modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-15 12:33:19
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
557 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-15 12:32:26
card
stringlengths
11
1.01M
esi777/blockassist-bc-camouflaged_trotting_eel_1755729414
esi777
2025-08-20T22:37:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged trotting eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:37:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged trotting eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arianaazarbal/standard_tpr_0.8-20250820_164950-policy-adapter
arianaazarbal
2025-08-20T22:36:28Z
0
0
null
[ "safetensors", "region:us" ]
null
2025-08-20T22:35:29Z
# Policy Model LoRA Adapter (GRPO/DPO) Experiment: standard_tpr_0.8 Timestamp: 20250820_164950 This model was trained as part of the deception-evasion-honesty experiments. ## Model Details - **Type**: Policy Model LoRA Adapter (GRPO/DPO) - **Experiment Name**: standard_tpr_0.8 - **Training Timestamp**: 20250820_164950
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755727867
lisaozill03
2025-08-20T22:35:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:35:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arianaazarbal/standard_tpr_0.8-20250820_164950-rm-adapter
arianaazarbal
2025-08-20T22:35:28Z
0
0
null
[ "region:us" ]
null
2025-08-20T22:34:56Z
# Reward Model LoRA Adapter Experiment: standard_tpr_0.8 Timestamp: 20250820_164950 This model was trained as part of the deception-evasion-honesty experiments. ## Model Details - **Type**: Reward Model LoRA Adapter - **Experiment Name**: standard_tpr_0.8 - **Training Timestamp**: 20250820_164950
Leoar/blockassist-bc-pudgy_toothy_cheetah_1755729195
Leoar
2025-08-20T22:35:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pudgy toothy cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:35:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pudgy toothy cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755727554
coelacanthxyz
2025-08-20T22:33:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:33:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
FatimahEmadEldin/Isnad-AI-Identifying-Islamic-Citation
FatimahEmadEldin
2025-08-20T22:32:06Z
0
0
null
[ "safetensors", "bert", "ar", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "license:apache-2.0", "region:us" ]
null
2025-08-20T22:12:50Z
--- license: apache-2.0 language: - ar metrics: - f1 base_model: - aubmindlab/bert-base-arabertv02 --- # Isnad AI: AraBERT for Ayah & Hadith Span Detection in LLM Outputs <p align="center"> <img src="https://placehold.co/800x200/dbeafe/3b82f6?text=Isnad+AI+-+Islamic+Citation+Detection" alt="Isnad AI - Islamic Citation Detection"> </p> This repository contains the official fine-tuned model for the **Isnad AI** system, the submission to the **[IslamicEval 2025 Shared Task 1A](https://sites.google.com/view/islamiceval-2025)**. The model is designed to identify character-level spans of Quranic verses (Ayahs) and Prophetic sayings (Hadiths) within text generated by Large Language Models (LLMs). #### By: [Fatimah Emad Eldin](https://scholar.google.com/citations?user=CfX6eA8AAAAJ&hl=ar) #### *Cairo University* [![Paper](https://img.shields.io/badge/Read_the_Paper-PDF-b31b1b.svg)](https://www.codabench.org/competitions/9820/) [![Code](https://img.shields.io/badge/GitHub-Code-blue)](https://github.com/astral-fate/IslamicEval) [![HuggingFace](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-yellow)](https://huggingface.co/collections/FatimahEmadEldin/) [![License](https://img.shields.io/badge/License-MIT-lightgrey)](https://github.com/astral-fate/IslamicEval/blob/main/LICENSE) --- ## ๐Ÿ“œ Model Description This model fine-tunes **AraBERTv2** (`aubmindlab/bert-base-arabertv2`) on a specialized token classification task. Its purpose is to label tokens within a given Arabic text according to the BIO schema: * `B-Ayah` (Beginning of a Quranic verse) * `I-Ayah` (Inside a Quranic verse) * `B-Hadith` (Beginning of a Prophetic saying) * `I-Hadith` (Inside a Prophetic saying) * `O` (Outside of any religious citation) The key innovation behind this model is a **novel rule-based data generation pipeline** that programmatically creates a large-scale, high-quality training corpus from authentic religious texts, completely eliminating the need for manual annotation. This method proved highly effective, enabling the model to learn the contextual patterns of how LLMs cite Islamic sources. --- ## ๐Ÿš€ How to Use You can easily use this model with the `transformers` library pipeline for `token-classification` (or `ner`). For best results, use `aggregation_strategy="simple"` to group token pieces into coherent entities. ```python from transformers import pipeline # Load the token classification pipeline model_id = "FatimahEmadEldin/Isnad-AI-Identifying-Islamic-Citation" islamic_ner = pipeline( "token-classification", model=model_id, aggregation_strategy="simple" ) # Example text from an LLM response text = "ูŠูˆุถุญ ู„ู†ุง ุงู„ุฏูŠู† ุฃู‡ู…ูŠุฉ ุงู„ุตุฏู‚ุŒ ูููŠ ุงู„ุญุฏูŠุซ ุงู„ุดุฑูŠู ู†ุฌุฏ ุฃู† ุงู„ู†ุจูŠ ู‚ุงู„: ุนู„ูŠูƒู… ุจุงู„ุตุฏู‚. ูƒู…ุง ุฃู†ุฒู„ ุงู„ู„ู‡ ููŠ ูƒุชุงุจู‡ ุงู„ูƒุฑูŠู…: ูŠุง ุฃูŠู‡ุง ุงู„ุฐูŠู† ุขู…ู†ูˆุง ุงุชู‚ูˆุง ุงู„ู„ู‡ ูˆูƒูˆู†ูˆุง ู…ุน ุงู„ุตุงุฏู‚ูŠู†." # Get the identified spans results = islamic_ner(text) # Print the results for entity in results: print(f"Entity: {entity['word']}") print(f"Label: {entity['entity_group']}") print(f"Score: {entity['score']:.4f}\n") # Expected output: # Entity: ุนู„ูŠูƒู… ุจุงู„ุตุฏู‚ # Label: Hadith # Score: 0.9876 # Entity: ูŠุง ุฃูŠู‡ุง ุงู„ุฐูŠู† ุขู…ู†ูˆุง ุงุชู‚ูˆุง ุงู„ู„ู‡ ูˆูƒูˆู†ูˆุง ู…ุน ุงู„ุตุงุฏู‚ูŠู† # Label: Ayah # Score: 0.9912 ```` ----- ## โš™๏ธ Training Procedure ### Data Generation The model was trained exclusively on a synthetically generated dataset to overcome the lack of manually annotated data for this specific task. The pipeline involved several stages: 1. **Data Sourcing**: Authentic texts were sourced from `quran.json` (containing all Quranic verses) and a JSON file of the Six Major Hadith Collections. 2. **Text Preprocessing**: Long Ayahs were split into smaller segments to prevent sequence truncation, and data was augmented by creating versions with and without Arabic diacritics (Tashkeel). 3. **Template-Based Generation**: Each religious text was embedded into realistic contextual templates using a curated list of common prefixes (e.g., "ู‚ุงู„ ุงู„ู„ู‡ ุชุนุงู„ู‰:") and suffixes (e.g., "ุตุฏู‚ ุงู„ู„ู‡ ุงู„ุนุธูŠู…"). Noise was also injected by adding neutral sentences to better simulate LLM outputs. ### Fine-Tuning The `aubmindlab/bert-base-arabertv2` model was fine-tuned with the following key hyperparameters: * **Learning Rate**: `2e-5` * **Epochs**: 10 (with early stopping patience of 3) * **Effective Batch Size**: 16 * **Optimizer**: AdamW * **Mixed Precision**: fp16 enabled ----- ## ๐Ÿ“Š Evaluation Results The model was evaluated using the official character-level Macro F1-Score metric for the IslamicEval 2025 shared task. ### Official Test Set Results The system achieved a **final F1-score of 66.97%** on the blind test set, demonstrating the effectiveness of the rule-based data generation approach. | Methodology | Test F1 Score | | :--- | :---: | | **Isnad AI (Rule-Based Model)** | **66.97%** | | Generative Data (Ablation) | 50.50% | | Database Lookup (Ablation) | 34.80% | ### ๐Ÿ” Highlight: Development Set Performance A detailed evaluation on the manually annotated development set provided by the organizers shows a strong and balanced performance. **Final Macro F1-Score on Dev Set: 65.08%** #### Per-Class Performance (Character-Level) | Class | Precision | Recall | F1-Score | |:---|:---:|:---:|:---:| | ๐ŸŸข **Neither** | 0.8423 | 0.9688 | 0.9011 | | ๐Ÿ”ต **Ayah** | 0.8326 | 0.5574 | 0.6678 | | ๐ŸŸก **Hadith** | 0.4750 | 0.3333 | 0.3917 | | **Overall** | **0.7166** | **0.6198** | **0.6535** | *(These results are from the official `scoring.py` script run on the development set).* ----- ## โš ๏ธ Limitations and Bias * **Performance on Hadith**: The model's primary challenge is identifying Hadith texts, which have significantly more linguistic and structural variety than Quranic verses. The F1-score for the `Hadith` class is lower than for `Ayah`, indicating it may miss or misclassify some prophetic sayings. * **Template Dependency**: The model's knowledge is based on the rule-based templates used for training. It may be less effective at identifying citations that appear in highly novel or unconventional contexts not represented in the training data. * **Scope**: This model identifies **intended** citations, as per the shared task rules. It does **not** verify the authenticity or correctness of the citation itself. An LLM could generate a completely fabricated verse, and this model would still identify it if it is presented like a real one. ----- ## โœ๏ธ Citation If you use this model or the methodology in your research, please cite the paper: ```bibtex Coming soon ``` ``` ```
