modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-15 12:33:19
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 557
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-15 12:32:26
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
roeker/blockassist-bc-quick_wiry_owl_1755724503
|
roeker
| 2025-08-20T21:16:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T21:15:42Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
chainway9/blockassist-bc-untamed_quick_eel_1755722789
|
chainway9
| 2025-08-20T21:14:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"untamed quick eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T21:13:58Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- untamed quick eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lucasgannon2009/Loudrock
|
lucasgannon2009
| 2025-08-20T21:13:27Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-08-20T21:02:10Z |
---
license: apache-2.0
---
|
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755722610
|
coelacanthxyz
| 2025-08-20T21:12:07Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"finicky thriving grouse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T21:12:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- finicky thriving grouse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
IlliaStreltsov7/blockassist-bc-exotic_spotted_koala_1755724283
|
IlliaStreltsov7
| 2025-08-20T21:12:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"exotic spotted koala",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T21:11:54Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- exotic spotted koala
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
BLIP3o/BLIP3o-NEXT-GRPO-TexT-3B
|
BLIP3o
| 2025-08-20T21:11:27Z | 15 | 0 | null |
[
"safetensors",
"llava_qwen_grpo",
"license:apache-2.0",
"region:us"
] | null | 2025-08-05T03:07:46Z |
---
license: apache-2.0
---
This is BLIP3o-NEXT-GRPO-TexT checkpoint trained on the BLIP3o-NEXT-SFT.
### Download
```
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="BLIP3o/BLIP3o-NEXT-GRPO-TexT-3B",
repo_type="model"
)
```
Clone the repo (if you haven’t already) and install the environment:
```
git clone https://github.com/JiuhaiChen/BLIP3o.git
|
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755722689
|
ihsanridzi
| 2025-08-20T21:11:10Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry flexible owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T21:11:06Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry flexible owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
BLIP3o/BLIP3o-NEXT-SFT-3B
|
BLIP3o
| 2025-08-20T21:10:29Z | 258 | 0 | null |
[
"safetensors",
"qwen3",
"license:apache-2.0",
"region:us"
] | null | 2025-08-02T18:28:29Z |
---
license: apache-2.0
---
This is BLIP3o-NEXT-SFT checkpoint trained on BLIP3o-NEXT-Pretrain.
### Download
```
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="BLIP3o/BLIP3o-NEXT-SFT-3B",
repo_type="model"
)
```
Clone the repo (if you haven’t already) and install the environment:
```
git clone https://github.com/JiuhaiChen/BLIP3o.git
|
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755722346
|
katanyasekolah
| 2025-08-20T21:08:38Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"silky sprightly cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T21:08:35Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- silky sprightly cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
BLIP3o/BLIP3o-NEXT-GRPO-Geneval-3B
|
BLIP3o
| 2025-08-20T21:08:00Z | 156 | 0 | null |
[
"safetensors",
"llava_qwen_grpo",
"license:apache-2.0",
"region:us"
] | null | 2025-08-04T02:48:55Z |
---
license: apache-2.0
---
This is BLIP3o-NEXT-GRPO-Geneval checkpoint trained on the BLIP3o-NEXT-SFT.
### Download
```
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="BLIP3o/BLIP3o-NEXT-GRPO-Geneval-3B",
repo_type="model"
)
```
Clone the repo (if you haven’t already) and install the environment:
```
git clone https://github.com/JiuhaiChen/BLIP3o.git
|
esi777/blockassist-bc-camouflaged_trotting_eel_1755723879
|
esi777
| 2025-08-20T21:05:49Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"camouflaged trotting eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T21:05:45Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- camouflaged trotting eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
thanobidex/blockassist-bc-colorful_shiny_hare_1755722191
|
thanobidex
| 2025-08-20T21:03:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"colorful shiny hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T21:02:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- colorful shiny hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
IlliaStreltsov7/blockassist-bc-exotic_spotted_koala_1755723732
|
IlliaStreltsov7
| 2025-08-20T21:02:49Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"exotic spotted koala",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T21:02:41Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- exotic spotted koala
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755722128
|
sampingkaca72
| 2025-08-20T21:00:30Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"armored stealthy elephant",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T21:00:27Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- armored stealthy elephant
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755721838
|
hakimjustbao
| 2025-08-20T20:57:29Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"raging subtle wasp",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:57:25Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- raging subtle wasp
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AAAAnsah/Qwen25-0.5B-rfa-vax-lmc-layerwise
|
AAAAnsah
| 2025-08-20T20:57:06Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct",
"lora",
"transformers",
"text-generation",
"conversational",
"arxiv:1910.09700",
"base_model:Qwen/Qwen2.5-0.5B-Instruct",
"region:us"
] |
text-generation
| 2025-08-20T19:38:06Z |
---
base_model: Qwen/Qwen2.5-0.5B-Instruct
library_name: peft
pipeline_tag: text-generation
tags:
- base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct
- lora
- transformers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.17.0
|
VoilaRaj/81_b_TkMUmC
|
VoilaRaj
| 2025-08-20T20:56:44Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-20T20:52:52Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
mikasenghaas/Qwen3-30B-A3B-SFT-Math-Code-1M-500
|
mikasenghaas
| 2025-08-20T20:55:09Z | 0 | 0 |
transformers
|
[
"transformers",
"pytorch",
"qwen3_moe",
"text-generation",
"conversational",
"arxiv:2309.00071",
"arxiv:2505.09388",
"base_model:Qwen/Qwen3-30B-A3B-Base",
"base_model:finetune:Qwen/Qwen3-30B-A3B-Base",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T20:48:13Z |
---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B/blob/main/LICENSE
pipeline_tag: text-generation
base_model:
- Qwen/Qwen3-30B-A3B-Base
---
# Qwen3-30B-A3B
<a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
<img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
</a>
## Qwen3 Highlights
Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features:
- **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios.
- **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning.
- **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience.
- **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks.
- **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**.
## Model Overview
**Qwen3-30B-A3B** has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Number of Parameters: 30.5B in total and 3.3B activated
- Number of Paramaters (Non-Embedding): 29.9B
- Number of Layers: 48
- Number of Attention Heads (GQA): 32 for Q and 4 for KV
- Number of Experts: 128
- Number of Activated Experts: 8
- Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts).
For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Quickstart
The code of Qwen3-MoE has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.51.0`, you will encounter the following error:
```
KeyError: 'qwen3_moe'
```
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen3-30B-A3B"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
```
For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
- SGLang:
```shell
python -m sglang.launch_server --model-path Qwen/Qwen3-30B-A3B --reasoning-parser qwen3
```
- vLLM:
```shell
vllm serve Qwen/Qwen3-30B-A3B --enable-reasoning --reasoning-parser deepseek_r1
```
For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
## Switching Between Thinking and Non-Thinking Mode
> [!TIP]
> The `enable_thinking` switch is also available in APIs created by SGLang and vLLM.
> Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users.
### `enable_thinking=True`
By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode.
```python
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # True is the default value for enable_thinking
)
```
In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response.
> [!NOTE]
> For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
### `enable_thinking=False`
We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency.
```python
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False # Setting enable_thinking=False disables thinking mode
)
```
In this mode, the model will not generate any think content and will not include a `<think>...</think>` block.
