 4.3460 | | 4.0995 | 2.0 | 11066 | 4.0787 | | 4.0302 | 3.0 | 16599 | 4.0178 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
nvidia/megatron-gpt2-345m
nvidia
2022-01-04T15:19:18Z
0
21
null
[ "arxiv:1909.08053", "region:us" ]
null
2022-03-02T23:29:05Z
<!--- # ############################################################################################## # # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ############################################################################################## --> [Megatron](https://arxiv.org/pdf/1909.08053.pdf) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This particular Megatron model was trained from a generative, left-to-right transformer in the style of GPT-2. This model was trained on text sourced from Wikipedia, RealNews, OpenWebText, and CC-Stories. It contains 345 million parameters. Find more information at [https://github.com/NVIDIA/Megatron-LM](https://github.com/NVIDIA/Megatron-LM) # How to run Megatron GPT2 using Transformers ## Prerequisites In that guide, we run all the commands from a folder called `$MYDIR` and defined as (in `bash`): ``` export MYDIR=$HOME ``` Feel free to change the location at your convenience. To run some of the commands below, you'll have to clone `Transformers`. ``` git clone https://github.com/huggingface/transformers.git $MYDIR/transformers ``` ## Get the checkpoints from the NVIDIA GPU Cloud You must create a directory called `nvidia/megatron-gpt2-345m`: ``` mkdir -p $MYDIR/nvidia/megatron-gpt2-345m ``` You can download the checkpoints from the [NVIDIA GPU Cloud (NGC)](https://ngc.nvidia.com/catalog/models/nvidia:megatron_lm_345m). For that you have to [sign up](https://ngc.nvidia.com/signup) for and setup the NVIDIA GPU Cloud (NGC) Registry CLI. Further documentation for downloading models can be found in the [NGC documentation](https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1). Alternatively, you can directly download the checkpoints using: ``` wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_lm_345m/versions/v0.0/zip -O $MYDIR/nvidia/megatron-gpt2-345m/checkpoint.zip ``` ## Converting the checkpoint In order to be loaded into `Transformers`, the checkpoint has to be converted. You should run the following command for that purpose. That command will create `config.json` and `pytorch_model.bin` in `$MYDIR/nvidia/megatron-gpt2-345m`. You can move those files to different directories if needed. ``` python3 $MYDIR/transformers/src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py $MYDIR/nvidia/megatron-gpt2-345m/checkpoint.zip ``` As explained in [PR #14956](https://github.com/huggingface/transformers/pull/14956), if when running this conversion script and you're getting an exception: ``` ModuleNotFoundError: No module named 'megatron.model.enums' ``` you need to tell python where to find the clone of Megatron-LM, e.g.: ``` cd /tmp git clone https://github.com/NVIDIA/Megatron-LM PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py ... ``` Or, if you already have it cloned elsewhere, simply adjust the path to the existing path. If the training was done using a Megatron-LM fork, e.g. [Megatron-DeepSpeed](https://github.com/microsoft/Megatron-DeepSpeed/) then you may need to have that one in your path, i.e., /path/to/Megatron-DeepSpeed. ## Text generation The following code shows how to use the Megatron GPT2 checkpoint and the Transformers API to generate text. ``` import os import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel # The tokenizer. Megatron was trained with standard tokenizer(s). tokenizer = GPT2Tokenizer.from_pretrained('gpt2') # The path to the config/checkpoint (see the conversion step above). directory = os.path.join(os.environ['MYDIR'], 'nvidia/megatron-gpt2-345m') # Load the model from $MYDIR/nvidia/megatron-gpt2-345m. model = GPT2LMHeadModel.from_pretrained(directory) # Copy to the device and use FP16. assert torch.cuda.is_available() device = torch.device("cuda") model.to(device) model.eval() model.half() # Generate the sentence. output = model.generate(input_ids=None, max_length=32, num_return_sequences=1) # Output the text. for sentence in output: sentence = sentence.tolist() text = tokenizer.decode(sentence, clean_up_tokenization_spaces=True) print(text) ``` # To use this as a normal HuggingFace model If you want to use this model with HF Trainer, here is a quick way to do that: 1. Download nvidia checkpoint: ``` wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_lm_345m/versions/v0.0/zip -O megatron_lm_345m_v0.0.zip ``` 2. Convert: ``` python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py megatron_lm_345m_v0.0.zip ``` 3. Fetch missing files ``` git clone https://huggingface.co/nvidia/megatron-gpt2-345m/ ``` 4. Move the converted files into the cloned model dir ``` mv config.json pytorch_model.bin megatron-gpt2-345m/ ``` 5. The `megatron-gpt2-345m` dir should now have all the files which can be passed to HF Trainer as `--model_name_or_path megatron-gpt2-345m` # Original code The original Megatron code can be found here: [https://github.com/NVIDIA/Megatron-LM](https://github.com/NVIDIA/Megatron-LM).
scasutt/Prototype_training
scasutt
2022-01-04T14:59:34Z
13
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Prototype_training results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Prototype_training This model is a fine-tuned version of [scasutt/Prototype_training](https://huggingface.co/scasutt/Prototype_training) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3719 - Wer: 0.4626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3853 | 1.47 | 100 | 0.3719 | 0.4626 | | 0.3867 | 2.94 | 200 | 0.3719 | 0.4626 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
sshasnain/wav2vec2-xls-r-timit-trainer
sshasnain
2022-01-04T14:49:41Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xls-r-timit-trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-timit-trainer This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1064 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5537 | 4.03 | 500 | 0.6078 | 1.0 | | 0.5444 | 8.06 | 1000 | 0.4990 | 0.9994 | | 0.3744 | 12.1 | 1500 | 0.5530 | 1.0 | | 0.2863 | 16.13 | 2000 | 0.6401 | 1.0 | | 0.2357 | 20.16 | 2500 | 0.6485 | 1.0 | | 0.1933 | 24.19 | 3000 | 0.7448 | 0.9994 | | 0.162 | 28.22 | 3500 | 0.7502 | 1.0 | | 0.1325 | 32.26 | 4000 | 0.7801 | 1.0 | | 0.1169 | 36.29 | 4500 | 0.8334 | 1.0 | | 0.1031 | 40.32 | 5000 | 0.8269 | 1.0 | | 0.0913 | 44.35 | 5500 | 0.8432 | 1.0 | | 0.0793 | 48.39 | 6000 | 0.8738 | 1.0 | | 0.0694 | 52.42 | 6500 | 0.8897 | 1.0 | | 0.0613 | 56.45 | 7000 | 0.8966 | 1.0 | | 0.0548 | 60.48 | 7500 | 0.9398 | 1.0 | | 0.0444 | 64.51 | 8000 | 0.9548 | 1.0 | | 0.0386 | 68.55 | 8500 | 0.9647 | 1.0 | | 0.0359 | 72.58 | 9000 | 0.9901 | 1.0 | | 0.0299 | 76.61 | 9500 | 1.0151 | 1.0 | | 0.0259 | 80.64 | 10000 | 1.0526 | 1.0 | | 0.022 | 84.67 | 10500 | 1.0754 | 1.0 | | 0.0189 | 88.71 | 11000 | 1.0688 | 1.0 | | 0.0161 | 92.74 | 11500 | 1.0914 | 1.0 | | 0.0138 | 96.77 | 12000 | 1.1064 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
federicopascual/finetuning-sentiment-model-3000-samples-testcopy
federicopascual
2022-01-04T14:34:49Z
6
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples-testcopy results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87 - name: F1 type: f1 value: 0.8761904761904761 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples-testcopy This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3374 - Accuracy: 0.87 - F1: 0.8762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Bhuvana/t5-base-spellchecker
Bhuvana
2022-01-04T12:46:55Z
192
13
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- widget: - text: "christmas is celbrated on decembr 25 evry ear" --- # Spell checker using T5 base transformer A simple spell checker built using T5-Base transformer. To use this model ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("Bhuvana/t5-base-spellchecker") model = AutoModelForSeq2SeqLM.from_pretrained("Bhuvana/t5-base-spellchecker") def correct(inputs): input_ids = tokenizer.encode(inputs,return_tensors='pt') sample_output = model.generate( input_ids, do_sample=True, max_length=50, top_p=0.99, num_return_sequences=1 ) res = tokenizer.decode(sample_output[0], skip_special_tokens=True) return res text = "christmas is celbrated on decembr 25 evry ear" print(correct(text)) ``` This should print the corrected statement ``` christmas is celebrated on december 25 every year ``` You can also type the text under the Hosted inference API and get predictions online.
NikolajMunch/danish-emotion-classification
NikolajMunch
2022-01-04T12:14:46Z
28
6
transformers
[ "transformers", "pytorch", "bert", "text-classification", "sentiment", "emotion", "danish", "da", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- widget: - text: "Hold da op! Kan det virkelig passe?" language: - "da" tags: - sentiment - emotion - danish --- # **-- EMODa --** ## BERT-model for danish multi-class classification of emotions Classifies a danish sentence into one of 6 different emotions: | Danish emotion | Ekman's emotion | | ----- | ----- | | 😞 **Afsky** | Disgust | | 😨 **Frygt** | Fear | | 😄 **Glæde** | Joy | | 😱 **Overraskelse** | Surprise | | 😢 **Tristhed** | Sadness | | 😠 **Vrede** | Anger | # How to use ```python from transformers import pipeline model_path = "NikolajMunch/danish-emotion-classification" classifier = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path) prediction = classifier("Jeg er godt nok ked af at mine SMS'er er slettet") print(prediction) # [{'label': 'Tristhed', 'score': 0.9725030660629272}] ``` or ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("NikolajMunch/danish-emotion-classification") model = AutoModelForSequenceClassification.from_pretrained("NikolajMunch/danish-emotion-classification") ```
ericRosello/distilbert-base-uncased-finetuned-squad-frozen-v1
ericRosello
2022-01-04T12:14:41Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 4.3629 ## Model description Base model weights were frozen leaving only to finetune the last layer (qa outputs). ## Training and evaluation data Achieved EM: 4.7776726584673606, F1: 11.440882287905591 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.679 | 1.0 | 5533 | 4.6713 | | 4.4171 | 2.0 | 11066 | 4.4218 | | 4.3464 | 3.0 | 16599 | 4.3629 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
junnyu/roformer_chinese_base
junnyu
2022-01-04T11:46:28Z
17
14
paddlenlp
[ "paddlenlp", "pytorch", "tf", "jax", "paddlepaddle", "roformer", "tf2.0", "zh", "arxiv:2104.09864", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: zh tags: - roformer - pytorch - tf2.0 widget: - text: "今天[MASK]很好,我想去公园玩!" --- ## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, RoFormerTokenizer text = "今天[MASK]很好,我想去公园玩!" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_base") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 今天[天气||天||阳光||太阳||空气]很好,我想去公园玩! ``` ## tensorflow2.0使用 ```python import tensorflow as tf from transformers import RoFormerTokenizer, TFRoFormerForMaskedLM text = "今天[MASK]很好,我想去公园玩!" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_base") tf_model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base") tf_inputs = tokenizer(text, return_tensors="tf") tf_outputs = tf_model(**tf_inputs, training=False).logits[0] tf_outputs_sentence = "tf2.0: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens( tf.math.top_k(tf_outputs[i], k=5)[1]) tf_outputs_sentence += "[" + "||".join(tokens) + "]" else: tf_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(tf_outputs_sentence) # tf2.0: 今天[天气||天||阳光||太阳||空气]很好,我想去公园玩! ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
junnyu/roformer_chinese_char_base
junnyu
2022-01-04T11:45:40Z
5
0
paddlenlp
[ "paddlenlp", "pytorch", "tf", "jax", "paddlepaddle", "roformer", "tf2.0", "zh", "arxiv:2104.09864", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: zh tags: - roformer - pytorch - tf2.0 widget: - text: "今天[MASK]很好,我想去公园玩!" --- ## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, RoFormerTokenizer text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_char_base") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_char_base") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 今天[天||气||都||风||人]很好,我[想||要||就||也||还]去公园玩。 ``` ## tensorflow2.0使用 ```python import tensorflow as tf from transformers import RoFormerTokenizer, TFRoFormerForMaskedLM text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_char_base") tf_model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_char_base") tf_inputs = tokenizer(text, return_tensors="tf") tf_outputs = tf_model(**tf_inputs, training=False).logits[0] tf_outputs_sentence = "tf2.0: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens( tf.math.top_k(tf_outputs[i], k=5)[1]) tf_outputs_sentence += "[" + "||".join(tokens) + "]" else: tf_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(tf_outputs_sentence) # tf2.0 今天[天||气||都||风||人]很好,我[想||要||就||也||还]去公园玩。 ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
philschmid/gbert-base-germaner
philschmid
2022-01-04T08:55:58Z
9
3
transformers
[ "transformers", "tf", "tensorboard", "bert", "token-classification", "de", "dataset:germaner", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - de license: mit widget: - text: | Philipp ist 26 Jahre alt und lebt in Nürnberg, Deutschland. Derzeit arbeitet er als Machine Learning Engineer und Tech Lead bei Hugging Face, um künstliche Intelligenz durch Open Source und Open Science zu demokratisieren. datasets: - germaner metrics: - precision - recall - f1 - accuracy model-index: - name: gbert-base-germaner results: - task: name: Token Classification type: token-classification dataset: name: germaner type: germaner args: default metrics: - name: precision type: precision value: 0.8520523797532108 - name: recall type: recall value: 0.8754204398447607 - name: f1 type: f1 value: 0.8635783563042368 - name: accuracy type: accuracy value: 0.976147969774973 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gbert-base-germaner This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on the germaner dataset. It achieves the following results on the evaluation set: - precision: 0.8521 - recall: 0.8754 - f1: 0.8636 - accuracy: 0.9761 If you want to learn how to fine-tune BERT yourself using Keras and Tensorflow check out this blog post: https://www.philschmid.de/huggingface-transformers-keras-tf ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - num_train_epochs: 5 - train_batch_size: 16 - eval_batch_size: 32 - learning_rate: 2e-05 - weight_decay_rate: 0.01 - num_warmup_steps: 0 - fp16: True ### Framework versions - Transformers 4.14.1 - Datasets 1.16.1 - Tokenizers 0.10.3
pierreguillou/bert-large-cased-pt-lenerbr
pierreguillou
2022-01-04T08:52:43Z
57
6
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "pt", "dataset:pierreguillou/lener_br_finetuning_language_model", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - pt tags: - generated_from_trainer datasets: - pierreguillou/lener_br_finetuning_language_model model-index: - name: checkpoints results: - task: name: Fill Mask type: fill-mask dataset: name: pierreguillou/lener_br_finetuning_language_model type: pierreguillou/lener_br_finetuning_language_model metrics: - name: Loss type: loss value: 1.127950 widget: - text: "Com efeito, se tal fosse possível, o Poder [MASK] – que não dispõe de função legislativa – passaria a desempenhar atribuição que lhe é institucionalmente estranha (a de legislador positivo), usurpando, desse modo, no contexto de um sistema de poderes essencialmente limitados, competência que não lhe pertence, com evidente transgressão ao princípio constitucional da separação de poderes." --- ## (BERT large) Language modeling in the legal domain in Portuguese (LeNER-Br) **bert-large-cased-pt-lenerbr** is a Language Model in the legal domain in Portuguese that was finetuned on 20/12/2021 in Google Colab from the model [BERTimbau large](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the dataset [LeNER-Br language modeling](https://huggingface.co/datasets/pierreguillou/lener_br_finetuning_language_model) by using a MASK objective. You can check as well the [version base of this model](https://huggingface.co/pierreguillou/bert-base-cased-pt-lenerbr). ## Widget & APP You can test this model into the widget of this page. ## Blog post This language model is used to get a NER model on the Portuguese judicial domain. You can check the fine-tuned NER model at [pierreguillou/ner-bert-large-cased-pt-lenerbr](https://huggingface.co/pierreguillou/ner-bert-large-cased-pt-lenerbr). All informations and links are in this blog post: [NLP | Modelos e Web App para Reconhecimento de Entidade Nomeada (NER) no domínio jurídico brasileiro](https://medium.com/@pierre_guillou/nlp-modelos-e-web-app-para-reconhecimento-de-entidade-nomeada-ner-no-dom%C3%ADnio-jur%C3%ADdico-b658db55edfb) (29/12/2021) ## Using the model for inference in production ```` # install pytorch: check https://pytorch.org/ # !pip install transformers from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("pierreguillou/bert-large-cased-pt-lenerbr") model = AutoModelForMaskedLM.from_pretrained("pierreguillou/bert-large-cased-pt-lenerbr") ```` ## Training procedure ## Notebook The notebook of finetuning ([Finetuning_language_model_BERtimbau_LeNER_Br.ipynb](https://github.com/piegu/language-models/blob/master/Finetuning_language_model_BERtimbau_LeNER_Br.ipynb)) is in github. ### Training results ```` Num examples = 3227 Num Epochs = 5 Instantaneous batch size per device = 2 Total train batch size (w. parallel, distributed & accumulation) = 8 Gradient Accumulation steps = 4 Total optimization steps = 2015 Step Training Loss Validation Loss 100 1.616700 1.366015 200 1.452000 1.312473 300 1.431100 1.253055 400 1.407500 1.264705 500 1.301900 1.243277 600 1.317800 1.233684 700 1.319100 1.211826 800 1.303800 1.190818 900 1.262800 1.171898 1000 1.235900 1.146275 1100 1.221900 1.149027 1200 1.226200 1.127950 1300 1.201700 1.172729 1400 1.198200 1.145363 ````
