file_path
stringlengths
20
202
content
stringlengths
9
3.85M
size
int64
9
3.85M
lang
stringclasses
9 values
avg_line_length
float64
3.33
100
max_line_length
int64
8
993
alphanum_fraction
float64
0.26
0.93
RoboticExplorationLab/Deep-ILC/dflex/dflex/vec3.h
#pragma once struct float3 { float x; float y; float z; inline CUDA_CALLABLE float3(float x=0.0f, float y=0.0f, float z=0.0f) : x(x), y(y), z(z) {} explicit inline CUDA_CALLABLE float3(const float* p) : x(p[0]), y(p[1]), z(p[2]) {} }; //-------------- // float3 methods inline CUDA_CALLABLE float3 operator - (float3 a) { return { -a.x, -a.y, -a.z }; } inline CUDA_CALLABLE float3 mul(float3 a, float s) { return { a.x*s, a.y*s, a.z*s }; } inline CUDA_CALLABLE float3 div(float3 a, float s) { return { a.x/s, a.y/s, a.z/s }; } inline CUDA_CALLABLE float3 add(float3 a, float3 b) { return { a.x+b.x, a.y+b.y, a.z+b.z }; } inline CUDA_CALLABLE float3 add(float3 a, float s) { return { a.x + s, a.y + s, a.z + s }; } inline CUDA_CALLABLE float3 sub(float3 a, float3 b) { return { a.x-b.x, a.y-b.y, a.z-b.z }; } inline CUDA_CALLABLE float dot(float3 a, float3 b) { return a.x*b.x + a.y*b.y + a.z*b.z; } inline CUDA_CALLABLE float3 cross(float3 a, float3 b) { float3 c; c.x = a.y*b.z - a.z*b.y; c.y = a.z*b.x - a.x*b.z; c.z = a.x*b.y - a.y*b.x; return c; } inline CUDA_CALLABLE float index(const float3 & a, int idx) { #if FP_CHECK if (idx < 0 || idx > 2) { printf("float3 index %d out of bounds at %s %d\n", idx, __FILE__, __LINE__); exit(1); } #endif return (&a.x)[idx]; } inline CUDA_CALLABLE void adj_index(const float3 & a, int idx, float3 & adj_a, int & adj_idx, float & adj_ret) { #if FP_CHECK if (idx < 0 || idx > 2) { printf("float3 index %d out of bounds at %s %d\n", idx, __FILE__, __LINE__); exit(1); } #endif (&adj_a.x)[idx] += adj_ret; } inline CUDA_CALLABLE float length(float3 a) { return sqrtf(dot(a, a)); } inline CUDA_CALLABLE float3 normalize(float3 a) { float l = length(a); if (l > kEps) return div(a,l); else return float3(); } inline bool CUDA_CALLABLE isfinite(float3 x) { return std::isfinite(x.x) && std::isfinite(x.y) && std::isfinite(x.z); } // adjoint float3 constructor inline CUDA_CALLABLE void adj_float3(float x, float y, float z, float& adj_x, float& adj_y, float& adj_z, const float3& adj_ret) { adj_x += adj_ret.x; adj_y += adj_ret.y; adj_z += adj_ret.z; } inline CUDA_CALLABLE void adj_mul(float3 a, float s, float3& adj_a, float& adj_s, const float3& adj_ret) { adj_a.x += s*adj_ret.x; adj_a.y += s*adj_ret.y; adj_a.z += s*adj_ret.z; adj_s += dot(a, adj_ret); #if FP_CHECK if (!isfinite(a) || !isfinite(s) || !isfinite(adj_a) || !isfinite(adj_s) || !isfinite(adj_ret)) printf("adj_mul((%f %f %f), %f, (%f %f %f), %f, (%f %f %f)\n", a.x, a.y, a.z, s, adj_a.x, adj_a.y, adj_a.z, adj_s, adj_ret.x, adj_ret.y, adj_ret.z); #endif } inline CUDA_CALLABLE void adj_div(float3 a, float s, float3& adj_a, float& adj_s, const float3& adj_ret) { adj_s += dot(- a / (s * s), adj_ret); // - a / s^2 adj_a.x += adj_ret.x / s; adj_a.y += adj_ret.y / s; adj_a.z += adj_ret.z / s; #if FP_CHECK if (!isfinite(a) || !isfinite(s) || !isfinite(adj_a) || !isfinite(adj_s) || !isfinite(adj_ret)) printf("adj_div((%f %f %f), %f, (%f %f %f), %f, (%f %f %f)\n", a.x, a.y, a.z, s, adj_a.x, adj_a.y, adj_a.z, adj_s, adj_ret.x, adj_ret.y, adj_ret.z); #endif } inline CUDA_CALLABLE void adj_add(float3 a, float3 b, float3& adj_a, float3& adj_b, const float3& adj_ret) { adj_a += adj_ret; adj_b += adj_ret; } inline CUDA_CALLABLE void adj_add(float3 a, float s, float3& adj_a, float& adj_s, const float3& adj_ret) { adj_a += adj_ret; adj_s += adj_ret.x + adj_ret.y + adj_ret.z; } inline CUDA_CALLABLE void adj_sub(float3 a, float3 b, float3& adj_a, float3& adj_b, const float3& adj_ret) { adj_a += adj_ret; adj_b -= adj_ret; } inline CUDA_CALLABLE void adj_dot(float3 a, float3 b, float3& adj_a, float3& adj_b, const float adj_ret) { adj_a += b*adj_ret; adj_b += a*adj_ret; #if FP_CHECK if (!isfinite(a) || !isfinite(b) || !isfinite(adj_a) || !isfinite(adj_b) || !isfinite(adj_ret)) printf("adj_dot((%f %f %f), (%f %f %f), (%f %f %f), (%f %f %f), %f)\n", a.x, a.y, a.z, b.x, b.y, b.z, adj_a.x, adj_a.y, adj_a.z, adj_b.x, adj_b.y, adj_b.z, adj_ret); #endif } inline CUDA_CALLABLE void adj_cross(float3 a, float3 b, float3& adj_a, float3& adj_b, const float3& adj_ret) { // todo: sign check adj_a += cross(b, adj_ret); adj_b -= cross(a, adj_ret); } #ifdef CUDA inline __device__ void atomic_add(float3 * addr, float3 value) { // *addr += value; atomicAdd(&(addr -> x), value.x); atomicAdd(&(addr -> y), value.y); atomicAdd(&(addr -> z), value.z); } #endif inline CUDA_CALLABLE void adj_length(float3 a, float3& adj_a, const float adj_ret) { adj_a += normalize(a)*adj_ret; #if FP_CHECK if (!isfinite(adj_a)) printf("%s:%d - adj_length((%f %f %f), (%f %f %f), (%f))\n", __FILE__, __LINE__, a.x, a.y, a.z, adj_a.x, adj_a.y, adj_a.z, adj_ret); #endif } inline CUDA_CALLABLE void adj_normalize(float3 a, float3& adj_a, const float3& adj_ret) { float d = length(a); if (d > kEps) { float invd = 1.0f/d; float3 ahat = normalize(a); adj_a += (adj_ret*invd - ahat*(dot(ahat, adj_ret))*invd); #if FP_CHECK if (!isfinite(adj_a)) printf("%s:%d - adj_normalize((%f %f %f), (%f %f %f), (%f, %f, %f))\n", __FILE__, __LINE__, a.x, a.y, a.z, adj_a.x, adj_a.y, adj_a.z, adj_ret.x, adj_ret.y, adj_ret.z); #endif } }
5,542
C
23.745536
179
0.560628
RoboticExplorationLab/Deep-ILC/dflex/dflex/sim.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """This module contains time-integration objects for simulating models + state forward in time. """ import math import torch import numpy as np import dflex.util import dflex.adjoint as df import dflex.config from dflex.model import * import time import ipdb # Todo #----- # # [x] Spring model # [x] 2D FEM model # [x] 3D FEM model # [x] Cloth # [x] Wind/Drag model # [x] Bending model # [x] Triangle collision # [x] Rigid body model # [x] Rigid shape contact # [x] Sphere # [x] Capsule # [x] Box # [ ] Convex # [ ] SDF # [ ] Implicit solver # [x] USD import # [x] USD export # ----- # externally compiled kernels module (C++/CUDA code with PyBind entry points) kernels = None @df.func def test(c: float): x = 1.0 y = float(2) z = int(3.0) print(y) print(z) if (c < 3.0): x = 2.0 return x*6.0 def kernel_init(): global kernels kernels = df.compile() @df.kernel def integrate_particles(x: df.tensor(df.float3), v: df.tensor(df.float3), f: df.tensor(df.float3), w: df.tensor(float), gravity: df.tensor(df.float3), dt: float, x_new: df.tensor(df.float3), v_new: df.tensor(df.float3)): tid = df.tid() x0 = df.load(x, tid) v0 = df.load(v, tid) f0 = df.load(f, tid) inv_mass = df.load(w, tid) g = df.load(gravity, 0) # simple semi-implicit Euler. v1 = v0 + a dt, x1 = x0 + v1 dt v1 = v0 + (f0 * inv_mass + g * df.step(0.0 - inv_mass)) * dt x1 = x0 + v1 * dt df.store(x_new, tid, x1) df.store(v_new, tid, v1) # semi-implicit Euler integration @df.kernel def integrate_rigids(rigid_x: df.tensor(df.float3), rigid_r: df.tensor(df.quat), rigid_v: df.tensor(df.float3), rigid_w: df.tensor(df.float3), rigid_f: df.tensor(df.float3), rigid_t: df.tensor(df.float3), inv_m: df.tensor(float), inv_I: df.tensor(df.mat33), gravity: df.tensor(df.float3), dt: float, rigid_x_new: df.tensor(df.float3), rigid_r_new: df.tensor(df.quat), rigid_v_new: df.tensor(df.float3), rigid_w_new: df.tensor(df.float3)): tid = df.tid() # positions x0 = df.load(rigid_x, tid) r0 = df.load(rigid_r, tid) # velocities v0 = df.load(rigid_v, tid) w0 = df.load(rigid_w, tid) # angular velocity # forces f0 = df.load(rigid_f, tid) t0 = df.load(rigid_t, tid) # masses inv_mass = df.load(inv_m, tid) # 1 / mass inv_inertia = df.load(inv_I, tid) # inverse of 3x3 inertia matrix g = df.load(gravity, 0) # linear part v1 = v0 + (f0 * inv_mass + g * df.nonzero(inv_mass)) * dt # linear integral (linear position/velocity) x1 = x0 + v1 * dt # angular part # so reverse multiplication by r0 takes you from global coordinates into local coordinates # because it's covector and thus gets pulled back rather than pushed forward wb = df.rotate_inv(r0, w0) # angular integral (angular velocity and rotation), rotate into object reference frame tb = df.rotate_inv(r0, t0) # also rotate torques into local coordinates # I^{-1} torque = angular acceleration and inv_inertia is always going to be in the object frame. # So we need to rotate into that frame, and then back into global. w1 = df.rotate(r0, wb + inv_inertia * tb * dt) # I^-1 * torque * dt., then go back into global coordinates r1 = df.normalize(r0 + df.quat(w1, 0.0) * r0 * 0.5 * dt) # rotate around w1 by dt df.store(rigid_x_new, tid, x1) df.store(rigid_r_new, tid, r1) df.store(rigid_v_new, tid, v1) df.store(rigid_w_new, tid, w1) @df.kernel def eval_springs(x: df.tensor(df.float3), v: df.tensor(df.float3), spring_indices: df.tensor(int), spring_rest_lengths: df.tensor(float), spring_stiffness: df.tensor(float), spring_damping: df.tensor(float), f: df.tensor(df.float3)): tid = df.tid() i = df.load(spring_indices, tid * 2 + 0) j = df.load(spring_indices, tid * 2 + 1) ke = df.load(spring_stiffness, tid) kd = df.load(spring_damping, tid) rest = df.load(spring_rest_lengths, tid) xi = df.load(x, i) xj = df.load(x, j) vi = df.load(v, i) vj = df.load(v, j) xij = xi - xj vij = vi - vj l = length(xij) l_inv = 1.0 / l # normalized spring direction dir = xij * l_inv c = l - rest dcdt = dot(dir, vij) # damping based on relative velocity. fs = dir * (ke * c + kd * dcdt) df.atomic_sub(f, i, fs) df.atomic_add(f, j, fs) @df.kernel def eval_triangles(x: df.tensor(df.float3), v: df.tensor(df.float3), indices: df.tensor(int), pose: df.tensor(df.mat22), activation: df.tensor(float), k_mu: float, k_lambda: float, k_damp: float, k_drag: float, k_lift: float, f: df.tensor(df.float3)): tid = df.tid() i = df.load(indices, tid * 3 + 0) j = df.load(indices, tid * 3 + 1) k = df.load(indices, tid * 3 + 2) p = df.load(x, i) # point zero q = df.load(x, j) # point one r = df.load(x, k) # point two vp = df.load(v, i) # vel zero vq = df.load(v, j) # vel one vr = df.load(v, k) # vel two qp = q - p # barycentric coordinates (centered at p) rp = r - p Dm = df.load(pose, tid) inv_rest_area = df.determinant(Dm) * 2.0 # 1 / det(A) = det(A^-1) rest_area = 1.0 / inv_rest_area # scale stiffness coefficients to account for area k_mu = k_mu * rest_area k_lambda = k_lambda * rest_area k_damp = k_damp * rest_area # F = Xs*Xm^-1 f1 = qp * Dm[0, 0] + rp * Dm[1, 0] f2 = qp * Dm[0, 1] + rp * Dm[1, 1] #----------------------------- # St. Venant-Kirchoff # # Green strain, F'*F-I # e00 = dot(f1, f1) - 1.0 # e10 = dot(f2, f1) # e01 = dot(f1, f2) # e11 = dot(f2, f2) - 1.0 # E = df.mat22(e00, e01, # e10, e11) # # local forces (deviatoric part) # T = df.mul(E, df.transpose(Dm)) # # spatial forces, F*T # fq = (f1*T[0,0] + f2*T[1,0])*k_mu*2.0 # fr = (f1*T[0,1] + f2*T[1,1])*k_mu*2.0 # alpha = 1.0 #----------------------------- # Baraff & Witkin, note this model is not isotropic # c1 = length(f1) - 1.0 # c2 = length(f2) - 1.0 # f1 = normalize(f1)*c1*k1 # f2 = normalize(f2)*c2*k1 # fq = f1*Dm[0,0] + f2*Dm[0,1] # fr = f1*Dm[1,0] + f2*Dm[1,1] #----------------------------- # Neo-Hookean (with rest stability) # force = mu*F*Dm' fq = (f1 * Dm[0, 0] + f2 * Dm[0, 1]) * k_mu fr = (f1 * Dm[1, 0] + f2 * Dm[1, 1]) * k_mu alpha = 1.0 + k_mu / k_lambda #----------------------------- # Area Preservation n = df.cross(qp, rp) area = df.length(n) * 0.5 # actuation act = df.load(activation, tid) # J-alpha c = area * inv_rest_area - alpha + act # dJdx n = df.normalize(n) dcdq = df.cross(rp, n) * inv_rest_area * 0.5 dcdr = df.cross(n, qp) * inv_rest_area * 0.5 f_area = k_lambda * c #----------------------------- # Area Damping dcdt = dot(dcdq, vq) + dot(dcdr, vr) - dot(dcdq + dcdr, vp) f_damp = k_damp * dcdt fq = fq + dcdq * (f_area + f_damp) fr = fr + dcdr * (f_area + f_damp) fp = fq + fr #----------------------------- # Lift + Drag vmid = (vp + vr + vq) * 0.3333 vdir = df.normalize(vmid) f_drag = vmid * (k_drag * area * df.abs(df.dot(n, vmid))) f_lift = n * (k_lift * area * (1.57079 - df.acos(df.dot(n, vdir)))) * dot(vmid, vmid) # note reversed sign due to atomic_add below.. need to write the unary op - fp = fp - f_drag - f_lift fq = fq + f_drag + f_lift fr = fr + f_drag + f_lift # apply forces df.atomic_add(f, i, fp) df.atomic_sub(f, j, fq) df.atomic_sub(f, k, fr) @df.func def triangle_closest_point_barycentric(a: df.float3, b: df.float3, c: df.float3, p: df.float3): ab = b - a ac = c - a ap = p - a d1 = df.dot(ab, ap) d2 = df.dot(ac, ap) if (d1 <= 0.0 and d2 <= 0.0): return float3(1.0, 0.0, 0.0) bp = p - b d3 = df.dot(ab, bp) d4 = df.dot(ac, bp) if (d3 >= 0.0 and d4 <= d3): return float3(0.0, 1.0, 0.0) vc = d1 * d4 - d3 * d2 v = d1 / (d1 - d3) if (vc <= 0.0 and d1 >= 0.0 and d3 <= 0.0): return float3(1.0 - v, v, 0.0) cp = p - c d5 = dot(ab, cp) d6 = dot(ac, cp) if (d6 >= 0.0 and d5 <= d6): return float3(0.0, 0.0, 1.0) vb = d5 * d2 - d1 * d6 w = d2 / (d2 - d6) if (vb <= 0.0 and d2 >= 0.0 and d6 <= 0.0): return float3(1.0 - w, 0.0, w) va = d3 * d6 - d5 * d4 w = (d4 - d3) / ((d4 - d3) + (d5 - d6)) if (va <= 0.0 and (d4 - d3) >= 0.0 and (d5 - d6) >= 0.0): return float3(0.0, w, 1.0 - w) denom = 1.0 / (va + vb + vc) v = vb * denom w = vc * denom return float3(1.0 - v - w, v, w) @df.kernel def eval_triangles_contact( # idx : df.tensor(int), # list of indices for colliding particles num_particles: int, # size of particles x: df.tensor(df.float3), v: df.tensor(df.float3), indices: df.tensor(int), pose: df.tensor(df.mat22), activation: df.tensor(float), k_mu: float, k_lambda: float, k_damp: float, k_drag: float, k_lift: float, f: df.tensor(df.float3)): tid = df.tid() face_no = tid // num_particles # which face particle_no = tid % num_particles # which particle # index = df.load(idx, tid) pos = df.load(x, particle_no) # at the moment, just one particle # vel0 = df.load(v, 0) i = df.load(indices, face_no * 3 + 0) j = df.load(indices, face_no * 3 + 1) k = df.load(indices, face_no * 3 + 2) if (i == particle_no or j == particle_no or k == particle_no): return p = df.load(x, i) # point zero q = df.load(x, j) # point one r = df.load(x, k) # point two # vp = df.load(v, i) # vel zero # vq = df.load(v, j) # vel one # vr = df.load(v, k) # vel two # qp = q-p # barycentric coordinates (centered at p) # rp = r-p bary = triangle_closest_point_barycentric(p, q, r, pos) closest = p * bary[0] + q * bary[1] + r * bary[2] diff = pos - closest dist = df.dot(diff, diff) n = df.normalize(diff) c = df.min(dist - 0.01, 0.0) # 0 unless within 0.01 of surface #c = df.leaky_min(dot(n, x0)-0.01, 0.0, 0.0) fn = n * c * 1e5 df.atomic_sub(f, particle_no, fn) # # apply forces (could do - f / 3 here) df.atomic_add(f, i, fn * bary[0]) df.atomic_add(f, j, fn * bary[1]) df.atomic_add(f, k, fn * bary[2]) @df.kernel def eval_triangles_rigid_contacts( num_particles: int, # number of particles (size of contact_point) x: df.tensor(df.float3), # position of particles v: df.tensor(df.float3), indices: df.tensor(int), # triangle indices rigid_x: df.tensor(df.float3), # rigid body positions rigid_r: df.tensor(df.quat), rigid_v: df.tensor(df.float3), rigid_w: df.tensor(df.float3), contact_body: df.tensor(int), contact_point: df.tensor(df.float3), # position of contact points relative to body contact_dist: df.tensor(float), contact_mat: df.tensor(int), materials: df.tensor(float), # rigid_f : df.tensor(df.float3), # rigid_t : df.tensor(df.float3), tri_f: df.tensor(df.float3)): tid = df.tid() face_no = tid // num_particles # which face particle_no = tid % num_particles # which particle # ----------------------- # load rigid body point c_body = df.load(contact_body, particle_no) c_point = df.load(contact_point, particle_no) c_dist = df.load(contact_dist, particle_no) c_mat = df.load(contact_mat, particle_no) # hard coded surface parameter tensor layout (ke, kd, kf, mu) ke = df.load(materials, c_mat * 4 + 0) # restitution coefficient kd = df.load(materials, c_mat * 4 + 1) # damping coefficient kf = df.load(materials, c_mat * 4 + 2) # friction coefficient mu = df.load(materials, c_mat * 4 + 3) # coulomb friction x0 = df.load(rigid_x, c_body) # position of colliding body r0 = df.load(rigid_r, c_body) # orientation of colliding body v0 = df.load(rigid_v, c_body) w0 = df.load(rigid_w, c_body) # transform point to world space pos = x0 + df.rotate(r0, c_point) # use x0 as center, everything is offset from center of mass # moment arm r = pos - x0 # basically just c_point in the new coordinates rhat = df.normalize(r) pos = pos + rhat * c_dist # add on 'thickness' of shape, e.g.: radius of sphere/capsule # contact point velocity dpdt = v0 + df.cross(w0, r) # this is rigid velocity cross offset, so it's the velocity of the contact point. # ----------------------- # load triangle i = df.load(indices, face_no * 3 + 0) j = df.load(indices, face_no * 3 + 1) k = df.load(indices, face_no * 3 + 2) p = df.load(x, i) # point zero q = df.load(x, j) # point one r = df.load(x, k) # point two vp = df.load(v, i) # vel zero vq = df.load(v, j) # vel one vr = df.load(v, k) # vel two bary = triangle_closest_point_barycentric(p, q, r, pos) closest = p * bary[0] + q * bary[1] + r * bary[2] diff = pos - closest # vector from tri to point dist = df.dot(diff, diff) # squared distance n = df.normalize(diff) # points into the object c = df.min(dist - 0.05, 0.0) # 0 unless within 0.05 of surface #c = df.leaky_min(dot(n, x0)-0.01, 0.0, 0.0) # fn = n * c * 1e6 # points towards cloth (both n and c are negative) # df.atomic_sub(tri_f, particle_no, fn) fn = c * ke # normal force (restitution coefficient * how far inside for ground) (negative) vtri = vp * bary[0] + vq * bary[1] + vr * bary[2] # bad approximation for centroid velocity vrel = vtri - dpdt vn = dot(n, vrel) # velocity component of rigid in negative normal direction vt = vrel - n * vn # velocity component not in normal direction # contact damping fd = 0.0 - df.max(vn, 0.0) * kd * df.step(c) # again, negative, into the ground # # viscous friction # ft = vt*kf # Coulomb friction (box) lower = mu * (fn + fd) upper = 0.0 - lower # workaround because no unary ops yet nx = cross(n, float3(0.0, 0.0, 1.0)) # basis vectors for tangent nz = cross(n, float3(1.0, 0.0, 0.0)) vx = df.clamp(dot(nx * kf, vt), lower, upper) vz = df.clamp(dot(nz * kf, vt), lower, upper) ft = (nx * vx + nz * vz) * (0.0 - df.step(c)) # df.float3(vx, 0.0, vz)*df.step(c) # # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) # #ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke) f_total = n * (fn + fd) + ft df.atomic_add(tri_f, i, f_total * bary[0]) df.atomic_add(tri_f, j, f_total * bary[1]) df.atomic_add(tri_f, k, f_total * bary[2]) @df.kernel def eval_bending( x: df.tensor(df.float3), v: df.tensor(df.float3), indices: df.tensor(int), rest: df.tensor(float), ke: float, kd: float, f: df.tensor(df.float3)): tid = df.tid() i = df.load(indices, tid * 4 + 0) j = df.load(indices, tid * 4 + 1) k = df.load(indices, tid * 4 + 2) l = df.load(indices, tid * 4 + 3) rest_angle = df.load(rest, tid) x1 = df.load(x, i) x2 = df.load(x, j) x3 = df.load(x, k) x4 = df.load(x, l) v1 = df.load(v, i) v2 = df.load(v, j) v3 = df.load(v, k) v4 = df.load(v, l) n1 = df.cross(x3 - x1, x4 - x1) # normal to face 1 n2 = df.cross(x4 - x2, x3 - x2) # normal to face 2 n1_length = df.length(n1) n2_length = df.length(n2) rcp_n1 = 1.0 / n1_length rcp_n2 = 1.0 / n2_length cos_theta = df.dot(n1, n2) * rcp_n1 * rcp_n2 n1 = n1 * rcp_n1 * rcp_n1 n2 = n2 * rcp_n2 * rcp_n2 e = x4 - x3 e_hat = df.normalize(e) e_length = df.length(e) s = df.sign(df.dot(df.cross(n2, n1), e_hat)) angle = df.acos(cos_theta) * s d1 = n1 * e_length d2 = n2 * e_length d3 = n1 * df.dot(x1 - x4, e_hat) + n2 * df.dot(x2 - x4, e_hat) d4 = n1 * df.dot(x3 - x1, e_hat) + n2 * df.dot(x3 - x2, e_hat) # elastic f_elastic = ke * (angle - rest_angle) # damping f_damp = kd * (df.dot(d1, v1) + df.dot(d2, v2) + df.dot(d3, v3) + df.dot(d4, v4)) # total force, proportional to edge length f_total = 0.0 - e_length * (f_elastic + f_damp) df.atomic_add(f, i, d1 * f_total) df.atomic_add(f, j, d2 * f_total) df.atomic_add(f, k, d3 * f_total) df.atomic_add(f, l, d4 * f_total) @df.kernel def eval_tetrahedra(x: df.tensor(df.float3), v: df.tensor(df.float3), indices: df.tensor(int), pose: df.tensor(df.mat33), activation: df.tensor(float), materials: df.tensor(float), f: df.tensor(df.float3)): tid = df.tid() i = df.load(indices, tid * 4 + 0) j = df.load(indices, tid * 4 + 1) k = df.load(indices, tid * 4 + 2) l = df.load(indices, tid * 4 + 3) act = df.load(activation, tid) k_mu = df.load(materials, tid * 3 + 0) k_lambda = df.load(materials, tid * 3 + 1) k_damp = df.load(materials, tid * 3 + 2) x0 = df.load(x, i) x1 = df.load(x, j) x2 = df.load(x, k) x3 = df.load(x, l) v0 = df.load(v, i) v1 = df.load(v, j) v2 = df.load(v, k) v3 = df.load(v, l) x10 = x1 - x0 x20 = x2 - x0 x30 = x3 - x0 v10 = v1 - v0 v20 = v2 - v0 v30 = v3 - v0 Ds = df.mat33(x10, x20, x30) Dm = df.load(pose, tid) inv_rest_volume = df.determinant(Dm) * 6.0 rest_volume = 1.0 / inv_rest_volume alpha = 1.0 + k_mu / k_lambda - k_mu / (4.0 * k_lambda) # scale stiffness coefficients to account for area k_mu = k_mu * rest_volume k_lambda = k_lambda * rest_volume k_damp = k_damp * rest_volume # F = Xs*Xm^-1 F = Ds * Dm dFdt = df.mat33(v10, v20, v30) * Dm col1 = df.float3(F[0, 0], F[1, 0], F[2, 0]) col2 = df.float3(F[0, 1], F[1, 1], F[2, 1]) col3 = df.float3(F[0, 2], F[1, 2], F[2, 2]) #----------------------------- # Neo-Hookean (with rest stability [Smith et al 2018]) Ic = dot(col1, col1) + dot(col2, col2) + dot(col3, col3) # deviatoric part P = F * k_mu * (1.0 - 1.0 / (Ic + 1.0)) + dFdt * k_damp H = P * df.transpose(Dm) f1 = df.float3(H[0, 0], H[1, 0], H[2, 0]) f2 = df.float3(H[0, 1], H[1, 1], H[2, 1]) f3 = df.float3(H[0, 2], H[1, 2], H[2, 2]) #----------------------------- # C_spherical # r_s = df.sqrt(dot(col1, col1) + dot(col2, col2) + dot(col3, col3)) # r_s_inv = 1.0/r_s # C = r_s - df.sqrt(3.0) # dCdx = F*df.transpose(Dm)*r_s_inv # grad1 = float3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) # grad2 = float3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) # grad3 = float3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) # f1 = grad1*C*k_mu # f2 = grad2*C*k_mu # f3 = grad3*C*k_mu #---------------------------- # C_D # r_s = df.sqrt(dot(col1, col1) + dot(col2, col2) + dot(col3, col3)) # C = r_s*r_s - 3.0 # dCdx = F*df.transpose(Dm)*2.0 # grad1 = float3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) # grad2 = float3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) # grad3 = float3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) # f1 = grad1*C*k_mu # f2 = grad2*C*k_mu # f3 = grad3*C*k_mu # hydrostatic part J = df.determinant(F) #print(J) s = inv_rest_volume / 6.0 dJdx1 = df.cross(x20, x30) * s dJdx2 = df.cross(x30, x10) * s dJdx3 = df.cross(x10, x20) * s f_volume = (J - alpha + act) * k_lambda f_damp = (df.dot(dJdx1, v1) + df.dot(dJdx2, v2) + df.dot(dJdx3, v3)) * k_damp f_total = f_volume + f_damp f1 = f1 + dJdx1 * f_total f2 = f2 + dJdx2 * f_total f3 = f3 + dJdx3 * f_total f0 = (f1 + f2 + f3) * (0.0 - 1.0) # apply forces df.atomic_sub(f, i, f0) df.atomic_sub(f, j, f1) df.atomic_sub(f, k, f2) df.atomic_sub(f, l, f3) @df.kernel def eval_contacts(x: df.tensor(df.float3), v: df.tensor(df.float3), ke: float, kd: float, kf: float, mu: float, f: df.tensor(df.float3)): tid = df.tid() # this just handles contact of particles with the ground plane, nothing else. x0 = df.load(x, tid) v0 = df.load(v, tid) n = float3(0.0, 1.0, 0.0) # why is the normal always y? Ground is always (0, 1, 0) normal c = df.min(dot(n, x0) - 0.01, 0.0) # 0 unless within 0.01 of surface #c = df.leaky_min(dot(n, x0)-0.01, 0.0, 0.0) vn = dot(n, v0) vt = v0 - n * vn fn = n * c * ke # contact damping fd = n * df.min(vn, 0.0) * kd # viscous friction #ft = vt*kf # Coulomb friction (box) lower = mu * c * ke upper = 0.0 - lower vx = clamp(dot(float3(kf, 0.0, 0.0), vt), lower, upper) vz = clamp(dot(float3(0.0, 0.0, kf), vt), lower, upper) ft = df.float3(vx, 0.0, vz) # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) #ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke) ftotal = fn + (fd + ft) * df.step(c) df.atomic_sub(f, tid, ftotal) @df.func def sphere_sdf(center: df.float3, radius: float, p: df.float3): return df.length(p-center) - radius @df.func def sphere_sdf_grad(center: df.float3, radius: float, p: df.float3): return df.normalize(p-center) @df.func def box_sdf(upper: df.float3, p: df.float3): # adapted from https://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm qx = abs(p[0])-upper[0] qy = abs(p[1])-upper[1] qz = abs(p[2])-upper[2] e = df.float3(df.max(qx, 0.0), df.max(qy, 0.0), df.max(qz, 0.0)) return df.length(e) + df.min(df.max(qx, df.max(qy, qz)), 0.0) @df.func def box_sdf_grad(upper: df.float3, p: df.float3): qx = abs(p[0])-upper[0] qy = abs(p[1])-upper[1] qz = abs(p[2])-upper[2] # exterior case if (qx > 0.0 or qy > 0.0 or qz > 0.0): x = df.clamp(p[0], 0.0-upper[0], upper[0]) y = df.clamp(p[1], 0.0-upper[1], upper[1]) z = df.clamp(p[2], 0.0-upper[2], upper[2]) return df.normalize(p - df.float3(x, y, z)) sx = df.sign(p[0]) sy = df.sign(p[1]) sz = df.sign(p[2]) # x projection if (qx > qy and qx > qz): return df.float3(sx, 0.0, 0.0) # y projection if (qy > qx and qy > qz): return df.float3(0.0, sy, 0.0) # z projection if (qz > qx and qz > qy): return df.float3(0.0, 0.0, sz) @df.func def capsule_sdf(radius: float, half_width: float, p: df.float3): if (p[0] > half_width): return length(df.float3(p[0] - half_width, p[1], p[2])) - radius if (p[0] < 0.0 - half_width): return length(df.float3(p[0] + half_width, p[1], p[2])) - radius return df.length(df.float3(0.0, p[1], p[2])) - radius @df.func def capsule_sdf_grad(radius: float, half_width: float, p: df.float3): if (p[0] > half_width): return normalize(df.float3(p[0] - half_width, p[1], p[2])) if (p[0] < 0.0 - half_width): return normalize(df.float3(p[0] + half_width, p[1], p[2])) return normalize(df.float3(0.0, p[1], p[2])) @df.kernel def eval_soft_contacts( num_particles: int, particle_x: df.tensor(df.float3), particle_v: df.tensor(df.float3), body_X_sc: df.tensor(df.spatial_transform), body_v_sc: df.tensor(df.spatial_vector), shape_X_co: df.tensor(df.spatial_transform), shape_body: df.tensor(int), shape_geo_type: df.tensor(int), shape_geo_src: df.tensor(int), shape_geo_scale: df.tensor(df.float3), shape_materials: df.tensor(float), ke: float, kd: float, kf: float, mu: float, # outputs particle_f: df.tensor(df.float3), body_f: df.tensor(df.spatial_vector)): tid = df.tid() shape_index = tid // num_particles # which shape particle_index = tid % num_particles # which particle rigid_index = df.load(shape_body, shape_index) px = df.load(particle_x, particle_index) pv = df.load(particle_v, particle_index) #center = float3(0.0, 0.5, 0.0) #radius = 0.25 #margin = 0.01 # sphere collider # c = df.min(sphere_sdf(center, radius, x0)-margin, 0.0) # n = sphere_sdf_grad(center, radius, x0) # box collider #c = df.min(box_sdf(df.float3(radius, radius, radius), x0-center)-margin, 0.0) #n = box_sdf_grad(df.float3(radius, radius, radius), x0-center) X_sc = df.spatial_transform_identity() if (rigid_index >= 0): X_sc = df.load(body_X_sc, rigid_index) X_co = df.load(shape_X_co, shape_index) X_so = df.spatial_transform_multiply(X_sc, X_co) X_os = df.spatial_transform_inverse(X_so) # transform particle position to shape local space x_local = df.spatial_transform_point(X_os, px) # geo description geo_type = df.load(shape_geo_type, shape_index) geo_scale = df.load(shape_geo_scale, shape_index) margin = 0.01 # evaluate shape sdf c = 0.0 n = df.float3(0.0, 0.0, 0.0) # GEO_SPHERE (0) if (geo_type == 0): c = df.min(sphere_sdf(df.float3(0.0, 0.0, 0.0), geo_scale[0], x_local)-margin, 0.0) n = df.spatial_transform_vector(X_so, sphere_sdf_grad(df.float3(0.0, 0.0, 0.0), geo_scale[0], x_local)) # GEO_BOX (1) if (geo_type == 1): c = df.min(box_sdf(geo_scale, x_local)-margin, 0.0) n = df.spatial_transform_vector(X_so, box_sdf_grad(geo_scale, x_local)) # GEO_CAPSULE (2) if (geo_type == 2): c = df.min(capsule_sdf(geo_scale[0], geo_scale[1], x_local)-margin, 0.0) n = df.spatial_transform_vector(X_so, capsule_sdf_grad(geo_scale[0], geo_scale[1], x_local)) # rigid velocity rigid_v_s = df.spatial_vector() if (rigid_index >= 0): rigid_v_s = df.load(body_v_sc, rigid_index) rigid_w = df.spatial_top(rigid_v_s) rigid_v = df.spatial_bottom(rigid_v_s) # compute the body velocity at the particle position bv = rigid_v + df.cross(rigid_w, px) # relative velocity v = pv - bv # decompose relative velocity vn = dot(n, v) vt = v - n * vn # contact elastic fn = n * c * ke # contact damping fd = n * df.min(vn, 0.0) * kd # viscous friction #ft = vt*kf # Coulomb friction (box) lower = mu * c * ke upper = 0.0 - lower vx = clamp(dot(float3(kf, 0.0, 0.0), vt), lower, upper) vz = clamp(dot(float3(0.0, 0.0, kf), vt), lower, upper) ft = df.float3(vx, 0.0, vz) # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) #ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke) f_total = fn + (fd + ft) * df.step(c) t_total = df.cross(px, f_total) df.atomic_sub(particle_f, particle_index, f_total) if (rigid_index >= 0): df.atomic_sub(body_f, rigid_index, df.spatial_vector(t_total, f_total)) @df.kernel def eval_rigid_contacts(rigid_x: df.tensor(df.float3), rigid_r: df.tensor(df.quat), rigid_v: df.tensor(df.float3), rigid_w: df.tensor(df.float3), contact_body: df.tensor(int), contact_point: df.tensor(df.float3), contact_dist: df.tensor(float), contact_mat: df.tensor(int), materials: df.tensor(float), rigid_f: df.tensor(df.float3), rigid_t: df.tensor(df.float3)): tid = df.tid() c_body = df.load(contact_body, tid) c_point = df.load(contact_point, tid) c_dist = df.load(contact_dist, tid) c_mat = df.load(contact_mat, tid) # hard coded surface parameter tensor layout (ke, kd, kf, mu) ke = df.load(materials, c_mat * 4 + 0) # restitution coefficient kd = df.load(materials, c_mat * 4 + 1) # damping coefficient kf = df.load(materials, c_mat * 4 + 2) # friction coefficient mu = df.load(materials, c_mat * 4 + 3) # coulomb friction x0 = df.load(rigid_x, c_body) # position of colliding body r0 = df.load(rigid_r, c_body) # orientation of colliding body v0 = df.load(rigid_v, c_body) w0 = df.load(rigid_w, c_body) n = float3(0.0, 1.0, 0.0) # transform point to world space p = x0 + df.rotate(r0, c_point) - n * c_dist # add on 'thickness' of shape, e.g.: radius of sphere/capsule # use x0 as center, everything is offset from center of mass # moment arm r = p - x0 # basically just c_point in the new coordinates # contact point velocity dpdt = v0 + df.cross(w0, r) # this is rigid velocity cross offset, so it's the velocity of the contact point. # check ground contact c = df.min(dot(n, p), 0.0) # check if we're inside the ground vn = dot(n, dpdt) # velocity component out of the ground vt = dpdt - n * vn # velocity component not into the ground fn = c * ke # normal force (restitution coefficient * how far inside for ground) # contact damping fd = df.min(vn, 0.0) * kd * df.step(c) # again, velocity into the ground, negative # viscous friction #ft = vt*kf # Coulomb friction (box) lower = mu * (fn + fd) # negative upper = 0.0 - lower # positive, workaround for no unary ops vx = df.clamp(dot(float3(kf, 0.0, 0.0), vt), lower, upper) vz = df.clamp(dot(float3(0.0, 0.0, kf), vt), lower, upper) ft = df.float3(vx, 0.0, vz) * df.step(c) # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) #ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke) f_total = n * (fn + fd) + ft t_total = df.cross(r, f_total) df.atomic_sub(rigid_f, c_body, f_total) df.atomic_sub(rigid_t, c_body, t_total) # # Frank & Park definition 3.20, pg 100 @df.func def spatial_transform_twist(t: df.spatial_transform, x: df.spatial_vector): q = spatial_transform_get_rotation(t) p = spatial_transform_get_translation(t) w = spatial_top(x) v = spatial_bottom(x) w = rotate(q, w) v = rotate(q, v) + cross(p, w) return spatial_vector(w, v) @df.func def spatial_transform_wrench(t: df.spatial_transform, x: df.spatial_vector): q = spatial_transform_get_rotation(t) p = spatial_transform_get_translation(t) w = spatial_top(x) v = spatial_bottom(x) v = rotate(q, v) w = rotate(q, w) + cross(p, v) return spatial_vector(w, v) @df.func def spatial_transform_inverse(t: df.spatial_transform): p = spatial_transform_get_translation(t) q = spatial_transform_get_rotation(t) q_inv = inverse(q) return spatial_transform(rotate(q_inv, p)*(0.0 - 1.0), q_inv); # computes adj_t^-T*I*adj_t^-1 (tensor change of coordinates), Frank & Park, section 8.2.3, pg 290 @df.func def spatial_transform_inertia(t: df.spatial_transform, I: df.spatial_matrix): t_inv = spatial_transform_inverse(t) q = spatial_transform_get_rotation(t_inv) p = spatial_transform_get_translation(t_inv) r1 = rotate(q, float3(1.0, 0.0, 0.0)) r2 = rotate(q, float3(0.0, 1.0, 0.0)) r3 = rotate(q, float3(0.0, 0.0, 1.0)) R = mat33(r1, r2, r3) S = mul(skew(p), R) T = spatial_adjoint(R, S) return mul(mul(transpose(T), I), T) @df.kernel def eval_rigid_contacts_art( body_X_s: df.tensor(df.spatial_transform), body_v_s: df.tensor(df.spatial_vector), contact_body: df.tensor(int), contact_point: df.tensor(df.float3), contact_dist: df.tensor(float), contact_mat: df.tensor(int), materials: df.tensor(float), body_f_s: df.tensor(df.spatial_vector)): tid = df.tid() c_body = df.load(contact_body, tid) c_point = df.load(contact_point, tid) c_dist = df.load(contact_dist, tid) c_mat = df.load(contact_mat, tid) # hard coded surface parameter tensor layout (ke, kd, kf, mu) ke = df.load(materials, c_mat * 4 + 0) # restitution coefficient kd = df.load(materials, c_mat * 4 + 1) # damping coefficient kf = df.load(materials, c_mat * 4 + 2) # friction coefficient mu = df.load(materials, c_mat * 4 + 3) # coulomb friction X_s = df.load(body_X_s, c_body) # position of colliding body v_s = df.load(body_v_s, c_body) # orientation of colliding body n = float3(0.0, 1.0, 0.0) # transform point to world space p = df.spatial_transform_point(X_s, c_point) - n * c_dist # add on 'thickness' of shape, e.g.: radius of sphere/capsule w = df.spatial_top(v_s) v = df.spatial_bottom(v_s) # contact point velocity dpdt = v + df.cross(w, p) # check ground contact c = df.dot(n, p) # check if we're inside the ground if (c >= 0.0): return vn = dot(n, dpdt) # velocity component out of the ground vt = dpdt - n * vn # velocity component not into the ground fn = c * ke # normal force (restitution coefficient * how far inside for ground) # contact damping fd = df.min(vn, 0.0) * kd * df.step(c) * (0.0 - c) # viscous friction #ft = vt*kf # Coulomb friction (box) lower = mu * (fn + fd) # negative upper = 0.0 - lower # positive, workaround for no unary ops vx = df.clamp(dot(float3(kf, 0.0, 0.0), vt), lower, upper) vz = df.clamp(dot(float3(0.0, 0.0, kf), vt), lower, upper) # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke) * df.step(c) f_total = n * (fn + fd) + ft t_total = df.cross(p, f_total) df.atomic_add(body_f_s, c_body, df.spatial_vector(t_total, f_total)) @df.func def compute_muscle_force( i: int, body_X_s: df.tensor(df.spatial_transform), body_v_s: df.tensor(df.spatial_vector), muscle_links: df.tensor(int), muscle_points: df.tensor(df.float3), muscle_activation: float, body_f_s: df.tensor(df.spatial_vector)): link_0 = df.load(muscle_links, i) link_1 = df.load(muscle_links, i+1) if (link_0 == link_1): return 0 r_0 = df.load(muscle_points, i) r_1 = df.load(muscle_points, i+1) xform_0 = df.load(body_X_s, link_0) xform_1 = df.load(body_X_s, link_1) pos_0 = df.spatial_transform_point(xform_0, r_0) pos_1 = df.spatial_transform_point(xform_1, r_1) n = df.normalize(pos_1 - pos_0) # todo: add passive elastic and viscosity terms f = n * muscle_activation df.atomic_sub(body_f_s, link_0, df.spatial_vector(df.cross(pos_0, f), f)) df.atomic_add(body_f_s, link_1, df.spatial_vector(df.cross(pos_1, f), f)) return 0 @df.kernel def eval_muscles( body_X_s: df.tensor(df.spatial_transform), body_v_s: df.tensor(df.spatial_vector), muscle_start: df.tensor(int), muscle_params: df.tensor(float), muscle_links: df.tensor(int), muscle_points: df.tensor(df.float3), muscle_activation: df.tensor(float), # output body_f_s: df.tensor(df.spatial_vector)): tid = df.tid() m_start = df.load(muscle_start, tid) m_end = df.load(muscle_start, tid+1) - 1 activation = df.load(muscle_activation, tid) for i in range(m_start, m_end): compute_muscle_force(i, body_X_s, body_v_s, muscle_links, muscle_points, activation, body_f_s) # compute transform across a joint @df.func def jcalc_transform(type: int, axis: df.float3, joint_q: df.tensor(float), start: int): # prismatic if (type == 0): q = df.load(joint_q, start) X_jc = spatial_transform(axis * q, quat_identity()) return X_jc # revolute if (type == 1): q = df.load(joint_q, start) X_jc = spatial_transform(float3(0.0, 0.0, 0.0), quat_from_axis_angle(axis, q)) return X_jc # ball if (type == 2): qx = df.load(joint_q, start + 0) qy = df.load(joint_q, start + 1) qz = df.load(joint_q, start + 2) qw = df.load(joint_q, start + 3) X_jc = spatial_transform(float3(0.0, 0.0, 0.0), quat(qx, qy, qz, qw)) return X_jc # fixed if (type == 3): X_jc = spatial_transform_identity() return X_jc # free if (type == 4): px = df.load(joint_q, start + 0) py = df.load(joint_q, start + 1) pz = df.load(joint_q, start + 2) qx = df.load(joint_q, start + 3) qy = df.load(joint_q, start + 4) qz = df.load(joint_q, start + 5) qw = df.load(joint_q, start + 6) X_jc = spatial_transform(float3(px, py, pz), quat(qx, qy, qz, qw)) return X_jc # default case return spatial_transform_identity() # compute motion subspace and velocity for a joint @df.func def jcalc_motion(type: int, axis: df.float3, X_sc: df.spatial_transform, joint_S_s: df.tensor(df.spatial_vector), joint_qd: df.tensor(float), joint_start: int): # prismatic if (type == 0): S_s = df.spatial_transform_twist(X_sc, spatial_vector(float3(0.0, 0.0, 0.0), axis)) v_j_s = S_s * df.load(joint_qd, joint_start) df.store(joint_S_s, joint_start, S_s) return v_j_s # revolute if (type == 1): S_s = df.spatial_transform_twist(X_sc, spatial_vector(axis, float3(0.0, 0.0, 0.0))) v_j_s = S_s * df.load(joint_qd, joint_start) df.store(joint_S_s, joint_start, S_s) return v_j_s # ball if (type == 2): w = float3(df.load(joint_qd, joint_start + 0), df.load(joint_qd, joint_start + 1), df.load(joint_qd, joint_start + 2)) S_0 = df.spatial_transform_twist(X_sc, spatial_vector(1.0, 0.0, 0.0, 0.0, 0.0, 0.0)) S_1 = df.spatial_transform_twist(X_sc, spatial_vector(0.0, 1.0, 0.0, 0.0, 0.0, 0.0)) S_2 = df.spatial_transform_twist(X_sc, spatial_vector(0.0, 0.0, 1.0, 0.0, 0.0, 0.0)) # write motion subspace df.store(joint_S_s, joint_start + 0, S_0) df.store(joint_S_s, joint_start + 1, S_1) df.store(joint_S_s, joint_start + 2, S_2) return S_0*w[0] + S_1*w[1] + S_2*w[2] # fixed if (type == 3): return spatial_vector() # free if (type == 4): v_j_s = spatial_vector(df.load(joint_qd, joint_start + 0), df.load(joint_qd, joint_start + 1), df.load(joint_qd, joint_start + 2), df.load(joint_qd, joint_start + 3), df.load(joint_qd, joint_start + 4), df.load(joint_qd, joint_start + 5)) # write motion subspace df.store(joint_S_s, joint_start + 0, spatial_vector(1.0, 0.0, 0.0, 0.0, 0.0, 0.0)) df.store(joint_S_s, joint_start + 1, spatial_vector(0.0, 1.0, 0.0, 0.0, 0.0, 0.0)) df.store(joint_S_s, joint_start + 2, spatial_vector(0.0, 0.0, 1.0, 0.0, 0.0, 0.0)) df.store(joint_S_s, joint_start + 3, spatial_vector(0.0, 0.0, 0.0, 1.0, 0.0, 0.0)) df.store(joint_S_s, joint_start + 4, spatial_vector(0.0, 0.0, 0.0, 0.0, 1.0, 0.0)) df.store(joint_S_s, joint_start + 5, spatial_vector(0.0, 0.0, 0.0, 0.0, 0.0, 1.0)) return v_j_s # default case return spatial_vector() # # compute the velocity across a joint # #@df.func # def jcalc_velocity(self, type, S_s, joint_qd, start): # # prismatic # if (type == 0): # v_j_s = df.load(S_s, start)*df.load(joint_qd, start) # return v_j_s # # revolute # if (type == 1): # v_j_s = df.load(S_s, start)*df.load(joint_qd, start) # return v_j_s # # fixed # if (type == 2): # v_j_s = spatial_vector() # return v_j_s # # free # if (type == 3): # v_j_s = S_s[start+0]*joint_qd[start+0] # v_j_s += S_s[start+1]*joint_qd[start+1] # v_j_s += S_s[start+2]*joint_qd[start+2] # v_j_s += S_s[start+3]*joint_qd[start+3] # v_j_s += S_s[start+4]*joint_qd[start+4] # v_j_s += S_s[start+5]*joint_qd[start+5] # return v_j_s # computes joint space forces/torques in tau @df.func def jcalc_tau( type: int, target_k_e: float, target_k_d: float, limit_k_e: float, limit_k_d: float, joint_S_s: df.tensor(spatial_vector), joint_q: df.tensor(float), joint_qd: df.tensor(float), joint_act: df.tensor(float), joint_target: df.tensor(float), joint_limit_lower: df.tensor(float), joint_limit_upper: df.tensor(float), coord_start: int, dof_start: int, body_f_s: spatial_vector, tau: df.tensor(float)): # prismatic / revolute if (type == 0 or type == 1): S_s = df.load(joint_S_s, dof_start) q = df.load(joint_q, coord_start) qd = df.load(joint_qd, dof_start) act = df.load(joint_act, dof_start) target = df.load(joint_target, coord_start) lower = df.load(joint_limit_lower, coord_start) upper = df.load(joint_limit_upper, coord_start) limit_f = 0.0 # compute limit forces, damping only active when limit is violated if (q < lower): limit_f = limit_k_e*(lower-q) if (q > upper): limit_f = limit_k_e*(upper-q) damping_f = (0.0 - limit_k_d) * qd # total torque / force on the joint t = 0.0 - spatial_dot(S_s, body_f_s) - target_k_e*(q - target) - target_k_d*qd + act + limit_f + damping_f df.store(tau, dof_start, t) # ball if (type == 2): # elastic term.. this is proportional to the # imaginary part of the relative quaternion r_j = float3(df.load(joint_q, coord_start + 0), df.load(joint_q, coord_start + 1), df.load(joint_q, coord_start + 2)) # angular velocity for damping w_j = float3(df.load(joint_qd, dof_start + 0), df.load(joint_qd, dof_start + 1), df.load(joint_qd, dof_start + 2)) for i in range(0, 3): S_s = df.load(joint_S_s, dof_start+i) w = w_j[i] r = r_j[i] df.store(tau, dof_start+i, 0.0 - spatial_dot(S_s, body_f_s) - w*target_k_d - r*target_k_e) # fixed # if (type == 3) # pass # free if (type == 4): for i in range(0, 6): S_s = df.load(joint_S_s, dof_start+i) df.store(tau, dof_start+i, 0.0 - spatial_dot(S_s, body_f_s)) return 0 @df.func def jcalc_integrate( type: int, joint_q: df.tensor(float), joint_qd: df.tensor(float), joint_qdd: df.tensor(float), coord_start: int, dof_start: int, dt: float, joint_q_new: df.tensor(float), joint_qd_new: df.tensor(float)): # prismatic / revolute if (type == 0 or type == 1): qdd = df.load(joint_qdd, dof_start) qd = df.load(joint_qd, dof_start) q = df.load(joint_q, coord_start) qd_new = qd + qdd*dt q_new = q + qd_new*dt df.store(joint_qd_new, dof_start, qd_new) df.store(joint_q_new, coord_start, q_new) # ball if (type == 2): m_j = float3(df.load(joint_qdd, dof_start + 0), df.load(joint_qdd, dof_start + 1), df.load(joint_qdd, dof_start + 2)) w_j = float3(df.load(joint_qd, dof_start + 0), df.load(joint_qd, dof_start + 1), df.load(joint_qd, dof_start + 2)) r_j = quat(df.load(joint_q, coord_start + 0), df.load(joint_q, coord_start + 1), df.load(joint_q, coord_start + 2), df.load(joint_q, coord_start + 3)) # symplectic Euler w_j_new = w_j + m_j*dt drdt_j = mul(quat(w_j_new, 0.0), r_j) * 0.5 # new orientation (normalized) r_j_new = normalize(r_j + drdt_j * dt) # update joint coords df.store(joint_q_new, coord_start + 0, r_j_new[0]) df.store(joint_q_new, coord_start + 1, r_j_new[1]) df.store(joint_q_new, coord_start + 2, r_j_new[2]) df.store(joint_q_new, coord_start + 3, r_j_new[3]) # update joint vel df.store(joint_qd_new, dof_start + 0, w_j_new[0]) df.store(joint_qd_new, dof_start + 1, w_j_new[1]) df.store(joint_qd_new, dof_start + 2, w_j_new[2]) # fixed joint #if (type == 3) # pass # free joint if (type == 4): # dofs: qd = (omega_x, omega_y, omega_z, vel_x, vel_y, vel_z) # coords: q = (trans_x, trans_y, trans_z, quat_x, quat_y, quat_z, quat_w) # angular and linear acceleration m_s = float3(df.load(joint_qdd, dof_start + 0), df.load(joint_qdd, dof_start + 1), df.load(joint_qdd, dof_start + 2)) a_s = float3(df.load(joint_qdd, dof_start + 3), df.load(joint_qdd, dof_start + 4), df.load(joint_qdd, dof_start + 5)) # angular and linear velocity w_s = float3(df.load(joint_qd, dof_start + 0), df.load(joint_qd, dof_start + 1), df.load(joint_qd, dof_start + 2)) v_s = float3(df.load(joint_qd, dof_start + 3), df.load(joint_qd, dof_start + 4), df.load(joint_qd, dof_start + 5)) # symplectic Euler w_s = w_s + m_s*dt v_s = v_s + a_s*dt # translation of origin p_s = float3(df.load(joint_q, coord_start + 0), df.load(joint_q, coord_start + 1), df.load(joint_q, coord_start + 2)) # linear vel of origin (note q/qd switch order of linear angular elements) # note we are converting the body twist in the space frame (w_s, v_s) to compute center of mass velcity dpdt_s = v_s + cross(w_s, p_s) # quat and quat derivative r_s = quat(df.load(joint_q, coord_start + 3), df.load(joint_q, coord_start + 4), df.load(joint_q, coord_start + 5), df.load(joint_q, coord_start + 6)) drdt_s = mul(quat(w_s, 0.0), r_s) * 0.5 # new orientation (normalized) p_s_new = p_s + dpdt_s * dt r_s_new = normalize(r_s + drdt_s * dt) # update transform df.store(joint_q_new, coord_start + 0, p_s_new[0]) df.store(joint_q_new, coord_start + 1, p_s_new[1]) df.store(joint_q_new, coord_start + 2, p_s_new[2]) df.store(joint_q_new, coord_start + 3, r_s_new[0]) df.store(joint_q_new, coord_start + 4, r_s_new[1]) df.store(joint_q_new, coord_start + 5, r_s_new[2]) df.store(joint_q_new, coord_start + 6, r_s_new[3]) # update joint_twist df.store(joint_qd_new, dof_start + 0, w_s[0]) df.store(joint_qd_new, dof_start + 1, w_s[1]) df.store(joint_qd_new, dof_start + 2, w_s[2]) df.store(joint_qd_new, dof_start + 3, v_s[0]) df.store(joint_qd_new, dof_start + 4, v_s[1]) df.store(joint_qd_new, dof_start + 5, v_s[2]) return 0 @df.func def compute_link_transform(i: int, joint_type: df.tensor(int), joint_parent: df.tensor(int), joint_q_start: df.tensor(int), joint_qd_start: df.tensor(int), joint_q: df.tensor(float), joint_X_pj: df.tensor(df.spatial_transform), joint_X_cm: df.tensor(df.spatial_transform), joint_axis: df.tensor(df.float3), body_X_sc: df.tensor(df.spatial_transform), body_X_sm: df.tensor(df.spatial_transform)): # parent transform parent = load(joint_parent, i) # parent transform in spatial coordinates X_sp = spatial_transform_identity() if (parent >= 0): X_sp = load(body_X_sc, parent) type = load(joint_type, i) axis = load(joint_axis, i) coord_start = load(joint_q_start, i) dof_start = load(joint_qd_start, i) # compute transform across joint X_jc = jcalc_transform(type, axis, joint_q, coord_start) X_pj = load(joint_X_pj, i) X_sc = spatial_transform_multiply(X_sp, spatial_transform_multiply(X_pj, X_jc)) # compute transform of center of mass X_cm = load(joint_X_cm, i) X_sm = spatial_transform_multiply(X_sc, X_cm) # store geometry transforms store(body_X_sc, i, X_sc) store(body_X_sm, i, X_sm) return 0 @df.kernel def eval_rigid_fk(articulation_start: df.tensor(int), joint_type: df.tensor(int), joint_parent: df.tensor(int), joint_q_start: df.tensor(int), joint_qd_start: df.tensor(int), joint_q: df.tensor(float), joint_X_pj: df.tensor(df.spatial_transform), joint_X_cm: df.tensor(df.spatial_transform), joint_axis: df.tensor(df.float3), body_X_sc: df.tensor(df.spatial_transform), body_X_sm: df.tensor(df.spatial_transform)): # one thread per-articulation index = tid() start = df.load(articulation_start, index) end = df.load(articulation_start, index+1) for i in range(start, end): compute_link_transform(i, joint_type, joint_parent, joint_q_start, joint_qd_start, joint_q, joint_X_pj, joint_X_cm, joint_axis, body_X_sc, body_X_sm) @df.func def compute_link_velocity(i: int, joint_type: df.tensor(int), joint_parent: df.tensor(int), joint_qd_start: df.tensor(int), joint_qd: df.tensor(float), joint_axis: df.tensor(df.float3), body_I_m: df.tensor(df.spatial_matrix), body_X_sc: df.tensor(df.spatial_transform), body_X_sm: df.tensor(df.spatial_transform), joint_X_pj: df.tensor(df.spatial_transform), gravity: df.tensor(df.float3), # outputs joint_S_s: df.tensor(df.spatial_vector), body_I_s: df.tensor(df.spatial_matrix), body_v_s: df.tensor(df.spatial_vector), body_f_s: df.tensor(df.spatial_vector), body_a_s: df.tensor(df.spatial_vector)): type = df.load(joint_type, i) axis = df.load(joint_axis, i) parent = df.load(joint_parent, i) dof_start = df.load(joint_qd_start, i) X_sc = df.load(body_X_sc, i) # parent transform in spatial coordinates X_sp = spatial_transform_identity() if (parent >= 0): X_sp = load(body_X_sc, parent) X_pj = load(joint_X_pj, i) X_sj = spatial_transform_multiply(X_sp, X_pj) # compute motion subspace and velocity across the joint (also stores S_s to global memory) v_j_s = jcalc_motion(type, axis, X_sj, joint_S_s, joint_qd, dof_start) # parent velocity v_parent_s = spatial_vector() a_parent_s = spatial_vector() if (parent >= 0): v_parent_s = df.load(body_v_s, parent) a_parent_s = df.load(body_a_s, parent) # body velocity, acceleration v_s = v_parent_s + v_j_s a_s = a_parent_s + spatial_cross(v_s, v_j_s) # + self.joint_S_s[i]*self.joint_qdd[i] # compute body forces X_sm = df.load(body_X_sm, i) I_m = df.load(body_I_m, i) # gravity and external forces (expressed in frame aligned with s but centered at body mass) g = df.load(gravity, 0) m = I_m[3, 3] f_g_m = spatial_vector(float3(), g) * m f_g_s = spatial_transform_wrench(spatial_transform(spatial_transform_get_translation(X_sm), quat_identity()), f_g_m) #f_ext_s = df.load(body_f_s, i) + f_g_s # body forces I_s = spatial_transform_inertia(X_sm, I_m) f_b_s = df.mul(I_s, a_s) + spatial_cross_dual(v_s, df.mul(I_s, v_s)) df.store(body_v_s, i, v_s) df.store(body_a_s, i, a_s) df.store(body_f_s, i, f_b_s - f_g_s) df.store(body_I_s, i, I_s) return 0 @df.func def compute_link_tau(offset: int, joint_end: int, joint_type: df.tensor(int), joint_parent: df.tensor(int), joint_q_start: df.tensor(int), joint_qd_start: df.tensor(int), joint_q: df.tensor(float), joint_qd: df.tensor(float), joint_act: df.tensor(float), joint_target: df.tensor(float), joint_target_ke: df.tensor(float), joint_target_kd: df.tensor(float), joint_limit_lower: df.tensor(float), joint_limit_upper: df.tensor(float), joint_limit_ke: df.tensor(float), joint_limit_kd: df.tensor(float), joint_S_s: df.tensor(df.spatial_vector), body_fb_s: df.tensor(df.spatial_vector), # outputs body_ft_s: df.tensor(df.spatial_vector), tau: df.tensor(float)): # for backwards traversal i = joint_end-offset-1 type = df.load(joint_type, i) parent = df.load(joint_parent, i) dof_start = df.load(joint_qd_start, i) coord_start = df.load(joint_q_start, i) target_k_e = df.load(joint_target_ke, i) target_k_d = df.load(joint_target_kd, i) limit_k_e = df.load(joint_limit_ke, i) limit_k_d = df.load(joint_limit_kd, i) # total forces on body f_b_s = df.load(body_fb_s, i) f_t_s = df.load(body_ft_s, i) f_s = f_b_s + f_t_s # compute joint-space forces, writes out tau jcalc_tau(type, target_k_e, target_k_d, limit_k_e, limit_k_d, joint_S_s, joint_q, joint_qd, joint_act, joint_target, joint_limit_lower, joint_limit_upper, coord_start, dof_start, f_s, tau) # update parent forces, todo: check that this is valid for the backwards pass if (parent >= 0): df.atomic_add(body_ft_s, parent, f_s) return 0 @df.kernel def eval_rigid_id(articulation_start: df.tensor(int), joint_type: df.tensor(int), joint_parent: df.tensor(int), joint_q_start: df.tensor(int), joint_qd_start: df.tensor(int), joint_q: df.tensor(float), joint_qd: df.tensor(float), joint_axis: df.tensor(df.float3), joint_target_ke: df.tensor(float), joint_target_kd: df.tensor(float), body_I_m: df.tensor(df.spatial_matrix), body_X_sc: df.tensor(df.spatial_transform), body_X_sm: df.tensor(df.spatial_transform), joint_X_pj: df.tensor(df.spatial_transform), gravity: df.tensor(df.float3), # outputs joint_S_s: df.tensor(df.spatial_vector), body_I_s: df.tensor(df.spatial_matrix), body_v_s: df.tensor(df.spatial_vector), body_f_s: df.tensor(df.spatial_vector), body_a_s: df.tensor(df.spatial_vector)): # one thread per-articulation index = tid() start = df.load(articulation_start, index) end = df.load(articulation_start, index+1) count = end-start # compute link velocities and coriolis forces for i in range(start, end): compute_link_velocity( i, joint_type, joint_parent, joint_qd_start, joint_qd, joint_axis, body_I_m, body_X_sc, body_X_sm, joint_X_pj, gravity, joint_S_s, body_I_s, body_v_s, body_f_s, body_a_s) @df.kernel def eval_rigid_tau(articulation_start: df.tensor(int), joint_type: df.tensor(int), joint_parent: df.tensor(int), joint_q_start: df.tensor(int), joint_qd_start: df.tensor(int), joint_q: df.tensor(float), joint_qd: df.tensor(float), joint_act: df.tensor(float), joint_target: df.tensor(float), joint_target_ke: df.tensor(float), joint_target_kd: df.tensor(float), joint_limit_lower: df.tensor(float), joint_limit_upper: df.tensor(float), joint_limit_ke: df.tensor(float), joint_limit_kd: df.tensor(float), joint_axis: df.tensor(df.float3), joint_S_s: df.tensor(df.spatial_vector), body_fb_s: df.tensor(df.spatial_vector), # outputs body_ft_s: df.tensor(df.spatial_vector), tau: df.tensor(float)): # one thread per-articulation index = tid() start = df.load(articulation_start, index) end = df.load(articulation_start, index+1) count = end-start # compute joint forces for i in range(0, count): compute_link_tau( i, end, joint_type, joint_parent, joint_q_start, joint_qd_start, joint_q, joint_qd, joint_act, joint_target, joint_target_ke, joint_target_kd, joint_limit_lower, joint_limit_upper, joint_limit_ke, joint_limit_kd, joint_S_s, body_fb_s, body_ft_s, tau) @df.kernel def eval_rigid_jacobian( articulation_start: df.tensor(int), articulation_J_start: df.tensor(int), joint_parent: df.tensor(int), joint_qd_start: df.tensor(int), joint_S_s: df.tensor(spatial_vector), # outputs J: df.tensor(float)): # one thread per-articulation index = tid() joint_start = df.load(articulation_start, index) joint_end = df.load(articulation_start, index+1) joint_count = joint_end-joint_start J_offset = df.load(articulation_J_start, index) # in spatial.h spatial_jacobian(joint_S_s, joint_parent, joint_qd_start, joint_start, joint_count, J_offset, J) # @df.kernel # def eval_rigid_jacobian( # articulation_start: df.tensor(int), # articulation_J_start: df.tensor(int), # joint_parent: df.tensor(int), # joint_qd_start: df.tensor(int), # joint_S_s: df.tensor(spatial_vector), # # outputs # J: df.tensor(float)): # # one thread per-articulation # index = tid() # joint_start = df.load(articulation_start, index) # joint_end = df.load(articulation_start, index+1) # joint_count = joint_end-joint_start # dof_start = df.load(joint_qd_start, joint_start) # dof_end = df.load(joint_qd_start, joint_end) # dof_count = dof_end-dof_start # #(const spatial_vector* S, const int* joint_parents, const int* joint_qd_start, int num_links, int num_dofs, float* J) # spatial_jacobian(joint_S_s, joint_parent, joint_qd_start, joint_count, dof_count, J) @df.kernel def eval_rigid_mass( articulation_start: df.tensor(int), articulation_M_start: df.tensor(int), body_I_s: df.tensor(spatial_matrix), # outputs M: df.tensor(float)): # one thread per-articulation index = tid() joint_start = df.load(articulation_start, index) joint_end = df.load(articulation_start, index+1) joint_count = joint_end-joint_start M_offset = df.load(articulation_M_start, index) # in spatial.h spatial_mass(body_I_s, joint_start, joint_count, M_offset, M) @df.kernel def eval_dense_gemm(m: int, n: int, p: int, t1: int, t2: int, A: df.tensor(float), B: df.tensor(float), C: df.tensor(float)): dense_gemm(m, n, p, t1, t2, A, B, C) @df.kernel def eval_dense_gemm_batched(m: df.tensor(int), n: df.tensor(int), p: df.tensor(int), t1: int, t2: int, A_start: df.tensor(int), B_start: df.tensor(int), C_start: df.tensor(int), A: df.tensor(float), B: df.tensor(float), C: df.tensor(float)): dense_gemm_batched(m, n, p, t1, t2, A_start, B_start, C_start, A, B, C) @df.kernel def eval_dense_cholesky(n: int, A: df.tensor(float), regularization: df.tensor(float), L: df.tensor(float)): dense_chol(n, A, regularization, L) @df.kernel def eval_dense_cholesky_batched(A_start: df.tensor(int), A_dim: df.tensor(int), A: df.tensor(float), regularization: df.tensor(float), L: df.tensor(float)): dense_chol_batched(A_start, A_dim, A, regularization, L) @df.kernel def eval_dense_subs(n: int, L: df.tensor(float), b: df.tensor(float), x: df.tensor(float)): dense_subs(n, L, b, x) # helper that propagates gradients back to A, treating L as a constant / temporary variable # allows us to reuse the Cholesky decomposition from the forward pass @df.kernel def eval_dense_solve(n: int, A: df.tensor(float), L: df.tensor(float), b: df.tensor(float), tmp: df.tensor(float), x: df.tensor(float)): dense_solve(n, A, L, b, tmp, x) # helper that propagates gradients back to A, treating L as a constant / temporary variable # allows us to reuse the Cholesky decomposition from the forward pass @df.kernel def eval_dense_solve_batched(b_start: df.tensor(int), A_start: df.tensor(int), A_dim: df.tensor(int), A: df.tensor(float), L: df.tensor(float), b: df.tensor(float), tmp: df.tensor(float), x: df.tensor(float)): dense_solve_batched(b_start, A_start, A_dim, A, L, b, tmp, x) @df.kernel def eval_rigid_integrate( joint_type: df.tensor(int), joint_q_start: df.tensor(int), joint_qd_start: df.tensor(int), joint_q: df.tensor(float), joint_qd: df.tensor(float), joint_qdd: df.tensor(float), dt: float, # outputs joint_q_new: df.tensor(float), joint_qd_new: df.tensor(float)): # one thread per-articulation index = tid() type = df.load(joint_type, index) coord_start = df.load(joint_q_start, index) dof_start = df.load(joint_qd_start, index) jcalc_integrate( type, joint_q, joint_qd, joint_qdd, coord_start, dof_start, dt, joint_q_new, joint_qd_new) g_state_out = None # define PyTorch autograd op to wrap simulate func class SimulateFunc(torch.autograd.Function): """PyTorch autograd function representing a simulation stpe Note: This node will be inserted into the computation graph whenever `forward()` is called on an integrator object. It should not be called directly by the user. """ @staticmethod def forward(ctx, integrator, model, state_in, dt, substeps, mass_matrix_freq, *tensors): # record launches ctx.tape = df.Tape() ctx.inputs = tensors #ctx.outputs = df.to_weak_list(state_out.flatten()) actuation = state_in.joint_act # simulate for i in range(substeps): # ensure actuation is set on all substeps state_in.joint_act = actuation state_out = model.state() integrator._simulate(ctx.tape, model, state_in, state_out, dt/float(substeps), update_mass_matrix=((i%mass_matrix_freq)==0)) # swap states state_in = state_out # use global to pass state object back to caller global g_state_out g_state_out = state_out ctx.outputs = df.to_weak_list(state_out.flatten()) return tuple(state_out.flatten()) @staticmethod def backward(ctx, *grads): # ensure grads are contiguous in memory adj_outputs = df.make_contiguous(grads) # register outputs with tape outputs = df.to_strong_list(ctx.outputs) for o in range(len(outputs)): ctx.tape.adjoints[outputs[o]] = adj_outputs[o] # replay launches backwards ctx.tape.replay() # find adjoint of inputs adj_inputs = [] for i in ctx.inputs: if i in ctx.tape.adjoints: adj_inputs.append(ctx.tape.adjoints[i]) else: adj_inputs.append(None) # free the tape ctx.tape.reset() # filter grads to replace empty tensors / no grad / constant params with None return (None, None, None, None, None, None, *df.filter_grads(adj_inputs)) class SemiImplicitIntegrator: """A semi-implicit integrator using symplectic Euler After constructing `Model` and `State` objects this time-integrator may be used to advance the simulation state forward in time. Semi-implicit time integration is a variational integrator that preserves energy, however it not unconditionally stable, and requires a time-step small enough to support the required stiffness and damping forces. See: https://en.wikipedia.org/wiki/Semi-implicit_Euler_method Example: >>> integrator = df.SemiImplicitIntegrator() >>> >>> # simulation loop >>> for i in range(100): >>> state = integrator.forward(model, state, dt) """ def __init__(self): pass def forward(self, model: Model, state_in: State, dt: float, substeps: int, mass_matrix_freq: int) -> State: """Performs a single integration step forward in time This method inserts a node into the PyTorch computational graph with references to all model and state tensors such that gradients can be propagrated back through the simulation step. Args: model: Simulation model state: Simulation state at the start the time-step dt: The simulation time-step (usually in seconds) Returns: The state of the system at the end of the time-step """ if dflex.config.no_grad: # if no gradient required then do inplace update for i in range(substeps): self._simulate(df.Tape(), model, state_in, state_in, dt/float(substeps), update_mass_matrix=(i%mass_matrix_freq)==0) return state_in else: # get list of inputs and outputs for PyTorch tensor tracking inputs = [*state_in.flatten(), *model.flatten()] # run sim as a PyTorch op tensors = SimulateFunc.apply(self, model, state_in, dt, substeps, mass_matrix_freq, *inputs) global g_state_out state_out = g_state_out g_state_out = None # null reference return state_out def _simulate(self, tape, model, state_in, state_out, dt, update_mass_matrix=True): with dflex.util.ScopedTimer("simulate", False): # alloc particle force buffer if (model.particle_count): state_out.particle_f.zero_() if (model.link_count): state_out.body_ft_s = torch.zeros((model.link_count, 6), dtype=torch.float32, device=model.adapter, requires_grad=True) state_out.body_f_ext_s = torch.zeros((model.link_count, 6), dtype=torch.float32, device=model.adapter, requires_grad=True) # damped springs if (model.spring_count): tape.launch(func=eval_springs, dim=model.spring_count, inputs=[state_in.particle_q, state_in.particle_qd, model.spring_indices, model.spring_rest_length, model.spring_stiffness, model.spring_damping], outputs=[state_out.particle_f], adapter=model.adapter) # triangle elastic and lift/drag forces if (model.tri_count and model.tri_ke > 0.0): tape.launch(func=eval_triangles, dim=model.tri_count, inputs=[ state_in.particle_q, state_in.particle_qd, model.tri_indices, model.tri_poses, model.tri_activations, model.tri_ke, model.tri_ka, model.tri_kd, model.tri_drag, model.tri_lift ], outputs=[state_out.particle_f], adapter=model.adapter) # triangle/triangle contacts if (model.enable_tri_collisions and model.tri_count and model.tri_ke > 0.0): tape.launch(func=eval_triangles_contact, dim=model.tri_count * model.particle_count, inputs=[ model.particle_count, state_in.particle_q, state_in.particle_qd, model.tri_indices, model.tri_poses, model.tri_activations, model.tri_ke, model.tri_ka, model.tri_kd, model.tri_drag, model.tri_lift ], outputs=[state_out.particle_f], adapter=model.adapter) # triangle bending if (model.edge_count): tape.launch(func=eval_bending, dim=model.edge_count, inputs=[state_in.particle_q, state_in.particle_qd, model.edge_indices, model.edge_rest_angle, model.edge_ke, model.edge_kd], outputs=[state_out.particle_f], adapter=model.adapter) # particle ground contact if (model.ground and model.particle_count): tape.launch(func=eval_contacts, dim=model.particle_count, inputs=[state_in.particle_q, state_in.particle_qd, model.contact_ke, model.contact_kd, model.contact_kf, model.contact_mu], outputs=[state_out.particle_f], adapter=model.adapter) # tetrahedral FEM if (model.tet_count): tape.launch(func=eval_tetrahedra, dim=model.tet_count, inputs=[state_in.particle_q, state_in.particle_qd, model.tet_indices, model.tet_poses, model.tet_activations, model.tet_materials], outputs=[state_out.particle_f], adapter=model.adapter) #---------------------------- # articulations if (model.link_count): # evaluate body transforms tape.launch( func=eval_rigid_fk, dim=model.articulation_count, inputs=[ model.articulation_joint_start, model.joint_type, model.joint_parent, model.joint_q_start, model.joint_qd_start, state_in.joint_q, model.joint_X_pj, model.joint_X_cm, model.joint_axis ], outputs=[ state_out.body_X_sc, state_out.body_X_sm ], adapter=model.adapter, preserve_output=True) # evaluate joint inertias, motion vectors, and forces tape.launch( func=eval_rigid_id, dim=model.articulation_count, inputs=[ model.articulation_joint_start, model.joint_type, model.joint_parent, model.joint_q_start, model.joint_qd_start, state_in.joint_q, state_in.joint_qd, model.joint_axis, model.joint_target_ke, model.joint_target_kd, model.body_I_m, state_out.body_X_sc, state_out.body_X_sm, model.joint_X_pj, model.gravity ], outputs=[ state_out.joint_S_s, state_out.body_I_s, state_out.body_v_s, state_out.body_f_s, state_out.body_a_s, ], adapter=model.adapter, preserve_output=True) if (model.ground and model.contact_count > 0): # evaluate contact forces tape.launch( func=eval_rigid_contacts_art, dim=model.contact_count, inputs=[ state_out.body_X_sc, state_out.body_v_s, model.contact_body0, model.contact_point0, model.contact_dist, model.contact_material, model.shape_materials ], outputs=[ state_out.body_f_s ], adapter=model.adapter, preserve_output=True) # particle shape contact if (model.particle_count): # tape.launch(func=eval_soft_contacts, # dim=model.particle_count*model.shape_count, # inputs=[state_in.particle_q, state_in.particle_qd, model.contact_ke, model.contact_kd, model.contact_kf, model.contact_mu], # outputs=[state_out.particle_f], # adapter=model.adapter) tape.launch(func=eval_soft_contacts, dim=model.particle_count*model.shape_count, inputs=[ model.particle_count, state_in.particle_q, state_in.particle_qd, state_in.body_X_sc, state_in.body_v_s, model.shape_transform, model.shape_body, model.shape_geo_type, torch.Tensor(), model.shape_geo_scale, model.shape_materials, model.contact_ke, model.contact_kd, model.contact_kf, model.contact_mu], # outputs outputs=[ state_out.particle_f, state_out.body_f_s], adapter=model.adapter) # evaluate muscle actuation tape.launch( func=eval_muscles, dim=model.muscle_count, inputs=[ state_out.body_X_sc, state_out.body_v_s, model.muscle_start, model.muscle_params, model.muscle_links, model.muscle_points, model.muscle_activation ], outputs=[ state_out.body_f_s ], adapter=model.adapter, preserve_output=True) # evaluate joint torques tape.launch( func=eval_rigid_tau, dim=model.articulation_count, inputs=[ model.articulation_joint_start, model.joint_type, model.joint_parent, model.joint_q_start, model.joint_qd_start, state_in.joint_q, state_in.joint_qd, state_in.joint_act, model.joint_target, model.joint_target_ke, model.joint_target_kd, model.joint_limit_lower, model.joint_limit_upper, model.joint_limit_ke, model.joint_limit_kd, model.joint_axis, state_out.joint_S_s, state_out.body_f_s ], outputs=[ state_out.body_ft_s, state_out.joint_tau ], adapter=model.adapter, preserve_output=True) if (update_mass_matrix): model.alloc_mass_matrix() # build J tape.launch( func=eval_rigid_jacobian, dim=model.articulation_count, inputs=[ # inputs model.articulation_joint_start, model.articulation_J_start, model.joint_parent, model.joint_qd_start, state_out.joint_S_s ], outputs=[ model.J ], adapter=model.adapter, preserve_output=True) # build M tape.launch( func=eval_rigid_mass, dim=model.articulation_count, inputs=[ # inputs model.articulation_joint_start, model.articulation_M_start, state_out.body_I_s ], outputs=[ model.M ], adapter=model.adapter, preserve_output=True) # form P = M*J df.matmul_batched( tape, model.articulation_count, model.articulation_M_rows, model.articulation_J_cols, model.articulation_J_rows, 0, 0, model.articulation_M_start, model.articulation_J_start, model.articulation_J_start, # P start is the same as J start since it has the same dims as J model.M, model.J, model.P, adapter=model.adapter) # form H = J^T*P df.matmul_batched( tape, model.articulation_count, model.articulation_J_cols, model.articulation_J_cols, model.articulation_J_rows, # P rows is the same as J rows 1, 0, model.articulation_J_start, model.articulation_J_start, # P start is the same as J start since it has the same dims as J model.articulation_H_start, model.J, model.P, model.H, adapter=model.adapter) # compute decomposition tape.launch( func=eval_dense_cholesky_batched, dim=model.articulation_count, inputs=[ model.articulation_H_start, model.articulation_H_rows, model.H, model.joint_armature ], outputs=[ model.L ], adapter=model.adapter, skip_check_grad=True) tmp = torch.zeros_like(state_out.joint_tau) # solve for qdd tape.launch( func=eval_dense_solve_batched, dim=model.articulation_count, inputs=[ model.articulation_dof_start, model.articulation_H_start, model.articulation_H_rows, model.H, model.L, state_out.joint_tau, tmp ], outputs=[ state_out.joint_qdd ], adapter=model.adapter, skip_check_grad=True) # integrate joint dofs -> joint coords tape.launch( func=eval_rigid_integrate, dim=model.link_count, inputs=[ model.joint_type, model.joint_q_start, model.joint_qd_start, state_in.joint_q, state_in.joint_qd, state_out.joint_qdd, dt ], outputs=[ state_out.joint_q, state_out.joint_qd ], adapter=model.adapter) #---------------------------- # integrate particles if (model.particle_count): tape.launch(func=integrate_particles, dim=model.particle_count, inputs=[state_in.particle_q, state_in.particle_qd, state_out.particle_f, model.particle_inv_mass, model.gravity, dt], outputs=[state_out.particle_q, state_out.particle_qd], adapter=model.adapter) return state_out @df.kernel def solve_springs(x: df.tensor(df.float3), v: df.tensor(df.float3), invmass: df.tensor(float), spring_indices: df.tensor(int), spring_rest_lengths: df.tensor(float), spring_stiffness: df.tensor(float), spring_damping: df.tensor(float), dt: float, delta: df.tensor(df.float3)): tid = df.tid() i = df.load(spring_indices, tid * 2 + 0) j = df.load(spring_indices, tid * 2 + 1) ke = df.load(spring_stiffness, tid) kd = df.load(spring_damping, tid) rest = df.load(spring_rest_lengths, tid) xi = df.load(x, i) xj = df.load(x, j) vi = df.load(v, i) vj = df.load(v, j) xij = xi - xj vij = vi - vj l = length(xij) l_inv = 1.0 / l # normalized spring direction dir = xij * l_inv c = l - rest dcdt = dot(dir, vij) # damping based on relative velocity. #fs = dir * (ke * c + kd * dcdt) wi = df.load(invmass, i) wj = df.load(invmass, j) denom = wi + wj alpha = 1.0/(ke*dt*dt) multiplier = c / (denom)# + alpha) xd = dir*multiplier df.atomic_sub(delta, i, xd*wi) df.atomic_add(delta, j, xd*wj) @df.kernel def solve_tetrahedra(x: df.tensor(df.float3), v: df.tensor(df.float3), inv_mass: df.tensor(float), indices: df.tensor(int), pose: df.tensor(df.mat33), activation: df.tensor(float), materials: df.tensor(float), dt: float, relaxation: float, delta: df.tensor(df.float3)): tid = df.tid() i = df.load(indices, tid * 4 + 0) j = df.load(indices, tid * 4 + 1) k = df.load(indices, tid * 4 + 2) l = df.load(indices, tid * 4 + 3) act = df.load(activation, tid) k_mu = df.load(materials, tid * 3 + 0) k_lambda = df.load(materials, tid * 3 + 1) k_damp = df.load(materials, tid * 3 + 2) x0 = df.load(x, i) x1 = df.load(x, j) x2 = df.load(x, k) x3 = df.load(x, l) v0 = df.load(v, i) v1 = df.load(v, j) v2 = df.load(v, k) v3 = df.load(v, l) w0 = df.load(inv_mass, i) w1 = df.load(inv_mass, j) w2 = df.load(inv_mass, k) w3 = df.load(inv_mass, l) x10 = x1 - x0 x20 = x2 - x0 x30 = x3 - x0 v10 = v1 - v0 v20 = v2 - v0 v30 = v3 - v0 Ds = df.mat33(x10, x20, x30) Dm = df.load(pose, tid) inv_rest_volume = df.determinant(Dm) * 6.0 rest_volume = 1.0 / inv_rest_volume # F = Xs*Xm^-1 F = Ds * Dm f1 = df.float3(F[0, 0], F[1, 0], F[2, 0]) f2 = df.float3(F[0, 1], F[1, 1], F[2, 1]) f3 = df.float3(F[0, 2], F[1, 2], F[2, 2]) # C_sqrt tr = dot(f1, f1) + dot(f2, f2) + dot(f3, f3) r_s = df.sqrt(abs(tr - 3.0)) C = r_s if (r_s == 0.0): return if (tr < 3.0): r_s = 0.0 - r_s dCdx = F*df.transpose(Dm)*(1.0/r_s) alpha = 1.0 + k_mu / k_lambda # C_Neo # r_s = df.sqrt(dot(f1, f1) + dot(f2, f2) + dot(f3, f3)) # r_s_inv = 1.0/r_s # C = r_s # dCdx = F*df.transpose(Dm)*r_s_inv # alpha = 1.0 + k_mu / k_lambda # C_Spherical # r_s = df.sqrt(dot(f1, f1) + dot(f2, f2) + dot(f3, f3)) # r_s_inv = 1.0/r_s # C = r_s - df.sqrt(3.0) # dCdx = F*df.transpose(Dm)*r_s_inv # alpha = 1.0 # C_D #r_s = df.sqrt(dot(f1, f1) + dot(f2, f2) + dot(f3, f3)) #C = r_s*r_s - 3.0 #dCdx = F*df.transpose(Dm)*2.0 #alpha = 1.0 grad1 = float3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) grad2 = float3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) grad3 = float3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) grad0 = (grad1 + grad2 + grad3)*(0.0 - 1.0) denom = dot(grad0,grad0)*w0 + dot(grad1,grad1)*w1 + dot(grad2,grad2)*w2 + dot(grad3,grad3)*w3 multiplier = C/(denom + 1.0/(k_mu*dt*dt*rest_volume)) delta0 = grad0*multiplier delta1 = grad1*multiplier delta2 = grad2*multiplier delta3 = grad3*multiplier # hydrostatic part J = df.determinant(F) C_vol = J - alpha # dCdx = df.mat33(cross(f2, f3), cross(f3, f1), cross(f1, f2))*df.transpose(Dm) # grad1 = float3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) # grad2 = float3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) # grad3 = float3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) # grad0 = (grad1 + grad2 + grad3)*(0.0 - 1.0) s = inv_rest_volume / 6.0 grad1 = df.cross(x20, x30) * s grad2 = df.cross(x30, x10) * s grad3 = df.cross(x10, x20) * s grad0 = (grad1 + grad2 + grad3)*(0.0 - 1.0) denom = dot(grad0, grad0)*w0 + dot(grad1, grad1)*w1 + dot(grad2, grad2)*w2 + dot(grad3, grad3)*w3 multiplier = C_vol/(denom + 1.0/(k_lambda*dt*dt*rest_volume)) delta0 = delta0 + grad0 * multiplier delta1 = delta1 + grad1 * multiplier delta2 = delta2 + grad2 * multiplier delta3 = delta3 + grad3 * multiplier # apply forces df.atomic_sub(delta, i, delta0*w0*relaxation) df.atomic_sub(delta, j, delta1*w1*relaxation) df.atomic_sub(delta, k, delta2*w2*relaxation) df.atomic_sub(delta, l, delta3*w3*relaxation) @df.kernel def solve_contacts( x: df.tensor(df.float3), v: df.tensor(df.float3), inv_mass: df.tensor(float), mu: float, dt: float, delta: df.tensor(df.float3)): tid = df.tid() x0 = df.load(x, tid) v0 = df.load(v, tid) w0 = df.load(inv_mass, tid) n = df.float3(0.0, 1.0, 0.0) c = df.dot(n, x0) - 0.01 if (c > 0.0): return # normal lambda_n = c delta_n = n*lambda_n # friction vn = df.dot(n, v0) vt = v0 - n * vn lambda_f = df.max(mu*lambda_n, 0.0 - df.length(vt)*dt) delta_f = df.normalize(vt)*lambda_f df.atomic_add(delta, tid, delta_f - delta_n) @df.kernel def apply_deltas(x_orig: df.tensor(df.float3), v_orig: df.tensor(df.float3), x_pred: df.tensor(df.float3), delta: df.tensor(df.float3), dt: float, x_out: df.tensor(df.float3), v_out: df.tensor(df.float3)): tid = df.tid() x0 = df.load(x_orig, tid) xp = df.load(x_pred, tid) # constraint deltas d = df.load(delta, tid) x_new = xp + d v_new = (x_new - x0)/dt df.store(x_out, tid, x_new) df.store(v_out, tid, v_new) class XPBDIntegrator: """A implicit integrator using XPBD After constructing `Model` and `State` objects this time-integrator may be used to advance the simulation state forward in time. Semi-implicit time integration is a variational integrator that preserves energy, however it not unconditionally stable, and requires a time-step small enough to support the required stiffness and damping forces. See: https://en.wikipedia.org/wiki/Semi-implicit_Euler_method Example: >>> integrator = df.SemiImplicitIntegrator() >>> >>> # simulation loop >>> for i in range(100): >>> state = integrator.forward(model, state, dt) """ def __init__(self): pass def forward(self, model: Model, state_in: State, dt: float) -> State: """Performs a single integration step forward in time This method inserts a node into the PyTorch computational graph with references to all model and state tensors such that gradients can be propagrated back through the simulation step. Args: model: Simulation model state: Simulation state at the start the time-step dt: The simulation time-step (usually in seconds) Returns: The state of the system at the end of the time-step """ if dflex.config.no_grad: # if no gradient required then do inplace update self._simulate(df.Tape(), model, state_in, state_in, dt) return state_in else: # get list of inputs and outputs for PyTorch tensor tracking inputs = [*state_in.flatten(), *model.flatten()] # allocate new output state_out = model.state() # run sim as a PyTorch op tensors = SimulateFunc.apply(self, model, state_in, state_out, dt, *inputs) return state_out def _simulate(self, tape, model, state_in, state_out, dt): with dflex.util.ScopedTimer("simulate", False): # alloc particle force buffer if (model.particle_count): state_out.particle_f.zero_() q_pred = torch.zeros_like(state_in.particle_q) qd_pred = torch.zeros_like(state_in.particle_qd) #---------------------------- # integrate particles if (model.particle_count): tape.launch(func=integrate_particles, dim=model.particle_count, inputs=[state_in.particle_q, state_in.particle_qd, state_out.particle_f, model.particle_inv_mass, model.gravity, dt], outputs=[q_pred, qd_pred], adapter=model.adapter) # contacts if (model.particle_count and model.ground): tape.launch(func=solve_contacts, dim=model.particle_count, inputs=[q_pred, qd_pred, model.particle_inv_mass, model.contact_mu, dt], outputs=[state_out.particle_f], adapter=model.adapter) # damped springs if (model.spring_count): tape.launch(func=solve_springs, dim=model.spring_count, inputs=[q_pred, qd_pred, model.particle_inv_mass, model.spring_indices, model.spring_rest_length, model.spring_stiffness, model.spring_damping, dt], outputs=[state_out.particle_f], adapter=model.adapter) # tetrahedral FEM if (model.tet_count): tape.launch(func=solve_tetrahedra, dim=model.tet_count, inputs=[q_pred, qd_pred, model.particle_inv_mass, model.tet_indices, model.tet_poses, model.tet_activations, model.tet_materials, dt, model.relaxation], outputs=[state_out.particle_f], adapter=model.adapter) # apply updates tape.launch(func=apply_deltas, dim=model.particle_count, inputs=[state_in.particle_q, state_in.particle_qd, q_pred, state_out.particle_f, dt], outputs=[state_out.particle_q, state_out.particle_qd], adapter=model.adapter) return state_out
97,150
Python
31.329784
241
0.512527
RoboticExplorationLab/Deep-ILC/dflex/dflex/matnn.h
#pragma once CUDA_CALLABLE inline int dense_index(int stride, int i, int j) { return i*stride + j; } template <bool transpose> CUDA_CALLABLE inline int dense_index(int rows, int cols, int i, int j) { if (transpose) return j*rows + i; else return i*cols + j; } #ifdef CPU const int kNumThreadsPerBlock = 1; template <bool t1, bool t2, bool add> CUDA_CALLABLE inline void dense_gemm_impl(int m, int n, int p, const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C) { for (int i=0; i < m; i++) { for (int j=0; j < n; ++j) { float sum = 0.0f; for (int k=0; k < p; ++k) { sum += A[dense_index<t1>(m, p, i, k)]*B[dense_index<t2>(p, n, k, j)]; } if (add) C[i*n + j] += sum; else C[i*n + j] = sum; } } } #else const int kNumThreadsPerBlock = 256; template <bool t1, bool t2, bool add> CUDA_CALLABLE inline void dense_gemm_impl(int m, int n, int p, const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C) { // each thread in the block calculates an output (or more if output dim > block dim) for (int e=threadIdx.x; e < m*n; e += blockDim.x) { const int i=e/n; const int j=e%n; float sum = 0.0f; for (int k=0; k < p; ++k) { sum += A[dense_index<t1>(m, p, i, k)]*B[dense_index<t2>(p, n, k, j)]; } if (add) C[i*n + j] += sum; else C[i*n + j] = sum; } } #endif template <bool add=false> CUDA_CALLABLE inline void dense_gemm(int m, int n, int p, int t1, int t2, const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C) { if (t1 == 0 && t2 == 0) dense_gemm_impl<false, false, add>(m, n, p, A, B, C); else if (t1 == 1 && t2 == 0) dense_gemm_impl<true, false, add>(m, n, p, A, B, C); else if (t1 == 0 && t2 == 1) dense_gemm_impl<false, true, add>(m, n, p, A, B, C); else if (t1 == 1 && t2 == 1) dense_gemm_impl<true, true, add>(m, n, p, A, B, C); } template <bool add=false> CUDA_CALLABLE inline void dense_gemm_batched( const int* __restrict__ m, const int* __restrict__ n, const int* __restrict__ p, int t1, int t2, const int* __restrict__ A_start, const int* __restrict__ B_start, const int* __restrict__ C_start, const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C) { // on the CPU each thread computes the whole matrix multiply // on the GPU each block computes the multiply with one output per-thread const int batch = tid()/kNumThreadsPerBlock; dense_gemm<add>(m[batch], n[batch], p[batch], t1, t2, A+A_start[batch], B+B_start[batch], C+C_start[batch]); } // computes c = b^T*a*b, with a and b being stored in row-major layout CUDA_CALLABLE inline void dense_quadratic() { } // CUDA_CALLABLE inline void dense_chol(int n, const float* A, float* L) // { // // for each column // for (int j=0; j < n; ++j) // { // for (int i=j; i < n; ++i) // { // L[dense_index(n, i, j)] = A[dense_index(n, i, j)]; // } // for (int k = 0; k < j; ++k) // { // const float p = L[dense_index(n, j, k)]; // for (int i=j; i < n; ++i) // { // L[dense_index(n, i, j)] -= p*L[dense_index(n, i, k)]; // } // } // // scale // const float d = L[dense_index(n, j, j)]; // const float s = 1.0f/sqrtf(d); // for (int i=j; i < n; ++i) // { // L[dense_index(n, i, j)] *=s; // } // } // } void CUDA_CALLABLE inline dense_chol(int n, const float* __restrict__ A, const float* __restrict__ regularization, float* __restrict__ L) { for (int j=0; j < n; ++j) { float s = A[dense_index(n, j, j)] + regularization[j]; for (int k=0; k < j; ++k) { float r = L[dense_index(n, j, k)]; s -= r*r; } s = sqrtf(s); const float invS = 1.0f/s; L[dense_index(n, j, j)] = s; for (int i=j+1; i < n; ++i) { s = A[dense_index(n, i, j)]; for (int k=0; k < j; ++k) { s -= L[dense_index(n, i, k)]*L[dense_index(n, j, k)]; } L[dense_index(n, i, j)] = s*invS; } } } void CUDA_CALLABLE inline dense_chol_batched(const int* __restrict__ A_start, const int* __restrict__ A_dim, const float* __restrict__ A, const float* __restrict__ regularization, float* __restrict__ L) { const int batch = tid(); const int n = A_dim[batch]; const int offset = A_start[batch]; dense_chol(n, A + offset, regularization + n*batch, L + offset); } // Solves (L*L^T)x = b given the Cholesky factor L CUDA_CALLABLE inline void dense_subs(int n, const float* __restrict__ L, const float* __restrict__ b, float* __restrict__ x) { // forward substitution for (int i=0; i < n; ++i) { float s = b[i]; for (int j=0; j < i; ++j) { s -= L[dense_index(n, i, j)]*x[j]; } x[i] = s/L[dense_index(n, i, i)]; } // backward substitution for (int i=n-1; i >= 0; --i) { float s = x[i]; for (int j=i+1; j < n; ++j) { s -= L[dense_index(n, j, i)]*x[j]; } x[i] = s/L[dense_index(n, i, i)]; } } CUDA_CALLABLE inline void dense_solve(int n, const float* __restrict__ A, const float* __restrict__ L, const float* __restrict__ b, float* __restrict__ tmp, float* __restrict__ x) { dense_subs(n, L, b, x); } CUDA_CALLABLE inline void dense_solve_batched( const int* __restrict__ b_start, const int* A_start, const int* A_dim, const float* __restrict__ A, const float* __restrict__ L, const float* __restrict__ b, float* __restrict__ tmp, float* __restrict__ x) { const int batch = tid(); dense_solve(A_dim[batch], A + A_start[batch], L + A_start[batch], b + b_start[batch], NULL, x + b_start[batch]); } CUDA_CALLABLE inline void print_matrix(const char* name, int m, int n, const float* data) { printf("%s = [", name); for (int i=0; i < m; ++i) { for (int j=0; j < n; ++j) { printf("%f ", data[dense_index(n, i, j)]); } printf(";\n"); } printf("]\n"); } // adjoint methods CUDA_CALLABLE inline void adj_dense_gemm( int m, int n, int p, int t1, int t2, const float* A, const float* B, float* C, int adj_m, int adj_n, int adj_p, int adj_t1, int adj_t2, float* adj_A, float* adj_B, const float* adj_C) { // print_matrix("A", m, p, A); // print_matrix("B", p, n, B); // printf("t1: %d t2: %d\n", t1, t2); if (t1) { dense_gemm<true>(p, m, n, 0, 1, B, adj_C, adj_A); dense_gemm<true>(p, n, m, int(!t1), 0, A, adj_C, adj_B); } else { dense_gemm<true>(m, p, n, 0, int(!t2), adj_C, B, adj_A); dense_gemm<true>(p, n, m, int(!t1), 0, A, adj_C, adj_B); } } CUDA_CALLABLE inline void adj_dense_gemm_batched( const int* __restrict__ m, const int* __restrict__ n, const int* __restrict__ p, int t1, int t2, const int* __restrict__ A_start, const int* __restrict__ B_start, const int* __restrict__ C_start, const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C, // adj int* __restrict__ adj_m, int* __restrict__ adj_n, int* __restrict__ adj_p, int adj_t1, int adj_t2, int* __restrict__ adj_A_start, int* __restrict__ adj_B_start, int* __restrict__ adj_C_start, float* __restrict__ adj_A, float* __restrict__ adj_B, const float* __restrict__ adj_C) { const int batch = tid()/kNumThreadsPerBlock; adj_dense_gemm(m[batch], n[batch], p[batch], t1, t2, A+A_start[batch], B+B_start[batch], C+C_start[batch], 0, 0, 0, 0, 0, adj_A+A_start[batch], adj_B+B_start[batch], adj_C+C_start[batch]); } CUDA_CALLABLE inline void adj_dense_chol( int n, const float* A, const float* __restrict__ regularization, float* L, int adj_n, const float* adj_A, const float* __restrict__ adj_regularization, float* adj_L) { // nop, use dense_solve to differentiate through (A^-1)b = x } CUDA_CALLABLE inline void adj_dense_chol_batched( const int* __restrict__ A_start, const int* __restrict__ A_dim, const float* __restrict__ A, const float* __restrict__ regularization, float* __restrict__ L, const int* __restrict__ adj_A_start, const int* __restrict__ adj_A_dim, const float* __restrict__ adj_A, const float* __restrict__ adj_regularization, float* __restrict__ adj_L) { // nop, use dense_solve to differentiate through (A^-1)b = x } CUDA_CALLABLE inline void adj_dense_subs( int n, const float* L, const float* b, float* x, int adj_n, const float* adj_L, const float* adj_b, float* adj_x) { // nop, use dense_solve to differentiate through (A^-1)b = x } CUDA_CALLABLE inline void adj_dense_solve( int n, const float* __restrict__ A, const float* __restrict__ L, const float* __restrict__ b, float* __restrict__ tmp, const float* __restrict__ x, int adj_n, float* __restrict__ adj_A, float* __restrict__ adj_L, float* __restrict__ adj_b, float* __restrict__ adj_tmp, const float* __restrict__ adj_x) { for (int i=0; i < n; ++i) { tmp[i] = 0.0f; } dense_subs(n, L, adj_x, tmp); for (int i=0; i < n; ++i) { adj_b[i] += tmp[i]; } //dense_subs(n, L, adj_x, adj_b); // A* = -adj_b*x^T for (int i=0; i < n; ++i) { for (int j=0; j < n; ++j) { adj_A[dense_index(n, i, j)] += -tmp[i]*x[j]; } } } CUDA_CALLABLE inline void adj_dense_solve_batched( const int* __restrict__ b_start, const int* A_start, const int* A_dim, const float* __restrict__ A, const float* __restrict__ L, const float* __restrict__ b, float* __restrict__ tmp, float* __restrict__ x, // adj int* __restrict__ adj_b_start, int* __restrict__ adj_A_start, int* __restrict__ adj_A_dim, float* __restrict__ adj_A, float* __restrict__ adj_L, float* __restrict__ adj_b, float* __restrict__ adj_tmp, const float* __restrict__ adj_x) { const int batch = tid(); adj_dense_solve(A_dim[batch], A + A_start[batch], L + A_start[batch], b + b_start[batch], tmp + b_start[batch], x + b_start[batch], 0, adj_A + A_start[batch], adj_L + A_start[batch], adj_b + b_start[batch], tmp + b_start[batch], adj_x + b_start[batch]); }
10,723
C
29.379603
202
0.531847
RoboticExplorationLab/Deep-ILC/dflex/dflex/render.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """This optional module contains a built-in renderer for the USD data format that can be used to visualize time-sampled simulation data. Users should create a simulation model and integrator and periodically call :func:`UsdRenderer.update()` to write time-sampled simulation data to the USD stage. Example: >>> # construct a new USD stage >>> stage = Usd.Stage.CreateNew("my_stage.usda") >>> renderer = df.render.UsdRenderer(model, stage) >>> >>> time = 0.0 >>> >>> for i in range(100): >>> >>> # update simulation here >>> # .... >>> >>> # update renderer >>> stage.update(state, time) >>> time += dt >>> >>> # write stage to file >>> stage.Save() Note: You must have the Pixar USD bindings installed to use this module please see https://developer.nvidia.com/usd to obtain precompiled USD binaries and installation instructions. """ try: from pxr import Usd, UsdGeom, Gf, Sdf except ModuleNotFoundError: print("No pxr package") import dflex.sim import dflex.util import math def _usd_add_xform(prim): prim.ClearXformOpOrder() t = prim.AddTranslateOp() r = prim.AddOrientOp() s = prim.AddScaleOp() def _usd_set_xform(xform, transform, scale, time): xform_ops = xform.GetOrderedXformOps() pos = tuple(transform[0]) rot = tuple(transform[1]) xform_ops[0].Set(Gf.Vec3d(pos), time) xform_ops[1].Set(Gf.Quatf(rot[3], rot[0], rot[1], rot[2]), time) xform_ops[2].Set(Gf.Vec3d(scale), time) # transforms a cylinder such that it connects the two points pos0, pos1 def _compute_segment_xform(pos0, pos1): mid = (pos0 + pos1) * 0.5 height = (pos1 - pos0).GetLength() dir = (pos1 - pos0) / height rot = Gf.Rotation() rot.SetRotateInto((0.0, 0.0, 1.0), Gf.Vec3d(dir)) scale = Gf.Vec3f(1.0, 1.0, height) return (mid, Gf.Quath(rot.GetQuat()), scale) class UsdRenderer: """A USD renderer """ def __init__(self, model: dflex.model.Model, stage): """Construct a UsdRenderer object Args: model: A simulation model stage (Usd.Stage): A USD stage (either in memory or on disk) """ self.stage = stage self.model = model self.draw_points = True self.draw_springs = False self.draw_triangles = False if (stage.GetPrimAtPath("/root")): stage.RemovePrim("/root") self.root = UsdGeom.Xform.Define(stage, '/root') # add sphere instancer for particles self.particle_instancer = UsdGeom.PointInstancer.Define(stage, self.root.GetPath().AppendChild("particle_instancer")) self.particle_instancer_sphere = UsdGeom.Sphere.Define(stage, self.particle_instancer.GetPath().AppendChild("sphere")) self.particle_instancer_sphere.GetRadiusAttr().Set(model.particle_radius) self.particle_instancer.CreatePrototypesRel().SetTargets([self.particle_instancer_sphere.GetPath()]) self.particle_instancer.CreateProtoIndicesAttr().Set([0] * model.particle_count) # add line instancer if (self.model.spring_count > 0): self.spring_instancer = UsdGeom.PointInstancer.Define(stage, self.root.GetPath().AppendChild("spring_instancer")) self.spring_instancer_cylinder = UsdGeom.Capsule.Define(stage, self.spring_instancer.GetPath().AppendChild("cylinder")) self.spring_instancer_cylinder.GetRadiusAttr().Set(0.01) self.spring_instancer.CreatePrototypesRel().SetTargets([self.spring_instancer_cylinder.GetPath()]) self.spring_instancer.CreateProtoIndicesAttr().Set([0] * model.spring_count) self.stage.SetDefaultPrim(self.root.GetPrim()) # time codes try: self.stage.SetStartTimeCode(0.0) self.stage.SetEndTimeCode(0.0) self.stage.SetTimeCodesPerSecond(1.0) except: pass # add dynamic cloth mesh if (model.tri_count > 0): self.cloth_mesh = UsdGeom.Mesh.Define(stage, self.root.GetPath().AppendChild("cloth")) self.cloth_remap = {} self.cloth_verts = [] self.cloth_indices = [] # USD needs a contiguous vertex buffer, use a dict to map from simulation indices->render indices indices = self.model.tri_indices.flatten().tolist() for i in indices: if i not in self.cloth_remap: # copy vertex new_index = len(self.cloth_verts) self.cloth_verts.append(self.model.particle_q[i].tolist()) self.cloth_indices.append(new_index) self.cloth_remap[i] = new_index else: self.cloth_indices.append(self.cloth_remap[i]) self.cloth_mesh.GetPointsAttr().Set(self.cloth_verts) self.cloth_mesh.GetFaceVertexIndicesAttr().Set(self.cloth_indices) self.cloth_mesh.GetFaceVertexCountsAttr().Set([3] * model.tri_count) else: self.cloth_mesh = None # built-in ground plane if (model.ground): size = 10.0 mesh = UsdGeom.Mesh.Define(stage, self.root.GetPath().AppendChild("plane_0")) mesh.CreateDoubleSidedAttr().Set(True) points = ((-size, 0.0, -size), (size, 0.0, -size), (size, 0.0, size), (-size, 0.0, size)) normals = ((0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0)) counts = (4, ) indices = [0, 1, 2, 3] mesh.GetPointsAttr().Set(points) mesh.GetNormalsAttr().Set(normals) mesh.GetFaceVertexCountsAttr().Set(counts) mesh.GetFaceVertexIndicesAttr().Set(indices) # add rigid bodies xform root for b in range(model.link_count): xform = UsdGeom.Xform.Define(stage, self.root.GetPath().AppendChild("body_" + str(b))) _usd_add_xform(xform) # add rigid body shapes for s in range(model.shape_count): parent_path = self.root.GetPath() if model.shape_body[s] >= 0: parent_path = parent_path.AppendChild("body_" + str(model.shape_body[s].item())) geo_type = model.shape_geo_type[s].item() geo_scale = model.shape_geo_scale[s].tolist() geo_src = model.shape_geo_src[s] # shape transform in body frame X_bs = dflex.util.transform_expand(model.shape_transform[s].tolist()) if (geo_type == dflex.sim.GEO_PLANE): # plane mesh size = 1000.0 mesh = UsdGeom.Mesh.Define(stage, parent_path.AppendChild("plane_" + str(s))) mesh.CreateDoubleSidedAttr().Set(True) points = ((-size, 0.0, -size), (size, 0.0, -size), (size, 0.0, size), (-size, 0.0, size)) normals = ((0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0)) counts = (4, ) indices = [0, 1, 2, 3] mesh.GetPointsAttr().Set(points) mesh.GetNormalsAttr().Set(normals) mesh.GetFaceVertexCountsAttr().Set(counts) mesh.GetFaceVertexIndicesAttr().Set(indices) elif (geo_type == dflex.sim.GEO_SPHERE): mesh = UsdGeom.Sphere.Define(stage, parent_path.AppendChild("sphere_" + str(s))) mesh.GetRadiusAttr().Set(geo_scale[0]) _usd_add_xform(mesh) _usd_set_xform(mesh, X_bs, (1.0, 1.0, 1.0), 0.0) elif (geo_type == dflex.sim.GEO_CAPSULE): mesh = UsdGeom.Capsule.Define(stage, parent_path.AppendChild("capsule_" + str(s))) mesh.GetRadiusAttr().Set(geo_scale[0]) mesh.GetHeightAttr().Set(geo_scale[1] * 2.0) # geometry transform w.r.t shape, convert USD geometry to physics engine convention X_sg = dflex.util.transform((0.0, 0.0, 0.0), dflex.util.quat_from_axis_angle((0.0, 1.0, 0.0), math.pi * 0.5)) X_bg = dflex.util.transform_multiply(X_bs, X_sg) _usd_add_xform(mesh) _usd_set_xform(mesh, X_bg, (1.0, 1.0, 1.0), 0.0) elif (geo_type == dflex.sim.GEO_BOX): mesh = UsdGeom.Cube.Define(stage, parent_path.AppendChild("box_" + str(s))) #mesh.GetSizeAttr().Set((geo_scale[0], geo_scale[1], geo_scale[2])) _usd_add_xform(mesh) _usd_set_xform(mesh, X_bs, (geo_scale[0], geo_scale[1], geo_scale[2]), 0.0) elif (geo_type == dflex.sim.GEO_MESH): mesh = UsdGeom.Mesh.Define(stage, parent_path.AppendChild("mesh_" + str(s))) mesh.GetPointsAttr().Set(geo_src.vertices) mesh.GetFaceVertexIndicesAttr().Set(geo_src.indices) mesh.GetFaceVertexCountsAttr().Set([3] * int(len(geo_src.indices) / 3)) _usd_add_xform(mesh) _usd_set_xform(mesh, X_bs, (geo_scale[0], geo_scale[1], geo_scale[2]), 0.0) elif (geo_type == dflex.sim.GEO_SDF): pass def update(self, state: dflex.model.State, time: float): """Update the USD stage with latest simulation data Args: state: Current state of the simulation time: The current time to update at in seconds """ try: self.stage.SetEndTimeCode(time) except: pass # convert to list if self.model.particle_count: particle_q = state.particle_q.tolist() particle_orientations = [Gf.Quath(1.0, 0.0, 0.0, 0.0)] * self.model.particle_count self.particle_instancer.GetPositionsAttr().Set(particle_q, time) self.particle_instancer.GetOrientationsAttr().Set(particle_orientations, time) # update cloth if (self.cloth_mesh): for k, v in self.cloth_remap.items(): self.cloth_verts[v] = particle_q[k] self.cloth_mesh.GetPointsAttr().Set(self.cloth_verts, time) # update springs if (self.model.spring_count > 0): line_positions = [] line_rotations = [] line_scales = [] for i in range(self.model.spring_count): index0 = self.model.spring_indices[i * 2 + 0] index1 = self.model.spring_indices[i * 2 + 1] pos0 = particle_q[index0] pos1 = particle_q[index1] (pos, rot, scale) = _compute_segment_xform(Gf.Vec3f(pos0), Gf.Vec3f(pos1)) line_positions.append(pos) line_rotations.append(rot) line_scales.append(scale) self.spring_instancer.GetPositionsAttr().Set(line_positions, time) self.spring_instancer.GetOrientationsAttr().Set(line_rotations, time) self.spring_instancer.GetScalesAttr().Set(line_scales, time) # rigids for b in range(self.model.link_count): #xform = UsdGeom.Xform.Define(self.stage, self.root.GetPath().AppendChild("body_" + str(b))) node = UsdGeom.Xform(self.stage.GetPrimAtPath(self.root.GetPath().AppendChild("body_" + str(b)))) # unpack rigid spatial_transform X_sb = dflex.util.transform_expand(state.body_X_sc[b].tolist()) _usd_set_xform(node, X_sb, (1.0, 1.0, 1.0), time) def add_sphere(self, pos: tuple, radius: float, name: str, time: float=0.0): """Debug helper to add a sphere for visualization Args: pos: The position of the sphere radius: The radius of the sphere name: A name for the USD prim on the stage """ sphere_path = self.root.GetPath().AppendChild(name) sphere = UsdGeom.Sphere.Get(self.stage, sphere_path) if not sphere: sphere = UsdGeom.Sphere.Define(self.stage, sphere_path) sphere.GetRadiusAttr().Set(radius, time) mat = Gf.Matrix4d() mat.SetIdentity() mat.SetTranslateOnly(Gf.Vec3d(pos)) op = sphere.MakeMatrixXform() op.Set(mat, time) def add_box(self, pos: tuple, extents: float, name: str, time: float=0.0): """Debug helper to add a box for visualization Args: pos: The position of the sphere extents: The radius of the sphere name: A name for the USD prim on the stage """ sphere_path = self.root.GetPath().AppendChild(name) sphere = UsdGeom.Cube.Get(self.stage, sphere_path) if not sphere: sphere = UsdGeom.Cube.Define(self.stage, sphere_path) #sphere.GetSizeAttr().Set((extents[0]*2.0, extents[1]*2.0, extents[2]*2.0), time) mat = Gf.Matrix4d() mat.SetIdentity() mat.SetScale(extents) mat.SetTranslateOnly(Gf.Vec3d(pos)) op = sphere.MakeMatrixXform() op.Set(mat, time) def add_mesh(self, name: str, path: str, transform, scale, time: float): ref_path = "/root/" + name ref = UsdGeom.Xform.Get(self.stage, ref_path) if not ref: ref = UsdGeom.Xform.Define(self.stage, ref_path) ref.GetPrim().GetReferences().AddReference(path) _usd_add_xform(ref) # update transform _usd_set_xform(ref, transform, scale, time) def add_line_list(self, vertices, color, time, name, radius): """Debug helper to add a line list as a set of capsules Args: vertices: The vertices of the line-strip color: The color of the line time: The time to update at """ num_lines = int(len(vertices)/2) if (num_lines < 1): return # look up rope point instancer instancer_path = self.root.GetPath().AppendChild(name) instancer = UsdGeom.PointInstancer.Get(self.stage, instancer_path) if not instancer: instancer = UsdGeom.PointInstancer.Define(self.stage, instancer_path) instancer_capsule = UsdGeom.Capsule.Define(self.stage, instancer.GetPath().AppendChild("capsule")) instancer_capsule.GetRadiusAttr().Set(radius) instancer.CreatePrototypesRel().SetTargets([instancer_capsule.GetPath()]) instancer.CreatePrimvar("displayColor", Sdf.ValueTypeNames.Float3Array, "constant", 1) line_positions = [] line_rotations = [] line_scales = [] # line_colors = [] for i in range(num_lines): pos0 = vertices[i*2+0] pos1 = vertices[i*2+1] (pos, rot, scale) = _compute_segment_xform(Gf.Vec3f(pos0), Gf.Vec3f(pos1)) line_positions.append(pos) line_rotations.append(rot) line_scales.append(scale) #line_colors.append(Gf.Vec3f((float(i)/num_lines, 0.5, 0.5))) instancer.GetPositionsAttr().Set(line_positions, time) instancer.GetOrientationsAttr().Set(line_rotations, time) instancer.GetScalesAttr().Set(line_scales, time) instancer.GetProtoIndicesAttr().Set([0] * num_lines, time) # instancer.GetPrimvar("displayColor").Set(line_colors, time) def add_line_strip(self, vertices: dflex.sim.List[dflex.sim.Vec3], color: tuple, time: float, name: str, radius: float=0.01): """Debug helper to add a line strip as a connected list of capsules Args: vertices: The vertices of the line-strip color: The color of the line time: The time to update at """ num_lines = int(len(vertices)-1) if (num_lines < 1): return # look up rope point instancer instancer_path = self.root.GetPath().AppendChild(name) instancer = UsdGeom.PointInstancer.Get(self.stage, instancer_path) if not instancer: instancer = UsdGeom.PointInstancer.Define(self.stage, instancer_path) instancer_capsule = UsdGeom.Capsule.Define(self.stage, instancer.GetPath().AppendChild("capsule")) instancer_capsule.GetRadiusAttr().Set(radius) instancer.CreatePrototypesRel().SetTargets([instancer_capsule.GetPath()]) line_positions = [] line_rotations = [] line_scales = [] for i in range(num_lines): pos0 = vertices[i] pos1 = vertices[i+1] (pos, rot, scale) = _compute_segment_xform(Gf.Vec3f(pos0), Gf.Vec3f(pos1)) line_positions.append(pos) line_rotations.append(rot) line_scales.append(scale) instancer.GetPositionsAttr().Set(line_positions, time) instancer.GetOrientationsAttr().Set(line_rotations, time) instancer.GetScalesAttr().Set(line_scales, time) instancer.GetProtoIndicesAttr().Set([0] * num_lines, time) instancer_capsule = UsdGeom.Capsule.Get(self.stage, instancer.GetPath().AppendChild("capsule")) instancer_capsule.GetDisplayColorAttr().Set([Gf.Vec3f(color)], time)
