modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 00:41:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 00:40:24
card
stringlengths
11
1.01M
Fixedbot/Taxis-v3
Fixedbot
2023-07-13T11:36:13Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T11:18:10Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxis-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage model = load_from_hub(repo_id="Fixedbot/Taxis-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
Graphcore/mt5-small-ipu
Graphcore
2023-07-13T11:20:36Z
4
0
null
[ "optimum_graphcore", "arxiv:1910.10683", "arxiv:2010.11934", "license:apache-2.0", "region:us" ]
null
2023-05-19T15:01:28Z
--- license: apache-2.0 --- # Graphcore/mt5-small-ipu Optimum Graphcore is a new open-source library and toolkit that enables developers to access IPU-optimized models certified by Hugging Face. It is an extension of Transformers, providing a set of performance optimization tools enabling maximum efficiency to train and run models on Graphcore’s IPUs - a completely new kind of massively parallel processor to accelerate machine intelligence. Learn more about how to take train Transformer models faster with IPUs at [hf.co/hardware/graphcore](https://huggingface.co/hardware/graphcore). Through HuggingFace Optimum, Graphcore released ready-to-use IPU-trained model checkpoints and IPU configuration files to make it easy to train models with maximum efficiency in the IPU. Optimum shortens the development lifecycle of your AI models by letting you plug-and-play any public dataset and allows a seamless integration to our State-of-the-art hardware giving you a quicker time-to-value for your AI project. ## Model description Multilingual Text-to-Text Transfer Transformer (mT5) is the multilingual variant of [T5](https://arxiv.org/abs/1910.10683). T5 is a Transformer based model that uses a text-to-text approach for translation, question answering, and classification. It introduces an unified framework that converts all text-based language problems into a text-to-text format for transfer learning for NLP. This allows for the use of the same model, loss function, hyperparameters, etc. across our diverse set of tasks. mT5 is pretrained on the mC4 corpus, covering 101 languages: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu. Note: mT5 was only pre-trained on mC4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task. Paper link :[mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) ## Intended uses & limitations This model contains just the `IPUConfig` files for running the mT5 Small model (e.g. [HuggingFace/google/mt5-small](https://huggingface.co/google/mt5-small)) on Graphcore IPUs. **This model contains no model weights, only an IPUConfig.** ## Usage ``` from optimum.graphcore import IPUConfig ipu_config = IPUConfig.from_pretrained("Graphcore/mt5-small-ipu") ```
PraveenJesu/openai-whisper-medium-murf
PraveenJesu
2023-07-13T11:13:14Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-13T11:13:07Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
RushTurtle/crnn_vgg16_bn_20230713-111233
RushTurtle
2023-07-13T11:13:02Z
46
0
transformers
[ "transformers", "pytorch", "en", "endpoints_compatible", "region:us" ]
null
2023-07-13T11:12:55Z
--- language: en --- <p align="center"> <img src="https://doctr-static.mindee.com/models?id=v0.3.1/Logo_doctr.gif&src=0" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: recognition https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ``` ### Run Configuration { "arch": "crnn_vgg16_bn", "train_path": "/tmp/dataset/train3_1100/", "val_path": "/tmp/dataset/val3_1100/", "train_samples": 1000, "val_samples": 20, "font": "FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf", "min_chars": 1, "max_chars": 12, "name": null, "epochs": 3, "batch_size": 64, "device": 0, "input_size": 32, "lr": 0.001, "weight_decay": 0, "workers": 16, "resume": null, "vocab": "french", "test_only": false, "show_samples": false, "wb": false, "push_to_hub": true, "pretrained": false, "sched": "cosine", "amp": false, "find_lr": false }
Virch/q-Taxi-v3
Virch
2023-07-13T11:10:10Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T11:08:03Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Virch/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
BlueSunflower/gpt2-medium-chess
BlueSunflower
2023-07-13T10:51:47Z
188
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-30T14:13:46Z
# Model description GPT-2 medium finetuned on 8 million chess games (short algebraic notation) Data: Chess DB + sample from lichess + sample from CCRL Example context: "1-0 2700 1350 1.e4 e5 2.Nf3 Nc6" (white score-black score white_elo black_elo moves) # Model results - ELO (measured against Stockfish) ~ 1340 - % legal moves 98.5% - checkmates in one move (from BigBench benchmark) - 46.5% --- license: agpl-3.0 ---
Virch/q-FrozenLake-v1-4x4-noSlippery
Virch
2023-07-13T10:51:06Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T10:43:03Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Virch/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jackyjuakers/home
jackyjuakers
2023-07-13T10:50:41Z
0
0
null
[ "license:bigcode-openrail-m", "region:us" ]
null
2023-07-13T10:50:41Z
--- license: bigcode-openrail-m ---
waliaMuskaan011/model5
waliaMuskaan011
2023-07-13T10:40:35Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-12T16:33:09Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 - tasks: automatic speech recognition ### Framework versions - PEFT 0.4.0.dev0
imone/LLaMA_13B_with_EOT_token
imone
2023-07-13T10:40:28Z
12
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-26T08:22:58Z
--- license: other language: - en pipeline_tag: text-generation --- # LLaMA 13B with End-of-turn (EOT) Token This is the LLaMA 13B model with `<|end_of_turn|>` token added as id `32000`. The token input/output embedding is initialized as the mean of all existing input/output token embeddings, respectively.
ivivnov/ppo-Huggy
ivivnov
2023-07-13T10:36:38Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-13T10:36:25Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ivivnov/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
madroid/autotrain-text-chat-74266139562
madroid
2023-07-13T10:25:06Z
108
1
transformers
[ "transformers", "pytorch", "safetensors", "deberta", "text-classification", "autotrain", "en", "dataset:madroid/autotrain-data-text-chat", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-13T10:24:08Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain" datasets: - madroid/autotrain-data-text-chat co2_eq_emissions: emissions: 0.3508472536259808 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 74266139562 - CO2 Emissions (in grams): 0.3508 ## Validation Metrics - Loss: 0.005 - Accuracy: 1.000 - Macro F1: 1.000 - Micro F1: 1.000 - Weighted F1: 1.000 - Macro Precision: 1.000 - Micro Precision: 1.000 - Weighted Precision: 1.000 - Macro Recall: 1.000 - Micro Recall: 1.000 - Weighted Recall: 1.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/madroid/autotrain-text-chat-74266139562 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("madroid/autotrain-text-chat-74266139562", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("madroid/autotrain-text-chat-74266139562", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
arunboss/triage_R5_model
arunboss
2023-07-13T10:17:28Z
218
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-13T03:02:24Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: triage_R5_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # triage_R5_model This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0123 - Accuracy: 0.6837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0452 | 1.0 | 159 | 1.9622 | 0.3814 | | 1.7034 | 2.0 | 319 | 1.5695 | 0.4923 | | 1.441 | 3.0 | 479 | 1.4427 | 0.5433 | | 1.2908 | 4.0 | 639 | 1.2970 | 0.5895 | | 1.2294 | 5.0 | 798 | 1.2293 | 0.6071 | | 1.1097 | 6.0 | 958 | 1.1892 | 0.6300 | | 1.0342 | 7.0 | 1118 | 1.1048 | 0.6546 | | 0.9644 | 8.0 | 1278 | 1.0731 | 0.6678 | | 0.8534 | 9.0 | 1437 | 1.0367 | 0.6766 | | 0.8037 | 10.0 | 1597 | 1.0211 | 0.6802 | | 0.7765 | 11.0 | 1757 | 1.0073 | 0.6885 | | 0.7658 | 11.94 | 1908 | 1.0123 | 0.6837 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
preetham/rpanda_lora
preetham
2023-07-13T10:08:51Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-13T09:52:28Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of sks panda tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - preetham/rpanda_lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks panda using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
Devops-hestabit/Othehalf-1.3b-onnx
Devops-hestabit
2023-07-13T10:08:08Z
4
0
transformers
[ "transformers", "onnx", "gpt_neox", "text-generation", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-13T09:25:46Z
--- license: creativeml-openrail-m ---
ZoeVN/segformer-scene-parse-150-lora-50-epoch
ZoeVN
2023-07-13T10:02:46Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-13T10:02:45Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
thomas2112/ppo-SnowballTarget
thomas2112
2023-07-13T10:01:51Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-05-30T20:11:10Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: thomas2112/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
fnlp/moss-rlhf-reward-model-7B-en
fnlp
2023-07-13T09:54:07Z
0
9
null
[ "llm", "reward model", "moss", "rlhf", "zh", "arxiv:2307.04964", "license:agpl-3.0", "region:us" ]
null
2023-07-13T03:12:42Z
--- license: agpl-3.0 language: - zh tags: - llm - reward model - moss - rlhf --- # MOSS-RLHF ### *MOSS-RLHF & "Secrets of RLHF in Large Language Models Part I: PPO" <br>👉 <a href="https://arxiv.org/abs/2307.04964" target="_blank">[Technical report]</a> <a href="https://openlmlab.github.io/MOSS-RLHF/" target="_blank">[Home page]* ## 🌟 News ### 👉 Wed, 12. July 2023. We have released Chinese reward model based OpenChineseLlama-7B! [moss-rlhf-reward-model-7B-zh](https://huggingface.co/Ablustrund/moss-rlhf-reward-model-7B-zh/tree/main) <br> ### 👉 Thu, 13. July 2023. We have released English reward model and SFT model based Llama-7B! [moss-rlhf-reward-model-7B-en](https://huggingface.co/fnlp/moss-rlhf-reward-model-7B-en) [moss-rlhf-sft-model-7B-en](https://huggingface.co/fnlp/moss-rlhf-sft-model-7B-en) <br> ## 🧾 Open-source List - [x] Open source code for RL training in large language models. - [x] A 7B Chinese reward model based on openChineseLlama. - [x] A 7B English reward model based on Llama-7B. - [x] SFT model for English. - [ ] Policy model for English after RLHF. - ... ## 🌠 Introduction Due to the challenges of reward design, environment interaction, and agent training, coupled with huge trial and error cost of large language models, there is a significant barrier for AI researchers to motivate the development of technical alignment and safe landing of LLMs. The stable training of RLHF has still been a puzzle. In this technical report, we intend to help researchers to train their models stably with human feedback. Contributions are summarized as follows: 1) We release competitive Chinese and English reward models, respectively, which have good cross-model generalization ability, alleviating the cost of relabeling human preference data; 2) We conduct in-depth analysis on the inner workings of PPO algorithm and propose the PPO-max algorithm to ensure stable model training; 3) We release the complete PPO-max codes to ensure that the LLMs in the current SFT stage can be better aligned with humans. ## 🔩 Requirements & Setup This repository works on Python 3.8 and PyTorch 1.13.1. We recommend using the **conda** virtual environment to run the code. #### Step 1: Create a new Python virtual environment ```bash conda update conda -n base -c defaults conda create -n rlhf python=3.8 conda activate rlhf ``` #### Step 2: Install PyTorch and TensorBoard ```bash conda install pytorch==1.13.1 pytorch-cuda=11.7 tensorboard -c pytorch -c nvidia ``` #### Step 3: Install the remaining dependencies ```bash conda install datasets accelerate safetensors chardet cchardet -c huggingface -c conda-forge pip3 install transformers sentencepiece einops triton==1.0.0 rouge jionlp==1.4.14 nltk sacrebleu cpm_kernels apt install libaio-dev DS_BUILD_OPS=1 pip install deepspeed ``` ## ✨ Start training your own model! Run code in a few steps. ### Step 1: Recover Reward model weights We can not directly release the full weight of the reward model because of protocol restrictions. You can merge the diff weight with original Llama-7B to recover the reward model we used. We upload the diff models, thanks to tatsu-lab, you can recover the reward model follow these steps: ```bash 1) Download the weight diff into your local machine. The weight diff is located at: # For English: TODO # For Chinese: https://huggingface.co/Ablustrund/moss-rlhf-reward-model-7B-zh/tree/main 2) Merge the weight diff with the original Llama-7B: # For English: # Reward model python merge_weight_en.py recover --path_raw decapoda-research/llama-7b-hf --path_diff ./models/moss-rlhf-reward-model-7B-en/diff --path_tuned ./models/moss-rlhf-reward-model-7B-en/recover --model_type reward # SFT model python merge_weight_en.py recover --path_raw decapoda-research/llama-7b-hf --path_diff ./models/moss-rlhf-sft-model-7B-en/diff --path_tuned ./models/moss-rlhf-sft-model-7B-en/recover --model_type sft # Policy model TODO # For Chinese: python merge_weight_zh.py recover --path_raw decapoda-research/llama-7b-hf --path_diff ./models/moss-rlhf-reward-model-7B-zh/diff --path_tuned ./models/moss-rlhf-reward-model-7B-zh/recover ``` ### Step 2: Select your own SFT model. Because of some limitations, we can not release the **Chinese** SFT model (Currently). You can use your own SFT model, or a strong base model instead of our SFT model. ### Step 3: Start training Run the command below. ``` # For Chinese: # You need to use your own sft model currently. bash run_zh.sh # For English: # We have loaded the sft model and reward model to huggingface. bash run_en.sh ``` ## Citation ```bibtex @article{zheng2023secrets, title={Secrets of RLHF in Large Language Models Part I: PPO}, author={Rui Zheng and Shihan Dou and Songyang Gao and Wei Shen and Binghai Wang and Yan Liu and Senjie Jin and Qin Liu and Limao Xiong and Lu Chen and Zhiheng Xi and Yuhao Zhou and Nuo Xu and Wenbin Lai and Minghao Zhu and Rongxiang Weng and Wensen Cheng and Cheng Chang and Zhangyue Yin and Yuan Hua and Haoran Huang and Tianxiang Sun and Hang Yan and Tao Gui and Qi Zhang and Xipeng Qiu and Xuanjing Huang}, year={2023}, eprint={2307.04964}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
vincenzodeleo/distilbert-base-uncased-finetuned-squad
vincenzodeleo
2023-07-13T09:53:55Z
106
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-12T16:59:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
thomas2112/dqn-SpaceInvadersNoFrameskip-v4
thomas2112
2023-07-13T09:39:48Z
6
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-15T12:26:01Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 622.50 +/- 94.51 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga thomas2112 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga thomas2112 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga thomas2112 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
vincenzodeleo/bert-base-cased-squad2-finetuned-squad
vincenzodeleo
2023-07-13T09:36:56Z
118
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-13T09:13:53Z
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-cased-squad2-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-squad2-finetuned-squad This model is a fine-tuned version of [deepset/bert-base-cased-squad2](https://huggingface.co/deepset/bert-base-cased-squad2) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
dada325/Taxi-v3-qLearning-test
dada325
2023-07-13T09:34:57Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T09:34:46Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3-qLearning-test results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="dada325/Taxi-v3-qLearning-test", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ashokurlana/mBART-TeSum
ashokurlana
2023-07-13T09:33:38Z
105
1
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "generated_from_trainer", "multilingual", "te", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-12T18:19:29Z
--- language: - multilingual - te license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: mBART-TeSum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mBART-TeSum This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on [TeSum](https://ltrc.iiit.ac.in/showfile.php?filename=downloads/teSum/) dataset. More details about the training and analysis mentioned in the [paper](https://aclanthology.org/2022.lrec-1.614.pdf). ## Model description mBART-50 is a multilingual Sequence-to-Sequence model. It was introduced to show that multilingual translation models can be created through multilingual fine-tuning. Instead of fine-tuning on one direction, a pre-trained model is fine-tuned on many directions simultaneously. mBART-50 is created using the original mBART model and extended to add extra 25 languages to support multilingual machine translation models of 50 languages. The pre-training objective is explained below. **Multilingual Denoising Pretraining**: The model incorporates N languages by concatenating data: `D = {D1, ..., DN }` where each Di is a collection of monolingual documents in language `i`. The source documents are noised using two schemes, first randomly shuffling the original sentences' order, and second a novel in-filling scheme, where spans of text are replaced with a single mask token. The model is then tasked to reconstruct the original text. 35% of each instance's words are masked by random sampling a span length according to a Poisson distribution `(λ = 3.5)`. The decoder input is the original text with one position offset. A language id symbol `LID` is used as the initial token to predict the sentence. ## Intended uses & limitations mbart-large-50 is pre-trained model and primarily aimed at being fine-tuned on translation tasks. It can also be fine-tuned on other multilingual sequence-to-sequence tasks. See the [model hub](https://huggingface.co/models?other=mbart-50) to look for fine-tuned versions. ## Training As the model is multilingual, it expects the sequences in a different format. A special language id token is used as a prefix in both the source and target text. The text format is `[lang_code] X [eos]` with `X` being the source or target text respectively and lang_code is `source_lang_code` for source text and `tgt_lang_code` for target text. `bos` is never used. Once the examples are prepared in this format, it can be trained as any other sequence-to-sequence model. ```python from transformers import MBartForConditionalGeneration, MBart50TokenizerFast model = MBartForConditionalGeneration.from_pretrained("ashokurlana/mBART-TeSum") tokenizer = MBart50TokenizerFast.from_pretrained("ashokurlana/mBART-TeSum", src_lang="te_IN", tgt_lang="te_IN") src_text = "తెలంగాణలో సచలనం సృష్టించిన టీఎస్‌పీఎస్సీ పేపర్ లీకేజీ వ్యవహారంపై ప్రభుత్వం తరపున మంత్రి కేటీఆర్ తొలిసారి స్పందించారు. ఇది వ్యవస్థ వైఫల్యం కాదని.., ఇద్దరు వ్యక్తులు చేసిన తప్పు అని కేటీఆర్ వెల్లడించారు. ఈ వ్యవహారం వెనుక ఏ పార్టీకి చెందిన వారున్నా.., ఎంతటి వారైనా కఠినంగా శిక్షిస్తామని చెప్పారు. నిరుద్యోగుల్లో ఆందోళనలు రేకెత్తించేలా ప్రతిపక్షాలు మాట్లాడటం సరికాదని హితవు పలికారు." tgt_text = "తెలంగాణలో సచలనం సృష్టించిన టీఎస్ పీఎస్సీ పేపర్ లీకేజీ వ్యవహారంపై ప్రభుత్వం తరపున మంత్రి కేటీఆర్ స్పందించారు. ఇది వ్యవస్థ వైఫల్యం కాదని, ఇద్దరు వ్యక్తులు చేసిన తప్పు అని, ఈ వ్యవహారం వెనుక ఏ పార్టీకి చెందిన వారున్నా కఠినంగా శిక్షిస్తామని చెప్పారు." model_inputs = tokenizer(src_text, return_tensors="pt") with tokenizer.as_target_tokenizer(): labels = tokenizer(tgt_text, return_tensors="pt").input_ids model(**model_inputs, labels=labels) # forward pass ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Evaluation results It achieves the following results on the evaluation set: - Loss: 1.4009 - Rouge1: 32.8603 - Rouge2: 12.2822 - Rougel: 31.7473 - Rougelsum: 32.505 - Gen Len: 117.6326 ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1 ### BibTeX entry and citation info ``` @inproceedings{urlana-etal-2022-tesum, title = "{T}e{S}um: Human-Generated Abstractive Summarization Corpus for {T}elugu", author = "Urlana, Ashok and Surange, Nirmal and Baswani, Pavan and Ravva, Priyanka and Shrivastava, Manish", booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference", month = jun, year = "2022", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2022.lrec-1.614", pages = "5712--5722", abstract = "Expert human annotation for summarization is definitely an expensive task, and can not be done on huge scales. But with this work, we show that even with a crowd sourced summary generation approach, quality can be controlled by aggressive expert informed filtering and sampling-based human evaluation. We propose a pipeline that crowd-sources summarization data and then aggressively filters the content via: automatic and partial expert evaluation. Using this pipeline we create a high-quality Telugu Abstractive Summarization dataset (TeSum) which we validate with sampling-based human evaluation. We also provide baseline numbers for various models commonly used for summarization. A number of recently released datasets for summarization, scraped the web-content relying on the assumption that summary is made available with the article by the publishers. While this assumption holds for multiple resources (or news-sites) in English, it should not be generalised across languages without thorough analysis and verification. Our analysis clearly shows that this assumption does not hold true for most Indian language news resources. We show that our proposed filtration pipeline can even be applied to these large-scale scraped datasets to extract better quality article-summary pairs.", } ```
Fixedbot/ppo-Huggy
Fixedbot
2023-07-13T09:33:07Z
23
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-13T09:32:52Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Fixedbot/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
predictia/cerra_tas_vqvae
predictia
2023-07-13T09:31:45Z
3
0
diffusers
[ "diffusers", "tensorboard", "climate", "transformers", "image-to-image", "es", "en", "license:apache-2.0", "region:us" ]
image-to-image
2023-06-28T11:28:11Z
--- license: apache-2.0 language: - es - en metrics: - mse pipeline_tag: image-to-image tags: - climate - transformers --- # Europe Reanalysis Super Resolution The aim of the project is to create a Machine learning (ML) model that can generate high-resolution regional reanalysis data (similar to the one produced by CERRA) by downscaling global reanalysis data from ERA5. This will be accomplished by using state-of-the-art Deep Learning (DL) techniques like U-Net, conditional GAN, and diffusion models (among others). Additionally, an ingestion module will be implemented to assess the possible benefit of using CERRA pseudo-observations as extra predictors. Once the model is designed and trained, a detailed validation framework takes the place. It combines classical deterministic error metrics with in-depth validations, including time series, maps, spatio-temporal correlations, and computer vision metrics, disaggregated by months, seasons, and geographical regions, to evaluate the effectiveness of the model in reducing errors and representing physical processes. This level of granularity allows for a more comprehensive and accurate assessment, which is critical for ensuring that the model is effective in practice. Moreover, tools for interpretability of DL models can be used to understand the inner workings and decision-making processes of these complex structures by analyzing the activations of different neurons and the importance of different features in the input data. This work is funded by [Code for Earth 2023](https://codeforearth.ecmwf.int/) initiative.