addy88/programming-lang-identifier
addy88
2022-01-04T04:22:07Z
8
6
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
This model is funetune version of Codebert in roberta. On CodeSearchNet. ### Quick start: from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("addy88/programming-lang-identifier") model = AutoModelForSequenceClassification.from_pretrained("addy88/programming-lang-identifier") input_ids = tokenizer.encode(CODE_TO_IDENTIFY) logits = model(input_ids)[0] language_idx = logits.argmax() # index for the resulting label ###
hogger32/distilbert-base-uncased-finetuned-squad
hogger32
2022-01-03T15:39:48Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.7004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.316 | 1.0 | 2363 | 2.0234 | | 2.0437 | 2.0 | 4726 | 1.7881 | | 1.9058 | 3.0 | 7089 | 1.7004 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
rexxar96/autonlp-roberta-large-finetuned-467612250
rexxar96
2022-01-03T14:24:32Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "unk", "dataset:rexxar96/autonlp-data-roberta-large-finetuned", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - rexxar96/autonlp-data-roberta-large-finetuned co2_eq_emissions: 73.72876780772296 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 467612250 - CO2 Emissions (in grams): 73.72876780772296 ## Validation Metrics - Loss: 0.18261319398880005 - Accuracy: 0.9541659567217584 - Precision: 0.9530625832223701 - Recall: 0.9572049481778669 - AUC: 0.9901737875196123 - F1: 0.9551292743953294 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/rexxar96/autonlp-roberta-large-finetuned-467612250 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("rexxar96/autonlp-roberta-large-finetuned-467612250", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("rexxar96/autonlp-roberta-large-finetuned-467612250", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
ronanki/xlmr_02-02-2022
ronanki
2022-01-03T13:48:37Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # ronanki/xlmr_02-02-2022 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ronanki/xlmr_02-02-2022') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('ronanki/xlmr_02-02-2022') model = AutoModel.from_pretrained('ronanki/xlmr_02-02-2022') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ronanki/xlmr_02-02-2022) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 160 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters: ``` {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5} ``` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 16, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
impyadav/GPT2-FineTuned-Hinglish-Song-Generation
impyadav
2022-01-03T11:33:54Z
51
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
GPT-2 model fine-tuned on Custom old Hindi songs (Hinglish) for text-generation task (AI Lyricist) language: - Hindi - Hinglish
hiiamsid/sentence_similarity_hindi
hiiamsid
2022-01-03T11:25:33Z
236
6
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "hi", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity language: - hi tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # hiiamsid/sentence_similarity_hindi This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('hiiamsid/sentence_similarity_hindi') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results ``` cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman 0.825825032,0.8227195932,0.8127990959,0.8214681478,0.8111641963,0.8194870279,0.8096042841,0.8061808483 ``` For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 341 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 137, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information --> - Model: [setu4993/LaBSE] (https://huggingface.co/setu4993/LaBSE) - Sentence Transformers [Semantic Textual Similarity] (https://www.sbert.net/examples/training/sts/README.html)
pratinavseth/biobert_squad2_cased-finetuned-squad
pratinavseth
2022-01-03T08:56:44Z
106
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: biobert_squad2_cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert_squad2_cased-finetuned-squad This model is a fine-tuned version of [clagator/biobert_squad2_cased](https://huggingface.co/clagator/biobert_squad2_cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
huggingtweets/chheplo
huggingtweets
2022-01-03T05:23:33Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/chheplo/1641187409438/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1477561163961438208/7HnhxOo__400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pratik Desai</div> <div style="text-align: center; font-size: 14px;">@chheplo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pratik Desai. | Data | Pratik Desai | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 362 | | Short tweets | 139 | | Tweets kept | 2747 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4tv1dtfa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chheplo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/p7d97s36) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/p7d97s36/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chheplo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
pinecone/mpnet-retriever-squad2
pinecone
2022-01-03T02:42:15Z
6
2
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 5429 with parameters: ``` {'batch_size': 24} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 542, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
durgaamma2005/indic-transformers-te-distilbert
durgaamma2005
2022-01-02T17:56:41Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:wikiann", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: indic-transformers-te-distilbert results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: te metrics: - name: Precision type: precision value: 0.5657225853304285 - name: Recall type: recall value: 0.6486261448792673 - name: F1 type: f1 value: 0.604344453064391 - name: Accuracy type: accuracy value: 0.9049186160277506 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # indic-transformers-te-distilbert This model was trained from scratch on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.2940 - Precision: 0.5657 - Recall: 0.6486 - F1: 0.6043 - Accuracy: 0.9049 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 125 | 0.3629 | 0.4855 | 0.5287 | 0.5062 | 0.8826 | | No log | 2.0 | 250 | 0.3032 | 0.5446 | 0.6303 | 0.5843 | 0.9002 | | No log | 3.0 | 375 | 0.2940 | 0.5657 | 0.6486 | 0.6043 | 0.9049 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
juierror/wav2vec2-large-xls-r-thai-test
juierror
2022-01-02T14:18:08Z
64
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-thai-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-thai-test This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 0.7728 - eval_wer: 0.9490 - eval_runtime: 678.2819 - eval_samples_per_second: 3.226 - eval_steps_per_second: 0.404 - epoch: 2.56 - step: 600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
stefan-jo/bert-finetuned-ner
stefan-jo
2022-01-02T13:21:28Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9378727634194831 - name: Recall type: recall value: 0.9527095254123191 - name: F1 type: f1 value: 0.9452329270328937 - name: Accuracy type: accuracy value: 0.9866515570730559 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0619 - Precision: 0.9379 - Recall: 0.9527 - F1: 0.9452 - Accuracy: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.088 | 1.0 | 1756 | 0.0625 | 0.9203 | 0.9399 | 0.9300 | 0.9835 | | 0.0383 | 2.0 | 3512 | 0.0614 | 0.9348 | 0.9460 | 0.9404 | 0.9858 | | 0.0209 | 3.0 | 5268 | 0.0619 | 0.9379 | 0.9527 | 0.9452 | 0.9867 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
addy88/perceiver_image_classifier
addy88
2022-01-02T13:05:37Z
82
3
transformers
[ "transformers", "pytorch", "perceiver", "image-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
### How to use Here is how to use this model in PyTorch: ```python from transformers import PerceiverFeatureExtractor, PerceiverForImageClassificationLearned import requests from PIL import Image feature_extractor = PerceiverFeatureExtractor.from_pretrained("addy88/perceiver_image_classifier") model = PerceiverForImageClassificationLearned.from_pretrained("addy88/perceiver_image_classifier") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) # prepare input encoding = feature_extractor(image, return_tensors="pt") inputs = encoding.pixel_values # forward pass outputs = model(inputs) logits = outputs.logits print("Predicted class:", model.config.id2label[logits.argmax(-1).item()]) >>> should print Predicted class: tabby, tabby cat ```
AlekseyKulnevich/Pegasus-QuestionGeneration
AlekseyKulnevich
2022-01-02T12:24:37Z
29
1
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
**Usage HuggingFace Transformers for question generation task** ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM model = AutoModelForSeq2SeqLM.from_pretrained("AlekseyKulnevich/Pegasus-QuestionGeneration") tokenizer = PegasusTokenizer.from_pretrained('google/pegasus-large') input_text # your text input_ = tokenizer.batch_encode_plus([input_text], max_length=1024, pad_to_max_length=True, truncation=True, padding='longest', return_tensors='pt') input_ids = input_['input_ids'] input_mask = input_['attention_mask'] questions = model.generate(input_ids=input_ids, attention_mask=input_mask, num_beams=32, no_repeat_ngram_size=2, early_stopping=True, num_return_sequences=10) questions = tokenizer.batch_decode(questions, skip_special_tokens=True) ``` **Decoder configuration examples:** [**Input text you can see here**](https://www.bbc.com/news/science-environment-59775105) ``` questions = model.generate(input_ids=input_ids, attention_mask=input_mask, num_beams=32, no_repeat_ngram_size=2, early_stopping=True, num_return_sequences=10) tokenizer.batch_decode(questions, skip_special_tokens=True) ``` output: 1. *What is the impact of human induced climate change on tropical cyclones?* 2. *What is the impact of climate change on tropical cyclones?* 3. *What is the impact of human induced climate change on tropical cyclone formation?* 4. *How many tropical cyclones will occur in the mid-latitudes?* 5. *What is the impact of climate change on the formation of tropical cyclones?* 6. *Is it possible for a tropical cyclone to form in the middle latitudes?* 7. *How many tropical cyclones will be formed in the mid-latitudes?* 8. *How many tropical cyclones will there be in the mid-latitudes?* 9. *How many tropical cyclones will form in the mid-latitudes?* 10. *What is the impact of global warming on tropical cyclones?* 11. *How long does it take for a tropical cyclone to form?* 12. 'What are the impacts of climate change on tropical cyclones?* 13. *What are the effects of climate change on tropical cyclones?* 14. *How many tropical cyclones will be able to form in the middle latitudes?* 15. *What is the impact of climate change on tropical cyclone formation?* 16. *What is the effect of climate change on tropical cyclones?* 17. *How long does it take for a tropical cyclone to form in the middle latitude?* 18. *How many tropical cyclones will occur in the middle latitudes?* 19. *How many tropical cyclones are likely to form in the midlatitudes?* 20. *How many tropical cyclones are likely to form in the middle latitudes?* 21. *How many tropical cyclones are expected to form in the midlatitudes?* 22. *How many tropical cyclones will be formed in the middle latitudes?* 23. *How many tropical cyclones will there be in the middle latitudes?* 24. *How long will it take for a tropical cyclone to form in the middle latitude?* 25. *What is the impact of global warming on tropical cyclone formation?* 26. *How many tropical cyclones will form in the middle latitudes?* 27. *How many tropical cyclones can we expect to form in the middle latitudes?* 28. *Is it possible for a tropical cyclone to form in the middle latitude?* 29. *What is the effect of climate change on tropical cyclone formation?* 30. *What are the effects of climate change on tropical cyclone formation?* Also you can play with the following parameters in generate method: -top_k -top_p [**Meaning of parameters to generate text you can see here**](https://huggingface.co/blog/how-to-generate)
LeoFeng/ChineseSequenceClassification
LeoFeng
2022-01-02T09:13:10Z
4
3
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
利用THUC dataset 訓練的文章分類器,共支援14種種類
addy88/gpt-j-8bit
addy88
2022-01-02T06:34:27Z
5
2
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "arxiv:2106.09685", "arxiv:2110.02861", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
This Model is 8bit Version of EleutherAI/gpt-j-6B. It is converted by Facebook's bitsandbytes library. The original GPT-J takes 22+ GB memory for float32 parameters alone, and that's before you account for gradients & optimizer. So for finetuning on single GPU This model is converted into 8bit. Here's how to run it: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1KNf5siQdM7ILQM-pHsP6gNVPKl1SJdU1) __The [original GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B/tree/main)__ takes 22+ GB memory for float32 parameters alone, and that's before you account for gradients & optimizer. Even if you cast everything to 16-bit, it will still not fit onto most single-GPU setups short of A6000 and A100. You can inference it [on TPU](https://colab.research.google.com/github/kingoflolz/mesh-transformer-jax/blob/master/colab_demo.ipynb) or CPUs, but fine-tuning is way more expensive. Here, we apply several techniques to make GPT-J usable and fine-tunable on a single GPU with ~11 GB memory: - large weight tensors are quantized using dynamic 8-bit quantization and de-quantized just-in-time for multiplication - using gradient checkpoints to store one only activation per layer: using dramatically less memory at the cost of 30% slower training - scalable fine-tuning with [LoRA](https://arxiv.org/abs/2106.09685) and [8-bit Adam](https://arxiv.org/abs/2110.02861) In other words, all of the large weight-matrices are frozen in 8-bit, and you only train small adapters and optionally 1d tensors (layernorm scales, biases). ![img](https://i.imgur.com/n4XXo1x.png) __Does 8-bit affect model quality?__ Technically yes, but the effect is negligible in practice. [This notebook measures wikitext test perplexity](https://colab.research.google.com/drive/1FxGeYQyE7cx9VNCBC4gUyRVZGORW7c6g) and it is nigh indistinguishable from the original GPT-J. Quantized model is even slightly better, but that is not statistically significant. Our code differs from other 8-bit methods in that we use **8-bit only for storage, and all computations are performed in float16 or float32**. As a result, we can take advantage of nonlinear quantization that fits to each individual weight distribution. Such nonlinear quantization does not accelerate inference, but it allows for much smaller error. __What about performance?__ Both checkpointing and de-quantization has some overhead, but it's surprisingly manageable. Depending on GPU and batch size, the quantized model is 1-10% slower than the original model on top of using gradient checkpoints (which is 30% overhead). In short, this is because block-wise quantization from bitsandbytes is really fast on GPU. ### How should I fine-tune the model? We recommend starting with the original hyperparameters from [the LoRA paper](https://arxiv.org/pdf/2106.09685.pdf). On top of that, there is one more trick to consider: the overhead from de-quantizing weights does not depend on batch size. As a result, the larger batch size you can fit, the more efficient you will train. ### Can I use this technique with other models? The model was converted using [this notebook](https://colab.research.google.com/drive/1rwxh0XRdVi8VEbTx97l9xXr4JbRhZaq5#scrollTo=CX3VHn-J1Zer). It can be adapted to work with other model types. However, please bear in mind that some models replace Linear and Embedding with custom alternatives that require their own BNBWhateverWithAdapters.
