modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-14 18:29:43
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
557 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-14 18:28:25
card
stringlengths
11
1.01M
mradermacher/MathTutor-7B-MDPO_v0.1-GGUF
mradermacher
2025-08-20T14:53:22Z
68
0
transformers
[ "transformers", "gguf", "en", "base_model:Sandesh2027/MathTutor-7B-MDPO_v0.1", "base_model:quantized:Sandesh2027/MathTutor-7B-MDPO_v0.1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-07-10T01:32:24Z
--- base_model: Sandesh2027/MathTutor-7B-MDPO_v0.1 language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Sandesh2027/MathTutor-7B-MDPO_v0.1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#MathTutor-7B-MDPO_v0.1-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MathTutor-7B-MDPO_v0.1-GGUF/resolve/main/MathTutor-7B-MDPO_v0.1.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/MathTutor-7B-MDPO_v0.1-GGUF/resolve/main/MathTutor-7B-MDPO_v0.1.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/MathTutor-7B-MDPO_v0.1-GGUF/resolve/main/MathTutor-7B-MDPO_v0.1.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MathTutor-7B-MDPO_v0.1-GGUF/resolve/main/MathTutor-7B-MDPO_v0.1.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/MathTutor-7B-MDPO_v0.1-GGUF/resolve/main/MathTutor-7B-MDPO_v0.1.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/MathTutor-7B-MDPO_v0.1-GGUF/resolve/main/MathTutor-7B-MDPO_v0.1.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MathTutor-7B-MDPO_v0.1-GGUF/resolve/main/MathTutor-7B-MDPO_v0.1.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MathTutor-7B-MDPO_v0.1-GGUF/resolve/main/MathTutor-7B-MDPO_v0.1.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/MathTutor-7B-MDPO_v0.1-GGUF/resolve/main/MathTutor-7B-MDPO_v0.1.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/MathTutor-7B-MDPO_v0.1-GGUF/resolve/main/MathTutor-7B-MDPO_v0.1.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MathTutor-7B-MDPO_v0.1-GGUF/resolve/main/MathTutor-7B-MDPO_v0.1.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/MathTutor-7B-MDPO_v0.1-GGUF/resolve/main/MathTutor-7B-MDPO_v0.1.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
thanobidex/blockassist-bc-colorful_shiny_hare_1755699960
thanobidex
2025-08-20T14:52:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:52:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
urbainze/llama-3-8b-Instruct-fr
urbainze
2025-08-20T14:51:22Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-19T16:48:51Z
--- base_model: unsloth/llama-3-8b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** urbainze - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mang3dd/blockassist-bc-tangled_slithering_alligator_1755699680
mang3dd
2025-08-20T14:47:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:47:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
abishekcodes/bert-new-ner
abishekcodes
2025-08-20T14:47:04Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-08-19T19:42:53Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: bert-new-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-new-ner This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0246 - Precision: 0.9645 - Recall: 0.9682 - F1: 0.9664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.0227 | 1.0 | 1002 | 0.0263 | 0.9540 | 0.9614 | 0.9577 | | 0.0125 | 2.0 | 2004 | 0.0237 | 0.9554 | 0.9720 | 0.9637 | | 0.0064 | 3.0 | 3006 | 0.0246 | 0.9645 | 0.9682 | 0.9664 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.4
liukevin666/blockassist-bc-yawning_striped_cassowary_1755701071
liukevin666
2025-08-20T14:46:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:45:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1755699518
indoempatnol
2025-08-20T14:45:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:45:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lilTAT/blockassist-bc-gentle_rugged_hare_1755701024
lilTAT
2025-08-20T14:44:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:44:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dileepsathyan/my_awesome_qa_model
dileepsathyan
2025-08-20T14:42:14Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2025-08-20T14:31:08Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.3540 | | 2.6485 | 2.0 | 500 | 1.7377 | | 2.6485 | 3.0 | 750 | 1.7156 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755699230
kojeklollipop
2025-08-20T14:40:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:40:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755699160
vwzyrraz7l
2025-08-20T14:40:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:40:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aputze/Whispr
aputze
2025-08-20T14:40:07Z
0
0
null
[ "region:us" ]
null
2025-08-20T14:15:11Z
--- title: Whispr emoji: 🎤 colorFrom: blue colorTo: indigo sdk: gradio sdk_version: 5.43.1 app_file: app.py pinned: false --- # Whispr - Audio Transcription Audio transcription using OpenAI's Whisper model through faster-whisper. ## Features - Audio file upload and microphone recording - Multiple model sizes (tiny to large) - Optimized for Hebrew speech - Real-time transcription with progress indicators
steinunnfridriks/mBERTBiasIce
steinunnfridriks
2025-08-20T14:38:01Z
6
0
null
[ "safetensors", "bert", "bias-detection", "icelandic", "ner", "socially-responsible-ai", "prejudice-detection", "huggingface", "transformer", "is", "dataset:IceBiasNER", "license:bigscience-openrail-m", "region:us" ]
null
2025-08-15T18:02:40Z
--- license: bigscience-openrail-m language: - is tags: - bias-detection - icelandic - ner - socially-responsible-ai - prejudice-detection - huggingface - transformer datasets: - IceBiasNER widget: - text: "Þetta helvítis útlenska pakk..." --- # mBERT Bias-Aware NER (Icelandic) **Trigger warning:** This model detects biased, offensive, or harmful language. Examples in this card may contain such language, included solely for research purposes. ## Model Description This is a fine-tuned version of **mBERT** for Named Entity Recognition (NER) to identify biased and potentially harmful expressions in Icelandic text. It was trained on automatically annotated sentences covering multiple social bias categories. The covered classes are the following: - **B-ADDICTION, I-ADDICTION** - **B-DISABILITY, I-DISABILITY** - **B-ORIGIN, I-ORIGIN** - **B-GENERAL, I-GENERAL** - **B-LGBTQIA, I-LGBTQIA** - **B-LOOKS, I-LOOKS** - **B-PERSONAL, I-PERSONAL** - **B-PROFANITY, I-PROFANITY** - **B-RELIGION, I-RELIGION** - **B-SEXUAL, I-SEXUAL** - **B-SOCIAL_STATUS, I-SOCIAL_STATUS** - **B-STUPIDITY, I-STUPIDITY** - **B-VULGAR, I-VULGAR** - **B-WOMEN, I-WOMEN** The model flags words or phrases belonging to these categories, producing BIO tags (e.g., `B-WOMEN`, `I-WOMEN`, `O`). ## Intended Uses & Limitations ### Intended Use - Research on bias detection in low-resource languages - Educational tools for raising awareness of bias in language - Civic engagement platforms encouraging inclusive language ### Limitations - Vocabulary-based weak supervision means some bias forms may be missed - No sentence-level or discourse-level interpretation - Mislabeling possible in critical, reclaimed, or journalistic contexts ⚠ **Not intended for punitive monitoring or censorship.** Outputs are prompts for reflection, not judgments. ## Performance **Evaluation datasets:** - **Test set**: 15,383 automatically annotated sentences (silver data) - **Gold set**: 190 manually reviewed sentences **Macro F1 performance highlights:** - Test set: 0.972 (CI: 0.972-0.973) - Gold set: 0.846 (CI: 0.845-0.848) ## Relevant Information - **Base model**: [mBERT](https://huggingface.co/google-bert/bert-base-multilingual-cased) - **Data source**: [IceBiasNER](https://huggingface.co/datasets/steinunnfridriks/IceBiasNER) ## Ethical Considerations This model is released under the **[BigScience OpenRAIL-M License](https://www.licenses.ai/ai-licenses)**, which allows free use with responsible-use restrictions. Prohibited uses include: - Harassment or discrimination - Generating disinformation or hateful content - Surveillance targeting individuals or groups ## Citation Will be updated. ```
loyal-misc/myst
loyal-misc
2025-08-20T14:36:53Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:LyliaEngine/Pony_Diffusion_V6_XL", "base_model:adapter:LyliaEngine/Pony_Diffusion_V6_XL", "license:unlicense", "region:us" ]
text-to-image
2025-08-20T12:10:35Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - output: url: images/myst.png text: '-' base_model: LyliaEngine/Pony_Diffusion_V6_XL instance_prompt: myst, scalie, female license: unlicense --- # myst <Gallery /> ## Trigger words You should use `myst` to trigger the image generation. You should use `scalie` to trigger the image generation. You should use `female` to trigger the image generation. ## Download model [Download](/loyal-misc/myst/tree/main) them in the Files & versions tab.