esi777/blockassist-bc-camouflaged_trotting_eel_1755728923
esi777
2025-08-20T22:29:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged trotting eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:29:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged trotting eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755727278
mang3dd
2025-08-20T22:27:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:27:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
java22dev/llama3-lora-turkish-F16-GGUF
java22dev
2025-08-20T22:25:42Z
0
0
transformers
[ "transformers", "gguf", "unsloth", "llama-cpp", "gguf-my-lora", "tr", "base_model:Yudum/llama3-lora-turkish", "base_model:quantized:Yudum/llama3-lora-turkish", "endpoints_compatible", "region:us" ]
null
2025-08-20T22:25:40Z
--- base_model: Yudum/llama3-lora-turkish language: - tr library_name: transformers tags: - unsloth - llama-cpp - gguf-my-lora --- # java22dev/llama3-lora-turkish-F16-GGUF This LoRA adapter was converted to GGUF format from [`Yudum/llama3-lora-turkish`](https://huggingface.co/Yudum/llama3-lora-turkish) via the ggml.ai's [GGUF-my-lora](https://huggingface.co/spaces/ggml-org/gguf-my-lora) space. Refer to the [original adapter repository](https://huggingface.co/Yudum/llama3-lora-turkish) for more details. ## Use with llama.cpp ```bash # with cli llama-cli -m base_model.gguf --lora llama3-lora-turkish-f16.gguf (...other args) # with server llama-server -m base_model.gguf --lora llama3-lora-turkish-f16.gguf (...other args) ``` To know more about LoRA usage with llama.cpp server, refer to the [llama.cpp server documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md).
Muapi/wet-plate-collodion
Muapi
2025-08-20T22:23:12Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:23:01Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Wet Plate Collodion ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: wetplatecollodion, border, swirls, washed out, textured, smears, scratches, folds ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:101842@1210076", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
roeker/blockassist-bc-quick_wiry_owl_1755728493
roeker
2025-08-20T22:22:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:22:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/buns-magic-the-gathering-loras-flux-dev-pony-mtg
Muapi
2025-08-20T22:22:51Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:22:10Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Buns' Magic The Gathering LoRAs [Flux Dev] [Pony] [MtG] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: m4th3g4 ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:598734@854505", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
backt/nasdxlv100
backt
2025-08-20T22:22:05Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-20T22:12:23Z
--- license: apache-2.0 ---
lautan/blockassist-bc-gentle_patterned_goat_1755726959
lautan
2025-08-20T22:21:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle patterned goat", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:21:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle patterned goat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_immigration_combo27_0
AnonymousCS
2025-08-20T22:20:39Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T22:16:32Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo27_0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo27_0 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2796 - Accuracy: 0.9036 - 1-f1: 0.8593 - 1-recall: 0.8842 - 1-precision: 0.8358 - Balanced Acc: 0.8987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.6197 | 1.0 | 25 | 0.6021 | 0.6671 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.2403 | 2.0 | 50 | 0.2640 | 0.9113 | 0.8634 | 0.8417 | 0.8862 | 0.8939 | | 0.2432 | 3.0 | 75 | 0.2184 | 0.9152 | 0.8685 | 0.8417 | 0.8971 | 0.8968 | | 0.3089 | 4.0 | 100 | 0.2378 | 0.9100 | 0.8638 | 0.8571 | 0.8706 | 0.8968 | | 0.2386 | 5.0 | 125 | 0.2796 | 0.9036 | 0.8593 | 0.8842 | 0.8358 | 0.8987 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755726656
katanyasekolah
2025-08-20T22:20:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:20:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
busyyy/blockassist-bc-bipedal_deadly_dinosaur_1755726597
busyyy
2025-08-20T22:19:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bipedal deadly dinosaur", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:18:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bipedal deadly dinosaur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
8septiadi8/blockassist-bc-curious_lightfooted_mouse_1755728313
8septiadi8
2025-08-20T22:19:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "curious lightfooted mouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:19:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - curious lightfooted mouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/rough-water-colors
Muapi
2025-08-20T22:19:17Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:18:59Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Rough Water Colors ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1457421@1648000", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755726734
rvipitkirubbe
2025-08-20T22:17:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled foraging ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:17:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled foraging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/butterfly-lighting-style-from-above-xl-f1d
Muapi
2025-08-20T22:16:45Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:16:33Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Butterfly Lighting style (from above) XL + F1D ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: cinematic , overhead , light from above, light, photographic ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:381960@1374100", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/super-panavision-70-cinematic-vintage-film-style-xl-f1d
Muapi
2025-08-20T22:15:57Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:15:35Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Super Panavision 70 Cinematic Vintage Film style XL + F1D ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: In Super Panavision 70 Technicolor Film style ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:812212@931164", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
sekirr22/blockassist-bc-furry_rugged_camel_1755727776
sekirr22
2025-08-20T22:15:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "furry rugged camel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:15:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - furry rugged camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755726582
ihsanridzi
2025-08-20T22:15:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:15:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MajorJalud/blockassist-bc-fast_bristly_sardine_1755727961
MajorJalud
2025-08-20T22:14:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fast bristly sardine", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:14:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fast bristly sardine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/synthesia
Muapi
2025-08-20T22:14:15Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:13:56Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Synthesia ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: synthesia ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1195597@1346178", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