n0madic/elegantEntropy_v1.2
n0madic
2023-07-13T09:29:46Z
3
0
diffusers
[ "diffusers", "safetensors", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-13T08:25:55Z
--- license: creativeml-openrail-m ---
KyriaAnnwyn/vit-large-artifacts
KyriaAnnwyn
2023-07-13T09:26:30Z
55
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-07T12:11:49Z
--- tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: vit-large-artifacts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-large-artifacts This model is a fine-tuned version of [kakaobrain/vit-large-patch16-512](https://huggingface.co/kakaobrain/vit-large-patch16-512) on the KyriaAnnwyn/artifacts_ds dataset. It achieves the following results on the evaluation set: - Loss: 0.5995 - Accuracy: 0.6705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7001 | 0.01 | 100 | 0.6414 | 0.6559 | | 0.6288 | 0.01 | 200 | 0.6666 | 0.6559 | | 0.7237 | 0.02 | 300 | 0.7087 | 0.6559 | | 0.8741 | 0.03 | 400 | 0.6739 | 0.6257 | | 0.6093 | 0.04 | 500 | 0.6462 | 0.6559 | | 0.5801 | 0.04 | 600 | 0.6822 | 0.6559 | | 0.594 | 0.05 | 700 | 1.9948 | 0.6395 | | 0.7724 | 0.06 | 800 | 0.6566 | 0.6553 | | 0.6976 | 0.07 | 900 | 0.6774 | 0.6325 | | 0.6583 | 0.07 | 1000 | 0.7175 | 0.3517 | | 0.6779 | 0.08 | 1100 | 0.7012 | 0.6559 | | 0.6478 | 0.09 | 1200 | 0.6336 | 0.6559 | | 0.7405 | 0.1 | 1300 | 0.6577 | 0.6559 | | 0.7362 | 0.1 | 1400 | 0.6630 | 0.6142 | | 0.535 | 0.11 | 1500 | 0.7445 | 0.6559 | | 0.7338 | 0.12 | 1600 | 0.7046 | 0.4718 | | 0.6519 | 0.13 | 1700 | 0.6601 | 0.6426 | | 0.5969 | 0.13 | 1800 | 0.6518 | 0.6559 | | 0.5992 | 0.14 | 1900 | 0.6544 | 0.6559 | | 0.5762 | 0.15 | 2000 | 0.6608 | 0.6559 | | 0.6483 | 0.16 | 2100 | 0.6436 | 0.6331 | | 0.7594 | 0.16 | 2200 | 0.7562 | 0.5213 | | 0.6423 | 0.17 | 2300 | 0.6326 | 0.6433 | | 0.7006 | 0.18 | 2400 | 0.6669 | 0.6108 | | 0.833 | 0.19 | 2500 | 0.7043 | 0.6559 | | 0.6133 | 0.19 | 2600 | 0.6356 | 0.6532 | | 0.5285 | 0.2 | 2700 | 0.6619 | 0.6606 | | 0.7209 | 0.21 | 2800 | 0.7306 | 0.4196 | | 0.682 | 0.22 | 2900 | 0.6400 | 0.6539 | | 0.7148 | 0.22 | 3000 | 0.6421 | 0.6559 | | 0.6288 | 0.23 | 3100 | 0.7416 | 0.6559 | | 0.666 | 0.24 | 3200 | 0.6368 | 0.6293 | | 0.772 | 0.25 | 3300 | 0.6973 | 0.4985 | | 0.6778 | 0.25 | 3400 | 0.6288 | 0.6604 | | 0.5939 | 0.26 | 3500 | 0.6566 | 0.6559 | | 0.6246 | 0.27 | 3600 | 0.6347 | 0.6618 | | 0.649 | 0.28 | 3700 | 0.6353 | 0.6277 | | 0.7122 | 0.28 | 3800 | 0.6407 | 0.6559 | | 0.6292 | 0.29 | 3900 | 0.6776 | 0.6560 | | 0.6079 | 0.3 | 4000 | 0.6220 | 0.6609 | | 0.6971 | 0.31 | 4100 | 0.6258 | 0.6394 | | 0.7131 | 0.31 | 4200 | 0.7202 | 0.6556 | | 0.5346 | 0.32 | 4300 | 0.6394 | 0.6571 | | 0.5801 | 0.33 | 4400 | 0.6960 | 0.6664 | | 0.6806 | 0.34 | 4500 | 0.6339 | 0.6348 | | 0.6245 | 0.34 | 4600 | 0.6226 | 0.6477 | | 0.6905 | 0.35 | 4700 | 0.6203 | 0.6533 | | 0.741 | 0.36 | 4800 | 0.6464 | 0.6680 | | 0.5712 | 0.37 | 4900 | 0.6162 | 0.6640 | | 0.5566 | 0.37 | 5000 | 0.6182 | 0.6507 | | 0.6443 | 0.38 | 5100 | 0.6457 | 0.6664 | | 0.6107 | 0.39 | 5200 | 0.6092 | 0.6617 | | 0.5824 | 0.4 | 5300 | 0.6383 | 0.6571 | | 0.4775 | 0.4 | 5400 | 0.6606 | 0.6621 | | 0.7114 | 0.41 | 5500 | 0.6179 | 0.6619 | | 0.7701 | 0.42 | 5600 | 0.7982 | 0.4217 | | 0.6974 | 0.42 | 5700 | 0.6223 | 0.6540 | | 0.6669 | 0.43 | 5800 | 0.6249 | 0.6559 | | 0.6982 | 0.44 | 5900 | 0.6287 | 0.6564 | | 0.5811 | 0.45 | 6000 | 0.6104 | 0.6506 | | 0.4347 | 0.45 | 6100 | 1.0475 | 0.6559 | | 0.5885 | 0.46 | 6200 | 0.6125 | 0.6552 | | 0.6867 | 0.47 | 6300 | 0.6435 | 0.6468 | | 0.6088 | 0.48 | 6400 | 0.6047 | 0.6623 | | 0.8194 | 0.48 | 6500 | 0.6972 | 0.6589 | | 0.8182 | 0.49 | 6600 | 0.6053 | 0.6644 | | 0.6104 | 0.5 | 6700 | 0.7375 | 0.6571 | | 0.5552 | 0.51 | 6800 | 0.6231 | 0.6402 | | 0.6451 | 0.51 | 6900 | 0.6452 | 0.6561 | | 0.7849 | 0.52 | 7000 | 0.6177 | 0.6612 | | 0.64 | 0.53 | 7100 | 0.6307 | 0.6234 | | 0.6393 | 0.54 | 7200 | 0.6130 | 0.6554 | | 0.8326 | 0.54 | 7300 | 0.7210 | 0.6421 | | 0.6579 | 0.55 | 7400 | 0.6227 | 0.6544 | | 0.5195 | 0.56 | 7500 | 0.6619 | 0.6557 | | 0.6197 | 0.57 | 7600 | 0.6354 | 0.6498 | | 0.8507 | 0.57 | 7700 | 0.6820 | 0.6550 | | 0.7163 | 0.58 | 7800 | 0.6720 | 0.5328 | | 0.6896 | 0.59 | 7900 | 0.6530 | 0.6386 | | 0.62 | 0.6 | 8000 | 0.6296 | 0.6559 | | 0.8254 | 0.6 | 8100 | 0.6752 | 0.6200 | | 0.7653 | 0.61 | 8200 | 0.7118 | 0.6558 | | 0.7742 | 0.62 | 8300 | 0.6262 | 0.6497 | | 0.6861 | 0.63 | 8400 | 0.6799 | 0.5566 | | 0.5652 | 0.63 | 8500 | 0.6708 | 0.6559 | | 0.7486 | 0.64 | 8600 | 0.6319 | 0.6559 | | 0.6204 | 0.65 | 8700 | 0.6407 | 0.6530 | | 0.673 | 0.66 | 8800 | 0.7154 | 0.4672 | | 0.7272 | 0.66 | 8900 | 0.6323 | 0.6528 | | 0.7364 | 0.67 | 9000 | 0.6436 | 0.6188 | | 0.71 | 0.68 | 9100 | 0.6507 | 0.5924 | | 0.6767 | 0.69 | 9200 | 0.6347 | 0.6575 | | 0.7046 | 0.69 | 9300 | 0.6723 | 0.6127 | | 0.7486 | 0.7 | 9400 | 0.6328 | 0.6485 | | 0.7646 | 0.71 | 9500 | 0.6244 | 0.6550 | | 0.5971 | 0.72 | 9600 | 0.6610 | 0.6558 | | 0.6195 | 0.72 | 9700 | 0.6219 | 0.6515 | | 0.6891 | 0.73 | 9800 | 0.6300 | 0.6619 | | 0.6829 | 0.74 | 9900 | 0.6312 | 0.6568 | | 0.4786 | 0.75 | 10000 | 0.7160 | 0.6573 | | 0.6093 | 0.75 | 10100 | 0.6245 | 0.6503 | | 0.672 | 0.76 | 10200 | 0.6248 | 0.6577 | | 0.6734 | 0.77 | 10300 | 0.6541 | 0.6600 | | 0.7826 | 0.78 | 10400 | 0.6413 | 0.6559 | | 0.6851 | 0.78 | 10500 | 0.6478 | 0.6006 | | 0.6776 | 0.79 | 10600 | 0.6453 | 0.6175 | | 0.7322 | 0.8 | 10700 | 0.6188 | 0.6353 | | 0.5144 | 0.81 | 10800 | 0.6762 | 0.6571 | | 0.6977 | 0.81 | 10900 | 0.6559 | 0.6544 | | 0.5681 | 0.82 | 11000 | 0.7225 | 0.6559 | | 0.6449 | 0.83 | 11100 | 0.6372 | 0.6576 | | 0.6067 | 0.83 | 11200 | 0.6207 | 0.6391 | | 0.5921 | 0.84 | 11300 | 0.6178 | 0.6538 | | 0.5373 | 0.85 | 11400 | 0.7370 | 0.6559 | | 0.6926 | 0.86 | 11500 | 0.6346 | 0.6372 | | 0.6634 | 0.86 | 11600 | 0.6274 | 0.6489 | | 0.61 | 0.87 | 11700 | 0.6309 | 0.6427 | | 0.6214 | 0.88 | 11800 | 0.6273 | 0.6480 | | 0.6202 | 0.89 | 11900 | 0.6255 | 0.6559 | | 0.6153 | 0.89 | 12000 | 0.6348 | 0.6459 | | 0.7062 | 0.9 | 12100 | 0.6283 | 0.6512 | | 0.6977 | 0.91 | 12200 | 0.6159 | 0.6515 | | 0.6041 | 0.92 | 12300 | 0.6251 | 0.6504 | | 0.6609 | 0.92 | 12400 | 0.6633 | 0.5870 | | 0.7565 | 0.93 | 12500 | 0.6200 | 0.6562 | | 0.6133 | 0.94 | 12600 | 0.6193 | 0.6527 | | 0.7066 | 0.95 | 12700 | 0.6279 | 0.6180 | | 0.5706 | 0.95 | 12800 | 0.6128 | 0.6575 | | 0.6992 | 0.96 | 12900 | 0.6334 | 0.6449 | | 0.6834 | 0.97 | 13000 | 0.6258 | 0.6591 | | 0.6069 | 0.98 | 13100 | 0.6290 | 0.6620 | | 0.743 | 0.98 | 13200 | 0.6110 | 0.6562 | | 0.5226 | 0.99 | 13300 | 0.6165 | 0.6557 | | 0.7359 | 1.0 | 13400 | 0.6207 | 0.6376 | | 0.5812 | 1.01 | 13500 | 0.6192 | 0.6559 | | 0.666 | 1.01 | 13600 | 0.6347 | 0.6602 | | 0.5489 | 1.02 | 13700 | 0.6107 | 0.6459 | | 0.701 | 1.03 | 13800 | 0.6172 | 0.6518 | | 0.4873 | 1.04 | 13900 | 0.6786 | 0.6559 | | 0.5807 | 1.04 | 14000 | 0.6636 | 0.6433 | | 0.6824 | 1.05 | 14100 | 0.6176 | 0.6315 | | 0.6012 | 1.06 | 14200 | 0.6097 | 0.6617 | | 0.4865 | 1.07 | 14300 | 0.6103 | 0.6623 | | 0.5612 | 1.07 | 14400 | 0.6947 | 0.6559 | | 0.5968 | 1.08 | 14500 | 0.6559 | 0.5981 | | 0.5657 | 1.09 | 14600 | 0.6076 | 0.6509 | | 0.4778 | 1.1 | 14700 | 0.6808 | 0.6535 | | 0.6047 | 1.1 | 14800 | 0.6131 | 0.6480 | | 0.5999 | 1.11 | 14900 | 0.6120 | 0.6559 | | 0.5852 | 1.12 | 15000 | 0.6356 | 0.6553 | | 0.7033 | 1.13 | 15100 | 0.6578 | 0.6647 | | 0.5925 | 1.13 | 15200 | 0.6153 | 0.6633 | | 0.5959 | 1.14 | 15300 | 0.6306 | 0.6211 | | 0.5929 | 1.15 | 15400 | 0.6246 | 0.6655 | | 0.5621 | 1.16 | 15500 | 0.6126 | 0.6424 | | 0.5508 | 1.16 | 15600 | 0.6844 | 0.6559 | | 0.6276 | 1.17 | 15700 | 0.6066 | 0.6531 | | 1.0359 | 1.18 | 15800 | 0.6271 | 0.6617 | | 0.6191 | 1.19 | 15900 | 0.6166 | 0.6480 | | 0.7095 | 1.19 | 16000 | 0.6228 | 0.6462 | | 0.6567 | 1.2 | 16100 | 0.6066 | 0.6653 | | 0.5653 | 1.21 | 16200 | 0.6022 | 0.6605 | | 0.6894 | 1.21 | 16300 | 0.6216 | 0.6568 | | 0.608 | 1.22 | 16400 | 0.6041 | 0.6559 | | 0.665 | 1.23 | 16500 | 0.6111 | 0.6564 | | 0.6753 | 1.24 | 16600 | 0.6138 | 0.6581 | | 0.6213 | 1.24 | 16700 | 0.6121 | 0.6380 | | 0.6983 | 1.25 | 16800 | 0.6166 | 0.6661 | | 0.8521 | 1.26 | 16900 | 0.6202 | 0.6461 | | 0.4927 | 1.27 | 17000 | 0.6313 | 0.6547 | | 0.6414 | 1.27 | 17100 | 0.6011 | 0.6667 | | 0.539 | 1.28 | 17200 | 0.6451 | 0.6664 | | 0.5118 | 1.29 | 17300 | 0.6243 | 0.6641 | | 0.7512 | 1.3 | 17400 | 0.6257 | 0.6586 | | 0.5943 | 1.3 | 17500 | 0.6186 | 0.6423 | | 0.5861 | 1.31 | 17600 | 0.6435 | 0.6638 | | 0.7065 | 1.32 | 17700 | 0.6197 | 0.6279 | | 0.5973 | 1.33 | 17800 | 0.6081 | 0.6535 | | 0.5997 | 1.33 | 17900 | 0.6053 | 0.6608 | | 0.7091 | 1.34 | 18000 | 0.6013 | 0.6644 | | 0.691 | 1.35 | 18100 | 0.6103 | 0.6654 | | 0.5559 | 1.36 | 18200 | 0.6110 | 0.6658 | | 0.6309 | 1.36 | 18300 | 0.6067 | 0.6664 | | 0.6262 | 1.37 | 18400 | 0.6027 | 0.6616 | | 0.5551 | 1.38 | 18500 | 0.6106 | 0.6671 | | 0.6703 | 1.39 | 18600 | 0.6043 | 0.6576 | | 0.6849 | 1.39 | 18700 | 0.6018 | 0.6616 | | 0.6136 | 1.4 | 18800 | 0.6324 | 0.6629 | | 0.7075 | 1.41 | 18900 | 0.6057 | 0.6561 | | 0.6036 | 1.42 | 19000 | 0.6081 | 0.6559 | | 0.6549 | 1.42 | 19100 | 0.6352 | 0.6655 | | 0.5168 | 1.43 | 19200 | 0.6042 | 0.6632 | | 0.5864 | 1.44 | 19300 | 0.6111 | 0.6639 | | 0.5961 | 1.45 | 19400 | 0.6003 | 0.6644 | | 0.6077 | 1.45 | 19500 | 0.6125 | 0.6566 | | 0.6215 | 1.46 | 19600 | 0.6128 | 0.6582 | | 0.4005 | 1.47 | 19700 | 0.6348 | 0.6642 | | 0.5689 | 1.48 | 19800 | 0.6355 | 0.6647 | | 0.6026 | 1.48 | 19900 | 0.6127 | 0.6444 | | 0.4982 | 1.49 | 20000 | 0.6034 | 0.6654 | | 0.6189 | 1.5 | 20100 | 0.6202 | 0.6609 | | 0.5502 | 1.51 | 20200 | 0.6044 | 0.6621 | | 0.5924 | 1.51 | 20300 | 0.6107 | 0.6445 | | 0.744 | 1.52 | 20400 | 0.6164 | 0.6559 | | 0.5582 | 1.53 | 20500 | 0.6166 | 0.6559 | | 0.6994 | 1.54 | 20600 | 0.6109 | 0.6664 | | 0.5396 | 1.54 | 20700 | 0.6189 | 0.6670 | | 0.7232 | 1.55 | 20800 | 0.6104 | 0.6610 | | 0.9802 | 1.56 | 20900 | 0.6232 | 0.6642 | | 0.6487 | 1.57 | 21000 | 0.6056 | 0.6505 | | 0.5932 | 1.57 | 21100 | 0.5980 | 0.6702 | | 0.7897 | 1.58 | 21200 | 0.6012 | 0.6638 | | 0.6006 | 1.59 | 21300 | 0.6232 | 0.6672 | | 0.4481 | 1.6 | 21400 | 0.6124 | 0.6676 | | 0.6078 | 1.6 | 21500 | 0.6495 | 0.6664 | | 0.595 | 1.61 | 21600 | 0.7122 | 0.6675 | | 0.6388 | 1.62 | 21700 | 0.6227 | 0.6671 | | 0.5731 | 1.62 | 21800 | 0.6252 | 0.6682 | | 0.8603 | 1.63 | 21900 | 0.6026 | 0.6653 | | 0.6316 | 1.64 | 22000 | 0.6494 | 0.6669 | | 0.6712 | 1.65 | 22100 | 0.6097 | 0.6676 | | 0.6102 | 1.65 | 22200 | 0.6221 | 0.6585 | | 0.7099 | 1.66 | 22300 | 0.6006 | 0.6658 | | 0.621 | 1.67 | 22400 | 0.6026 | 0.6626 | | 0.478 | 1.68 | 22500 | 0.6062 | 0.6624 | | 0.6106 | 1.68 | 22600 | 0.5990 | 0.6669 | | 0.5793 | 1.69 | 22700 | 0.5980 | 0.6681 | | 0.5804 | 1.7 | 22800 | 0.6014 | 0.6626 | | 0.6304 | 1.71 | 22900 | 0.6107 | 0.6380 | | 0.7427 | 1.71 | 23000 | 0.6051 | 0.6682 | | 0.5794 | 1.72 | 23100 | 0.6105 | 0.6611 | | 0.5084 | 1.73 | 23200 | 0.6643 | 0.6673 | | 0.6518 | 1.74 | 23300 | 0.6366 | 0.6687 | | 0.5129 | 1.74 | 23400 | 0.6053 | 0.6682 | | 0.7593 | 1.75 | 23500 | 0.5977 | 0.6662 | | 0.6645 | 1.76 | 23600 | 0.5988 | 0.6683 | | 0.6144 | 1.77 | 23700 | 0.6130 | 0.6673 | | 0.6855 | 1.77 | 23800 | 0.6192 | 0.6596 | | 0.559 | 1.78 | 23900 | 0.6208 | 0.6574 | | 0.4202 | 1.79 | 24000 | 0.6125 | 0.6690 | | 0.6604 | 1.8 | 24100 | 0.6052 | 0.6685 | | 0.5487 | 1.8 | 24200 | 0.6086 | 0.6685 | | 0.6816 | 1.81 | 24300 | 0.5997 | 0.6620 | | 0.6057 | 1.82 | 24400 | 0.6128 | 0.6530 | | 0.4335 | 1.83 | 24500 | 0.6121 | 0.6676 | | 0.6147 | 1.83 | 24600 | 0.6225 | 0.6670 | | 0.7414 | 1.84 | 24700 | 0.6248 | 0.6718 | | 0.622 | 1.85 | 24800 | 0.6084 | 0.6722 | | 0.5356 | 1.86 | 24900 | 0.6003 | 0.6611 | | 0.7994 | 1.86 | 25000 | 0.6098 | 0.6657 | | 0.5389 | 1.87 | 25100 | 0.6052 | 0.6633 | | 0.6985 | 1.88 | 25200 | 0.6073 | 0.6694 | | 0.652 | 1.89 | 25300 | 0.6040 | 0.6709 | | 0.5409 | 1.89 | 25400 | 0.6065 | 0.6709 | | 0.6356 | 1.9 | 25500 | 0.6062 | 0.6699 | | 0.7588 | 1.91 | 25600 | 0.6025 | 0.6711 | | 0.5109 | 1.92 | 25700 | 0.5992 | 0.6693 | | 0.6766 | 1.92 | 25800 | 0.6004 | 0.6693 | | 0.6517 | 1.93 | 25900 | 0.6020 | 0.6701 | | 0.6561 | 1.94 | 26000 | 0.5995 | 0.6705 | | 0.6224 | 1.95 | 26100 | 0.6008 | 0.6717 | | 0.6054 | 1.95 | 26200 | 0.6005 | 0.6714 | | 0.5152 | 1.96 | 26300 | 0.6023 | 0.6709 | | 0.5503 | 1.97 | 26400 | 0.6032 | 0.6706 | | 0.5101 | 1.98 | 26500 | 0.6067 | 0.6709 | | 0.5229 | 1.98 | 26600 | 0.6079 | 0.6702 | | 0.8387 | 1.99 | 26700 | 0.6079 | 0.6700 | | 0.608 | 2.0 | 26800 | 0.6069 | 0.6699 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.1+cu116 - Datasets 2.13.1 - Tokenizers 0.13.3
dada325/q-FrozenLake-v1-4x4-noSlippery
dada325
2023-07-13T09:26:20Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T09:26:17Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dada325/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
skywalker7/Reinforce-PixelCopter
skywalker7