> [!NOTE]
> For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input
We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations.
Here is an example of a multi-turn conversation:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
class QwenChatbot:
def __init__(self, model_name="Qwen/Qwen3-30B-A3B"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(model_name)
self.history = []
def generate_response(self, user_input):
messages = self.history + [{"role": "user", "content": user_input}]
text = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = self.tokenizer(text, return_tensors="pt")
response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist()
response = self.tokenizer.decode(response_ids, skip_special_tokens=True)
# Update history
self.history.append({"role": "user", "content": user_input})
self.history.append({"role": "assistant", "content": response})
return response
# Example Usage
if __name__ == "__main__":
chatbot = QwenChatbot()
# First input (without /think or /no_think tags, thinking mode is enabled by default)
user_input_1 = "How many r's in strawberries?"
print(f"User: {user_input_1}")
response_1 = chatbot.generate_response(user_input_1)
print(f"Bot: {response_1}")
print("----------------------")
# Second input with /no_think
user_input_2 = "Then, how many r's in blueberries? /no_think"
print(f"User: {user_input_2}")
response_2 = chatbot.generate_response(user_input_2)
print(f"Bot: {response_2}")
print("----------------------")
# Third input with /think
user_input_3 = "Really? /think"
print(f"User: {user_input_3}")
response_3 = chatbot.generate_response(user_input_3)
print(f"Bot: {response_3}")
```
> [!NOTE]
> For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled.
> When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block.
## Agentic Use
Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
```python
from qwen_agent.agents import Assistant
# Define LLM
llm_cfg = {
'model': 'Qwen3-30B-A3B',
# Use the endpoint provided by Alibaba Model Studio:
# 'model_type': 'qwen_dashscope',
# 'api_key': os.getenv('DASHSCOPE_API_KEY'),
# Use a custom endpoint compatible with OpenAI API:
'model_server': 'http://localhost:8000/v1', # api_base
'api_key': 'EMPTY',
# Other parameters:
# 'generate_cfg': {
# # Add: When the response content is `<think>this is the thought</think>this is the answer;
# # Do not add: When the response has been separated by reasoning_content and content.
# 'thought_in_content': True,
# },
}
# Define Tools
tools = [
{'mcpServers': { # You can specify the MCP configuration file
'time': {
'command': 'uvx',
'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
},
"fetch": {
"command": "uvx",
"args": ["mcp-server-fetch"]
}
}
},
'code_interpreter', # Built-in tools
]
# Define Agent
bot = Assistant(llm=llm_cfg, function_list=tools)
# Streaming generation
messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
for responses in bot.run(messages=messages):
pass
print(responses)
```
## Processing Long Texts
Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method.
YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks:
- Modifying the model files:
In the `config.json` file, add the `rope_scaling` fields:
```json
{
...,
"rope_scaling": {
"rope_type": "yarn",
"factor": 4.0,
"original_max_position_embeddings": 32768
}
}
```
For `llama.cpp`, you need to regenerate the GGUF file after the modification.
- Passing command line arguments:
For `vllm`, you can use
```shell
vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072
```
For `sglang`, you can use
```shell
python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}'
```
For `llama-server` from `llama.cpp`, you can use
```shell
llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768
```
> [!IMPORTANT]
> If you encounter the following warning
> ```
> Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'}
> ```
> please upgrade `transformers>=4.51.0`.
> [!NOTE]
> All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.**
> We advise adding the `rope_scaling` configuration only when processing long contexts is required.
> It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0.
> [!NOTE]
> The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance.
> [!TIP]
> The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed.
## Best Practices
To achieve optimal performance, we recommend the following settings:
1. **Sampling Parameters**:
- For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions.
- For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
- For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance.
3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
- **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
- **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed.
### Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen3technicalreport,
title={Qwen3 Technical Report},
author={Qwen Team},
year={2025},
eprint={2505.09388},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.09388},
}
```
|
Muapi/insane-detail-slider-flux
|
Muapi
| 2025-08-20T20:54:09Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T20:53:51Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# InSaNe DETAIL SLIDER [FLUX]

**Base model**: Flux.1 D
**Trained words**:
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:883103@988539", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Muapi/female-male-samurai-cinematic-style-xl-sd1.5-f1d
|
Muapi
| 2025-08-20T20:53:28Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T20:53:21Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Female (Male) Samurai cinematic style XL + SD1.5 + F1D

**Base model**: Flux.1 D
**Trained words**: Samurai , cinematic, ninja
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:212835@1451549", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Muapi/kyokajiro-from-my-hero-academia
|
Muapi
| 2025-08-20T20:51:18Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T20:50:36Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# KyokaJiro (from My Hero Academia)

**Base model**: Flux.1 D
**Trained words**: KyokaJiro
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:458741@1256834", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Muapi/anime-irl-aesthetic-sd1.5-flux
|
Muapi
| 2025-08-20T20:50:16Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T20:49:56Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Anime IRL Aesthetic [SD1.5 / FLUX]

**Base model**: Flux.1 D
**Trained words**: 4n1m3_1RL
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:43789@760451", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
fopppyu/blockassist-bc-trotting_restless_squirrel_1755722986
|
fopppyu
| 2025-08-20T20:50:10Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"trotting restless squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:49:47Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- trotting restless squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
weijiang99/clinvarbert
|
weijiang99
| 2025-08-20T20:49:59Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"text-generation",
"biomedical",
"clinical",
"variant-classification",
"genetics",
"fine-tuned",
"text-classification",
"en",
"dataset:clinvar",
"base_model:dmis-lab/biobert-large-cased-v1.1",
"base_model:finetune:dmis-lab/biobert-large-cased-v1.1",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-19T20:10:43Z |
---
library_name: transformers
tags:
- biomedical
- clinical
- variant-classification
- genetics
- bert
- fine-tuned
language:
- en
license: apache-2.0
base_model: dmis-lab/biobert-large-cased-v1.1
datasets:
- clinvar
pipeline_tag: text-classification
---
# ClinVarBERT
A BERT model fine-tuned for clinical variant interpretation and classification tasks, based on BioBERT-Large.
## Model Details
### Model Description
ClinVarBERT-Large is a domain-specific language model fine-tuned from BioBERT-Large for understanding and classifying genetic variant descriptions and clinical interpretations. The model has been trained to understand the nuanced language used in clinical genetics, particularly for variant pathogenicity assessment and clinical significance classification.
- **Model type:** BERT-based transformer for sequence classification
- **Language(s):** English (biomedical/clinical domain)
- **License:** Apache 2.0
- **Finetuned from model:** dmis-lab/biobert-large-cased-v1.1
### Model Sources
- **Repository:** [Your GitHub Repository]
- **Base Model:** [BioBERT-Large](https://huggingface.co/dmis-lab/biobert-large-cased-v1.1)
- **Training Data:** ClinVar database submissions text
## Uses
### Direct Use
This model is designed for:
- **Variant pathogenicity classification:** Classifying genetic variants as P/LP, B/LB, or VUS
- **Clinical interpretation analysis:** Understanding and categorizing clinical variant descriptions
- **Biomedical text classification:** General classification tasks in the clinical genetics domain
## How to Get Started with the Model
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("weijiang99/clinvarbert")
model = AutoModelForSequenceClassification.from_pretrained("weijiang99/clinvarbert")
# Example usage
text = "This missense variant in exon 5 of the BRCA1 gene has been observed in multiple families with breast cancer."