Henit007/Vivekanandao1_finetuned
Henit007
2025-08-20T14:36:03Z
182
0
null
[ "tensorboard", "llama", "region:us" ]
null
2025-08-08T12:28:28Z
# 🧠 Fine-tuned LLaMA Model using QLoRA & LoRA (Supervised Fine-Tuning) This model is a fine-tuned version of the `model_name` base model using **QLoRA (Quantized Low-Rank Adaptation)** for efficient and memory-friendly training. Fine-tuning was performed using the Hugging Face `trl` library’s `SFTTrainer` and `peft` (LoRA). --- ## 📌 Model Overview - **Base Model**: `model_name` - **Fine-tuning Method**: QLoRA + LoRA (PEFT) - **Task**: Causal Language Modeling - **Quantization**: 4-bit (bitsandbytes) - **Frameworks**: Transformers, PEFT, TRL --- ## 🧠 Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Henit007/Vivekanandao1_finetuned") model = AutoModelForCausalLM.from_pretrained("Henit007/Vivekanandao1_finetuned", device_map="auto") input_text = "Explain climate change in simple terms." inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=200) print(tokenizer.decode(outputs[0], skip_special_tokens=True))
joanna302/Qwen3-8B-Base_pag_alpaca_0.33_part_SFT_8e-05
joanna302
2025-08-20T14:36:03Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "trl", "unsloth", "sft", "conversational", "base_model:unsloth/Qwen3-8B-Base", "base_model:finetune:unsloth/Qwen3-8B-Base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T09:22:02Z
--- base_model: unsloth/Qwen3-8B-Base library_name: transformers model_name: Qwen3-8B-Base_pag_alpaca_0.33_part_SFT_8e-05 tags: - generated_from_trainer - trl - unsloth - sft licence: license --- # Model Card for Qwen3-8B-Base_pag_alpaca_0.33_part_SFT_8e-05 This model is a fine-tuned version of [unsloth/Qwen3-8B-Base](https://huggingface.co/unsloth/Qwen3-8B-Base). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="joanna302/Qwen3-8B-Base_pag_alpaca_0.33_part_SFT_8e-05", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/prism-eval/Qwen3-8B-Base_pag_alpaca_0.33_part_SFT_8e-05/runs/daig9xq6) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
yaelahnal/blockassist-bc-mute_clawed_crab_1755700436
yaelahnal
2025-08-20T14:35:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:34:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Qwen3_Medical_GRPO-GGUF
mradermacher
2025-08-20T14:35:05Z
352
1
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen3", "medical", "en", "zh", "dataset:FreedomIntelligence/medical-o1-reasoning-SFT", "dataset:lastmass/medical-o1-reasoning-SFT-keywords", "base_model:lastmass/Qwen3_Medical_GRPO", "base_model:quantized:lastmass/Qwen3_Medical_GRPO", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-07-24T15:58:10Z
--- base_model: lastmass/Qwen3_Medical_GRPO datasets: - FreedomIntelligence/medical-o1-reasoning-SFT - lastmass/medical-o1-reasoning-SFT-keywords language: - en - zh library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen3 - medical --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/lastmass/Qwen3_Medical_GRPO <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen3_Medical_GRPO-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen3_Medical_GRPO-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3_Medical_GRPO-GGUF/resolve/main/Qwen3_Medical_GRPO.Q2_K.gguf) | Q2_K | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3_Medical_GRPO-GGUF/resolve/main/Qwen3_Medical_GRPO.Q3_K_S.gguf) | Q3_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3_Medical_GRPO-GGUF/resolve/main/Qwen3_Medical_GRPO.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3_Medical_GRPO-GGUF/resolve/main/Qwen3_Medical_GRPO.Q3_K_L.gguf) | Q3_K_L | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3_Medical_GRPO-GGUF/resolve/main/Qwen3_Medical_GRPO.IQ4_XS.gguf) | IQ4_XS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3_Medical_GRPO-GGUF/resolve/main/Qwen3_Medical_GRPO.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3_Medical_GRPO-GGUF/resolve/main/Qwen3_Medical_GRPO.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3_Medical_GRPO-GGUF/resolve/main/Qwen3_Medical_GRPO.Q5_K_S.gguf) | Q5_K_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3_Medical_GRPO-GGUF/resolve/main/Qwen3_Medical_GRPO.Q5_K_M.gguf) | Q5_K_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3_Medical_GRPO-GGUF/resolve/main/Qwen3_Medical_GRPO.Q6_K.gguf) | Q6_K | 3.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3_Medical_GRPO-GGUF/resolve/main/Qwen3_Medical_GRPO.Q8_0.gguf) | Q8_0 | 4.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3_Medical_GRPO-GGUF/resolve/main/Qwen3_Medical_GRPO.f16.gguf) | f16 | 8.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
joanna302/Qwen3-8B-Base_pag_alpaca_0.33_part_SFT_0.0002
joanna302
2025-08-20T14:34:46Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "sft", "unsloth", "trl", "conversational", "base_model:unsloth/Qwen3-8B-Base", "base_model:finetune:unsloth/Qwen3-8B-Base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T09:24:38Z
--- base_model: unsloth/Qwen3-8B-Base library_name: transformers model_name: Qwen3-8B-Base_pag_alpaca_0.33_part_SFT_0.0002 tags: - generated_from_trainer - sft - unsloth - trl licence: license --- # Model Card for Qwen3-8B-Base_pag_alpaca_0.33_part_SFT_0.0002 This model is a fine-tuned version of [unsloth/Qwen3-8B-Base](https://huggingface.co/unsloth/Qwen3-8B-Base). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="joanna302/Qwen3-8B-Base_pag_alpaca_0.33_part_SFT_0.0002", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/prism-eval/Qwen3-8B-Base_pag_alpaca_0.33_part_SFT_0.0002/runs/l27wsth5) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
tusharmagar/FLUX.1-Krea-dev-LoRA-Solarpunk
tusharmagar
2025-08-20T14:33:55Z
0
0
diffusers
[ "diffusers", "flux", "text-to-image", "lora", "fal", "en", "base_model:black-forest-labs/FLUX.1-Krea-dev", "base_model:adapter:black-forest-labs/FLUX.1-Krea-dev", "license:mit", "region:us" ]
text-to-image
2025-08-20T12:09:07Z