17,760
Python
34.808468
131
0.586768
RoboticExplorationLab/Deep-ILC/dflex/dflex/model.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """A module for building simulation models and state. """ import math import torch import numpy as np from typing import Tuple from typing import List Vec3 = List[float] Vec4 = List[float] Quat = List[float] Mat33 = List[float] Transform = Tuple[Vec3, Quat] from dflex.util import * # shape geometry types GEO_SPHERE = 0 GEO_BOX = 1 GEO_CAPSULE = 2 GEO_MESH = 3 GEO_SDF = 4 GEO_PLANE = 5 GEO_NONE = 6 # body joint types JOINT_PRISMATIC = 0 JOINT_REVOLUTE = 1 JOINT_BALL = 2 JOINT_FIXED = 3 JOINT_FREE = 4 class Mesh: """Describes a triangle collision mesh for simulation Attributes: vertices (List[Vec3]): Mesh vertices indices (List[int]): Mesh indices I (Mat33): Inertia tensor of the mesh assuming density of 1.0 (around the center of mass) mass (float): The total mass of the body assuming density of 1.0 com (Vec3): The center of mass of the body """ def __init__(self, vertices: List[Vec3], indices: List[int]): """Construct a Mesh object from a triangle mesh The mesh center of mass and inertia tensor will automatically be calculated using a density of 1.0. This computation is only valid if the mesh is closed (two-manifold). Args: vertices: List of vertices in the mesh indices: List of triangle indices, 3 per-element """ self.vertices = vertices self.indices = indices # compute com and inertia (using density=1.0) com = np.mean(vertices, 0) num_tris = int(len(indices) / 3) # compute signed inertia for each tetrahedron # formed with the interior point, using an order-2 # quadrature: https://www.sciencedirect.com/science/article/pii/S0377042712001604#br000040 weight = 0.25 alpha = math.sqrt(5.0) / 5.0 I = np.zeros((3, 3)) mass = 0.0 for i in range(num_tris): p = np.array(vertices[indices[i * 3 + 0]]) q = np.array(vertices[indices[i * 3 + 1]]) r = np.array(vertices[indices[i * 3 + 2]]) mid = (com + p + q + r) / 4.0 pcom = p - com qcom = q - com rcom = r - com Dm = np.matrix((pcom, qcom, rcom)).T volume = np.linalg.det(Dm) / 6.0 # quadrature points lie on the line between the # centroid and each vertex of the tetrahedron quads = (mid + (p - mid) * alpha, mid + (q - mid) * alpha, mid + (r - mid) * alpha, mid + (com - mid) * alpha) for j in range(4): # displacement of quadrature point from COM d = quads[j] - com I += weight * volume * (length_sq(d) * np.eye(3, 3) - np.outer(d, d)) mass += weight * volume self.I = I self.mass = mass self.com = com class State: """The State object holds all *time-varying* data for a model. Time-varying data includes particle positions, velocities, rigid body states, and anything that is output from the integrator as derived data, e.g.: forces. The exact attributes depend on the contents of the model. State objects should generally be created using the :func:`Model.state()` function. Attributes: particle_q (torch.Tensor): Tensor of particle positions particle_qd (torch.Tensor): Tensor of particle velocities joint_q (torch.Tensor): Tensor of joint coordinates joint_qd (torch.Tensor): Tensor of joint velocities joint_act (torch.Tensor): Tensor of joint actuation values """ def __init__(self): self.particle_count = 0 self.link_count = 0 # def flatten(self): # """Returns a list of Tensors stored by the state # This function is intended to be used internal-only but can be used to obtain # a set of all tensors owned by the state. # """ # tensors = [] # # particles # if (self.particle_count): # tensors.append(self.particle_q) # tensors.append(self.particle_qd) # # articulations # if (self.link_count): # tensors.append(self.joint_q) # tensors.append(self.joint_qd) # tensors.append(self.joint_act) # return tensors def flatten(self): """Returns a list of Tensors stored by the state This function is intended to be used internal-only but can be used to obtain a set of all tensors owned by the state. """ tensors = [] # build a list of all tensor attributes for attr, value in self.__dict__.items(): if (torch.is_tensor(value)): tensors.append(value) return tensors class Model: """Holds the definition of the simulation model This class holds the non-time varying description of the system, i.e.: all geometry, constraints, and parameters used to describe the simulation. Attributes: particle_q (torch.Tensor): Particle positions, shape [particle_count, 3], float particle_qd (torch.Tensor): Particle velocities, shape [particle_count, 3], float particle_mass (torch.Tensor): Particle mass, shape [particle_count], float particle_inv_mass (torch.Tensor): Particle inverse mass, shape [particle_count], float shape_transform (torch.Tensor): Rigid shape transforms, shape [shape_count, 7], float shape_body (torch.Tensor): Rigid shape body index, shape [shape_count], int shape_geo_type (torch.Tensor): Rigid shape geometry type, [shape_count], int shape_geo_src (torch.Tensor): Rigid shape geometry source, shape [shape_count], int shape_geo_scale (torch.Tensor): Rigid shape geometry scale, shape [shape_count, 3], float shape_materials (torch.Tensor): Rigid shape contact materials, shape [shape_count, 4], float spring_indices (torch.Tensor): Particle spring indices, shape [spring_count*2], int spring_rest_length (torch.Tensor): Particle spring rest length, shape [spring_count], float spring_stiffness (torch.Tensor): Particle spring stiffness, shape [spring_count], float spring_damping (torch.Tensor): Particle spring damping, shape [spring_count], float spring_control (torch.Tensor): Particle spring activation, shape [spring_count], float tri_indices (torch.Tensor): Triangle element indices, shape [tri_count*3], int tri_poses (torch.Tensor): Triangle element rest pose, shape [tri_count, 2, 2], float tri_activations (torch.Tensor): Triangle element activations, shape [tri_count], float edge_indices (torch.Tensor): Bending edge indices, shape [edge_count*2], int edge_rest_angle (torch.Tensor): Bending edge rest angle, shape [edge_count], float tet_indices (torch.Tensor): Tetrahedral element indices, shape [tet_count*4], int tet_poses (torch.Tensor): Tetrahedral rest poses, shape [tet_count, 3, 3], float tet_activations (torch.Tensor): Tetrahedral volumetric activations, shape [tet_count], float tet_materials (torch.Tensor): Tetrahedral elastic parameters in form :math:`k_{mu}, k_{lambda}, k_{damp}`, shape [tet_count, 3] body_X_cm (torch.Tensor): Rigid body center of mass (in local frame), shape [link_count, 7], float body_I_m (torch.Tensor): Rigid body inertia tensor (relative to COM), shape [link_count, 3, 3], float articulation_start (torch.Tensor): Articulation start offset, shape [num_articulations], int joint_q (torch.Tensor): Joint coordinate, shape [joint_coord_count], float joint_qd (torch.Tensor): Joint velocity, shape [joint_dof_count], float joint_type (torch.Tensor): Joint type, shape [joint_count], int joint_parent (torch.Tensor): Joint parent, shape [joint_count], int joint_X_pj (torch.Tensor): Joint transform in parent frame, shape [joint_count, 7], float joint_X_cm (torch.Tensor): Joint mass frame in child frame, shape [joint_count, 7], float joint_axis (torch.Tensor): Joint axis in child frame, shape [joint_count, 3], float joint_q_start (torch.Tensor): Joint coordinate offset, shape [joint_count], int joint_qd_start (torch.Tensor): Joint velocity offset, shape [joint_count], int joint_armature (torch.Tensor): Armature for each joint, shape [joint_count], float joint_target_ke (torch.Tensor): Joint stiffness, shape [joint_count], float joint_target_kd (torch.Tensor): Joint damping, shape [joint_count], float joint_target (torch.Tensor): Joint target, shape [joint_count], float particle_count (int): Total number of particles in the system joint_coord_count (int): Total number of joint coordinates in the system joint_dof_count (int): Total number of joint dofs in the system link_count (int): Total number of links in the system shape_count (int): Total number of shapes in the system tri_count (int): Total number of triangles in the system tet_count (int): Total number of tetrahedra in the system edge_count (int): Total number of edges in the system spring_count (int): Total number of springs in the system contact_count (int): Total number of contacts in the system Note: It is strongly recommended to use the ModelBuilder to construct a simulation rather than creating your own Model object directly, however it is possible to do so if desired. """ def __init__(self, adapter): self.particle_q = None self.particle_qd = None self.particle_mass = None self.particle_inv_mass = None self.shape_transform = None self.shape_body = None self.shape_geo_type = None self.shape_geo_src = None self.shape_geo_scale = None self.shape_materials = None self.spring_indices = None self.spring_rest_length = None self.spring_stiffness = None self.spring_damping = None self.spring_control = None self.tri_indices = None self.tri_poses = None self.tri_activations = None self.edge_indices = None self.edge_rest_angle = None self.tet_indices = None self.tet_poses = None self.tet_activations = None self.tet_materials = None self.body_X_cm = None self.body_I_m = None self.articulation_start = None self.joint_q = None self.joint_qd = None self.joint_type = None self.joint_parent = None self.joint_X_pj = None self.joint_X_cm = None self.joint_axis = None self.joint_q_start = None self.joint_qd_start = None self.joint_armature = None self.joint_target_ke = None self.joint_target_kd = None self.joint_target = None self.particle_count = 0 self.joint_coord_count = 0 self.joint_dof_count = 0 self.link_count = 0 self.shape_count = 0 self.tri_count = 0 self.tet_count = 0 self.edge_count = 0 self.spring_count = 0 self.contact_count = 0 self.gravity = torch.tensor((0.0, -9.8, 0.0), dtype=torch.float32, device=adapter) self.contact_distance = 0.1 self.contact_ke = 1.e+3 self.contact_kd = 0.0 self.contact_kf = 1.e+3 self.contact_mu = 0.5 self.tri_ke = 100.0 self.tri_ka = 100.0 self.tri_kd = 10.0 self.tri_kb = 100.0 self.tri_drag = 0.0 self.tri_lift = 0.0 self.edge_ke = 100.0 self.edge_kd = 0.0 self.particle_radius = 0.1 self.adapter = adapter def state(self) -> State: """Returns a state object for the model The returned state will be initialized with the initial configuration given in the model description. """ s = State() s.particle_count = self.particle_count s.link_count = self.link_count #-------------------------------- # dynamic state (input, output) # particles if (self.particle_count): s.particle_q = torch.clone(self.particle_q) s.particle_qd = torch.clone(self.particle_qd) # articulations if (self.link_count): s.joint_q = torch.clone(self.joint_q) s.joint_qd = torch.clone(self.joint_qd) s.joint_act = torch.zeros_like(self.joint_qd) s.joint_q.requires_grad = True s.joint_qd.requires_grad = True #-------------------------------- # derived state (output only) if (self.particle_count): s.particle_f = torch.empty_like(self.particle_qd, requires_grad=True) if (self.link_count): # joints s.joint_qdd = torch.empty_like(self.joint_qd, requires_grad=True) s.joint_tau = torch.empty_like(self.joint_qd, requires_grad=True) s.joint_S_s = torch.empty((self.joint_dof_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) # derived rigid body data (maximal coordinates) s.body_X_sc = torch.empty((self.link_count, 7), dtype=torch.float32, device=self.adapter, requires_grad=True) s.body_X_sm = torch.empty((self.link_count, 7), dtype=torch.float32, device=self.adapter, requires_grad=True) s.body_I_s = torch.empty((self.link_count, 6, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) s.body_v_s = torch.empty((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) s.body_a_s = torch.empty((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) s.body_f_s = torch.zeros((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) #s.body_ft_s = torch.zeros((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) #s.body_f_ext_s = torch.zeros((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) return s def alloc_mass_matrix(self): if (self.link_count): # system matrices self.M = torch.zeros(self.M_size, dtype=torch.float32, device=self.adapter, requires_grad=True) self.J = torch.zeros(self.J_size, dtype=torch.float32, device=self.adapter, requires_grad=True) self.P = torch.empty(self.J_size, dtype=torch.float32, device=self.adapter, requires_grad=True) self.H = torch.empty(self.H_size, dtype=torch.float32, device=self.adapter, requires_grad=True) # zero since only upper triangle is set which can trigger NaN detection self.L = torch.zeros(self.H_size, dtype=torch.float32, device=self.adapter, requires_grad=True) def flatten(self): """Returns a list of Tensors stored by the model This function is intended to be used internal-only but can be used to obtain a set of all tensors owned by the model. """ tensors = [] # build a list of all tensor attributes for attr, value in self.__dict__.items(): if (torch.is_tensor(value)): tensors.append(value) return tensors # builds contacts def collide(self, state: State): """Constructs a set of contacts between rigid bodies and ground This method performs collision detection between rigid body vertices in the scene and updates the model's set of contacts stored as the following attributes: * **contact_body0**: Tensor of ints with first rigid body index * **contact_body1**: Tensor of ints with second rigid body index (currently always -1 to indicate ground) * **contact_point0**: Tensor of Vec3 representing contact point in local frame of body0 * **contact_dist**: Tensor of float values representing the distance to maintain * **contact_material**: Tensor contact material indices Args: state: The state of the simulation at which to perform collision detection Note: Currently this method uses an 'all pairs' approach to contact generation that is state indepdendent. In the future this will change and will create a node in the computational graph to propagate gradients as a function of state. Todo: Only ground-plane collision is currently implemented. Since the ground is static it is acceptable to call this method once at initialization time. """ body0 = [] body1 = [] point = [] dist = [] mat = [] def add_contact(b0, b1, t, p0, d, m): body0.append(b0) body1.append(b1) point.append(transform_point(t, np.array(p0))) dist.append(d) mat.append(m) for i in range(self.shape_count): # transform from shape to body X_bs = transform_expand(self.shape_transform[i].tolist()) geo_type = self.shape_geo_type[i].item() if (geo_type == GEO_SPHERE): radius = self.shape_geo_scale[i][0].item() add_contact(self.shape_body[i], -1, X_bs, (0.0, 0.0, 0.0), radius, i) elif (geo_type == GEO_CAPSULE): radius = self.shape_geo_scale[i][0].item() half_width = self.shape_geo_scale[i][1].item() add_contact(self.shape_body[i], -1, X_bs, (-half_width, 0.0, 0.0), radius, i) add_contact(self.shape_body[i], -1, X_bs, (half_width, 0.0, 0.0), radius, i) elif (geo_type == GEO_BOX): edges = self.shape_geo_scale[i].tolist() add_contact(self.shape_body[i], -1, X_bs, (-edges[0], -edges[1], -edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, ( edges[0], -edges[1], -edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, (-edges[0], edges[1], -edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, (edges[0], edges[1], -edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, (-edges[0], -edges[1], edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, (edges[0], -edges[1], edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, (-edges[0], edges[1], edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, (edges[0], edges[1], edges[2]), 0.0, i) elif (geo_type == GEO_MESH): mesh = self.shape_geo_src[i] scale = self.shape_geo_scale[i] for v in mesh.vertices: p = (v[0] * scale[0], v[1] * scale[1], v[2] * scale[2]) add_contact(self.shape_body[i], -1, X_bs, p, 0.0, i) # send to torch self.contact_body0 = torch.tensor(body0, dtype=torch.int32, device=self.adapter) self.contact_body1 = torch.tensor(body1, dtype=torch.int32, device=self.adapter) self.contact_point0 = torch.tensor(point, dtype=torch.float32, device=self.adapter) self.contact_dist = torch.tensor(dist, dtype=torch.float32, device=self.adapter) self.contact_material = torch.tensor(mat, dtype=torch.int32, device=self.adapter) self.contact_count = len(body0) class ModelBuilder: """A helper class for building simulation models at runtime. Use the ModelBuilder to construct a simulation scene. The ModelBuilder is independent of PyTorch and builds the scene representation using standard Python data structures, this means it is not differentiable. Once :func:`finalize()` has been called the ModelBuilder transfers all data to Torch tensors and returns an object that may be used for simulation. Example: >>> import dflex as df >>> >>> builder = df.ModelBuilder() >>> >>> # anchor point (zero mass) >>> builder.add_particle((0, 1.0, 0.0), (0.0, 0.0, 0.0), 0.0) >>> >>> # build chain >>> for i in range(1,10): >>> builder.add_particle((i, 1.0, 0.0), (0.0, 0.0, 0.0), 1.0) >>> builder.add_spring(i-1, i, 1.e+3, 0.0, 0) >>> >>> # create model >>> model = builder.finalize() Note: It is strongly recommended to use the ModelBuilder to construct a simulation rather than creating your own Model object directly, however it is possible to do so if desired. """ def __init__(self): # particles self.particle_q = [] self.particle_qd = [] self.particle_mass = [] # shapes self.shape_transform = [] self.shape_body = [] self.shape_geo_type = [] self.shape_geo_scale = [] self.shape_geo_src = [] self.shape_materials = [] # geometry self.geo_meshes = [] self.geo_sdfs = [] # springs self.spring_indices = [] self.spring_rest_length = [] self.spring_stiffness = [] self.spring_damping = [] self.spring_control = [] # triangles self.tri_indices = [] self.tri_poses = [] self.tri_activations = [] # edges (bending) self.edge_indices = [] self.edge_rest_angle = [] # tetrahedra self.tet_indices = [] self.tet_poses = [] self.tet_activations = [] self.tet_materials = [] # muscles self.muscle_start = [] self.muscle_params = [] self.muscle_activation = [] self.muscle_links = [] self.muscle_points = [] # rigid bodies self.joint_parent = [] # index of the parent body (constant) self.joint_child = [] # index of the child body (constant) self.joint_axis = [] # joint axis in child joint frame (constant) self.joint_X_pj = [] # frame of joint in parent (constant) self.joint_X_cm = [] # frame of child com (in child coordinates) (constant) self.joint_q_start = [] # joint offset in the q array self.joint_qd_start = [] # joint offset in the qd array self.joint_type = [] self.joint_armature = [] self.joint_target_ke = [] self.joint_target_kd = [] self.joint_target = [] self.joint_limit_lower = [] self.joint_limit_upper = [] self.joint_limit_ke = [] self.joint_limit_kd = [] self.joint_q = [] # generalized coordinates (input) self.joint_qd = [] # generalized velocities (input) self.joint_qdd = [] # generalized accelerations (id,fd) self.joint_tau = [] # generalized actuation (input) self.joint_u = [] # generalized total torque (fd) self.body_mass = [] self.body_inertia = [] self.body_com = [] self.articulation_start = [] def add_articulation(self) -> int: """Add an articulation object, all subsequently added links (see: :func:`add_link`) will belong to this articulation object. Calling this method multiple times 'closes' any previous articulations and begins a new one. Returns: The index of the articulation """ self.articulation_start.append(len(self.joint_type)) return len(self.articulation_start)-1 # rigids, register a rigid body and return its index. def add_link( self, parent : int, X_pj : Transform, axis : Vec3, type : int, armature: float=0.01, stiffness: float=0.0, damping: float=0.0, limit_lower: float=-1.e+3, limit_upper: float=1.e+3, limit_ke: float=100.0, limit_kd: float=10.0, com: Vec3=np.zeros(3), I_m: Mat33=np.zeros((3, 3)), m: float=0.0) -> int: """Adds a rigid body to the model. Args: parent: The index of the parent body X_pj: The location of the joint in the parent's local frame connecting this body axis: The joint axis type: The type of joint, should be one of: JOINT_PRISMATIC, JOINT_REVOLUTE, JOINT_BALL, JOINT_FIXED, or JOINT_FREE armature: Additional inertia around the joint axis stiffness: Spring stiffness that attempts to return joint to zero position damping: Spring damping that attempts to remove joint velocity com: The center of mass of the body w.r.t its origin I_m: The 3x3 inertia tensor of the body (specified relative to the center of mass) m: The mass of the body Returns: The index of the body in the model Note: If the mass (m) is zero then the body is treated as kinematic with no dynamics """ # joint data self.joint_type.append(type) self.joint_axis.append(np.array(axis)) self.joint_parent.append(parent) self.joint_X_pj.append(X_pj) self.joint_target_ke.append(stiffness) self.joint_target_kd.append(damping) self.joint_limit_ke.append(limit_ke) self.joint_limit_kd.append(limit_kd) self.joint_q_start.append(len(self.joint_q)) self.joint_qd_start.append(len(self.joint_qd)) if (type == JOINT_PRISMATIC): self.joint_q.append(0.0) self.joint_qd.append(0.0) self.joint_target.append(0.0) self.joint_armature.append(armature) self.joint_limit_lower.append(limit_lower) self.joint_limit_upper.append(limit_upper) elif (type == JOINT_REVOLUTE): self.joint_q.append(0.0) self.joint_qd.append(0.0) self.joint_target.append(0.0) self.joint_armature.append(armature) self.joint_limit_lower.append(limit_lower) self.joint_limit_upper.append(limit_upper) elif (type == JOINT_BALL): # quaternion self.joint_q.append(0.0) self.joint_q.append(0.0) self.joint_q.append(0.0) self.joint_q.append(1.0) # angular velocity self.joint_qd.append(0.0) self.joint_qd.append(0.0) self.joint_qd.append(0.0) # pd targets self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_armature.append(armature) self.joint_armature.append(armature) self.joint_armature.append(armature) self.joint_limit_lower.append(limit_lower) self.joint_limit_lower.append(limit_lower) self.joint_limit_lower.append(limit_lower) self.joint_limit_lower.append(0.0) self.joint_limit_upper.append(limit_upper) self.joint_limit_upper.append(limit_upper) self.joint_limit_upper.append(limit_upper) self.joint_limit_upper.append(0.0) elif (type == JOINT_FIXED): pass elif (type == JOINT_FREE): # translation self.joint_q.append(0.0) self.joint_q.append(0.0) self.joint_q.append(0.0) # quaternion self.joint_q.append(0.0) self.joint_q.append(0.0) self.joint_q.append(0.0) self.joint_q.append(1.0) # note armature for free joints should always be zero, better to modify the body inertia directly self.joint_armature.append(0.0) self.joint_armature.append(0.0) self.joint_armature.append(0.0) self.joint_armature.append(0.0) self.joint_armature.append(0.0) self.joint_armature.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_upper.append(0.0) self.joint_limit_upper.append(0.0) self.joint_limit_upper.append(0.0) self.joint_limit_upper.append(0.0) self.joint_limit_upper.append(0.0) self.joint_limit_upper.append(0.0) self.joint_limit_upper.append(0.0) # joint velocities for i in range(6): self.joint_qd.append(0.0) self.body_inertia.append(np.zeros((3, 3))) self.body_mass.append(0.0) self.body_com.append(np.zeros(3)) # return index of body return len(self.joint_type) - 1 # muscles def add_muscle(self, links: List[int], positions: List[Vec3], f0: float, lm: float, lt: float, lmax: float, pen: float) -> float: """Adds a muscle-tendon activation unit Args: links: A list of link indices for each waypoint positions: A list of positions of each waypoint in the link's local frame f0: Force scaling lm: Muscle length lt: Tendon length lmax: Maximally efficient muscle length Returns: The index of the muscle in the model """ n = len(links) self.muscle_start.append(len(self.muscle_links)) self.muscle_params.append((f0, lm, lt, lmax, pen)) self.muscle_activation.append(0.0) for i in range(n): self.muscle_links.append(links[i]) self.muscle_points.append(positions[i]) # return the index of the muscle return len(self.muscle_start)-1 # shapes def add_shape_plane(self, plane: Vec4=(0.0, 1.0, 0.0, 0.0), ke: float=1.e+5, kd: float=1000.0, kf: float=1000.0, mu: float=0.5): """Adds a plane collision shape Args: plane: The plane equation in form a*x + b*y + c*z + d = 0 ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction """ self._add_shape(-1, (0.0, 0.0, 0.0), (0.0, 0.0, 0.0), GEO_PLANE, plane, None, 0.0, ke, kd, kf, mu) def add_shape_sphere(self, body, pos: Vec3=(0.0, 0.0, 0.0), rot: Quat=(0.0, 0.0, 0.0, 1.0), radius: float=1.0, density: float=1000.0, ke: float=1.e+5, kd: float=1000.0, kf: float=1000.0, mu: float=0.5): """Adds a sphere collision shape to a link. Args: body: The index of the parent link this shape belongs to pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame radius: The radius of the sphere density: The density of the shape ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction """ self._add_shape(body, pos, rot, GEO_SPHERE, (radius, 0.0, 0.0, 0.0), None, density, ke, kd, kf, mu) def add_shape_box(self, body : int, pos: Vec3=(0.0, 0.0, 0.0), rot: Quat=(0.0, 0.0, 0.0, 1.0), hx: float=0.5, hy: float=0.5, hz: float=0.5, density: float=1000.0, ke: float=1.e+5, kd: float=1000.0, kf: float=1000.0, mu: float=0.5): """Adds a box collision shape to a link. Args: body: The index of the parent link this shape belongs to pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame hx: The half-extents along the x-axis hy: The half-extents along the y-axis hz: The half-extents along the z-axis density: The density of the shape ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction """ self._add_shape(body, pos, rot, GEO_BOX, (hx, hy, hz, 0.0), None, density, ke, kd, kf, mu) def add_shape_capsule(self, body: int, pos: Vec3=(0.0, 0.0, 0.0), rot: Quat=(0.0, 0.0, 0.0, 1.0), radius: float=1.0, half_width: float=0.5, density: float=1000.0, ke: float=1.e+5, kd: float=1000.0, kf: float=1000.0, mu: float=0.5): """Adds a capsule collision shape to a link. Args: body: The index of the parent link this shape belongs to pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame radius: The radius of the capsule half_width: The half length of the center cylinder along the x-axis density: The density of the shape ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction """ self._add_shape(body, pos, rot, GEO_CAPSULE, (radius, half_width, 0.0, 0.0), None, density, ke, kd, kf, mu) def add_shape_mesh(self, body: int, pos: Vec3=(0.0, 0.0, 0.0), rot: Quat=(0.0, 0.0, 0.0, 1.0), mesh: Mesh=None, scale: Vec3=(1.0, 1.0, 1.0), density: float=1000.0, ke: float=1.e+5, kd: float=1000.0, kf: float=1000.0, mu: float=0.5): """Adds a triangle mesh collision shape to a link. Args: body: The index of the parent link this shape belongs to pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame mesh: The mesh object scale: Scale to use for the collider density: The density of the shape ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction """ self._add_shape(body, pos, rot, GEO_MESH, (scale[0], scale[1], scale[2], 0.0), mesh, density, ke, kd, kf, mu) def _add_shape(self, body , pos, rot, type, scale, src, density, ke, kd, kf, mu): self.shape_body.append(body) self.shape_transform.append(transform(pos, rot)) self.shape_geo_type.append(type) self.shape_geo_scale.append((scale[0], scale[1], scale[2])) self.shape_geo_src.append(src) self.shape_materials.append((ke, kd, kf, mu)) (m, I) = self._compute_shape_mass(type, scale, src, density) self._update_body_mass(body, m, I, np.array(pos), np.array(rot)) # particles def add_particle(self, pos : Vec3, vel : Vec3, mass : float) -> int: """Adds a single particle to the model Args: pos: The initial position of the particle vel: The initial velocity of the particle mass: The mass of the particle Note: Set the mass equal to zero to create a 'kinematic' particle that does is not subject to dynamics. Returns: The index of the particle in the system """ self.particle_q.append(pos) self.particle_qd.append(vel) self.particle_mass.append(mass) return len(self.particle_q) - 1 def add_spring(self, i : int, j, ke : float, kd : float, control: float): """Adds a spring between two particles in the system Args: i: The index of the first particle j: The index of the second particle ke: The elastic stiffness of the spring kd: The damping stiffness of the spring control: The actuation level of the spring Note: The spring is created with a rest-length based on the distance between the particles in their initial configuration. """ self.spring_indices.append(i) self.spring_indices.append(j) self.spring_stiffness.append(ke) self.spring_damping.append(kd) self.spring_control.append(control) # compute rest length p = self.particle_q[i] q = self.particle_q[j] delta = np.subtract(p, q) l = np.sqrt(np.dot(delta, delta)) self.spring_rest_length.append(l) def add_triangle(self, i : int, j : int, k : int) -> float: """Adds a trianglular FEM element between three particles in the system. Triangles are modeled as viscoelastic elements with elastic stiffness and damping Parameters specfied on the model. See model.tri_ke, model.tri_kd. Args: i: The index of the first particle j: The index of the second particle k: The index of the third particle Return: The area of the triangle Note: The triangle is created with a rest-length based on the distance between the particles in their initial configuration. Todo: * Expose elastic paramters on a per-element basis """ # compute basis for 2D rest pose p = np.array(self.particle_q[i]) q = np.array(self.particle_q[j]) r = np.array(self.particle_q[k]) qp = q - p rp = r - p # construct basis aligned with the triangle n = normalize(np.cross(qp, rp)) e1 = normalize(qp) e2 = normalize(np.cross(n, e1)) R = np.matrix((e1, e2)) M = np.matrix((qp, rp)) D = R * M.T inv_D = np.linalg.inv(D) area = np.linalg.det(D) / 2.0 if (area < 0.0): print("inverted triangle element") self.tri_indices.append((i, j, k)) self.tri_poses.append(inv_D.tolist()) self.tri_activations.append(0.0) return area def add_tetrahedron(self, i: int, j: int, k: int, l: int, k_mu: float=1.e+3, k_lambda: float=1.e+3, k_damp: float=0.0) -> float: """Adds a tetrahedral FEM element between four particles in the system. Tetrahdera are modeled as