addy88/t5-argument-anlyser
addy88
2022-01-02T06:32:50Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
Pretraining Dataset: debatelab/aaac
huggingtweets/michaeldrummey-theegaycomrade-vpukhanov
huggingtweets
2022-01-01T19:30:27Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/michaeldrummey-theegaycomrade-vpukhanov/1641065423081/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1413939279127011331/dVGeqlNN_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1468996975404228610/Etj-urSz_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1471632802894389249/2ubdnotf_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Vyacheslav Pukhanov & Michael Drummey & oh no zach had a thought</div> <div style="text-align: center; font-size: 14px;">@michaeldrummey-theegaycomrade-vpukhanov</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Vyacheslav Pukhanov & Michael Drummey & oh no zach had a thought. | Data | Vyacheslav Pukhanov | Michael Drummey | oh no zach had a thought | | --- | --- | --- | --- | | Tweets downloaded | 308 | 3246 | 3248 | | Retweets | 50 | 231 | 55 | | Short tweets | 63 | 1133 | 640 | | Tweets kept | 195 | 1882 | 2553 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1udeu111/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @michaeldrummey-theegaycomrade-vpukhanov's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3h79hg6v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3h79hg6v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/michaeldrummey-theegaycomrade-vpukhanov') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
s3h/arabert-gec-v2-2
s3h
2022-01-01T18:50:19Z
3
0
transformers
[ "transformers", "t5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_keras_callback model-index: - name: s3h/arabic-t5-small-finetuned-gec results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # s3h/arabic-t5-small-finetuned-gec This model is a fine-tuned version of [flax-community/arabic-t5-small](https://huggingface.co/flax-community/arabic-t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0930 - Validation Loss: 0.9132 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 573, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.0930 | 0.9132 | 0 | ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Datasets 1.17.0 - Tokenizers 0.10.3
s3h/arabic-t5-small-finetuned-gec
s3h
2022-01-01T18:36:08Z
9
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_keras_callback model-index: - name: s3h/arabic-t5-small-finetuned-gec results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # s3h/arabic-t5-small-finetuned-gec This model is a fine-tuned version of [flax-community/arabic-t5-small](https://huggingface.co/flax-community/arabic-t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0930 - Validation Loss: 0.9132 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 573, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.0930 | 0.9132 | 0 | ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Datasets 1.17.0 - Tokenizers 0.10.3
imthanhlv/gpt2news
imthanhlv
2022-01-01T18:14:53Z
203
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "gpt", "vi", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: vi tags: - gpt widget: - text: "Hôm qua những nhà khoa học Mỹ đã phát hiện ra loài cá lợn" --- ### GPT 2 News **Update 02 Jan 2022**: Fixed mismatch tokenizer and model.wte size ### BibTex ``` @article{thanh21gpt2news, author = {Thanh V. Le}, title = {Pretrained GPT-2 on Vietnamese news}, journal = {https://huggingface.co/imthanhlv/gpt2news}, year = {2021}, } ```
mattchurgin/distilbert-sst2
mattchurgin
2021-12-31T23:08:41Z
21
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue model-index: - name: distilbert-sst2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4182 - eval_accuracy: 0.8911 - eval_runtime: 1.8021 - eval_samples_per_second: 483.882 - eval_steps_per_second: 60.485 - epoch: 0.8 - step: 6700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
nwl/DialoGPT-small-enhypen
nwl
2021-12-31T13:38:51Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational ---
airKlizz/mt5-base-wikinewssum-english-100
airKlizz
2021-12-31T12:02:27Z
14
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-wikinewssum-english-100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-wikinewssum-english-100 This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.6225 - Rouge1: 3.909 - Rouge2: 0.9312 - Rougel: 3.3835 - Rougelsum: 3.7786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 0.96 | 12 | 14.4949 | 2.7398 | 0.7181 | 2.491 | 2.6561 | | No log | 1.96 | 24 | 10.5056 | 4.4428 | 1.4293 | 3.8469 | 4.2869 | | No log | 2.96 | 36 | 8.9856 | 4.1179 | 1.229 | 3.5726 | 3.9693 | | No log | 3.96 | 48 | 7.7950 | 3.9217 | 1.1339 | 3.4256 | 3.7905 | | No log | 4.96 | 60 | 7.0734 | 3.8004 | 1.0326 | 3.3246 | 3.6766 | | No log | 5.96 | 72 | 6.7897 | 3.6351 | 0.9162 | 3.1839 | 3.5149 | | No log | 6.96 | 84 | 6.6610 | 3.7486 | 0.8829 | 3.2583 | 3.6193 | | No log | 7.96 | 96 | 6.6225 | 3.909 | 0.9312 | 3.3835 | 3.7786 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
Muennighoff/SBERT-base-nli-stsb-v2
Muennighoff
2021-12-31T07:59:14Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:04Z
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- This model is used in "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning".
NahedAbdelgaber/distilbert-base-uncased-finetuned-evaluating-student-writing
NahedAbdelgaber
2021-12-31T06:28:07Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-evaluating-student-writing results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-evaluating-student-writing This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3485 | 1.0 | 878 | 2.0959 | | 2.1407 | 2.0 | 1756 | 2.0162 | | 2.0843 | 3.0 | 2634 | 1.9846 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingtweets/hey_ash21
huggingtweets
2021-12-31T04:19:10Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/hey_ash21/1640924344980/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1364393973331021830/i7JjvUhX_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ash 🫀</div> <div style="text-align: center; font-size: 14px;">@hey_ash21</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ash 🫀. | Data | ash 🫀 | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 193 | | Short tweets | 132 | | Tweets kept | 2917 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tujmcza/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hey_ash21's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3pwdhn6q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3pwdhn6q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hey_ash21') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
TrLOX/gpt2-tdk
TrLOX
2021-12-31T02:18:21Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: dgpt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dgpt This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.14.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3 hello hello
federicopascual/finetune-sentiment-analysis-model-3000-samples
federicopascual
2021-12-30T19:29:48Z
25
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetune-sentiment-analysis-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8866666666666667 - name: F1 type: f1 value: 0.8944099378881988 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetune-sentiment-analysis-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.4558 - Accuracy: 0.8867 - F1: 0.8944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
lgris/sew-tiny-pt
lgris
2021-12-30T17:37:50Z
4
2
transformers
[ "transformers", "pytorch", "sew", "feature-extraction", "speech", "pt", "arxiv:2109.06870", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: pt tags: - speech license: apache-2.0 --- # SEW-tiny-pt This is a pretrained version of [SEW tiny by ASAPP Research](https://github.com/asappresearch/sew) trained over Brazilian Portuguese audio. The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc... Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi **Abstract** This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes. The original model can be found under https://github.com/asappresearch/sew#model-checkpoints . # Usage See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWForCTC`.
ysslang/autonlp-test-459011902
ysslang
2021-12-30T17:05:31Z
104
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "zh", "dataset:ysslang/autonlp-data-test", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: zh widget: - text: "I love AutoNLP 🤗" datasets: - ysslang/autonlp-data-test co2_eq_emissions: 10.9230691350863 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 459011902 - CO2 Emissions (in grams): 10.9230691350863 ## Validation Metrics - Loss: 0.7189690470695496 - Accuracy: 0.7453263867606497 - Macro F1: 0.630810193227066 - Micro F1: 0.7453263867606497 - Weighted F1: 0.7399327942874923 - Macro Precision: 0.656237447101913 - Micro Precision: 0.7453263867606497 - Weighted Precision: 0.7410161412822164 - Macro Recall: 0.6340140718425453 - Micro Recall: 0.7453263867606497 - Weighted Recall: 0.7453263867606497 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/ysslang/autonlp-test-459011902 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ysslang/autonlp-test-459011902", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("ysslang/autonlp-test-459011902", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
scasutt/Prototype_training_large_model
scasutt
2021-12-30T14:40:39Z
161
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Prototype_training_large_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Prototype_training_large_model This model is a fine-tuned version of [scasutt/Prototype_training_large_model](https://huggingface.co/scasutt/Prototype_training_large_model) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2585 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.0545 | 1.47 | 100 | 3.2604 | 1.0 | | 3.0413 | 2.93 | 200 | 3.2585 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
pinecone/bert-rte-cross-encoder
pinecone
2021-12-30T12:12:27Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# RTE Cross Encoder Demo model for use as part of Augmented SBERT chapters of the [NLP for Semantic Search course](https://www.pinecone.io/learn/nlp).
pinecone/bert-mrpc-cross-encoder
pinecone
2021-12-30T12:12:14Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# MRPC Cross Encoder Demo model for use as part of Augmented SBERT chapters of the [NLP for Semantic Search course](https://www.pinecone.io/learn/nlp).
pinecone/bert-medqp-cross-encoder
pinecone
2021-12-30T12:11:30Z
7
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# Med-QP Cross Encoder Demo model for use as part of Augmented SBERT chapters of the [NLP for Semantic Search course](https://www.pinecone.io/learn/nlp).
pinecone/bert-stsb-cross-encoder
pinecone
2021-12-30T12:11:03Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# STSb Cross Encoder Demo model for use as part of Augmented SBERT chapters of the [NLP for Semantic Search course](https://www.pinecone.io/learn/nlp).
NahedAbdelgaber/distilbert-base-uncased-finetuned-down-sampled-evaluating-student-writing
NahedAbdelgaber
2021-12-30T06:58:06Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-down-sampled-evaluating-student-writing results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-down-sampled-evaluating-student-writing This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3408 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5869 | 1.0 | 157 | 2.3949 | | 2.4142 | 2.0 | 314 | 2.3551 | | 2.3792 | 3.0 | 471 | 2.2840 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
youngjae/bert-finetuned-squad
youngjae
2021-12-30T04:13:47Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0.dev20210415+cu101 - Datasets 1.16.1 - Tokenizers 0.10.3
rkmt/wav2vec2-base-timit-demo-colab
rkmt
2021-12-30T00:39:31Z
6
1
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0280 - Wer: 0.0082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.1152 | 1.42 | 500 | 0.0416 | 0.0159 | | 0.0803 | 2.83 | 1000 | 0.0372 | 0.0144 | | 0.0672 | 4.25 | 1500 | 0.0345 | 0.0119 | | 0.0564 | 5.67 | 2000 | 0.0338 | 0.0106 | | 0.0513 | 7.08 | 2500 | 0.0307 | 0.0100 | | 0.0448 | 8.5 | 3000 | 0.0343 | 0.0098 | | 0.0374 | 9.92 | 3500 | 0.0300 | 0.0084 | | 0.0368 | 11.33 | 4000 | 0.0314 | 0.0086 | | 0.0388 | 12.75 | 4500 | 0.0283 | 0.0089 | | 0.0277 | 14.16 | 5000 | 0.0302 | 0.0089 | | 0.0298 | 15.58 | 5500 | 0.0298 | 0.0089 | | 0.0271 | 17.0 | 6000 | 0.0320 | 0.0098 | | 0.024 | 18.41 | 6500 | 0.0286 | 0.0088 | | 0.0236 | 19.83 | 7000 | 0.0284 | 0.0084 | | 0.0238 | 21.25 | 7500 | 0.0290 | 0.0086 | | 0.0227 | 22.66 | 8000 | 0.0284 | 0.0093 | | 0.0198 | 24.08 | 8500 | 0.0280 | 0.0088 | | 0.0225 | 25.5 | 9000 | 0.0281 | 0.0086 | | 0.018 | 26.91 | 9500 | 0.0280 | 0.0082 | | 0.0178 | 28.33 | 10000 | 0.0280 | 0.0082 | | 0.0209 | 29.75 | 10500 | 0.0280 | 0.0082 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
lgris/distilxlsr_bp_4-12
lgris
2021-12-30T00:38:04Z
161
0
transformers
[ "transformers", "pytorch", "wav2vec2", "feature-extraction", "speech", "pt", "arxiv:2110.01900", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: pt tags: - speech license: apache-2.0 --- # DistilXLSR-53 for BP [DistilXLSR-53 for BP: DistilHuBERT applied to Wav2vec XLSR-53 for Brazilian Portuguese](https://github.com/s3prl/s3prl/tree/master/s3prl/upstream/distiller) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. Paper: [DistilHuBERT: Speech Representation Learning by Layer-wise Distillation of Hidden-unit BERT](https://arxiv.org/abs/2110.01900) Authors: Heng-Jui Chang, Shu-wen Yang, Hung-yi Lee **Note 2**: The XLSR-53 model was distilled using [Brazilian Portuguese Datasets](https://huggingface.co/lgris/bp400-xlsr) for test purposes. The dataset is quite small to perform such task (the performance might not be so good as the [original work](https://arxiv.org/abs/2110.01900)). **Abstract** Self-supervised speech representation learning methods like wav2vec 2.0 and Hidden-unit BERT (HuBERT) leverage unlabeled speech data for pre-training and offer good representations for numerous speech processing tasks. Despite the success of these methods, they require large memory and high pre-training costs, making them inaccessible for researchers in academia and small companies. Therefore, this paper introduces DistilHuBERT, a novel multi-task learning framework to distill hidden representations from a HuBERT model directly. This method reduces HuBERT's size by 75% and 73% faster while retaining most performance in ten different tasks. Moreover, DistilHuBERT required little training time and data, opening the possibilities of pre-training personal and on-device SSL models for speech. # Usage See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model.