2023-07-13T09:17:26Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T09:17:17Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 45.10 +/- 55.81 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
kfkas/LawBot-level1
kfkas
2023-07-13T09:13:25Z
8
1
peft
[ "peft", "region:us" ]
null
2023-07-13T09:13:08Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
youlun77/finetuning-sentiment-model-25000-samples-BERT
youlun77
2023-07-13T09:10:41Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-13T07:30:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: finetuning-sentiment-model-25000-samples-BERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-25000-samples-BERT This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2154 - eval_accuracy: 0.9422 - eval_f1: 0.9427 - eval_runtime: 823.1435 - eval_samples_per_second: 30.371 - eval_steps_per_second: 1.899 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
dchaudhari/my_awesome_qa_model_1
dchaudhari
2023-07-13T08:59:58Z
61
0
transformers
[ "transformers", "tf", "roberta", "question-answering", "generated_from_keras_callback", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-13T08:06:42Z
--- license: cc-by-4.0 tags: - generated_from_keras_callback model-index: - name: dchaudhari/my_awesome_qa_model_1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dchaudhari/my_awesome_qa_model_1 This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.2535 - Validation Loss: 1.2733 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1298, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.6348 | 1.5188 | 0 | | 1.4251 | 1.2733 | 1 | | 1.2535 | 1.2733 | 2 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.1.0 - Tokenizers 0.13.3
soonmo/distilbert-base-uncased-finetuned-clinc
soonmo
2023-07-13T08:58:26Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-12T01:45:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - name: Accuracy type: accuracy value: 0.9161290322580645 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7754 - Accuracy: 0.9161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2893 | 1.0 | 318 | 3.2831 | 0.7397 | | 2.6289 | 2.0 | 636 | 1.8731 | 0.8345 | | 1.5481 | 3.0 | 954 | 1.1580 | 0.89 | | 1.0137 | 4.0 | 1272 | 0.8584 | 0.9077 | | 0.7969 | 5.0 | 1590 | 0.7754 | 0.9161 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
aditii09/whisper_eng_asr
aditii09
2023-07-13T08:58:20Z
76
1
transformers
[ "transformers", "pytorch", "tf", "jax", "whisper", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "arxiv:2212.04356", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-13T08:45:39Z
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - no - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su tags: - audio - automatic-speech-recognition - hf-asr-leaderboard widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: whisper-base results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 5.008769117619326 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 12.84936273212057 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: language: hi metrics: - name: Test WER type: wer value: 131 pipeline_tag: automatic-speech-recognition license: apache-2.0 --- # Whisper Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need for fine-tuning. Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356) by Alec Radford et al from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper). **Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were copied and pasted from the original model card. ## Model details Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model. It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision. The models were trained on either English-only data or multilingual data. The English-only models were trained on the task of speech recognition. The multilingual models were trained on both speech recognition and speech translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio. For speech translation, the model predicts transcriptions to a *different* language to the audio. Whisper checkpoints come in five configurations of varying model sizes. The smallest four are trained on either English-only or multilingual data. The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The checkpoints are summarised in the following table with links to the models on the Hub: | Size | Parameters | English-only | Multilingual | |----------|------------|------------------------------------------------------|-----------------------------------------------------| | tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) | | base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) | | small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) | | medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) | | large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) | | large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) | # Usage To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor). The `WhisperProcessor` is used to: 1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model) 2. Post-process the model outputs (converting them from tokens to text) The model is informed of which task to perform (transcription or translation) by passing the appropriate "context tokens". These context tokens are a sequence of tokens that are given to the decoder at the start of the decoding process, and take the following order: 1. The transcription always starts with the `<|startoftranscript|>` token 2. The second token is the language token (e.g. `<|en|>` for English) 3. The third token is the "task token". It can take one of two values: `<|transcribe|>` for speech recognition or `<|translate|>` for speech translation 4. In addition, a `<|notimestamps|>` token is added if the model should not include timestamp prediction Thus, a typical sequence of context tokens might look as follows: ``` <|startoftranscript|> <|en|> <|transcribe|> <|notimestamps|> ``` Which tells the model to decode in English, under the task of speech recognition, and not to predict timestamps. These tokens can either be forced or un-forced. If they are forced, the model is made to predict each token at each position. This allows one to control the output language and task for the Whisper model. If they are un-forced, the Whisper model will automatically predict the output langauge and task itself. The context tokens can be set accordingly: ```python model.config.forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="english", task="transcribe") ``` Which forces the model to predict in English under the task of speech recognition. ## Transcription ### English to English In this example, the context tokens are 'unforced', meaning the model automatically predicts the output language (English) and task (transcribe). ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-base") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base") >>> model.config.forced_decoder_ids = None >>> # load dummy dataset and read audio files >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False) ['<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.'] ``` The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`. ### French to French The following example demonstrates French to French transcription by setting the decoder ids appropriately. ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import Audio, load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-base") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base") >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe") >>> # load streaming dataset and read first audio sample >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True) >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"] >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids) ['<|startoftranscript|><|fr|><|transcribe|><|notimestamps|> Un vrai travail intéressant va enfin être mené sur ce sujet.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Un vrai travail intéressant va enfin être mené sur ce sujet.'] ``` ## Translation Setting the task to "translate" forces the Whisper model to perform speech translation. ### French to English ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import Audio, load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-base") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base") >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate") >>> # load streaming dataset and read first audio sample >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True) >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"] >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' A very interesting work, we will finally be given on this subject.'] ``` ## Evaluation This code snippet shows how to evaluate Whisper Base on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr): ```python >>> from datasets import load_dataset >>> from transformers import WhisperForConditionalGeneration, WhisperProcessor >>> import torch >>> from evaluate import load >>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test") >>> processor = WhisperProcessor.from_pretrained("openai/whisper-base") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base").to("cuda") >>> def map_to_pred(batch): >>> audio = batch["audio"] >>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features >>> batch["reference"] = processor.tokenizer._normalize(batch['text']) >>> >>> with torch.no_grad(): >>> predicted_ids = model.generate(input_features.to("cuda"))[0] >>> transcription = processor.decode(predicted_ids) >>> batch["prediction"] = processor.tokenizer._normalize(transcription) >>> return batch >>> result = librispeech_test_clean.map(map_to_pred) >>> wer = load("wer") >>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"])) 5.082316555716899 ``` ## Long-Form Transcription The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`: ```python >>> import torch >>> from transformers import pipeline >>> from datasets import load_dataset >>> device = "cuda:0" if torch.cuda.is_available() else "cpu" >>> pipe = pipeline( >>> "automatic-speech-recognition", >>> model="openai/whisper-base", >>> chunk_length_s=30, >>> device=device, >>> ) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> prediction = pipe(sample.copy(), batch_size=8)["text"] " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel." >>> # we can also return timestamps for the predictions >>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"] [{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.', 'timestamp': (0.0, 5.44)}] ``` Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm. ## Fine-Tuning The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However, its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step guide to fine-tuning the Whisper model with as little as 5 hours of labelled data. ### Evaluated Use The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research. The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them. In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes. ## Training Data The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages. As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language. ## Performance and Limitations Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level. However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself. Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf). In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages. ## Broader Implications We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications. There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects. ### BibTeX entry and citation info ```bibtex @misc{radford2022whisper, doi = {10.48550/ARXIV.2212.04356}, url = {https://arxiv.org/abs/2212.04356}, author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya}, title = {Robust Speech Recognition via Large-Scale Weak Supervision}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
digiplay/helloFlatAnime_v1
digiplay
2023-07-13T08:57:50Z
1,606
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-13T07:42:03Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Model info: https://civitai.com/models/102893/helloflatanime Original Author's DEMO images : ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/aa2245de-bfb7-4a60-a0cb-c895c3f21631/width=768/378519-808169828-masterpiece,%20high%20quality,(thick%20body,mature%20face),colored%20hair,%20(20%20years%20old%20woman%20in%20a%20tanktop,short%20pants,in%20the%20water%20on%20a.jpeg)
gabrielgme/falcon-7b-spider-with-schema
gabrielgme
2023-07-13T08:44:42Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-12T13:21:52Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0.dev0
seongj/polyglot-ko-1.3b-quant
seongj
2023-07-13T08:24:27Z
0
0
null
[ "region:us" ]
null
2023-07-12T10:52:42Z
Pytorch Quantized Model - Dynamic Quantization : INT8
uripper/AVA
uripper
2023-07-13T08:15:52Z
10
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "license:cc", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-22T20:54:37Z