8septiadi8/blockassist-bc-curious_lightfooted_mouse_1755727948
8septiadi8
2025-08-20T22:13:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "curious lightfooted mouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:13:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - curious lightfooted mouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
abcorrea/p3-v2
abcorrea
2025-08-20T22:13:23Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:abcorrea/p3-v1", "base_model:finetune:abcorrea/p3-v1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T22:05:10Z
--- base_model: abcorrea/p3-v1 library_name: transformers model_name: p3-v2 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for p3-v2 This model is a fine-tuned version of [abcorrea/p3-v1](https://huggingface.co/abcorrea/p3-v1). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="abcorrea/p3-v2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.52.1 - Pytorch: 2.7.0 - Datasets: 4.0.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Muapi/ethereal
Muapi
2025-08-20T22:12:53Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:12:40Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Ethereal ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1016450@1139626", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/sunstone-style-illustrious-flux
Muapi
2025-08-20T22:11:04Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:10:53Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Sunstone Style [Illustrious/Flux] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: sunst0n3 ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:948991@1062481", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
mradermacher/teknofest-2025-turkish-edu-v2-GGUF
mradermacher
2025-08-20T22:08:51Z
0
0
transformers
[ "transformers", "gguf", "turkish", "education", "teknofest-2025", "qwen", "text-generation", "lora", "tr", "dataset:Huseyin/final2", "base_model:Huseyin/teknofest-2025-turkish-edu-v2", "base_model:adapter:Huseyin/teknofest-2025-turkish-edu-v2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-20T17:36:48Z
--- base_model: Huseyin/teknofest-2025-turkish-edu-v2 datasets: - Huseyin/final2 language: tr library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - turkish - education - teknofest-2025 - qwen - text-generation - lora --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Huseyin/teknofest-2025-turkish-edu-v2 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#teknofest-2025-turkish-edu-v2-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q2_K.gguf) | Q2_K | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q3_K_S.gguf) | Q3_K_S | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q3_K_M.gguf) | Q3_K_M | 4.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q3_K_L.gguf) | Q3_K_L | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.IQ4_XS.gguf) | IQ4_XS | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q4_K_S.gguf) | Q4_K_S | 4.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q4_K_M.gguf) | Q4_K_M | 5.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q5_K_S.gguf) | Q5_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q5_K_M.gguf) | Q5_K_M | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q6_K.gguf) | Q6_K | 6.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.Q8_0.gguf) | Q8_0 | 8.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/teknofest-2025-turkish-edu-v2-GGUF/resolve/main/teknofest-2025-turkish-edu-v2.f16.gguf) | f16 | 16.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
marcovise/TextEmbedding3SmallSentimentHead
marcovise
2025-08-20T22:08:34Z
0
0
transformers
[ "transformers", "pytorch", "sentiment-head", "feature-extraction", "sentiment-analysis", "text-classification", "openai-embeddings", "custom_code", "license:mit", "region:us" ]
text-classification
2025-08-20T21:50:00Z
--- license: mit tags: - sentiment-analysis - text-classification - openai-embeddings - pytorch pipeline_tag: text-classification library_name: transformers --- # TextEmbedding3SmallSentimentHead In case you needed a sentiment analysis classifier on top of embeddings from OpenAI embeddings model. ## Model Description - **What this is**: A compact PyTorch classifier head trained on top of `text-embedding-3-small` (1536-dim) to predict sentiment: negative, neutral, positive. - **Data**: Preprocessed from the [Kaggle Sentiment Analysis Dataset](https://www.kaggle.com/datasets/abhi8923shriv/sentiment-analysis-dataset). - **Metrics (val)**: **F1 macro โ‰ˆ 0.89**, **Accuracy โ‰ˆ 0.89** on a held-out validation split. - **Architecture**: Simple MLP head (256 hidden units, dropout 0.2), trained for 5 epochs with Adam. ## Input/Output - **Input**: Float32 tensor of shape `[batch, 1536]` (OpenAI text-embedding-3-small embeddings). - **Output**: Logits over 3 classes. Argmax โ†’ {0: negative, 1: neutral, 2: positive}. ## Usage ```python from transformers import AutoModel import torch # Load model model = AutoModel.from_pretrained( "marcovise/TextEmbedding3SmallSentimentHead", trust_remote_code=True ).eval() # Your 1536-dim OpenAI embeddings embeddings = torch.randn(4, 1536) # batch of 4 examples # Predict sentiment with torch.no_grad(): logits = model(inputs_embeds=embeddings)["logits"] # [batch, 3] predictions = logits.argmax(dim=1) # [batch] # 0=negative, 1=neutral, 2=positive print(predictions) # tensor([1, 0, 2, 1]) ``` ## Training Details - **Training data**: Kaggle Sentiment Analysis Dataset - **Preprocessing**: Text โ†’ OpenAI embeddings โ†’ 3-class labels {negative: 0.0, neutral: 0.5, positive: 1.0} - **Architecture**: 1536 โ†’ 256 โ†’ ReLU โ†’ Dropout(0.2) โ†’ 3 classes - **Optimizer**: Adam (lr=1e-3, weight_decay=1e-4) - **Loss**: CrossEntropyLoss with label smoothing (0.05) - **Epochs**: 5 ## Intended Use - Quick, lightweight sentiment classification for short text once embeddings are available. - Works well for general sentiment analysis tasks similar to the training distribution. ## Limitations - Trained on a specific sentiment dataset; may have domain bias. - Requires OpenAI text-embedding-3-small embeddings as input. - Not safety-critical; evaluate before production use. - May reflect biases present in the training data. ## License MIT
esi777/blockassist-bc-camouflaged_trotting_eel_1755727659
esi777
2025-08-20T22:08:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged trotting eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:08:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged trotting eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/flux-engrave-lora
Muapi
2025-08-20T22:08:08Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:07:53Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Flux Engrave LoRA ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: NGRVNG ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1048150@1176040", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
rbelanec/train_svamp_1755694510
rbelanec
2025-08-20T22:07:39Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-08-20T22:01:59Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_svamp_1755694510 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_svamp_1755694510 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the svamp dataset. It achieves the following results on the evaluation set: - Loss: 0.1778 - Num Input Tokens Seen: 676320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | 0.5526 | 0.5016 | 158 | 0.7046 | 34176 | | 0.2434 | 1.0032 | 316 | 0.2998 | 67872 | | 0.0913 | 1.5048 | 474 | 0.1424 | 101696 | | 0.0227 | 2.0063 | 632 | 0.1410 | 135776 | | 0.0576 | 2.5079 | 790 | 0.1447 | 169712 | | 0.0193 | 3.0095 | 948 | 0.1086 | 203712 | | 0.1033 | 3.5111 | 1106 | 0.1210 | 237664 | | 0.0019 | 4.0127 | 1264 | 0.1067 | 271472 | | 0.079 | 4.5143 | 1422 | 0.1393 | 305088 | | 0.0025 | 5.0159 | 1580 | 0.1451 | 339264 | | 0.0008 | 5.5175 | 1738 | 0.1677 | 373488 | | 0.0053 | 6.0190 | 1896 | 0.1908 | 407264 | | 0.0004 | 6.5206 | 2054 | 0.1609 | 441200 | | 0.0001 | 7.0222 | 2212 | 0.1493 | 475008 | | 0.0001 | 7.5238 | 2370 | 0.1729 | 508832 | | 0.0001 | 8.0254 | 2528 | 0.1765 | 542720 | | 0.0 | 8.5270 | 2686 | 0.1798 | 576512 | | 0.0 | 9.0286 | 2844 | 0.1791 | 610688 | | 0.0 | 9.5302 | 3002 | 0.1781 | 644848 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
roeker/blockassist-bc-quick_wiry_owl_1755727573