SophieTr/distil-pegasus-reddit
SophieTr
2021-12-29T23:58:29Z
4
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
This is the model so far before time out
danicodes/autonlp-legal-text-summary-457311749
danicodes
2021-12-29T22:18:48Z
7
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autonlp", "unk", "dataset:danicodes/autonlp-data-legal-text-summary", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - danicodes/autonlp-data-legal-text-summary co2_eq_emissions: 10.148805588432941 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 457311749 - CO2 Emissions (in grams): 10.148805588432941 ## Validation Metrics - Loss: 1.647747278213501 - Rouge1: 32.4854 - Rouge2: 19.8974 - RougeL: 30.0602 - RougeLsum: 29.9377 - Gen Len: 46.6556 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/danicodes/autonlp-legal-text-summary-457311749 ```
tbochens/test-train
tbochens
2021-12-29T19:25:46Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: test-train results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8455882352941176 - name: F1 type: f1 value: 0.8926746166950595 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-train This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7268 - Accuracy: 0.8456 - F1: 0.8927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 459 | 0.3470 | 0.8627 | 0.9014 | | 0.4987 | 2.0 | 918 | 0.5782 | 0.8382 | 0.8914 | | 0.2796 | 3.0 | 1377 | 0.7268 | 0.8456 | 0.8927 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
airKlizz/mt5-base-wikinewssum-english
airKlizz
2021-12-29T19:10:05Z
46
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-wikinewssum-english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-wikinewssum-english This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3040 - Rouge1: 8.9565 - Rouge2: 3.6563 - Rougel: 7.1346 - Rougelsum: 8.3802 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 1010 | 2.4360 | 8.7287 | 3.5817 | 7.0093 | 8.1879 | | No log | 2.0 | 2020 | 2.3922 | 8.7227 | 3.5385 | 6.96 | 8.1887 | | No log | 3.0 | 3030 | 2.3422 | 8.8565 | 3.5772 | 7.0203 | 8.2957 | | No log | 4.0 | 4040 | 2.3288 | 8.89 | 3.645 | 7.0602 | 8.3314 | | 3.1253 | 5.0 | 5050 | 2.3209 | 8.868 | 3.6109 | 7.0537 | 8.299 | | 3.1253 | 6.0 | 6060 | 2.3127 | 8.9488 | 3.6615 | 7.1044 | 8.3785 | | 3.1253 | 7.0 | 7070 | 2.3056 | 8.9366 | 3.6507 | 7.1338 | 8.3615 | | 3.1253 | 8.0 | 8080 | 2.3040 | 8.9565 | 3.6563 | 7.1346 | 8.3802 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
LPM/AI_1
LPM
2021-12-29T18:54:49Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
git lfs install git clone https://huggingface.co/LPM/AI_1
patrickvonplaten/wav2vec2-2-bart-base
patrickvonplaten
2021-12-29T15:53:10Z
373
4
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "librispeech_asr", "generated_from_trainer", "asr_seq2esq", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer - asr_seq2esq model-index: - name: wav2vec2-2-bart-base results: [] widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac - example_title: Common Voice sample src: https://cdn-media.huggingface.co/speech_samples/common_voice_en_18301577.mp3 --- To rerun this experiment, please clone this directory and run: ```bash python create_model.py ``` followed by ```bash ./run_librispeech.sh ``` <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-2-bart-base This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) and [bart-base](https://huggingface.co/facebook/bart-base) on the librispeech_asr - clean dataset. It achieves the following results on the evaluation set: - Loss: 0.405 - Wer: 0.0728 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results See Training Metrics Tab. ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-2-bart-large
patrickvonplaten
2021-12-29T15:49:52Z
6
5
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "librispeech_asr", "generated_from_trainer", "asr_seq2esq", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer - asr_seq2esq widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac - example_title: Common Voice sample src: https://cdn-media.huggingface.co/speech_samples/common_voice_en_18301577.mp3 model-index: - name: wav2vec2-2-bart-large results: [] --- To rerun this experiment, please clone this directory and run: ```bash python create_model.py ``` followed by ```bash ./run_librispeech.sh ``` <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-2-bart-large This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) and [bart-large](https://huggingface.co/facebook/bart-large) on the librispeech_asr - clean dataset. It achieves the following results on the evaluation set: - Loss: 0.3204 - Wer: 0.0486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - gradient_accumulation_steps: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results See Training Metrics Tab. ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
rexxar96/autonlp-sentiment-analysis-456211724
rexxar96
2021-12-29T14:47:09Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autonlp", "unk", "dataset:rexxar96/autonlp-data-sentiment-analysis", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - rexxar96/autonlp-data-sentiment-analysis co2_eq_emissions: 22.28263989637389 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 456211724 - CO2 Emissions (in grams): 22.28263989637389 ## Validation Metrics - Loss: 0.23710417747497559 - Accuracy: 0.9119100357812234 - Precision: 0.8882611424984307 - Recall: 0.9461718488799733 - AUC: 0.974790366001874 - F1: 0.9163024121741946 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/rexxar96/autonlp-sentiment-analysis-456211724 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("rexxar96/autonlp-sentiment-analysis-456211724", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("rexxar96/autonlp-sentiment-analysis-456211724", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
airKlizz/mt5-base-wikinewssum-italian
airKlizz
2021-12-29T10:55:47Z
39
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-wikinewssum-italian results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-wikinewssum-italian This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 10.5739 - Rouge1: 2.1728 - Rouge2: 0.1516 - Rougel: 2.0846 - Rougelsum: 2.0515 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 8 | 16.6193 | 2.4011 | 0.3829 | 2.1505 | 2.2161 | | No log | 2.0 | 16 | 15.8909 | 2.5165 | 0.2799 | 2.3403 | 2.3523 | | No log | 3.0 | 24 | 15.4843 | 2.2794 | 0.2252 | 2.1849 | 2.1382 | | 17.2559 | 4.0 | 32 | 13.0850 | 2.2448 | 0.1516 | 2.1426 | 2.0859 | | 17.2559 | 5.0 | 40 | 11.7838 | 2.2448 | 0.1516 | 2.1426 | 2.0859 | | 17.2559 | 6.0 | 48 | 11.3207 | 2.2424 | 0.1516 | 2.1423 | 2.1171 | | 17.2559 | 7.0 | 56 | 10.7871 | 2.1081 | 0.1516 | 2.0227 | 1.9838 | | 14.6026 | 8.0 | 64 | 10.5739 | 2.1728 | 0.1516 | 2.0846 | 2.0515 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
csukuangfj/test-data-for-optimized-transducer
csukuangfj
2021-12-29T09:31:30Z
0
1
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
See https://colab.research.google.com/drive/14MozS-9jWD3XQ0o-dZ-meqnblgHs70P2?usp=sharing
huggingtweets/ihyjuju
huggingtweets
2021-12-29T01:31:59Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/ihyjuju/1640741515385/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1448859687449862147/frVD6mW3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">juju 💰</div> <div style="text-align: center; font-size: 14px;">@ihyjuju</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from juju 💰. | Data | juju 💰 | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 1 | | Short tweets | 478 | | Tweets kept | 2769 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3n82hqbg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ihyjuju's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1t6rclcz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1t6rclcz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ihyjuju') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mrm8488/deberta-v3-small-goemotions
mrm8488
2021-12-28T23:12:12Z
13
1
transformers
[ "transformers", "pytorch", "tensorboard", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: deberta-v3-snall-goemotions results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-snall-goemotions This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5638 - F1: 0.4241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.614 | 1.0 | 3082 | 1.5577 | 0.3663 | | 1.4338 | 2.0 | 6164 | 1.5580 | 0.4084 | | 1.2936 | 3.0 | 9246 | 1.5006 | 0.4179 | | 1.1531 | 4.0 | 12328 | 1.5348 | 0.4276 | | 1.0536 | 5.0 | 15410 | 1.5638 | 0.4241 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
sw005320/aidatatang_200zh_conformer
sw005320
2021-12-28T16:07:10Z
2
3
espnet