--- tags: - flux - text-to-image - lora - diffusers - fal widget: - text: >- Solarpunk London with hexagonal solar panels and white architecture while keeping traditional Parisian architecture with greenery and flowers and fruiting trees and the Big Ben (unchanged) and a double decker bus on the road [SLRPNK] output: url: images/London_Solarpunk.jpg - text: >- Aerial view of Solarpunk San Francisco with futuristic townhouses architecture and solar sails while keeping the Golden Gate Bridge (unchanged) a futuristic Sutro tower, flowers, and fruiting trees flowing through hilly neighbourhoods, with a road cable car gliding along the streets [SLRPNK] output: url: images/SanFrancisco_Solarpunk.jpg - text: >- Solarpunk Masai Mara tribe with solar panel dome greenhouses and separate white mud houses, with flowers and fruiting trees, masai people, with a few giraffes and elephants [SLRPNK] output: url: images/MasaiMara_Solarpunk.jpg - text: >- Solarpunk Rio de Janeiro with tropical solar sails shaped like leaves lining the beaches, while keeping Christ the Redeemer (unchanged), flowers and fruiting trees cascading through favelas, and futuristic white towers rising along Copacabana [SLRPNK] output: url: images/Rio_Solarpunk.jpg - text: >- Solarpunk Santorini with blue-domed houses fitted with crystal roofs, while keeping the traditional cliffside churches (unchanged), grapevines and fruiting olive trees cascading across terraces, and massive futuristic on water wind energy sails [SLRPNK] output: url: images/Santorini_Solarpunk.jpg - text: >- Solarpunk Varanasi with floating solar lotus platforms spread across the Ganges River, while keeping the ghats and ancient temples (unchanged), greenery, flowers, and fruiting trees cascading down the steps, with bioluminescent lamps powered by algae lining the riverbanks, and futuristic white riverboats gliding silently past ceremonies on the water [SLRPNK] output: url: images/Varanasi_Solarpunk.jpg base_model: black-forest-labs/FLUX.1-Krea-dev instance_prompt: '[SLRPNK]' license: mit pipeline_tag: text-to-image language: - en --- # flux1 krea dev lora solarpunk <Gallery /> ## Model description This repository contains the LoRA adapter for FLUX.1-Krea [dev], fine-tuned using https://fal.ai/models/fal-ai/flux-krea-trainer with curated Solarpunk-style images. This LoRA excels at creating solarpunk imagintations of real world cities in a dreamy style! I personally feel it performs better than midjourney and any other text-to-image model 👀 The dataset was assembled for the Solarpunk Art Contest 2025 by Yishan, featuring a wide range of environments, architecture, and character scenes inspired by solarpunk aesthetics. ### Prompt Template You should use the following template (defined when annotating the images with captions) to trigger solarpunk image generation: "Solarpunk [city or setting] with [distinctive future-tech feature], [architecture or landmark (unchanged if historic)], [greenery and fruiting trees/flowers], [people or activity], [lighting or atmosphere], [additional details]" ## Trigger words You should use `[SLRPNK]` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/tusharmagar/flux1-krea-dev-lora-solarpunk/tree/main) them in the Files & versions tab. ## Training at fal.ai Training was done using [fal.ai/models/fal-ai/flux-krea-trainer](https://fal.ai/models/fal-ai/flux-krea-trainer).
lilTAT/blockassist-bc-gentle_rugged_hare_1755700300
lilTAT
2025-08-20T14:32:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:32:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
M8eda/M8eda-Bot
M8eda
2025-08-20T14:32:32Z
0
0
transformers
[ "transformers", "text-generation", "en", "ar", "base_model:Qwen/Qwen3-Coder-480B-A35B-Instruct", "base_model:finetune:Qwen/Qwen3-Coder-480B-A35B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T14:22:36Z
--- license: apache-2.0 language: - en - ar base_model: - Qwen/Qwen3-Coder-480B-A35B-Instruct pipeline_tag: text-generation library_name: transformers ---
joanna302/Qwen3-8B-Base_pag_alpaca_1_part_SFT_0.0002
joanna302
2025-08-20T14:32:09Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "trl", "unsloth", "sft", "conversational", "base_model:unsloth/Qwen3-8B-Base", "base_model:finetune:unsloth/Qwen3-8B-Base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T12:54:54Z
--- base_model: unsloth/Qwen3-8B-Base library_name: transformers model_name: Qwen3-8B-Base_pag_alpaca_1_part_SFT_0.0002 tags: - generated_from_trainer - trl - unsloth - sft licence: license --- # Model Card for Qwen3-8B-Base_pag_alpaca_1_part_SFT_0.0002 This model is a fine-tuned version of [unsloth/Qwen3-8B-Base](https://huggingface.co/unsloth/Qwen3-8B-Base). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="joanna302/Qwen3-8B-Base_pag_alpaca_1_part_SFT_0.0002", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/prism-eval/Qwen3-8B-Base_pag_alpaca_1_part_SFT_0.0002/runs/z50mdz7k) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mubashiross/llava
mubashiross
2025-08-20T14:30:21Z
0
0
null
[ "safetensors", "license:apache-2.0", "region:us" ]
null
2025-08-12T10:41:22Z
--- license: apache-2.0 ---
youuotty/blockassist-bc-furry_reptilian_flamingo_1755700198
youuotty
2025-08-20T14:30:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "furry reptilian flamingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:29:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - furry reptilian flamingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755700093
roeker
2025-08-20T14:29:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:29:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sai9390/age_predictor2
sai9390
2025-08-20T14:29:11Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-20T14:29:11Z
--- license: apache-2.0 ---
tampocolapavada/flux-lora-agustinln
tampocolapavada
2025-08-20T14:29:10Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:apache-2.0", "region:us" ]
text-to-image
2025-08-20T14:19:30Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - output: url: images/papa.png text: '-' - output: url: images/SNL.png text: '-' - output: url: images/balcon1.png text: '-' - output: url: images/ciclismo.png text: '-' - output: url: images/glaciar.png text: '-' - output: url: images/papa.png text: '-' - output: url: images/SNL.png text: '-' - output: url: images/ciclismo.png text: '-' - output: url: images/balcon1.png text: '-' - output: url: images/image.webp text: '-' - output: url: images/glaciar.png text: '-' - output: url: images/papa.png text: '-' - output: url: images/balcon1.png text: '-' - output: url: images/ciclismo.png text: '-' - output: url: images/glaciar.png text: '-' - output: url: images/image.webp text: '-' - output: url: images/papa.png text: '-' - output: url: images/SNL.png text: '-' - output: url: images/balcon1.png text: '-' base_model: black-forest-labs/FLUX.1-dev instance_prompt: AALN license: apache-2.0 pipeline_tag: text-to-image --- # Flux Lora AgustinLN <Gallery /> ## Model description Flux Lora trained on pictures of me. ## Trigger words You should use `AALN` to trigger the image generation. ## Download model [Download](/tampocolapavada/flux-lora-agustinln/tree/main) them in the Files & versions tab.