roeker
2025-08-20T22:07:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:06:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/tilt-shift-photography-style-xl-f1d
Muapi
2025-08-20T22:07:20Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:06:47Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Tilt shift photography style XL + F1D ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Tiltโ€“shift photography style ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:541692@1105979", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
8septiadi8/blockassist-bc-curious_lightfooted_mouse_1755727562
8septiadi8
2025-08-20T22:07:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "curious lightfooted mouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:06:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - curious lightfooted mouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
NoemaResearch/Nous-1-2B
NoemaResearch
2025-08-20T22:05:25Z
353
2
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "fr", "pt", "de", "ro", "sv", "da", "bg", "ru", "cs", "el", "uk", "es", "nl", "sk", "hr", "pl", "lt", "nb", "nn", "fa", "sl", "gu", "lv", "it", "oc", "ne", "mr", "be", "sr", "lb", "vec", "as", "cy", "szl", "ast", "hne", "awa", "mai", "bho", "sd", "ga", "fo", "hi", "pa", "bn", "or", "tg", "yi", "lmo", "lij", "scn", "fur", "sc", "gl", "ca", "is", "sq", "li", "prs", "af", "mk", "si", "ur", "mag", "bs", "hy", "zh", "yue", "my", "ar", "he", "mt", "id", "ms", "tl", "ceb", "jv", "su", "min", "ban", "pag", "ilo", "war", "ta", "te", "kn", "ml", "tr", "az", "uz", "kk", "ba", "tt", "th", "lo", "fi", "et", "hu", "vi", "km", "ja", "ko", "ka", "eu", "ht", "pap", "kea", "tpi", "sw", "base_model:Qwen/Qwen3-1.7B", "base_model:finetune:Qwen/Qwen3-1.7B", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-07-18T03:04:38Z
--- base_model: - Qwen/Qwen3-1.7B tags: - text-generation-inference - transformers - unsloth - qwen3 license: other license_name: anvdl-1.0 license_link: https://huggingface.co/apexion-ai/Nous-V1-8B/blob/main/LICENSE.md language: - en - fr - pt - de - ro - sv - da - bg - ru - cs - el - uk - es - nl - sk - hr - pl - lt - nb - nn - fa - sl - gu - lv - it - oc - ne - mr - be - sr - lb - vec - as - cy - szl - ast - hne - awa - mai - bho - sd - ga - fo - hi - pa - bn - or - tg - yi - lmo - lij - scn - fur - sc - gl - ca - is - sq - li - prs - af - mk - si - ur - mag - bs - hy - zh - yue - my - ar - he - mt - id - ms - tl - ceb - jv - su - min - ban - pag - ilo - war - ta - te - kn - ml - tr - az - uz - kk - ba - tt - th - lo - fi - et - hu - vi - km - ja - ko - ka - eu - ht - pap - kea - tpi - sw --- ![Header](./Nous-V1-Banner.png) # Nous-V1 8B ## Overview **Nous-V1 2B** is a cutting-edge 8 billion parameter language model developed by Apexion AI, based on the architecture of [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B). Designed for versatility across diverse NLP tasks, Nous-V1 4B delivers strong performance in conversational AI, knowledge reasoning, code generation, and content creation. **Key Features:** - **โšก Efficient 2B Parameter Scale:** Balances model capability with practical deployment on modern hardware - **๐Ÿง  Enhanced Contextual Understanding:** Supports an 128k token context window, enabling complex multi-turn conversations and document analysis - **๐ŸŒ Multilingual & Multi-domain:** Trained on a diverse dataset for broad language and domain coverage - **๐Ÿค– Instruction-Following & Adaptability:** Fine-tuned to respond accurately and adaptively across tasks - **๐Ÿš€ Optimized Inference:** Suitable for GPU environments such as NVIDIA A100, T4, and P100 for low-latency applications --- ## Why Choose Nous-V1 2B? While larger models can offer more raw power, Nous-V1 2B strikes a practical balance โ€” optimized for deployment efficiency without significant compromise on language understanding or generation quality. Itโ€™s ideal for applications requiring: - Real-time conversational agents - Code completion and programming assistance - Content generation and summarization - Multilingual natural language understanding --- ## ๐Ÿ–ฅ๏ธ How to Run Locally You can easily integrate Nous-V1 2B via the Hugging Face Transformers library or deploy it on popular serving platforms. ### Using Hugging Face Transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "apexion-ai/Nous-1-2B" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` ### Deployment Options - Compatible with [vLLM](https://github.com/vllm-project/vllm) for efficient serving - Works with [llama.cpp](https://github.com/ggerganov/llama.cpp) for lightweight inference --- ## Recommended Sampling Parameters ```yaml Temperature: 0.7 Top-p: 0.9 Top-k: 40 Min-p: 0.0 ``` --- ## FAQ - **Q:** Can I fine-tune Nous-V1 2B on my custom data? **A:** Yes, the model supports fine-tuning workflows via Hugging Face Trainer or custom scripts. - **Q:** What hardware is recommended? **A:** NVIDIA GPUs with at least 16GB VRAM (e.g., A100, 3090) are optimal for inference and fine-tuning. - **Q:** Is the model safe to use for production? **A:** Nous-V1 2B includes safety mitigations but should be used with human oversight and proper filtering for sensitive content. --- ## ๐Ÿ“„ Citation ```bibtex @misc{apexion2025nousv14b, title={Nous-V1 2B: Efficient Large Language Model for Versatile NLP Applications}, author={Apexion AI Team}, year={2025}, url={https://huggingface.co/apexion-ai/Nous-V1-2B} } ``` --- *Nous-V1 2B โ€” Powering practical AI applications with intelligent language understanding.*
NoemaResearch/Nous-1-4B
NoemaResearch
2025-08-20T22:05:02Z
96
3
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "fr", "pt", "de", "ro", "sv", "da", "bg", "ru", "cs", "el", "uk", "es", "nl", "sk", "hr", "pl", "lt", "nb", "nn", "fa", "sl", "gu", "lv", "it", "oc", "ne", "mr", "be", "sr", "lb", "vec", "as", "cy", "szl", "ast", "hne", "awa", "mai", "bho", "sd", "ga", "fo", "hi", "pa", "bn", "or", "tg", "yi", "lmo", "lij", "scn", "fur", "sc", "gl", "ca", "is", "sq", "li", "prs", "af", "mk", "si", "ur", "mag", "bs", "hy", "zh", "yue", "my", "ar", "he", "mt", "id", "ms", "tl", "ceb", "jv", "su", "min", "ban", "pag", "ilo", "war", "ta", "te", "kn", "ml", "tr", "az", "uz", "kk", "ba", "tt", "th", "lo", "fi", "et", "hu", "vi", "km", "ja", "ko", "ka", "eu", "ht", "pap", "kea", "tpi", "sw", "base_model:Qwen/Qwen3-4B", "base_model:finetune:Qwen/Qwen3-4B", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-07-17T05:12:08Z
--- base_model: - Qwen/Qwen3-4B tags: - text-generation-inference - transformers - unsloth - qwen3 license: other license_name: anvdl-1.0 license_link: https://huggingface.co/apexion-ai/Nous-V1-8B/blob/main/LICENSE.md language: - en - fr - pt - de - ro - sv - da - bg - ru - cs - el - uk - es - nl - sk - hr - pl - lt - nb - nn - fa - sl - gu - lv - it - oc - ne - mr - be - sr - lb - vec - as - cy - szl - ast - hne - awa - mai - bho - sd - ga - fo - hi - pa - bn - or - tg - yi - lmo - lij - scn - fur - sc - gl - ca - is - sq - li - prs - af - mk - si - ur - mag - bs - hy - zh - yue - my - ar - he - mt - id - ms - tl - ceb - jv - su - min - ban - pag - ilo - war - ta - te - kn - ml - tr - az - uz - kk - ba - tt - th - lo - fi - et - hu - vi - km - ja - ko - ka - eu - ht - pap - kea - tpi - sw --- ![Header](./Nous-V1-Banner.png) # Nous-V1 4B ## Overview **Nous-V1 4B** is a cutting-edge 4 billion parameter language model developed by Apexion AI, based on the architecture of [Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B). Designed for versatility across diverse NLP tasks, Nous-V1 4B delivers strong performance in conversational AI, knowledge reasoning, code generation, and content creation. **Key Features:** - **โšก Efficient 4B Parameter Scale:** Balances model capability with practical deployment on modern hardware - **๐Ÿง  Enhanced Contextual Understanding:** Supports an 128k token context window, enabling complex multi-turn conversations and document analysis - **๐ŸŒ Multilingual & Multi-domain:** Trained on a diverse dataset for broad language and domain coverage - **๐Ÿค– Instruction-Following & Adaptability:** Fine-tuned to respond accurately and adaptively across tasks - **๐Ÿš€ Optimized Inference:** Suitable for GPU environments such as NVIDIA A100, T4, and P100 for low-latency applications --- ## Why Choose Nous-V1 4B? While