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Get predicted class
predicted_class = torch.argmax(predictions, dim=-1)
|
mang3dd/blockassist-bc-tangled_slithering_alligator_1755721464
|
mang3dd
| 2025-08-20T20:49:54Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tangled slithering alligator",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:49:51Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tangled slithering alligator
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
fopppyu/blockassist-bc-feline_shaggy_anaconda_1755722913
|
fopppyu
| 2025-08-20T20:49:28Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"feline shaggy anaconda",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:48:35Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- feline shaggy anaconda
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VoilaRaj/81_b_NFptvt
|
VoilaRaj
| 2025-08-20T20:48:38Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-20T20:44:43Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
IlliaStreltsov7/blockassist-bc-exotic_spotted_koala_1755722860
|
IlliaStreltsov7
| 2025-08-20T20:48:16Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"exotic spotted koala",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:48:07Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- exotic spotted koala
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lautan/blockassist-bc-gentle_patterned_goat_1755721204
|
lautan
| 2025-08-20T20:46:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle patterned goat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:45:58Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle patterned goat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755722666
|
roeker
| 2025-08-20T20:45:37Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:45:03Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755720995
|
kojeklollipop
| 2025-08-20T20:44:50Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"spotted amphibious stork",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:44:46Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- spotted amphibious stork
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
johngreendr1/8a10efe1-24b0-434e-895a-60c215427f5e
|
johngreendr1
| 2025-08-20T20:44:19Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:furiosa-ai/mlperf-gpt-j-6b",
"base_model:adapter:furiosa-ai/mlperf-gpt-j-6b",
"region:us"
] | null | 2025-08-20T18:39:23Z |
---
base_model: furiosa-ai/mlperf-gpt-j-6b
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.1
|
gouthamsai78/STACKS
|
gouthamsai78
| 2025-08-20T20:44:18Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gguf",
"gemma3_text",
"text-generation",
"prompt-generation",
"role-playing",
"creative-writing",
"fine-tuned",
"gemma",
"stacks",
"en",
"dataset:fka/awesome-chatgpt-prompts",
"base_model:google/gemma-3-270m",
"base_model:quantized:google/gemma-3-270m",
"license:gemma",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T19:17:56Z |
---
license: gemma
base_model: google/gemma-3-270m
tags:
- text-generation
- prompt-generation
- role-playing
- creative-writing
- fine-tuned
- gemma
- stacks
datasets:
- fka/awesome-chatgpt-prompts
language:
- en
pipeline_tag: text-generation
library_name: transformers
model_type: gemma
---
# STACKS
**STACKS** (Specialized Text AI for Creative Knowledge Synthesis) is a fine-tuned version of **google/gemma-3-270m** specifically trained to generate creative and detailed prompts for role-playing scenarios. Instead of responding to prompts, STACKS **creates** prompts when given a role or character type.
## 🎯 Model Description
STACKS transforms any role or profession into detailed, engaging prompts perfect for:
- **Role-playing games** and creative writing
- **Educational scenarios** and training simulations
- **Content creation** and storytelling
- **Character development** exercises
## 🚀 Quick Start
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=200,
temperature=0.8,
do_sample=True,
top_p=0.9,
repetition_penalty=1.1,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs, skip_special_tokens=True)
return response[len(input_text):].strip()
## 📋 Example Outputs
**Input:** `"chef"`
**STACKS Output:** *"Act as a world-renowned chef who specializes in fusion cuisine. You've just opened a new restaurant that combines traditional techniques with molecular gastronomy. Explain your signature dish and the story behind its creation."*
**Input:** `"time traveler"`
**STACKS Output:** *"You are a time traveler who has just arrived in the year 2024 from 1850. Describe your amazement at modern technology, but also share wisdom from the past that people today have forgotten."*
**Input:** `"detective"`
**STACKS Output:** *"Act as a private detective in 1940s noir-style setting. You've been hired to investigate a mysterious disappearance at a high-society party. Describe the case and your first impressions of the suspects."*
## 🎭 Supported Role Categories
STACKS excels at generating prompts for:
- **Professional Roles**: doctors, lawyers, teachers, engineers, scientists
- **Creative Roles**: artists, writers, musicians, designers, filmmakers
- **Historical Figures**: philosophers, explorers, inventors, rulers
- **Fictional Characters**: superheroes, fantasy characters, sci-fi roles
- **Specialized Experts**: consultants, coaches, advisors, mentors
- **Adventure Roles**: explorers, adventurers, survivalists, travelers
## 🔧 Technical Details
### Training Configuration
- **Base Model**: google/gemma-3-270m (268M parameters)
- **Training Type**: Complete fine-tuning (all parameters trainable)
- **Dataset**: fka/awesome-chatgpt-prompts
- **Format**: Role → Prompt generation patterns
- **Precision**: BF16 optimized
- **Context Length**: 768 tokens
- **Training Date**: 2025-08-20
### Model Specifications
- **Architecture**: Gemma-3
- **Parameters**: 268,098,176
- **Format**: Safetensors
- **Size**: ~536MB
- **Hardware**: Optimized for GPU inference
- **Attention**: Eager implementation (required for Gemma-3)
## 📊 Performance & Quality
STACKS generates:
- **Coherent prompts** that match the requested role
- **Creative scenarios** with engaging storylines
- **Detailed instructions** for effective role-playing
- **Varied outputs** avoiding repetitive patterns
- **Contextually appropriate** content for each role
## 🎯 Usage Patterns
### Basic Generation
## 📋 License
This model is released under the **Gemma License**. Please see the [Gemma License](https://ai.google.dev/gemma/terms) for complete terms and conditions.
---
**Built with ❤️ by gouthamsai78**
*Transforming roles into creative prompts, one generation at a time.*
|
ORIGINAL-VIDEO-DE-MILICA-Y-ANGEL-DAVID/Milica.y.Angel.David.Video.Debut.Erome.Video.de.Milica.y.Angel.David.ybanez.Jugar.y.descargar
|
ORIGINAL-VIDEO-DE-MILICA-Y-ANGEL-DAVID
| 2025-08-20T20:43:32Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T20:42:05Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
AliAndMino/blockassist-bc-amphibious_twitchy_gibbon_1755720984
|
AliAndMino
| 2025-08-20T20:43:03Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"amphibious twitchy gibbon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:41:49Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- amphibious twitchy gibbon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755722368
|
roeker
| 2025-08-20T20:40:47Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:40:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755720876
|
rvipitkirubbe
| 2025-08-20T20:40:05Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mottled foraging ape",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:40:02Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mottled foraging ape
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Karloso02/Aza
|
Karloso02
| 2025-08-20T20:40:03Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-20T20:22:18Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: photo of Aza
---
# Aza
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `photo of Aza` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "photo of Aza",
"lora_weights": "https://huggingface.co/Karloso02/Aza/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('Karloso02/Aza', weight_name='lora.safetensors')
image = pipeline('photo of Aza').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 1000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/Karloso02/Aza/discussions) to add images that show off what you’ve made with this LoRA.