pobiiiiiii/blockassist-bc-ravenous_yapping_ferret_1755700099
pobiiiiiii
2025-08-20T14:29:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "ravenous yapping ferret", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:28:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - ravenous yapping ferret --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sdagsadgd/blockassist-bc-sedate_squeaky_salamander_1755696899
sdagsadgd
2025-08-20T14:29:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sedate squeaky salamander", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:28:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sedate squeaky salamander --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
razor534/blockassist-bc-lazy_extinct_termite_1755700056
razor534
2025-08-20T14:28:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lazy extinct termite", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:28:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lazy extinct termite --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lilTAT/blockassist-bc-gentle_rugged_hare_1755700007
lilTAT
2025-08-20T14:27:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:27:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Voxtral-Mini-3B-2507-i1-GGUF
mradermacher
2025-08-20T14:27:18Z
1,053
2
transformers
[ "transformers", "gguf", "vllm", "en", "fr", "de", "es", "it", "pt", "nl", "hi", "base_model:mistralai/Voxtral-Mini-3B-2507", "base_model:quantized:mistralai/Voxtral-Mini-3B-2507", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-07-29T11:29:17Z
--- base_model: mistralai/Voxtral-Mini-3B-2507 language: - en - fr - de - es - it - pt - nl - hi library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - vllm --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/mistralai/Voxtral-Mini-3B-2507 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Voxtral-Mini-3B-2507-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-GGUF **This is a vision model - mmproj files (if any) will be in the [static repository](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-GGUF).** ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-IQ1_S.gguf) | i1-IQ1_S | 1.2 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-IQ1_M.gguf) | i1-IQ1_M | 1.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-IQ2_S.gguf) | i1-IQ2_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-IQ2_M.gguf) | i1-IQ2_M | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-Q2_K_S.gguf) | i1-Q2_K_S | 1.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-Q2_K.gguf) | i1-Q2_K | 1.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-Q3_K_S.gguf) | i1-Q3_K_S | 2.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-IQ3_S.gguf) | i1-IQ3_S | 2.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-IQ3_M.gguf) | i1-IQ3_M | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-Q3_K_M.gguf) | i1-Q3_K_M | 2.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-Q3_K_L.gguf) | i1-Q3_K_L | 2.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-IQ4_XS.gguf) | i1-IQ4_XS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-Q4_0.gguf) | i1-Q4_0 | 2.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-Q4_K_S.gguf) | i1-Q4_K_S | 2.5 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-IQ4_NL.gguf) | i1-IQ4_NL | 2.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-Q4_1.gguf) | i1-Q4_1 | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-Q5_K_M.gguf) | i1-Q5_K_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Voxtral-Mini-3B-2507-i1-GGUF/resolve/main/Voxtral-Mini-3B-2507.i1-Q6_K.gguf) | i1-Q6_K | 3.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755698286
katanyasekolah
2025-08-20T14:27:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:27:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
joanna302/Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_0.0002
joanna302
2025-08-20T14:26:15Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "unsloth", "sft", "trl", "conversational", "base_model:unsloth/Qwen3-8B-Base", "base_model:finetune:unsloth/Qwen3-8B-Base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T11:53:18Z
--- base_model: unsloth/Qwen3-8B-Base library_name: transformers model_name: Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_0.0002 tags: - generated_from_trainer - unsloth - sft - trl licence: license --- # Model Card for Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_0.0002 This model is a fine-tuned version of [unsloth/Qwen3-8B-Base](https://huggingface.co/unsloth/Qwen3-8B-Base). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="joanna302/Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_0.0002", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/prism-eval/Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_0.0002/runs/59bgfy7v) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755698346
lisaozill03
2025-08-20T14:25:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:25:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AngelinaZanardi/nb-bert-base-edu-scorer-lr3e4-bs32-swe
AngelinaZanardi
2025-08-20T14:25:09Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:NbAiLab/nb-bert-base", "base_model:finetune:NbAiLab/nb-bert-base", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T13:23:42Z
--- library_name: transformers license: cc-by-4.0 base_model: NbAiLab/nb-bert-base tags: - generated_from_trainer model-index: - name: nb-bert-base-edu-scorer-lr3e4-bs32-swe results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nb-bert-base-edu-scorer-lr3e4-bs32-swe This model is a fine-tuned version of [NbAiLab/nb-bert-base](https://huggingface.co/NbAiLab/nb-bert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7996 - Mse: 0.7996 - Mae: 0.6982 - Rmse: 0.8942 - R2: 0.5844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | Rmse | R2 | |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:|:------:|:-------:| | No log | 0 | 0 | 6.0700 | 6.0700 | 2.0111 | 2.4637 | -2.0534 | | 1.1272 | 0.3397 | 1000 | 1.0319 | 1.0319 | 0.7925 | 1.0158 | 0.4809 | | 1.0837 | 0.6793 | 2000 | 1.0182 | 1.0182 | 0.7850 | 1.0091 | 0.4878 | | 1.0446 | 1.0190 | 3000 | 0.9967 | 0.9967 | 0.7683 | 0.9983 | 0.4986 | | 1.0863 | 1.3587 | 4000 | 0.9580 | 0.9580 | 0.7534 | 0.9788 | 0.5181 | | 1.0601 | 1.6984 | 5000 | 1.0061 | 1.0061 | 0.7796 | 1.0030 | 0.4939 | | 0.9957 | 2.0380 | 6000 | 1.3005 | 1.3005 | 0.8945 | 1.1404 | 0.3458 | | 1.0104 | 2.3777 | 7000 | 0.9569 | 0.9569 | 0.7483 | 0.9782 | 0.5187 | | 1.04 | 2.7174 | 8000 | 0.9457 | 0.9457 | 0.7648 | 0.9724 | 0.5243 | | 1.0445 | 3.0571 | 9000 | 0.9641 | 0.9641 | 0.7445 | 0.9819 | 0.5150 | | 0.9931 | 3.3967 | 10000 | 0.9549 | 0.9549 | 0.7430 | 0.9772 | 0.5197 | | 1.0134 | 3.7364 | 11000 | 0.9791 | 0.9791 | 0.7549 | 0.9895 | 0.5075 | | 1.0366 | 4.0761 | 12000 | 1.0248 | 1.0248 | 0.7673 | 1.0123 | 0.4845 | | 1.0106 | 4.4158 | 13000 | 0.9321 | 0.9321 | 0.7378 | 0.9654 | 0.5311 | | 0.9409 | 4.7554 | 14000 | 0.9553 | 0.9553 | 0.7420 | 0.9774 | 0.5194 | | 0.925 | 5.0951 | 15000 | 1.1885 | 1.1885 | 0.8538 | 1.0902 | 0.4021 | | 0.961 | 5.4348 | 16000 | 0.9201 | 0.9201 | 0.7341 | 0.9592 | 0.5372 | | 1.0096 | 5.7745 | 17000 | 0.9192 | 0.9192 | 0.7448 | 0.9587 | 0.5376 | | 0.9696 | 6.1141 | 18000 | 0.9543 | 0.9543 | 0.7445 | 0.9769 | 0.5199 | | 0.9737 | 6.4538 | 19000 | 0.9287 | 0.9287 | 0.7281 | 0.9637 | 0.5328 | | 0.9725 | 6.7935 | 20000 | 0.9589 | 0.9589 | 0.7557 | 0.9792 | 0.5176 | | 0.9683 | 7.1332 | 21000 | 0.9079 | 0.9079 | 0.7354 | 0.9528 | 0.5433 | | 0.9606 | 7.4728 | 22000 | 0.9885 | 0.9885 | 0.7481 | 0.9943 | 0.5027 | | 0.9846 | 7.8125 | 23000 | 1.0081 | 1.0081 | 0.7895 | 1.0041 | 0.4929 | | 0.9671 | 8.1522 | 24000 | 0.9174 | 0.9174 | 0.7251 | 0.9578 | 0.5385 | | 0.9679 | 8.4918 | 25000 | 0.9212 | 0.9212 | 0.7447 | 0.9598 | 0.5366 | | 0.9503 | 8.8315 | 26000 | 0.9418 | 0.9418 | 0.7343 | 0.9705 | 0.5262 | | 0.9858 | 9.1712 | 27000 | 0.9186 | 0.9186 | 0.7325 | 0.9584 | 0.5379 | | 0.969 | 9.5109 | 28000 | 0.9219 | 0.9219 | 0.7352 | 0.9602 | 0.5362 | | 1.0022 | 9.8505 | 29000 | 0.9458 | 0.9458 | 0.7400 | 0.9725 | 0.5242 | | 0.942 | 10.1902 | 30000 | 0.9746 | 0.9746 | 0.7416 | 0.9872 | 0.5097 | | 0.9633 | 10.5299 | 31000 | 0.9173 | 0.9173 | 0.7218 | 0.9577 | 0.5386 | | 0.9463 | 10.8696 | 32000 | 0.9528 | 0.9528 | 0.7443 | 0.9761 | 0.5207 | | 0.9803 | 11.2092 | 33000 | 0.9042 | 0.9042 | 0.7226 | 0.9509 | 0.5452 | | 0.9318 | 11.5489 | 34000 | 0.9030 | 0.9030 | 0.7270 | 0.9502 | 0.5458 | | 0.9176 | 11.8886 | 35000 | 0.9378 | 0.9378 | 0.7314 | 0.9684 | 