|
# README — Loading `things_eeg_2` from `nonarjb/alignvis` |
|
|
|
This repo hosts WebDataset shard sets under `things_eeg_2/`: |
|
|
|
* `things_eeg_2-images-*.tar` — images |
|
* `things_eeg_2-image_embeddings-*.tar` — vector embeddings (`.npy/.npz`) |
|
* `things_eeg_2-preprocessed_eeg-*.tar` — EEG arrays (`.npy/.npz`) |
|
|
|
Inside each shard, the WebDataset `__key__` is the file’s **relative path under the top folder (without extension)**. |
|
To reconstruct the original relative path, use: |
|
|
|
``` |
|
rel_path = "<top>/" + __key__ + "." + <ext> |
|
``` |
|
|
|
(e.g., `images/training_images/01133_raincoat/raincoat_01s.jpg`) |
|
|
|
> To use the **other dataset** (`things_meg`), just replace `dataset_dir="things_eeg_2"` with `dataset_dir="things_meg"` in the examples below. |
|
|
|
--- |
|
|
|
## Install |
|
|
|
```bash |
|
pip install webdataset huggingface_hub pillow torch tqdm |
|
# Optional: faster transfers for big files |
|
pip install -U hf_transfer && export HF_HUB_ENABLE_HF_TRANSFER=1 |
|
``` |
|
|
|
--- |
|
|
|
## Helper: list shard URLs from the Hub |
|
|
|
Create `utils_hf_wds.py`: |
|
|
|
```python |
|
# utils_hf_wds.py |
|
from huggingface_hub import HfFileSystem, hf_hub_url |
|
|
|
def hf_tar_urls(repo_id: str, dataset_dir: str, top: str, revision: str = "main"): |
|
""" |
|
Return sorted 'resolve/<revision>' URLs for shards matching: |
|
<dataset_dir>/<dataset_dir>-<top>-*.tar |
|
Example: things_eeg_2/things_eeg_2-images-000000.tar |
|
""" |
|
fs = HfFileSystem() |
|
pattern = f"datasets/{repo_id}/{dataset_dir}/{dataset_dir}-{top}-*.tar" |
|
hf_paths = sorted(fs.glob(pattern)) # hf://datasets/<repo_id>/... |
|
rel_paths = [p.split(f"datasets/{repo_id}/", 1)[1] for p in hf_paths] |
|
return [ |
|
hf_hub_url(repo_id, filename=p, repo_type="dataset", revision=revision) |
|
for p in rel_paths |
|
] |
|
``` |
|
|
|
--- |
|
|
|
## A) Images (PIL) with original relative paths |
|
|
|
```python |
|
import io |
|
from PIL import Image |
|
import torch, webdataset as wds |
|
from utils_hf_wds import hf_tar_urls |
|
|
|
REPO = "nonarjb/alignvis" |
|
|
|
def make_images_loader(dataset_dir="things_eeg_2", batch_size=16, num_workers=4): |
|
urls = hf_tar_urls(REPO, dataset_dir, top="images") |
|
if not urls: raise RuntimeError("No image shards found") |
|
|
|
def pick_image(s): |
|
for ext in ("jpg","jpeg","png"): |
|
if ext in s: |
|
s["img_bytes"] = s[ext] |
|
s["rel_path"] = f"images/{s['__key__']}.{ext}" |
|
return s |
|
return None |
|
|
|
ds = (wds.WebDataset(urls, shardshuffle=False, handler=wds.handlers.warn_and_continue) |
|
.map(pick_image).select(lambda s: s is not None) |
|
.map(lambda s: (s["rel_path"], Image.open(io.BytesIO(s["img_bytes"])).convert("RGB")))) |
|
|
|
return torch.utils.data.DataLoader( |
|
ds, batch_size=batch_size, num_workers=num_workers, collate_fn=lambda b: b |
|
) |
|
|
|
loader = make_images_loader() |
|
rel_path, pil_img = next(iter(loader))[0] |
|
print(rel_path, pil_img.size) # e.g. images/training_images/.../raincoat_01s.jpg (W, H) |
|
``` |
|
|
|
--- |
|
|
|
## B) Image embeddings (`.npy/.npz`) → `torch.Tensor` |
|
|
|
```python |
|
import io, numpy as np |
|
import torch, webdataset as wds |
|
from utils_hf_wds import hf_tar_urls |
|
|
|
REPO = "nonarjb/alignvis" |
|
|
|
# Heuristics for dict-like payloads |
|
CANDIDATE_KEYS = ("embedding", "emb", "vector", "feat", "features", "clip", "image", "text") |
|
|
|
def _first_numeric_from_npz(npz, prefer_key=None): |
|
if prefer_key and prefer_key in npz: |
|
return np.asarray(npz[prefer_key]) |
|
# try direct numeric arrays |
|
for k in npz.files: |
|
a = npz[k] |
|
if isinstance(a, np.ndarray) and np.issubdtype(a.dtype, np.number): |
|
return a |