|
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755720785
|
manusiaperahu2012
| 2025-08-20T20:39:50Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"roaring long tuna",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:39:47Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- roaring long tuna
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Leoar/blockassist-bc-pudgy_toothy_cheetah_1755722241
|
Leoar
| 2025-08-20T20:39:36Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"pudgy toothy cheetah",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:39:24Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- pudgy toothy cheetah
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Muapi/demon-girl-or-male-style-xl-sd-1.5-f1d-pony-illu
|
Muapi
| 2025-08-20T20:39:06Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T20:38:56Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Demon Girl or (Male) style XL + SD 1.5 + F1D + Pony + Illu

**Base model**: Flux.1 D
**Trained words**: Demon Girl
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:376926@1167910", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
chainway9/blockassist-bc-untamed_quick_eel_1755720695
|
chainway9
| 2025-08-20T20:38:51Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"untamed quick eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:38:47Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- untamed quick eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
esi777/blockassist-bc-camouflaged_trotting_eel_1755722294
|
esi777
| 2025-08-20T20:38:49Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"camouflaged trotting eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:38:45Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- camouflaged trotting eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755720666
|
coelacanthxyz
| 2025-08-20T20:38:26Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"finicky thriving grouse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:38:21Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- finicky thriving grouse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Muapi/flux-3d-animation-style-lora
|
Muapi
| 2025-08-20T20:38:21Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T20:37:59Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Flux 3D Animation Style LoRA

**Base model**: Flux.1 D
**Trained words**:
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:824739@922267", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
nice2mitya/a_5299072408
|
nice2mitya
| 2025-08-20T20:36:01Z | 0 | 0 | null |
[
"license:other",
"region:us"
] | null | 2025-08-20T20:09:08Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
|
DovudkhonA/uzbek-stt
|
DovudkhonA
| 2025-08-20T20:35:24Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T20:35:18Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
roeker/blockassist-bc-quick_wiry_owl_1755722050
|
roeker
| 2025-08-20T20:34:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:34:49Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
aleebaster/blockassist-bc-sly_eager_boar_1755720426
|
aleebaster
| 2025-08-20T20:34:24Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"sly eager boar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:34:17Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- sly eager boar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
nsphac/MyGemmaNPC3
|
nsphac
| 2025-08-20T20:34:12Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gemma3_text",
"text-generation",
"generated_from_trainer",
"sft",
"trl",
"conversational",
"base_model:google/gemma-3-270m-it",
"base_model:finetune:google/gemma-3-270m-it",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T20:17:43Z |
---
base_model: google/gemma-3-270m-it
library_name: transformers
model_name: MyGemmaNPC3
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for MyGemmaNPC3
This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="nsphac/MyGemmaNPC3", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.8.0+cu129
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
mradermacher/SVGen-StarCoder2-3B-GGUF
|
mradermacher
| 2025-08-20T20:34:06Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:gitcat-404/SVGen-StarCoder2-3B",
"base_model:quantized:gitcat-404/SVGen-StarCoder2-3B",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-20T20:11:26Z |
---
base_model: gitcat-404/SVGen-StarCoder2-3B
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/gitcat-404/SVGen-StarCoder2-3B
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#SVGen-StarCoder2-3B-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/SVGen-StarCoder2-3B-GGUF/resolve/main/SVGen-StarCoder2-3B.Q2_K.gguf) | Q2_K | 1.3 | |
| [GGUF](https://huggingface.co/mradermacher/SVGen-StarCoder2-3B-GGUF/resolve/main/SVGen-StarCoder2-3B.Q3_K_S.gguf) | Q3_K_S | 1.5 | |
| [GGUF](https://huggingface.co/mradermacher/SVGen-StarCoder2-3B-GGUF/resolve/main/SVGen-StarCoder2-3B.Q3_K_M.gguf) | Q3_K_M | 1.7 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/SVGen-StarCoder2-3B-GGUF/resolve/main/SVGen-StarCoder2-3B.IQ4_XS.gguf) | IQ4_XS | 1.8 | |
| [GGUF](https://huggingface.co/mradermacher/SVGen-StarCoder2-3B-GGUF/resolve/main/SVGen-StarCoder2-3B.Q3_K_L.gguf) | Q3_K_L | 1.8 | |
| [GGUF](https://huggingface.co/mradermacher/SVGen-StarCoder2-3B-GGUF/resolve/main/SVGen-StarCoder2-3B.Q4_K_S.gguf) | Q4_K_S | 1.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/SVGen-StarCoder2-3B-GGUF/resolve/main/SVGen-StarCoder2-3B.Q4_K_M.gguf) | Q4_K_M | 2.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/SVGen-StarCoder2-3B-GGUF/resolve/main/SVGen-StarCoder2-3B.Q5_K_S.gguf) | Q5_K_S | 2.2 | |
| [GGUF](https://huggingface.co/mradermacher/SVGen-StarCoder2-3B-GGUF/resolve/main/SVGen-StarCoder2-3B.Q5_K_M.gguf) | Q5_K_M | 2.3 | |
| [GGUF](https://huggingface.co/mradermacher/SVGen-StarCoder2-3B-GGUF/resolve/main/SVGen-StarCoder2-3B.Q6_K.gguf) | Q6_K | 2.6 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/SVGen-StarCoder2-3B-GGUF/resolve/main/SVGen-StarCoder2-3B.Q8_0.gguf) | Q8_0 | 3.3 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/SVGen-StarCoder2-3B-GGUF/resolve/main/SVGen-StarCoder2-3B.f16.gguf) | f16 | 6.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
mradermacher/EHR-FM-8B-GGUF
|
mradermacher
| 2025-08-20T20:34:06Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:BlueZeros/EHR-FM-8B",
"base_model:quantized:BlueZeros/EHR-FM-8B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-20T20:12:33Z |
---
base_model: BlueZeros/EHR-FM-8B
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/BlueZeros/EHR-FM-8B
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#EHR-FM-8B-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/EHR-FM-8B-GGUF/resolve/main/EHR-FM-8B.Q2_K.gguf) | Q2_K | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/EHR-FM-8B-GGUF/resolve/main/EHR-FM-8B.Q3_K_S.gguf) | Q3_K_S | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/EHR-FM-8B-GGUF/resolve/main/EHR-FM-8B.Q3_K_M.gguf) | Q3_K_M | 4.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/EHR-FM-8B-GGUF/resolve/main/EHR-FM-8B.Q3_K_L.gguf) | Q3_K_L | 4.5 | |
| [GGUF](https://huggingface.co/mradermacher/EHR-FM-8B-GGUF/resolve/main/EHR-FM-8B.IQ4_XS.gguf) | IQ4_XS | 4.7 | |
| [GGUF](https://huggingface.co/mradermacher/EHR-FM-8B-GGUF/resolve/main/EHR-FM-8B.Q4_K_S.gguf) | Q4_K_S | 4.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/EHR-FM-8B-GGUF/resolve/main/EHR-FM-8B.Q4_K_M.gguf) | Q4_K_M | 5.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/EHR-FM-8B-GGUF/resolve/main/EHR-FM-8B.Q5_K_S.gguf) | Q5_K_S | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/EHR-FM-8B-GGUF/resolve/main/EHR-FM-8B.Q5_K_M.gguf) | Q5_K_M | 6.0 | |