0.5283 | | 0.9063 | 12.2283 | 36000 | 0.8946 | 0.8946 | 0.7191 | 0.9458 | 0.5500 | | 0.9754 | 12.5679 | 37000 | 0.8938 | 0.8938 | 0.7207 | 0.9454 | 0.5504 | | 0.9291 | 12.9076 | 38000 | 0.9565 | 0.9565 | 0.7503 | 0.9780 | 0.5188 | | 0.9142 | 13.2473 | 39000 | 0.9238 | 0.9238 | 0.7278 | 0.9611 | 0.5353 | | 0.9579 | 13.5870 | 40000 | 0.9267 | 0.9267 | 0.7335 | 0.9627 | 0.5338 | | 0.9556 | 13.9266 | 41000 | 0.9083 | 0.9083 | 0.7197 | 0.9531 | 0.5431 | | 0.9465 | 14.2663 | 42000 | 0.9228 | 0.9228 | 0.7287 | 0.9606 | 0.5358 | | 0.9455 | 14.6060 | 43000 | 0.9122 | 0.9122 | 0.7201 | 0.9551 | 0.5411 | | 0.9294 | 14.9457 | 44000 | 0.9241 | 0.9241 | 0.7307 | 0.9613 | 0.5351 | | 0.9038 | 15.2853 | 45000 | 0.8985 | 0.8985 | 0.7229 | 0.9479 | 0.5480 | | 0.9154 | 15.625 | 46000 | 0.9374 | 0.9374 | 0.7451 | 0.9682 | 0.5285 | | 0.9482 | 15.9647 | 47000 | 0.9487 | 0.9487 | 0.7413 | 0.9740 | 0.5228 | | 0.9568 | 16.3043 | 48000 | 0.9006 | 0.9006 | 0.7224 | 0.9490 | 0.5470 | | 0.9902 | 16.6440 | 49000 | 0.9042 | 0.9042 | 0.7200 | 0.9509 | 0.5451 | | 0.9364 | 16.9837 | 50000 | 0.9053 | 0.9053 | 0.7263 | 0.9515 | 0.5446 | | 0.9432 | 17.3234 | 51000 | 0.9139 | 0.9139 | 0.7331 | 0.9560 | 0.5403 | | 0.9288 | 17.6630 | 52000 | 0.9165 | 0.9165 | 0.7285 | 0.9573 | 0.5390 | | 0.9385 | 18.0027 | 53000 | 0.9081 | 0.9081 | 0.7243 | 0.9529 | 0.5432 | | 0.9157 | 18.3424 | 54000 | 0.9449 | 0.9449 | 0.7435 | 0.9720 | 0.5247 | | 0.9666 | 18.6821 | 55000 | 0.8962 | 0.8962 | 0.7174 | 0.9467 | 0.5492 | | 0.931 | 19.0217 | 56000 | 0.8971 | 0.8971 | 0.7222 | 0.9471 | 0.5487 | | 0.96 | 19.3614 | 57000 | 0.8975 | 0.8975 | 0.7230 | 0.9473 | 0.5485 | | 0.9257 | 19.7011 | 58000 | 0.9041 | 0.9041 | 0.7252 | 0.9508 | 0.5452 | ### Framework versions - Transformers 4.55.0 - Pytorch 2.5.1+cu121 - Datasets 4.0.0 - Tokenizers 0.21.4
Vasya777/blockassist-bc-lumbering_enormous_sloth_1755699736
Vasya777
2025-08-20T14:23:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:22:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Behzadshomali/16_08_20
Behzadshomali
2025-08-20T14:23:06Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Behzadshomali/Teuken3.7B", "base_model:finetune:Behzadshomali/Teuken3.7B", "endpoints_compatible", "region:us" ]
null
2025-08-20T14:08:55Z
--- base_model: Behzadshomali/Teuken3.7B library_name: transformers model_name: '16_08_20' tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for 16_08_20 This model is a fine-tuned version of [Behzadshomali/Teuken3.7B](https://huggingface.co/Behzadshomali/Teuken3.7B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Behzadshomali/16_08_20", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/behzadshomali/Teuken3.73T_IT_grade-school-math/runs/i9amv9ig) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
aivoryinnovations/jay
aivoryinnovations
2025-08-20T14:21:41Z
0
0
null
[ "license:other", "region:us" ]
null
2025-08-20T13:23:08Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
lilTAT/blockassist-bc-gentle_rugged_hare_1755699647
lilTAT
2025-08-20T14:21:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:21:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aidan-ucc/LoRA-qwen2.5VL-3B-5200
aidan-ucc
2025-08-20T14:20:15Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Qwen2.5-VL-3B-Instruct", "base_model:finetune:unsloth/Qwen2.5-VL-3B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-20T14:17:00Z
--- base_model: unsloth/Qwen2.5-VL-3B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2_5_vl license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** aidan-ucc - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-VL-3B-Instruct This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755697967
ihsanridzi
2025-08-20T14:19:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:19:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yaelahnal/blockassist-bc-mute_clawed_crab_1755699480
yaelahnal
2025-08-20T14:19:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:18:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755699501
0xaoyama
2025-08-20T14:18:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:18:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755697900
helmutsukocok
2025-08-20T14:18:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:18:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lemonhat/Qwen2.5-7B-Instruct-airline_2k_v1_tag5_progress
lemonhat
2025-08-20T14:18:03Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T14:16:07Z
--- library_name: transformers license: other base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: airline_2k_v1_tag5_progress results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # airline_2k_v1_tag5_progress This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the airline_2k_v1_tag5_progress dataset. It achieves the following results on the evaluation set: - Loss: 0.5416 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.6.0+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755698343
Sayemahsjn
2025-08-20T14:17:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:16:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
qing223101/blockassist-bc-bellowing_shrewd_tiger_1755697862
qing223101
2025-08-20T14:16:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bellowing shrewd tiger", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:16:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bellowing shrewd tiger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755697776
mang3dd
2025-08-20T14:16:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:15:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sirius35/Fintuned-distilbert-NER-for-FinTech
Sirius35
2025-08-20T14:12:12Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "token-classification", "ner", "finance", "en", "base_model:dslim/distilbert-NER", "base_model:finetune:dslim/distilbert-NER", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-08-18T13:50:04Z
--- language: - en license: apache-2.0 tags: - token-classification - ner - finance library_name: transformers pipeline_tag: token-classification base_model: dslim/distilbert-NER --- # Finance-Oriented NER Model with MISC Extension This model is based on [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) and fine-tuned for **Named Entity Recognition (NER)** with an additional focus on financial domain terminology. --- ## Model Overview - **Base Model**: [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) - **Task Type**: Token Classification / NER - **Modified Label**: `MISC` — Expanded for more financial-specific terms (e.g., financial instruments, policy names, industry area,financial terminology). - **Objective**: Extend standard NER to not only capture named entities (such as people, organizations, and locations) but also to recognize domain-specific financial terms that describe events and their potential impacts. --- ## Dataset - **Source**: 50 news articles collected from public sources. - **Processing Steps**: 1. News articles were summarized using an abstractive summarization model. 2. Summaries were manually annotated to mark standard entities and the new `MILC` class. - **Entity Schema**: - Standard labels: `PER`, `ORG`, `LOC`, `MISC` - Modified label: `MISC` (financial-specific terms are included) - Abbreviation and Description Abbreviation|Description -|- O|Outside of a named entity B-MISC |Beginning of a miscellaneous entity right after another miscellaneous entity I-MISC | Miscellaneous entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organization right after another organization I-ORG |organization B-LOC |Beginning of a location right after another location I-LOC |Location > Note: The `MISC` label is currently a single broad category. More fine-grained classification will be addressed in the next stage. --- ## Eval results | Metric | Score | |------------|-------| | Loss | 0.4912| | Precision | 0.7010| | Recall | 0.7967| | F1 | 0.7458| | Accuracy | 0.8914| ## Limitation: Overuse of MISC lowers precision Annotating many generic financial-specific as MISC turns MISC into a broad catch-all class. This creates a fuzzy decision boundary and the model learns low-specificity rules (“financial-specific tokens → MISC”), which over-predicts MISC, inflates recall, and depresses precision, reducing overall F1. ## Why this happens MISC becomes a high-frequency, heterogeneous label with weak lexical anchors, conflating named entities with topical vocabulary. The classifier then favors MISC for many ambiguous tokens, producing systematic false positives and occasional span fragmentation. ## Note on current results (intentional high-recall phase) The observed precision drop tied to broad MISC usage is largely expected at this stage. Our near-term objective is to surface domain-specific financial terms that describe entities and their potential impacts, so I intentionally bias for recall and allow MISC to act as a provisional umbrella label. This high-recall bootstrapping helps collect a candidate lexicon and error patterns for the next iteration. In subsequent releases, I will narrow MISC, re-annotate with stricter guidelines to recover precision while maintaining coverage by introducing more dedicated labels. ## Usage ```python from transformers import pipeline ner_pipe = pipeline("token-classification", model="Sirius35/Fintuned-distilbert-NER-for-FinTech", aggregation_strategy="simple") text = "Citi analysts believe that the Federal Reserve's rate cut will strongly impact the US bond market." print(ner_pipe(text))