viscoelastic elements with a NeoHookean energy density based on [Smith et al. 2018]. Args: i: The index of the first particle j: The index of the second particle k: The index of the third particle l: The index of the fourth particle k_mu: The first elastic Lame parameter k_lambda: The second elastic Lame parameter k_damp: The element's damping stiffness Return: The volume of the tetrahedron Note: The tetrahedron is created with a rest-pose based on the particle's initial configruation """ # compute basis for 2D rest pose p = np.array(self.particle_q[i]) q = np.array(self.particle_q[j]) r = np.array(self.particle_q[k]) s = np.array(self.particle_q[l]) qp = q - p rp = r - p sp = s - p Dm = np.matrix((qp, rp, sp)).T volume = np.linalg.det(Dm) / 6.0 if (volume <= 0.0): print("inverted tetrahedral element") else: inv_Dm = np.linalg.inv(Dm) self.tet_indices.append((i, j, k, l)) self.tet_poses.append(inv_Dm.tolist()) self.tet_activations.append(0.0) self.tet_materials.append((k_mu, k_lambda, k_damp)) return volume def add_edge(self, i: int, j: int, k: int, l: int, rest: float=None): """Adds a bending edge element between four particles in the system. Bending elements are designed to be between two connected triangles. Then bending energy is based of [Bridson et al. 2002]. Bending stiffness is controlled by the `model.tri_kb` parameter. Args: i: The index of the first particle j: The index of the second particle k: The index of the third particle l: The index of the fourth particle rest: The rest angle across the edge in radians, if not specified it will be computed Note: The edge lies between the particles indexed by 'k' and 'l' parameters with the opposing vertices indexed by 'i' and 'j'. This defines two connected triangles with counter clockwise winding: (i, k, l), (j, l, k). """ # compute rest angle if (rest == None): x1 = np.array(self.particle_q[i]) x2 = np.array(self.particle_q[j]) x3 = np.array(self.particle_q[k]) x4 = np.array(self.particle_q[l]) n1 = normalize(np.cross(x3 - x1, x4 - x1)) n2 = normalize(np.cross(x4 - x2, x3 - x2)) e = normalize(x4 - x3) d = np.clip(np.dot(n2, n1), -1.0, 1.0) angle = math.acos(d) sign = np.sign(np.dot(np.cross(n2, n1), e)) rest = angle * sign self.edge_indices.append((i, j, k, l)) self.edge_rest_angle.append(rest) def add_cloth_grid(self, pos: Vec3, rot: Quat, vel: Vec3, dim_x: int, dim_y: int, cell_x: float, cell_y: float, mass: float, reverse_winding: bool=False, fix_left: bool=False, fix_right: bool=False, fix_top: bool=False, fix_bottom: bool=False): """Helper to create a regular planar cloth grid Creates a rectangular grid of particles with FEM triangles and bending elements automatically. Args: pos: The position of the cloth in world space rot: The orientation of the cloth in world space vel: The velocity of the cloth in world space dim_x_: The number of rectangular cells along the x-axis dim_y: The number of rectangular cells along the y-axis cell_x: The width of each cell in the x-direction cell_y: The width of each cell in the y-direction mass: The mass of each particle reverse_winding: Flip the winding of the mesh fix_left: Make the left-most edge of particles kinematic (fixed in place) fix_right: Make the right-most edge of particles kinematic fix_top: Make the top-most edge of particles kinematic fix_bottom: Make the bottom-most edge of particles kinematic """ def grid_index(x, y, dim_x): return y * dim_x + x start_vertex = len(self.particle_q) start_tri = len(self.tri_indices) for y in range(0, dim_y + 1): for x in range(0, dim_x + 1): g = np.array((x * cell_x, y * cell_y, 0.0)) p = quat_rotate(rot, g) + pos m = mass if (x == 0 and fix_left): m = 0.0 elif (x == dim_x and fix_right): m = 0.0 elif (y == 0 and fix_bottom): m = 0.0 elif (y == dim_y and fix_top): m = 0.0 self.add_particle(p, vel, m) if (x > 0 and y > 0): if (reverse_winding): tri1 = (start_vertex + grid_index(x - 1, y - 1, dim_x + 1), start_vertex + grid_index(x, y - 1, dim_x + 1), start_vertex + grid_index(x, y, dim_x + 1)) tri2 = (start_vertex + grid_index(x - 1, y - 1, dim_x + 1), start_vertex + grid_index(x, y, dim_x + 1), start_vertex + grid_index(x - 1, y, dim_x + 1)) self.add_triangle(*tri1) self.add_triangle(*tri2) else: tri1 = (start_vertex + grid_index(x - 1, y - 1, dim_x + 1), start_vertex + grid_index(x, y - 1, dim_x + 1), start_vertex + grid_index(x - 1, y, dim_x + 1)) tri2 = (start_vertex + grid_index(x, y - 1, dim_x + 1), start_vertex + grid_index(x, y, dim_x + 1), start_vertex + grid_index(x - 1, y, dim_x + 1)) self.add_triangle(*tri1) self.add_triangle(*tri2) end_vertex = len(self.particle_q) end_tri = len(self.tri_indices) # bending constraints, could create these explicitly for a grid but this # is a good test of the adjacency structure adj = MeshAdjacency(self.tri_indices[start_tri:end_tri], end_tri - start_tri) for k, e in adj.edges.items(): # skip open edges if (e.f0 == -1 or e.f1 == -1): continue self.add_edge(e.o0, e.o1, e.v0, e.v1) # opposite 0, opposite 1, vertex 0, vertex 1 def add_cloth_mesh(self, pos: Vec3, rot: Quat, scale: float, vel: Vec3, vertices: List[Vec3], indices: List[int], density: float, edge_callback=None, face_callback=None): """Helper to create a cloth model from a regular triangle mesh Creates one FEM triangle element and one bending element for every face and edge in the input triangle mesh Args: pos: The position of the cloth in world space rot: The orientation of the cloth in world space vel: The velocity of the cloth in world space vertices: A list of vertex positions indices: A list of triangle indices, 3 entries per-face density: The density per-area of the mesh edge_callback: A user callback when an edge is created face_callback: A user callback when a face is created Note: The mesh should be two manifold. """ num_tris = int(len(indices) / 3) start_vertex = len(self.particle_q) start_tri = len(self.tri_indices) # particles for i, v in enumerate(vertices): p = quat_rotate(rot, v * scale) + pos self.add_particle(p, vel, 0.0) # triangles for t in range(num_tris): i = start_vertex + indices[t * 3 + 0] j = start_vertex + indices[t * 3 + 1] k = start_vertex + indices[t * 3 + 2] if (face_callback): face_callback(i, j, k) area = self.add_triangle(i, j, k) # add area fraction to particles if (area > 0.0): self.particle_mass[i] += density * area / 3.0 self.particle_mass[j] += density * area / 3.0 self.particle_mass[k] += density * area / 3.0 end_vertex = len(self.particle_q) end_tri = len(self.tri_indices) adj = MeshAdjacency(self.tri_indices[start_tri:end_tri], end_tri - start_tri) # bend constraints for k, e in adj.edges.items(): # skip open edges if (e.f0 == -1 or e.f1 == -1): continue if (edge_callback): edge_callback(e.f0, e.f1) self.add_edge(e.o0, e.o1, e.v0, e.v1) def add_soft_grid(self, pos: Vec3, rot: Quat, vel: Vec3, dim_x: int, dim_y: int, dim_z: int, cell_x: float, cell_y: float, cell_z: float, density: float, k_mu: float, k_lambda: float, k_damp: float, fix_left: bool=False, fix_right: bool=False, fix_top: bool=False, fix_bottom: bool=False): """Helper to create a rectangular tetrahedral FEM grid Creates a regular grid of FEM tetrhedra and surface triangles. Useful for example to create beams and sheets. Each hexahedral cell is decomposed into 5 tetrahedral elements. Args: pos: The position of the solid in world space rot: The orientation of the solid in world space vel: The velocity of the solid in world space dim_x_: The number of rectangular cells along the x-axis dim_y: The number of rectangular cells along the y-axis dim_z: The number of rectangular cells along the z-axis cell_x: The width of each cell in the x-direction cell_y: The width of each cell in the y-direction cell_z: The width of each cell in the z-direction density: The density of each particle k_mu: The first elastic Lame parameter k_lambda: The second elastic Lame parameter k_damp: The damping stiffness fix_left: Make the left-most edge of particles kinematic (fixed in place) fix_right: Make the right-most edge of particles kinematic fix_top: Make the top-most edge of particles kinematic fix_bottom: Make the bottom-most edge of particles kinematic """ start_vertex = len(self.particle_q) mass = cell_x * cell_y * cell_z * density for z in range(dim_z + 1): for y in range(dim_y + 1): for x in range(dim_x + 1): v = np.array((x * cell_x, y * cell_y, z * cell_z)) m = mass if (fix_left and x == 0): m = 0.0 if (fix_right and x == dim_x): m = 0.0 if (fix_top and y == dim_y): m = 0.0 if (fix_bottom and y == 0): m = 0.0 p = quat_rotate(rot, v) + pos self.add_particle(p, vel, m) # dict of open faces faces = {} def add_face(i: int, j: int, k: int): key = tuple(sorted((i, j, k))) if key not in faces: faces[key] = (i, j, k) else: del faces[key] def add_tet(i: int, j: int, k: int, l: int): self.add_tetrahedron(i, j, k, l, k_mu, k_lambda, k_damp) add_face(i, k, j) add_face(j, k, l) add_face(i, j, l) add_face(i, l, k) def grid_index(x, y, z): return (dim_x + 1) * (dim_y + 1) * z + (dim_x + 1) * y + x for z in range(dim_z): for y in range(dim_y): for x in range(dim_x): v0 = grid_index(x, y, z) + start_vertex v1 = grid_index(x + 1, y, z) + start_vertex v2 = grid_index(x + 1, y, z + 1) + start_vertex v3 = grid_index(x, y, z + 1) + start_vertex v4 = grid_index(x, y + 1, z) + start_vertex v5 = grid_index(x + 1, y + 1, z) + start_vertex v6 = grid_index(x + 1, y + 1, z + 1) + start_vertex v7 = grid_index(x, y + 1, z + 1) + start_vertex if (((x & 1) ^ (y & 1) ^ (z & 1))): add_tet(v0, v1, v4, v3) add_tet(v2, v3, v6, v1) add_tet(v5, v4, v1, v6) add_tet(v7, v6, v3, v4) add_tet(v4, v1, v6, v3) else: add_tet(v1, v2, v5, v0) add_tet(v3, v0, v7, v2) add_tet(v4, v7, v0, v5) add_tet(v6, v5, v2, v7) add_tet(v5, v2, v7, v0) # add triangles for k, v in faces.items(): self.add_triangle(v[0], v[1], v[2]) def add_soft_mesh(self, pos: Vec3, rot: Quat, scale: float, vel: Vec3, vertices: List[Vec3], indices: List[int], density: float, k_mu: float, k_lambda: float, k_damp: float): """Helper to create a tetrahedral model from an input tetrahedral mesh Args: pos: The position of the solid in world space rot: The orientation of the solid in world space vel: The velocity of the solid in world space vertices: A list of vertex positions indices: A list of tetrahedron indices, 4 entries per-element density: The density per-area of the mesh k_mu: The first elastic Lame parameter k_lambda: The second elastic Lame parameter k_damp: The damping stiffness """ num_tets = int(len(indices) / 4) start_vertex = len(self.particle_q) start_tri = len(self.tri_indices) # dict of open faces faces = {} def add_face(i, j, k): key = tuple(sorted((i, j, k))) if key not in faces: faces[key] = (i, j, k) else: del faces[key] # add particles for v in vertices: p = quat_rotate(rot, v * scale) + pos self.add_particle(p, vel, 0.0) # add tetrahedra for t in range(num_tets): v0 = start_vertex + indices[t * 4 + 0] v1 = start_vertex + indices[t * 4 + 1] v2 = start_vertex + indices[t * 4 + 2] v3 = start_vertex + indices[t * 4 + 3] volume = self.add_tetrahedron(v0, v1, v2, v3, k_mu, k_lambda, k_damp) # distribute volume fraction to particles if (volume > 0.0): self.particle_mass[v0] += density * volume / 4.0 self.particle_mass[v1] += density * volume / 4.0 self.particle_mass[v2] += density * volume / 4.0 self.particle_mass[v3] += density * volume / 4.0 # build open faces add_face(v0, v2, v1) add_face(v1, v2, v3) add_face(v0, v1, v3) add_face(v0, v3, v2) # add triangles for k, v in faces.items(): try: self.add_triangle(v[0], v[1], v[2]) except np.linalg.LinAlgError: continue def compute_sphere_inertia(self, density: float, r: float) -> tuple: """Helper to compute mass and inertia of a sphere Args: density: The sphere density r: The sphere radius Returns: A tuple of (mass, inertia) with inertia specified around the origin """ v = 4.0 / 3.0 * math.pi * r * r * r m = density * v Ia = 2.0 / 5.0 * m * r * r I = np.array([[Ia, 0.0, 0.0], [0.0, Ia, 0.0], [0.0, 0.0, Ia]]) return (m, I) def compute_capsule_inertia(self, density: float, r: float, l: float) -> tuple: """Helper to compute mass and inertia of a capsule Args: density: The capsule density r: The capsule radius l: The capsule length (full width of the interior cylinder) Returns: A tuple of (mass, inertia) with inertia specified around the origin """ ms = density * (4.0 / 3.0) * math.pi * r * r * r mc = density * math.pi * r * r * l # total mass m = ms + mc # adapted from ODE Ia = mc * (0.25 * r * r + (1.0 / 12.0) * l * l) + ms * (0.4 * r * r + 0.375 * r * l + 0.25 * l * l) Ib = (mc * 0.5 + ms * 0.4) * r * r I = np.array([[Ib, 0.0, 0.0], [0.0, Ia, 0.0], [0.0, 0.0, Ia]]) return (m, I) def compute_box_inertia(self, density: float, w: float, h: float, d: float) -> tuple: """Helper to compute mass and inertia of a box Args: density: The box density w: The box width along the x-axis h: The box height along the y-axis d: The box depth along the z-axis Returns: A tuple of (mass, inertia) with inertia specified around the origin """ v = w * h * d m = density * v Ia = 1.0 / 12.0 * m * (h * h + d * d) Ib = 1.0 / 12.0 * m * (w * w + d * d) Ic = 1.0 / 12.0 * m * (w * w + h * h) I = np.array([[Ia, 0.0, 0.0], [0.0, Ib, 0.0], [0.0, 0.0, Ic]]) return (m, I) def _compute_shape_mass(self, type, scale, src, density): if density == 0: # zero density means fixed return 0, np.zeros((3, 3)) if (type == GEO_SPHERE): return self.compute_sphere_inertia(density, scale[0]) elif (type == GEO_BOX): return self.compute_box_inertia(density, scale[0] * 2.0, scale[1] * 2.0, scale[2] * 2.0) elif (type == GEO_CAPSULE): return self.compute_capsule_inertia(density, scale[0], scale[1] * 2.0) elif (type == GEO_MESH): #todo: non-uniform scale of inertia tensor s = scale[0] # eventually want to compute moment of inertia for mesh. return (density * src.mass * s * s * s, density * src.I * s * s * s * s * s) # incrementally updates rigid body mass with additional mass and inertia expressed at a local to the body def _update_body_mass(self, i, m, I, p, q): if (i == -1): return # find new COM new_mass = self.body_mass[i] + m if new_mass == 0.0: # no mass return new_com = (self.body_com[i] * self.body_mass[i] + p * m) / new_mass # shift inertia to new COM com_offset = new_com - self.body_com[i] shape_offset = new_com - p new_inertia = transform_inertia(self.body_mass[i], self.body_inertia[i], com_offset, quat_identity()) + transform_inertia( m, I, shape_offset, q) self.body_mass[i] = new_mass self.body_inertia[i] = new_inertia self.body_com[i] = new_com # returns a (model, state) pair given the description def finalize(self, adapter: str) -> Model: """Convert this builder object to a concrete model for simulation. After building simulation elements this method should be called to transfer all data to PyTorch tensors ready for simulation. Args: adapter: The simulation adapter to use, e.g.: 'cpu', 'cuda' Returns: A model object. """ # construct particle inv masses particle_inv_mass = [] for m in self.particle_mass: if (m > 0.0): particle_inv_mass.append(1.0 / m) else: particle_inv_mass.append(0.0) #------------------------------------- # construct Model (non-time varying) data m = Model(adapter) #--------------------- # particles # state (initial) m.particle_q = torch.tensor(self.particle_q, dtype=torch.float32, device=adapter) m.particle_qd = torch.tensor(self.particle_qd, dtype=torch.float32, device=adapter) # model m.particle_mass = torch.tensor(self.particle_mass, dtype=torch.float32, device=adapter) m.particle_inv_mass = torch.tensor(particle_inv_mass, dtype=torch.float32, device=adapter) #--------------------- # collision geometry m.shape_transform = torch.tensor(np.array(transform_flatten_list(self.shape_transform)), dtype=torch.float32, device=adapter) m.shape_body = torch.tensor(self.shape_body, dtype=torch.int32, device=adapter) m.shape_geo_type = torch.tensor(self.shape_geo_type, dtype=torch.int32, device=adapter) m.shape_geo_src = self.shape_geo_src m.shape_geo_scale = torch.tensor(self.shape_geo_scale, dtype=torch.float32, device=adapter) m.shape_materials = torch.tensor(self.shape_materials, dtype=torch.float32, device=adapter) #--------------------- # springs m.spring_indices = torch.tensor(self.spring_indices, dtype=torch.int32, device=adapter) m.spring_rest_length = torch.tensor(self.spring_rest_length, dtype=torch.float32, device=adapter) m.spring_stiffness = torch.tensor(self.spring_stiffness, dtype=torch.float32, device=adapter) m.spring_damping = torch.tensor(self.spring_damping, dtype=torch.float32, device=adapter) m.spring_control = torch.tensor(self.spring_control, dtype=torch.float32, device=adapter) #--------------------- # triangles m.tri_indices = torch.tensor(self.tri_indices, dtype=torch.int32, device=adapter) m.tri_poses = torch.tensor(self.tri_poses, dtype=torch.float32, device=adapter) m.tri_activations = torch.tensor(self.tri_activations, dtype=torch.float32, device=adapter) #--------------------- # edges m.edge_indices = torch.tensor(self.edge_indices, dtype=torch.int32, device=adapter) m.edge_rest_angle = torch.tensor(self.edge_rest_angle, dtype=torch.float32, device=adapter) #--------------------- # tetrahedra m.tet_indices = torch.tensor(self.tet_indices, dtype=torch.int32, device=adapter) m.tet_poses = torch.tensor(self.tet_poses, dtype=torch.float32, device=adapter) m.tet_activations = torch.tensor(self.tet_activations, dtype=torch.float32, device=adapter) m.tet_materials = torch.tensor(self.tet_materials, dtype=torch.float32, device=adapter) #----------------------- # muscles muscle_count = len(self.muscle_start) # close the muscle waypoint indices self.muscle_start.append(len(self.muscle_links)) m.muscle_start = torch.tensor(self.muscle_start, dtype=torch.int32, device=adapter) m.muscle_params = torch.tensor(self.muscle_params, dtype=torch.float32, device=adapter) m.muscle_links = torch.tensor(self.muscle_links, dtype=torch.int32, device=adapter) m.muscle_points = torch.tensor(np.array(self.muscle_points), dtype=torch.float32, device=adapter) m.muscle_activation = torch.tensor(self.muscle_activation, dtype=torch.float32, device=adapter) #-------------------------------------- # articulations # build 6x6 spatial inertia and COM transform body_X_cm = [] body_I_m = [] for i in range(len(self.body_inertia)): body_I_m.append(spatial_matrix_from_inertia(self.body_inertia[i], self.body_mass[i])) body_X_cm.append(transform(self.body_com[i], quat_identity())) m.body_I_m = torch.tensor(body_I_m, dtype=torch.float32, device=adapter) articulation_count = len(self.articulation_start) joint_coord_count = len(self.joint_q) joint_dof_count = len(self.joint_qd) # 'close' the start index arrays with a sentinel value self.joint_q_start.append(len(self.joint_q)) self.joint_qd_start.append(len(self.joint_qd)) self.articulation_start.append(len(self.joint_type)) # calculate total size and offsets of Jacobian and mass matrices for entire system m.J_size = 0 m.M_size = 0 m.H_size = 0 articulation_J_start = [] articulation_M_start = [] articulation_H_start = [] articulation_M_rows = [] articulation_H_rows = [] articulation_J_rows = [] articulation_J_cols = [] articulation_dof_start = [] articulation_coord_start = [] for i in range(articulation_count): first_joint = self.articulation_start[i] last_joint = self.articulation_start[i+1] first_coord = self.joint_q_start[first_joint] last_coord = self.joint_q_start[last_joint] first_dof = self.joint_qd_start[first_joint] last_dof = self.joint_qd_start[last_joint] joint_count = last_joint-first_joint dof_count = last_dof-first_dof coord_count = last_coord-first_coord articulation_J_start.append(m.J_size) articulation_M_start.append(m.M_size) articulation_H_start.append(m.H_size) articulation_dof_start.append(first_dof) articulation_coord_start.append(first_coord) # bit of data duplication here, but will leave it as such for clarity articulation_M_rows.append(joint_count*6) articulation_H_rows.append(dof_count) articulation_J_rows.append(joint_count*6) articulation_J_cols.append(dof_count) m.J_size += 6*joint_count*dof_count m.M_size += 6*joint_count*6*joint_count m.H_size += dof_count*dof_count m.articulation_joint_start = torch.tensor(self.articulation_start, dtype=torch.int32, device=adapter) # matrix offsets for batched gemm m.articulation_J_start = torch.tensor(articulation_J_start, dtype=torch.int32, device=adapter) m.articulation_M_start = torch.tensor(articulation_M_start, dtype=torch.int32, device=adapter) m.articulation_H_start = torch.tensor(articulation_H_start, dtype=torch.int32, device=adapter) m.articulation_M_rows = torch.tensor(articulation_M_rows, dtype=torch.int32, device=adapter) m.articulation_H_rows = torch.tensor(articulation_H_rows, dtype=torch.int32, device=adapter) m.articulation_J_rows = torch.tensor(articulation_J_rows, dtype=torch.int32, device=adapter) m.articulation_J_cols = torch.tensor(articulation_J_cols, dtype=torch.int32, device=adapter) m.articulation_dof_start = torch.tensor(articulation_dof_start, dtype=torch.int32, device=adapter) m.articulation_coord_start = torch.tensor(articulation_coord_start, dtype=torch.int32, device=adapter) # state (initial) m.joint_q = torch.tensor(self.joint_q, dtype=torch.float32, device=adapter) m.joint_qd = torch.tensor(self.joint_qd, dtype=torch.float32, device=adapter) # model m.joint_type = torch.tensor(self.joint_type, dtype=torch.int32, device=adapter) m.joint_parent = torch.tensor(self.joint_parent, dtype=torch.int32, device=adapter) m.joint_X_pj = torch.tensor(transform_flatten_list(self.joint_X_pj), dtype=torch.float32, device=adapter) m.joint_X_cm = torch.tensor(transform_flatten_list(body_X_cm), dtype=torch.float32, device=adapter) m.joint_axis = torch.tensor(self.joint_axis, dtype=torch.float32, device=adapter) m.joint_q_start = torch.tensor(self.joint_q_start, dtype=torch.int32, device=adapter) m.joint_qd_start = torch.tensor(self.joint_qd_start, dtype=torch.int32, device=adapter) # dynamics properties m.joint_armature = torch.tensor(self.joint_armature, dtype=torch.float32, device=adapter) m.joint_target = torch.tensor(self.joint_target, dtype=torch.float32, device=adapter) m.joint_target_ke = torch.tensor(self.joint_target_ke, dtype=torch.float32, device=adapter) m.joint_target_kd = torch.tensor(self.joint_target_kd, dtype=torch.float32, device=adapter) m.joint_limit_lower = torch.tensor(self.joint_limit_lower, dtype=torch.float32, device=adapter) m.joint_limit_upper = torch.tensor(self.joint_limit_upper, dtype=torch.float32, device=adapter) m.joint_limit_ke = torch.tensor(self.joint_limit_ke, dtype=torch.float32, device=adapter) m.joint_limit_kd = torch.tensor(self.joint_limit_kd, dtype=torch.float32, device=adapter) # counts m.particle_count = len(self.particle_q) m.articulation_count = articulation_count m.joint_coord_count = joint_coord_count m.joint_dof_count = joint_dof_count m.muscle_count = muscle_count m.link_count = len(self.joint_type) m.shape_count = len(self.shape_geo_type) m.tri_count = len(self.tri_poses) m.tet_count = len(self.tet_poses) m.edge_count = len(self.edge_rest_angle) m.spring_count = len(self.spring_rest_length) m.contact_count = 0 # store refs to geometry m.geo_meshes = self.geo_meshes m.geo_sdfs = self.geo_sdfs # enable ground plane m.ground = True m.enable_tri_collisions = False m.gravity = torch.tensor((0.0, -9.8, 0.0), dtype=torch.float32, device=adapter) # allocate space for mass / jacobian matrices m.alloc_mass_matrix() return m
71,080
Python
36.809043
206
0.562085
RoboticExplorationLab/Deep-ILC/dflex/dflex/adjoint.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import imp import ast import math import inspect import typing import weakref import numpy as np import torch import torch.utils.cpp_extension import dflex.config import copy # Todo #----- # # [ ] Unary ops (e.g.: -) # [ ] Inplace ops (e.g.: +=, -=) # [ ] Conditionals # [ ] Loops (unrolled) # [ ] Auto-gen PyTorch operator # [ ] CUDA kernel code gen + dynamic compilation # ----- operators = {} functions = {} cuda_functions = {} kernels = {} #---------------------- # built-in types class float3: def __init__(self): x = 0.0 y = 0.0 z = 0.0 class float4: def __init__(self): x = 0.0 y = 0.0 z = 0.0 w = 0.0 class quat: def __init__(self): x = 0.0 y = 0.0 z = 0.0 w = 1.0 class mat22: def __init__(self): pass class mat33: def __init__(self): pass class spatial_vector: def __init__(self): pass class spatial_matrix: def __init__(self): pass class spatial_transform: def __init__(self): pass class void: def __init__(self): pass class tensor: def __init__(self, type): self.type = type self.requires_grad = True self.__name__ = "tensor<" + type.__name__ + ">" #---------------------- # register built-in function def builtin(key): def insert(func): func.key = key func.prefix = "df::" functions[key] = func return func return insert #--------------------------------- # built-in operators +,-,*,/ @builtin("add") class AddFunc: @staticmethod def value_type(args): return args[0].type @builtin("sub") class SubFunc: @staticmethod def value_type(args): return args[0].type @builtin("mod") class ModFunc: @staticmethod def value_type(args): return args[0].type @builtin("mul") class MulFunc: @staticmethod def value_type(args): # todo: encode type operator type globally if (args[0].type == mat33 and args[1].type == float3): return float3 if (args[0].type == spatial_matrix and args[1].type == spatial_vector): return spatial_vector else: return args[0].type @builtin("div") class DivFunc: @staticmethod def value_type(args): return args[0].type #---------------------- # map operator nodes to builtin operators[ast.Add] = "add" operators[ast.Sub] = "sub" operators[ast.Mult] = "mul" operators[ast.Div] = "div" operators[ast.FloorDiv] = "div" operators[ast.Mod] = "mod" operators[ast.Gt] = ">" operators[ast.Lt] = "<" operators[ast.GtE] = ">=" operators[ast.LtE] = "<=" operators[ast.Eq] = "==" operators[ast.NotEq] = "!=" #---------------------- # built-in functions @builtin("min") class MinFunc: @staticmethod def value_type(args): return float @builtin("max") class MaxFunc: @staticmethod def value_type(args): return float @builtin("leaky_max") class LeakyMaxFunc: @staticmethod def value_type(args): return float @builtin("leaky_min") class LeakyMinFunc: @staticmethod def value_type(args): return float @builtin("clamp") class ClampFunc: @staticmethod def value_type(args): return float @builtin("step") class StepFunc: @staticmethod def value_type(args): return float @builtin("nonzero") class NonZeroFunc: @staticmethod def value_type(args): return float @builtin("sign") class SignFunc: @staticmethod def value_type(args): return float @builtin("abs") class AbsFunc: @staticmethod def value_type(args): return float @builtin("sin") class SinFunc: @staticmethod def value_type(args): return float @builtin("cos") class CosFunc: @staticmethod def value_type(args): return float @builtin("acos") class ACosFunc: @staticmethod def value_type(args): return float @builtin("sin") class SinFunc: @staticmethod def value_type(args): return float @builtin("cos") class CosFunc: @staticmethod def value_type(args): return float @builtin("sqrt") class SqrtFunc: @staticmethod def value_type(args): return float @builtin("dot") class DotFunc: @staticmethod def value_type(args): return float @builtin("cross") class CrossFunc: @staticmethod def value_type(args): return float3 @builtin("skew") class SkewFunc: @staticmethod def value_type(args): return mat33 @builtin("length") class LengthFunc: @staticmethod def value_type(args): return float @builtin("normalize") class NormalizeFunc: @staticmethod def value_type(args): return args[0].type @builtin("select") class SelectFunc: @staticmethod def value_type(args): return args[1].type @builtin("rotate") class RotateFunc: @staticmethod def value_type(args): return float3 @builtin("rotate_inv") class RotateInvFunc: @staticmethod def value_type(args): return float3 @builtin("determinant") class DeterminantFunc: @staticmethod def value_type(args): return float @builtin("transpose") class TransposeFunc: @staticmethod def value_type(args): return args[0].type @builtin("load") class LoadFunc: @staticmethod def value_type(args): if (type(args[0].type) != tensor): raise Exception("Load input 0 must be a tensor") if (args[1].type != int): raise Exception("Load input 1 must be a int") return args[0].type.type @builtin("store") class StoreFunc: @staticmethod def value_type(args): if (type(args[0].type) != tensor): raise Exception("Store input 0 must be a tensor") if (args[1].type != int): raise Exception("Store input 1 must be a int") if (args[2].type != args[0].type.type): raise Exception("Store input 2 must be of the same type as the tensor") return None @builtin("atomic_add") class AtomicAddFunc: @staticmethod def value_type(args): return None @builtin("atomic_sub") class AtomicSubFunc: @staticmethod def value_type(args): return None @builtin("tid") class ThreadIdFunc: @staticmethod def value_type(args): return int # type construtors @builtin("float") class floatFunc: @staticmethod def value_type(args): return float @builtin("int") class IntFunc: @staticmethod def value_type(args): return int @builtin("float3") class Float3Func: @staticmethod def value_type(args): return float3 @builtin("quat") class QuatFunc: @staticmethod def value_type(args): return quat @builtin("quat_identity") class QuatIdentityFunc: @staticmethod def value_type(args): return quat @builtin("quat_from_axis_angle") class QuatAxisAngleFunc: @staticmethod def value_type(args): return quat @builtin("mat22") class Mat22Func: @staticmethod def value_type(args): return mat22 @builtin("mat33") class Mat33Func: @staticmethod def value_type(args): return mat33 @builtin("spatial_vector") class SpatialVectorFunc: @staticmethod def value_type(args): return spatial_vector # built-in spatial operators @builtin("spatial_transform") class TransformFunc: @staticmethod def value_type(args): return spatial_transform @builtin("spatial_transform_identity") class TransformIdentity: @staticmethod def value_type(args): return spatial_transform @builtin("inverse") class Inverse: @staticmethod def value_type(args): return quat # @builtin("spatial_transform_inverse") # class TransformInverse: # @staticmethod # def value_type(args): # return spatial_transform @builtin("spatial_transform_get_translation") class TransformGetTranslation: @staticmethod def value_type(args): return float3 @builtin("spatial_transform_get_rotation") class TransformGetRotation: @staticmethod def value_type(args): return quat @builtin("spatial_transform_multiply") class TransformMulFunc: @staticmethod def value_type(args): return spatial_transform # @builtin("spatial_transform_inertia") # class TransformInertiaFunc: # @staticmethod # def value_type(args): # return spatial_matrix @builtin("spatial_adjoint") class SpatialAdjoint: @staticmethod def value_type(args): return spatial_matrix @builtin("spatial_dot") class SpatialDotFunc: @staticmethod def value_type(args): return float @builtin("spatial_cross") class SpatialDotFunc: @staticmethod def value_type(args): return spatial_vector @builtin("spatial_cross_dual") class SpatialDotFunc: @staticmethod def value_type(args): return spatial_vector @builtin("spatial_transform_point") class SpatialTransformPointFunc: @staticmethod def value_type(args): return float3 @builtin("spatial_transform_vector") class SpatialTransformVectorFunc: @staticmethod def value_type(args): return float3 @builtin("spatial_top") class SpatialTopFunc: @staticmethod def value_type(args): return float3 @builtin("spatial_bottom") class SpatialBottomFunc: @staticmethod def value_type(args): return float3 @builtin("spatial_jacobian") class SpatialJacobian: @staticmethod def value_type(args): return None @builtin("spatial_mass") class SpatialMass: @staticmethod def value_type(args): return None @builtin("dense_gemm") class DenseGemm: @staticmethod def value_type(args): return None @builtin("dense_gemm_batched") class DenseGemmBatched: @staticmethod def value_type(args): return None @builtin("dense_chol") class DenseChol: @staticmethod def value_type(args): return None @builtin("dense_chol_batched") class DenseCholBatched: @staticmethod def value_type(args): return None @builtin("dense_subs") class DenseSubs: @staticmethod def value_type(args): return None @builtin("dense_solve") class DenseSolve: @staticmethod def value_type(args): return None @builtin("dense_solve_batched") class DenseSolve: @staticmethod def value_type(args): return None # helpers @builtin("index") class IndexFunc: @staticmethod def value_type(args): return float @builtin("print") class PrintFunc: @staticmethod def value_type(args): return None class Var: def __init__(adj, label, type, requires_grad=False, constant=None): adj.label = label adj.type = type adj.requires_grad = requires_grad adj.constant = constant def __str__(adj): return adj.label def ctype(self): if (isinstance(self.type, tensor)): if self.type.type == float3: return str("df::" + self.type.type.