--- license: cc widget: - text: "Movie: Parasite Score:" example_title: "Parasite" - text: "Movie: Come and See Score:" example_title: "Come and See" - text: "Movie: Harakiri Score:" example_title: "Harakiri" --- # Review Training Bot This model was trained for the purpose of generating scores and reviews for any given movie. It is fine-tuned on distilgpt2 as a baseline and trained on a custom dataset created by scraping around 120k letterboxd reviews. The current state of the model can get the correct formatting reliably but oftentimes is prone to gibberish. Further training will hopefully add coherency. It is in version 0.1 currently. ## Intended uses & limitations This model is intended to be used for entertainment. Limitations for this model will be much of the same as distilgpt2 which can be viewed here https://huggingface.co/distilgpt2. These may include persistent biases. Another issue may be through language specifically on letterboxd that the algorithm may not be able to understand. i.e. an LGBT+ film on letterboxd may have multiple reviews that mention the word "gay" positively, this model has not been able to understand this contextual usage and will use the word as a slur. As the current model also struggles to find a connection between movie titles and the reviews, this could happen with any entered movie. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 10 - eval_batch_size: 20 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 5000 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Tokenizers 0.12.1
Ablustrund/moss-rlhf-reward-model-7B-zh
Ablustrund
2023-07-13T08:10:42Z
3
23
null
[ "llm", "reward model", "moss", "rlhf", "zh", "arxiv:2307.04964", "license:agpl-3.0", "region:us" ]
null
2023-07-12T02:27:02Z
--- license: agpl-3.0 language: - zh tags: - llm - reward model - moss - rlhf --- # MOSS-RLHF ### *MOSS-RLHF & "Secrets of RLHF in Large Language Models Part I: PPO" <br>👉 <a href="https://arxiv.org/abs/2307.04964" target="_blank">[Technical report]</a> <a href="https://openlmlab.github.io/MOSS-RLHF/" target="_blank">[Home page]* ## 🌟 News ### 👉 Wed, 12. July 2023. We have released Chinese reward model based OpenChineseLlama-7B! [moss-rlhf-reward-model-7B-zh](https://huggingface.co/Ablustrund/moss-rlhf-reward-model-7B-zh/tree/main) <br> ### 👉 Thu, 13. July 2023. We have released English reward model and SFT model based Llama-7B! [moss-rlhf-reward-model-7B-en](https://huggingface.co/fnlp/moss-rlhf-reward-model-7B-en) [moss-rlhf-sft-model-7B-en](https://huggingface.co/fnlp/moss-rlhf-sft-model-7B-en) <br> ## 🧾 Open-source List - [x] Open source code for RL training in large language models. - [x] A 7B Chinese reward model based on openChineseLlama. - [x] A 7B English reward model based on Llama-7B. - [x] SFT model for English. - [ ] Policy model for English after RLHF. - ... ## 🌠 Introduction Due to the challenges of reward design, environment interaction, and agent training, coupled with huge trial and error cost of large language models, there is a significant barrier for AI researchers to motivate the development of technical alignment and safe landing of LLMs. The stable training of RLHF has still been a puzzle. In this technical report, we intend to help researchers to train their models stably with human feedback. Contributions are summarized as follows: 1) We release competitive Chinese and English reward models, respectively, which have good cross-model generalization ability, alleviating the cost of relabeling human preference data; 2) We conduct in-depth analysis on the inner workings of PPO algorithm and propose the PPO-max algorithm to ensure stable model training; 3) We release the complete PPO-max codes to ensure that the LLMs in the current SFT stage can be better aligned with humans. ## 🔩 Requirements & Setup This repository works on Python 3.8 and PyTorch 1.13.1. We recommend using the **conda** virtual environment to run the code. #### Step 1: Create a new Python virtual environment ```bash conda update conda -n base -c defaults conda create -n rlhf python=3.8 conda activate rlhf ``` #### Step 2: Install PyTorch and TensorBoard ```bash conda install pytorch==1.13.1 pytorch-cuda=11.7 tensorboard -c pytorch -c nvidia ``` #### Step 3: Install the remaining dependencies ```bash conda install datasets accelerate safetensors chardet cchardet -c huggingface -c conda-forge pip3 install transformers sentencepiece einops triton==1.0.0 rouge jionlp==1.4.14 nltk sacrebleu cpm_kernels apt install libaio-dev DS_BUILD_OPS=1 pip install deepspeed ``` ## ✨ Start training your own model! Run code in a few steps. ### Step 1: Recover Reward model weights We can not directly release the full weight of the reward model because of protocol restrictions. You can merge the diff weight with original Llama-7B to recover the reward model we used. We upload the diff models, thanks to tatsu-lab, you can recover the reward model follow these steps: ```bash 1) Download the weight diff into your local machine. The weight diff is located at: # For English: TODO # For Chinese: https://huggingface.co/Ablustrund/moss-rlhf-reward-model-7B-zh/tree/main 2) Merge the weight diff with the original Llama-7B: # For English: # Reward model python merge_weight_en.py recover --path_raw decapoda-research/llama-7b-hf --path_diff ./models/moss-rlhf-reward-model-7B-en/diff --path_tuned ./models/moss-rlhf-reward-model-7B-en/recover --model_type reward # SFT model python merge_weight_en.py recover --path_raw decapoda-research/llama-7b-hf --path_diff ./models/moss-rlhf-sft-model-7B-en/diff --path_tuned ./models/moss-rlhf-sft-model-7B-en/recover --model_type sft # Policy model TODO # For Chinese: python merge_weight_zh.py recover --path_raw decapoda-research/llama-7b-hf --path_diff ./models/moss-rlhf-reward-model-7B-zh/diff --path_tuned ./models/moss-rlhf-reward-model-7B-zh/recover ``` ### Step 2: Select your own SFT model. Because of some limitations, we can not release the **Chinese** SFT model (Currently). You can use your own SFT model, or a strong base model instead of our SFT model. ### Step 3: Start training Run the command below. ``` # For Chinese: # You need to use your own sft model currently. bash run_zh.sh # For English: # We have loaded the sft model and reward model to huggingface. bash run_en.sh ``` ## Citation ```bibtex @article{zheng2023secrets, title={Secrets of RLHF in Large Language Models Part I: PPO}, author={Rui Zheng and Shihan Dou and Songyang Gao and Wei Shen and Binghai Wang and Yan Liu and Senjie Jin and Qin Liu and Limao Xiong and Lu Chen and Zhiheng Xi and Yuhao Zhou and Nuo Xu and Wenbin Lai and Minghao Zhu and Rongxiang Weng and Wensen Cheng and Cheng Chang and Zhangyue Yin and Yuan Hua and Haoran Huang and Tianxiang Sun and Hang Yan and Tao Gui and Qi Zhang and Xipeng Qiu and Xuanjing Huang}, year={2023}, eprint={2307.04964}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
yubuu/path-to-save-model
yubuu
2023-07-13T08:03:07Z
30
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-13T07:51:30Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - yubuu/path-to-save-model This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
haxett333/RL-Reinforce-100TrainEpisodesInsteadof1000
haxett333
2023-07-13T08:00:13Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T08:00:09Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: RL-Reinforce-100TrainEpisodesInsteadof1000 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 98.70 +/- 36.77 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
nicotaroni/fine_tuned_classification
nicotaroni
2023-07-13T07:58:46Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-12T09:04:12Z
--- pipeline_tag: text2text-generation ---
saeedehj/led-base-finetune-cnn
saeedehj
2023-07-13T07:50:12Z
34
0
transformers
[ "transformers", "pytorch", "tensorboard", "led", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-12T22:27:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: led-base-16384-finetune-cnn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # led-base-16384-finetune-cnn This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 3.2020 - Rouge1: 24.2258 - Rouge2: 9.0151 - Rougel: 19.0336 - Rougelsum: 22.2604 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.8988 | 1.0 | 2000 | 2.0031 | 25.1709 | 10.0426 | 20.1311 | 23.1639 | 20.0 | | 1.6038 | 2.0 | 4000 | 2.0314 | 25.0213 | 9.8701 | 19.8987 | 23.0129 | 20.0 | | 1.3352 | 3.0 | 6000 | 2.1124 | 24.99 | 9.905 | 19.9566 | 23.0973 | 20.0 | | 1.1173 | 4.0 | 8000 | 2.2055 | 25.0568 | 10.0949 | 19.9602 | 23.18 | 20.0 | | 0.9566 | 5.0 | 10000 | 2.3262 | 24.941 | 9.5856 | 19.6285 | 23.042 | 20.0 | | 0.7986 | 6.0 | 12000 | 2.4489 | 24.4114 | 9.2808 | 19.3296 | 22.5481 | 20.0 | | 0.6685 | 7.0 | 14000 | 2.5211 | 24.467 | 9.5124 | 19.2685 | 22.5624 | 20.0 | | 0.5601 | 8.0 | 16000 | 2.6299 | 24.6939 | 9.6533 | 19.4627 | 22.8048 | 20.0 | | 0.4757 | 9.0 | 18000 | 2.7185 | 24.2098 | 9.1232 | 19.0181 | 22.4085 | 20.0 | | 0.3926 | 10.0 | 20000 | 2.7947 | 24.5092 | 9.3964 | 19.2593 | 22.5592 | 20.0 | | 0.3391 | 11.0 | 22000 | 2.8626 | 24.4731 | 9.3634 | 19.2966 | 22.5688 | 20.0 | | 0.2872 | 12.0 | 24000 | 2.9175 | 24.5587 | 9.3888 | 19.3335 | 22.6443 | 20.0 | | 0.2479 | 13.0 | 26000 | 2.9658 | 24.2983 | 9.1038 | 19.019 | 22.3675 | 20.0 | | 0.213 | 14.0 | 28000 | 3.0273 | 24.4196 | 9.1481 | 19.0458 | 22.5135 | 20.0 | | 0.1828 | 15.0 | 30000 | 3.0751 | 24.3283 | 9.2334 | 18.9771 | 22.3322 | 20.0 | | 0.1608 | 16.0 | 32000 | 3.1185 | 24.3965 | 9.2047 | 19.0899 | 22.4666 | 20.0 | | 0.1442 | 17.0 | 34000 | 3.1494 | 24.3832 | 9.1915 | 19.077 | 22.4366 | 20.0 | | 0.1293 | 18.0 | 36000 | 3.1738 | 24.3796 | 9.1132 | 19.1015 | 22.3862 | 20.0 | | 0.1165 | 19.0 | 38000 | 3.2073 | 24.2804 | 9.1018 | 19.0692 | 22.3023 | 20.0 | | 0.1118 | 20.0 | 40000 | 3.2020 | 24.2258 | 9.0151 | 19.0336 | 22.2604 | 20.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
jslin09/LegalChatbot-bloom-3b
jslin09
2023-07-13T07:45:16Z
19
0
peft
[ "peft", "region:us" ]
null
2023-07-06T02:44:57Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
JeffreyHuang/llm-selector
JeffreyHuang
2023-07-13T07:30:31Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-27T04:16:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: llm-selector results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llm-selector This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7315 - Accuracy: 0.5048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 118 | 1.8920 | 0.3714 | | No log | 2.0 | 236 | 1.7753 | 0.5143 | | No log | 3.0 | 354 | 1.7671 | 0.4952 | | No log | 4.0 | 472 | 1.7441 | 0.5048 | | 1.8665 | 5.0 | 590 | 1.7315 | 0.5048 | | 1.8665 | 6.0 | 708 | 1.7413 | 0.5048 | | 1.8665 | 7.0 | 826 | 1.7378 | 0.4667 | | 1.8665 | 8.0 | 944 | 1.7426 | 0.4667 | | 1.7254 | 9.0 | 1062 | 1.7513 | 0.4476 | | 1.7254 | 10.0 | 1180 | 1.7513 | 0.4476 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
K024/chatglm2-6b-int4g32
K024
2023-07-13T07:25:25Z
53
3
transformers
[ "transformers", "ChatGLM2Model", "glm", "chatglm", "thudm", "zh", "en", "endpoints_compatible", "region:us" ]
null
2023-07-13T07:09:00Z
--- language: - zh - en tags: - glm - chatglm - thudm --- # ChatGLM2 6b int4 g32 量化模型 详情参考 [K024/chatglm-q](https://github.com/K024/chatglm-q)。 See [K024/chatglm-q](https://github.com/K024/chatglm-q) for more details. ```python import torch from chatglm_q.decoder import ChatGLMDecoder, chat_template device = torch.device("cuda") decoder = ChatGLMDecoder.from_pretrained("K024/chatglm2-6b-int4g32", device=device) prompt = chat_template([], "我是谁?") for text in decoder.generate(prompt): print(text) ``` 模型权重按 ChatGLM2-6b 许可发布,见 [MODEL LICENSE](https://huggingface.co/THUDM/chatglm2-6b/blob/main/MODEL_LICENSE)。 Model weights are released under the same license as ChatGLM2-6b, see [MODEL LICENSE](https://huggingface.co/THUDM/chatglm2-6b/blob/main/MODEL_LICENSE).
K024/chatglm2-6b-int8
K024
2023-07-13T07:18:11Z
49
1
transformers
[ "transformers", "ChatGLM2Model", "glm", "chatglm", "thudm", "zh", "en", "endpoints_compatible", "region:us" ]
null
2023-07-13T07:13:41Z
--- language: - zh - en tags: - glm - chatglm - thudm --- # ChatGLM2 6b int8 量化模型 详情参考 [K024/chatglm-q](https://github.com/K024/chatglm-q)。 See [K024/chatglm-q](https://github.com/K024/chatglm-q) for more details. ```python import torch from chatglm_q.decoder import ChatGLMDecoder, chat_template device = torch.device("cuda") decoder = ChatGLMDecoder.from_pretrained("K024/chatglm2-6b-int8", device=device) prompt = chat_template([], "我是谁?") for text in decoder.generate(prompt): print(text) ``` 模型权重按 ChatGLM2-6b 许可发布,见 [MODEL LICENSE](https://huggingface.co/THUDM/chatglm2-6b/blob/main/MODEL_LICENSE)。 Model weights are released under the same license as ChatGLM2-6b, see [MODEL LICENSE](https://huggingface.co/THUDM/chatglm2-6b/blob/main/MODEL_LICENSE).