unspokenclap/c-Q4_K_M-GGUF
unspokenclap
2025-08-20T14:09:29Z
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:unspokenclap/c", "base_model:quantized:unspokenclap/c", "endpoints_compatible", "region:us" ]
null
2025-08-20T13:34:13Z
--- base_model: unspokenclap/c tags: - llama-cpp - gguf-my-repo --- # unspokenclap/c-Q4_K_M-GGUF This model was converted to GGUF format from [`unspokenclap/c`](https://huggingface.co/unspokenclap/c) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/unspokenclap/c) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo unspokenclap/c-Q4_K_M-GGUF --hf-file c-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo unspokenclap/c-Q4_K_M-GGUF --hf-file c-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo unspokenclap/c-Q4_K_M-GGUF --hf-file c-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo unspokenclap/c-Q4_K_M-GGUF --hf-file c-q4_k_m.gguf -c 2048 ``` ``` {{ bos_token }} {%- set M = messages -%} {%- if M and M[0]['role'] == 'system' -%} {# Prepend system text to the first user message #} {%- set sys = (M[0]['content'] if M[0]['content'] is string else M[0]['content'][0]['text']) ~ "\n\n" -%} {%- set M = M[1:] -%} {%- else -%} {%- set sys = "" -%} {%- endif -%} {%- for m in M -%} {%- set role = 'model' if m['role'] == 'assistant' else m['role'] -%} <start_of_turn>{{ role }} {%- if loop.first -%}{{ sys }}{%- endif -%} {%- if m['content'] is string -%} {{ m['content'] | trim }} {%- else -%} {%- for item in m['content'] -%} {%- if item['type'] == 'image' -%}<start_of_image>{%- elif item['type'] == 'text' -%}{{ item['text'] | trim }}{%- endif -%} {%- endfor -%} {%- endif -%}<end_of_turn> {%- endfor -%} {%- if add_generation_prompt -%} <start_of_turn>model {%- endif -%} ```
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755697080
kojeklollipop
2025-08-20T14:07:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:07:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755697210
hakimjustbao
2025-08-20T14:06:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:06:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Vasya777/blockassist-bc-lumbering_enormous_sloth_1755698730
Vasya777
2025-08-20T14:06:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:06:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yaelahnal/blockassist-bc-mute_clawed_crab_1755698712
yaelahnal
2025-08-20T14:06:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:06:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Curiosity-14-GGUF
mradermacher
2025-08-20T14:06:04Z
0
0
transformers
[ "transformers", "gguf", "research", "en", "base_model:ariankharazmi/Curiosity-14", "base_model:quantized:ariankharazmi/Curiosity-14", "license:mit", "endpoints_compatible", "region:us" ]
null
2025-08-16T14:53:28Z
--- base_model: ariankharazmi/Curiosity-14 language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - research --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/ariankharazmi/Curiosity-14 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Curiosity-14-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Curiosity-14-GGUF/resolve/main/Curiosity-14.Q2_K.gguf) | Q2_K | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Curiosity-14-GGUF/resolve/main/Curiosity-14.Q3_K_S.gguf) | Q3_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Curiosity-14-GGUF/resolve/main/Curiosity-14.Q3_K_M.gguf) | Q3_K_M | 0.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Curiosity-14-GGUF/resolve/main/Curiosity-14.IQ4_XS.gguf) | IQ4_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Curiosity-14-GGUF/resolve/main/Curiosity-14.Q4_K_S.gguf) | Q4_K_S | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Curiosity-14-GGUF/resolve/main/Curiosity-14.Q3_K_L.gguf) | Q3_K_L | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Curiosity-14-GGUF/resolve/main/Curiosity-14.Q4_K_M.gguf) | Q4_K_M | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Curiosity-14-GGUF/resolve/main/Curiosity-14.Q5_K_S.gguf) | Q5_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Curiosity-14-GGUF/resolve/main/Curiosity-14.Q5_K_M.gguf) | Q5_K_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Curiosity-14-GGUF/resolve/main/Curiosity-14.Q6_K.gguf) | Q6_K | 0.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Curiosity-14-GGUF/resolve/main/Curiosity-14.Q8_0.gguf) | Q8_0 | 0.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Curiosity-14-GGUF/resolve/main/Curiosity-14.f16.gguf) | f16 | 0.4 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
rembot/Westbot
rembot
2025-08-20T14:05:35Z
0
0
null
[ "en", "arxiv:1910.09700", "base_model:microsoft/phi-2", "base_model:finetune:microsoft/phi-2", "license:apache-2.0", "region:us" ]
null
2025-08-20T13:56:32Z
--- license: apache-2.0 language: - en base_model: - microsoft/phi-2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jasonhuang3/bpo-qwen-2-5-7b-math-ep2-our_4_alpha_0.3_lora_28k
jasonhuang3
2025-08-20T14:02:29Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "dpo", "arxiv:2305.18290", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "endpoints_compatible", "region:us" ]
null
2025-08-18T17:39:46Z
--- base_model: Qwen/Qwen2.5-Math-7B library_name: transformers model_name: bpo-qwen-2-5-7b-math-ep2-our_4_alpha_0.3_lora_28k tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for bpo-qwen-2-5-7b-math-ep2-our_4_alpha_0.3_lora_28k This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jasonhuang3/bpo-qwen-2-5-7b-math-ep2-our_4_alpha_0.3_lora_28k", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jasonhuang3-school/huggingface/runs/jcdwzlxa) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.19.1 - Transformers: 4.53.1 - Pytorch: 2.4.0 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
amir-ali-ai/results
amir-ali-ai
2025-08-20T14:01:53Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:ZharfaTech/ZharfaOpen-0309", "base_model:finetune:ZharfaTech/ZharfaOpen-0309", "endpoints_compatible", "region:us" ]
null
2025-08-20T14:01:50Z
--- base_model: ZharfaTech/ZharfaOpen-0309 library_name: transformers model_name: results tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for results This model is a fine-tuned version of [ZharfaTech/ZharfaOpen-0309](https://huggingface.co/ZharfaTech/ZharfaOpen-0309). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="amir-ali-ai/results", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/amirmaasoumi507-amoozesh/huggingface/runs/mw84ybv6) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Frane92O/OpenReasoning-Nemotron-14B-Q4_0-GGUF
Frane92O
2025-08-20T14:01:47Z
0
0
transformers
[ "transformers", "gguf", "nvidia", "code", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:nvidia/OpenReasoning-Nemotron-14B", "base_model:quantized:nvidia/OpenReasoning-Nemotron-14B", "license:cc-by-4.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-20T14:01:09Z
--- license: cc-by-4.0 language: - en base_model: nvidia/OpenReasoning-Nemotron-14B pipeline_tag: text-generation library_name: transformers tags: - nvidia - code - llama-cpp - gguf-my-repo --- # Frane92O/OpenReasoning-Nemotron-14B-Q4_0-GGUF This model was converted to GGUF format from [`nvidia/OpenReasoning-Nemotron-14B`](https://huggingface.co/nvidia/OpenReasoning-Nemotron-14B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nvidia/OpenReasoning-Nemotron-14B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Frane92O/OpenReasoning-Nemotron-14B-Q4_0-GGUF --hf-file openreasoning-nemotron-14b-q4_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Frane92O/OpenReasoning-Nemotron-14B-Q4_0-GGUF --hf-file openreasoning-nemotron-14b-q4_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Frane92O/OpenReasoning-Nemotron-14B-Q4_0-GGUF --hf-file openreasoning-nemotron-14b-q4_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Frane92O/OpenReasoning-Nemotron-14B-Q4_0-GGUF --hf-file openreasoning-nemotron-14b-q4_0.gguf -c 2048 ```