__name__) + "*" return str(self.type.type.__name__) + "*" elif self.type == float3: return "df::" + str(self.type.__name__) else: return str(self.type.__name__) #-------------------- # Storage class for partial AST up to a return statement. class Stmt: def __init__(self, cond, forward, forward_replay, reverse, ret_forward, ret_line): self.cond = cond # condition, can be None self.forward = forward # all forward code outside of conditional branch *since last return* self.forward_replay = forward_replay self.reverse = reverse # all reverse code including the reverse of any code in ret_forward self.ret_forward = ret_forward # all forward commands in the return statement except the actual return statement self.ret_line = ret_line # actual return statement #------------------------------------------------------------------------ # Source code transformer, this class takes a Python function and # computes its adjoint using single-pass translation of the function's AST class Adjoint: def __init__(adj, func, device='cpu'): adj.func = func adj.device = device adj.symbols = {} # map from symbols to adjoint variables adj.variables = [] # list of local variables (in order) adj.args = [] # list of function arguments (in order) adj.cond = None # condition variable if in branch adj.return_var = None # return type for function or kernel # build AST from function object adj.source = inspect.getsource(func) adj.tree = ast.parse(adj.source) # parse argument types arg_types = typing.get_type_hints(func) # add variables and symbol map for each argument for name, t in arg_types.items(): adj.symbols[name] = Var(name, t, False) # build ordered list of args for a in adj.tree.body[0].args.args: adj.args.append(adj.symbols[a.arg]) # primal statements (allows different statements in replay) adj.body_forward = [] adj.body_forward_replay = [] adj.body_reverse = [] adj.output = [] adj.indent_count = 0 adj.label_count = 0 # recursively evaluate function body adj.eval(adj.tree.body[0]) # code generation methods def format_template(adj, template, input_vars, output_var): # output var is always the 0th index args = [output_var] + input_vars s = template.format(*args) return s # generates a comma separated list of args def format_args(adj, prefix, indices): args = "" sep = "" for i in indices: args += sep + prefix + str(i) sep = ", " return args def add_var(adj, type=None, constant=None): index = len(adj.variables) v = Var(str(index), type=type, constant=constant) adj.variables.append(v) return v def add_constant(adj, n): output = adj.add_var(type=type(n), constant=n) #adj.add_forward("var_{} = {};".format(output, n)) return output def add_load(adj, input): output = adj.add_var(input.type) adj.add_forward("var_{} = {};".format(output, input)) adj.add_reverse("adj_{} += adj_{};".format(input, output)) return output def add_operator(adj, op, inputs): # todo: just using first input as the output type, would need some # type inference here to support things like float3 = float*float3 output = adj.add_var(inputs[0].type) transformer = operators[op.__class__] for t in transformer.forward(): adj.add_forward(adj.format_template(t, inputs, output)) for t in transformer.reverse(): adj.add_reverse(adj.format_template(t, inputs, output)) return output def add_comp(adj, op_strings, left, comps): output = adj.add_var(bool) s = "var_" + str(output) + " = " + ("(" * len(comps)) + "var_" + str(left) + " " for op, comp in zip(op_strings, comps): s += op + " var_" + str(comp) + ") " s = s.rstrip() + ";" adj.add_forward(s) return output def add_bool_op(adj, op_string, exprs): output = adj.add_var(bool) command = "var_" + str(output) + " = " + (" " + op_string + " ").join(["var_" + str(expr) for expr in exprs]) + ";" adj.add_forward(command) return output def add_call(adj, func, inputs, prefix='df::'): # expression (zero output), e.g.: tid() if (func.value_type(inputs) == None): forward_call = prefix + "{}({});".format(func.key, adj.format_args("var_", inputs)) adj.add_forward(forward_call) if (len(inputs)): reverse_call = prefix + "{}({}, {});".format("adj_" + func.key, adj.format_args("var_", inputs), adj.format_args("adj_", inputs)) adj.add_reverse(reverse_call) return None # function (one output) else: output = adj.add_var(func.value_type(inputs)) forward_call = "var_{} = ".format(output) + prefix + "{}({});".format(func.key, adj.format_args("var_", inputs)) adj.add_forward(forward_call) if (len(inputs)): reverse_call = prefix + "{}({}, {}, {});".format( "adj_" + func.key, adj.format_args("var_", inputs), adj.format_args("adj_", inputs), adj.format_args("adj_", [output])) adj.add_reverse(reverse_call) return output def add_return(adj, var): if (var == None): adj.add_forward("return;".format(var), "goto label{};".format(adj.label_count)) else: adj.add_forward("return var_{};".format(var), "goto label{};".format(adj.label_count)) adj.add_reverse("adj_" + str(var) + " += adj_ret;") adj.add_reverse("label{}:;".format(adj.label_count)) adj.label_count += 1 # define an if statement def begin_if(adj, cond): adj.add_forward("if (var_{}) {{".format(cond)) adj.add_reverse("}") adj.indent_count += 1 def end_if(adj, cond): adj.indent_count -= 1 adj.add_forward("}") adj.add_reverse("if (var_{}) {{".format(cond)) # define a for-loop def begin_for(adj, iter, start, end): # note that dynamic for-loops must not mutate any previous state, so we don't need to re-run them in the reverse pass adj.add_forward("for (var_{0}=var_{1}; var_{0} < var_{2}; ++var_{0}) {{".format(iter, start, end), "if (false) {") adj.add_reverse("}") adj.indent_count += 1 def end_for(adj, iter, start, end): adj.indent_count -= 1 adj.add_forward("}") adj.add_reverse("for (var_{0}=var_{2}-1; var_{0} >= var_{1}; --var_{0}) {{".format(iter, start, end)) # append a statement to the forward pass def add_forward(adj, statement, statement_replay=None): prefix = "" for i in range(adj.indent_count): prefix += "\t" adj.body_forward.append(prefix + statement) # allow for different statement in reverse kernel replay if (statement_replay): adj.body_forward_replay.append(prefix + statement_replay) else: adj.body_forward_replay.append(prefix + statement) # append a statement to the reverse pass def add_reverse(adj, statement): prefix = "" for i in range(adj.indent_count): prefix += "\t" adj.body_reverse.append(prefix + statement) def eval(adj, node): try: if (isinstance(node, ast.FunctionDef)): out = None for f in node.body: out = adj.eval(f) if 'return' in adj.symbols and adj.symbols['return'] is not None: out = adj.symbols['return'] stmt = Stmt(None, adj.body_forward, adj.body_forward_replay, reversed(adj.body_reverse), [], "") adj.output.append(stmt) else: stmt = Stmt(None, adj.body_forward, adj.body_forward_replay, reversed(adj.body_reverse), [], "") adj.output.append(stmt) return out elif (isinstance(node, ast.If)): # if statement if len(node.orelse) != 0: raise SyntaxError("Else statements not currently supported") if len(node.body) == 0: return None # save symbol map symbols_prev = adj.symbols.copy() # eval condition cond = adj.eval(node.test) # eval body adj.begin_if(cond) for stmt in node.body: adj.eval(stmt) adj.end_if(cond) # detect symbols with conflicting definitions (assigned inside the branch) for items in symbols_prev.items(): sym = items[0] var1 = items[1] var2 = adj.symbols[sym] if var1 != var2: # insert a phi function that # selects var1, var2 based on cond out = adj.add_call(functions["select"], [cond, var1, var2]) adj.symbols[sym] = out return None elif (isinstance(node, ast.Compare)): # node.left, node.ops (list of ops), node.comparators (things to compare to) # e.g. (left ops[0] node.comparators[0]) ops[1] node.comparators[1] left = adj.eval(node.left) comps = [adj.eval(comp) for comp in node.comparators] op_strings = [operators[type(op)] for op in node.ops] out = adj.add_comp(op_strings, left, comps) return out elif (isinstance(node, ast.BoolOp)): # op, expr list values (e.g. and and a list of things anded together) op = node.op if isinstance(op, ast.And): func = "&&" elif isinstance(op, ast.Or): func = "||" else: raise KeyError("Op {} is not supported".format(op)) out = adj.add_bool_op(func, [adj.eval(expr) for expr in node.values]) # import pdb # pdb.set_trace() return out elif (isinstance(node, ast.Name)): # lookup symbol, if it has already been assigned to a variable then return the existing mapping if (node.id in adj.symbols): return adj.symbols[node.id] else: raise KeyError("Referencing undefined symbol: " + str(node.id)) elif (isinstance(node, ast.Num)): # lookup constant, if it has already been assigned then return existing var # currently disabled, since assigning constant in a branch means it key = (node.n, type(node.n)) if (key in adj.symbols): return adj.symbols[key] else: out = adj.add_constant(node.n) adj.symbols[key] = out return out #out = adj.add_constant(node.n) #return out elif (isinstance(node, ast.BinOp)): # evaluate binary operator arguments left = adj.eval(node.left) right = adj.eval(node.right) name = operators[type(node.op)] func = functions[name] out = adj.add_call(func, [left, right]) return out elif (isinstance(node, ast.UnaryOp)): # evaluate unary op arguments arg = adj.eval(node.operand) out = adj.add_operator(node.op, [arg]) return out elif (isinstance(node, ast.For)): if (len(node.iter.args) != 2): raise Exception("For loop ranges must be of form range(start, end) with both start and end specified and no skip specifier.") # check if loop range is compile time constant unroll = True for a in node.iter.args: if (isinstance(a, ast.Num) == False): unroll = False break if (unroll): # constant loop, unroll start = node.iter.args[0].n end = node.iter.args[1].n for i in range(start, end): var_iter = adj.add_constant(i) adj.symbols[node.target.id] = var_iter # eval body for s in node.body: adj.eval(s) else: # dynamic loop, body must be side-effect free, i.e.: not # overwrite memory locations used by previous operations start = adj.eval(node.iter.args[0]) end = adj.eval(node.iter.args[1]) # add iterator variable iter = adj.add_var(int) adj.symbols[node.target.id] = iter adj.begin_for(iter, start, end) # eval body for s in node.body: adj.eval(s) adj.end_for(iter, start, end) elif (isinstance(node, ast.Expr)): return adj.eval(node.value) elif (isinstance(node, ast.Call)): name = None # determine if call is to a builtin (attribute), or to a user-func (name) if (isinstance(node.func, ast.Attribute)): name = node.func.attr elif (isinstance(node.func, ast.Name)): name = node.func.id # check it exists if name not in functions: raise KeyError("Could not find function {}".format(name)) if adj.device == 'cuda' and name in cuda_functions: func = cuda_functions[name] else: func = functions[name] args = [] # eval all arguments for arg in node.args: var = adj.eval(arg) args.append(var) # add var with value type from the function out = adj.add_call(func, args, prefix=func.prefix) return out elif (isinstance(node, ast.Subscript)): target = adj.eval(node.value) indices = [] if isinstance(node.slice.value, ast.Tuple): # handles the M[i, j] case for arg in node.slice.value.elts: var = adj.eval(arg) indices.append(var) else: # simple expression var = adj.eval(node.slice.value) indices.append(var) out = adj.add_call(functions["index"], [target, *indices]) return out elif (isinstance(node, ast.Assign)): # if adj.cond is not None: # raise SyntaxError("error, cannot assign variables in a conditional branch") # evaluate rhs out = adj.eval(node.value) # update symbol map (assumes lhs is a Name node) adj.symbols[node.targets[0].id] = out return out elif (isinstance(node, ast.Return)): cond = adj.cond # None if not in branch, else branch boolean out = adj.eval(node.value) adj.symbols['return'] = out if out is not None: # set return type of function return_var = out if adj.return_var is not None and adj.return_var.ctype() != return_var.ctype(): raise TypeError("error, function returned different types") adj.return_var = return_var adj.add_return(out) return out elif node is None: return None else: print("[WARNING] ast node of type {} not supported".format(type(node))) except Exception as e: # print error / line number lines = adj.source.splitlines() print("Error: {} while transforming node {} in func: {} at line: {} col: {}: \n {}".format(e, type(node), adj.func.__name__, node.lineno, node.col_offset, lines[max(node.lineno-1, 0)])) raise #---------------- # code generation cpu_module_header = ''' #define CPU #include "adjoint.h" using namespace df; template <typename T> T cast(torch::Tensor t) {{ return (T)(t.data_ptr()); }} ''' cuda_module_header = ''' #define CUDA #include "adjoint.h" using namespace df; template <typename T> T cast(torch::Tensor t) {{ return (T)(t.data_ptr()); }} ''' cpu_function_template = ''' {return_type} {name}_cpu_func({forward_args}) {{ {forward_body} }} void adj_{name}_cpu_func({forward_args}, {reverse_args}) {{ {reverse_body} }} ''' cuda_function_template = ''' CUDA_CALLABLE {return_type} {name}_cuda_func({forward_args}) {{ {forward_body} }} CUDA_CALLABLE void adj_{name}_cuda_func({forward_args}, {reverse_args}) {{ {reverse_body} }} ''' cuda_kernel_template = ''' __global__ void {name}_cuda_kernel_forward(int dim, {forward_args}) {{ {forward_body} }} __global__ void {name}_cuda_kernel_backward(int dim, {forward_args}, {reverse_args}) {{ {reverse_body} }} ''' cpu_kernel_template = ''' void {name}_cpu_kernel_forward({forward_args}) {{ {forward_body} }} void {name}_cpu_kernel_backward({forward_args}, {reverse_args}) {{ {reverse_body} }} ''' cuda_module_template = ''' // Python entry points void {name}_cuda_forward(int dim, {forward_args}) {{ {name}_cuda_kernel_forward<<<(dim + 256 - 1) / 256, 256>>>(dim, {forward_params}); //check_cuda(cudaPeekAtLastError()); //check_cuda(cudaDeviceSynchronize()); }} void {name}_cuda_backward(int dim, {forward_args}, {reverse_args}) {{ {name}_cuda_kernel_backward<<<(dim + 256 - 1) / 256, 256>>>(dim, {forward_params}, {reverse_params}); //check_cuda(cudaPeekAtLastError()); //check_cuda(cudaDeviceSynchronize()); }} ''' cpu_module_template = ''' // Python entry points void {name}_cpu_forward(int dim, {forward_args}) {{ for (int i=0; i < dim; ++i) {{ s_threadIdx = i; {name}_cpu_kernel_forward({forward_params}); }} }} void {name}_cpu_backward(int dim, {forward_args}, {reverse_args}) {{ for (int i=0; i < dim; ++i) {{ s_threadIdx = i; {name}_cpu_kernel_backward({forward_params}, {reverse_params}); }} }} ''' cuda_module_header_template = ''' // Python entry points void {name}_cuda_forward(int dim, {forward_args}); void {name}_cuda_backward(int dim, {forward_args}, {reverse_args}); ''' cpu_module_header_template = ''' // Python entry points void {name}_cpu_forward(int dim, {forward_args}); void {name}_cpu_backward(int dim, {forward_args}, {reverse_args}); ''' def indent(args, stops=1): sep = "\n" for i in range(stops): sep += "\t" return sep + args.replace(", ", "," + sep) def codegen_func_forward_body(adj, device='cpu', indent=4): body = [] indent_block = " " * indent for stmt in adj.output: for f in stmt.forward: body += [f + "\n"] if stmt.cond is not None: body += ["if (" + str(stmt.cond) + ") {\n"] for l in stmt.ret_forward: body += [indent_block + l + "\n"] body += [indent_block + stmt.ret_line + "\n"] body += ["}\n"] else: for l in stmt.ret_forward: body += [l + "\n"] body += [stmt.ret_line + "\n"] break # break once unconditional return is encountered return "".join([indent_block + l for l in body]) def codegen_func_forward(adj, func_type='kernel', device='cpu'): s = "" # primal vars s += " //---------\n" s += " // primal vars\n" for var in adj.variables: if var.constant == None: s += " " + var.ctype() + " var_" + str(var.label) + ";\n" else: s += " const " + var.ctype() + " var_" + str(var.label) + " = " + str(var.constant) + ";\n" # forward pass s += " //---------\n" s += " // forward\n" if device == 'cpu': s += codegen_func_forward_body(adj, device=device, indent=4) elif device == 'cuda': if func_type == 'kernel': s += " int var_idx = blockDim.x * blockIdx.x + threadIdx.x;\n" s += " if (var_idx < dim) {\n" s += codegen_func_forward_body(adj, device=device, indent=8) s += " }\n" else: s += codegen_func_forward_body(adj, device=device, indent=4) return s def codegen_func_reverse_body(adj, device='cpu', indent=4): body = [] indent_block = " " * indent for stmt in adj.output: # forward pass body += ["//---------\n"] body += ["// forward\n"] for f in stmt.forward_replay: body += [f + "\n"] if stmt.cond is not None: body += ["if (" + str(stmt.cond) + ") {\n"] for l in stmt.ret_forward: body += [indent_block + l + "\n"] # reverse pass body += [indent_block + "//---------\n"] body += [indent_block + "// reverse\n"] for l in stmt.reverse: body += [indent_block + l + "\n"] body += [indent_block + "return;\n"] body += ["}\n"] else: for l in stmt.ret_forward: body += [l + "\n"] # reverse pass body += ["//---------\n"] body += ["// reverse\n"] for l in stmt.reverse: body += [l + "\n"] body += ["return;\n"] break # break once unconditional return is encountered return "".join([indent_block + l for l in body]) def codegen_func_reverse(adj, func_type='kernel', device='cpu'): s = "" # primal vars s += " //---------\n" s += " // primal vars\n" for var in adj.variables: if var.constant == None: s += " " + var.ctype() + " var_" + str(var.label) + ";\n" else: s += " const " + var.ctype() + " var_" + str(var.label) + " = " + str(var.constant) + ";\n" # dual vars s += " //---------\n" s += " // dual vars\n" for var in adj.variables: s += " " + var.ctype() + " adj_" + str(var.label) + " = 0;\n" if device == 'cpu': s += codegen_func_reverse_body(adj, device=device, indent=4) elif device == 'cuda': if func_type == 'kernel': s += " int var_idx = blockDim.x * blockIdx.x + threadIdx.x;\n" s += " if (var_idx < dim) {\n" s += codegen_func_reverse_body(adj, device=device, indent=8) s += " }\n" else: s += codegen_func_reverse_body(adj, device=device, indent=4) else: raise ValueError("Device {} not supported for codegen".format(device)) return s def codegen_func(adj, device='cpu'): # forward header # return_type = "void" return_type = 'void' if adj.return_var is None else adj.return_var.ctype() # s = "{} {}_forward(".format(return_type, adj.func.__name__) # sep = "" # for arg in adj.args: # if (arg.label != 'return'): # s += sep + str(arg.type.__name__) + " var_" + arg.label # sep = ", " # reverse header # s = "void {}_reverse(".format(adj.func.__name__) # return s forward_args = "" reverse_args = "" # s = "" # forward args sep = "" for arg in adj.args: forward_args += sep + arg.ctype() + " var_" + arg.label sep = ", " # reverse args sep = "" for arg in adj.args: if "*" in arg.ctype(): reverse_args += sep + arg.ctype() + " adj_" + arg.label else: reverse_args += sep + arg.ctype() + " & adj_" + arg.label sep = ", " reverse_args += sep + return_type + " & adj_ret" # reverse args # add primal version of parameters # sep = "" # for var in adj.args: # if (var.label != 'return'): # s += sep + var.ctype() + " var_" + var.label # sep = ", " # # add adjoint version of parameters # for var in adj.args: # if (var.label != 'return'): # s += sep + var.ctype() + "& adj_" + var.label # sep = ", " # # add adjoint of output # if ('return' in adj.symbols and adj.symbols['return'] != None): # s += sep + str(adj.symbols['return'].type.__name__) + " adj_" + str(adj.symbols['return']) # codegen body forward_body = codegen_func_forward(adj, func_type='function', device=device) reverse_body = codegen_func_reverse(adj, func_type='function', device=device) if device == 'cpu': template = cpu_function_template elif device == 'cuda': template = cuda_function_template else: raise ValueError("Device {} is not supported".format(device)) s = template.format(name=adj.func.__name__, return_type=return_type, forward_args=indent(forward_args), reverse_args=indent(reverse_args), forward_body=forward_body, reverse_body=reverse_body) return s def codegen_kernel(adj, device='cpu'): forward_args = "" reverse_args = "" # forward args sep = "" for arg in adj.args: forward_args += sep + arg.ctype() + " var_" + arg.label sep = ", " # reverse args sep = "" for arg in adj.args: reverse_args += sep + arg.ctype() + " adj_" + arg.label sep = ", " # codegen body forward_body = codegen_func_forward(adj, func_type='kernel', device=device) reverse_body = codegen_func_reverse(adj, func_type='kernel', device=device) # import pdb # pdb.set_trace() if device == 'cpu': template = cpu_kernel_template elif device == 'cuda': template = cuda_kernel_template else: raise ValueError("Device {} is not supported".format(device)) s = template.format(name=adj.func.__name__, forward_args=indent(forward_args), reverse_args=indent(reverse_args), forward_body=forward_body, reverse_body=reverse_body) return s def codegen_module(adj, device='cpu'): forward_args = "" reverse_args = "" forward_params = "" reverse_params = "" sep = "" for arg in adj.args: if (isinstance(arg.type, tensor)): forward_args += sep + "torch::Tensor var_" + arg.label forward_params += sep + "cast<" + arg.ctype() + ">(var_" + arg.label + ")" else: forward_args += sep + arg.ctype() + " var_" + arg.label forward_params += sep + "var_" + arg.label sep = ", " sep = "" for arg in adj.args: if (isinstance(arg.type, tensor)): reverse_args += sep + "torch::Tensor adj_" + arg.label reverse_params += sep + "cast<" + arg.ctype() + ">(adj_" + arg.label + ")" else: reverse_args += sep + arg.ctype() + " adj_" + arg.label reverse_params += sep + "adj_" + arg.label sep = ", " if device == 'cpu': template = cpu_module_template elif device == 'cuda': template = cuda_module_template else: raise ValueError("Device {} is not supported".format(device)) s = template.format(name=adj.func.__name__, forward_args=indent(forward_args), reverse_args=indent(reverse_args), forward_params=indent(forward_params, 3), reverse_params=indent(reverse_params, 3)) return s def codegen_module_decl(adj, device='cpu'): forward_args = "" reverse_args = "" forward_params = "" reverse_params = "" sep = "" for arg in adj.args: if (isinstance(arg.type, tensor)): forward_args += sep + "torch::Tensor var_" + arg.label forward_params += sep + "cast<" + arg.ctype() + ">(var_" + arg.label + ")" else: forward_args += sep + arg.ctype() + " var_" + arg.label forward_params += sep + "var_" + arg.label sep = ", " sep = "" for arg in adj.args: if (isinstance(arg.type, tensor)): reverse_args += sep + "torch::Tensor adj_" + arg.label reverse_params += sep + "cast<" + arg.ctype() + ">(adj_" + arg.label + ")" else: reverse_args += sep + arg.ctype() + " adj_" + arg.label reverse_params += sep + "adj_" + arg.label sep = ", " if device == 'cpu': template = cpu_module_header_template elif device == 'cuda': template = cuda_module_header_template else: raise ValueError("Device {} is not supported".format(device)) s = template.format(name=adj.func.__name__, forward_args=indent(forward_args), reverse_args=indent(reverse_args)) return s # runs vcvars and copies back the build environment, PyTorch should really be doing this def set_build_env(): if os.name == 'nt': # VS2019 (required for PyTorch headers) vcvars_path = "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019\\Community\\VC\\Auxiliary\Build\\vcvars64.bat" s = '"{}" && set'.format(vcvars_path) output = os.popen(s).read() for line in output.splitlines(): pair = line.split("=", 1) if (len(pair) >= 2): os.environ[pair[0]] = pair[1] else: # nothing needed for Linux or Mac pass def import_module(module_name, path): # https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path file, path, description = imp.find_module(module_name, [path]) # Close the .so file after load. with file: return imp.load_module(module_name, file, path, description) def rename(name, return_type): def func(cls): cls.__name__ = name cls.key = name cls.prefix = "" cls.return_type = return_type return cls return func user_funcs = {} user_kernels = {} def func(f): user_funcs[f.__name__] = f # adj = Adjoint(f) # print(adj.codegen_forward()) # print(adj.codegen_reverse()) # set_build_env() # include_path = os.path.dirname(os.path.realpath(__file__)) # # requires PyTorch hotfix https://github.com/pytorch/pytorch/pull/33002 # test_cuda = torch.utils.cpp_extension.load_inline('test_cuda', [cpp_template], None, ["test_forward_1", "test_backward_1"], extra_include_paths=include_path, verbose=True) # help(test_cuda) def kernel(f): # stores source and compiled entry points for a kernel (will be populated after module loads) class Kernel: def __init__(self, f): self.func = f def register(self, module): # lookup entry points based on name self.forward_cpu = eval("module." + self.func.__name__ + "_cpu_forward") self.backward_cpu = eval("module." + self.func.__name__ + "_cpu_backward") if (torch.cuda.is_available()): self.forward_cuda = eval("module." + self.func.__name__ + "_cuda_forward") self.backward_cuda = eval("module." + self.func.__name__ + "_cuda_backward") k = Kernel(f) # register globally user_kernels[f.__name__] = k return k def compile(): use_cuda = torch.cuda.is_available() if not use_cuda: print("[INFO] CUDA support not found. Disabling CUDA kernel compilation.") cpp_source = "" cuda_source = "" cpp_source += cpu_module_header cuda_source += cuda_module_header # kernels entry_points = [] # functions for name, func in user_funcs.items(): adj = Adjoint(func, device='cpu') cpp_source += codegen_func(adj, device='cpu') adj = Adjoint(func, device='cuda') cuda_source += codegen_func(adj, device='cuda') # import pdb # pdb.set_trace() import copy @rename(func.__name__ + "_cpu_func", adj.return_var.type) class Func: @classmethod def value_type(cls, *args): return cls.return_type functions[func.__name__] = Func @rename(func.__name__ + "_cuda_func", adj.return_var.type) class CUDAFunc: @classmethod def value_type(cls, *args): return cls.return_type cuda_functions[func.__name__] = CUDAFunc for name, kernel in user_kernels.items(): if use_cuda: # each kernel gets an entry point in the module entry_points.append(name + "_cuda_forward") entry_points.append(name + "_cuda_backward") # each kernel gets an entry point in the module entry_points.append(name + "_cpu_forward") entry_points.append(name + "_cpu_backward") if use_cuda: adj = Adjoint(kernel.func, device='cuda') cuda_source += codegen_kernel(adj, device='cuda') cuda_source += codegen_module(adj, device='cuda') cpp_source += codegen_module_decl(adj, device='cuda') adj = Adjoint(kernel.func, device='cpu') cpp_source += codegen_kernel(adj, device='cpu') cpp_source += codegen_module(adj, device='cpu') cpp_source += codegen_module_decl(adj, device='cpu') include_path = os.path.dirname(os.path.realpath(__file__)) build_path = os.path.dirname(os.path.realpath(__file__)) + "/kernels" cache_file = build_path + "/adjoint.gen" if (os.path.exists(build_path) == False): os.mkdir(build_path) # test cache if (os.path.exists(cache_file)): f = open(cache_file, 'r') cache_string = f.read() f.close() if (cache_string == cpp_source): print("Using cached kernels") module = import_module("kernels", build_path) # register kernel methods for k in user_kernels.values(): k.register(module) return module # print("ignoring rebuild, using stale kernels") # module = import_module("kernels", build_path) # return module # cache stale, rebuild print("Rebuilding kernels") set_build_env() # debug config #module = torch.utils.cpp_extension.load_inline('kernels', [cpp_source], None, entry_points, extra_cflags=["/Zi", "/Od"], extra_ldflags=["/DEBUG"], build_directory=build_path, extra_include_paths=[include_path], verbose=True) if os.name == 'nt': cpp_flags = ["/Ox", "-DNDEBUG", "/fp:fast"] ld_flags = ["-DNDEBUG"] # cpp_flags = ["/Zi", "/Od", "/DEBUG"] # ld_flags = ["/DEBUG"] else: cpp_flags = ["-Z", "-O2", "-DNDEBUG"] ld_flags = ["-DNDEBUG"] # just use minimum to ensure compatability cuda_flags = ['-gencode=arch=compute_35,code=compute_35'] # release config if use_cuda: module = torch.utils.cpp_extension.load_inline('kernels', cpp_sources=[cpp_source], cuda_sources=[cuda_source], functions=entry_points, extra_cflags=cpp_flags, extra_ldflags=ld_flags, extra_cuda_cflags=cuda_flags, build_directory=build_path, extra_include_paths=[include_path], verbose=True, with_pytorch_error_handling=False) else: module = torch.utils.cpp_extension.load_inline('kernels', cpp_sources=[cpp_source], cuda_sources=[], functions=entry_points, extra_cflags=cpp_flags, extra_ldflags=ld_flags, extra_cuda_cflags=cuda_flags, build_directory=build_path, extra_include_paths=[include_path], verbose=True, with_pytorch_error_handling=False) # update cache f = open(cache_file, 'w') f.write(cpp_source) f.close() # register kernel methods for k in user_kernels.values(): k.register(module) return module #--------------------------------------------- # Helper functions for launching kernels as Torch ops def check_adapter(l, a): for t in l: if torch.is_tensor(t): assert(t.device.type == a) def check_finite(l): for t in l: if torch.is_tensor(t): assert(t.is_contiguous()) if (torch.isnan(t).any() == True): print(t) assert(torch.isnan(t).any() == False) else: assert(math.isnan(t) == False) def filter_grads(grads): """helper that takes a list of gradient tensors and makes non-outputs None as required by PyTorch when returning from a custom op """ outputs = [] for g in grads: if torch.is_tensor(g) and len(g) > 0: outputs.append(g) else: outputs.append(None) return tuple(outputs) def make_empty(outputs, device): empty = [] for o in outputs: empty.append(torch.FloatTensor().to(device)) return empty def make_contiguous(grads): ret = [] for g in grads: ret.append(g.contiguous()) return ret def copy_params(params): out = [] for p in params: if torch.is_tensor(p): c = p.clone() if c.dtype == torch.float32: c.requires_grad_() out.append(c) else: out.append(p) return out def assert_device(device, inputs): """helper that asserts that all Tensors in inputs reside on the specified device (device should be cpu or cuda). Also checks that dtypes are correct. """ for arg in inputs: if isinstance(arg, torch.Tensor): if (arg.dtype == torch.float64) or (arg.dtype == torch.float16): raise TypeError("Tensor {arg} has invalid dtype {dtype}".format(arg=arg, dtype=arg.dtype)) if device == 'cpu': if arg.is_cuda: # make sure all tensors are on the right device. Can fail silently in the CUDA kernel. raise TypeError("Tensor {arg} is using CUDA but was expected to be on the CPU.".format(arg=arg)) elif torch.device(device).type == 'cuda': #elif device.startswith('cuda'): if not arg.is_cuda: raise TypeError("Tensor {arg} is not on a CUDA device but was expected to be using CUDA.".format(arg=arg)) else: raise ValueError("Device {} is not supported".format(device)) def to_weak_list(s): w = [] for o in s: w.append(weakref.ref(o)) return w def to_strong_list(w): s = [] for o in w: s.append(o()) return s # standalone method to launch a kernel using PyTorch graph (skip custom tape) def launch_torch(func, dim, inputs, outputs, adapter, preserve_output=False, check_grad=False, no_grad=False): num_inputs = len(inputs) num_outputs = len(outputs) # define autograd type class TorchFunc(torch.autograd.Function): @staticmethod def forward(ctx, *args): #local_inputs = args[0:num_inputs] #local_outputs = args[num_inputs:len(args)] # save for backward #ctx.inputs = list(local_inputs) ctx.inputs = args local_outputs = [] for o in outputs: local_outputs.append(torch.zeros_like(o, requires_grad=True)) ctx.outputs = local_outputs # ensure inputs match adapter assert_device(adapter, args) # launch if adapter == 'cpu': func.forward_cpu(*[dim, *args, *ctx.outputs]) elif torch.device(adapter).type == 'cuda': #elif adapter.startswith('cuda'): func.forward_cuda(*[dim, *args, *ctx.outputs]) ret = tuple(ctx.outputs) return ret @staticmethod def backward(ctx, *grads): # ensure grads are contiguous in memory adj_outputs = make_contiguous(grads) # alloc grads adj_inputs = alloc_grads(ctx.inputs, adapter) # if we don't need outputs then make empty tensors to skip the write local_outputs = ctx.outputs # if preserve_output == True: # local_outputs = ctx.outputs # else: # local_outputs = [] # for o in range(num_outputs): # local_outputs.append(torch.FloatTensor().to(adapter)) # print("backward") # print("--------") # print (" inputs") # for i in ctx.inputs: # print(i) # print (" outputs") # for o in ctx.outputs: # print(o) # print (" adj_inputs") # for adj_i in adj_inputs: # print(adj_i) # print (" adj_outputs") # for adj_o in adj_outputs: # print(adj_o) # launch if adapter == 'cpu': func.backward_cpu(*[dim, *ctx.inputs, *local_outputs, *adj_inputs, *adj_outputs]) elif torch.device(adapter).type == 'cuda': #elif adapter.startswith('cuda'): func.backward_cuda(*[dim, *ctx.inputs, *local_outputs, *adj_inputs, *adj_outputs]) # filter grads replaces empty tensors / constant params with None ret = list(filter_grads(adj_inputs)) for i in range(num_outputs): ret.append(None) return tuple(ret) # run params = [*inputs] torch.set_printoptions(edgeitems=3) if (check_grad == True and no_grad == False): try: torch.autograd.gradcheck(TorchFunc.apply, params, eps=1e-2, atol=1e-3, rtol=1.e-3, raise_exception=True) except Exception as e: print(str(func.func.__name__) + " failed: " + str(e)) output = TorchFunc.apply(*params) return output class Tape: def __init__(self): self.launches = [] # dictionary mapping Tensor inputs to their adjoint self.adjoints = {} def launch(self, func, dim, inputs, outputs, adapter, preserve_output=False, skip_check_grad=False): if (dim > 0): # run kernel if adapter == 'cpu': func.forward_cpu(*[dim, *inputs, *outputs]) elif torch.device(adapter).type == 'cuda': #adapter.startswith('cuda'): func.forward_cuda(*[dim, *inputs, *outputs]) if dflex.config.verify_fp: check_adapter(inputs, adapter) check_adapter(outputs, adapter) check_finite(inputs) check_finite(outputs) # record launch if dflex.config.no_grad == False: self.launches.append([func, dim, inputs, outputs, adapter, preserve_output]) # optionally run grad check if dflex.config.check_grad == True and skip_check_grad == False: # copy inputs and outputs to avoid disturbing the computational graph inputs_copy = copy_params(inputs) outputs_copy = copy_params(outputs) launch_torch(func, dim, inputs_copy, outputs_copy, adapter, preserve_output, check_grad=True) def replay(self): for kernel in reversed(self.launches): func = kernel[0] dim = kernel[1] inputs = kernel[2] #outputs = to_strong_list(kernel[3]) outputs = kernel[3] adapter = kernel[4] # lookup adj_inputs adj_inputs = [] adj_outputs = [] # build input adjoints for i in inputs: if i in self.adjoints: adj_inputs.append(self.adjoints[i]) else: if torch.is_tensor(i): adj_inputs.append(self.alloc_grad(i)) else: adj_inputs.append(type(i)()) # build output adjoints for o in outputs: if o in self.adjoints: adj_outputs.append(self.adjoints[o]) else: # no output adjoint means the output wasn't used in the loss function so # allocate a zero tensor (they will still be read by the kernels) adj_outputs.append(self.alloc_grad(o)) # launch reverse if adapter == 'cpu': func.backward_cpu(*[dim, *inputs, *outputs, *adj_inputs, *adj_outputs]) elif torch.device(adapter).type == 'cuda': #elif adapter.startswith('cuda'): func.backward_cuda(*[dim, *inputs, *outputs, *adj_inputs, *adj_outputs]) if dflex.config.verify_fp: check_finite(inputs) check_finite(outputs) check_finite(adj_inputs) check_finite(adj_outputs) def reset(self): self.adjoints = {} self.launches = [] def alloc_grad(self, t): if t.dtype == torch.float32 and t.requires_grad: # zero tensor self.adjoints[t] = torch.zeros_like(t) return self.adjoints[t] else: # null tensor return torch.FloatTensor().to(t.device) # helper that given a set of inputs, will generate a set of output grad buffers def alloc_grads(inputs, adapter): """helper that generates output grad buffers for a set of inputs on the specified device. Args: inputs (iterable of Tensors, other literals): list of Tensors to generate gradient buffers for. Non-tensors are ignored. adapter (str, optional): name of torch device for storage location of allocated gradient buffers. Defaults to 'cpu'. """ grads = [] for arg in inputs: if (torch.is_tensor(arg)): if (arg.requires_grad and arg.dtype == torch.float): grads.append(torch.zeros_like(arg, device=adapter)) #grads.append(lookup_grad(arg)) else: grads.append(torch.FloatTensor().to(adapter)) else: grads.append(type(arg)()) return grads def matmul(tape, m, n, k, t1, t2, A, B, C, adapter): if (adapter == 'cpu'): threads = 1 else: threads = 256 # should match the threadblock size tape.launch( func=dflex.eval_dense_gemm, dim=threads, inputs=[ m, n, k, t1, t2, A, B, ], outputs=[ C ], adapter=adapter, preserve_output=False) def matmul_batched(tape, batch_count, m, n, k, t1, t2, A_start, B_start, C_start, A, B, C, adapter): if (adapter == 'cpu'): threads = batch_count else: threads = 256*batch_count # must match the threadblock size used in adjoint.py tape.launch( func=dflex.eval_dense_gemm_batched, dim=threads, inputs=[ m, n, k, t1, t2, A_start, B_start, C_start, A, B, ], outputs=[ C ], adapter=adapter, preserve_output=False)