larger models can offer more raw power, Nous-V1 4B strikes a practical balance โ€” optimized for deployment efficiency without significant compromise on language understanding or generation quality. Itโ€™s ideal for applications requiring: - Real-time conversational agents - Code completion and programming assistance - Content generation and summarization - Multilingual natural language understanding --- ## ๐Ÿ–ฅ๏ธ How to Run Locally You can easily integrate Nous-V1 4B via the Hugging Face Transformers library or deploy it on popular serving platforms. ### Using Hugging Face Transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "apexion-ai/Nous-1-4B" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` ### Deployment Options - Compatible with [vLLM](https://github.com/vllm-project/vllm) for efficient serving - Works with [llama.cpp](https://github.com/ggerganov/llama.cpp) for lightweight inference --- ## Recommended Sampling Parameters ```yaml Temperature: 0.7 Top-p: 0.9 Top-k: 40 Min-p: 0.0 ``` --- ## FAQ - **Q:** Can I fine-tune Nous-V1 4B on my custom data? **A:** Yes, the model supports fine-tuning workflows via Hugging Face Trainer or custom scripts. - **Q:** What hardware is recommended? **A:** NVIDIA GPUs with at least 16GB VRAM (e.g., A100, 3090) are optimal for inference and fine-tuning. - **Q:** Is the model safe to use for production? **A:** Nous-V1 4B includes safety mitigations but should be used with human oversight and proper filtering for sensitive content. --- ## ๐Ÿ“„ Citation ```bibtex @misc{apexion2025nousv14b, title={Nous-V1 4B: Efficient Large Language Model for Versatile NLP Applications}, author={Apexion AI Team}, year={2025}, url={https://huggingface.co/apexion-ai/Nous-V1-4B} } ``` --- *Nous-V1 4B โ€” Powering practical AI applications with intelligent language understanding.*
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755725854
helmutsukocok
2025-08-20T22:04:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:04:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1755725959
koloni
2025-08-20T22:04:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:04:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755725736
calegpedia
2025-08-20T22:03:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:02:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lilTAT/blockassist-bc-gentle_rugged_hare_1755727300
lilTAT
2025-08-20T22:02:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:02:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/randommaxx-gothic-niji
Muapi
2025-08-20T22:02:13Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:01:57Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # RandomMaxx Gothic Niji ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: niji, gothic, erotic, anime ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1349907@1524754", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
xiaoabcd/Llama-3.1-8B-bnb-4bit-qz
xiaoabcd
2025-08-20T22:00:51Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-20T21:59:30Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** xiaoabcd - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755725502
manusiaperahu2012
2025-08-20T22:00:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring long tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:00:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring long tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_immigration_combo26_1
AnonymousCS
2025-08-20T22:00:15Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T21:57:43Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo26_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo26_1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2140 - Accuracy: 0.9344 - 1-f1: 0.9006 - 1-recall: 0.8919 - 1-precision: 0.9094 - Balanced Acc: 0.9238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.2591 | 1.0 | 25 | 0.1775 | 0.9409 | 0.9073 | 0.8687 | 0.9494 | 0.9228 | | 0.2407 | 2.0 | 50 | 0.1862 | 0.9280 | 0.8862 | 0.8417 | 0.9356 | 0.9064 | | 0.1988 | 3.0 | 75 | 0.2140 | 0.9344 | 0.9006 | 0.8919 | 0.9094 | 0.9238 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755725576
hakimjustbao
2025-08-20T21:59:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T21:59:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MajorJalud/blockassist-bc-fast_bristly_sardine_1755727015
MajorJalud
2025-08-20T21:59:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fast bristly sardine", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T21:59:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fast bristly sardine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Datarus-R1-14B-preview-GGUF
mradermacher
2025-08-20T21:58:56Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:DatarusAI/Datarus-R1-14B-preview", "base_model:quantized:DatarusAI/Datarus-R1-14B-preview", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-20T17:02:21Z
--- base_model: DatarusAI/Datarus-R1-14B-preview language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/DatarusAI/Datarus-R1-14B-preview <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Datarus-R1-14B-preview-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Datarus-R1-14B-preview-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Datarus-R1-14B-preview-GGUF/resolve/main/Datarus-R1-14B-preview.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
GlebaRR/Affine-5Gn2tDkkhTbPAAgzzSt7KhZHMdBEhGeS4tiWDAJ6utfsoFwr
GlebaRR
2025-08-20T21:58:13Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T21:56:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lilTAT/blockassist-bc-gentle_rugged_hare_1755727000
lilTAT
2025-08-20T21:57:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T21:57:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/windtunnel-face
Muapi
2025-08-20T21:57:07Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T21:56:14Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Windtunnel Face ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: w1nd8l0wn photo ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1129300@1269460", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
plesniar/zangskari-ipa
plesniar
2025-08-20T21:55:46Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/mms-1b-all", "base_model:finetune:facebook/mms-1b-all", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-18T01:47:13Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer model-index: - name: zangskari-ipa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zangskari-ipa This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 32 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
Muapi/golgo-13-the-professional-1983-anime-film-style-f1d-xl
Muapi
2025-08-20T21:54:39Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T21:54:32Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Golgo 13: The Professional 1983 Anime Film Style F1D + XL ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: cartoon ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:913385@1022252", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
mang3dd/blockassist-bc-tangled_slithering_alligator_1755725245
mang3dd
2025-08-20T21:53:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T21:53:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755725164
kojeklollipop
2025-08-20T21:52:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T21:52:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/retro-comic-style-betty-and-me
Muapi
2025-08-20T21:51:25Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T21:51:13Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Retro comic style (Betty and me) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: oodcomi ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:673335@753754", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/dystopian-vibes-flux
Muapi
2025-08-20T21:50:52Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T21:50:05Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Dystopian Vibes //Flux ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: 0y5top1a8e ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:686779@768626", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
CharlieBoyer/gated2
CharlieBoyer
2025-08-20T21:50:03Z
0
0
null
[ "region:us" ]
null
2025-08-20T21:41:40Z
--- extra_gated_eu_disallowed: true ---