Leoar/blockassist-bc-pudgy_toothy_cheetah_1755698352
Leoar
2025-08-20T14:01:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pudgy toothy cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T14:01:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pudgy toothy cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Anuar123/A
Anuar123
2025-08-20T13:59:01Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-20T13:59:01Z
--- license: apache-2.0 ---
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755696509
coelacanthxyz
2025-08-20T13:58:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T13:58:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
palyafari/FeedbackClassifierGemma
palyafari
2025-08-20T13:58:21Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T13:34:40Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: FeedbackClassifierGemma tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for FeedbackClassifierGemma This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="palyafari/FeedbackClassifierGemma", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Vasya777/blockassist-bc-lumbering_enormous_sloth_1755698210
Vasya777
2025-08-20T13:57:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T13:57:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yaelahnal/blockassist-bc-mute_clawed_crab_1755698201
yaelahnal
2025-08-20T13:57:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T13:57:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manancode/opus-mt-gl-pt-ctranslate2-android
manancode
2025-08-20T12:28:42Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:28:33Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-gl-pt-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-gl-pt` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-gl-pt - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
palyafari/MyGemmaNPC
palyafari
2025-08-20T12:28:39Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T12:25:22Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="palyafari/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
manancode/opus-mt-gil-sv-ctranslate2-android
manancode
2025-08-20T12:28:08Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:27:59Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-gil-sv-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-gil-sv` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-gil-sv - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-gil-fi-ctranslate2-android
manancode
2025-08-20T12:27:46Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:27:36Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-gil-fi-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-gil-fi` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-gil-fi - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-gil-es-ctranslate2-android
manancode
2025-08-20T12:27:33Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:27:23Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-gil-es-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-gil-es` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-gil-es - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-gem-gem-ctranslate2-android
manancode
2025-08-20T12:27:06Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:26:57Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-gem-gem-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-gem-gem` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-gem-gem - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
Youtu-RAG/CoDi-Embedding-V1
Youtu-RAG
2025-08-20T12:26:50Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "minicpm", "sentence-similarity", "custom_code", "en", "zh", "base_model:openbmb/MiniCPM-Embedding", "base_model:finetune:openbmb/MiniCPM-Embedding", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-20T12:09:56Z
--- language: - en - zh base_model: - openbmb/MiniCPM-Embedding pipeline_tag: sentence-similarity library_name: sentence-transformers --- ## CoDi-Embedding-V1 CoDi-Embedding-V1 is an outstanding embedding model that supports both Chinese and English retrieval, with particularly exceptional performance in Chinese retrieval. It has achieved SOTA results on the Chinese MTEB benchmark as of August 20, 2025. Based on the [MiniCPM-Embedding](https://huggingface.co/openbmb/MiniCPM-Embedding) model, CoDi-Embedding-V1 extends the maximum sequence length from 512 to 4,196 tokens, significantly enhancing its capability for long-document retrieval. The model employs mean pooling strategy, where tokens from the instruction are excluded during pooling to optimize retrieval effectiveness. ### Model Description - **Maximum Sequence Length:** 4096 tokens - **Output Dimensionality:** 2304 - **Model Size:** 2.4B ## Requirements ``` transformers>=4.37.2 ``` ## Usage ### Sentence Transformers First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer(model_name_or_path) queries = ["结算业务系统用户使用"] documents = [ "根据解冻日输入范围,查询出该时间范围内到期的账户冻结列表。", "智能定期存款到期日为节假日时处理”设置提前或顺延,支持智能定期证实书提前或顺延到期提醒。", "账户开户时设置了账户到期日,账户到期提醒是根据全机构系统参数设置" ] query_embeddings = model.encode(queries, prompt_name="query") document_embeddings = model.encode(documents) # Get the similarity scores for the embeddings similarity = model.similarity(query_embeddings, document_embeddings) print(similarity) ```
syuvers/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-mangy_melodic_raven
syuvers
2025-08-20T12:25:50Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am mangy_melodic_raven", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T12:07:21Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am mangy_melodic_raven --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
EmilRyd/gpt-oss-ground-truth-60
EmilRyd
2025-08-20T12:24:36Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T12:18:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
manancode/opus-mt-fr-wls-ctranslate2-android
manancode
2025-08-20T12:24:16Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:24:07Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fr-wls-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fr-wls` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fr-wls - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-fr-war-ctranslate2-android
manancode
2025-08-20T12:24:04Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:23:54Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fr-war-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fr-war` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fr-war - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-fr-vi-ctranslate2-android
manancode
2025-08-20T12:23:51Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:23:42Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fr-vi-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fr-vi` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fr-vi - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
Vanbitcase/modelqwen
Vanbitcase
2025-08-20T12:23:43Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2_5_vl", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-20T12:22:04Z
--- base_model: unsloth/qwen2.5-vl-7b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2_5_vl - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Vanbitcase - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-vl-7b-instruct-bnb-4bit This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
manancode/opus-mt-fr-uk-ctranslate2-android
manancode
2025-08-20T12:23:28Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:23:19Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fr-uk-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fr-uk` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fr-uk - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
Milica-y-Angel-David-video/watch-full-original-clip
Milica-y-Angel-David-video
2025-08-20T12:23:16Z
0
0
null
[ "region:us" ]
null
2025-08-20T12:22:55Z
<animated-image data-catalyst=""><a href="https://cutt.ly/GrH1tFQs" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
manancode/opus-mt-fr-tvl-ctranslate2-android
manancode