vineetsharma/dqn-SpaceInvadersNoFrameskip-v4
vineetsharma
2023-07-13T07:13:19Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T07:12:43Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 560.00 +/- 101.24 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga vineetsharma -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga vineetsharma -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga vineetsharma ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
smithlai/qtable-taxi-v3
smithlai
2023-07-13T07:12:19Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T07:10:33Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: qtable-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="smithlai/qtable-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
preetham/rpanda1
preetham
2023-07-13T07:10:56Z
1
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-13T06:22:15Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks panda tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - preetham/rpanda1 This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks panda using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
KevinHemsig/my_awesome_qa_model
KevinHemsig
2023-07-13T07:05:56Z
103
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-11T04:30:18Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: KevinHemsig/my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # KevinHemsig/my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.5159 - Validation Loss: 1.6940 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.3612 | 2.0301 | 0 | | 1.7557 | 1.6940 | 1 | | 1.5159 | 1.6940 | 2 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
ajaydvrj/dataset2
ajaydvrj
2023-07-13T06:48:15Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-12T12:07:08Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: dataset2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dataset2 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.7431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 5.9615 | | No log | 2.0 | 2 | 5.8187 | | No log | 3.0 | 3 | 5.7431 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cpu - Datasets 2.13.1 - Tokenizers 0.13.3
dchaudhari/my_awesome_qa_model
dchaudhari
2023-07-13T06:44:21Z
61
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-11T05:20:51Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: dchaudhari/my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dchaudhari/my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0913 - Validation Loss: 1.1726 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1298, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.2288 | 1.3339 | 0 | | 1.2300 | 1.1726 | 1 | | 1.0913 | 1.1726 | 2 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.1.0 - Tokenizers 0.13.3
markcberman/distilbert-base-uncased-finetuned-emotion
markcberman
2023-07-13T06:39:20Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-13T06:04:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: split metrics: - name: Accuracy type: accuracy value: 0.9275 - name: F1 type: f1 value: 0.9275012469136824 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2201 - Accuracy: 0.9275 - F1: 0.9275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8326 | 1.0 | 250 | 0.3185 | 0.902 | 0.8983 | | 0.2499 | 2.0 | 500 | 0.2201 | 0.9275 | 0.9275 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.0.1+cu118 - Datasets 1.16.1 - Tokenizers 0.13.3
aniketr/mrl-resnet50
aniketr
2023-07-13T06:24:25Z
0
3
null
[ "code", "image-classification", "en", "dataset:imagenet-1k", "arxiv:2205.13147", "license:mit", "region:us" ]
image-classification
2023-07-13T03:45:55Z
--- license: mit datasets: - imagenet-1k language: - en metrics: - accuracy pipeline_tag: image-classification tags: - code --- # Matryoshka Representation Learning🪆 _Aditya Kusupati*, Gantavya Bhatt*, Aniket Rege*, Matthew Wallingford, Aditya Sinha, Vivek Ramanujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, Ali Farhadi_ GitHub: https://github.com/RAIVNLab/MRL Arxiv: https://arxiv.org/abs/2205.13147 We provide pretrained models trained with [FFCV](https://github.com/libffcv/ffcv) on ImageNet-1K: 1. `mrl` : ResNet50 __mrl__ models trained with Matryoshka loss (vanilla and efficient) with nesting starting from _d=8_ (default) and _d=16_ 2. `fixed-feature` : independently trained ResNet50 baselines at _log(d)_ granularities 3. `resnet-family` : __mrl__ and __ff__ models trained on ResNet18/34/101 ## Citation If you find this project useful in your research, please consider citing: ``` @inproceedings{kusupati2022matryoshka, title = {Matryoshka Representation Learning}, author = {Kusupati, Aditya and Bhatt, Gantavya and Rege, Aniket and Wallingford, Matthew and Sinha, Aditya and Ramanujan, Vivek and Howard-Snyder, William and Chen, Kaifeng and Kakade, Sham and Jain, Prateek and others}, title = {Matryoshka Representation Learning.}, booktitle = {Advances in Neural Information Processing Systems}, month = {December}, year = {2022}, } ```
NasimB/gpt2-concat-all-text-processign-rarity-all-iorder-est-5p5k
NasimB
2023-07-13T05:53:26Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-13T04:18:13Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-all-text-processign-rarity-all-iorder-est-5p5k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-all-text-processign-rarity-all-iorder-est-5p5k This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.7435 | 0.32 | 500 | 5.6693 | | 5.3983 | 0.63 | 1000 | 5.2259 | | 5.0552 | 0.95 | 1500 | 4.9848 | | 4.7718 | 1.27 | 2000 | 4.8394 | | 4.6329 | 1.58 | 2500 | 4.7145 | | 4.5322 | 1.9 | 3000 | 4.6174 | | 4.3187 | 2.22 | 3500 | 4.5659 | | 4.2361 | 2.53 | 4000 | 4.4971 | | 4.1996 | 2.85 | 4500 | 4.4287 | | 4.0309 | 3.17 | 5000 | 4.4140 | | 3.9128 | 3.48 | 5500 | 4.3761 | | 3.8993 | 3.8 | 6000 | 4.3344 | | 3.7784 | 4.12 | 6500 | 4.3363 | | 3.619 | 4.43 | 7000 | 4.3222 | | 3.6107 | 4.75 | 7500 | 4.3063 | | 3.5596 | 5.07 | 8000 | 4.3030 | | 3.4209 | 5.38 | 8500 | 4.3070 | | 3.4095 | 5.7 | 9000 | 4.3053 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
YanJiangJerry/SA-tweet-roberta-large-e4-w1-1.5-b16-m4
YanJiangJerry
2023-07-13T05:42:53Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-13T05:19:19Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: SA-tweet-roberta-large-e4-w1-1.5-b16-m4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SA-tweet-roberta-large-e4-w1-1.5-b16-m4 This model is a fine-tuned version of [Amalq/autotrain-smm4h_large_roberta_clean-874027878](https://huggingface.co/Amalq/autotrain-smm4h_large_roberta_clean-874027878) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3545 - Accuracy: 0.945 - F1: 0.9511 - Precision: 0.9537 - Recall: 0.9486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 285 | 0.1933 | 0.92 | 0.9290 | 0.9306 | 0.9273 | | 0.2508 | 2.0 | 570 | 0.2097 | 0.933 | 0.9411 | 0.9337 | 0.9486 | | 0.2508 | 3.0 | 855 | 0.2958 | 0.937 | 0.9450 | 0.9312 | 0.9592 | | 0.0947 | 4.0 | 1140 | 0.3545 | 0.945 | 0.9511 | 0.9537 | 0.9486 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ajaydvrj/my-qa-model
ajaydvrj
2023-07-13T05:31:47Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-13T05:25:01Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my-qa-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-qa-model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.4373 - Train Accuracy: 0.1538 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 2e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Epoch | |:----------:|:--------------:|:-----:| | 2.6280 | 0.0769 | 0 | | 2.5014 | 0.1538 | 1 | | 2.5604 | 0.2308 | 2 | | 2.5289 | 0.0769 | 3 | | 2.4373 | 0.1538 | 4 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.13.0 - Datasets 2.13.1 - Tokenizers 0.13.3
localmodels/Guanaco-65B-GPTQ
localmodels
2023-07-13T05:21:10Z
7
4
transformers
[ "transformers", "llama", "text-generation", "arxiv:2305.14314", "arxiv:2302.13971", "arxiv:2304.07327", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-05-28T21:51:04Z
# Guanaco 65B GPTQ From: https://huggingface.co/timdettmers/guanaco-65b --- ## Model * guanaco-65b-4bit.safetensors * Works with all versions of GPTQ-for-LLaMa code, both Triton and CUDA branches * Works with AutoGPTQ * Parameters: Groupsize = None. act-order --- # Guanaco Models Based on LLaMA | [Paper](https://arxiv.org/abs/2305.14314) | [Code](https://github.com/artidoro/qlora) | [Demo](https://huggingface.co/spaces/uwnlp/guanaco-playground-tgi) | **The Guanaco models are open-source finetuned chatbots obtained through 4-bit QLoRA tuning of LLaMA base models on the OASST1 dataset. They are available in 7B, 13B, 33B, and 65B parameter sizes.** ⚠️Guanaco is a model purely intended for research purposes and could produce problematic outputs. ## Why use Guanaco? - **Competitive with commercial chatbot systems on the Vicuna and OpenAssistant benchmarks** (ChatGPT and BARD) according to human and GPT-4 raters. We note that the relative performance on tasks not covered in these benchmarks could be very different. In addition, commercial systems evolve over time (we used outputs from the March 2023 version of the models). - **Available open-source for research purposes**. Guanaco models allow *cheap* and *local* experimentation with high-quality chatbot systems. - **Replicable and efficient training procedure** that can be extended to new use cases. Guanaco training scripts are available in the [QLoRA repo](https://github.com/artidoro/qlora). - **Rigorous comparison to 16-bit methods** (both 16-bit full-finetuning and LoRA) in [our paper](https://arxiv.org/abs/2305.14314) demonstrates the effectiveness of 4-bit QLoRA finetuning. - **Lightweight** checkpoints which only contain adapter weights. ## License and Intended Use Guanaco adapter weights are available under Apache 2 license. Note the use of the Guanaco adapter weights, requires access to the LLaMA model weighs. Guanaco is based on LLaMA and therefore should be used according to the LLaMA license. ## Usage Here is an example of how you would load Guanaco 7B in 4-bits: ```python import torch from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig model_name = "huggyllama/llama-7b" adapters_name = 'timdettmers/guanaco-7b' model = AutoModelForCausalLM.from_pretrained( model_name, load_in_4bit=True, torch_dtype=torch.bfloat16, device_map="auto", max_memory= {i: '24000MB' for i in range(torch.cuda.device_count())}, quantization_config=BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4' ), ) model = PeftModel.from_pretrained(model, adapters_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` Inference can then be performed as usual with HF models as follows: ```python prompt = "Introduce yourself" formatted_prompt = ( f"A chat between a curious human and an artificial intelligence assistant." f"The assistant gives helpful, detailed, and polite answers to the user's questions.\n" f"### Human: {prompt} ### Assistant:" ) inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cuda:0") outputs = model.generate(inputs=inputs.input_ids, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` Expected output similar to the following: ``` A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. ### Human: Introduce yourself ### Assistant: I am an artificial intelligence assistant. I am here to help you with any questions you may have. ``` ## Current Inference Limitations Currently, 4-bit inference is slow. We recommend loading in 16 bits if inference speed is a concern. We are actively working on releasing efficient 4-bit inference kernels. Below is how you would load the model in 16 bits: ```python model_name = "huggyllama/llama-7b" adapters_name = 'timdettmers/guanaco-7b' model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto", max_memory= {i: '24000MB' for i in range(torch.cuda.device_count())}, ) model = PeftModel.from_pretrained(model, adapters_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Model Card **Architecture**: The Guanaco models are LoRA adapters to be used on top of LLaMA models. They are added to all layers. For all model sizes, we use $r=64$. **Base Model**: Guanaco uses LLaMA as base model with sizes 7B, 13B, 33B, 65B. LLaMA is a causal language model pretrained on a large corpus of text. See [LLaMA paper](https://arxiv.org/abs/2302.13971) for more details. Note that Guanaco can inherit biases and limitations of the base model. **Finetuning Data**: Guanaco is finetuned on OASST1. The exact dataset is available at [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco). **Languages**: The OASST1 dataset is multilingual (see [the paper](https://arxiv.org/abs/2304.07327) for details) and as such Guanaco responds to user queries in different languages. We note, however, that OASST1 is heavy in high-resource languages. In addition, human evaluation of Guanaco was only performed in English and based on qualitative analysis we observed degradation in performance in other languages. Next, we describe Training and Evaluation details. ### Training Guanaco models are the result of 4-bit QLoRA supervised finetuning on the OASST1 dataset. All models use NormalFloat4 datatype for the base model and LoRA adapters on all linear layers with BFloat16 as computation datatype. We set LoRA $r=64$, $\alpha=16$. We also use Adam beta2 of 0.999, max grad norm of 0.3 and LoRA dropout of 0.1 for models up to 13B and 0.05 for 33B and 65B models. For the finetuning process, we use constant learning rate schedule and paged AdamW optimizer. ### Training hyperparameters Size| Dataset | Batch Size | Learning Rate | Max Steps | Sequence length ---|---|---|---|---|--- 7B | OASST1 | 16 | 2e-4 | 1875 | 512 13B | OASST1 | 16 | 2e-4 | 1875 | 512 33B | OASST1 | 16 | 1e-4 | 1875 | 512 65B | OASST1 | 16 | 1e-4 | 1875 | 512 ### Evaluation We test generative language capabilities through both automated and human evaluations. This second set of evaluations relies on queries curated by humans and aims at measuring the quality of model responses. We use the Vicuna and OpenAssistant datasets with 80 and 953 prompts respectively. In both human and automated evaluations, for each prompt, raters compare all pairs of responses across the models considered. For human raters we randomize the order of the systems, for GPT-4 we evaluate with both orders. Benchmark | Vicuna | | Vicuna | | OpenAssistant | | - -----------|----|-----|--------|---|---------------|---|--- Prompts | 80 | | 80 | | 953 | | Judge | Human | | GPT-4 | | GPT-4 | | Model | Elo | Rank | Elo | Rank | Elo | Rank | **Median Rank** GPT-4 | 1176 | 1 | 1348 | 1 | 1294 | 1 | 1 Guanaco-65B | 1023 | 2 | 1022 | 2 | 1008 | 3 | 2 Guanaco-33B | 1009 | 4 | 992 | 3 | 1002 | 4 | 4 ChatGPT-3.5 Turbo | 916 | 7 | 966 | 5 | 1015 | 2 | 5 Vicuna-13B | 984 | 5 | 974 | 4 | 936 | 5 | 5 Guanaco-13B | 975 | 6 | 913 | 6 | 885 | 6 | 6 Guanaco-7B | 1010 | 3 | 879 | 8 | 860 | 7 | 7 Bard | 909 | 8 | 902 | 7 | - | - | 8 We also use the MMLU benchmark to measure performance on a range of language understanding tasks. This is a multiple-choice benchmark covering 57 tasks including elementary mathematics, US history, computer science, law, and more. We report 5-shot test accuracy. Dataset | 7B | 13B | 33B | 65B ---|---|---|---|--- LLaMA no tuning | 35.1 | 46.9 | 57.8 | 63.4 Self-Instruct | 36.4 | 33.3 | 53.0 | 56.7 Longform | 32.1 | 43.2 | 56.6 | 59.7 Chip2 | 34.5 | 41.6 | 53.6 | 59.8 HH-RLHF | 34.9 | 44.6 | 55.8 | 60.1 Unnatural Instruct | 41.9 | 48.1 | 57.3 | 61.3 OASST1 (Guanaco) | 36.6 | 46.4 | 57.0 | 62.2 Alpaca | 38.8 | 47.8 | 57.3 | 62.5 FLAN v2 | 44.5 | 51.4 | 59.2 | 63.9 ## Risks and Biases The model can produce factually incorrect output, and should not be relied on to produce factually accurate information. The model was trained on various public datasets; it is possible that this model could generate lewd, biased, or otherwise offensive outputs. However, we note that finetuning on OASST1 seems to reduce biases as measured on the CrowS dataset. We report here the performance of Guanaco-65B compared to other baseline models on the CrowS dataset. | | LLaMA-65B | GPT-3 | OPT-175B | Guanaco-65B | |----------------------|-----------|-------|----------|---------------| | Gender | 70.6 | 62.6 | 65.7 | **47.5** | | Religion | {79.0} | 73.3 | 68.6 | **38.7** | | Race/Color | 57.0 | 64.7 | 68.6 | **45.3** | | Sexual orientation | {81.0} | 76.2 | 78.6 | **59.1** | | Age | 70.1 | 64.4 | 67.8 | **36.3** | | Nationality | 64.2 | 61.6 | 62.9 | **32.4** | | Disability | 66.7 | 76.7 | 76.7 | **33.9** | | Physical appearance | 77.8 | 74.6 | 76.2 | **43.1** | | Socioeconomic status | 71.5 | 73.8 | 76.2 | **55.3** | | Average | 66.6 | 67.2 | 69.5 | **43.5** | ## Citation ```bibtex @article{dettmers2023qlora, title={QLoRA: Efficient Finetuning of Quantized LLMs}, author={Dettmers, Tim and Pagnoni, Artidoro and Holtzman, Ari and Zettlemoyer, Luke}, journal={arXiv preprint arXiv:2305.14314}, year={2023} } ```
HoaAn2003/ppo-LunarLander-v2
HoaAn2003
2023-07-13T05:06:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T05:06:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 254.13 +/- 20.36 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vivek22/vivek
vivek22
2023-07-13T05:05:38Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "en", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-12T12:30:41Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true language: - en pipeline_tag: text-to-image --- # LoRA text2image fine-tuning - vivek22/vivek These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the vivek22/randm dataset.