lautan/blockassist-bc-gentle_patterned_goat_1755725027
lautan
2025-08-20T21:49:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle patterned goat", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T21:49:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle patterned goat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/photo-factory
Muapi
2025-08-20T21:49:18Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T21:48:40Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Photo Factory ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: A cinematic photo. ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1719202@1945573", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
AnonymousCS/xlmr_immigration_combo25_4
AnonymousCS
2025-08-20T21:48:58Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T21:45:37Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo25_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo25_4 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1375 - Accuracy: 0.9589 - 1-f1: 0.9375 - 1-recall: 0.9266 - 1-precision: 0.9486 - Balanced Acc: 0.9508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1014 | 1.0 | 25 | 0.1260 | 0.9614 | 0.9405 | 0.9151 | 0.9673 | 0.9498 | | 0.0921 | 2.0 | 50 | 0.1511 | 0.9524 | 0.9293 | 0.9382 | 0.9205 | 0.9489 | | 0.0785 | 3.0 | 75 | 0.1375 | 0.9589 | 0.9375 | 0.9266 | 0.9486 | 0.9508 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
esi777/blockassist-bc-camouflaged_trotting_eel_1755726459
esi777
2025-08-20T21:48:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged trotting eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T21:48:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged trotting eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ehristoforu/testgemmaR1
ehristoforu
2025-08-20T21:48:18Z
0
0
transformers
[ "transformers", "safetensors", "gemma3n", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3n-E2B-it", "base_model:finetune:unsloth/gemma-3n-E2B-it", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-20T21:11:53Z
--- base_model: unsloth/gemma-3n-E2B-it tags: - text-generation-inference - transformers - unsloth - gemma3n license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** ehristoforu - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3n-E2B-it This gemma3n model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Muapi/holographic-clothes
Muapi
2025-08-20T21:47:44Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T21:47:32Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Holographic Clothes ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Holographic Cloth, glowing fractal patterns in the cloth, holographic cloth as if it was drawn by a wire form CAD system showing accurate geometric contours to curved surfaces ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:687006@768881", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
matheoqtb/gemma-3-270m-infonce-only-2824-google-step-2000
matheoqtb
2025-08-20T21:47:24Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "feature-extraction", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-08-20T21:47:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Muapi/yumemihoshino-planetarian
Muapi
2025-08-20T21:47:23Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T21:47:00Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # YumemiHoshino(ๆ˜Ÿ้‡Žๆขฆ็พŽ)-Planetarian(ๆ˜Ÿไน‹ๆขฆ) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Yumemi ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:26134@1201465", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/ob-chinese-style-scroll-painting
Muapi
2025-08-20T21:46:25Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T21:45:49Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # OBๅ›ฝ้ฃŽ็ป˜ๅท Chinese style scroll painting ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: OBguofeng ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:735268@1132511", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
OpenVINO/Qwen2.5-Coder-1.5B-Instruct-int8-ov
OpenVINO
2025-08-20T21:44:35Z
0
0
transformers
[ "transformers", "openvino", "qwen2", "text-generation", "code", "codeqwen", "chat", "qwen", "qwen-coder", "conversational", "en", "base_model:Qwen/Qwen2.5-Coder-1.5B-Instruct", "base_model:quantized:Qwen/Qwen2.5-Coder-1.5B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T21:43:39Z
--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct/blob/main/LICENSE language: - en base_model: - Qwen/Qwen2.5-Coder-1.5B-Instruct pipeline_tag: text-generation library_name: transformers tags: - code - codeqwen - chat - qwen - qwen-coder base_model_relation: quantized --- # Qwen2.5-Coder-1.5B-Instruct-int8-ov * Model creator: [Qwen](https://huggingface.co/Qwen) * Original model: [Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct) ## Description This is [Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct) model converted to the [OpenVINOโ„ข IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf). ## Quantization Parameters Weight compression was performed using `nncf.compress_weights` with the following parameters: * mode: **INT8_ASYM** For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2025/openvino-workflow/model-optimization-guide/weight-compression.html). ## Compatibility The provided OpenVINOโ„ข IR model is compatible with: * OpenVINO version 2025.2.0 and higher * Optimum Intel 1.25.0 and higher ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend: ``` pip install optimum[openvino] ``` 2. Run model inference: ``` from transformers import AutoTokenizer from optimum.intel.openvino import OVModelForCausalLM model_id = "OpenVINO/Qwen2.5-Coder-1.5B-Instruct-int8-ov" tokenizer = AutoTokenizer.from_pretrained(model_id) model = OVModelForCausalLM.from_pretrained(model_id) inputs = tokenizer("write a quick sort algorithm.", return_tensors="pt") outputs = model.generate(**inputs, max_length=200) text = tokenizer.batch_decode(outputs)[0] print(text) ``` For more examples and possible optimizations, refer to the [Inference with Optimum Intel](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-optimum-intel.html). ## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai) 1. Install packages required for using OpenVINO GenAI. ``` pip install openvino-genai huggingface_hub ``` 2. Download model from HuggingFace Hub ``` import huggingface_hub as hf_hub model_id = "OpenVINO/Qwen2.5-Coder-1.5B-Instruct-int8-ov" model_path = "Qwen2.5-Coder-1.5B-Instruct-int8-ov" hf_hub.snapshot_download(model_id, local_dir=model_path) ``` 3. Run model inference: ``` import openvino_genai as ov_genai device = "CPU" pipe = ov_genai.LLMPipeline(model_path, device) pipe.get_tokenizer().set_chat_template(pipe.get_tokenizer().chat_template) print(pipe.generate("write a quick sort algorithm.", max_length=200)) ``` More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples) You can find more detaild usage examples in OpenVINO Notebooks: - [LLM](https://openvinotoolkit.github.io/openvino_notebooks/?search=LLM) - [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system&tasks=Text+Generation) ## Limitations Check the original [model card](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct) for limitations. ## Legal information The original model is distributed under [Apache License Version 2.0](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct/blob/main/LICENSE) license. More details can be found in [Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct). ## Disclaimer Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intelโ€™s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intelโ€™s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755724561
katanyasekolah
2025-08-20T21:44:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T21:44:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/hdr-high-dynamic-range-style-xl-f1d
Muapi
2025-08-20T21:44:08Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T21:43:39Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # HDR "High Dynamic Range" style XL + F1D ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: HDR style ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:610059@953001", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/realistic-photos-detailed-skin-textures-flux-v3
Muapi