2025-08-20T12:22:52Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:22:42Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fr-tvl-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fr-tvl` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fr-tvl - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-fr-ts-ctranslate2-android
manancode
2025-08-20T12:22:28Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:22:17Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fr-ts-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fr-ts` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fr-ts - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-fr-tn-ctranslate2-android
manancode
2025-08-20T12:21:49Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:21:40Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fr-tn-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fr-tn` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fr-tn - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-fr-tl-ctranslate2-android
manancode
2025-08-20T12:21:25Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:21:16Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fr-tl-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fr-tl` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fr-tl - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
Jawaker/t5-base-tcp-new-state
Jawaker
2025-08-20T12:20:54Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-08-20T11:47:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
fnlp/XY_Tokenizer_TTSD_V0
fnlp
2025-08-20T12:20:51Z
0
6
null
[ "pytorch", "xy_tokenizer", "arxiv:2506.23325", "license:apache-2.0", "region:us" ]
null
2025-06-20T09:16:30Z
--- license: apache-2.0 --- # **Introduction** **`XY-Tokenizer`** is a speech codec that simultaneously models both semantic and acoustic aspects of speech, converting audio into discrete tokens and decoding them back to high-quality audio. It achieves efficient speech representation at only 1kbps with RVQ8 quantization at 12.5Hz frame rate. - **Paper:** [Read on arXiv](https://arxiv.org/abs/2506.23325) - **Source Code:** - [GitHub Repo](https://github.com/OpenMOSS/MOSS-TTSD/tree/main/XY_Tokenizer) - [Hugging Face Repo](https://huggingface.co/spaces/fnlp/MOSS-TTSD/tree/main/XY_Tokenizer) ## 📚 Related Project: **[MOSS-TTSD](https://huggingface.co/fnlp/MOSS-TTSD-v0.5)** **`XY-Tokenizer`** serves as the underlying neural codec for **`MOSS-TTSD`**, our 1.7B Audio Language Model. \ Explore **`MOSS-TTSD`** for advanced text-to-speech and other audio generation tasks on [GitHub](https://github.com/OpenMOSS/MOSS-TTSD), [Blog](http://www.open-moss.com/en/moss-ttsd/), [博客](https://www.open-moss.com/cn/moss-ttsd/), and [Space Demo](https://huggingface.co/spaces/fnlp/MOSS-TTSD). ## ✨ Features - **Dual-channel modeling**: Simultaneously captures semantic meaning and acoustic details - **Efficient representation**: 1kbps bitrate with RVQ8 quantization at 12.5Hz - **High-quality audio tokenization**: Convert speech to discrete tokens and back with minimal quality loss - **Long audio support**: Process audio files longer than 30 seconds using chunking with overlap - **Batch processing**: Efficiently process multiple audio files in batches - **24kHz output**: Generate high-quality 24kHz audio output ## 🚀 Installation ```bash git clone https://github.com/OpenMOSS/MOSS-TTSD.git cd MOSS-TTSD conda create -n xy_tokenizer python=3.10 -y && conda activate xy_tokenizer pip install -r XY_Tokenizer/requirements.txt ``` ## 💻 Quick Start Here's how to use **`XY-Tokenizer`** with `transformers` to encode an audio file into discrete tokens and decode it back into a waveform. ```python import torchaudio from transformers import AutoFeatureExtractor, AutoModel # 1. Load the feature extractor and the codec model model_id = "fnlp/XY_Tokenizer_TTSD_V0" feature_extractor = AutoFeatureExtractor.from_pretrained(model_id, trust_remote_code=True) codec = AutoModel.from_pretrained(model_id, trust_remote_code=True).eval().to("cuda") # 2. Load and preprocess the audio # The model expects a 16kHz sample rate. wav_form, sampling_rate = torchaudio.load("examples/m1.wav") if sampling_rate != 16000: wav_form = torchaudio.functional.resample(wav_form, orig_freq=sampling_rate, new_freq=16000) # 3. Encode the audio into discrete codes input_features = feature_extractor(wav_form, sampling_rate=16000, return_attention_mask=True, return_tensors="pt") # The 'code' dictionary contains the discrete audio codes code = codec.encode(input_features) print(code) # 4. Decode the codes back to an audio waveform # The output is high-quality 24kHz audio. output_wav = codec.decode(code["audio_codes"], overlap_seconds=10) # 5. Save the reconstructed audio for i, audio in enumerate(output_wav["audio_values"]): torchaudio.save(f"audio_{i}.wav", audio.cpu(), 24000) ```
manancode/opus-mt-fr-sv-ctranslate2-android
manancode
2025-08-20T12:20:50Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:20:39Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fr-sv-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fr-sv` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fr-sv - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-fr-srn-ctranslate2-android
manancode
2025-08-20T12:20:23Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:20:13Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fr-srn-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fr-srn` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fr-srn - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-fr-sn-ctranslate2-android
manancode
2025-08-20T12:20:10Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:20:00Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fr-sn-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fr-sn` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fr-sn - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755690732
vwzyrraz7l
2025-08-20T12:19:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T12:19:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manancode/opus-mt-fr-pon-ctranslate2-android
manancode
2025-08-20T12:18:04Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:17:55Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fr-pon-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fr-pon` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fr-pon - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-fr-pl-ctranslate2-android
manancode
2025-08-20T12:17:52Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:17:43Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fr-pl-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fr-pl` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fr-pl - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-fr-pap-ctranslate2-android
manancode
2025-08-20T12:17:27Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:17:18Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fr-pap-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fr-pap` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fr-pap - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-fr-nso-ctranslate2-android
manancode
2025-08-20T12:17:01Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:16:52Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fr-nso-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fr-nso` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fr-nso - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
unitova/blockassist-bc-zealous_sneaky_raven_1755690649
unitova
2025-08-20T12:16:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T12:16:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manancode/opus-mt-fr-no-ctranslate2-android
manancode
2025-08-20T12:16:49Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:16:38Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fr-no-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fr-no` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fr-no - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-fr-niu-ctranslate2-android
manancode
2025-08-20T12:16:36Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T12:16:26Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fr-niu-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fr-niu` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fr-niu - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
BoddyGus/dummy-model
BoddyGus
2025-08-20T12:16:29Z
0
0
transformers
[ "transformers", "safetensors", "camembert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-08-20T12:15:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]