Treeizard/tactile_generator
Treeizard
2023-07-13T04:57:07Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-13T04:57:07Z
--- license: creativeml-openrail-m ---
FelixChao/falcon-7b-instruct-ft-adapters-ESG-chatting
FelixChao
2023-07-13T04:55:48Z
3
0
peft
[ "peft", "region:us" ]
null
2023-07-13T04:55:35Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
YanJiangJerry/SA-tweet-roberta-large-e4-w1-1.5-b16
YanJiangJerry
2023-07-13T04:53:22Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-13T04:17:05Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: SA-tweet-roberta-large-e4-w1-1.5-b16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SA-tweet-roberta-large-e4-w1-1.5-b16 This model is a fine-tuned version of [Amalq/autotrain-smm4h_large_roberta_clean-874027878](https://huggingface.co/Amalq/autotrain-smm4h_large_roberta_clean-874027878) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6396 - Accuracy: 0.9166 - F1: 0.8872 - Precision: 0.8939 - Recall: 0.8806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2895 | 1.0 | 581 | 0.4026 | 0.9110 | 0.8806 | 0.8806 | 0.8806 | | 0.1182 | 2.0 | 1162 | 0.6190 | 0.9110 | 0.8754 | 0.9153 | 0.8388 | | 0.0589 | 3.0 | 1743 | 0.6167 | 0.9155 | 0.8838 | 0.9060 | 0.8627 | | 0.0211 | 4.0 | 2324 | 0.6396 | 0.9166 | 0.8872 | 0.8939 | 0.8806 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ui-chope/distilbert-base-uncased
ui-chope
2023-07-13T04:52:42Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-05T01:45:44Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1298 - Precision: 0.9739 - Recall: 0.9617 - F1: 0.9678 - Accuracy: 0.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0218 | 1.0 | 5296 | 0.0828 | 0.9609 | 0.9609 | 0.9609 | 0.9842 | | 0.0159 | 2.0 | 10592 | 0.1135 | 0.9677 | 0.9602 | 0.9639 | 0.9820 | | 0.0137 | 3.0 | 15888 | 0.0846 | 0.9631 | 0.9570 | 0.9600 | 0.9831 | | 0.0074 | 4.0 | 21184 | 0.1179 | 0.9621 | 0.9523 | 0.9572 | 0.9804 | | 0.0058 | 5.0 | 26480 | 0.1080 | 0.9763 | 0.9664 | 0.9713 | 0.9857 | | 0.0056 | 6.0 | 31776 | 0.1273 | 0.9685 | 0.9594 | 0.9639 | 0.9828 | | 0.0055 | 7.0 | 37072 | 0.1451 | 0.9637 | 0.9531 | 0.9584 | 0.9800 | | 0.0035 | 8.0 | 42368 | 0.1345 | 0.9707 | 0.9563 | 0.9634 | 0.9805 | | 0.0027 | 9.0 | 47664 | 0.1242 | 0.9739 | 0.9633 | 0.9686 | 0.9852 | | 0.0018 | 10.0 | 52960 | 0.1232 | 0.9739 | 0.9633 | 0.9686 | 0.9844 | | 0.0017 | 11.0 | 58256 | 0.1298 | 0.9739 | 0.9617 | 0.9678 | 0.9837 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
localmodels/Vicuna-7B-v1.3-GPTQ
localmodels
2023-07-13T04:47:45Z
15
0
transformers
[ "transformers", "llama", "text-generation", "arxiv:2302.13971", "arxiv:2306.05685", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-13T04:47:41Z
--- duplicated_from: localmodels/LLM --- # Vicuna 7B v1.3 GPTQ From LMSYS: https://huggingface.co/lmsys/vicuna-7b-v1.3 --- | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description | | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- | | vicuna-7b-v1.3-GPTQ-4bit-128g.no-act.order | 4 | 128 | False | 4.00 GB | True | GPTQ-for-LLaMa | Most compatible. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. | --- # Vicuna Model Card ## Model Details Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT. - **Developed by:** [LMSYS](https://lmsys.org/) - **Model type:** An auto-regressive language model based on the transformer architecture. - **License:** Non-commercial license - **Finetuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971). ### Model Sources - **Repository:** https://github.com/lm-sys/FastChat - **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/ - **Paper:** https://arxiv.org/abs/2306.05685 - **Demo:** https://chat.lmsys.org/ ## Uses The primary use of Vicuna is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## How to Get Started with the Model Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights. APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api. ## Training Details Vicuna v1.3 is fine-tuned from LLaMA with supervised instruction fine-tuning. The training data is around 140K conversations collected from ShareGPT.com. See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf). ## Evaluation Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard). ## Difference between different versions of Vicuna See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
kazuhidet/norurun
kazuhidet
2023-07-13T04:23:39Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-13T04:06:49Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of mascot norurun tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - kazuhidet/norurun This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of mascot norurun using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
AnirbanRC/flan_t5_small_finetuned_anirbanrc
AnirbanRC
2023-07-13T04:12:54Z
162
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:samsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-13T04:03:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: flan_t5_small_finetuned_anirbanrc results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: train[:50] args: samsum metrics: - name: Rouge1 type: rouge value: 43.2639 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan_t5_small_finetuned_anirbanrc This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.5172 - Rouge1: 43.2639 - Rouge2: 20.726 - Rougel: 37.0774 - Rougelsum: 39.6232 - Gen Len: 16.92 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 7 | 1.6379 | 42.0058 | 18.6227 | 35.3019 | 38.6413 | 17.36 | | No log | 2.0 | 14 | 1.5869 | 43.938 | 20.3595 | 36.876 | 40.0421 | 17.14 | | No log | 3.0 | 21 | 1.5483 | 43.3723 | 20.3935 | 36.9286 | 39.6476 | 17.0 | | No log | 4.0 | 28 | 1.5255 | 43.9774 | 21.5464 | 37.8954 | 40.5009 | 16.9 | | No log | 5.0 | 35 | 1.5172 | 43.2639 | 20.726 | 37.0774 | 39.6232 | 16.92 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.1+cpu - Datasets 2.13.1 - Tokenizers 0.13.3
abbiezz/tomuntitled
abbiezz
2023-07-13T04:12:40Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-07-13T04:06:35Z
--- license: openrail --- https://drive.google.com/file/d/1qilU9BEfX7RY8q9Uohesz9qQa0R_B5PW/view?usp=drive_link
quyc/picture
quyc
2023-07-13T03:51:01Z
54
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "image-to-text", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-to-text
2023-07-12T07:05:17Z
--- pipeline_tag: image-to-text ---
nic1122/roberta-base-finetuned-cluener2020-chinese
nic1122
2023-07-13T03:50:31Z
103
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-13T03:09:03Z
源自:https://huggingface.co/uer/roberta-base-finetuned-cluener2020-chinese 做了IOB适配,适用于elasticsearch ml
rdyzakya/IndoLEGO-ABSA
rdyzakya
2023-07-13T03:43:17Z
113
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "id", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-12T13:28:26Z
--- language: - id metrics: - f1 pipeline_tag: text2text-generation ---
NasimB/gpt2-concat-all-base-rarity-all-iorder-est-5p5k
NasimB
2023-07-13T03:30:43Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-13T01:51:53Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-all-base-rarity-all-iorder-est-5p5k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-all-base-rarity-all-iorder-est-5p5k This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3322 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.7625 | 0.31 | 500 | 5.6584 | | 5.4053 | 0.63 | 1000 | 5.2182 | | 5.0653 | 0.94 | 1500 | 4.9736 | | 4.7706 | 1.25 | 2000 | 4.8109 | | 4.6273 | 1.56 | 2500 | 4.6831 | | 4.5134 | 1.88 | 3000 | 4.5789 | | 4.3042 | 2.19 | 3500 | 4.5166 | | 4.2107 | 2.5 | 4000 | 4.4533 | | 4.1747 | 2.82 | 4500 | 4.3963 | | 4.0257 | 3.13 | 5000 | 4.3718 | | 3.8934 | 3.44 | 5500 | 4.3419 | | 3.8694 | 3.75 | 6000 | 4.3086 | | 3.7894 | 4.07 | 6500 | 4.2941 | | 3.5908 | 4.38 | 7000 | 4.2908 | | 3.586 | 4.69 | 7500 | 4.2727 | | 3.5713 | 5.01 | 8000 | 4.2605 | | 3.3959 | 5.32 | 8500 | 4.2717 | | 3.3922 | 5.63 | 9000 | 4.2700 | | 3.3874 | 5.94 | 9500 | 4.2690 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
keehun/textual_inversion_los_char
keehun
2023-07-13T03:23:01Z
5
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-13T02:55:30Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - keehun/textual_inversion_los_char These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
anirbankgec/flan_t5_small_finetuned
anirbankgec
2023-07-13T03:17:06Z
162
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:samsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-13T02:26:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: flan_t5_small_finetuned results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: train[:50] args: samsum metrics: - name: Rouge1 type: rouge value: 44.9038 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan_t5_small_finetuned This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.3412 - Rouge1: 44.9038 - Rouge2: 22.7667 - Rougel: 38.8789 - Rougelsum: 41.7196 - Gen Len: 16.92 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 7 | 1.4537 | 43.8958 | 21.4426 | 37.7876 | 41.0621 | 17.4 | | No log | 2.0 | 14 | 1.4025 | 44.291 | 21.7752 | 37.6394 | 41.0092 | 17.1 | | No log | 3.0 | 21 | 1.3687 | 44.5803 | 22.5489 | 38.5959 | 41.6202 | 17.0 | | No log | 4.0 | 28 | 1.3487 | 44.6139 | 22.5884 | 38.6786 | 41.5311 | 16.94 | | No log | 5.0 | 35 | 1.3412 | 44.9038 | 22.7667 | 38.8789 | 41.7196 | 16.92 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.1+cpu - Datasets 2.13.1 - Tokenizers 0.13.3
sd-dreambooth-library/HairDye
sd-dreambooth-library
2023-07-13T03:05:23Z
31
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-03T01:16:40Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: daizky1 language: - en library_name: diffusers pipeline_tag: text-to-image --- ### Hair Dye Dreambooth model [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). ### TERMS OF SERVICE: # No Selling Models # Merge with CREDIT VAE is not required but is fun. I am not responsible for what you make. If this model bites you call the CIA. ### Codeword: daizky1 (use that on your prompt)
Hedayat-Abrishami/rl_course_vizdoom_health_gathering_supreme
Hedayat-Abrishami
2023-07-13T02:54:34Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T01:42:33Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 12.83 +/- 5.92 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r Hedayat-Abrishami/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
yuean/my_resnet50_model
yuean
2023-07-13T02:41:43Z
249
0
transformers
[ "transformers", "pytorch", "resnet", "image-classification", "dataset:yuean/EuroSAT-2750", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-12T05:55:17Z
--- metrics: - accuracy pipeline_tag: image-classification datasets: - yuean/EuroSAT-2750 ---
duyvt6663/RoBERTa_Subj
duyvt6663
2023-07-13T02:39:04Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-13T02:04:23Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: RoBERTa_Subj results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # RoBERTa_Subj This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0234 - Validation Loss: 0.1242 - Train Accuracy: 0.965 - Epoch: 3 ## Model description This model sucks, please don't use ## Intended uses & limitations More information needed ## Training and evaluation data The model was trained on the SetFit/Subj dataset. The dataset, I believe, contains plot lines from movies and reviews. The former are all labeled as "objective" while the latter "subjective". ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.1849 | 0.1106 | 0.9595 | 0 | | 0.0652 | 0.1081 | 0.9625 | 1 | | 0.0234 | 0.1242 | 0.965 | 2 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
chungkaley/sd-class-butterflies-32
chungkaley
2023-07-13T02:16:58Z
30
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-07-13T02:16:30Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('chungkaley/sd-class-butterflies-32') image = pipeline().images[0] image ```
VitCon/poca-SoccerTwos
VitCon
2023-07-13T02:16:00Z
39
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-07-13T02:15:11Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: VitCon/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ketong3906/opus-mt-zh-en-finetuned-chn-to-eng
ketong3906
2023-07-13T02:04:29Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-07T03:06:50Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: opus-mt-zh-en-finetuned-chn-to-eng results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-zh-en-finetuned-chn-to-eng This model is a fine-tuned version of [Helsinki-NLP/opus-mt-zh-en](https://huggingface.co/Helsinki-NLP/opus-mt-zh-en) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-----:|:-------:| | No log | 1.0 | 8 | 5.2454 | 0.346 | 66.3438 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
digitalmax1/max
digitalmax1
2023-07-13T01:59:47Z
0
0
adapter-transformers
[ "adapter-transformers", "art", "code", "legal", "conversational", "ar", "dataset:Open-Orca/OpenOrca", "license:bigscience-bloom-rail-1.0", "region:us" ]
text-generation
2023-07-13T01:54:08Z
--- license: bigscience-bloom-rail-1.0 datasets: - Open-Orca/OpenOrca language: - ar metrics: - accuracy library_name: adapter-transformers pipeline_tag: conversational tags: - art - code - legal ---
NasimB/gpt2-concat-all-ind-txt-processing-indv-rarity-all
NasimB