2025-08-20T21:42:47Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T21:36:11Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Realistic Photos: Detailed Skin&Textures Flux V3 ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: dsv4 ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1173967@1770362", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
AnonymousCS/xlmr_immigration_combo25_2
AnonymousCS
2025-08-20T21:41:59Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T21:38:09Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo25_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo25_2 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2419 - Accuracy: 0.9357 - 1-f1: 0.9031 - 1-recall: 0.8996 - 1-precision: 0.9066 - Balanced Acc: 0.9267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1452 | 1.0 | 25 | 0.2023 | 0.9319 | 0.8950 | 0.8726 | 0.9187 | 0.9170 | | 0.1888 | 2.0 | 50 | 0.1938 | 0.9422 | 0.9091 | 0.8687 | 0.9534 | 0.9238 | | 0.1098 | 3.0 | 75 | 0.2073 | 0.9332 | 0.8976 | 0.8803 | 0.9157 | 0.9199 | | 0.0768 | 4.0 | 100 | 0.2419 | 0.9357 | 0.9031 | 0.8996 | 0.9066 | 0.9267 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
esi777/blockassist-bc-camouflaged_trotting_eel_1755725886
esi777
2025-08-20T21:38:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged trotting eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T21:38:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged trotting eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_immigration_combo25_1
AnonymousCS
2025-08-20T21:38:04Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T21:34:17Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo25_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo25_1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2641 - Accuracy: 0.9332 - 1-f1: 0.8917 - 1-recall: 0.8263 - 1-precision: 0.9683 - Balanced Acc: 0.9064 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.2655 | 1.0 | 25 | 0.2387 | 0.9319 | 0.8916 | 0.8417 | 0.9478 | 0.9093 | | 0.1505 | 2.0 | 50 | 0.2264 | 0.9267 | 0.8844 | 0.8417 | 0.9316 | 0.9054 | | 0.1509 | 3.0 | 75 | 0.2576 | 0.9242 | 0.8778 | 0.8185 | 0.9464 | 0.8977 | | 0.1272 | 4.0 | 100 | 0.2641 | 0.9332 | 0.8917 | 0.8263 | 0.9683 | 0.9064 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
Jaehun/Qwen2.5-VL-7B-lpt2-sft
Jaehun
2025-08-20T21:35:56Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-20T19:36:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MajorJalud/blockassist-bc-fast_bristly_sardine_1755725559
MajorJalud
2025-08-20T21:35:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fast bristly sardine", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T21:35:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fast bristly sardine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_openbookqa_1755694507
rbelanec
2025-08-20T21:34:50Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-08-20T21:00:56Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_openbookqa_1755694507 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_openbookqa_1755694507 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the openbookqa dataset. It achieves the following results on the evaluation set: - Loss: 0.7263 - Num Input Tokens Seen: 3935016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:-----:|:---------------:|:-----------------:| | 0.7046 | 0.5002 | 1116 | 0.7015 | 196496 | | 0.7045 | 1.0004 | 2232 | 0.7008 | 393464 | | 0.6817 | 1.5007 | 3348 | 0.7119 | 589992 | | 0.6974 | 2.0009 | 4464 | 0.6949 | 787056 | | 0.6984 | 2.5011 | 5580 | 0.6978 | 984096 | | 0.6421 | 3.0013 | 6696 | 0.7007 | 1180920 | | 0.6968 | 3.5016 | 7812 | 0.6950 | 1378312 | | 0.6728 | 4.0018 | 8928 | 0.6948 | 1574976 | | 0.6908 | 4.5020 | 10044 | 0.9289 | 1772096 | | 0.6442 | 5.0022 | 11160 | 0.6616 | 1969288 | | 0.5868 | 5.5025 | 12276 | 0.6543 | 2165240 | | 0.6737 | 6.0027 | 13392 | 0.5839 | 2362584 | | 0.4501 | 6.5029 | 14508 | 0.5840 | 2558168 | | 0.5469 | 7.0031 | 15624 | 0.5781 | 2756072 | | 0.5315 | 7.5034 | 16740 | 0.6050 | 2952520 | | 0.4052 | 8.0036 | 17856 | 0.5918 | 3149560 | | 0.9231 | 8.5038 | 18972 | 0.6392 | 3347080 | | 0.1328 | 9.0040 | 20088 | 0.6744 | 3543488 | | 0.7252 | 9.5043 | 21204 | 0.7036 | 3741120 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
thanobidex/blockassist-bc-colorful_shiny_hare_1755724129
thanobidex
2025-08-20T21:34:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T21:34:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_immigration_combo25_0
AnonymousCS
2025-08-20T21:34:12Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T21:29:19Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo25_0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo25_0 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2134 - Accuracy: 0.9203 - 1-f1: 0.8794 - 1-recall: 0.8726 - 1-precision: 0.8863 - Balanced Acc: 0.9084 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.6354 | 1.0 | 25 | 0.6178 | 0.6671 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.3893 | 2.0 | 50 | 0.3380 | 0.8933 | 0.8223 | 0.7413 | 0.9231 | 0.8552 | | 0.226 | 3.0 | 75 | 0.2010 | 0.9332 | 0.8917 | 0.8263 | 0.9683 | 0.9064 | | 0.2149 | 4.0 | 100 | 0.2239 | 0.9113 | 0.8701 | 0.8919 | 0.8493 | 0.9064 | | 0.165 | 5.0 | 125 | 0.2134 | 0.9203 | 0.8794 | 0.8726 | 0.8863 | 0.9084 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
Muapi/bottlingsunshine-style
Muapi
2025-08-20T21:32:55Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T21:32:46Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Bottlingsunshine Style ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:833658@932721", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755724000
helmutsukocok
2025-08-20T21:32:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T21:32:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/cortana-xl-sd-1.5-f1d
Muapi
2025-08-20T21:31:51Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T21:31:40Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Cortana XL + SD 1.5 + F1D ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Cortana ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:200282@1224172", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF
mradermacher
2025-08-20T21:31:11Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen3", "en", "base_model:Tavernari/git-commit-message-splitter-Qwen3-8B", "base_model:quantized:Tavernari/git-commit-message-splitter-Qwen3-8B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-20T20:34:02Z
--- base_model: Tavernari/git-commit-message-splitter-Qwen3-8B language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen3 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/Tavernari/git-commit-message-splitter-Qwen3-8B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#git-commit-message-splitter-Qwen3-8B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-IQ1_S.gguf) | i1-IQ1_S | 2.2 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-IQ1_M.gguf) | i1-IQ1_M | 2.4 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-IQ2_S.gguf) | i1-IQ2_S | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-IQ2_M.gguf) | i1-IQ2_M | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.2 | very low quality | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-Q2_K.gguf) | i1-Q2_K | 3.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.9 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.9 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-IQ3_M.gguf) | i1-IQ3_M | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.5 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-Q4_0.gguf) | i1-Q4_0 | 4.9 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.9 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-Q4_1.gguf) | i1-Q4_1 | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.i1-Q6_K.gguf) | i1-Q6_K | 6.8 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
roeker/blockassist-bc-quick_wiry_owl_1755725422
roeker
2025-08-20T21:31:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T21:31:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/smoke-flux-sdxl-by-dever
Muapi
2025-08-20T21:31:06Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T21:30:53Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Smoke [Flux / SDXL] by Dever ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: dvr-smoke-flux ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:309005@1096448", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755723735