| [GGUF](https://huggingface.co/mradermacher/EHR-FM-8B-GGUF/resolve/main/EHR-FM-8B.Q6_K.gguf) | Q6_K | 6.8 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/EHR-FM-8B-GGUF/resolve/main/EHR-FM-8B.Q8_0.gguf) | Q8_0 | 8.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/EHR-FM-8B-GGUF/resolve/main/EHR-FM-8B.f16.gguf) | f16 | 16.5 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
mradermacher/SelfRewarded-R1-7B-GGUF
|
mradermacher
| 2025-08-20T20:34:06Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:LMMs-Lab-Turtle/SelfRewarded-R1-7B",
"base_model:quantized:LMMs-Lab-Turtle/SelfRewarded-R1-7B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-20T20:03:06Z |
---
base_model: LMMs-Lab-Turtle/SelfRewarded-R1-7B
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/LMMs-Lab-Turtle/SelfRewarded-R1-7B
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#SelfRewarded-R1-7B-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/SelfRewarded-R1-7B-GGUF/resolve/main/SelfRewarded-R1-7B.mmproj-Q8_0.gguf) | mmproj-Q8_0 | 1.0 | multi-modal supplement |
| [GGUF](https://huggingface.co/mradermacher/SelfRewarded-R1-7B-GGUF/resolve/main/SelfRewarded-R1-7B.mmproj-f16.gguf) | mmproj-f16 | 1.5 | multi-modal supplement |
| [GGUF](https://huggingface.co/mradermacher/SelfRewarded-R1-7B-GGUF/resolve/main/SelfRewarded-R1-7B.Q2_K.gguf) | Q2_K | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/SelfRewarded-R1-7B-GGUF/resolve/main/SelfRewarded-R1-7B.Q3_K_S.gguf) | Q3_K_S | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/SelfRewarded-R1-7B-GGUF/resolve/main/SelfRewarded-R1-7B.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/SelfRewarded-R1-7B-GGUF/resolve/main/SelfRewarded-R1-7B.Q3_K_L.gguf) | Q3_K_L | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/SelfRewarded-R1-7B-GGUF/resolve/main/SelfRewarded-R1-7B.IQ4_XS.gguf) | IQ4_XS | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/SelfRewarded-R1-7B-GGUF/resolve/main/SelfRewarded-R1-7B.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/SelfRewarded-R1-7B-GGUF/resolve/main/SelfRewarded-R1-7B.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/SelfRewarded-R1-7B-GGUF/resolve/main/SelfRewarded-R1-7B.Q5_K_S.gguf) | Q5_K_S | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/SelfRewarded-R1-7B-GGUF/resolve/main/SelfRewarded-R1-7B.Q5_K_M.gguf) | Q5_K_M | 5.5 | |
| [GGUF](https://huggingface.co/mradermacher/SelfRewarded-R1-7B-GGUF/resolve/main/SelfRewarded-R1-7B.Q6_K.gguf) | Q6_K | 6.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/SelfRewarded-R1-7B-GGUF/resolve/main/SelfRewarded-R1-7B.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/SelfRewarded-R1-7B-GGUF/resolve/main/SelfRewarded-R1-7B.f16.gguf) | f16 | 15.3 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
IlliaStreltsov7/blockassist-bc-exotic_spotted_koala_1755722006
|
IlliaStreltsov7
| 2025-08-20T20:34:04Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"exotic spotted koala",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:33:55Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- exotic spotted koala
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
eakaraman/MyGemmaNPC
|
eakaraman
| 2025-08-20T20:34:00Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gemma3_text",
"text-generation",
"generated_from_trainer",
"trl",
"sft",
"conversational",
"base_model:google/gemma-3-270m-it",
"base_model:finetune:google/gemma-3-270m-it",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T20:30:05Z |
---
base_model: google/gemma-3-270m-it
library_name: transformers
model_name: MyGemmaNPC
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for MyGemmaNPC
This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="eakaraman/MyGemmaNPC", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.8.0+cu126
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
isbdigital/novasentek
|
isbdigital
| 2025-08-20T20:30:28Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-20T19:49:24Z |
---
base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** isbdigital
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
YaTharThShaRma999/finetunedmodel
|
YaTharThShaRma999
| 2025-08-20T20:28:12Z | 4 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-09-24T22:52:21Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0
|
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755720169
|
sampingkaca72
| 2025-08-20T20:27:36Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"armored stealthy elephant",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:27:32Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- armored stealthy elephant
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
videos-American-model-Brooks-Nader-Link/NEW.FULL.VIDEOS.American.model.Brooks.Nader.Viral.Video.Official.Tutorial
|
videos-American-model-Brooks-Nader-Link
| 2025-08-20T20:26:44Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T20:26:32Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
safe-challenge/safe-video-example-submission
|
safe-challenge
| 2025-08-20T20:26:21Z | 0 | 0 | null |
[
"video-classification",
"region:us"
] |
video-classification
| 2025-06-20T16:45:28Z |
---
pipeline_tag: video-classification
---
# SAFE Video Challenge Example Submission
The key requirements is to have a `script.py` file in the top level directory of the repo and optionally a `requirements.txt` file
For more details: https://safe-video-2025.dsri.org/#-model-submission
|
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755721409
|
canoplos112
| 2025-08-20T20:25:25Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping sleek squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:24:05Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping sleek squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755719878
|
hakimjustbao
| 2025-08-20T20:24:03Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"raging subtle wasp",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:23:58Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- raging subtle wasp
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
fopppyu/blockassist-bc-mottled_winged_prawn_1755721375
|
fopppyu
| 2025-08-20T20:23:26Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mottled winged prawn",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:22:56Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mottled winged prawn
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VIDEOS-18-izzy-Viral-Video-Clips/New.full.videos.izzy.Viral.Video.Official.Tutorial
|
VIDEOS-18-izzy-Viral-Video-Clips
| 2025-08-20T20:23:00Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T20:22:49Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
VoilaRaj/81_b_lmTj9l
|
VoilaRaj
| 2025-08-20T20:22:52Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-20T20:18:46Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
VinitT/Sanskrit-Translate-V1.0
|
VinitT
| 2025-08-20T20:21:28Z | 0 | 0 | null |
[
"safetensors",
"gemma3_text",
"base_model:google/gemma-3-270m-it",
"base_model:finetune:google/gemma-3-270m-it",
"license:cc-by-nc-2.0",
"region:us"
] | null | 2025-08-20T19:37:27Z |
---
license: cc-by-nc-2.0
base_model:
- google/gemma-3-270m-it
---
|
nasa-ibm-ai4science/ar_segmentation_surya
|
nasa-ibm-ai4science
| 2025-08-20T20:20:32Z | 0 | 6 | null |
[
"en",
"base_model:nasa-ibm-ai4science/Surya-1.0",
"base_model:finetune:nasa-ibm-ai4science/Surya-1.0",
"license:apache-2.0",
"region:us"
] | null | 2025-08-18T22:54:32Z |
---
license: apache-2.0
language:
- en
base_model:
- nasa-ibm-ai4science/Surya-1.0
---
# 🌌 Surya – Active Region Segmentation
## 📖 Model Overview
This repository hosts **fine-tuned weights of Surya** – a heliophysics foundation model – for the task of **solar Active Region (AR) segmentation**.