[ "espnet", "audio", "automatic-speech-recognition", "zh", "dataset:aidatatang_200zh", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: zh datasets: - aidatatang_200zh license: cc-by-4.0 --- ## ESPnet2 ASR model ### `sw005320/aidatatang_200zh_conformer` This model was trained by Shinji Watanabe using aidatatang_200zh recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 8ab3d9f2191f250cb62deff222d2e6addb3842dc pip install -e . cd egs2/aidatatang_200zh/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model sw005320/aidatatang_200zh_conformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Fri Dec 24 23:34:58 EST 2021` - python version: `3.8.5 (default, Sep 4 2020, 07:30:14) [GCC 7.3.0]` - espnet version: `espnet 0.10.5a1` - pytorch version: `pytorch 1.7.1` - Git hash: `a5bacd349a47889aef795f999563018cf201ae64` - Commit date: `Wed Dec 22 14:08:29 2021 -0500` ## asr_train_asr_conformer_raw_zh_char_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer_zh_char_valid.loss.ave_asr_model_valid.acc.ave/dev|24216|24216|81.5|18.5|0.0|0.0|18.5|18.5| |decode_asr_lm_lm_train_lm_transformer_zh_char_valid.loss.ave_asr_model_valid.acc.ave/test|48144|48144|79.0|21.0|0.0|0.0|21.0|21.0| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer_zh_char_valid.loss.ave_asr_model_valid.acc.ave/dev|24216|234524|96.6|3.0|0.5|0.1|3.6|18.5| |decode_asr_lm_lm_train_lm_transformer_zh_char_valid.loss.ave_asr_model_valid.acc.ave/test|48144|468933|95.9|3.6|0.4|0.2|4.3|21.0| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr_conformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_raw_zh_char_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - acc early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 4000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_zh_char_sp/train/speech_shape - exp/asr_stats_raw_zh_char_sp/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_zh_char_sp/valid/speech_shape - exp/asr_stats_raw_zh_char_sp/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 51200 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_sp/wav.scp - speech - sound - - dump/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - sound - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0005 scheduler: warmuplr scheduler_conf: warmup_steps: 30000 token_list: - <blank> - <unk> - 我 - 的 - 你 - 么 - 不 - 是 - 了 - 一 - 有 - 天 - 什 - 好 - 在 - 个 - 怎 - 吗 - 话 - 要 - 给 - 电 - 上 - 没 - 人 - 说 - 到 - 啊 - 就 - 这 - 时 - 来 - 下 - 想 - 打 - 点 - 去 - 还 - 看 - 道 - 多 - 明 - 那 - 知 - 以 - 今 - 能 - 会 - 哪 - 都 - 可 - 大 - 吧 - 机 - 样 - 里 - 十 - 现 - 们 - 过 - 吃 - 开 - 家 - 回 - 发 - 中 - 呢 - 听 - 候 - 为 - 也 - 日 - 爱 - 歌 - 三 - 起 - 小 - 二 - 心 - 子 - 手 - 生 - 最 - 儿 - 学 - 放 - 信 - 女 - 号 - 几 - 和 - 老 - 晚 - 少 - 车 - 叫 - 快 - 用 - 自 - 年 - 睡 - 问 - 事 - 后 - 五 - 乐 - 安 - 出 - 找 - 帮 - 意 - 觉 - 气 - 国 - 得 - 情 - 请 - 早 - 地 - 做 - 首 - 真 - 公 - 近 - 对 - 办 - 很 - 行 - 己 - 呀 - 八 - 友 - 如 - 六 - 节 - 喜 - 新 - 欢 - 西 - 间 - 月 - 班 - 他 - 网 - 方 - 分 - 播 - 笑 - 查 - 息 - 名 - 四 - 成 - 东 - 美 - 零 - 市 - 饭 - 世 - 朋 - 玩 - 州 - 果 - 才 - 七 - 别 - 把 - 谁 - 九 - 再 - 平 - 太 - 干 - 思 - 关 - 谢 - 高 - 语 - 理 - 些 - 界 - 着 - 长 - 钱 - 动 - 曲 - 感 - 聊 - 片 - 何 - 面 - 男 - 音 - 工 - 南 - 午 - 本 - 通 - 火 - 经 - 路 - 星 - 唱 - Q - 业 - 讲 - 英 - 北 - 服 - 短 - 妈 - 海 - 文 - 跟 - 作 - 票 - 只 - 等 - 刚 - 码 - 字 - 影 - 附 - 婆 - 见 - 又 - 祝 - 无 - 该 - 提 - 末 - 让 - 法 - 定 - 买 - 告 - 照 - 体 - 考 - 床 - 醒 - 记 - 前 - 题 - 走 - 加 - 主 - 从 - 视 - 张 - 身 - 两 - 钟 - 京 - 于 - 收 - 阳 - 哈 - 店 - 山 - 院 - 站 - 百 - 宝 - 所 - 诉 - 期 - 之 - 嘛 - 夜 - 第 - 游 - 比 - 系 - 昨 - 费 - 交 - 水 - 应 - 次 - 周 - 亲 - 联 - 全 - 福 - 江 - 孩 - 区 - 广 - 头 - 接 - O - 校 - 已 - 空 - 门 - 认 - 相 - 度 - 实 - 活 - 色 - 假 - 白 - 算 - 外 - 流 - 啦 - 花 - 然 - 结 - 每 - 休 - 边 - 部 - 位 - 场 - 半 - 王 - 声 - 件 - 力 - 金 - 重 - 识 - 正 - 华 - 光 - 衣 - 载 - 死 - 价 - 翻 - 图 - 城 - 脑 - 同 - 久 - 译 - 特 - 物 - 搜 - 务 - 报 - 线 - 哦 - 卡 - E - 当 - A - 爸 - 圣 - 完 - 幺 - 合 - P - 雨 - 黄 - 种 - 司 - 直 - I - 她 - 哥 - 书 - 银 - 试 - 解 - 穿 - 酒 - 准 - 换 - 望 - 被 - S - 原 - 内 - 诞 - 带 - 介 - 口 - 清 - N - 马 - 习 - 否 - 置 - 啥 - 索 - 戏 - 与 - 懂 - 飞 - 需 - 性 - 错 - 送 - 级 - 器 - 单 - 离 - 远 - 备 - 师 - 课 - 注 - 因 - 难 - 其 - 像 - 元 - 消 - 表 - 便 - 球 - 风 - 教 - 故 - 科 - 李 - 常 - 林 - 龙 - 呵 - 数 - 代 - 总 - 忘 - 商 - 变 - 婚 - 苹 - 红 - 格 - 坐 - 绍 - 答 - 量 - 冷 - 青 - 询 - 春 - 神 - 省 - 蛋 - 姐 - 陪 - 兴 - 利 - 台 - 句 - 万 - 计 - 保 - 刘 - 传 - 深 - 管 - 运 - 德 - 医 - 容 - 品 - 越 - 亮 - 词 - 河 - 化 - 宁 - 始 - 武 - 希 - 洗 - 复 - 设 - 处 - 技 - 房 - T - 您 - 取 - 眼 - 县 - 笨 - 术 - 温 - 永 - 受 - 更 - 先 - 尔 - 程 - 彩 - 演 - 忙 - 专 - 愿 - 进 - 湖 - 建 - 况 - 伤 - 喝 - 底 - 卖 - 功 - 录 - 改 - H - 剧 - 预 - 梦 - L - 达 - 连 - 馆 - 包 - 写 - 客 - C - 汉 - 条 - G - 幸 - 民 - 读 - 职 - 目 - 但 - 贝 - 妹 - 资 - 较 - 雪 - 赛 - 除 - 招 - 园 - 住 - 超 - 汽 - 病 - B - 软 - 反 - 而 - 证 - 员 - 黑 - 庆 - D - 求 - 排 - 装 - 岁 - 顾 - 产 - 航 - 言 - 斯 - 拨 - 历 - 烦 - 及 - 药 - 入 - 式 - 军 - 餐 - 志 - 至 - 双 - 米 - 版 - 掉 - 千 - 者 - 充 - 微 - 失 - 转 - M - 亚 - 克 - 座 - 丽 - 络 - 战 - 使 - 猪 - 具 - 闹 - 限 - 址 - 基 - 油 - 漂 - 陈 - Y - 川 - 强 - 挺 - 奇 - 杰 - 政 - 向 - 速 - 康 - 差 - 贵 - 搞 - 义 - 奖 - 份 - 户 - 楼 - 苏 - 任 - 健 - 易 - 毛 - 型 - 石 - 礼 - 款 - 持 - 卫 - 怕 - 恋 - 邮 - 集 - R - 铁 - 圳 - 拿 - 云 - 队 - 鱼 - 慢 - 顺 - 害 - 属 - 傻 - 营 - 菜 - 货 - 麻 - 咋 - 坏 - 冒 - 累 - 杨 - 闻 - 治 - 选 - 段 - K - 香 - 闭 - 兰 - 牌 - 局 - 留 - 舍 - 非 - 推 - 室 - 简 - 拉 - 修 - 终 - 郑 - 切 - U - 将 - 村 - 沙 - 存 - 帅 - 诗 - 率 - 密 - 巴 - 频 - 士 - 初 - 楚 - 股 - 热 - 古 - 制 - 支 - 肉 - 岛 - 统 - 适 - 肥 - 鸡 - 调 - 街 - 类 - 牛 - 导 - 农 - 值 - 食 - 镇 - 棍 - 移 - 韩 - W - 嗯 - 订 - 呼 - 命 - V - 必 - 宿 - 皮 - 升 - 确 - 随 - 步 - 育 - 标 - 唐 - 精 - 决 - 木 - 由 - 弟 - 往 - 肯 - 够 - 或 - 指 - 阿 - 象 - 料 - 念 - 助 - 许 - 共 - 母 - 约 - 罗 - 板 - 秋 - 配 - 魔 - 宜 - 般 - 荐 - 扰 - 舒 - 逼 - 狗 - 嘿 - 博 - 售 - 满 - 疼 - 脸 - 整 - 抱 - 季 - 减 - 养 - 怀 - 免 - 未 - 乘 - F - 社 - 妇 - 列 - 爷 - 删 - 旦 - 弄 - 概 - 停 - 拜 - 维 - 领 - 示 - 套 - 汇 - 昌 - 晨 - 痛 - 购 - 奥 - 铃 - 案 - 济 - 鬼 - 背 - 港 - 待 - 浪 - 桥 - 血 - 冬 - 烧 - 优 - 拍 - 际 - 急 - 杭 - 称 - 遇 - 赶 - 旅 - 智 - 角 - 财 - 玉 - 团 - 形 - 论 - 静 - 景 - 退 - 普 - 呗 - 乡 - 参 - 胡 - 伦 - 讨 - 艺 - 辈 - 毒 - 此 - 轻 - 苦 - 咱 - 画 - 泰 - 宾 - 雄 - 销 - 奶 - 突 - 波 - 各 - 冰 - 块 - 夏 - 低 - 兵 - 厅 - 羊 - 杀 - 紧 - 泉 - 朝 - 谈 - 足 - 孕 - 夫 - 厂 - 聪 - 续 - 庄 - 诺 - 牙 - 质 - 立 - 依 - 仙 - 跑 - 盘 - 豆 - 它 - 怪 - 猜 - 漫 - 毕 - 兄 - 颜 - 险 - 厦 - 验 - 防 - 登 - 敢 - 乖 - 晓 - 护 - 迎 - 逗 - 摩 - 佳 - 观 - 骗 - 烟 - 细 - 临 - 惠 - 围 - 寞 - 效 - 源 - 寂 - 肚 - 暖 - 饺 - 斗 - 模 - 端 - 疗 - 付 - 绝 - 秘 - 展 - 乎 - 按 - 富 - 靠 - 范 - 规 - 刻 - 折 - 娘 - 厌 - 申 - 章 - 补 - 笔 - 锅 - 破 - 田 - 齐 - 滨 - 皇 - 族 - 典 - 史 - 左 - 蓝 - 灵 - 澡 - 秀 - 诚 - 土 - 测 - 凤 - 剑 - 响 - 倒 - 睛 - 惯 - 乌 - 币 - 扣 - 吴 - 输 - 徐 - 弃 - 纪 - 堂 - 环 - 甲 - 菲 - 缘 - 讯 - 根 - 落 - 启 - 泡 - 饿 - 积 - 府 - 递 - 绩 - 择 - 吉 - 布 - 显 - 童 - 租 - 洋 - 组 - 划 - 编 - 签 - 舞 - 困 - 贴 - 负 - 派 - 裤 - 担 - 桂 - 却 - 丝 - 丰 - 箱 - 赵 - 群 - 序 - 训 - 酸 - 惜 - 圆 - 评 - 压 - 俩 - 状 - 官 - 酷 - 鲁 - 孙 - 草 - 极 - 势 - 斤 - 腾 - 泽 - 素 - 尽 - 姓 - 屏 - 聚 - 莞 - 乱 - 雅 - 尼 - 趣 - 伟 - 肤 - 勇 - 右 - 徽 - 投 - 丹 - 尾 - 托 - 争 - 鸟 - 激 - 印 - 良 - 眠 - 松 - 跳 - 途 - 篮 - 粉 - 脚 - 屁 - 鞋 - 麦 - 则 - 估 - 津 - 努 - 距 - 胸 - 央 - 珍 - 盖 - 哭 - 洲 - 练 - 敏 - 雷 - 曾 - 恩 - 挂 - 据 - 览 - 耳 - 材 - 泪 - 吸 - 味 - 劳 - 父 - 孤 - 玛 - 旁 - 阴 - 态 - 创 - 树 - 脱 - 研 - 驾 - 拾 - 灯 - 虎 - 爆 - 嘉 - 湾 - 躺 - 猫 - 莫 - 昆 - 痘 - 阅 - 射 - 刷 - 卓 - 珠 - 峰 - 胖 - 坚 - 造 - 举 - 棒 - 梅 - 引 - 吵 - 蒙 - 详 - 借 - 瓜 - 池 - 束 - 芳 - 淘 - 寻 - 释 - 沈 - 虑 - 锦 - 胜 - 荣 - 委 - 默 - 另 - 浏 - 并 - 检 - 冠 - 独 - 厉 - 顶 - 钓 - 骂 - 且 - 欧 - 威 - 熟 - 获 - 兽 - 严 - 炎 - 含 - 厕 - 盛 - 翼 - 盟 - 余 - 姨 - 洛 - 映 - 狼 - 谅 - 众 - 宽 - 断 - 止 - 狂 - 凉 - 姑 - 辉 - 若 - 册 - 谷 - 幻 - 篇 - 瓶 - 席 - 恐 - 柔 - 迪 - 供 - 追 - 控 - 爽 - 互 - 嫁 - 宋 - 宫 - 瑞 - 滚 - 增 - 额 - 页 - 刀 - 娱 - 茶 - 钢 - 疯 - 梁 - 承 - 娜 - 须 - 陆 - 燕 - 迟 - 君 - 恶 - 遍 - 纸 - 项 - 丁 - 腿 - 误 - 殊 - 迅 - 锁 - 宇 - 媳 - 培 - 居 - 寄 - 纯 - 嘴 - 浙 - 境 - 搭 - 杯 - 插 - 朱 - 溪 - 甘 - 权 - 窝 - 警 - 糖 - 迷 - 圈 - 凯 - 帝 - 暴 - 逛 - 艳 - 击 - 颗 - 坦 - 杂 - 冲 - 谓 - 救 - 轮 - 晕 - 虽 - 塔 - 叔 - 凰 - 懒 - 议 - 肖 - 郎 - 辛 - 透 - 拥 - 鼠 - 顿 - 批 - 兔 - 尚 - 聘 - 藏 - 赚 - 继 - 享 - 欺 - 潮 - 即 - 甜 - 骨 - 悲 - 幕 - 滴 - 闲 - 液 - 缺 - 琴 - 蜜 - 善 - 暗 - 镜 - 蔡 - 吹 - 核 - 忆 - 键 - 辑 - 岗 - 例 - 涛 - 宏 - 刺 - 郭 - 降 - 秦 - 剩 - 绿 - 桌 - 咖 - 呐 - 叶 - 贸 - 架 - 账 - 亡 - 佛 - 哎 - 乳 - 归 - 忍 - 异 - 侠 - 龄 - 炒 - 洁 - 似 - 虚 - 贷 - 征 - 抽 - 败 - 枪 - 幼 - 丫 - 危 - 慰 - 究 - 婷 - 肃 - 箭 - 灰 - 届 - 律 - 秒 - 淡 - 偷 - 炫 - 鲜 - 浦 - 萨 - 旧 - 硬 - 操 - 混 - 施 - 散 - 咨 - 妻 - 吻 - 榜 - 呆 - 废 - 野 - 糕 - 骑 - 炼 - 震 - 恭 - 悔 - 跨 - 曼 - 啡 - 俊 - 晶 - 胃 - 汤 - 尊 - 貌 - 封 - 羽 - 赞 - 尸 - 隐 - 丢 - 霸 - 醉 - 盗 - 盐 - 浩 - 著 - 档 - 赢 - 幽 - 责 - 鼻 - 辣 - 恒 - 朵 - 慕 - 旗 - 娃 - 饰 - 仁 - 亦 - 竟 - 柳 - 郁 - 唯 - 夕 - 钻 - 均 - 劲 - 庭 - 巧 - 饮 - 涨 - 辆 - 傅 - 企 - 趟 - 避 - 党 - 染 - 扬 - 玲 - 筋 - 烤 - 桃 - 唉 - 慧 - 欲 - 寒 - 闷 - 某 - 恨 - 私 - 淮 - 惊 - 弱 - 弹 - 沉 - 兼 - 弯 - 残 - 偶 - 锋 - 贺 - 咯 - 纳 - 戴 - 抢 - 宗 - 浴 - 宵 - 莲 - 嗨 - 喊 - 奕 - 壁 - 症 - 冻 - 致 - 屋 - 喽 - 伊 - 绵 - 玫 - 固 - 籍 - 监 - 耐 - 井 - 寝 - 露 - 虫 - 盒 - 凡 - 摇 - 傲 - 烈 - 姿 - 陕 - 裸 - 袋 - 帐 - 凌 - 寿 - 茂 - 鹏 - 寓 - 柴 - 妞 - 森 - 既 - 紫 - 萝 - 层 - 苗 - 腊 - 邓 - 宣 - 锡 - 袜 - 陌 - 狮 - 碰 - 晴 - 塘 - 妃 - 祥 - 苍 - 针 - 敌 - 腰 - 犯 - 欠 - 垃 - 卸 - 迹 - 暑 - 祖 - 泳 - 阵 - 熊 - 励 - 澳 - 添 - 拳 - 岳 - 益 - 瘦 - 虹 - 圾 - 植 - 坡 - 攻 - 略 - 墙 - 描 - 遗 - 噢 - 窗 - 吐 - 肌 - 陵 - 逃 - 浮 - 摸 - 戒 - 哟 - 翰 - 勿 - 库 - 涯 - 妖 - 宠 - 脾 - 革 - 探 - 糊 - 采 - 惹 - 衡 - 赤 - 魏 - 羡 - 综 - 舟 - 疆 - 痴 - 催 - 朗 - 坛 - 悠 - 岭 - 驶 - 括 - 嘻 - 辽 - 粥 - 煮 - 灭 - 杜 - 域 - 令 - 替 - 翔 - 坤 - 潘 - 抓 - 铜 - 构 - 卷 - 茫 - 丑 - 涂 - 掌 - 饱 - 肝 - 疾 - 罩 - 谱 - 愚 - 抗 - 琳 - 夸 - 汪 - 墨 - 沟 - 翅 - 肠 - 患 - 柏 - 僵 - 稳 - 延 - 胆 - 伴 - 爬 - 滋 - 歉 - 轩 - 尿 - 铺 - 忠 - 黎 - 膀 - 邯 - 郸 - 愉 - 霉 - 翁 - 妙 - 隆 - 鸭 - 锻 - 涵 - 挣 - 副 - 罪 - 穷 - 恢 - 巨 - 吓 - 眉 - 棉 - 汗 - 溜 - 奏 - 滩 - 愁 - X - 执 - 霞 - 魂 - 姆 - 摄 - 偏 - 纠 - 瑰 - 洪 - 协 - 牧 - 飘 - 炸 - 悦 - 艾 - 织 - 敬 - 驹 - 欣 - 董 - 邦 - 勒 - 守 - 伙 - 狐 - 税 - 湘 - 遥 - 储 - 脏 - 坊 - 腐 - 横 - 仔 - 仪 - 判 - 忽 - 哇 - 罚 - 爹 - 怖 - 竹 - 孔 - 捡 - 挑 - 肿 - 漠 - 尘 - 焦 - 塞 - 熬 - 谊 - 樱 - 返 - 莉 - 堵 - 捷 - 惑 - 绕 - 蛇 - 竞 - 耍 - 违 - 卧 - 蝶 - J - 俗 - 滑 - 占 - 怜 - 舅 - 乔 - 泸 - 臭 - 策 - 骚 - 莱 - 岩 - 魅 - 兑 - 姥 - 兆 - 萍 - 烂 - 损 - 述 - 撒 - 烫 - 炮 - 忧 - 遵 - 桑 - 俺 - 彭 - 净 - 胶 - 柯 - 绑 - 碟 - 卜 - 饼 - 船 - 佩 - 妆 - 齿 - 厚 - 娟 - 醋 - 丘 - 恼 - 萧 - 析 - 润 - 潭 - 番 - 鹰 - 葡 - 萄 - 唤 - 胎 - 逊 - 峡 - 舰 - 障 - 伯 - 猴 - 膜 - 访 - 贤 - 耀 - 晒 - 狠 - 豪 - 剪 - 帖 - 幂 - 融 - 诱 - 韶 - 晋 - 拼 - 洞 - 氧 - 察 - 裁 - 寨 - 熙 - 喂 - 拖 - 污 - 乾 - 湿 - 嫌 - 拒 - 蕉 - 哲 - 薇 - 绒 - 婴 - 莎 - 稿 - 瞎 - 寺 - 徒 - 伞 - 碎 - 阜 - 填 - 琪 - 敦 - 柜 - 侣 - 搬 - 孟 - 蓉 - 筒 - 偿 - 献 - 径 - 畅 - 粤 - 悟 - 隔 - 赖 - 慈 - 哄 - 襄 - 扮 - 睁 - 彻 - 陶 - 瓷 - 荷 - 寸 - 牵 - 痒 - 芝 - 繁 - 倍 - 闪 - 梧 - 怒 - 蝴 - 嵩 - 赣 - 嘞 - 狱 - 猛 - 咳 - 媒 - 斌 - 斑 - 奋 - 叉 - 龟 - 贱 - 疑 - 暂 - 靓 - 叹 - 仓 - 撞 - 姜 - 疤 - 矿 - 芬 - 勤 - 纱 - 帆 - 迁 - 囧 - 佑 - 囊 - 侯 - 鼓 - 葛 - 沃 - 莹 - 诊 - 筑 - 酱 - 咬 - 糟 - 拯 - 鹤 - 驴 - 胞 - 枝 - 俄 - 呃 - 鹿 - 磨 - 姚 - 灾 - 扫 - 荡 - 吊 - 犬 - 菊 - 茹 - 链 - 嫉 - 妒 - 旺 - 夺 - 裙 - 湛 - 氏 - 鞍 - 抵 - 娇 - 耶 - 截 - 辞 - 硫 - 禁 - 怡 - 跌 - 刮 - 苑 - 媛 - 摆 - 盾 - 械 - 旋 - 卢 - 霆 - 驰 - 擦 - 符 - 肺 - 谜 - 霍 - 仅 - 迈 - 碗 - 邪 - 曹 - 咪 - 煌 - 疫 - 屠 - 握 - 奔 - Z - 燃 - 沧 - 谦 - 馨 - 嫖 - 阻 - 冯 - 振 - 雕 - 闯 - 薄 - 宙 - 倾 - 嗽 - 椒 - 墓 - 尤 - 夹 - 潇 - 骤 - 壮 - 屈 - 颖 - 菠 - 吞 - 鸣 - 渴 - 堰 - 厨 - 督 - 驻 - 腹 - 岸 - 蛮 - 翠 - 肾 - 娼 - 券 - 尖 - 丸 - 鸿 - 厘 - 召 - 劝 - 牡 - 韦 - 拔 - 灏 - 弦 - 萌 - 惩 - 倩 - 诸 - 扎 - 庙 - 炉 - 潜 - 措 - 磊 - 脂 - 郊 - 虾 - 霜 - 猎 - 蝎 - 玄 - 钰 - 审 - 蜂 - 巷 - 敷 - 拟 - 钥 - 匙 - 婉 - 纽 - 芜 - 贾 - 串 - 靖 - 抛 - 彼 - 亏 - 挽 - 贼 - 穴 - 授 - 鼎 - 孝 - 玮 - 氓 - 劫 - 俞 - 谎 - 莆 - 隋 - 钠 - 赔 - 谐 - 纶 - 闰 - 昏 - 逆 - 璇 - 樊 - 禽 - 宅 - 碳 - 妮 - 亭 - 杆 - 蠢 - 鄙 - 蜀 - 阶 - 贫 - 辰 - 盼 - 呜 - 芦 - 株 - 腔 - 巾 - 羞 - 堡 - 亿 - 踩 - 憾 - 浓 - 阔 - 塑 - 趋 - 蓄 - 桶 - 葱 - 菇 - 咒 - 蟹 - 肩 - 柿 - 缓 - 漳 - 祸 - 挤 - 巢 - 抚 - 詹 - 豫 - 俱 - 悉 - 溶 - 粒 - 谭 - 诛 - 贡 - 沿 - 躲 - 慌 - 芙 - 蒋 - 乃 - 雀 - 姻 - 岂 - 悄 - 辕 - 斜 - 捕 - 扇 - 割 - 啤 - 纲 - 纤 - 祛 - 躁 - 殖 - 珊 - 氢 - 允 - 丈 - 蹈 - 邀 - 哼 - 坑 - 吾 - 淋 - 扩 - 愤 - 潍 - 尺 - 耗 - 鉴 - 闽 - 乙 - 渭 - 触 - 撑 - 咸 - 灿 - 缩 - 蔬 - 凑 - 渡 - 梭 - 粗 - 袁 - 菌 - 妓 - 稍 - 辐 - 哀 - 浆 - 厢 - 荆 - 踪 - 桐 - 邢 - 蜡 - 奉 - 淑 - 洒 - 扁 - 蕾 - 燥 - 硕 - 牢 - 蛙 - 仍 - 侵 - 稀 - 芒 - 吕 - 跪 - 绪 - 誓 - 旭 - 阁 - 屌 - 凭 - 裹 - 崇 - 纬 - 援 - 怨 - 茄 - 埋 - 棋 - 誉 - 瑜 - 蹲 - 扯 - 跃 - 昧 - 螺 - 毅 - 叮 - 喷 - 壶 - 喉 - 脆 - 瓦 - 碧 - 奴 - 煤 - 伍 - 娶 - 雁 - 骄 - 泣 - 眷 - 屯 - 赏 - 覆 - 揍 - 绯 - 逸 - 屎 - 彦 - 辨 - 攀 - 涉 - 泥 - 廊 - 菱 - 薛 - 衍 - 荒 - 铭 - 沂 - 麟 - 咏 - 扑 - 祈 - 喔 - 磁 - 歇 - 栋 - 沫 - 漏 - 玻 - 璃 - 逝 - 葵 - 溃 - 堆 - 锐 - 楠 - 毫 - 谋 - 勾 - 梯 - 氯 - 杏 - 赌 - 鑫 - 崔 - 颠 - 邱 - 肪 - 掘 - 昭 - 悬 - 奈 - 筷 - 轨 - 诵 - 葫 - 挡 - 梨 - 缠 - 僧 - 抬 - 邻 - 栏 - 饶 - 庚 - 灌 - 呦 - 摊 - 狄 - 汕 - 缴 - 罢 - 瞌 - 腺 - 辖 - 摔 - 棵 - 弗 - 琼 - 揭 - 淀 - 仑 - 粮 - 扔 - 剂 - 邵 - 辅 - 悍 - 袖 - 侨 - 巡 - 仗 - 逢 - 挥 - 翘 - 柱 - 狸 - 赫 - 耽 - 押 - 昂 - 瘤 - 枣 - 癌 - 伏 - 秤 - 脉 - 穹 - 敲 - 贪 - 促 - 拆 - 勉 - 祷 - 弊 - 膏 - 禾 - 契 - 挨 - 纵 - 疲 - 蜘 - 蛛 - 冈 - 雾 - 娄 - 甫 - 裂 - 侦 - 愈 - 臂 - 甩 - 戈 - 钙 - 簿 - 淄 - 蓬 - 夷 - 汁 - 凶 - 匹 - 皆 - 凝 - 仰 - 叛 - 蒲 - 谣 - 砖 - 呈 - 浅 - 瞬 - 丞 - 粘 - 痕 - 癫 - 禺 - 靴 - 尝 - 枫 - 鹅 - 衷 - 暮 - 媚 - 堪 - 臣 - 瑟 - 榕 - 蘑 - 遂 - 舌 - 藤 - 遭 - 芭 - 暧 - 犹 - 砸 - 浇 - 晰 - 矮 - 禹 - 隶 - 蚊 - 塌 - 峪 - 渊 - 摘 - 崩 - 瞧 - 炭 - 瑶 - 纷 - 毁 - 瞒 - 橙 - 渣 - 霹 - 雳 - 粽 - 侧 - 胀 - 捐 - 栈 - 颈 - 伪 - 役 - 予 - 钝 - 菏 - 铠 - 稻 - 赠 - 芽 - 龚 - 幅 - 莓 - 轿 - 炖 - 炬 - 溢 - 扭 - 垂 - 坎 - 嚏 - 枯 - 绣 - 蒸 - 旬 - 迫 - 浒 - 肇 - 庸 - 蒂 - 踏 - 雯 - 埃 - 础 - 狙 - 陷 - 伽 - 滔 - 沦 - 祭 - 唠 - 瀑 - 矛 - 乒 - 乓 - 窍 - 渠 - 泛 - 陇 - 蒜 - 捉 - 扶 - 诀 - 纹 - 踢 - 馋 - 薪 - 坪 - 廉 - 荔 - 骏 - 颁 - 伸 - 贞 - 沾 - 疮 - 兮 - 擎 - 驱 - 馒 - 挖 - 韵 - 姬 - 砍 - 矫 - 巫 - 疙 - 瘩 - 峨 - 抄 - 函 - 歪 - 倚 - 昔 - 涕 - 憨 - 淇 - 宴 - 埠 - 渐 - 胳 - 膊 - 趁 - 擅 - 刑 - 渝 - 噬 - 斋 - 妍 - 债 - 邹 - 嫂 - 娥 - 践 - 禅 - 牲 - 帽 - 吨 - 腻 - 掖 - 榴 - 啸 - 纺 - 鞭 - 豚 - 爵 - 蹄 - 咙 - 澈 - 疹 - 氛 - 抑 - 绸 - 抹 - 奎 - 酬 - 坟 - 诶 - 勋 - 卑 - 沪 - 蚁 - 揉 - 锄 - 泌 - 槽 - 镖 - 卿 - 甸 - 帕 - 镁 - 盲 - 汾 - 携 - 宰 - 虞 - 瓣 - 辩 - 豌 - 樟 - 璐 - 沁 - 钦 - 蔚 - 彬 - 卦 - 轰 - 锈 - 茎 - 蹦 - 拐 - 坝 - 饥 - 捏 - 碑 - 嗓 - 澄 - 惨 - 沽 - 鄂 - 逻 - 谍 - 屿 - 聋 - 憋 - 泼 - 枕 - 盆 - 衫 - 慎 - 黛 - 轶 - 咽 - 匠 - 蚂 - 捶 - 脊 - 蚌 - 剥 - 穆 - 喇 - 叭 - 凳 - 滥 - 撤 - 蓑 - 笠 - 黔 - 诡 - 颐 - 闵 - 稚 - 茨 - 捆 - 芯 - 涩 - 哑 - 盈 - 衰 - 奢 - 贩 - 循 - 韭 - 绘 - 鸳 - 唇 - 恳 - 妥 - 杠 - 刊 - 戚 - 巩 - 胁 - 蜗 - 筝 - 漆 - 劈 - 泄 - 噩 - 椎 - 渔 - 氨 - 橘 - 仲 - 洱 - 绥 - 仿 - 耿 - 蚕 - 倦 - 葬 - 捞 - 拓 - 冤 - 御 - 忌 - 慨 - 弥 - 寡 - 昵 - 撕 - 鲤 - 隧 - 倡 - 臀 - 毙 - 蕊 - 甚 - 睹 - 哒 - 仇 - 栓 - 抒 - 滁 - 讶 - 皱 - 剖 - 闸 - 耻 - 顽 - 茅 - 碱 - 霏 - 坠 - 邑 - 嗦 - 缝 - 枚 - 垫 - 畜 - 侄 - 悴 - 庞 - 鸯 - 俏 - 铅 - 衔 - 浑 - 抖 - 逮 - 犀 - 滕 - 遮 - 淹 - 挪 - 柠 - 檬 - 荨 - 沛 - 喻 - 尹 - 抉 - 爪 - 甄 - 冀 - 蝉 - 汰 - 丧 - 愧 - 畏 - 屑 - 屉 - 娩 - 艰 - 弓 - 炜 - 框 - 娅 - 酵 - 掩 - 宪 - 枉 - 淫 - 糗 - 奸 - 岚 - 诅 - 釜 - 萱 - 窦 - 喆 - 浣 - 庐 - 阑 - 劣 - 窄 - 赈 - 茉 - 帜 - 缸 - 嫩 - 迦 - 憔 - 鸽 - 朴 - 洽 - 榆 - 烹 - 箫 - 荚 - 箍 - 稣 - 肢 - 磷 - 袭 - 橡 - 鸦 - 瞅 - 匡 - 禧 - 痣 - 勃 - 翡 - 篱 - 烽 - 衢 - 讪 - 烛 - 宥 - 铝 - 镯 - 钉 - 披 - 昼 - 跆 - 笈 - 喘 - 惫 - 唧 - 螂 - 涌 - 揣 - 旨 - 袄 - 笼 - 蛔 - 毯 - 凸 - 倪 - 碌 - 懈 - 履 - 鱿 - 菩 - 汝 - 赴 - 焉 - 钛 - 畔 - 掰 - 骆 - 崖 - 髓 - 彪 - 啰 - 撸 - 拌 - 漯 - 犒 - 蔽 - 漱 - 赐 - 饪 - 玖 - 弘 - 卵 - 沭 - 梓 - 禄 - 晖 - 籁 - 熏 - 祠 - 荟 - 伐 - 柄 - 昕 - 琶 - 鞠 - 豹 - 萎 - 裕 - 曰 - 苇 - 沌 - 牺 - 轴 - 薯 - 潞 - 痫 - 曦 - 腋 - 坞 - 隙 - 妊 - 娠 - 蝙 - 蝠 - 赘 - 咧 - 翩 - 棚 - 冕 - 旱 - 棱 - 巍 - 偕 - 杉 - 梵 - 嫦 - 煎 - 泊 - 辟 - 丛 - 艘 - 懦 - 郫 - 搅 - 佬 - 阖 - 焰 - 澜 - 琢 - 挚 - 嫣 - 啧 - 兜 - 趴 - 皂 - 窃 - 嘟 - 崛 - 睿 - 刃 - 绳 - 哗 - 窟 - 嗑 - 吭 - 朔 - 喵 - 粹 - 酶 - 辜 - 诫 - 筹 - 亩 - 椅 - 佐 - 俑 - 狡 - 陛 - 曙 - 攒 - 诈 - 叙 - 杖 - 馅 - 锌 - 矜 - 绮 - 刁 - 阙 - 亢 - 讼 - 驼 - 晃 - 逍 - 仕 - 芋 - 拇 - 掏 - 瘾 - 腕 - 魁 - 鲍 - 殷 - 荤 - 亨 - 凄 - 硝 - 嬛 - 藻 - 诣 - 桔 - 疡 - 氰 - 佰 - 鸠 - 埔 - 皋 - 谚 - 麒 - 廖 - 鳄 - 蹉 - 阎 - 琦 - 丙 - 烯 - 涮 - 絮 - 潢 - 郴 - 遛 - 琵 - 殿 - 蹭 - 笛 - 钾 - 辙 - 炊 - 廷 - 拦 - 哆 - 逐 - 钞 - 赋 - 孽 - 沸 - 龈 - 雌 - 玟 - 麓 - 焊 - 谨 - 衬 - 灸 - 栖 - 卉 - 脐 - 栽 - 扒 - 酚 - 肱 - 闺 - 猥 - 钩 - 羁 - 吱 - 吼 - 蹊 - 跷 - 磕 - 坷 - 蝇 - 唔 - 褶 - 钮 - 鹭 - 咔 - 沐 - 棠 - 锷 - 滞 - 肛 - 糜 - 噜 - 涧 - 儒 - 琅 - 捎 - 泵 - 葩 - 芥 - 轲 - 猾 - 拱 - 墅 - 蕲 - 馁 - 佚 - 渤 - 崎 - 峻 - 赎 - 霄 - 羯 - 缅 - 韧 - 勘 - 皖 - 顷 - 喀 - 忏 - 圭 - 槟 - 榔 - 兹 - 坂 - 镒 - 堕 - 蟒 - 芹 - 浃 - 哉 - 晏 - 绐 - 陀 - 茵 - 倘 - 缆 - 浊 - 碍 - 惰 - 濮 - 杵 - 削 - 裘 - 嗅 - 呕 - 绊 - 哩 - 腩 - 撇 - 郝 - 铿 - 锵 - 赃 - 缪 - 卤 - 吝 - 涟 - 冶 - 匪 - 婿 - 蛳 - 搏 - 圩 - 旷 - 汞 - 鹦 - 茱 - 粪 - 崂 - 陋 - 掐 - 郡 - 哮 - 邸 - 帘 - 柚 - 鬓 - 剃 - 忻 - 羔 - 聆 - 刹 - 嗷 - 罕 - 沥 - 钗 - 尴 - 尬 - 莽 - 捧 - 拽 - 懵 - 噶 - 虐 - 囚 - 囡 - 颓 - 亥 - 傍 - 疏 - 乞 - 丐 - 皓 - 孜 - 愣 - 檐 - 橱 - 绅 - 噻 - 痊 - 鳞 - 瞳 - 衩 - 捂 - 吔 - 螳 - 暇 - 嘎 - 缤 - 镍 - 吟 - 斥 - 饲 - 鲢 - 猩 - 狒 - 腼 - 腆 - 轼 - 梗 - 熨 - 荫 - 糙 - 妾 - 粕 - 烘 - 壹 - 骥 - 秽 - 熔 - 歹 - 谬 - 侈 - 蜈 - 蚣 - 婵 - 渍 - 斩 - 棕 - 辱 - 醇 - 磅 - 礴 - 颊 - 彝 - 庾 - 叠 - 忒 - 稽 - 幢 - 嘱 - 醛 - 砂 - 炳 - 拂 - 殇 - 邬 - 冥 - 擒 - 汶 - 罐 - 镑 - 祁 - 氮 - 怆 - 羌 - 拧 - 芸 - 堀 - 婊 - 暄 - 挎 - 躬 - 噎 - 菅 - 奂 - 龌 - 龊 - 睬 - 燎 - 鲈 - 拢 - 啬 - 脖 - 尧 - 馗 - 皎 - 滤 - 镶 - 椭 - 狈 - 澎 - 阉 - 侃 - 婕 - 脓 - 桨 - 阪 - 湃 - 溏 - 箕 - 蚯 - 蚓 - 呛 - 矩 - 彤 - 惟 - 鹉 - 讽 - 募 - 惦 - 飓 - 抠 - 肮 - 溟 - 膝 - 芗 - 逞 - 娌 - 湮 - 舵 - 挫 - 椰 - 螃 - 绽 - 蟑 - 聂 - 拘 - 萸 - 洼 - 弛 - 澧 - 玺 - 芊 - 枢 - 鲨 - 毋 - 搂 - 跎 - 趾 - 琐 - 徘 - 徊 - 濡 - 咩 - 钏 - 舔 - 烷 - 胺 - 拙 - 溺 - 竖 - 蕴 - 巅 - 魄 - 吖 - 啵 - 庇 - 灼 - 遣 - 怠 - 枭 - 乏 - 缕 - 掂 - 秩 - 蜕 - 泾 - 汀 - 肆 - 倔 - 吒 - 矣 - 豁 - 仨 - 俯 - 嘲 - 瞪 - 唬 - 骋 - 辍 - 曝 - 泻 - 鼾 - 捣 - 妨 - 撵 - 撮 - 猕 - 浜 - 哺 - 睫 - 荧 - 噪 - 栗 - 垣 - 獒 - 冼 - 瞄 - 刍 - 硅 - 翊 - 泓 - 枥 - 凋 - 匣 - 孢 - 飙 - 俭 - 珑 - 嵊 - 佣 - 祟 - 枞 - 蓟 - 斧 - 镕 - 棺 - 痔 - 娴 - 苔 - 笙 - 蔻 - 芮 - 迭 - 暨 - 诏 - 癜 - 芷 - 臧 - 驿 - 珂 - 藕 - 笋 - 竭 - 歼 - 铉 - 恹 - 雇 - 诲 - 漓 - 扳 - 寰 - 颂 - 缈 - 砣 - 戳 - 疣 - 寮 - 甥 - 牦 - 衅 - 湄 - 汨 - 褐 - 腑 - 啼 - 惭 - 痰 - 梳 - 驮 - 阮 - 壳 - 慷 - 牟 - 捺 - 瘁 - 锂 - 狩 - 沱 - 烁 - 摞 - 楷 - 楞 - 瑾 - 饯 - 灶 - 薰 - 伎 - 忐 - 忑 - 煽 - 骁 - 娲 - 赁 - 锑 - 嵌 - 苞 - 咫 - 锴 - 岐 - 蓓 - 毽 - 黏 - 攸 - 恰 - 惶 - 矶 - 簸 - 坨 - 踝 - 掺 - 榨 - 阀 - 婢 - 纨 - 搓 - 闫 - 瘫 - 垢 - 蚀 - 貂 - 壑 - 婧 - 腥 - 兖 - 觅 - 壤 - 珉 - 胭 - 惧 - 僻 - 峥 - 炀 - 蔗 - 铂 - 宛 - 巳 - 氟 - 秸 - 菁 - 鹃 - 疱 - 矢 - 拭 - 缀 - 朦 - 胧 - 筏 - 贯 - 汐 - 蛤 - 蟆 - 迩 - 犁 - 馈 - 叽 - 喳 - 袈 - 裟 - 啃 - 敞 - 踊 - 雏 - 朽 - 撩 - 恙 - 亵 - 淤 - 垦 - 眺 - 熄 - 衲 - 伺 - 墟 - 孚 - 墩 - 猬 - 堤 - 鞘 - 署 - 陂 - 鬟 - 萤 - 悯 - 恃 - 峙 - 咄 - 奠 - 跺 - 笆 - 啄 - 殆 - 赅 - 锭 - 铛 - 枷 - 姗 - 驭 - 嘀 - 煲 - 腚 - 霖 - 孪 - 翟 - 濒 - 邂 - 逅 - 筱 - 霓 - 窈 - 窕 - 眨 - 耸 - 羚 - 尉 - 谀 - 竿 - 蛟 - 籽 - 铲 - 潼 - 匆 - 肽 - 戬 - 岔 - 奚 - 裴 - 嘏 - 玥 - 妯 - 昙 - 烨 - 吏 - 鼹 - 筵 - 崭 - 涪 - 來 - 瘆 - 彰 - 杞 - 疽 - 琥 - A - 栾 - 庵 - 窘 - 擀 - 痤 - 蟾 - 唾 - 嚼 - 癖 - 蛹 - 浸 - 狭 - 迂 - 脍 - 炙 - 覃 - 悖 - 阆 - 铸 - 洮 - 瑙 - 呷 - 呸 - 谛 - 膨 - 柑 - 眯 - 奘 - 吆 - 孰 - 珈 - 曜 - 拈 - 麝 - 嘘 - 缚 - 徕 - 糸 - 崴 - 藓 - 婺 - 揽 - 溧 - 熠 - 膳 - 犊 - 贬 - 脯 - 剿 - 鼬 - 焕 - 胛 - 拷 - 勺 - 鲫 - 炅 - 卒 - 刨 - 糯 - 瘪 - 雍 - 襟 - 酋 - 胤 - 戟 - 褔 - 惆 - 怅 - 阂 - 扉 - 锚 - 砌 - 祺 - 淅 - 濠 - 匀 - 隍 - 氦 - 绫 - 濑 - 佝 - 偻 - 翎 - 颌 - 咚 - 疖 - 媲 - 祗 - 寅 - 靡 - 稞 - 骝 - 锏 - 焖 - 栀 - 蝗 - 甭 - 罄 - 酪 - 酮 - 嘢 - 钨 - 涎 - 沼 - 嚯 - 阱 - 驸 - 爰 - 酌 - 绛 - 畴 - 辄 - 藜 - 碚 - 馥 - 茧 - 鲛 - 溅 - 浯 - 沮 - 蹿 - 诠 - 姊 - 藉 - 骡 - 褪 - 酞 - 臻 - 靛 - 譬 - 粼 - 肘 - 孺 - 苟 - 瓯 - 蕨 - 冉 - 稠 - 蒿 - 锤 - 焙 - 蜃 - 淌 - 瘸 - 汲 - 噼 - 啪 - 橇 - 虔 - 裳 - 煞 - 淳 - 锟 - 摧 - 篷 - 癞 - 凹 - 汹 - 樵 - 睐 - 叁 - 飒 - 舶 - 驷 - 嘚 - 垮 - 妩 - 焚 - 扪 - 溥 - 鹊 - 鹄 - 汴 - 妁 - 廓 - 谙 - 苛 - 喏 - 嬉 - 裆 - 谔 - 哝 - 岑 - 喧 - 咆 - 茁 - 霎 - 泷 - 笃 - 沣 - 戮 - 蓦 - 滢 - 碜 - 滇 - 妤 - 盯 - 眶 - 婶 - 侍 - 崽 - 辘 - 轳 - 斓 - 郢 - 泞 - 窖 - 镭 - 痹 - 缉 - 镐 - 膛 - 睦 - 歧 - 扦 - 筛 - 嵘 - 茗 - 戎 - 萦 - 柒 - 咀 - 诋 - 搁 - 婪 - 漾 - 瀚 - 绎 - 盏 - 庹 - 吩 - 咐 - 堇 - 矾 - 茯 - 苓 - 潦 - 嘁 - 噫 - 窑 - 鳗 - 孵 - 彷 - 徨 - 耕 - 晗 - 撂 - 猿 - 昊 - 淼 - 驯 - 垒 - 铤 - 胱 - 桦 - 铮 - 坳 - 厥 - 叨 - 烙 - 苷 - 殴 - 鸥 - 蜥 - 蜴 - 湟 - 衙 - 敖 - 阐 - 穗 - 攥 - 俾 - 锥 - 粱 - 绰 - 漕 - 钕 - 硼 - 蚤 - 铢 - 疚 - 挟 - 昱 - 栅 - 煦 - 鳝 - 枸 - 锯 - 茜 - 悼 - 跤 - 犍 - 衿 - 筐 - 恪 - 琛 - 砝 - 秆 - 歆 - 晾 - 慑 - 蜍 - 诃 - 盔 - 寇 - 璧 - 鹩 - 恤 - 匿 - 踉 - 焗 - 戍 - 憎 - 桓 - 裔 - 梢 - 蝼 - 贿 - 诽 - 橄 - 榄 - 蔺 - 鲅 - 鳖 - 荞 - 槐 - 砚 - 癣 - 胚 - 沅 - 菀 - 荀 - 亳 - 铵 - 垌 - 釉 - 摁 - 瑕 - 疵 - 泗 - 逵 - 饵 - 旌 - 磺 - 彗 - 娣 - 晟 - 惘 - 棘 - 屹 - 逾 - 淞 - 逑 - 茴 - 楹 - 珀 - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_zh_char_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.0 input_layer: conv2d normalize_before: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish macaron_style: true use_cnn_module: true cnn_module_kernel: 15 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 required: - output_dir - token_list version: 0.10.5a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
huggingtweets/amnananadeem-talal916
huggingtweets
2021-12-28T12:50:37Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1433365322313043974/gPI08qaY_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1377835980552474624/sxTjuspv_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">halal talal & amna</div> <div style="text-align: center; font-size: 14px;">@amnananadeem-talal916</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from halal talal & amna. | Data | halal talal | amna | | --- | --- | --- | | Tweets downloaded | 3187 | 3132 | | Retweets | 484 | 778 | | Short tweets | 532 | 369 | | Tweets kept | 2171 | 1985 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/42dvu161/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @amnananadeem-talal916's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2irbhtmu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2irbhtmu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/amnananadeem-talal916') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
luomingshuang/icefall_avsr_grid_combinenet_ctc
luomingshuang
2021-12-28T12:46:37Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# Pre-trained CombineNet-CTC models for the GRID audio-visual dataset with icefall. The model was trained on full [GRID](https://zenodo.org/record/3625687#.Ybn7HagzY2w) with the scripts in [icefall](https://github.com/k2-fsa/icefall). See (https://github.com/k2-fsa/icefall/tree/master/egs/grid/AVSR/combinenet_ctc_avsr) for more details of this model. ## How to use See (https://github.com/k2-fsa/icefall/blob/master/egs/grid/AVSR/combinenet_ctc_avsr/Pre-trained.md) ## Training procedure The main repositories are list below, we will update the training and decoding scripts with the update of version. k2: https://github.com/k2-fsa/k2 icefall: https://github.com/k2-fsa/icefall * Install k2 and lhotse, k2 installation guide refers to https://k2.readthedocs.io/en/latest/installation/index.html, lhotse refers to https://lhotse.readthedocs.io/en/latest/getting-started.html#installation. I think the latest version would be ok. And please also install the requirements listed in icefall. * Clone icefall(https://github.com/k2-fsa/icefall) and check to the commit showed above. ``` git clone https://github.com/k2-fsa/icefall cd icefall ``` * Preparing data. ``` cd egs/grid/AVSR bash ./prepare.sh ``` * Training ``` export CUDA_VISIBLE_DEVICES="0" python combinenet_ctc_avsr/train.py --world-size 1 ``` ## Evaluation results The best decoding results (WER) on GRID TEST are listed below, we got this result by averaging models from epoch 25 to 29, the decoding method is `whole-lattice-rescoring`, when lm scale is 0.01. ||TEST| |--|--| |WER|1.71%|
luomingshuang/icefall_asr_grid_audionet_ctc
luomingshuang