|
# try dict-like entries with known keys |
|
for k in npz.files: |
|
a = npz[k] |
|
if isinstance(a, dict): |
|
for ck in CANDIDATE_KEYS: |
|
if ck in a: |
|
return np.asarray(a[ck]) |
|
return None |
|
|
|
def _load_numeric_vector(payload: bytes, ext: str, prefer_key: str | None = None): |
|
"""Return 1D float32 vector or None if not numeric.""" |
|
bio = io.BytesIO(payload) |
|
try: |
|
arr = np.load(bio, allow_pickle=False) |
|
except ValueError as e: |
|
if "Object arrays" in str(e): |
|
bio.seek(0) |
|
obj = np.load(bio, allow_pickle=True) |
|
if isinstance(obj, dict): |
|
for ck in CANDIDATE_KEYS: |
|
if ck in obj: |
|
arr = obj[ck]; break |
|
else: |
|
return None |
|
elif isinstance(obj, (list, tuple)): |
|
arr = np.asarray(obj) |
|
else: |
|
return None |
|
else: |
|
raise |
|
arr = np.asarray(arr) |
|
if not np.issubdtype(arr.dtype, np.number): |
|
try: |
|
arr = arr.astype(np.float32) |
|
except Exception: |
|
return None |
|
return arr.reshape(-1).astype(np.float32) |
|
|
|
def make_embeddings_loader( |
|
dataset_dir="things_eeg_2", |
|
batch_size=64, |
|
num_workers=4, |
|
prefer_key: str | None = None, # e.g., "embedding" if you know the field name |
|
): |
|
urls = hf_tar_urls(REPO, dataset_dir, top="image_embeddings") |
|
if not urls: |
|
raise RuntimeError("No embedding shards found") |
|
|
|
def pick_payload(s): |
|
for ext in ("npy", "npz"): |
|
if ext in s: |
|
s["__ext__"] = ext |
|
s["payload"] = s[ext] |
|
s["rel_path"] = f"image_embeddings/{s['__key__']}.{ext}" |
|
return s |
|
return None |
|
|
|
def decode_vec(s): |
|
vec = _load_numeric_vector(s["payload"], s["__ext__"], prefer_key=prefer_key) |
|
if vec is None: |
|
# skip non-numeric payloads |
|
return None |
|
return (s["rel_path"], torch.from_numpy(vec)) |
|
|
|
ds = ( |
|
wds.WebDataset(urls, shardshuffle=False, handler=wds.handlers.warn_and_continue) |
|
.map(pick_payload).select(lambda s: s is not None) |
|
.map(decode_vec).select(lambda x: x is not None) |
|
) |
|
|
|
# Collate into a batch tensor; all vectors must have same dim |
|
def collate(batch): |
|
paths, vecs = zip(*batch) |
|
D = vecs[0].numel() |
|
vecs = [v.view(-1) for v in vecs if v.numel() == D] |
|
paths = [p for (p, v) in batch if v.numel() == D] |
|
return list(paths), torch.stack(vecs, dim=0) |
|
|
|
return torch.utils.data.DataLoader(ds, batch_size=batch_size, num_workers=num_workers, collate_fn=collate) |
|
|
|
# ---- try it (set num_workers=0 first if you want easier debugging) ---- |
|
if __name__ == "__main__": |
|
paths, X = next(iter(make_embeddings_loader(num_workers=0, prefer_key=None))) |
|
print(len(paths), X.shape) |
|
|
|
``` |
|
|
|
--- |
|
|
|
## C) EEG (`.npy/.npz`) — ragged-friendly (returns list of arrays) |
|
|
|
```python |
|
import io, re |
|
import webdataset as wds |
|
from huggingface_hub import HfFileSystem, hf_hub_url |
|
import numpy as np |
|
|
|
REPO_ID = "nonarjb/alignvis" # your dataset repo on HF |
|
REVISION = "main" |
|
DATASET_DIR = "things_eeg_2" # the folder inside the repo |
|
|
|
def _hf_eeg_urls(repo_id=REPO_ID, dataset_dir=DATASET_DIR, revision=REVISION): |
|
"""Collect EEG shard URLs for both possible top folders.""" |
|
fs = HfFileSystem() |
|
urls = [] |
|
for top in ("Preprocessed_data_250Hz", "preprocessed_eeg"): |
|
pattern = f"datasets/{repo_id}/{dataset_dir}/{dataset_dir}-{top}-*.tar" |
|
hf_paths = sorted(fs.glob(pattern)) |
|
rel = [p.split(f"datasets/{repo_id}/", 1)[1] for p in hf_paths] |
|
urls += [hf_hub_url(repo_id, filename=p, repo_type="dataset", revision=revision) for p in rel] |
|
return urls |
|
|
|
def _load_subject_eeg_from_hf(subject_id: int, split: str): |
|
""" |
|
Returns (subject_eeg_data, ch_names) for a given subject+split |