Solar Active Regions are magnetically complex structures associated with **flares** and **coronal mass ejections (CMEs)**. Within ARs, the **Polarity Inversion Line (PIL)** serves as a critical precursor of eruptions. Accurate segmentation of ARs containing PILs is essential for **space weather forecasting** and understanding solar magnetic complexity.
---
## 📊 Results
We benchmarked Surya against a standard UNet baseline on the ARPIL dataset.
| Model | Params | IoU | Dice Coeff |
|--------|--------|-------|------------|
| UNet | 9.2 M | 0.688 | 0.801 |
| **Surya (LoRA)** | **4.1 M** | **0.768** | **0.853** |
Surya achieves **higher segmentation quality with fewer parameters**, highlighting the benefits of foundation model pretraining and parameter-efficient adaptation.
---
## 🖼 Example
<p align="center">
<img src="ar_seg.png" width="100%">
</p>
- **Top Row**: Input SDO/HMI data (Date: 2014-02-01, Time: 08:12)
- **Middle Row**: Surya segmentation output
- **Bottom Row**: Ground Truth
---
## ⚡ Usage
Follow the instructions at [Surya/downstream_examples/ar_segmentation](https://github.com/NASA-IMPACT/Surya/tree/main/downstream_examples/ar_segmentation)
---
## 🤝 Acknowledgements
- **NASA IMPACT** and **IBM** for developing the Surya foundation model
|
atuiamat/salam_policy
|
atuiamat
| 2025-08-20T20:18:49Z | 0 | 0 |
lerobot
|
[
"lerobot",
"safetensors",
"act",
"robotics",
"dataset:atuiamat/so101_follower_leader_dataset_trial",
"arxiv:2304.13705",
"license:apache-2.0",
"region:us"
] |
robotics
| 2025-08-20T20:17:45Z |
---
datasets: atuiamat/so101_follower_leader_dataset_trial
library_name: lerobot
license: apache-2.0
model_name: act
pipeline_tag: robotics
tags:
- act
- lerobot
- robotics
---
# Model Card for act
<!-- Provide a quick summary of what the model is/does. -->
[Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates.
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
---
## How to Get Started with the Model
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:
### Train from scratch
```bash
lerobot-train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
```
_Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
### Evaluate the policy/run inference
```bash
lerobot-record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
```
Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
---
## Model Details
- **License:** apache-2.0
|
ziadtarek12/my_awesome_en_de_nllb_model
|
ziadtarek12
| 2025-08-20T20:18:19Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"m2m_100",
"text2text-generation",
"generated_from_trainer",
"base_model:facebook/nllb-200-distilled-600M",
"base_model:finetune:facebook/nllb-200-distilled-600M",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T20:16:58Z |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: my_awesome_en_de_nllb_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_en_de_nllb_model
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0740
- Bleu: 31.9799
- Gen Len: 29.3058
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 1.1434 | 1.0 | 10429 | 1.0849 | 31.8639 | 29.264 |
| 1.0698 | 2.0 | 20858 | 1.0740 | 31.9799 | 29.3058 |
### Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2
|
anishbandal/sarcasm_model
|
anishbandal
| 2025-08-20T20:14:12Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-20T20:13:44Z |
---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sarcasm_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sarcasm_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4719
- Accuracy: 0.7760
- Precision: 0.7783
- Recall: 0.7719
- F1: 0.7751
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.4902 | 1.0 | 25270 | 0.4750 | 0.7725 | 0.8119 | 0.7093 | 0.7571 |
| 0.4449 | 2.0 | 50540 | 0.4719 | 0.7760 | 0.7783 | 0.7719 | 0.7751 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.19.1
|
vengky/blockassist-bc-wild_gentle_manatee_1755718688
|
vengky
| 2025-08-20T20:13:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wild gentle manatee",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:13:35Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wild gentle manatee
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
rbelanec/train_wic_1755694497
|
rbelanec
| 2025-08-20T20:13:27Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"llama-factory",
"prefix-tuning",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"region:us"
] | null | 2025-08-20T19:35:20Z |
---
library_name: peft
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- llama-factory
- prefix-tuning
- generated_from_trainer
model-index:
- name: train_wic_1755694497
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# train_wic_1755694497
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the wic dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7994
- Num Input Tokens Seen: 4063904
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:-----:|:---------------:|:-----------------:|
| 0.3212 | 0.5002 | 1222 | 0.3780 | 202848 |
| 0.3423 | 1.0004 | 2444 | 0.3626 | 406568 |
| 0.3577 | 1.5006 | 3666 | 0.3443 | 609912 |
| 0.3328 | 2.0008 | 4888 | 0.3403 | 813272 |
| 0.2972 | 2.5010 | 6110 | 0.3393 | 1016632 |
| 0.2815 | 3.0012 | 7332 | 0.3346 | 1219720 |
| 0.3467 | 3.5014 | 8554 | 0.3276 | 1422696 |
| 0.3009 | 4.0016 | 9776 | 0.4063 | 1626184 |
| 0.3046 | 4.5018 | 10998 | 0.3452 | 1828792 |
| 0.2269 | 5.0020 | 12220 | 0.3465 | 2032536 |
| 0.2211 | 5.5023 | 13442 | 0.4084 | 2236040 |
| 0.1504 | 6.0025 | 14664 | 0.3588 | 2439144 |
| 0.4165 | 6.5027 | 15886 | 0.4892 | 2642552 |
| 0.1631 | 7.0029 | 17108 | 0.4491 | 2845672 |
| 0.0286 | 7.5031 | 18330 | 0.5756 | 3048792 |
| 0.0296 | 8.0033 | 19552 | 0.5841 | 3252416 |
| 0.3305 | 8.5035 | 20774 | 0.7261 | 3455872 |
| 0.0271 | 9.0037 | 21996 | 0.7138 | 3659120 |
| 0.0043 | 9.5039 | 23218 | 0.7943 | 3862176 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
lautan/blockassist-bc-gentle_patterned_goat_1755719190
|
lautan
| 2025-08-20T20:12:47Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle patterned goat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:12:44Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle patterned goat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
fopppyu/blockassist-bc-sizable_bipedal_turtle_1755720620
|
fopppyu
| 2025-08-20T20:10:37Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"sizable bipedal turtle",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:10:21Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- sizable bipedal turtle
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755720494
|
canoplos112
| 2025-08-20T20:10:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping sleek squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:08:48Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping sleek squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755718925
|
ihsanridzi
| 2025-08-20T20:09:14Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry flexible owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:09:10Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry flexible owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755718737
|
manusiaperahu2012
| 2025-08-20T20:08:27Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"roaring long tuna",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:08:24Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- roaring long tuna
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Thelocallab/bubu-lora
|
Thelocallab
| 2025-08-20T20:07:22Z | 65 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"flux",
"lora",
"template:sd-lora",
"fluxgym",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-05-20T22:57:50Z |
---
tags:
- text-to-image
- flux
- lora
- diffusers
- template:sd-lora
- fluxgym
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: bubu
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
# bubu_LoRA
A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym)
<Gallery />
## Trigger words
You should use `bubu` to trigger the image generation.