2021-12-28T12:25:29Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# Pre-trained AudioNet-CTC models for the GRID audio dataset with icefall. The model was trained on full [GRID](https://zenodo.org/record/3625687#.Ybn7HagzY2w) with the scripts in [icefall](https://github.com/k2-fsa/icefall). See (https://github.com/k2-fsa/icefall/tree/master/egs/grid/AVSR/audionet_ctc_asr) for more details of this model. ## How to use See (https://github.com/k2-fsa/icefall/blob/master/egs/grid/AVSR/audionet_ctc_asr/Pre-trained.md) ## Training procedure The main repositories are list below, we will update the training and decoding scripts with the update of version. k2: https://github.com/k2-fsa/k2 icefall: https://github.com/k2-fsa/icefall * Install k2 and lhotse, k2 installation guide refers to https://k2.readthedocs.io/en/latest/installation/index.html, lhotse refers to https://lhotse.readthedocs.io/en/latest/getting-started.html#installation. I think the latest version would be ok. And please also install the requirements listed in icefall. * Clone icefall(https://github.com/k2-fsa/icefall) and check to the commit showed above. ``` git clone https://github.com/k2-fsa/icefall cd icefall ``` * Preparing data. ``` cd egs/grid/AVSR bash ./prepare.sh ``` * Training ``` export CUDA_VISIBLE_DEVICES="0" python audionet_ctc_asr/train.py --world-size 1 ``` ## Evaluation results The best decoding results (WER) on GRID TEST are listed below, we got this result by averaging models from epoch 25 to 29, the decoding method is `1best`. ||TEST| |--|--| |WER|2.35%|
huggingtweets/talal916
huggingtweets
2021-12-28T09:23:31Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/talal916/1640683407279/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1433365322313043974/gPI08qaY_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">halal talal</div> <div style="text-align: center; font-size: 14px;">@talal916</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from halal talal. | Data | halal talal | | --- | --- | | Tweets downloaded | 3187 | | Retweets | 483 | | Short tweets | 533 | | Tweets kept | 2171 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2q5bns0k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @talal916's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/20wq85ea) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/20wq85ea/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/talal916') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/ngrossman81
huggingtweets
2021-12-28T04:15:54Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/ngrossman81/1640664926929/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/805525876808892417/nSCRZS58_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nicholas Grossman</div> <div style="text-align: center; font-size: 14px;">@ngrossman81</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nicholas Grossman. | Data | Nicholas Grossman | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 272 | | Short tweets | 113 | | Tweets kept | 2864 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3gkanovn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ngrossman81's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18u9hhz0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18u9hhz0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ngrossman81') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
caioamb/bert-base-uncased-finetuned-md
caioamb
2021-12-28T01:22:50Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-md results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-md This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3329 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2415 | 1.0 | 1044 | 0.2084 | | 0.1244 | 2.0 | 2088 | 0.2903 | | 0.0427 | 3.0 | 3132 | 0.3329 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Tokenizers 0.10.3
flexudy/cheapity3
flexudy
2021-12-27T13:06:27Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# Cheapity3 🐷 GPT-like T5 model trained to generate text in multiple languages. ## Motivation - GPT models are expensive to run. - GPT models are monolingual. ## Solution - Maybe, Small Models aren't Terrible (*SMarT*) - Plus, they are cheaper to run. I fine-tuned T5 on multiple languages (🇬🇧 English, 🇩🇪 German, 🇫🇷 French) and multiple academic text snippets from various domains like tech, law, finance and science etc. to generate text, just like GPT models do. ## Usage - [NLPlayStore](https://github.com/flexudy/NLPlayStore) 👈 ```python from store.service_management import ServiceManager service_manager = ServiceManager().get_service("cheapity3") service.install() service = service.launch() input_text = "The mechanical engineering field requires ... " generated_texts = service.play(input_text, 15) # A list a generated text ``` ## Usage - Hugging Face Transformers 🤗 - Provide some text e.g `"Italy, officially the Italian Republic is a country consisting of"` - Tell Cheapity3 how many words you want to generate e.g `15` -- 😃 Yes, you can control the length. - Cheapity3 reads your text and generates a continuation containing approximately 15 words. ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("flexudy/cheapity3") model = AutoModelWithLMHead.from_pretrained("flexudy/cheapity3") input_text = """The mechanical engineering field requires an understanding of core areas including mechanics, dynamics, thermodynamics, materials science, structural analysis, and electricity. { _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ }""" # 15 words inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512) input_ids = inputs["input_ids"] attention_mask = inputs["attention_mask"] outputs = model.generate( input_ids=input_ids, attention_mask=attention_mask, max_length=128, do_sample=True, early_stopping=True, num_return_sequences=4, repetition_penalty=2.5 ) for i in range(4): print(tokenizer.decode(outputs[i], skip_special_tokens=True, clean_up_tokenization_spaces=True)) ``` **INPUT: The mechanical engineering field requires an understanding of core areas including mechanics, dynamics, thermodynamics, materials science, structural analysis, and electricity.** ``` > Cheapity3 continues with beam search: ... The field of mechanical engineering is a broad field that includes many core areas of engineering. > Cheapity3 continues with sampling and top_k=50: ... Developing the knowledge base for these core areas will enable engineers to build their capabilities rapidly and efficiently. ... ... The field of mechanics offers a variety and broad range for applications throughout the engineering/technological fields. ... ... Mechanics generally is not understood by students. While they can be employed in the field, mechanical engineering ... ... Introduction to mechanical engineering and core fields including chemical products, materials science, structural analysis, and geomatics ... ``` ## Pretty decent right? Hence, whenever you feel like GPT3 is too expensive, Cheapity3 comes to the rescue 🤗. ## Model Training FYI - T5-base model - Trained on ONLY 1M sentences from English, French and German text - Mostly text from Wikipedia, arxiv and QA datasets - Learning rate: 0.00003 - 2 epochs - Max input: 512 tokens - Max output: 128 tokens
tiennvcs/layoutlmv2-large-uncased-finetuned-vi-infovqa
tiennvcs
2021-12-27T11:54:10Z
22
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "document-question-answering", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
document-question-answering
2022-03-02T23:29:05Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2-large-uncased-finetuned-vi-infovqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-large-uncased-finetuned-vi-infovqa This model is a fine-tuned version of [microsoft/layoutlmv2-large-uncased](https://huggingface.co/microsoft/layoutlmv2-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 8.5806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 250500 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.17 | 100 | 4.6181 | | No log | 0.33 | 200 | 4.3357 | | No log | 0.5 | 300 | 4.3897 | | No log | 0.66 | 400 | 4.8238 | | 4.4277 | 0.83 | 500 | 3.9088 | | 4.4277 | 0.99 | 600 | 3.6063 | | 4.4277 | 1.16 | 700 | 3.4278 | | 4.4277 | 1.32 | 800 | 3.5428 | | 4.4277 | 1.49 | 900 | 3.4331 | | 3.0413 | 1.65 | 1000 | 3.3699 | | 3.0413 | 1.82 | 1100 | 3.3622 | | 3.0413 | 1.98 | 1200 | 3.5294 | | 3.0413 | 2.15 | 1300 | 3.7918 | | 3.0413 | 2.31 | 1400 | 3.4007 | | 2.0843 | 2.48 | 1500 | 4.0296 | | 2.0843 | 2.64 | 1600 | 4.1852 | | 2.0843 | 2.81 | 1700 | 3.6690 | | 2.0843 | 2.97 | 1800 | 3.6089 | | 2.0843 | 3.14 | 1900 | 5.5534 | | 1.7527 | 3.3 | 2000 | 4.7498 | | 1.7527 | 3.47 | 2100 | 5.2691 | | 1.7527 | 3.63 | 2200 | 5.1324 | | 1.7527 | 3.8 | 2300 | 4.5912 | | 1.7527 | 3.96 | 2400 | 4.1727 | | 1.2037 | 4.13 | 2500 | 6.1174 | | 1.2037 | 4.29 | 2600 | 5.7172 | | 1.2037 | 4.46 | 2700 | 5.8843 | | 1.2037 | 4.62 | 2800 | 6.4232 | | 1.2037 | 4.79 | 2900 | 7.4486 | | 0.8386 | 4.95 | 3000 | 7.1946 | | 0.8386 | 5.12 | 3100 | 7.9869 | | 0.8386 | 5.28 | 3200 | 8.0310 | | 0.8386 | 5.45 | 3300 | 8.2954 | | 0.8386 | 5.61 | 3400 | 8.5361 | | 0.4389 | 5.78 | 3500 | 8.6040 | | 0.4389 | 5.94 | 3600 | 8.5806 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.8.0+cu101 - Datasets 1.17.0 - Tokenizers 0.10.3
tiennvcs/bert-large-uncased-finetuned-vi-infovqa
tiennvcs
2021-12-27T08:30:25Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-uncased-finetuned-vi-infovqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-finetuned-vi-infovqa This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.4878 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 250500 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.11 | 100 | 4.6256 | | No log | 0.21 | 200 | 4.4042 | | No log | 0.32 | 300 | 5.0021 | | No log | 0.43 | 400 | 4.2825 | | 4.6758 | 0.53 | 500 | 4.3886 | | 4.6758 | 0.64 | 600 | 4.2519 | | 4.6758 | 0.75 | 700 | 4.2977 | | 4.6758 | 0.85 | 800 | 3.9916 | | 4.6758 | 0.96 | 900 | 4.1650 | | 4.1715 | 1.07 | 1000 | 4.5001 | | 4.1715 | 1.17 | 1100 | 4.0898 | | 4.1715 | 1.28 | 1200 | 4.1623 | | 4.1715 | 1.39 | 1300 | 4.3271 | | 4.1715 | 1.49 | 1400 | 3.9661 | | 3.7926 | 1.6 | 1500 | 3.8727 | | 3.7926 | 1.71 | 1600 | 3.8934 | | 3.7926 | 1.81 | 1700 | 3.7262 | | 3.7926 | 1.92 | 1800 | 3.7701 | | 3.7926 | 2.03 | 1900 | 3.7653 | | 3.5041 | 2.13 | 2000 | 3.9261 | | 3.5041 | 2.24 | 2100 | 4.0915 | | 3.5041 | 2.35 | 2200 | 4.0348 | | 3.5041 | 2.45 | 2300 | 4.0212 | | 3.5041 | 2.56 | 2400 | 4.4653 | | 2.8475 | 2.67 | 2500 | 4.2959 | | 2.8475 | 2.77 | 2600 | 4.1039 | | 2.8475 | 2.88 | 2700 | 3.8037 | | 2.8475 | 2.99 | 2800 | 3.7552 | | 2.8475 | 3.09 | 2900 | 4.2476 | | 2.5488 | 3.2 | 3000 | 4.6716 | | 2.5488 | 3.3 | 3100 | 4.7058 | | 2.5488 | 3.41 | 3200 | 4.6266 | | 2.5488 | 3.52 | 3300 | 4.5697 | | 2.5488 | 3.62 | 3400 | 5.1017 | | 2.0347 | 3.73 | 3500 | 4.6254 | | 2.0347 | 3.84 | 3600 | 4.4822 | | 2.0347 | 3.94 | 3700 | 4.9413 | | 2.0347 | 4.05 | 3800 | 5.3600 | | 2.0347 | 4.16 | 3900 | 5.7323 | | 1.6566 | 4.26 | 4000 | 5.8822 | | 1.6566 | 4.37 | 4100 | 6.0173 | | 1.6566 | 4.48 | 4200 | 5.6688 | | 1.6566 | 4.58 | 4300 | 6.0617 | | 1.6566 | 4.69 | 4400 | 6.6631 | | 1.3348 | 4.8 | 4500 | 6.0290 | | 1.3348 | 4.9 | 4600 | 6.2455 | | 1.3348 | 5.01 | 4700 | 6.0963 | | 1.3348 | 5.12 | 4800 | 7.0983 | | 1.3348 | 5.22 | 4900 | 7.5483 | | 1.0701 | 5.33 | 5000 | 7.7187 | | 1.0701 | 5.44 | 5100 | 7.4630 | | 1.0701 | 5.54 | 5200 | 7.1394 | | 1.0701 | 5.65 | 5300 | 7.0703 | | 1.0701 | 5.76 | 5400 | 7.5611 | | 0.9414 | 5.86 | 5500 | 7.6038 | | 0.9414 | 5.97 | 5600 | 7.4878 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