2023-07-13T01:10:16Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-12T23:19:57Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-all-ind-txt-processing-indv-rarity-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-all-ind-txt-processing-indv-rarity-all This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.8601 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.7251 | 0.32 | 500 | 5.7246 | | 5.3996 | 0.63 | 1000 | 5.3546 | | 5.0679 | 0.95 | 1500 | 5.1410 | | 4.7966 | 1.26 | 2000 | 5.0632 | | 4.6756 | 1.58 | 2500 | 4.9923 | | 4.5763 | 1.89 | 3000 | 4.9037 | | 4.3886 | 2.21 | 3500 | 4.8967 | | 4.3114 | 2.52 | 4000 | 4.8354 | | 4.271 | 2.84 | 4500 | 4.8159 | | 4.1222 | 3.15 | 5000 | 4.8393 | | 4.0013 | 3.47 | 5500 | 4.8138 | | 3.9867 | 3.78 | 6000 | 4.7791 | | 3.8843 | 4.1 | 6500 | 4.7971 | | 3.7123 | 4.41 | 7000 | 4.7975 | | 3.7049 | 4.73 | 7500 | 4.7909 | | 3.6663 | 5.04 | 8000 | 4.8015 | | 3.5174 | 5.36 | 8500 | 4.8131 | | 3.5098 | 5.67 | 9000 | 4.8154 | | 3.5064 | 5.99 | 9500 | 4.8154 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
tbooy/Taxi-v3
tbooy
2023-07-13T00:58:52Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T00:58:41Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="tbooy/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
NasimB/gpt2-concat-all-indv-rarity-all-no-cut
NasimB
2023-07-13T00:56:27Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-12T22:49:52Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-all-indv-rarity-all-no-cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-all-indv-rarity-all-no-cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.8764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7423 | 0.31 | 500 | 5.7056 | | 5.4151 | 0.62 | 1000 | 5.3509 | | 5.0793 | 0.93 | 1500 | 5.1405 | | 4.8005 | 1.25 | 2000 | 5.0365 | | 4.6822 | 1.56 | 2500 | 4.9729 | | 4.5889 | 1.87 | 3000 | 4.8875 | | 4.4127 | 2.18 | 3500 | 4.8860 | | 4.321 | 2.49 | 4000 | 4.8474 | | 4.291 | 2.8 | 4500 | 4.8098 | | 4.1671 | 3.12 | 5000 | 4.8175 | | 4.03 | 3.43 | 5500 | 4.7896 | | 4.0205 | 3.74 | 6000 | 4.7708 | | 3.9611 | 4.05 | 6500 | 4.7766 | | 3.7474 | 4.36 | 7000 | 4.7885 | | 3.7534 | 4.67 | 7500 | 4.7768 | | 3.7348 | 4.98 | 8000 | 4.7623 | | 3.505 | 5.3 | 8500 | 4.8038 | | 3.4914 | 5.61 | 9000 | 4.8014 | | 3.4892 | 5.92 | 9500 | 4.8054 | | 3.3732 | 6.23 | 10000 | 4.8209 | | 3.3408 | 6.54 | 10500 | 4.8276 | | 3.3367 | 6.85 | 11000 | 4.8293 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
tbooy/q-FrozenLake-v1-4x4-noSlippery
tbooy
2023-07-13T00:56:16Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T00:56:09Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="tbooy/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Hedayat-Abrishami/LunarLander-v2-chap8
Hedayat-Abrishami
2023-07-13T00:03:40Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T00:03:34Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -159.79 +/- 104.91 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'Name' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Hedayat-Abrishami/LunarLander-v2-chap8' 'batch_size': 512 'minibatch_size': 128} ```
Hedayat-Abrishami/ppo-CartPole-v1
Hedayat-Abrishami
2023-07-12T23:58:20Z
0
0
null
[ "tensorboard", "CartPole-v1", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T23:51:42Z
--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 223.00 +/- 113.45 name: mean_reward verified: false --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. # Hyperparameters ```python {'exp_name': 'Name' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'CartPole-v1' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Hedayat-Abrishami/ppo-CartPole-v1' 'batch_size': 512 'minibatch_size': 128} ```
rohn132/ppo-LunarLander-v2
rohn132
2023-07-12T23:58:20Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T23:57:59Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.99 +/- 28.96 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Blu72/Falcon
Blu72
2023-07-12T23:48:51Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-07-12T23:48:30Z
--- license: openrail --- # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-40b") model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b")
hatemilkins/Kanamori-Sayaka
hatemilkins
2023-07-12T23:41:58Z
0
0
null
[ "license:cc-by-nc-nd-4.0", "region:us" ]
null
2023-07-12T23:37:43Z
--- license: cc-by-nc-nd-4.0 ---
SHENMU007/neunit_BASE_V12.5
SHENMU007
2023-07-12T23:39:19Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "1.1.0", "generated_from_trainer", "zh", "dataset:facebook/voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-07-12T20:39:15Z
--- language: - zh license: mit base_model: microsoft/speecht5_tts tags: - 1.1.0 - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: SpeechT5 TTS Dutch neunit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeechT5 TTS Dutch neunit This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the VoxPopuli dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
ayanban011/vit-base_tobacco_bs_16_lr_1e-5_e_200_wr_0.05_wd_0.4_split
ayanban011
2023-07-12T23:33:16Z
165
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-12T18:58:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base_tobacco_bs_16_lr_1e-5_e_200_wr_0.05_wd_0.4_split results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base_tobacco_bs_16_lr_1e-5_e_200_wr_0.05_wd_0.4_split This model is a fine-tuned version of [jordyvl/vit-base_tobacco](https://huggingface.co/jordyvl/vit-base_tobacco) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0411 - Accuracy: 0.8333 - Brier Loss: 0.3084 - Nll: 1.3568 - F1 Micro: 0.8333 - F1 Macro: 0.8183 - Ece: 0.1563 - Aurc: 0.0847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | No log | 0.99 | 43 | 0.7544 | 0.7960 | 0.3088 | 1.3391 | 0.7960 | 0.7715 | 0.1991 | 0.0817 | | No log | 2.0 | 87 | 0.7158 | 0.8218 | 0.2920 | 1.1888 | 0.8218 | 0.7941 | 0.1863 | 0.0741 | | No log | 2.98 | 130 | 0.7144 | 0.7989 | 0.2932 | 1.2958 | 0.7989 | 0.7701 | 0.1628 | 0.0749 | | No log | 3.99 | 174 | 0.6762 | 0.8305 | 0.2749 | 1.1916 | 0.8305 | 0.8076 | 0.1844 | 0.0678 | | No log | 4.98 | 217 | 0.6710 | 0.8362 | 0.2745 | 1.0739 | 0.8362 | 0.8076 | 0.1696 | 0.0664 | | No log | 5.99 | 261 | 0.6532 | 0.8362 | 0.2675 | 1.0011 | 0.8362 | 0.8115 | 0.1750 | 0.0602 | | No log | 6.98 | 304 | 0.6404 | 0.8362 | 0.2635 | 1.0072 | 0.8362 | 0.8106 | 0.1714 | 0.0633 | | No log | 7.99 | 348 | 0.6635 | 0.8218 | 0.2707 | 1.0903 | 0.8218 | 0.8030 | 0.1513 | 0.0770 | | No log | 9.0 | 392 | 0.6167 | 0.8420 | 0.2534 | 1.0176 | 0.8420 | 0.8259 | 0.1613 | 0.0796 | | No log | 9.99 | 435 | 0.6496 | 0.8276 | 0.2703 | 0.9646 | 0.8276 | 0.8085 | 0.1643 | 0.0588 | | No log | 11.0 | 479 | 0.6091 | 0.8506 | 0.2467 | 1.1036 | 0.8506 | 0.8308 | 0.1483 | 0.0650 | | 0.4309 | 11.98 | 522 | 0.6075 | 0.8420 | 0.2483 | 0.9144 | 0.8420 | 0.8246 | 0.1391 | 0.0519 | | 0.4309 | 12.99 | 566 | 0.6164 | 0.8276 | 0.2576 | 0.9703 | 0.8276 | 0.8092 | 0.1467 | 0.0645 | | 0.4309 | 13.98 | 609 | 0.5893 | 0.8592 | 0.2347 | 1.1493 | 0.8592 | 0.8483 | 0.1347 | 0.0715 | | 0.4309 | 14.99 | 653 | 0.6123 | 0.8477 | 0.2485 | 1.1889 | 0.8477 | 0.8232 | 0.1587 | 0.0764 | | 0.4309 | 16.0 | 697 | 0.6352 | 0.8420 | 0.2615 | 1.1999 | 0.8420 | 0.8403 | 0.1368 | 0.0668 | | 0.4309 | 16.99 | 740 | 0.6329 | 0.8333 | 0.2625 | 1.1748 | 0.8333 | 0.8249 | 0.1267 | 0.0744 | | 0.4309 | 18.0 | 784 | 0.6350 | 0.8448 | 0.2590 | 1.2154 | 0.8448 | 0.8386 | 0.1423 | 0.0688 | | 0.4309 | 18.98 | 827 | 0.5892 | 0.8592 | 0.2383 | 1.1001 | 0.8592 | 0.8515 | 0.1293 | 0.0630 | | 0.4309 | 19.99 | 871 | 0.5981 | 0.8477 | 0.2476 | 1.0104 | 0.8477 | 0.8375 | 0.1345 | 0.0630 | | 0.4309 | 20.98 | 914 | 0.6484 | 0.8420 | 0.2642 | 1.3553 | 0.8420 | 0.8292 | 0.1490 | 0.0770 | | 0.4309 | 21.99 | 958 | 0.6298 | 0.8305 | 0.2657 | 1.1220 | 0.8305 | 0.8208 | 0.1292 | 0.0670 | | 0.1285 | 22.98 | 1001 | 0.6325 | 0.8391 | 0.2633 | 1.2549 | 0.8391 | 0.8362 | 0.1328 | 0.0708 | | 0.1285 | 23.99 | 1045 | 0.6032 | 0.8534 | 0.2486 | 1.1258 | 0.8534 | 0.8444 | 0.1229 | 0.0706 | | 0.1285 | 25.0 | 1089 | 0.6080 | 0.8534 | 0.2460 | 1.2033 | 0.8534 | 0.8414 | 0.1257 | 0.0755 | | 0.1285 | 25.99 | 1132 | 0.6321 | 0.8391 | 0.2667 | 1.2242 | 0.8391 | 0.8355 | 0.1349 | 0.0697 | | 0.1285 | 27.0 | 1176 | 0.6325 | 0.8592 | 0.2522 | 1.2029 | 0.8592 | 0.8493 | 0.1278 | 0.0778 | | 0.1285 | 27.98 | 1219 | 0.6585 | 0.8534 | 0.2546 | 1.3669 | 0.8534 | 0.8378 | 0.1368 | 0.0890 | | 0.1285 | 28.99 | 1263 | 0.6302 | 0.8563 | 0.2517 | 1.2419 | 0.8563 | 0.8508 | 0.1294 | 0.0751 | | 0.1285 | 29.98 | 1306 | 0.6663 | 0.8477 | 0.2637 | 1.4132 | 0.8477 | 0.8339 | 0.1399 | 0.0828 | | 0.1285 | 30.99 | 1350 | 0.7063 | 0.8362 | 0.2799 | 1.4323 | 0.8362 | 0.8330 | 0.1441 | 0.0863 | | 0.1285 | 32.0 | 1394 | 0.6564 | 0.8506 | 0.2570 | 1.1583 | 0.8506 | 0.8417 | 0.1358 | 0.0847 | | 0.1285 | 32.99 | 1437 | 0.6738 | 0.8477 | 0.2647 | 1.3855 | 0.8477 | 0.8398 | 0.1305 | 0.0775 | | 0.1285 | 34.0 | 1481 | 0.6528 | 0.8563 | 0.2559 | 1.2601 | 0.8563 | 0.8462 | 0.1310 | 0.0789 | | 0.0385 | 34.98 | 1524 | 0.6534 | 0.8563 | 0.2537 | 1.2931 | 0.8563 | 0.8461 | 0.1241 | 0.0773 | | 0.0385 | 35.99 | 1568 | 0.6541 | 0.8534 | 0.2525 | 1.2589 | 0.8534 | 0.8449 | 0.1315 | 0.0833 | | 0.0385 | 36.98 | 1611 | 0.6769 | 0.8592 | 0.2545 | 1.4351 | 0.8592 | 0.8492 | 0.1242 | 0.0792 | | 0.0385 | 37.99 | 1655 | 0.6824 | 0.8592 | 0.2576 | 1.2241 | 0.8592 | 0.8472 | 0.1327 | 0.0810 | | 0.0385 | 38.98 | 1698 | 0.6843 | 0.8563 | 0.2589 | 1.3394 | 0.8563 | 0.8450 | 0.1311 | 0.0802 | | 0.0385 | 39.99 | 1742 | 0.6964 | 0.8506 | 0.2630 | 1.2625 | 0.8506 | 0.8405 | 0.1310 | 0.0789 | | 0.0385 | 41.0 | 1786 | 0.7051 | 0.8534 | 0.2671 | 1.3296 | 0.8534 | 0.8434 | 0.1353 | 0.0794 | | 0.0385 | 41.99 | 1829 | 0.7006 | 0.8506 | 0.2645 | 1.2965 | 0.8506 | 0.8400 | 0.1373 | 0.0796 | | 0.0385 | 43.0 | 1873 | 0.7054 | 0.8563 | 0.2646 | 1.2973 | 0.8563 | 0.8450 | 0.1313 | 0.0790 | | 0.0385 | 43.98 | 1916 | 0.7143 | 0.8506 | 0.2673 | 1.2640 | 0.8506 | 0.8399 | 0.1359 | 0.0803 | | 0.0385 | 44.99 | 1960 | 0.7168 | 0.8534 | 0.2665 | 1.3058 | 0.8534 | 0.8429 | 0.1389 | 0.0820 | | 0.0206 | 45.98 | 2003 | 0.7204 | 0.8506 | 0.2669 | 1.3009 | 0.8506 | 0.8384 | 0.1336 | 0.0805 | | 0.0206 | 46.99 | 2047 | 0.7265 | 0.8534 | 0.2683 | 1.2633 | 0.8534 | 0.8415 | 0.1319 | 0.0806 | | 0.0206 | 48.0 | 2091 | 0.7311 | 0.8506 | 0.2695 | 1.2725 | 0.8506 | 0.8396 | 0.1372 | 0.0811 | | 0.0206 | 48.99 | 2134 | 0.7384 | 0.8477 | 0.2729 | 1.3385 | 0.8477 | 0.8364 | 0.1387 | 0.0807 | | 0.0206 | 50.0 | 2178 | 0.7383 | 0.8534 | 0.2695 | 1.1951 | 0.8534 | 0.8406 | 0.1344 | 0.0827 | | 0.0206 | 50.98 | 2221 | 0.7440 | 0.8506 | 0.2740 | 1.3360 | 0.8506 | 0.8394 | 0.1418 | 0.0812 | | 0.0206 | 51.99 | 2265 | 0.7455 | 0.8506 | 0.2727 | 1.2704 | 0.8506 | 0.8388 | 0.1351 | 0.0816 | | 0.0206 | 52.98 | 2308 | 0.7474 | 0.8506 | 0.2708 | 1.2622 | 0.8506 | 0.8384 | 0.1334 | 0.0823 | | 0.0206 | 53.99 | 2352 | 0.7581 | 0.8477 | 0.2750 | 1.3446 | 0.8477 | 0.8374 | 0.1406 | 0.0826 | | 0.0206 | 54.98 | 2395 | 0.7571 | 0.8477 | 0.2751 | 1.3703 | 0.8477 | 0.8363 | 0.1378 | 0.0814 | | 0.0206 | 55.99 | 2439 | 0.7618 | 0.8477 | 0.2752 | 1.3702 | 0.8477 | 0.8363 | 0.1363 | 0.0827 | | 0.0206 | 57.0 | 2483 | 0.7638 | 0.8477 | 0.2749 | 1.3774 | 0.8477 | 0.8363 | 0.1394 | 0.0819 | | 0.0135 | 57.99 | 2526 | 0.7693 | 0.8477 | 0.2760 | 1.3370 | 0.8477 | 0.8363 | 0.1378 | 0.0824 | | 0.0135 | 59.0 | 2570 | 0.7724 | 0.8448 | 0.2779 | 1.3710 | 0.8448 | 0.8344 | 0.1431 | 0.0823 | | 0.0135 | 59.98 | 2613 | 0.7780 | 0.8477 | 0.2784 | 1.3328 | 0.8477 | 0.8363 | 0.1463 | 0.0828 | | 0.0135 | 60.99 | 2657 | 0.7818 | 0.8477 | 0.2795 | 1.3289 | 0.8477 | 0.8363 | 0.1466 | 0.0828 | | 0.0135 | 61.98 | 2700 | 0.7847 | 0.8420 | 0.2805 | 1.3308 | 0.8420 | 0.8308 | 0.1418 | 0.0830 | | 0.0135 | 62.99 | 2744 | 0.7851 | 0.8448 | 0.2782 | 1.3650 | 0.8448 | 0.8344 | 0.1411 | 0.0834 | | 0.0135 | 64.0 | 2788 | 0.7925 | 0.8420 | 0.2829 | 1.4383 | 0.8420 | 0.8319 | 0.1425 | 0.0821 | | 0.0135 | 64.99 | 2831 | 0.7959 | 0.8448 | 0.2826 | 1.4130 | 0.8448 | 0.8353 | 0.1431 | 0.0826 | | 0.0135 | 66.0 | 2875 | 0.7989 | 0.8420 | 0.2821 | 1.4040 | 0.8420 | 0.8285 | 0.1446 | 0.0833 | | 0.0135 | 66.98 | 2918 | 0.7996 | 0.8477 | 0.2807 | 1.3296 | 0.8477 | 0.8363 | 0.1464 | 0.0837 | | 0.0135 | 67.99 | 2962 | 0.8042 | 0.8448 | 0.2824 | 1.3637 | 0.8448 | 0.8344 | 0.1434 | 0.0837 | | 0.0097 | 68.98 | 3005 | 0.8095 | 0.8391 | 0.2845 | 1.3635 | 0.8391 | 0.8275 | 0.1468 | 0.0835 | | 0.0097 | 69.99 | 3049 | 0.8073 | 0.8448 | 0.2824 | 1.3640 | 0.8448 | 0.8344 | 0.1413 | 0.0833 | | 0.0097 | 70.98 | 3092 | 0.8140 | 0.8477 | 0.2834 | 1.3617 | 0.8477 | 0.8363 | 0.1444 | 0.0837 | | 0.0097 | 71.99 | 3136 | 0.8152 | 0.8420 | 0.2842 | 1.4009 | 0.8420 | 0.8277 | 0.1439 | 0.0840 | | 0.0097 | 73.0 | 3180 | 0.8163 | 0.8391 | 0.2858 | 1.4029 | 0.8391 | 0.8246 | 0.1482 | 0.0836 | | 0.0097 | 73.99 | 3223 | 0.8192 | 0.8391 | 0.2844 | 1.3644 | 0.8391 | 0.8240 | 0.1475 | 0.0843 | | 0.0097 | 75.0 | 3267 | 0.8225 | 0.8448 | 0.2836 | 1.3593 | 0.8448 | 0.8344 | 0.1473 | 0.0847 | | 0.0097 | 75.98 | 3310 | 0.8267 | 0.8362 | 0.2859 | 1.3642 | 0.8362 | 0.8207 | 0.1473 | 0.0840 | | 0.0097 | 76.99 | 3354 | 0.8275 | 0.8391 | 0.2847 | 1.3618 | 0.8391 | 0.8240 | 0.1450 | 0.0849 | | 0.0097 | 77.98 | 3397 | 0.8325 | 0.8362 | 0.2879 | 1.3686 | 0.8362 | 0.8207 | 0.1491 | 0.0843 | | 0.0097 | 78.99 | 3441 | 0.8389 | 0.8448 | 0.2885 | 1.3629 | 0.8448 | 0.8329 | 0.1504 | 0.0833 | | 0.0097 | 80.0 | 3485 | 0.8420 | 0.8420 | 0.2887 | 1.3610 | 0.8420 | 0.8261 | 0.1458 | 0.0837 | | 0.0073 | 80.99 | 3528 | 0.8452 | 0.8362 | 0.2900 | 1.4064 | 0.8362 | 0.8221 | 0.1488 | 0.0833 | | 0.0073 | 82.0 | 3572 | 0.8492 | 0.8362 | 0.2898 | 1.4076 | 0.8362 | 0.8221 | 0.1500 | 0.0837 | | 0.0073 | 82.98 | 3615 | 0.8478 | 0.8362 | 0.2895 | 1.3609 | 0.8362 | 0.8207 | 0.1485 | 0.0847 | | 0.0073 | 83.99 | 3659 | 0.8483 | 0.8391 | 0.2880 | 1.3622 | 0.8391 | 0.8243 | 0.1480 | 0.0842 | | 0.0073 | 84.98 | 3702 | 0.8534 | 0.8420 | 0.2892 | 1.3609 | 0.8420 | 0.8261 | 0.1468 | 0.0843 | | 0.0073 | 85.99 | 3746 | 0.8547 | 0.8333 | 0.2898 | 1.4028 | 0.8333 | 0.8186 | 0.1513 | 0.0846 | | 0.0073 | 86.98 | 3789 | 0.8618 | 0.8391 | 0.2906 | 1.3597 | 0.8391 | 0.8243 | 0.1445 | 0.0846 | | 0.0073 | 87.99 | 3833 | 0.8594 | 0.8420 | 0.2885 | 1.3265 | 0.8420 | 0.8311 | 0.1462 | 0.0848 | | 0.0073 | 89.0 | 3877 | 0.8669 | 0.8391 | 0.2911 | 1.3592 | 0.8391 | 0.8243 | 0.1471 | 0.0843 | | 0.0073 | 89.99 | 3920 | 0.8664 | 0.8391 | 0.2901 | 1.3597 | 0.8391 | 0.8243 | 0.1468 | 0.0852 | | 0.0073 | 91.0 | 3964 | 0.8678 | 0.8420 | 0.2905 | 1.3253 | 0.8420 | 0.8296 | 0.1462 | 0.0854 | | 0.0057 | 91.98 | 4007 | 0.8719 | 0.8391 | 0.2909 | 1.3585 | 0.8391 | 0.8243 | 0.1475 | 0.0853 | | 0.0057 | 92.99 | 4051 | 0.8768 | 0.8391 | 0.2930 | 1.3595 | 0.8391 | 0.8243 | 0.1493 | 0.0852 | | 0.0057 | 93.98 | 4094 | 0.8785 | 0.8333 | 0.2928 | 1.4034 | 0.8333 | 0.8203 | 0.1529 | 0.0849 | | 0.0057 | 94.99 | 4138 | 0.8859 | 0.8333 | 0.2942 | 1.3684 | 0.8333 | 0.8183 | 0.1543 | 0.0844 | | 0.0057 | 96.0 | 4182 | 0.8839 | 0.8362 | 0.2937 | 1.3597 | 0.8362 | 0.8221 | 0.1497 | 0.0852 | | 0.0057 | 96.99 | 4225 | 0.8864 | 0.8333 | 0.2940 | 1.4012 | 0.8333 | 0.8203 | 0.1532 | 0.0850 | | 0.0057 | 98.0 | 4269 | 0.8879 | 0.8362 | 0.2941 | 1.3607 | 0.8362 | 0.8221 | 0.1504 | 0.0849 | | 0.0057 | 98.98 | 4312 | 0.8921 | 0.8333 | 0.2954 | 1.3609 | 0.8333 | 0.8183 | 0.1521 | 0.0851 | | 0.0057 | 99.99 | 4356 | 0.8949 | 0.8391 | 0.2945 | 1.3575 | 0.8391 | 0.8243 | 0.1491 | 0.0854 | | 0.0057 | 100.98 | 4399 | 0.8945 | 0.8362 | 0.2945 | 1.3591 | 0.8362 | 0.8221 | 0.1500 | 0.0856 | | 0.0057 | 101.99 | 4443 | 0.8985 | 0.8333 | 0.2944 | 1.3599 | 0.8333 | 0.8183 | 0.1530 | 0.0854 | | 0.0057 | 102.98 | 4486 | 0.8987 | 0.8391 | 0.2951 | 1.3586 | 0.8391 | 0.8246 | 0.1499 | 0.0850 | | 0.0045 | 103.99 | 4530 | 0.9025 | 0.8362 | 0.2957 | 1.3592 | 0.8362 | 0.8221 | 0.1510 | 0.0857 | | 0.0045 | 105.0 | 4574 | 0.9082 | 0.8305 | 0.2972 | 1.3625 | 0.8305 | 0.8165 | 0.1568 | 0.0852 | | 0.0045 | 105.99 | 4617 | 0.9087 | 0.8362 | 0.2958 | 1.3579 | 0.8362 | 0.8221 | 0.1505 | 0.0858 | | 0.0045 | 107.0 | 4661 | 0.9105 | 0.8305 | 0.2977 | 1.3619 | 0.8305 | 0.8165 | 0.1561 | 0.0844 | | 0.0045 | 107.98 | 4704 | 0.9136 | 0.8305 | 0.2978 | 1.3994 | 0.8305 | 0.8165 | 0.1559 | 0.0851 | | 0.0045 | 108.99 | 4748 | 0.9148 | 0.8391 | 0.2968 | 1.3573 | 0.8391 | 0.8243 | 0.1504 | 0.0856 | | 0.0045 | 109.98 | 4791 | 0.9188 | 0.8333 | 0.2974 | 1.3569 | 0.8333 | 0.8183 | 0.1532 | 0.0850 | | 0.0045 | 110.99 | 4835 | 0.9164 | 0.8362 | 0.2959 | 1.3595 | 0.8362 | 0.8221 | 0.1507 | 0.0857 | | 0.0045 | 112.0 | 4879 | 0.9221 | 0.8333 | 0.2977 | 1.3573 | 0.8333 | 0.8183 | 0.1550 | 0.0857 | | 0.0045 | 112.99 | 4922 | 0.9256 | 0.8305 | 0.2990 | 1.3599 | 0.8305 | 0.8165 | 0.1574 | 0.0852 | | 0.0045 | 114.0 | 4966 | 0.9284 | 0.8305 | 0.2994 | 1.3610 | 0.8305 | 0.8165 | 0.1572 | 0.0848 | | 0.0037 | 114.98 | 5009 | 0.9312 | 0.8333 | 0.2998 | 1.3565 | 0.8333 | 0.8183 | 0.1537 | 0.0857 | | 0.0037 | 115.99 | 5053 | 0.9322 | 0.8333 | 0.2995 | 1.3583 | 0.8333 | 0.8183 | 0.1543 | 0.0852 | | 0.0037 | 116.98 | 5096 | 0.9385 | 0.8305 | 0.3007 | 1.3593 | 0.8305 | 0.8165 | 0.1577 | 0.0852 | | 0.0037 | 117.99 | 5140 | 0.9386 | 0.8305 | 0.3009 | 1.4329 | 0.8305 | 0.8165 | 0.1582 | 0.0851 | | 0.0037 | 118.98 | 5183 | 0.9386 | 0.8333 | 0.2996 | 1.3570 | 0.8333 | 0.8183 | 0.1542 | 0.0855 | | 0.0037 | 119.99 | 5227 | 0.9406 | 0.8333 | 0.2995 | 1.3554 | 0.8333 | 0.8183 | 0.1540 | 0.0848 | | 0.0037 | 121.0 | 5271 | 0.9442 | 0.8305 | 0.3006 | 1.3589 | 0.8305 | 0.8165 | 0.1570 | 0.0849 | | 0.0037 | 121.99 | 5314 | 0.9435 | 0.8333 | 0.3000 | 1.3551 | 0.8333 | 0.8183 | 0.1546 | 0.0855 | | 0.0037 | 123.0 | 5358 | 0.9456 | 0.8333 | 0.2996 | 1.3550 | 0.8333 | 0.8183 | 0.1544 | 0.0848 | | 0.0037 | 123.98 | 5401 | 0.9490 | 0.8333 | 0.3008 | 1.3561 | 0.8333 | 0.8183 | 0.1547 | 0.0850 | | 0.0037 | 124.99 | 5445 | 0.9500 | 0.8333 | 0.3011 | 1.3592 | 0.8333 | 0.8183 | 0.1551 | 0.0846 | | 0.0037 | 125.98 | 5488 | 0.9513 | 0.8333 | 0.3003 | 1.3549 | 0.8333 | 0.8183 | 0.1544 | 0.0845 | | 0.0031 | 126.99 | 5532 | 0.9575 | 0.8305 | 0.3024 | 1.3580 | 0.8305 | 0.8165 | 0.1581 | 0.0849 | | 0.0031 | 128.0 | 5576 | 0.9593 | 0.8305 | 0.3025 | 1.4028 | 0.8305 | 0.8165 | 0.1591 | 0.0851 | | 0.0031 | 128.99 | 5619 | 0.9594 | 0.8305 | 0.3021 | 1.3619 | 0.8305 | 0.8165 | 0.1579 | 0.0849 | | 0.0031 | 130.0 | 5663 | 0.9628 | 0.8305 | 0.3025 | 1.3589 | 0.8305 | 0.8165 | 0.1587 | 0.0847 | | 0.0031 | 130.98 | 5706 | 0.9652 | 0.8305 | 0.3031 | 1.3599 | 0.8305 | 0.8165 | 0.1593 | 0.0844 | | 0.0031 | 131.99 | 5750 | 0.9646 | 0.8362 | 0.3005 | 1.3353 | 0.8362 | 0.8205 | 0.1520 | 0.0851 | | 0.0031 | 132.98 | 5793 | 0.9658 | 0.8333 | 0.3021 | 1.3562 | 0.8333 | 0.8183 | 0.1555 | 0.0849 | | 0.0031 | 133.99 | 5837 | 0.9698 | 0.8333 | 0.3023 | 1.3545 | 0.8333 | 0.8183 | 0.1554 | 0.0845 | | 0.0031 | 134.98 | 5880 | 0.9716 | 0.8333 | 0.3032 | 1.3559 | 0.8333 | 0.8183 | 0.1555 | 0.0852 | | 0.0031 | 135.99 | 5924 | 0.9736 | 0.8305 | 0.3037 | 1.3624 | 0.8305 | 0.8165 | 0.1584 | 0.0849 | | 0.0031 | 137.0 | 5968 | 0.9760 | 0.8333 | 0.3039 | 1.3575 | 0.8333 | 0.8183 | 0.1551 | 0.0845 | | 0.0026 | 137.99 | 6011 | 0.9789 | 0.8305 | 0.3041 | 1.3569 | 0.8305 | 0.8165 | 0.1592 | 0.0848 | | 0.0026 | 139.0 | 6055 | 0.9801 | 0.8305 | 0.3040 | 1.3574 | 0.8305 | 0.8165 | 0.1598 | 0.0854 | | 0.0026 | 139.98 | 6098 | 0.9806 | 0.8333 | 0.3035 | 1.3552 | 0.8333 | 0.8183 | 0.1557 | 0.0852 | | 0.0026 | 140.99 | 6142 | 0.9835 | 0.8333 | 0.3041 | 1.3574 | 0.8333 | 0.8183 | 0.1564 | 0.0846 | | 0.0026 | 141.98 | 6185 | 0.9838 | 0.8333 | 0.3037 | 1.3549 | 0.8333 | 0.8183 | 0.1557 | 0.0849 | | 0.0026 | 142.99 | 6229 | 0.9872 | 0.8333 | 0.3044 | 1.3544 | 0.8333 | 0.8183 | 0.1557 | 0.0851 | | 0.0026 | 144.0 | 6273 | 0.9900 | 0.8305 | 0.3056 | 1.3654 | 0.8305 | 0.8165 | 0.1597 | 0.0847 | | 0.0026 | 144.99 | 6316 | 0.9907 | 0.8333 | 0.3049 | 1.3551 | 0.8333 | 0.8183 | 0.1565 | 0.0854 | | 0.0026 | 146.0 | 6360 | 0.9896 | 0.8333 | 0.3044 | 1.3569 | 0.8333 | 0.8183 | 0.1563 | 0.0843 | | 0.0026 | 146.98 | 6403 | 0.9938 | 0.8333 | 0.3053 | 1.3550 | 0.8333 | 0.8183 | 0.1562 | 0.0844 | | 0.0026 | 147.99 | 6447 | 0.9962 | 0.8305 | 0.3056 | 1.3615 | 0.8305 | 0.8165 | 0.1594 | 0.0844 | | 0.0026 | 148.98 | 6490 | 0.9954 | 0.8305 | 0.3051 | 1.3601 | 0.8305 | 0.8165 | 0.1590 | 0.0847 | | 0.0022 | 149.99 | 6534 | 0.9961 | 0.8333 | 0.3043 | 1.3550 | 0.8333 | 0.8183 | 0.1554 | 0.0847 | | 0.0022 | 150.98 | 6577 | 1.0026 | 0.8333 | 0.3059 | 1.3555 | 0.8333 | 0.8183 | 0.1563 | 0.0853 | | 0.0022 | 151.99 | 6621 | 1.0004 | 0.8333 | 0.3049 | 1.3544 | 0.8333 | 0.8183 | 0.1566 | 0.0847 | | 0.0022 | 153.0 | 6665 | 1.0024 | 0.8305 | 0.3058 | 1.3606 | 0.8305 | 0.8165 | 0.1595 | 0.0846 | | 0.0022 | 153.99 | 6708 | 1.0054 | 0.8305 | 0.3064 | 1.3598 | 0.8305 | 0.8165 | 0.1591 | 0.0848 | | 0.0022 | 155.0 | 6752 | 1.0053 | 0.8333 | 0.3054 | 1.3548 | 0.8333 | 0.8183 | 0.1562 | 0.0845 | | 0.0022 | 155.98 | 6795 | 1.0068 | 0.8333 | 0.3053 | 1.3548 | 0.8333 | 0.8183 | 0.1562 | 0.0846 | | 0.0022 | 156.99 | 6839 | 1.0076 | 0.8333 | 0.3055 | 1.3551 | 0.8333 | 0.8183 | 0.1561 | 0.0844 | | 0.0022 | 157.98 | 6882 | 1.0105 | 0.8333 | 0.3059 | 1.3546 | 0.8333 | 0.8183 | 0.1563 | 0.0845 | | 0.0022 | 158.99 | 6926 | 1.0114 | 0.8333 | 0.3061 | 1.3555 | 0.8333 | 0.8183 | 0.1559 | 0.0851 | | 0.0022 | 160.0 | 6970 | 1.0108 | 0.8333 | 0.3061 | 1.3586 | 0.8333 | 0.8183 | 0.1561 | 0.0848 | | 0.002 | 160.99 | 7013 | 1.0129 | 0.8333 | 0.3064 | 1.3577 | 0.8333 | 0.8183 | 0.1560 | 0.0845 | | 0.002 | 162.0 | 7057 | 1.0141 | 0.8333 | 0.3060 | 1.3542 | 0.8333 | 0.8183 | 0.1562 | 0.0845 | | 0.002 | 162.98 | 7100 | 1.0150 | 0.8333 | 0.3063 | 1.3555 | 0.8333 | 0.8183 | 0.1563 | 0.0847 | | 0.002 | 163.99 | 7144 | 1.0181 | 0.8305 | 0.3071 | 1.3616 | 0.8305 | 0.8165 | 0.1587 | 0.0847 | | 0.002 | 164.98 | 7187 | 1.0197 | 0.8305 | 0.3073 | 1.3610 | 0.8305 | 0.8165 | 0.1585 | 0.0847 | | 0.002 | 165.99 | 7231 | 1.0203 | 0.8333 | 0.3071 | 1.3566 | 0.8333 | 0.8183 | 0.1565 | 0.0846 | | 0.002 | 166.98 | 7274 | 1.0214 | 0.8333 | 0.3070 | 1.3561 | 0.8333 | 0.8183 | 0.1564 | 0.0845 | | 0.002 | 167.99 | 7318 | 1.0211 | 0.8333 | 0.3067 | 1.3558 | 0.8333 | 0.8183 | 0.1562 | 0.0846 | | 0.002 | 169.0 | 7362 | 1.0255 | 0.8305 | 0.3077 | 1.3564 | 0.8305 | 0.8165 | 0.1592 | 0.0846 | | 0.002 | 169.99 | 7405 | 1.0238 | 0.8333 | 0.3066 | 1.3535 | 0.8333 | 0.8183 | 0.1567 | 0.0844 | | 0.002 | 171.0 | 7449 | 1.0258 | 0.8333 | 0.3075 | 1.3580 | 0.8333 | 0.8183 | 0.1562 | 0.0847 | | 0.002 | 171.98 | 7492 | 1.0260 | 0.8333 | 0.3073 | 1.3594 | 0.8333 | 0.8183 | 0.1559 | 0.0846 | | 0.0018 | 172.99 | 7536 | 1.0281 | 0.8305 | 0.3077 | 1.3584 | 0.8305 | 0.8165 | 0.1586 | 0.0847 | | 0.0018 | 173.98 | 7579 | 1.0274 | 0.8333 | 0.3073 | 1.3577 | 0.8333 | 0.8183 | 0.1560 | 0.0851 | | 0.0018 | 174.99 | 7623 | 1.0323 | 0.8305 | 0.3082 | 1.3577 | 0.8305 | 0.8165 | 0.1596 | 0.0848 | | 0.0018 | 176.0 | 7667 | 1.0303 | 0.8333 | 0.3076 | 1.3579 | 0.8333 | 0.8183 | 0.1561 | 0.0846 | | 0.0018 | 176.99 | 7710 | 1.0325 | 0.8333 | 0.3081 | 1.3567 | 0.8333 | 0.8183 | 0.1565 | 0.0845 | | 0.0018 | 178.0 | 7754 | 1.0319 | 0.8333 | 0.3077 | 1.3569 | 0.8333 | 0.8183 | 0.1560 | 0.0847 | | 0.0018 | 178.98 | 7797 | 1.0340 | 0.8333 | 0.3081 | 1.3568 | 0.8333 | 0.8183 | 0.1562 | 0.0847 | | 0.0018 | 179.99 | 7841 | 1.0331 | 0.8333 | 0.3072 | 1.3550 | 0.8333 | 0.8183 | 0.1564 | 0.0847 | | 0.0018 | 180.98 | 7884 | 1.0346 | 0.8333 | 0.3079 | 1.3563 | 0.8333 | 0.8183 | 0.1561 | 0.0847 | | 0.0018 | 181.99 | 7928 | 1.0344 | 0.8333 | 0.3079 | 1.3577 | 0.8333 | 0.8183 | 0.1565 | 0.0847 | | 0.0018 | 182.98 | 7971 | 1.0363 | 0.8333 | 0.3080 | 1.3556 | 0.8333 | 0.8183 | 0.1566 | 0.0850 | | 0.0016 | 183.99 | 8015 | 1.0368 | 0.8333 | 0.3080 | 1.3569 | 0.8333 | 0.8183 | 0.1561 | 0.0847 | | 0.0016 | 185.0 | 8059 | 1.0369 | 0.8333 | 0.3080 | 1.3563 | 0.8333 | 0.8183 | 0.1562 | 0.0847 | | 0.0016 | 185.99 | 8102 | 1.0373 | 0.8333 | 0.3080 | 1.3565 | 0.8333 | 0.8183 | 0.1561 | 0.0850 | | 0.0016 | 187.0 | 8146 | 1.0377 | 0.8333 | 0.3080 | 1.3568 | 0.8333 | 0.8183 | 0.1561 | 0.0846 | | 0.0016 | 187.98 | 8189 | 1.0392 | 0.8333 | 0.3084 | 1.3577 | 0.8333 | 0.8183 | 0.1565 | 0.0846 | | 0.0016 | 188.99 | 8233 | 1.0391 | 0.8333 | 0.3082 | 1.3564 | 0.8333 | 0.8183 | 0.1564 | 0.0848 | | 0.0016 | 189.98 | 8276 | 1.0393 | 0.8333 | 0.3081 | 1.3561 | 0.8333 | 0.8183 | 0.1562 | 0.0847 | | 0.0016 | 190.99 | 8320 | 1.0398 | 0.8333 | 0.3084 | 1.3582 | 0.8333 | 0.8183 | 0.1562 | 0.0846 | | 0.0016 | 192.0 | 8364 | 1.0405 | 0.8333 | 0.3083 | 1.3558 | 0.8333 | 0.8183 | 0.1564 | 0.0847 | | 0.0016 | 192.99 | 8407 | 1.0401 | 0.8333 | 0.3082 | 1.3558 | 0.8333 | 0.8183 | 0.1564 | 0.0847 | | 0.0016 | 194.0 | 8451 | 1.0407 | 0.8333 | 0.3083 | 1.3564 | 0.8333 | 0.8183 | 0.1564 | 0.0847 | | 0.0016 | 194.98 | 8494 | 1.0414 | 0.8333 | 0.3086 | 1.3573 | 0.8333 | 0.8183 | 0.1564 | 0.0847 | | 0.0015 | 195.99 | 8538 | 1.0410 | 0.8333 | 0.3084 | 1.3567 | 0.8333 | 0.8183 | 0.1564 | 0.0848 | | 0.0015 | 196.98 | 8581 | 1.0411 | 0.8333 | 0.3084 | 1.3568 | 0.8333 | 0.8183 | 0.1563 | 0.0846 | | 0.0015 | 197.42 | 8600 | 1.0411 | 0.8333 | 0.3084 | 1.3568 | 0.8333 | 0.8183 | 0.1563 | 0.0847 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.1 - Datasets 2.13.1 - Tokenizers 0.13.3
NasimB/gpt2-concat-aochildes-mod-sub-rarity-all-no-cut-rev
NasimB
2023-07-12T22:56:23Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-12T20:57:12Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-aochildes-mod-sub-rarity-all-no-cut-rev results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-aochildes-mod-sub-rarity-all-no-cut-rev This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.6977 | 0.29 | 500 | 5.6354 | | 5.3398 | 0.59 | 1000 | 5.1922 | | 4.9904 | 0.88 | 1500 | 4.9412 | | 4.7171 | 1.17 | 2000 | 4.7994 | | 4.5533 | 1.47 | 2500 | 4.6748 | | 4.4487 | 1.76 | 3000 | 4.5745 | | 4.3168 | 2.05 | 3500 | 4.4945 | | 4.132 | 2.35 | 4000 | 4.4485 | | 4.096 | 2.64 | 4500 | 4.3926 | | 4.0654 | 2.93 | 5000 | 4.3391 | | 3.8471 | 3.23 | 5500 | 4.3342 | | 3.799 | 3.52 | 6000 | 4.3047 | | 3.7884 | 3.81 | 6500 | 4.2746 | | 3.665 | 4.11 | 7000 | 4.2788 | | 3.5131 | 4.4 | 7500 | 4.2703 | | 3.5095 | 4.69 | 8000 | 4.2576 | | 3.4965 | 4.99 | 8500 | 4.2442 | | 3.3238 | 5.28 | 9000 | 4.2613 | | 3.3171 | 5.58 | 9500 | 4.2598 | | 3.3159 | 5.87 | 10000 | 4.2586 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
Peebranco/teste-pedro-branco
Peebranco
2023-07-12T22:53:38Z
0
0
null
[ "pt", "en", "dataset:Open-Orca/OpenOrca", "region:us" ]
null
2023-07-12T22:52:52Z
--- datasets: - Open-Orca/OpenOrca language: - pt - en metrics: - character ---
KingShmeeky/KingshmeekyRVC
KingShmeeky
2023-07-12T22:43:21Z
0
0
null
[ "music", "en", "license:openrail", "region:us" ]
null
2023-07-12T22:30:27Z
--- license: openrail language: - en tags: - music ---
whywynn/q-Taxi-v3
whywynn
2023-07-12T22:34:05Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T21:52:10Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="whywynn/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
komo-dono/collei_jp
komo-dono
2023-07-12T22:28:58Z
0
0
null
[ "region:us" ]
null
2023-07-12T22:27:51Z
--- license: openrail language: - ja tags: - music collei japanese 500 epoch
KingShmeeky/Kingshmeeky
KingShmeeky
2023-07-12T22:28:42Z
0
0
null
[ "music", "en", "license:openrail", "region:us" ]
null
2023-07-12T22:26:30Z
--- license: openrail language: - en tags: - music ---