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc.
Weights for this model are available in Safetensors format.
|
nsphac/MyGemmaNPC2
|
nsphac
| 2025-08-20T20:06:35Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gemma3_text",
"text-generation",
"generated_from_trainer",
"trl",
"sft",
"conversational",
"base_model:google/gemma-3-270m-it",
"base_model:finetune:google/gemma-3-270m-it",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T20:03:14Z |
---
base_model: google/gemma-3-270m-it
library_name: transformers
model_name: MyGemmaNPC2
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for MyGemmaNPC2
This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="nsphac/MyGemmaNPC2", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.8.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
zenqqq/blockassist-bc-restless_reptilian_caterpillar_1755720223
|
zenqqq
| 2025-08-20T20:04:38Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"restless reptilian caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:04:29Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- restless reptilian caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755718522
|
coelacanthxyz
| 2025-08-20T20:03:39Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"finicky thriving grouse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:03:32Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- finicky thriving grouse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
18-V-I-D-E-O-S-zeenat-Viral-video-Link/NEW.FULL.VIDEOS.zeenat.Viral.Video.Official.Tutorial
|
18-V-I-D-E-O-S-zeenat-Viral-video-Link
| 2025-08-20T20:03:29Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T20:03:17Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
VoilaRaj/81_b_WXjPCH
|
VoilaRaj
| 2025-08-20T20:03:20Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-20T19:57:41Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
roeker/blockassist-bc-quick_wiry_owl_1755719907
|
roeker
| 2025-08-20T19:59:48Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:59:07Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1755719886
|
xinnn32
| 2025-08-20T19:58:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:58:35Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755718290
|
lisaozill03
| 2025-08-20T19:57:08Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rugged prickly alpaca",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:56:55Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rugged prickly alpaca
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
EpistemeAI/gpt-oss-20b-unsloth-puzzle-24V1
|
EpistemeAI
| 2025-08-20T19:54:56Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gpt_oss",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit",
"base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"8-bit",
"region:us"
] |
text-generation
| 2025-08-20T19:49:51Z |
---
base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gpt_oss
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** EpistemeAI
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit
This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
koloni/blockassist-bc-deadly_graceful_stingray_1755718141
|
koloni
| 2025-08-20T19:54:55Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:54:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755719599
|
roeker
| 2025-08-20T19:54:34Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:54:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755718066
|
quantumxnode
| 2025-08-20T19:53:26Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"dormant peckish seahorse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:53:22Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- dormant peckish seahorse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VIDEOS-18-Indo-viral-video-clip/New.full.videos.indo.Viral.Video.Official.Tutorial
|
VIDEOS-18-Indo-viral-video-clip
| 2025-08-20T19:51:57Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:51:46Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755719280
|
canoplos112
| 2025-08-20T19:49:54Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping sleek squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:48:36Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping sleek squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1755719355
|
xinnn32
| 2025-08-20T19:49:53Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:49:43Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
EpistemeAI/gpt-oss-20b-unsloth-finetune-puzzle-lora-24V1
|
EpistemeAI
| 2025-08-20T19:49:45Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"gpt_oss",
"trl",
"en",
"base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit",
"base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T19:49:31Z |
---
base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gpt_oss
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** EpistemeAI
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit
This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Video-de-milica-y-angel-david/VER.Milica.y.Angel.David.Video.Debut.Erome.Video.de.Milica.y.Angel.David.Jugar.y.descargar
|
Video-de-milica-y-angel-david
| 2025-08-20T19:48:50Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:43:28Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Milica ya hizo debutar a Ángel David lo que dijo la creadora de contenido
Milica enciende las redes: el tuit que insinúa el “debut” de Ángel Avid tras su victoria en Supernova
Milica lo confirma: Ángel Avid debutó con la streamer tras Supernova Strikers
En cada velada de Supernova Strikers suele haber golpes gritos y sorpresas Pero en la última edición celebrada el 17 de agosto
¿Quién es Ángel Avid y qué tiene que ver con Milica? La historia viral que conquistó Supernova Strikers
El evento de boxeo Supernova Strikers no solo dejó combates memorables sino también una de las historias más virales del año: la de Ángel
¿Quién es Ángel Avid y cuál fue la promesa que le hizo Milica si ganaba en Supernova Strikers?
La streamer argentina Milica ganó su combate ante Mercedes Roa pero ella no fue la única ganadora sino que también un fan
¿Quién es Ángel Avid joven que 'debutará' con Milica tras el Supernova Strickers?
Conoce quién es Ángel Avid el joven que salió junto a la streamer argentina Milica en el Supernova Stricker
¡Viva México! Impresionante entrada de Mercedes Roa para su pelea ante Milica en Supernova Strikers
Mercedes Roa sorprende en Supernova Strikers tras realizar un homenaje al México prehispánico en su ingreso al ring
Thomas Ceccon y los encendidos comentarios que desató en redes tras su participación en París 2024
El atleta ha desatado en X comentarios entre los que es comparado con dioses griegos y obras de arte como el David de Miguel Ángel
Alana Flores recibe cinturón del CMB tras triunfar en Supernova Strikers
El Consejo Mundial de Boxeo le entregó una pulsera de Campeones a la streamer
Dross ataca a Selena Gomez tras llorar por deportaciones masivas de mexicanos; mensaje genera polémica: “Cállate”
El youtuber se sumó a los insultos y ataques que previamente emitió el excandidato al senado republicano en EEUU Sam Parker
|
thanobidex/blockassist-bc-colorful_shiny_hare_1755717709
|
thanobidex
| 2025-08-20T19:48:05Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"colorful shiny hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:48:01Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- colorful shiny hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
luisra/gpt-oss-120b-4bit
|
luisra
| 2025-08-20T19:47:32Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gpt_oss",
"text-generation",
"openai",
"unsloth",
"conversational",
"base_model:openai/gpt-oss-120b",
"base_model:quantized:openai/gpt-oss-120b",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2025-08-20T18:55:18Z |
---
base_model:
- openai/gpt-oss-120b
license: apache-2.0
pipeline_tag: text-generation
library_name: transformers
tags:
- openai
- unsloth
---
<div>
<p style="margin-bottom: 0; margin-top: 0;">
<strong>See <a href="https://huggingface.co/collections/unsloth/gpt-oss-6892433695ce0dee42f31681">our collection</a> for all versions of gpt-oss including GGUF, 4-bit & 16-bit formats.</strong>
</p>
<p style="margin-bottom: 0;">
<em>Learn to run gpt-oss correctly - <a href="https://docs.unsloth.ai/basics/gpt-oss">Read our Guide</a>.</em>
</p>
<p style="margin-top: 0;margin-bottom: 0;">
<em>See <a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0 GGUFs</a> for our quantization benchmarks.</em>
</p>
<div style="display: flex; gap: 5px; align-items: center; ">
<a href="https://github.com/unslothai/unsloth/">
<img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
</a>
<a href="https://discord.gg/unsloth">
<img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
</a>
<a href="https://docs.unsloth.ai/basics/gpt-oss">
<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
</a>
</div>
<h1 style="margin-top: 0rem;">✨ Read our gpt-oss Guide <a href="https://docs.unsloth.ai/basics/gpt-oss">here</a>!</h1>
</div>
- Read our Blog about gpt-oss support: [unsloth.ai/blog/gpt-oss](https://unsloth.ai/blog/gpt-oss)
- View the rest of our notebooks in our [docs here](https://docs.unsloth.ai/get-started/unsloth-notebooks).