SEISHIN/distilbert-base-uncased-finetuned-ner
SEISHIN
2021-12-27T07:53:05Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9289272666888077 - name: Recall type: recall value: 0.9386956035350711 - name: F1 type: f1 value: 0.933785889160917 - name: Accuracy type: accuracy value: 0.9842565968195466 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0605 - Precision: 0.9289 - Recall: 0.9387 - F1: 0.9338 - Accuracy: 0.9843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2388 | 1.0 | 878 | 0.0671 | 0.9162 | 0.9211 | 0.9187 | 0.9813 | | 0.0504 | 2.0 | 1756 | 0.0602 | 0.9225 | 0.9366 | 0.9295 | 0.9834 | | 0.0299 | 3.0 | 2634 | 0.0605 | 0.9289 | 0.9387 | 0.9338 | 0.9843 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
xkang/distilbert-base-uncased-finetuned-imdb
xkang
2021-12-27T07:30:09Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7096 | 1.0 | 157 | 2.4920 | | 2.5741 | 2.0 | 314 | 2.4237 | | 2.5386 | 3.0 | 471 | 2.4355 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3
SEISHIN/distilbert-base-uncased-finetuned-squad
SEISHIN
2021-12-27T05:27:55Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2172 | 1.0 | 5533 | 1.1532 | | 0.9446 | 2.0 | 11066 | 1.1184 | | 0.7671 | 3.0 | 16599 | 1.1605 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Ayham/roberta_gpt2_new_max64_summarization_cnndm
Ayham
2021-12-27T00:19:01Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: roberta_gpt2_new_max64_summarization_cnndm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta_gpt2_new_max64_summarization_cnndm This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
lakahaga/novel_reading_tts
lakahaga
2021-12-26T17:45:00Z
0
4
espnet
[ "espnet", "audio", "text-to-speech", "ko", "dataset:novelspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ko datasets: - novelspeech license: cc-by-4.0 --- ## ESPnet2 TTS model ### `lakahaga/novel_reading_tts` This model was trained by lakahaga using novelspeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 9827dfe37f69e8e55f902dc4e340de5108596311 pip install -e . cd egs2/novelspeech/tts1 ./run.sh --skip_data_prep false --skip_train true --download_model lakahaga/novel_reading_tts ``` ## TTS config <details><summary>expand</summary> ``` config: conf/tuning/train_conformer_fastspeech2.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_conformer_fastspeech2_raw_phn_tacotron_none ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 34177 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 1000 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min - - train - loss - min keep_nbest_models: 5 nbest_averaging_interval: 0 grad_clip: 1.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 10 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 1000 batch_size: 20 valid_batch_size: null batch_bins: 25600000 valid_batch_bins: null train_shape_file: - exp/tts_train_raw_phn_tacotron_none/decode_use_teacher_forcingtrue_train.loss.best/stats//train/text_shape.phn - exp/tts_train_raw_phn_tacotron_none/decode_use_teacher_forcingtrue_train.loss.best/stats//train/speech_shape valid_shape_file: - exp/tts_train_raw_phn_tacotron_none/decode_use_teacher_forcingtrue_train.loss.best/stats//valid/text_shape.phn - exp/tts_train_raw_phn_tacotron_none/decode_use_teacher_forcingtrue_train.loss.best/stats//valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr_no_dev/text - text - text - - exp/tts_train_raw_phn_tacotron_none/decode_use_teacher_forcingtrue_train.loss.best/tr_no_dev/durations - durations - text_int - - dump/raw/tr_no_dev/wav.scp - speech - sound - - exp/tts_train_raw_phn_tacotron_none/decode_use_teacher_forcingtrue_train.loss.best/stats//train/collect_feats/pitch.scp - pitch - npy - - exp/tts_train_raw_phn_tacotron_none/decode_use_teacher_forcingtrue_train.loss.best/stats//train/collect_feats/energy.scp - energy - npy - - dump/raw/tr_no_dev/utt2sid - sids - text_int valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text - - exp/tts_train_raw_phn_tacotron_none/decode_use_teacher_forcingtrue_train.loss.best/dev/durations - durations - text_int - - dump/raw/dev/wav.scp - speech - sound - - exp/tts_train_raw_phn_tacotron_none/decode_use_teacher_forcingtrue_train.loss.best/stats//valid/collect_feats/pitch.scp - pitch - npy - - exp/tts_train_raw_phn_tacotron_none/decode_use_teacher_forcingtrue_train.loss.best/stats//valid/collect_feats/energy.scp - energy - npy - - dump/raw/dev/utt2sid - sids - text_int allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 1.0 scheduler: noamlr scheduler_conf: model_size: 384 warmup_steps: 4000 token_list: - <blank> - <unk> - '=' - _ - A - Y - N - O - E - U - L - G - S - D - M - J - H - B - ZERO - TWO - C - . - Q - ',' - P - T - SEVEN - X - W - THREE - ONE - NINE - K - EIGHT - '@' - '!' - Z - '?' - F - SIX - FOUR - '#' - $ - + - '%' - FIVE - '~' - AND - '*' - '...' - '' - ^ - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: tacotron g2p: null feats_extract: fbank feats_extract_conf: n_fft: 1024 hop_length: 256 win_length: null fs: 22050 fmin: 80 fmax: 7600 n_mels: 80 normalize: global_mvn normalize_conf: stats_file: exp/tts_train_raw_phn_tacotron_none/decode_use_teacher_forcingtrue_train.loss.best/stats//train/feats_stats.npz tts: fastspeech2 tts_conf: adim: 384 aheads: 2 elayers: 4 eunits: 1536 dlayers: 4 dunits: 1536 positionwise_layer_type: conv1d positionwise_conv_kernel_size: 3 duration_predictor_layers: 2 duration_predictor_chans: 256 duration_predictor_kernel_size: 3 postnet_layers: 5 postnet_filts: 5 postnet_chans: 256 use_masking: true encoder_normalize_before: true decoder_normalize_before: true reduction_factor: 1 encoder_type: conformer decoder_type: conformer conformer_pos_enc_layer_type: rel_pos conformer_self_attn_layer_type: rel_selfattn conformer_activation_type: swish use_macaron_style_in_conformer: true use_cnn_in_conformer: true conformer_enc_kernel_size: 7 conformer_dec_kernel_size: 31 init_type: xavier_uniform transformer_enc_dropout_rate: 0.2 transformer_enc_positional_dropout_rate: 0.2 transformer_enc_attn_dropout_rate: 0.2 transformer_dec_dropout_rate: 0.2 transformer_dec_positional_dropout_rate: 0.2 transformer_dec_attn_dropout_rate: 0.2 pitch_predictor_layers: 5 pitch_predictor_chans: 256 pitch_predictor_kernel_size: 5 pitch_predictor_dropout: 0.5 pitch_embed_kernel_size: 1 pitch_embed_dropout: 0.0 stop_gradient_from_pitch_predictor: true energy_predictor_layers: 2 energy_predictor_chans: 256 energy_predictor_kernel_size: 3 energy_predictor_dropout: 0.5 energy_embed_kernel_size: 1 energy_embed_dropout: 0.0 stop_gradient_from_energy_predictor: false pitch_extract: dio pitch_extract_conf: fs: 22050 n_fft: 1024 hop_length: 256 f0max: 400 f0min: 80 reduction_factor: 1 pitch_normalize: global_mvn pitch_normalize_conf: stats_file: exp/tts_train_raw_phn_tacotron_none/decode_use_teacher_forcingtrue_train.loss.best/stats//train/pitch_stats.npz energy_extract: energy energy_extract_conf: fs: 22050 n_fft: 1024 hop_length: 256 win_length: null reduction_factor: 1 energy_normalize: global_mvn energy_normalize_conf: stats_file: exp/tts_train_raw_phn_tacotron_none/decode_use_teacher_forcingtrue_train.loss.best/stats//train/energy_stats.npz required: - output_dir - token_list version: 0.10.5a1 distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
wilsontam/gpt2-dstc9
wilsontam
2021-12-26T14:02:23Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "dstc9", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: "en" tags: - dstc9 widget: - text: "Yes, I'm going to be in Chinatown, San Francisco and am looking" - text: "Can you find me one that is in the" --- This GPT2 model is trained using DSTC9 data for dialogue modeling purpose. Data link: https://github.com/alexa/alexa-with-dstc9-track1-dataset Credit: Jia-Chen Jason Gu, Wilson Tam
airKlizz/mt5-base-wikinewssum-spanish
airKlizz
2021-12-25T23:19:15Z
13
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-wikinewssum-spanish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-wikinewssum-spanish This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2394 - Rouge1: 7.9732 - Rouge2: 3.5041 - Rougel: 6.6713 - Rougelsum: 7.5229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 528 | 2.3707 | 6.687 | 2.9169 | 5.6793 | 6.2978 | | No log | 2.0 | 1056 | 2.3140 | 7.9518 | 3.4529 | 6.7265 | 7.4984 | | No log | 3.0 | 1584 | 2.2848 | 7.9708 | 3.5344 | 6.7272 | 7.534 | | No log | 4.0 | 2112 | 2.2668 | 8.0252 | 3.5323 | 6.7319 | 7.5819 | | 3.2944 | 5.0 | 2640 | 2.2532 | 8.0143 | 3.534 | 6.7155 | 7.582 | | 3.2944 | 6.0 | 3168 | 2.2399 | 7.9525 | 3.4849 | 6.6716 | 7.5155 | | 3.2944 | 7.0 | 3696 | 2.2376 | 7.9405 | 3.4661 | 6.6559 | 7.5043 | | 3.2944 | 8.0 | 4224 | 2.2394 | 7.9732 | 3.5041 | 6.6713 | 7.5229 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
Andry/1111
Andry
2021-12-25T20:04:09Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
C:\Users\andry\Desktop\Выжигание 24-12-2021.jpg
s3h/finetuned-mt5-gec
s3h
2021-12-25T18:38:46Z
61
1
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: s3h/finetuned-mt5-gec results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # s3h/finetuned-mt5-gec This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 23.1236 - Validation Loss: 26.8482 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 3, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 23.1236 | 26.8482 | 0 | ### Framework versions - Transformers 4.14.1 - TensorFlow 2.6.2 - Datasets 1.17.0 - Tokenizers 0.10.3