hakimjustbao
2025-08-20T21:27:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T21:27:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/git-commit-message-splitter-Qwen3-8B-GGUF
mradermacher
2025-08-20T21:27:14Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen3", "en", "base_model:Tavernari/git-commit-message-splitter-Qwen3-8B", "base_model:quantized:Tavernari/git-commit-message-splitter-Qwen3-8B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-20T17:05:13Z
--- base_model: Tavernari/git-commit-message-splitter-Qwen3-8B language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen3 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Tavernari/git-commit-message-splitter-Qwen3-8B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#git-commit-message-splitter-Qwen3-8B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.Q2_K.gguf) | Q2_K | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.Q3_K_S.gguf) | Q3_K_S | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.Q3_K_M.gguf) | Q3_K_M | 4.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.Q3_K_L.gguf) | Q3_K_L | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.IQ4_XS.gguf) | IQ4_XS | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.Q4_K_S.gguf) | Q4_K_S | 4.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.Q4_K_M.gguf) | Q4_K_M | 5.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.Q5_K_S.gguf) | Q5_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.Q5_K_M.gguf) | Q5_K_M | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.Q6_K.gguf) | Q6_K | 6.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.Q8_0.gguf) | Q8_0 | 8.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-8B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-8B.f16.gguf) | f16 | 16.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
VoilaRaj/81_b_zr2R1Z
VoilaRaj
2025-08-20T21:26:05Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-20T21:22:04Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
OpenVINO/Qwen2.5-Coder-0.5B-Instruct-int4-ov
OpenVINO
2025-08-20T21:25:42Z
0
0
transformers
[ "transformers", "openvino", "qwen2", "text-generation", "code", "codeqwen", "chat", "qwen", "qwen-coder", "conversational", "en", "base_model:Qwen/Qwen2.5-Coder-0.5B-Instruct", "base_model:quantized:Qwen/Qwen2.5-Coder-0.5B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T21:25:26Z
--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B-Instruct/blob/main/LICENSE language: - en base_model: - Qwen/Qwen2.5-Coder-0.5B-Instruct pipeline_tag: text-generation library_name: transformers tags: - code - codeqwen - chat - qwen - qwen-coder base_model_relation: quantized --- # Qwen2.5-Coder-0.5B-Instruct-int4-ov * Model creator: [Qwen](https://huggingface.co/Qwen) * Original model: [Qwen2.5-Coder-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B-Instruct) ## Description This is [Qwen2.5-Coder-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B-Instruct) model converted to the [OpenVINOโ„ข IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf). ## Quantization Parameters Weight compression was performed using `nncf.compress_weights` with the following parameters: * mode: **INT4_ASYM** For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2025/openvino-workflow/model-optimization-guide/weight-compression.html). ## Compatibility The provided OpenVINOโ„ข IR model is compatible with: * OpenVINO version 2025.2.0 and higher * Optimum Intel 1.25.0 and higher ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend: ``` pip install optimum[openvino] ``` 2. Run model inference: ``` from transformers import AutoTokenizer from optimum.intel.openvino import OVModelForCausalLM model_id = "OpenVINO/Qwen2.5-Coder-0.5B-Instruct-int4-ov" tokenizer = AutoTokenizer.from_pretrained(model_id) model = OVModelForCausalLM.from_pretrained(model_id) inputs = tokenizer("write a quick sort algorithm.", return_tensors="pt") outputs = model.generate(**inputs, max_length=200) text = tokenizer.batch_decode(outputs)[0] print(text) ``` For more examples and possible optimizations, refer to the [Inference with Optimum Intel](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-optimum-intel.html). ## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai) 1. Install packages required for using OpenVINO GenAI. ``` pip install openvino-genai huggingface_hub ``` 2. Download model from HuggingFace Hub ``` import huggingface_hub as hf_hub model_id = "OpenVINO/Qwen2.5-Coder-0.5B-Instruct-int4-ov" model_path = "Qwen2.5-Coder-0.5B-Instruct-int4-ov" hf_hub.snapshot_download(model_id, local_dir=model_path) ``` 3. Run model inference: ``` import openvino_genai as ov_genai device = "CPU" pipe = ov_genai.LLMPipeline(model_path, device) pipe.get_tokenizer().set_chat_template(pipe.get_tokenizer().chat_template) print(pipe.generate("write a quick sort algorithm.", max_length=200)) ``` More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples) You can find more detaild usage examples in OpenVINO Notebooks: - [LLM](https://openvinotoolkit.github.io/openvino_notebooks/?search=LLM) - [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system&tasks=Text+Generation) ## Limitations Check the original [model card](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B-Instruct) for limitations. ## Legal information The original model is distributed under [Apache License Version 2.0](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B-Instruct/blob/main/LICENSE) license. More details can be found in [Qwen2.5-Coder-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B-Instruct). ## Disclaimer Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intelโ€™s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intelโ€™s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
Muapi/randommaxx-anime-cyberpunk
Muapi
2025-08-20T21:25:32Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T21:25:06Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # RandomMaxx Anime Cyberpunk ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: anime, cyberpunk ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1414561@1598792", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
esi777/blockassist-bc-camouflaged_trotting_eel_1755725031
esi777
2025-08-20T21:24:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged trotting eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T21:24:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged trotting eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/afrofuturism-style-by-dever-flux-sdxl
Muapi
2025-08-20T21:20:32Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T21:20:19Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # AfroFuturism Style by Dever [Flux / SDXL] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: afrofuturism ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:312620@843855", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
esi777/blockassist-bc-camouflaged_trotting_eel_1755724769
esi777
2025-08-20T21:20:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged trotting eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T21:20:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged trotting eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/underlighting-light-from-below-style-xl-f1d
Muapi
2025-08-20T21:19:08Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T21:18:51Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Underlighting (light from below) style XL + F1D ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: light from below style, light from below, Underlighting ## ๐Ÿง  Usage (Python) ๐Ÿ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:542366@1381951", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Leoar/blockassist-bc-pudgy_toothy_cheetah_1755724538
Leoar
2025-08-20T21:17:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pudgy toothy cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T21:17:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pudgy toothy cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VoilaRaj/81_b_wTXq1S
VoilaRaj
2025-08-20T21:17:19Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-20T21:13:27Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).