- Thank you to the [llama.cpp](https://github.com/ggml-org/llama.cpp) team for their work on supporting this model. We wouldn't be able to release quants without them!
# gpt-oss-120b Details
<p align="center">
<img alt="gpt-oss-120b" src="https://raw.githubusercontent.com/openai/gpt-oss/main/docs/gpt-oss-120b.svg">
</p>
<p align="center">
<a href="https://gpt-oss.com"><strong>Try gpt-oss</strong></a> ·
<a href="https://cookbook.openai.com/topic/gpt-oss"><strong>Guides</strong></a> ·
<a href="https://openai.com/index/gpt-oss-model-card"><strong>System card</strong></a> ·
<a href="https://openai.com/index/introducing-gpt-oss/"><strong>OpenAI blog</strong></a>
</p>
<br>
Welcome to the gpt-oss series, [OpenAI’s open-weight models](https://openai.com/open-models) designed for powerful reasoning, agentic tasks, and versatile developer use cases.
We’re releasing two flavors of the open models:
- `gpt-oss-120b` — for production, general purpose, high reasoning use cases that fits into a single H100 GPU (117B parameters with 5.1B active parameters)
- `gpt-oss-20b` — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters)
Both models were trained on our [harmony response format](https://github.com/openai/harmony) and should only be used with the harmony format as it will not work correctly otherwise.
> [!NOTE]
> This model card is dedicated to the larger `gpt-oss-120b` model. Check out [`gpt-oss-20b`](https://huggingface.co/openai/gpt-oss-20b) for the smaller model.
# Highlights
* **Permissive Apache 2.0 license:** Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment.
* **Configurable reasoning effort:** Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs.
* **Full chain-of-thought:** Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users.
* **Fine-tunable:** Fully customize models to your specific use case through parameter fine-tuning.
* **Agentic capabilities:** Use the models’ native capabilities for function calling, [web browsing](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#browser), [Python code execution](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#python), and Structured Outputs.
* **Native MXFP4 quantization:** The models are trained with native MXFP4 precision for the MoE layer, making `gpt-oss-120b` run on a single H100 GPU and the `gpt-oss-20b` model run within 16GB of memory.
---
# Inference examples
## Transformers
You can use `gpt-oss-120b` and `gpt-oss-20b` with Transformers. If you use the Transformers chat template, it will automatically apply the [harmony response format](https://github.com/openai/harmony). If you use `model.generate` directly, you need to apply the harmony format manually using the chat template or use our [openai-harmony](https://github.com/openai/harmony) package.
To get started, install the necessary dependencies to setup your environment:
```
pip install -U transformers kernels torch
```
Once, setup you can proceed to run the model by running the snippet below:
```py
from transformers import pipeline
import torch
model_id = "openai/gpt-oss-120b"
pipe = pipeline(
"text-generation",
model=model_id,
torch_dtype="auto",
device_map="auto",
)
messages = [
{"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
]
outputs = pipe(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
```
Alternatively, you can run the model via [`Transformers Serve`](https://huggingface.co/docs/transformers/main/serving) to spin up a OpenAI-compatible webserver:
```
transformers serve
transformers chat localhost:8000 --model-name-or-path openai/gpt-oss-120b
```
[Learn more about how to use gpt-oss with Transformers.](https://cookbook.openai.com/articles/gpt-oss/run-transformers)
## vLLM
vLLM recommends using [uv](https://docs.astral.sh/uv/) for Python dependency management. You can use vLLM to spin up an OpenAI-compatible webserver. The following command will automatically download the model and start the server.
```bash
uv pip install --pre vllm==0.10.1+gptoss \
--extra-index-url https://wheels.vllm.ai/gpt-oss/ \
--extra-index-url https://download.pytorch.org/whl/nightly/cu128 \
--index-strategy unsafe-best-match
vllm serve openai/gpt-oss-120b
```
[Learn more about how to use gpt-oss with vLLM.](https://cookbook.openai.com/articles/gpt-oss/run-vllm)
## PyTorch / Triton
To learn about how to use this model with PyTorch and Triton, check out our [reference implementations in the gpt-oss repository](https://github.com/openai/gpt-oss?tab=readme-ov-file#reference-pytorch-implementation).
## Ollama
If you are trying to run gpt-oss on consumer hardware, you can use Ollama by running the following commands after [installing Ollama](https://ollama.com/download).
```bash
# gpt-oss-120b
ollama pull gpt-oss:120b
ollama run gpt-oss:120b
```
[Learn more about how to use gpt-oss with Ollama.](https://cookbook.openai.com/articles/gpt-oss/run-locally-ollama)
#### LM Studio
If you are using [LM Studio](https://lmstudio.ai/) you can use the following commands to download.
```bash
# gpt-oss-120b
lms get openai/gpt-oss-120b
```
Check out our [awesome list](https://github.com/openai/gpt-oss/blob/main/awesome-gpt-oss.md) for a broader collection of gpt-oss resources and inference partners.
---
# Download the model
You can download the model weights from the [Hugging Face Hub](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) directly from Hugging Face CLI:
```shell
# gpt-oss-120b
huggingface-cli download openai/gpt-oss-120b --include "original/*" --local-dir gpt-oss-120b/
pip install gpt-oss
python -m gpt_oss.chat model/
```
# Reasoning levels
You can adjust the reasoning level that suits your task across three levels:
* **Low:** Fast responses for general dialogue.
* **Medium:** Balanced speed and detail.
* **High:** Deep and detailed analysis.
The reasoning level can be set in the system prompts, e.g., "Reasoning: high".
# Tool use
The gpt-oss models are excellent for:
* Web browsing (using built-in browsing tools)
* Function calling with defined schemas
* Agentic operations like browser tasks
# Fine-tuning
Both gpt-oss models can be fine-tuned for a variety of specialized use cases.
This larger model `gpt-oss-120b` can be fine-tuned on a single H100 node, whereas the smaller [`gpt-oss-20b`](https://huggingface.co/openai/gpt-oss-20b) can even be fine-tuned on consumer hardware.
|
mang3dd/blockassist-bc-tangled_slithering_alligator_1755717669
|
mang3dd
| 2025-08-20T19:47:14Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tangled slithering alligator",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:47:06Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tangled slithering alligator
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755719078
|
roeker
| 2025-08-20T19:45:51Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:45:16Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AnonymousCS/populism_xlmr_large
|
AnonymousCS
| 2025-08-20T19:45:44Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"xlm-roberta",
"fill-mask",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2025-08-20T09:31:18Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: populism_xlmr_large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# populism_xlmr_large
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 8.7009
- Accuracy: 0.0301
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.46.3
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.