|
by streaming the per-subject .npy/.npz from HF shards. |
|
""" |
|
urls = _hf_eeg_urls() |
|
if not urls: |
|
raise RuntimeError("No EEG shards found in HF repo") |
|
filebase = "preprocessed_eeg_training" if split == "train" else "preprocessed_eeg_test" |
|
key_prefix = f"sub-{subject_id:02d}/" |
|
|
|
ds = wds.WebDataset(urls, shardshuffle=False) |
|
for s in ds: |
|
# find the per-subject file |
|
if ("npy" in s or "npz" in s) and s["__key__"].startswith(key_prefix) and s["__key__"].endswith(filebase): |
|
ext = "npz" if "npz" in s else "npy" |
|
payload = s[ext] |
|
bio = io.BytesIO(payload) |
|
|
|
# load with safe first, fallback to pickle (original code used allow_pickle=True) |
|
if ext == "npz": |
|
try: |
|
z = np.load(bio, allow_pickle=False) |
|
except Exception: |
|
bio.seek(0); z = np.load(bio, allow_pickle=True) |
|
# prefer exact fields as in your original code |
|
eeg_data = z["preprocessed_eeg_data"] |
|
ch_names = z["ch_names"] if "ch_names" in z else None |
|
else: # npy |
|
try: |
|
obj = np.load(bio, allow_pickle=False) |
|
except ValueError: |
|
bio.seek(0); obj = np.load(bio, allow_pickle=True) |
|
|
|
# obj could be dict-like or 0-d object holding a dict |
|
if isinstance(obj, dict): |
|
eeg_data = obj["preprocessed_eeg_data"] |
|
ch_names = obj.get("ch_names") |
|
elif isinstance(obj, np.ndarray) and obj.dtype == object and obj.shape == (): |
|
d = obj.item() |
|
eeg_data = d["preprocessed_eeg_data"] |
|
ch_names = d.get("ch_names") |
|
else: |
|
# if it’s already a numeric array (unlikely for your case) |
|
eeg_data = obj |
|
ch_names = None |
|
|
|
return np.asarray(eeg_data), ch_names |
|
|
|
raise FileNotFoundError(f"Subject file not found in HF shards: {key_prefix}{filebase}.(npy|npz)") |
|
|
|
|
|
subject_eeg_data, ch_names = _load_subject_eeg_from_hf(subject_id=1, split="train") |
|
print(subject_eeg_data.shape) |
|
print(ch_names) |
|
``` |
|
|
|
> If some `.npy` were saved as **object-dtype**, resave as numeric arrays; otherwise you must load with `allow_pickle=True` (only if you trust the data). |
|
|
|
--- |
|
|
|
## D) Download, **untar**, and use locally (byte-identical files) |
|
|
|
```python |
|
# 1) Download the dataset subtree |
|
from huggingface_hub import snapshot_download |
|
local_root = snapshot_download( |
|
"nonarjb/alignvis", repo_type="dataset", allow_patterns=["things_eeg_2/**"] |
|
) |
|
|
|
# 2) Untar to a restore directory (keys preserved under each top folder) |
|
import tarfile, glob, pathlib |
|
|
|
restore_root = pathlib.Path("./restore/things_eeg_2") |
|
|
|
for top in ("images", "image_embeddings", "preprocessed_eeg"): |
|
(restore_root / top).mkdir(parents=True, exist_ok=True) |
|
for t in glob.glob(f"{local_root}/things_eeg_2/things_eeg_2-{top}-*.tar"): |
|
with tarfile.open(t) as tf: |
|
tf.extractall(restore_root / top) |
|
|
|
print("Restored under:", restore_root) |
|
``` |
|
|
|
Now the folder tree mirrors the original: |
|
|
|
```python |
|
# Example local usage |
|
from PIL import Image |
|
import numpy as np |
|
|
|
img = Image.open("./restore/things_eeg_2/images/training_images/01133_raincoat/raincoat_01s.jpg") |
|
vec = np.load("./restore/things_eeg_2/image_embeddings/some/file.npy") |
|
eeg = np.load("./restore/things_eeg_2/preprocessed_eeg/s01/run3/segment_0001.npy", allow_pickle=False) |
|
``` |
|
|
|
--- |
|
|
|
### Notes |
|
|
|
* WebDataset can also read **local** shards by passing `file://` URLs instead of `https://`. |
|
* If your shards are named differently, tweak `hf_tar_urls(..., top="...")` and the `rel_path` prefixes (`images/`, `image_embeddings/`, `preprocessed_eeg/`). |
|
* To batch EEG tensors, implement padding in the `collate` function. |
|
|