61,332
Python
25.68973
229
0.535283
RoboticExplorationLab/Deep-ILC/dflex/dflex/kernels/main.cpp
#include <torch/extension.h> #define CPU #include "adjoint.h" using namespace df; template <typename T> T cast(torch::Tensor t) {{ return (T)(t.data_ptr()); }} float test_cpu_func( float var_c) { //--------- // primal vars const float var_0 = 1.0; const int var_1 = 2; float var_2; const float var_3 = 3.0; int var_4; bool var_5; const float var_6 = 2.0; float var_7; const float var_8 = 6.0; float var_9; //--------- // forward var_2 = df::float(var_1); var_4 = df::int(var_3); df::print(var_2); df::print(var_4); var_5 = (var_c < var_3); if (var_5) { } var_7 = df::select(var_5, var_0, var_6); var_9 = df::mul(var_7, var_8); return var_9; } void adj_test_cpu_func( float var_c, float & adj_c, float & adj_ret) { //--------- // primal vars const float var_0 = 1.0; const int var_1 = 2; float var_2; const float var_3 = 3.0; int var_4; bool var_5; const float var_6 = 2.0; float var_7; const float var_8 = 6.0; float var_9; //--------- // dual vars float adj_0 = 0; int adj_1 = 0; float adj_2 = 0; float adj_3 = 0; int adj_4 = 0; bool adj_5 = 0; float adj_6 = 0; float adj_7 = 0; float adj_8 = 0; float adj_9 = 0; //--------- // forward var_2 = df::float(var_1); var_4 = df::int(var_3); df::print(var_2); df::print(var_4); var_5 = (var_c < var_3); if (var_5) { } var_7 = df::select(var_5, var_0, var_6); var_9 = df::mul(var_7, var_8); goto label0; //--------- // reverse label0:; adj_9 += adj_ret; df::adj_mul(var_7, var_8, adj_7, adj_8, adj_9); df::adj_select(var_5, var_0, var_6, adj_5, adj_0, adj_6, adj_7); if (var_5) { } df::adj_print(var_4, adj_4); df::adj_print(var_2, adj_2); df::adj_int(var_3, adj_3, adj_4); df::adj_float(var_1, adj_1, adj_2); return; } df::float3 triangle_closest_point_barycentric_cpu_func( df::float3 var_a, df::float3 var_b, df::float3 var_c, df::float3 var_p) { //--------- // primal vars df::float3 var_0; df::float3 var_1; df::float3 var_2; float var_3; float var_4; const float var_5 = 0.0; bool var_6; bool var_7; bool var_8; const float var_9 = 1.0; df::float3 var_10; df::float3 var_11; float var_12; float var_13; bool var_14; bool var_15; bool var_16; df::float3 var_17; df::float3 var_18; float var_19; float var_20; float var_21; float var_22; float var_23; bool var_24; bool var_25; bool var_26; bool var_27; float var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; float var_32; float var_33; bool var_34; bool var_35; bool var_36; df::float3 var_37; df::float3 var_38; float var_39; float var_40; float var_41; float var_42; float var_43; bool var_44; bool var_45; bool var_46; bool var_47; float var_48; df::float3 var_49; df::float3 var_50; float var_51; float var_52; float var_53; float var_54; float var_55; float var_56; float var_57; float var_58; bool var_59; float var_60; bool var_61; float var_62; bool var_63; bool var_64; float var_65; df::float3 var_66; df::float3 var_67; float var_68; float var_69; float var_70; float var_71; float var_72; float var_73; float var_74; df::float3 var_75; //--------- // forward var_0 = df::sub(var_b, var_a); var_1 = df::sub(var_c, var_a); var_2 = df::sub(var_p, var_a); var_3 = df::dot(var_0, var_2); var_4 = df::dot(var_1, var_2); var_6 = (var_3 <= var_5); var_7 = (var_4 <= var_5); var_8 = var_6 && var_7; if (var_8) { var_10 = df::float3(var_9, var_5, var_5); return var_10; } var_11 = df::sub(var_p, var_b); var_12 = df::dot(var_0, var_11); var_13 = df::dot(var_1, var_11); var_14 = (var_12 >= var_5); var_15 = (var_13 <= var_12); var_16 = var_14 && var_15; if (var_16) { var_17 = df::float3(var_5, var_9, var_5); return var_17; } var_18 = df::select(var_16, var_10, var_17); var_19 = df::mul(var_3, var_13); var_20 = df::mul(var_12, var_4); var_21 = df::sub(var_19, var_20); var_22 = df::sub(var_3, var_12); var_23 = df::div(var_3, var_22); var_24 = (var_21 <= var_5); var_25 = (var_3 >= var_5); var_26 = (var_12 <= var_5); var_27 = var_24 && var_25 && var_26; if (var_27) { var_28 = df::sub(var_9, var_23); var_29 = df::float3(var_28, var_23, var_5); return var_29; } var_30 = df::select(var_27, var_18, var_29); var_31 = df::sub(var_p, var_c); var_32 = df::dot(var_0, var_31); var_33 = df::dot(var_1, var_31); var_34 = (var_33 >= var_5); var_35 = (var_32 <= var_33); var_36 = var_34 && var_35; if (var_36) { var_37 = df::float3(var_5, var_5, var_9); return var_37; } var_38 = df::select(var_36, var_30, var_37); var_39 = df::mul(var_32, var_4); var_40 = df::mul(var_3, var_33); var_41 = df::sub(var_39, var_40); var_42 = df::sub(var_4, var_33); var_43 = df::div(var_4, var_42); var_44 = (var_41 <= var_5); var_45 = (var_4 >= var_5); var_46 = (var_33 <= var_5); var_47 = var_44 && var_45 && var_46; if (var_47) { var_48 = df::sub(var_9, var_43); var_49 = df::float3(var_48, var_5, var_43); return var_49; } var_50 = df::select(var_47, var_38, var_49); var_51 = df::mul(var_12, var_33); var_52 = df::mul(var_32, var_13); var_53 = df::sub(var_51, var_52); var_54 = df::sub(var_13, var_12); var_55 = df::sub(var_13, var_12); var_56 = df::sub(var_32, var_33); var_57 = df::add(var_55, var_56); var_58 = df::div(var_54, var_57); var_59 = (var_53 <= var_5); var_60 = df::sub(var_13, var_12); var_61 = (var_60 >= var_5); var_62 = df::sub(var_32, var_33); var_63 = (var_62 >= var_5); var_64 = var_59 && var_61 && var_63; if (var_64) { var_65 = df::sub(var_9, var_58); var_66 = df::float3(var_5, var_58, var_65); return var_66; } var_67 = df::select(var_64, var_50, var_66); var_68 = df::add(var_53, var_41); var_69 = df::add(var_68, var_21); var_70 = df::div(var_9, var_69); var_71 = df::mul(var_41, var_70); var_72 = df::mul(var_21, var_70); var_73 = df::sub(var_9, var_71); var_74 = df::sub(var_73, var_72); var_75 = df::float3(var_74, var_71, var_72); return var_75; } void adj_triangle_closest_point_barycentric_cpu_func( df::float3 var_a, df::float3 var_b, df::float3 var_c, df::float3 var_p, df::float3 & adj_a, df::float3 & adj_b, df::float3 & adj_c, df::float3 & adj_p, df::float3 & adj_ret) { //--------- // primal vars df::float3 var_0; df::float3 var_1; df::float3 var_2; float var_3; float var_4; const float var_5 = 0.0; bool var_6; bool var_7; bool var_8; const float var_9 = 1.0; df::float3 var_10; df::float3 var_11; float var_12; float var_13; bool var_14; bool var_15; bool var_16; df::float3 var_17; df::float3 var_18; float var_19; float var_20; float var_21; float var_22; float var_23; bool var_24; bool var_25; bool var_26; bool var_27; float var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; float var_32; float var_33; bool var_34; bool var_35; bool var_36; df::float3 var_37; df::float3 var_38; float var_39; float var_40; float var_41; float var_42; float var_43; bool var_44; bool var_45; bool var_46; bool var_47; float var_48; df::float3 var_49; df::float3 var_50; float var_51; float var_52; float var_53; float var_54; float var_55; float var_56; float var_57; float var_58; bool var_59; float var_60; bool var_61; float var_62; bool var_63; bool var_64; float var_65; df::float3 var_66; df::float3 var_67; float var_68; float var_69; float var_70; float var_71; float var_72; float var_73; float var_74; df::float3 var_75; //--------- // dual vars df::float3 adj_0 = 0; df::float3 adj_1 = 0; df::float3 adj_2 = 0; float adj_3 = 0; float adj_4 = 0; float adj_5 = 0; bool adj_6 = 0; bool adj_7 = 0; bool adj_8 = 0; float adj_9 = 0; df::float3 adj_10 = 0; df::float3 adj_11 = 0; float adj_12 = 0; float adj_13 = 0; bool adj_14 = 0; bool adj_15 = 0; bool adj_16 = 0; df::float3 adj_17 = 0; df::float3 adj_18 = 0; float adj_19 = 0; float adj_20 = 0; float adj_21 = 0; float adj_22 = 0; float adj_23 = 0; bool adj_24 = 0; bool adj_25 = 0; bool adj_26 = 0; bool adj_27 = 0; float adj_28 = 0; df::float3 adj_29 = 0; df::float3 adj_30 = 0; df::float3 adj_31 = 0; float adj_32 = 0; float adj_33 = 0; bool adj_34 = 0; bool adj_35 = 0; bool adj_36 = 0; df::float3 adj_37 = 0; df::float3 adj_38 = 0; float adj_39 = 0; float adj_40 = 0; float adj_41 = 0; float adj_42 = 0; float adj_43 = 0; bool adj_44 = 0; bool adj_45 = 0; bool adj_46 = 0; bool adj_47 = 0; float adj_48 = 0; df::float3 adj_49 = 0; df::float3 adj_50 = 0; float adj_51 = 0; float adj_52 = 0; float adj_53 = 0; float adj_54 = 0; float adj_55 = 0; float adj_56 = 0; float adj_57 = 0; float adj_58 = 0; bool adj_59 = 0; float adj_60 = 0; bool adj_61 = 0; float adj_62 = 0; bool adj_63 = 0; bool adj_64 = 0; float adj_65 = 0; df::float3 adj_66 = 0; df::float3 adj_67 = 0; float adj_68 = 0; float adj_69 = 0; float adj_70 = 0; float adj_71 = 0; float adj_72 = 0; float adj_73 = 0; float adj_74 = 0; df::float3 adj_75 = 0; //--------- // forward var_0 = df::sub(var_b, var_a); var_1 = df::sub(var_c, var_a); var_2 = df::sub(var_p, var_a); var_3 = df::dot(var_0, var_2); var_4 = df::dot(var_1, var_2); var_6 = (var_3 <= var_5); var_7 = (var_4 <= var_5); var_8 = var_6 && var_7; if (var_8) { var_10 = df::float3(var_9, var_5, var_5); goto label0; } var_11 = df::sub(var_p, var_b); var_12 = df::dot(var_0, var_11); var_13 = df::dot(var_1, var_11); var_14 = (var_12 >= var_5); var_15 = (var_13 <= var_12); var_16 = var_14 && var_15; if (var_16) { var_17 = df::float3(var_5, var_9, var_5); goto label1; } var_18 = df::select(var_16, var_10, var_17); var_19 = df::mul(var_3, var_13); var_20 = df::mul(var_12, var_4); var_21 = df::sub(var_19, var_20); var_22 = df::sub(var_3, var_12); var_23 = df::div(var_3, var_22); var_24 = (var_21 <= var_5); var_25 = (var_3 >= var_5); var_26 = (var_12 <= var_5); var_27 = var_24 && var_25 && var_26; if (var_27) { var_28 = df::sub(var_9, var_23); var_29 = df::float3(var_28, var_23, var_5); goto label2; } var_30 = df::select(var_27, var_18, var_29); var_31 = df::sub(var_p, var_c); var_32 = df::dot(var_0, var_31); var_33 = df::dot(var_1, var_31); var_34 = (var_33 >= var_5); var_35 = (var_32 <= var_33); var_36 = var_34 && var_35; if (var_36) { var_37 = df::float3(var_5, var_5, var_9); goto label3; } var_38 = df::select(var_36, var_30, var_37); var_39 = df::mul(var_32, var_4); var_40 = df::mul(var_3, var_33); var_41 = df::sub(var_39, var_40); var_42 = df::sub(var_4, var_33); var_43 = df::div(var_4, var_42); var_44 = (var_41 <= var_5); var_45 = (var_4 >= var_5); var_46 = (var_33 <= var_5); var_47 = var_44 && var_45 && var_46; if (var_47) { var_48 = df::sub(var_9, var_43); var_49 = df::float3(var_48, var_5, var_43); goto label4; } var_50 = df::select(var_47, var_38, var_49); var_51 = df::mul(var_12, var_33); var_52 = df::mul(var_32, var_13); var_53 = df::sub(var_51, var_52); var_54 = df::sub(var_13, var_12); var_55 = df::sub(var_13, var_12); var_56 = df::sub(var_32, var_33); var_57 = df::add(var_55, var_56); var_58 = df::div(var_54, var_57); var_59 = (var_53 <= var_5); var_60 = df::sub(var_13, var_12); var_61 = (var_60 >= var_5); var_62 = df::sub(var_32, var_33); var_63 = (var_62 >= var_5); var_64 = var_59 && var_61 && var_63; if (var_64) { var_65 = df::sub(var_9, var_58); var_66 = df::float3(var_5, var_58, var_65); goto label5; } var_67 = df::select(var_64, var_50, var_66); var_68 = df::add(var_53, var_41); var_69 = df::add(var_68, var_21); var_70 = df::div(var_9, var_69); var_71 = df::mul(var_41, var_70); var_72 = df::mul(var_21, var_70); var_73 = df::sub(var_9, var_71); var_74 = df::sub(var_73, var_72); var_75 = df::float3(var_74, var_71, var_72); goto label6; //--------- // reverse label6:; adj_75 += adj_ret; df::adj_float3(var_74, var_71, var_72, adj_74, adj_71, adj_72, adj_75); df::adj_sub(var_73, var_72, adj_73, adj_72, adj_74); df::adj_sub(var_9, var_71, adj_9, adj_71, adj_73); df::adj_mul(var_21, var_70, adj_21, adj_70, adj_72); df::adj_mul(var_41, var_70, adj_41, adj_70, adj_71); df::adj_div(var_9, var_69, adj_9, adj_69, adj_70); df::adj_add(var_68, var_21, adj_68, adj_21, adj_69); df::adj_add(var_53, var_41, adj_53, adj_41, adj_68); df::adj_select(var_64, var_50, var_66, adj_64, adj_50, adj_66, adj_67); if (var_64) { label5:; adj_66 += adj_ret; df::adj_float3(var_5, var_58, var_65, adj_5, adj_58, adj_65, adj_66); df::adj_sub(var_9, var_58, adj_9, adj_58, adj_65); } df::adj_sub(var_32, var_33, adj_32, adj_33, adj_62); df::adj_sub(var_13, var_12, adj_13, adj_12, adj_60); df::adj_div(var_54, var_57, adj_54, adj_57, adj_58); df::adj_add(var_55, var_56, adj_55, adj_56, adj_57); df::adj_sub(var_32, var_33, adj_32, adj_33, adj_56); df::adj_sub(var_13, var_12, adj_13, adj_12, adj_55); df::adj_sub(var_13, var_12, adj_13, adj_12, adj_54); df::adj_sub(var_51, var_52, adj_51, adj_52, adj_53); df::adj_mul(var_32, var_13, adj_32, adj_13, adj_52); df::adj_mul(var_12, var_33, adj_12, adj_33, adj_51); df::adj_select(var_47, var_38, var_49, adj_47, adj_38, adj_49, adj_50); if (var_47) { label4:; adj_49 += adj_ret; df::adj_float3(var_48, var_5, var_43, adj_48, adj_5, adj_43, adj_49); df::adj_sub(var_9, var_43, adj_9, adj_43, adj_48); } df::adj_div(var_4, var_42, adj_4, adj_42, adj_43); df::adj_sub(var_4, var_33, adj_4, adj_33, adj_42); df::adj_sub(var_39, var_40, adj_39, adj_40, adj_41); df::adj_mul(var_3, var_33, adj_3, adj_33, adj_40); df::adj_mul(var_32, var_4, adj_32, adj_4, adj_39); df::adj_select(var_36, var_30, var_37, adj_36, adj_30, adj_37, adj_38); if (var_36) { label3:; adj_37 += adj_ret; df::adj_float3(var_5, var_5, var_9, adj_5, adj_5, adj_9, adj_37); } df::adj_dot(var_1, var_31, adj_1, adj_31, adj_33); df::adj_dot(var_0, var_31, adj_0, adj_31, adj_32); df::adj_sub(var_p, var_c, adj_p, adj_c, adj_31); df::adj_select(var_27, var_18, var_29, adj_27, adj_18, adj_29, adj_30); if (var_27) { label2:; adj_29 += adj_ret; df::adj_float3(var_28, var_23, var_5, adj_28, adj_23, adj_5, adj_29); df::adj_sub(var_9, var_23, adj_9, adj_23, adj_28); } df::adj_div(var_3, var_22, adj_3, adj_22, adj_23); df::adj_sub(var_3, var_12, adj_3, adj_12, adj_22); df::adj_sub(var_19, var_20, adj_19, adj_20, adj_21); df::adj_mul(var_12, var_4, adj_12, adj_4, adj_20); df::adj_mul(var_3, var_13, adj_3, adj_13, adj_19); df::adj_select(var_16, var_10, var_17, adj_16, adj_10, adj_17, adj_18); if (var_16) { label1:; adj_17 += adj_ret; df::adj_float3(var_5, var_9, var_5, adj_5, adj_9, adj_5, adj_17); } df::adj_dot(var_1, var_11, adj_1, adj_11, adj_13); df::adj_dot(var_0, var_11, adj_0, adj_11, adj_12); df::adj_sub(var_p, var_b, adj_p, adj_b, adj_11); if (var_8) { label0:; adj_10 += adj_ret; df::adj_float3(var_9, var_5, var_5, adj_9, adj_5, adj_5, adj_10); } df::adj_dot(var_1, var_2, adj_1, adj_2, adj_4); df::adj_dot(var_0, var_2, adj_0, adj_2, adj_3); df::adj_sub(var_p, var_a, adj_p, adj_a, adj_2); df::adj_sub(var_c, var_a, adj_c, adj_a, adj_1); df::adj_sub(var_b, var_a, adj_b, adj_a, adj_0); return; } float sphere_sdf_cpu_func( df::float3 var_center, float var_radius, df::float3 var_p) { //--------- // primal vars df::float3 var_0; float var_1; float var_2; //--------- // forward var_0 = df::sub(var_p, var_center); var_1 = df::length(var_0); var_2 = df::sub(var_1, var_radius); return var_2; } void adj_sphere_sdf_cpu_func( df::float3 var_center, float var_radius, df::float3 var_p, df::float3 & adj_center, float & adj_radius, df::float3 & adj_p, float & adj_ret) { //--------- // primal vars df::float3 var_0; float var_1; float var_2; //--------- // dual vars df::float3 adj_0 = 0; float adj_1 = 0; float adj_2 = 0; //--------- // forward var_0 = df::sub(var_p, var_center); var_1 = df::length(var_0); var_2 = df::sub(var_1, var_radius); goto label0; //--------- // reverse label0:; adj_2 += adj_ret; df::adj_sub(var_1, var_radius, adj_1, adj_radius, adj_2); df::adj_length(var_0, adj_0, adj_1); df::adj_sub(var_p, var_center, adj_p, adj_center, adj_0); return; } df::float3 sphere_sdf_grad_cpu_func( df::float3 var_center, float var_radius, df::float3 var_p) { //--------- // primal vars df::float3 var_0; df::float3 var_1; //--------- // forward var_0 = df::sub(var_p, var_center); var_1 = df::normalize(var_0); return var_1; } void adj_sphere_sdf_grad_cpu_func( df::float3 var_center, float var_radius, df::float3 var_p, df::float3 & adj_center, float & adj_radius, df::float3 & adj_p, df::float3 & adj_ret) { //--------- // primal vars df::float3 var_0; df::float3 var_1; //--------- // dual vars df::float3 adj_0 = 0; df::float3 adj_1 = 0; //--------- // forward var_0 = df::sub(var_p, var_center); var_1 = df::normalize(var_0); goto label0; //--------- // reverse label0:; adj_1 += adj_ret; df::adj_normalize(var_0, adj_0, adj_1); df::adj_sub(var_p, var_center, adj_p, adj_center, adj_0); return; } float box_sdf_cpu_func( df::float3 var_upper, df::float3 var_p) { //--------- // primal vars const int var_0 = 0; float var_1; float var_2; float var_3; float var_4; const int var_5 = 1; float var_6; float var_7; float var_8; float var_9; const int var_10 = 2; float var_11; float var_12; float var_13; float var_14; const float var_15 = 0.0; float var_16; float var_17; float var_18; df::float3 var_19; float var_20; float var_21; float var_22; float var_23; float var_24; //--------- // forward var_1 = df::index(var_p, var_0); var_2 = df::abs(var_1); var_3 = df::index(var_upper, var_0); var_4 = df::sub(var_2, var_3); var_6 = df::index(var_p, var_5); var_7 = df::abs(var_6); var_8 = df::index(var_upper, var_5); var_9 = df::sub(var_7, var_8); var_11 = df::index(var_p, var_10); var_12 = df::abs(var_11); var_13 = df::index(var_upper, var_10); var_14 = df::sub(var_12, var_13); var_16 = df::max(var_4, var_15); var_17 = df::max(var_9, var_15); var_18 = df::max(var_14, var_15); var_19 = df::float3(var_16, var_17, var_18); var_20 = df::length(var_19); var_21 = df::max(var_9, var_14); var_22 = df::max(var_4, var_21); var_23 = df::min(var_22, var_15); var_24 = df::add(var_20, var_23); return var_24; } void adj_box_sdf_cpu_func( df::float3 var_upper, df::float3 var_p, df::float3 & adj_upper, df::float3 & adj_p, float & adj_ret) { //--------- // primal vars const int var_0 = 0; float var_1; float var_2; float var_3; float var_4; const int var_5 = 1; float var_6; float var_7; float var_8; float var_9; const int var_10 = 2; float var_11; float var_12; float var_13; float var_14; const float var_15 = 0.0; float var_16; float var_17; float var_18; df::float3 var_19; float var_20; float var_21; float var_22; float var_23; float var_24; //--------- // dual vars int adj_0 = 0; float adj_1 = 0; float adj_2 = 0; float adj_3 = 0; float adj_4 = 0; int adj_5 = 0; float adj_6 = 0; float adj_7 = 0; float adj_8 = 0; float adj_9 = 0; int adj_10 = 0; float adj_11 = 0; float adj_12 = 0; float adj_13 = 0; float adj_14 = 0; float adj_15 = 0; float adj_16 = 0; float adj_17 = 0; float adj_18 = 0; df::float3 adj_19 = 0; float adj_20 = 0; float adj_21 = 0; float adj_22 = 0; float adj_23 = 0; float adj_24 = 0; //--------- // forward var_1 = df::index(var_p, var_0); var_2 = df::abs(var_1); var_3 = df::index(var_upper, var_0); var_4 = df::sub(var_2, var_3); var_6 = df::index(var_p, var_5); var_7 = df::abs(var_6); var_8 = df::index(var_upper, var_5); var_9 = df::sub(var_7, var_8); var_11 = df::index(var_p, var_10); var_12 = df::abs(var_11); var_13 = df::index(var_upper, var_10); var_14 = df::sub(var_12, var_13); var_16 = df::max(var_4, var_15); var_17 = df::max(var_9, var_15); var_18 = df::max(var_14, var_15); var_19 = df::float3(var_16, var_17, var_18); var_20 = df::length(var_19); var_21 = df::max(var_9, var_14); var_22 = df::max(var_4, var_21); var_23 = df::min(var_22, var_15); var_24 = df::add(var_20, var_23); goto label0; //--------- // reverse label0:; adj_24 += adj_ret; df::adj_add(var_20, var_23, adj_20, adj_23, adj_24); df::adj_min(var_22, var_15, adj_22, adj_15, adj_23); df::adj_max(var_4, var_21, adj_4, adj_21, adj_22); df::adj_max(var_9, var_14, adj_9, adj_14, adj_21); df::adj_length(var_19, adj_19, adj_20); df::adj_float3(var_16, var_17, var_18, adj_16, adj_17, adj_18, adj_19); df::adj_max(var_14, var_15, adj_14, adj_15, adj_18); df::adj_max(var_9, var_15, adj_9, adj_15, adj_17); df::adj_max(var_4, var_15, adj_4, adj_15, adj_16); df::adj_sub(var_12, var_13, adj_12, adj_13, adj_14); df::adj_index(var_upper, var_10, adj_upper, adj_10, adj_13); df::adj_abs(var_11, adj_11, adj_12); df::adj_index(var_p, var_10, adj_p, adj_10, adj_11); df::adj_sub(var_7, var_8, adj_7, adj_8, adj_9); df::adj_index(var_upper, var_5, adj_upper, adj_5, adj_8); df::adj_abs(var_6, adj_6, adj_7); df::adj_index(var_p, var_5, adj_p, adj_5, adj_6); df::adj_sub(var_2, var_3, adj_2, adj_3, adj_4); df::adj_index(var_upper, var_0, adj_upper, adj_0, adj_3); df::adj_abs(var_1, adj_1, adj_2); df::adj_index(var_p, var_0, adj_p, adj_0, adj_1); return; } df::float3 box_sdf_grad_cpu_func( df::float3 var_upper, df::float3 var_p) { //--------- // primal vars const int var_0 = 0; float var_1; float var_2; float var_3; float var_4; const int var_5 = 1; float var_6; float var_7; float var_8; float var_9; const int var_10 = 2; float var_11; float var_12; float var_13; float var_14; const float var_15 = 0.0; bool var_16; bool var_17; bool var_18; bool var_19; float var_20; float var_21; float var_22; float var_23; float var_24; float var_25; float var_26; float var_27; float var_28; float var_29; float var_30; float var_31; float var_32; float var_33; float var_34; df::float3 var_35; df::float3 var_36; df::float3 var_37; float var_38; float var_39; float var_40; float var_41; float var_42; float var_43; bool var_44; bool var_45; bool var_46; df::float3 var_47; df::float3 var_48; bool var_49; bool var_50; bool var_51; df::float3 var_52; df::float3 var_53; bool var_54; bool var_55; bool var_56; df::float3 var_57; df::float3 var_58; //--------- // forward var_1 = df::index(var_p, var_0); var_2 = df::abs(var_1); var_3 = df::index(var_upper, var_0); var_4 = df::sub(var_2, var_3); var_6 = df::index(var_p, var_5); var_7 = df::abs(var_6); var_8 = df::index(var_upper, var_5); var_9 = df::sub(var_7, var_8); var_11 = df::index(var_p, var_10); var_12 = df::abs(var_11); var_13 = df::index(var_upper, var_10); var_14 = df::sub(var_12, var_13); var_16 = (var_4 > var_15); var_17 = (var_9 > var_15); var_18 = (var_14 > var_15); var_19 = var_16 || var_17 || var_18; if (var_19) { var_20 = df::index(var_p, var_0); var_21 = df::index(var_upper, var_0); var_22 = df::sub(var_15, var_21); var_23 = df::index(var_upper, var_0); var_24 = df::clamp(var_20, var_22, var_23); var_25 = df::index(var_p, var_5); var_26 = df::index(var_upper, var_5); var_27 = df::sub(var_15, var_26); var_28 = df::index(var_upper, var_5); var_29 = df::clamp(var_25, var_27, var_28); var_30 = df::index(var_p, var_10); var_31 = df::index(var_upper, var_10); var_32 = df::sub(var_15, var_31); var_33 = df::index(var_upper, var_10); var_34 = df::clamp(var_30, var_32, var_33); var_35 = df::float3(var_24, var_29, var_34); var_36 = df::sub(var_p, var_35); var_37 = df::normalize(var_36); return var_37; } var_38 = df::index(var_p, var_0); var_39 = df::sign(var_38); var_40 = df::index(var_p, var_5); var_41 = df::sign(var_40); var_42 = df::index(var_p, var_10); var_43 = df::sign(var_42); var_44 = (var_4 > var_9); var_45 = (var_4 > var_14); var_46 = var_44 && var_45; if (var_46) { var_47 = df::float3(var_39, var_15, var_15); return var_47; } var_48 = df::select(var_46, var_37, var_47); var_49 = (var_9 > var_4); var_50 = (var_9 > var_14); var_51 = var_49 && var_50; if (var_51) { var_52 = df::float3(var_15, var_41, var_15); return var_52; } var_53 = df::select(var_51, var_48, var_52); var_54 = (var_14 > var_4); var_55 = (var_14 > var_9); var_56 = var_54 && var_55; if (var_56) { var_57 = df::float3(var_15, var_15, var_43); return var_57; } var_58 = df::select(var_56, var_53, var_57); } void adj_box_sdf_grad_cpu_func( df::float3 var_upper, df::float3 var_p, df::float3 & adj_upper, df::float3 & adj_p, df::float3 & adj_ret) { //--------- // primal vars const int var_0 = 0; float var_1; float var_2; float var_3; float var_4; const int var_5 = 1; float var_6; float var_7; float var_8; float var_9; const int var_10 = 2; float var_11; float var_12; float var_13; float var_14; const float var_15 = 0.0; bool var_16; bool var_17; bool var_18; bool var_19; float var_20; float var_21; float var_22; float var_23; float var_24; float var_25; float var_26; float var_27; float var_28; float var_29; float var_30; float var_31; float var_32; float var_33; float var_34; df::float3 var_35; df::float3 var_36; df::float3 var_37; float var_38; float var_39; float var_40; float var_41; float var_42; float var_43; bool var_44; bool var_45; bool var_46; df::float3 var_47; df::float3 var_48; bool var_49; bool var_50; bool var_51; df::float3 var_52; df::float3 var_53; bool var_54; bool var_55; bool var_56; df::float3 var_57; df::float3 var_58; //--------- // dual vars int adj_0 = 0; float adj_1 = 0; float adj_2 = 0; float adj_3 = 0; float adj_4 = 0; int adj_5 = 0; float adj_6 = 0; float adj_7 = 0; float adj_8 = 0; float adj_9 = 0; int adj_10 = 0; float adj_11 = 0; float adj_12 = 0; float adj_13 = 0; float adj_14 = 0; float adj_15 = 0; bool adj_16 = 0; bool adj_17 = 0; bool adj_18 = 0; bool adj_19 = 0; float adj_20 = 0; float adj_21 = 0; float adj_22 = 0; float adj_23 = 0; float adj_24 = 0; float adj_25 = 0; float adj_26 = 0; float adj_27 = 0; float adj_28 = 0; float adj_29 = 0; float adj_30 = 0; float adj_31 = 0; float adj_32 = 0; float adj_33 = 0; float adj_34 = 0; df::float3 adj_35 = 0; df::float3 adj_36 = 0; df::float3 adj_37 = 0; float adj_38 = 0; float adj_39 = 0; float adj_40 = 0; float adj_41 = 0; float adj_42 = 0; float adj_43 = 0; bool adj_44 = 0; bool adj_45 = 0; bool adj_46 = 0; df::float3 adj_47 = 0; df::float3 adj_48 = 0; bool adj_49 = 0; bool adj_50 = 0; bool adj_51 = 0; df::float3 adj_52 = 0; df::float3 adj_53 = 0; bool adj_54 = 0; bool adj_55 = 0; bool adj_56 = 0; df::float3 adj_57 = 0; df::float3 adj_58 = 0; //--------- // forward var_1 = df::index(var_p, var_0); var_2 = df::abs(var_1); var_3 = df::index(var_upper, var_0); var_4 = df::sub(var_2, var_3); var_6 = df::index(var_p, var_5); var_7 = df::abs(var_6); var_8 = df::index(var_upper, var_5); var_9 = df::sub(var_7, var_8); var_11 = df::index(var_p, var_10); var_12 = df::abs(var_11); var_13 = df::index(var_upper, var_10); var_14 = df::sub(var_12, var_13); var_16 = (var_4 > var_15); var_17 = (var_9 > var_15); var_18 = (var_14 > var_15); var_19 = var_16 || var_17 || var_18; if (var_19) { var_20 = df::index(var_p, var_0); var_21 = df::index(var_upper, var_0); var_22 = df::sub(var_15, var_21); var_23 = df::index(var_upper, var_0); var_24 = df::clamp(var_20, var_22, var_23); var_25 = df::index(var_p, var_5); var_26 = df::index(var_upper, var_5); var_27 = df::sub(var_15, var_26); var_28 = df::index(var_upper, var_5); var_29 = df::clamp(var_25, var_27, var_28); var_30 = df::index(var_p, var_10); var_31 = df::index(var_upper, var_10); var_32 = df::sub(var_15, var_31); var_33 = df::index(var_upper, var_10); var_34 = df::clamp(var_30, var_32, var_33); var_35 = df::float3(var_24, var_29, var_34); var_36 = df::sub(var_p, var_35); var_37 = df::normalize(var_36); goto label0; } var_38 = df::index(var_p, var_0); var_39 = df::sign(var_38); var_40 = df::index(var_p, var_5); var_41 = df::sign(var_40); var_42 = df::index(var_p, var_10); var_43 = df::sign(var_42); var_44 = (var_4 > var_9); var_45 = (var_4 > var_14); var_46 = var_44 && var_45; if (var_46) { var_47 = df::float3(var_39, var_15, var_15); goto label1; } var_48 = df::select(var_46, var_37, var_47); var_49 = (var_9 > var_4); var_50 = (var_9 > var_14); var_51 = var_49 && var_50; if (var_51) { var_52 = df::float3(var_15, var_41, var_15); goto label2; } var_53 = df::select(var_51, var_48, var_52); var_54 = (var_14 > var_4); var_55 = (var_14 > var_9); var_56 = var_54 && var_55; if (var_56) { var_57 = df::float3(var_15, var_15, var_43); goto label3; } var_58 = df::select(var_56, var_53, var_57); //--------- // reverse df::adj_select(var_56, var_53, var_57, adj_56, adj_53, adj_57, adj_58); if (var_56) { label3:; adj_57 += adj_ret; df::adj_float3(var_15, var_15, var_43, adj_15, adj_15, adj_43, adj_57); } df::adj_select(var_51, var_48, var_52, adj_51, adj_48, adj_52, adj_53); if (var_51) { label2:; adj_52 += adj_ret; df::adj_float3(var_15, var_41, var_15, adj_15, adj_41, adj_15, adj_52); } df::adj_select(var_46, var_37, var_47, adj_46, adj_37, adj_47, adj_48); if (var_46) { label1:; adj_47 += adj_ret; df::adj_float3(var_39, var_15, var_15, adj_39, adj_15, adj_15, adj_47); } df::adj_sign(var_42, adj_42, adj_43); df::adj_index(var_p, var_10, adj_p, adj_10, adj_42); df::adj_sign(var_40, adj_40, adj_41); df::adj_index(var_p, var_5, adj_p, adj_5, adj_40); df::adj_sign(var_38, adj_38, adj_39); df::adj_index(var_p, var_0, adj_p, adj_0, adj_38); if (var_19) { label0:; adj_37 += adj_ret; df::adj_normalize(var_36, adj_36, adj_37); df::adj_sub(var_p, var_35, adj_p, adj_35, adj_36); df::adj_float3(var_24, var_29, var_34, adj_24, adj_29, adj_34, adj_35); df::adj_clamp(var_30, var_32, var_33, adj_30, adj_32, adj_33, adj_34); df::adj_index(var_upper, var_10, adj_upper, adj_10, adj_33); df::adj_sub(var_15, var_31, adj_15, adj_31, adj_32); df::adj_index(var_upper, var_10, adj_upper, adj_10, adj_31); df::adj_index(var_p, var_10, adj_p, adj_10, adj_30); df::adj_clamp(var_25, var_27, var_28, adj_25, adj_27, adj_28, adj_29); df::adj_index(var_upper, var_5, adj_upper, adj_5, adj_28); df::adj_sub(var_15, var_26, adj_15, adj_26, adj_27); df::adj_index(var_upper, var_5, adj_upper, adj_5, adj_26); df::adj_index(var_p, var_5, adj_p, adj_5, adj_25); df::adj_clamp(var_20, var_22, var_23, adj_20, adj_22, adj_23, adj_24); df::adj_index(var_upper, var_0, adj_upper, adj_0, adj_23); df::adj_sub(var_15, var_21, adj_15, adj_21, adj_22); df::adj_index(var_upper, var_0, adj_upper, adj_0, adj_21); df::adj_index(var_p, var_0, adj_p, adj_0, adj_20); } df::adj_sub(var_12, var_13, adj_12, adj_13, adj_14); df::adj_index(var_upper, var_10, adj_upper, adj_10, adj_13); df::adj_abs(var_11, adj_11, adj_12); df::adj_index(var_p, var_10, adj_p, adj_10, adj_11); df::adj_sub(var_7, var_8, adj_7, adj_8, adj_9); df::adj_index(var_upper, var_5, adj_upper, adj_5, adj_8); df::adj_abs(var_6, adj_6, adj_7); df::adj_index(var_p, var_5, adj_p, adj_5, adj_6); df::adj_sub(var_2, var_3, adj_2, adj_3, adj_4); df::adj_index(var_upper, var_0, adj_upper, adj_0, adj_3); df::adj_abs(var_1, adj_1, adj_2); df::adj_index(var_p, var_0, adj_p, adj_0, adj_1); return; } float capsule_sdf_cpu_func( float var_radius, float var_half_width, df::float3 var_p) { //--------- // primal vars const int var_0 = 0; float var_1; bool var_2; float var_3; float var_4; const int var_5 = 1; float var_6; const int var_7 = 2; float var_8; df::float3 var_9; float var_10; float var_11; float var_12; const float var_13 = 0.0; float var_14; bool var_15; float var_16; float var_17; float var_18; float var_19; df::float3 var_20; float var_21; float var_22; float var_23; float var_24; float var_25; df::float3 var_26; float var_27; float var_28; //--------- // forward var_1 = df::index(var_p, var_0); var_2 = (var_1 > var_half_width); if (var_2) { var_3 = df::index(var_p, var_0); var_4 = df::sub(var_3, var_half_width); var_6 = df::index(var_p, var_5); var_8 = df::index(var_p, var_7); var_9 = df::float3(var_4, var_6, var_8); var_10 = df::length(var_9); var_11 = df::sub(var_10, var_radius); return var_11; } var_12 = df::index(var_p, var_0); var_14 = df::sub(var_13, var_half_width); var_15 = (var_12 < var_14); if (var_15) { var_16 = df::index(var_p, var_0); var_17 = df::add(var_16, var_half_width); var_18 = df::index(var_p, var_5); var_19 = df::index(var_p, var_7); var_20 = df::float3(var_17, var_18, var_19); var_21 = df::length(var_20); var_22 = df::sub(var_21, var_radius); return var_22; } var_23 = df::select(var_15, var_11, var_22); var_24 = df::index(var_p, var_5); var_25 = df::index(var_p, var_7); var_26 = df::float3(var_13, var_24, var_25); var_27 = df::length(var_26); var_28 = df::sub(var_27, var_radius); return var_28; } void adj_capsule_sdf_cpu_func( float var_radius, float var_half_width, df::float3 var_p, float & adj_radius, float & adj_half_width, df::float3 & adj_p, float & adj_ret) { //--------- // primal vars const int var_0 = 0; float var_1; bool var_2; float var_3; float var_4; const int var_5 = 1; float var_6; const int var_7 = 2; float var_8; df::float3 var_9; float var_10; float var_11; float var_12; const float var_13 = 0.0; float var_14; bool var_15; float var_16; float var_17; float var_18; float var_19; df::float3 var_20; float var_21; float var_22; float var_23; float var_24; float var_25; df::float3 var_26; float var_27; float var_28; //--------- // dual vars int adj_0 = 0; float adj_1 = 0; bool adj_2 = 0; float adj_3 = 0; float adj_4 = 0; int adj_5 = 0; float adj_6 = 0; int adj_7 = 0; float adj_8 = 0; df::float3 adj_9 = 0; float adj_10 = 0; float adj_11 = 0; float adj_12 = 0; float adj_13 = 0; float adj_14 = 0; bool adj_15 = 0; float adj_16 = 0; float adj_17 = 0; float adj_18 = 0; float adj_19 = 0; df::float3 adj_20 = 0; float adj_21 = 0; float adj_22 = 0; float adj_23 = 0; float adj_24 = 0; float adj_25 = 0; df::float3 adj_26 = 0; float adj_27 = 0; float adj_28 = 0; //--------- // forward var_1 = df::index(var_p, var_0); var_2 = (var_1 > var_half_width); if (var_2) { var_3 = df::index(var_p, var_0); var_4 = df::sub(var_3, var_half_width); var_6 = df::index(var_p, var_5); var_8 = df::index(var_p, var_7); var_9 = df::float3(var_4, var_6, var_8); var_10 = df::length(var_9); var_11 = df::sub(var_10, var_radius); goto label0; } var_12 = df::index(var_p, var_0); var_14 = df::sub(var_13, var_half_width); var_15 = (var_12 < var_14); if (var_15) { var_16 = df::index(var_p, var_0); var_17 = df::add(var_16, var_half_width); var_18 = df::index(var_p, var_5); var_19 = df::index(var_p, var_7); var_20 = df::float3(var_17, var_18, var_19); var_21 = df::length(var_20); var_22 = df::sub(var_21, var_radius); goto label1; } var_23 = df::select(var_15, var_11, var_22); var_24 = df::index(var_p, var_5); var_25 = df::index(var_p, var_7); var_26 = df::float3(var_13, var_24, var_25); var_27 = df::length(var_26); var_28 = df::sub(var_27, var_radius); goto label2; //--------- // reverse label2:; adj_28 += adj_ret; df::adj_sub(var_27, var_radius, adj_27, adj_radius, adj_28); df::adj_length(var_26, adj_26, adj_27); df::adj_float3(var_13, var_24, var_25, adj_13, adj_24, adj_25, adj_26); df::adj_index(var_p, var_7, adj_p, adj_7, adj_25); df::adj_index(var_p, var_5, adj_p, adj_5, adj_24); df::adj_select(var_15, var_11, var_22, adj_15, adj_11, adj_22, adj_23); if (var_15) { label1:; adj_22 += adj_ret; df::adj_sub(var_21, var_radius, adj_21, adj_radius, adj_22); df::adj_length(var_20, adj_20, adj_21); df::adj_float3(var_17, var_18, var_19, adj_17, adj_18, adj_19, adj_20); df::adj_index(var_p, var_7, adj_p, adj_7, adj_19); df::adj_index(var_p, var_5, adj_p, adj_5, adj_18); df::adj_add(var_16, var_half_width, adj_16, adj_half_width, adj_17); df::adj_index(var_p, var_0, adj_p, adj_0, adj_16); } df::adj_sub(var_13, var_half_width, adj_13, adj_half_width, adj_14); df::adj_index(var_p, var_0, adj_p, adj_0, adj_12); if (var_2) { label0:; adj_11 += adj_ret; df::adj_sub(var_10, var_radius, adj_10, adj_radius, adj_11); df::adj_length(var_9, adj_9, adj_10); df::adj_float3(var_4, var_6, var_8, adj_4, adj_6, adj_8, adj_9); df::adj_index(var_p, var_7, adj_p, adj_7, adj_8); df::adj_index(var_p, var_5, adj_p, adj_5, adj_6); df::adj_sub(var_3, var_half_width, adj_3, adj_half_width, adj_4); df::adj_index(var_p, var_0, adj_p, adj_0, adj_3); } df::adj_index(var_p, var_0, adj_p, adj_0, adj_1); return; } df::float3 capsule_sdf_grad_cpu_func( float var_radius, float var_half_width, df::float3 var_p) { //--------- // primal vars const int var_0 = 0; float var_1; bool var_2; float var_3; float var_4; const int var_5 = 1; float var_6; const int var_7 = 2; float var_8; df::float3 var_9; df::float3 var_10; float var_11; const float var_12 = 0.0; float var_13; bool var_14; float var_15; float var_16; float var_17; float var_18; df::float3 var_19; df::float3 var_20; df::float3 var_21; float var_22; float var_23; df::float3 var_24; df::float3 var_25; //--------- // forward var_1 = df::index(var_p, var_0); var_2 = (var_1 > var_half_width); if (var_2) { var_3 = df::index(var_p, var_0); var_4 = df::sub(var_3, var_half_width); var_6 = df::index(var_p, var_5); var_8 = df::index(var_p, var_7); var_9 = df::float3(var_4, var_6, var_8); var_10 = df::normalize(var_9); return var_10; } var_11 = df::index(var_p, var_0); var_13 = df::sub(var_12, var_half_width); var_14 = (var_11 < var_13); if (var_14) { var_15 = df::index(var_p, var_0); var_16 = df::add(var_15, var_half_width); var_17 = df::index(var_p, var_5); var_18 = df::index(var_p, var_7); var_19 = df::float3(var_16, var_17, var_18); var_20 = df::normalize(var_19); return var_20; } var_21 = df::select(var_14, var_10, var_20); var_22 = df::index(var_p, var_5); var_23 = df::index(var_p, var_7); var_24 = df::float3(var_12, var_22, var_23); var_25 = df::normalize(var_24); return var_25; } void adj_capsule_sdf_grad_cpu_func( float var_radius, float var_half_width, df::float3 var_p, float & adj_radius, float & adj_half_width, df::float3 & adj_p, df::float3 & adj_ret) { //--------- // primal vars const int var_0 = 0; float var_1; bool var_2; float var_3; float var_4; const int var_5 = 1; float var_6; const int var_7 = 2; float var_8; df::float3 var_9; df::float3 var_10; float var_11; const float var_12 = 0.0; float var_13; bool var_14; float var_15; float var_16; float var_17; float var_18; df::float3 var_19; df::float3 var_20; df::float3 var_21; float var_22; float var_23; df::float3 var_24; df::float3 var_25; //--------- // dual vars int adj_0 = 0; float adj_1 = 0; bool adj_2 = 0; float adj_3 = 0; float adj_4 = 0; int adj_5 = 0; float adj_6 = 0; int adj_7 = 0; float adj_8 = 0; df::float3 adj_9 = 0; df::float3 adj_10 = 0; float adj_11 = 0; float adj_12 = 0; float adj_13 = 0; bool adj_14 = 0; float adj_15 = 0; float adj_16 = 0; float adj_17 = 0; float adj_18 = 0; df::float3 adj_19 = 0; df::float3 adj_20 = 0; df::float3 adj_21 = 0; float adj_22 = 0; float adj_23 = 0; df::float3 adj_24 = 0; df::float3 adj_25 = 0; //--------- // forward var_1 = df::index(var_p, var_0); var_2 = (var_1 > var_half_width); if (var_2) { var_3 = df::index(var_p, var_0); var_4 = df::sub(var_3, var_half_width); var_6 = df::index(var_p, var_5); var_8 = df::index(var_p, var_7); var_9 = df::float3(var_4, var_6, var_8); var_10 = df::normalize(var_9); goto label0; } var_11 = df::index(var_p, var_0); var_13 = df::sub(var_12, var_half_width); var_14 = (var_11 < var_13); if (var_14) { var_15 = df::index(var_p, var_0); var_16 = df::add(var_15, var_half_width); var_17 = df::index(var_p, var_5); var_18 = df::index(var_p, var_7); var_19 = df::float3(var_16, var_17, var_18); var_20 = df::normalize(var_19); goto label1; } var_21 = df::select(var_14, var_10, var_20); var_22 = df::index(var_p, var_5); var_23 = df::index(var_p, var_7); var_24 = df::float3(var_12, var_22, var_23); var_25 = df::normalize(var_24); goto label2; //--------- // reverse label2:; adj_25 += adj_ret; df::adj_normalize(var_24, adj_24, adj_25); df::adj_float3(var_12, var_22, var_23, adj_12, adj_22, adj_23, adj_24); df::adj_index(var_p, var_7, adj_p, adj_7, adj_23); df::adj_index(var_p, var_5, adj_p, adj_5, adj_22); df::adj_select(var_14, var_10, var_20, adj_14, adj_10, adj_20, adj_21); if (var_14) { label1:; adj_20 += adj_ret; df::adj_normalize(var_19, adj_19, adj_20); df::adj_float3(var_16, var_17, var_18, adj_16, adj_17, adj_18, adj_19); df::adj_index(var_p, var_7, adj_p, adj_7, adj_18); df::adj_index(var_p, var_5, adj_p, adj_5, adj_17); df::adj_add(var_15, var_half_width, adj_15, adj_half_width, adj_16); df::adj_index(var_p, var_0, adj_p, adj_0, adj_15); } df::adj_sub(var_12, var_half_width, adj_12, adj_half_width, adj_13); df::adj_index(var_p, var_0, adj_p, adj_0, adj_11); if (var_2) { label0:; adj_10 += adj_ret; df::adj_normalize(var_9, adj_9, adj_10); df::adj_float3(var_4, var_6, var_8, adj_4, adj_6, adj_8, adj_9); df::adj_index(var_p, var_7, adj_p, adj_7, adj_8); df::adj_index(var_p, var_5, adj_p, adj_5, adj_6); df::adj_sub(var_3, var_half_width, adj_3, adj_half_width, adj_4); df::adj_index(var_p, var_0, adj_p, adj_0, adj_3); } df::adj_index(var_p, var_0, adj_p, adj_0, adj_1); return; } spatial_vector spatial_transform_twist_cpu_func( spatial_transform var_t, spatial_vector var_x) { //--------- // primal vars quat var_0; df::float3 var_1; df::float3 var_2; df::float3 var_3; df::float3 var_4; df::float3 var_5; df::float3 var_6; df::float3 var_7; spatial_vector var_8; //--------- // forward var_0 = df::spatial_transform_get_rotation(var_t); var_1 = df::spatial_transform_get_translation(var_t); var_2 = df::spatial_top(var_x); var_3 = df::spatial_bottom(var_x); var_4 = df::rotate(var_0, var_2); var_5 = df::rotate(var_0, var_3); var_6 = df::cross(var_1, var_4); var_7 = df::add(var_5, var_6); var_8 = df::spatial_vector(var_4, var_7); return var_8; } void adj_spatial_transform_twist_cpu_func( spatial_transform var_t, spatial_vector var_x, spatial_transform & adj_t, spatial_vector & adj_x, spatial_vector & adj_ret) { //--------- // primal vars quat var_0; df::float3 var_1; df::float3 var_2; df::float3 var_3; df::float3 var_4; df::float3 var_5; df::float3 var_6; df::float3 var_7; spatial_vector var_8; //--------- // dual vars quat adj_0 = 0; df::float3 adj_1 = 0; df::float3 adj_2 = 0; df::float3 adj_3 = 0; df::float3 adj_4 = 0; df::float3 adj_5 = 0; df::float3 adj_6 = 0; df::float3 adj_7 = 0; spatial_vector adj_8 = 0; //--------- // forward var_0 = df::spatial_transform_get_rotation(var_t); var_1 = df::spatial_transform_get_translation(var_t); var_2 = df::spatial_top(var_x); var_3 = df::spatial_bottom(var_x); var_4 = df::rotate(var_0, var_2); var_5 = df::rotate(var_0, var_3); var_6 = df::cross(var_1, var_4); var_7 = df::add(var_5, var_6); var_8 = df::spatial_vector(var_4, var_7); goto label0; //--------- // reverse label0:; adj_8 += adj_ret; df::adj_spatial_vector(var_4, var_7, adj_4, adj_7, adj_8); df::adj_add(var_5, var_6, adj_5, adj_6, adj_7); df::adj_cross(var_1, var_4, adj_1, adj_4, adj_6); df::adj_rotate(var_0, var_3, adj_0, adj_3, adj_5); df::adj_rotate(var_0, var_2, adj_0, adj_2, adj_4); df::adj_spatial_bottom(var_x, adj_x, adj_3); df::adj_spatial_top(var_x, adj_x, adj_2); df::adj_spatial_transform_get_translation(var_t, adj_t, adj_1); df::adj_spatial_transform_get_rotation(var_t, adj_t, adj_0); return; } spatial_vector spatial_transform_wrench_cpu_func( spatial_transform var_t, spatial_vector var_x) { //--------- // primal vars quat var_0; df::float3 var_1; df::float3 var_2; df::float3 var_3; df::float3 var_4; df::float3 var_5; df::float3 var_6; df::float3 var_7; spatial_vector var_8; //--------- // forward var_0 = df::spatial_transform_get_rotation(var_t); var_1 = df::spatial_transform_get_translation(var_t); var_2 = df::spatial_top(var_x); var_3 = df::spatial_bottom(var_x); var_4 = df::rotate(var_0, var_3); var_5 = df::rotate(var_0, var_2); var_6 = df::cross(var_1, var_4); var_7 = df::add(var_5, var_6); var_8 = df::spatial_vector(var_7, var_4); return var_8; } void adj_spatial_transform_wrench_cpu_func( spatial_transform var_t, spatial_vector var_x, spatial_transform & adj_t, spatial_vector & adj_x, spatial_vector & adj_ret) { //--------- // primal vars quat var_0; df::float3 var_1; df::float3 var_2; df::float3 var_3; df::float3 var_4; df::float3 var_5; df::float3 var_6; df::float3 var_7; spatial_vector var_8; //--------- // dual vars quat adj_0 = 0; df::float3 adj_1 = 0; df::float3 adj_2 = 0; df::float3 adj_3 = 0; df::float3 adj_4 = 0; df::float3 adj_5 = 0; df::float3 adj_6 = 0; df::float3 adj_7 = 0; spatial_vector adj_8 = 0; //--------- // forward var_0 = df::spatial_transform_get_rotation(var_t); var_1 = df::spatial_transform_get_translation(var_t); var_2 = df::spatial_top(var_x); var_3 = df::spatial_bottom(var_x); var_4 = df::rotate(var_0, var_3); var_5 = df::rotate(var_0, var_2); var_6 = df::cross(var_1, var_4); var_7 = df::add(var_5, var_6); var_8 = df::spatial_vector(var_7, var_4); goto label0; //--------- // reverse label0:; adj_8 += adj_ret; df::adj_spatial_vector(var_7, var_4, adj_7, adj_4, adj_8); df::adj_add(var_5, var_6, adj_5, adj_6, adj_7); df::adj_cross(var_1, var_4, adj_1, adj_4, adj_6); df::adj_rotate(var_0, var_2, adj_0, adj_2, adj_5); df::adj_rotate(var_0, var_3, adj_0, adj_3, adj_4); df::adj_spatial_bottom(var_x, adj_x, adj_3); df::adj_spatial_top(var_x, adj_x, adj_2); df::adj_spatial_transform_get_translation(var_t, adj_t, adj_1); df::adj_spatial_transform_get_rotation(var_t, adj_t, adj_0); return; } spatial_transform spatial_transform_inverse_cpu_func( spatial_transform var_t) { //--------- // primal vars df::float3 var_0; quat var_1; quat var_2; df::float3 var_3; const float var_4 = 0.0; const float var_5 = 1.0; float var_6; df::float3 var_7; spatial_transform var_8; //--------- // forward var_0 = df::spatial_transform_get_translation(var_t); var_1 = df::spatial_transform_get_rotation(var_t); var_2 = df::inverse(var_1); var_3 = df::rotate(var_2, var_0); var_6 = df::sub(var_4, var_5); var_7 = df::mul(var_3, var_6); var_8 = df::spatial_transform(var_7, var_2); return var_8; } void adj_spatial_transform_inverse_cpu_func( spatial_transform var_t, spatial_transform & adj_t, spatial_transform & adj_ret) { //--------- // primal vars df::float3 var_0; quat var_1; quat var_2; df::float3 var_3; const float var_4 = 0.0; const float var_5 = 1.0; float var_6; df::float3 var_7; spatial_transform var_8; //--------- // dual vars df::float3 adj_0 = 0; quat adj_1 = 0; quat adj_2 = 0; df::float3 adj_3 = 0; float adj_4 = 0; float adj_5 = 0; float adj_6 = 0; df::float3 adj_7 = 0; spatial_transform adj_8 = 0; //--------- // forward var_0 = df::spatial_transform_get_translation(var_t); var_1 = df::spatial_transform_get_rotation(var_t); var_2 = df::inverse(var_1); var_3 = df::rotate(var_2, var_0); var_6 = df::sub(var_4, var_5); var_7 = df::mul(var_3, var_6); var_8 = df::spatial_transform(var_7, var_2); goto label0; //--------- // reverse label0:; adj_8 += adj_ret; df::adj_spatial_transform(var_7, var_2, adj_7, adj_2, adj_8); df::adj_mul(var_3, var_6, adj_3, adj_6, adj_7); df::adj_sub(var_4, var_5, adj_4, adj_5, adj_6); df::adj_rotate(var_2, var_0, adj_2, adj_0, adj_3); df::adj_inverse(var_1, adj_1, adj_2); df::adj_spatial_transform_get_rotation(var_t, adj_t, adj_1); df::adj_spatial_transform_get_translation(var_t, adj_t, adj_0); return; } spatial_matrix spatial_transform_inertia_cpu_func( spatial_transform var_t, spatial_matrix var_I) { //--------- // primal vars spatial_transform var_0; quat var_1; df::float3 var_2; const float var_3 = 1.0; const float var_4 = 0.0; df::float3 var_5; df::float3 var_6; df::float3 var_7; df::float3 var_8; df::float3 var_9; df::float3 var_10; mat33 var_11; mat33 var_12; mat33 var_13; spatial_matrix var_14; spatial_matrix var_15; spatial_matrix var_16; spatial_matrix var_17; //--------- // forward var_0 = spatial_transform_inverse_cpu_func(var_t); var_1 = df::spatial_transform_get_rotation(var_0); var_2 = df::spatial_transform_get_translation(var_0); var_5 = df::float3(var_3, var_4, var_4); var_6 = df::rotate(var_1, var_5); var_7 = df::float3(var_4, var_3, var_4); var_8 = df::rotate(var_1, var_7); var_9 = df::float3(var_4, var_4, var_3); var_10 = df::rotate(var_1, var_9); var_11 = df::mat33(var_6, var_8, var_10); var_12 = df::skew(var_2); var_13 = df::mul(var_12, var_11); var_14 = df::spatial_adjoint(var_11, var_13); var_15 = df::transpose(var_14); var_16 = df::mul(var_15, var_I); var_17 = df::mul(var_16, var_14); return var_17; } void adj_spatial_transform_inertia_cpu_func( spatial_transform var_t, spatial_matrix var_I, spatial_transform & adj_t, spatial_matrix & adj_I, spatial_matrix & adj_ret) { //--------- // primal vars spatial_transform var_0; quat var_1; df::float3 var_2; const float var_3 = 1.0; const float var_4 = 0.0; df::float3 var_5; df::float3 var_6; df::float3 var_7; df::float3 var_8; df::float3 var_9; df::float3 var_10; mat33 var_11; mat33 var_12; mat33 var_13; spatial_matrix var_14; spatial_matrix var_15; spatial_matrix var_16; spatial_matrix var_17; //--------- // dual vars spatial_transform adj_0 = 0; quat adj_1 = 0; df::float3 adj_2 = 0; float adj_3 = 0; float adj_4 = 0; df::float3 adj_5 = 0; df::float3 adj_6 = 0; df::float3 adj_7 = 0; df::float3 adj_8 = 0; df::float3 adj_9 = 0; df::float3 adj_10 = 0; mat33 adj_11 = 0; mat33 adj_12 = 0; mat33 adj_13 = 0; spatial_matrix adj_14 = 0; spatial_matrix adj_15 = 0; spatial_matrix adj_16 = 0; spatial_matrix adj_17 = 0; //--------- // forward var_0 = spatial_transform_inverse_cpu_func(var_t); var_1 = df::spatial_transform_get_rotation(var_0); var_2 = df::spatial_transform_get_translation(var_0); var_5 = df::float3(var_3, var_4, var_4); var_6 = df::rotate(var_1, var_5); var_7 = df::float3(var_4, var_3, var_4); var_8 = df::rotate(var_1, var_7); var_9 = df::float3(var_4, var_4, var_3); var_10 = df::rotate(var_1, var_9); var_11 = df::mat33(var_6, var_8, var_10); var_12 = df::skew(var_2); var_13 = df::mul(var_12, var_11); var_14 = df::spatial_adjoint(var_11, var_13); var_15 = df::transpose(var_14); var_16 = df::mul(var_15, var_I); var_17 = df::mul(var_16, var_14); goto label0; //--------- // reverse label0:; adj_17 += adj_ret; df::adj_mul(var_16, var_14, adj_16, adj_14, adj_17); df::adj_mul(var_15, var_I, adj_15, adj_I, adj_16); df::adj_transpose(var_14, adj_14, adj_15); df::adj_spatial_adjoint(var_11, var_13, adj_11, adj_13, adj_14); df::adj_mul(var_12, var_11, adj_12, adj_11, adj_13); df::adj_skew(var_2, adj_2, adj_12); df::adj_mat33(var_6, var_8, var_10, adj_6, adj_8, adj_10, adj_11); df::adj_rotate(var_1, var_9, adj_1, adj_9, adj_10); df::adj_float3(var_4, var_4, var_3, adj_4, adj_4, adj_3, adj_9); df::adj_rotate(var_1, var_7, adj_1, adj_7, adj_8); df::adj_float3(var_4, var_3, var_4, adj_4, adj_3, adj_4, adj_7); df::adj_rotate(var_1, var_5, adj_1, adj_5, adj_6); df::adj_float3(var_3, var_4, var_4, adj_3, adj_4, adj_4, adj_5); df::adj_spatial_transform_get_translation(var_0, adj_0, adj_2); df::adj_spatial_transform_get_rotation(var_0, adj_0, adj_1); adj_spatial_transform_inverse_cpu_func(var_t, adj_t, adj_0); return; } int compute_muscle_force_cpu_func( int var_i, spatial_transform* var_body_X_s, spatial_vector* var_body_v_s, int* var_muscle_links, df::float3* var_muscle_points, float var_muscle_activation, spatial_vector* var_body_f_s) { //--------- // primal vars int var_0; const int var_1 = 1; int var_2; int var_3; bool var_4; const int var_5 = 0; df::float3 var_6; int var_7; df::float3 var_8; spatial_transform var_9; spatial_transform var_10; df::float3 var_11; df::float3 var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; spatial_vector var_17; df::float3 var_18; spatial_vector var_19; //--------- // forward var_0 = df::load(var_muscle_links, var_i); var_2 = df::add(var_i, var_1); var_3 = df::load(var_muscle_links, var_2); var_4 = (var_0 == var_3); if (var_4) { return var_5; } var_6 = df::load(var_muscle_points, var_i); var_7 = df::add(var_i, var_1); var_8 = df::load(var_muscle_points, var_7); var_9 = df::load(var_body_X_s, var_0); var_10 = df::load(var_body_X_s, var_3); var_11 = df::spatial_transform_point(var_9, var_6); var_12 = df::spatial_transform_point(var_10, var_8); var_13 = df::sub(var_12, var_11); var_14 = df::normalize(var_13); var_15 = df::mul(var_14, var_muscle_activation); var_16 = df::cross(var_11, var_15); var_17 = df::spatial_vector(var_16, var_15); df::atomic_sub(var_body_f_s, var_0, var_17); var_18 = df::cross(var_12, var_15); var_19 = df::spatial_vector(var_18, var_15); df::atomic_add(var_body_f_s, var_3, var_19); return var_5; } void adj_compute_muscle_force_cpu_func( int var_i, spatial_transform* var_body_X_s, spatial_vector* var_body_v_s, int* var_muscle_links, df::float3* var_muscle_points, float var_muscle_activation, spatial_vector* var_body_f_s, int & adj_i, spatial_transform* adj_body_X_s, spatial_vector* adj_body_v_s, int* adj_muscle_links, df::float3* adj_muscle_points, float & adj_muscle_activation, spatial_vector* adj_body_f_s, int & adj_ret) { //--------- // primal vars int var_0; const int var_1 = 1; int var_2; int var_3; bool var_4; const int var_5 = 0; df::float3 var_6; int var_7; df::float3 var_8; spatial_transform var_9; spatial_transform var_10; df::float3 var_11; df::float3 var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; spatial_vector var_17; df::float3 var_18; spatial_vector var_19; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; bool adj_4 = 0; int adj_5 = 0; df::float3 adj_6 = 0; int adj_7 = 0; df::float3 adj_8 = 0; spatial_transform adj_9 = 0; spatial_transform adj_10 = 0; df::float3 adj_11 = 0; df::float3 adj_12 = 0; df::float3 adj_13 = 0; df::float3 adj_14 = 0; df::float3 adj_15 = 0; df::float3 adj_16 = 0; spatial_vector adj_17 = 0; df::float3 adj_18 = 0; spatial_vector adj_19 = 0; //--------- // forward var_0 = df::load(var_muscle_links, var_i); var_2 = df::add(var_i, var_1); var_3 = df::load(var_muscle_links, var_2); var_4 = (var_0 == var_3); if (var_4) { goto label0; } var_6 = df::load(var_muscle_points, var_i); var_7 = df::add(var_i, var_1); var_8 = df::load(var_muscle_points, var_7); var_9 = df::load(var_body_X_s, var_0); var_10 = df::load(var_body_X_s, var_3); var_11 = df::spatial_transform_point(var_9, var_6); var_12 = df::spatial_transform_point(var_10, var_8); var_13 = df::sub(var_12, var_11); var_14 = df::normalize(var_13); var_15 = df::mul(var_14, var_muscle_activation); var_16 = df::cross(var_11, var_15); var_17 = df::spatial_vector(var_16, var_15); df::atomic_sub(var_body_f_s, var_0, var_17); var_18 = df::cross(var_12, var_15); var_19 = df::spatial_vector(var_18, var_15); df::atomic_add(var_body_f_s, var_3, var_19); goto label1; //--------- // reverse label1:; adj_5 += adj_ret; df::adj_atomic_add(var_body_f_s, var_3, var_19, adj_body_f_s, adj_3, adj_19); df::adj_spatial_vector(var_18, var_15, adj_18, adj_15, adj_19); df::adj_cross(var_12, var_15, adj_12, adj_15, adj_18); df::adj_atomic_sub(var_body_f_s, var_0, var_17, adj_body_f_s, adj_0, adj_17); df::adj_spatial_vector(var_16, var_15, adj_16, adj_15, adj_17); df::adj_cross(var_11, var_15, adj_11, adj_15, adj_16); df::adj_mul(var_14, var_muscle_activation, adj_14, adj_muscle_activation, adj_15); df::adj_normalize(var_13, adj_13, adj_14); df::adj_sub(var_12, var_11, adj_12, adj_11, adj_13); df::adj_spatial_transform_point(var_10, var_8, adj_10, adj_8, adj_12); df::adj_spatial_transform_point(var_9, var_6, adj_9, adj_6, adj_11); df::adj_load(var_body_X_s, var_3, adj_body_X_s, adj_3, adj_10); df::adj_load(var_body_X_s, var_0, adj_body_X_s, adj_0, adj_9); df::adj_load(var_muscle_points, var_7, adj_muscle_points, adj_7, adj_8); df::adj_add(var_i, var_1, adj_i, adj_1, adj_7); df::adj_load(var_muscle_points, var_i, adj_muscle_points, adj_i, adj_6); if (var_4) { label0:; adj_5 += adj_ret; } df::adj_load(var_muscle_links, var_2, adj_muscle_links, adj_2, adj_3); df::adj_add(var_i, var_1, adj_i, adj_1, adj_2); df::adj_load(var_muscle_links, var_i, adj_muscle_links, adj_i, adj_0); return; } spatial_transform jcalc_transform_cpu_func( int var_type, df::float3 var_axis, float* var_joint_q, int var_start) { //--------- // primal vars const int var_0 = 0; bool var_1; float var_2; df::float3 var_3; quat var_4; spatial_transform var_5; const int var_6 = 1; bool var_7; float var_8; const float var_9 = 0.0; df::float3 var_10; quat var_11; spatial_transform var_12; float var_13; spatial_transform var_14; spatial_transform var_15; const int var_16 = 2; bool var_17; int var_18; float var_19; int var_20; float var_21; int var_22; float var_23; const int var_24 = 3; int var_25; float var_26; df::float3 var_27; quat var_28; spatial_transform var_29; spatial_transform var_30; spatial_transform var_31; bool var_32; spatial_transform var_33; spatial_transform var_34; spatial_transform var_35; const int var_36 = 4; bool var_37; int var_38; float var_39; int var_40; float var_41; int var_42; float var_43; int var_44; float var_45; int var_46; float var_47; const int var_48 = 5; int var_49; float var_50; const int var_51 = 6; int var_52; float var_53; df::float3 var_54; quat var_55; spatial_transform var_56; spatial_transform var_57; spatial_transform var_58; float var_59; float var_60; float var_61; float var_62; spatial_transform var_63; //--------- // forward var_1 = (var_type == var_0); if (var_1) { var_2 = df::load(var_joint_q, var_start); var_3 = df::mul(var_axis, var_2); var_4 = df::quat_identity(); var_5 = df::spatial_transform(var_3, var_4); return var_5; } var_7 = (var_type == var_6); if (var_7) { var_8 = df::load(var_joint_q, var_start); var_10 = df::float3(var_9, var_9, var_9); var_11 = df::quat_from_axis_angle(var_axis, var_8); var_12 = df::spatial_transform(var_10, var_11); return var_12; } var_13 = df::select(var_7, var_2, var_8); var_14 = df::select(var_7, var_5, var_12); var_15 = df::select(var_7, var_5, var_12); var_17 = (var_type == var_16); if (var_17) { var_18 = df::add(var_start, var_0); var_19 = df::load(var_joint_q, var_18); var_20 = df::add(var_start, var_6); var_21 = df::load(var_joint_q, var_20); var_22 = df::add(var_start, var_16); var_23 = df::load(var_joint_q, var_22); var_25 = df::add(var_start, var_24); var_26 = df::load(var_joint_q, var_25); var_27 = df::float3(var_9, var_9, var_9); var_28 = df::quat(var_19, var_21, var_23, var_26); var_29 = df::spatial_transform(var_27, var_28); return var_29; } var_30 = df::select(var_17, var_14, var_29); var_31 = df::select(var_17, var_15, var_29); var_32 = (var_type == var_24); if (var_32) { var_33 = df::spatial_transform_identity(); return var_33; } var_34 = df::select(var_32, var_30, var_33); var_35 = df::select(var_32, var_31, var_33); var_37 = (var_type == var_36); if (var_37) { var_38 = df::add(var_start, var_0); var_39 = df::load(var_joint_q, var_38); var_40 = df::add(var_start, var_6); var_41 = df::load(var_joint_q, var_40); var_42 = df::add(var_start, var_16); var_43 = df::load(var_joint_q, var_42); var_44 = df::add(var_start, var_24); var_45 = df::load(var_joint_q, var_44); var_46 = df::add(var_start, var_36); var_47 = df::load(var_joint_q, var_46); var_49 = df::add(var_start, var_48); var_50 = df::load(var_joint_q, var_49); var_52 = df::add(var_start, var_51); var_53 = df::load(var_joint_q, var_52); var_54 = df::float3(var_39, var_41, var_43); var_55 = df::quat(var_45, var_47, var_50, var_53); var_56 = df::spatial_transform(var_54, var_55); return var_56; } var_57 = df::select(var_37, var_34, var_56); var_58 = df::select(var_37, var_35, var_56); var_59 = df::select(var_37, var_19, var_45); var_60 = df::select(var_37, var_21, var_47); var_61 = df::select(var_37, var_23, var_50); var_62 = df::select(var_37, var_26, var_53); var_63 = df::spatial_transform_identity(); return var_63; } void adj_jcalc_transform_cpu_func( int var_type, df::float3 var_axis, float* var_joint_q, int var_start, int & adj_type, df::float3 & adj_axis, float* adj_joint_q, int & adj_start, spatial_transform & adj_ret) { //--------- // primal vars const int var_0 = 0; bool var_1; float var_2; df::float3 var_3; quat var_4; spatial_transform var_5; const int var_6 = 1; bool var_7; float var_8; const float var_9 = 0.0; df::float3 var_10; quat var_11; spatial_transform var_12; float var_13; spatial_transform var_14; spatial_transform var_15; const int var_16 = 2; bool var_17; int var_18; float var_19; int var_20; float var_21; int var_22; float var_23; const int var_24 = 3; int var_25; float var_26; df::float3 var_27; quat var_28; spatial_transform var_29; spatial_transform var_30; spatial_transform var_31; bool var_32; spatial_transform var_33; spatial_transform var_34; spatial_transform var_35; const int var_36 = 4; bool var_37; int var_38; float var_39; int var_40; float var_41; int var_42; float var_43; int var_44; float var_45; int var_46; float var_47; const int var_48 = 5; int var_49; float var_50; const int var_51 = 6; int var_52; float var_53; df::float3 var_54; quat var_55; spatial_transform var_56; spatial_transform var_57; spatial_transform var_58; float var_59; float var_60; float var_61; float var_62; spatial_transform var_63; //--------- // dual vars int adj_0 = 0; bool adj_1 = 0; float adj_2 = 0; df::float3 adj_3 = 0; quat adj_4 = 0; spatial_transform adj_5 = 0; int adj_6 = 0; bool adj_7 = 0; float adj_8 = 0; float adj_9 = 0; df::float3 adj_10 = 0; quat adj_11 = 0; spatial_transform adj_12 = 0; float adj_13 = 0; spatial_transform adj_14 = 0; spatial_transform adj_15 = 0; int adj_16 = 0; bool adj_17 = 0; int adj_18 = 0; float adj_19 = 0; int adj_20 = 0; float adj_21 = 0; int adj_22 = 0; float adj_23 = 0; int adj_24 = 0; int adj_25 = 0; float adj_26 = 0; df::float3 adj_27 = 0; quat adj_28 = 0; spatial_transform adj_29 = 0; spatial_transform adj_30 = 0; spatial_transform adj_31 = 0; bool adj_32 = 0; spatial_transform adj_33 = 0; spatial_transform adj_34 = 0; spatial_transform adj_35 = 0; int adj_36 = 0; bool adj_37 = 0; int adj_38 = 0; float adj_39 = 0; int adj_40 = 0; float adj_41 = 0; int adj_42 = 0; float adj_43 = 0; int adj_44 = 0; float adj_45 = 0; int adj_46 = 0; float adj_47 = 0; int adj_48 = 0; int adj_49 = 0; float adj_50 = 0; int adj_51 = 0; int adj_52 = 0; float adj_53 = 0; df::float3 adj_54 = 0; quat adj_55 = 0; spatial_transform adj_56 = 0; spatial_transform adj_57 = 0; spatial_transform adj_58 = 0; float adj_59 = 0; float adj_60 = 0; float adj_61 = 0; float adj_62 = 0; spatial_transform adj_63 = 0; //--------- // forward var_1 = (var_type == var_0); if (var_1) { var_2 = df::load(var_joint_q, var_start); var_3 = df::mul(var_axis, var_2); var_4 = df::quat_identity(); var_5 = df::spatial_transform(var_3, var_4); goto label0; } var_7 = (var_type == var_6); if (var_7) { var_8 = df::load(var_joint_q, var_start); var_10 = df::float3(var_9, var_9, var_9); var_11 = df::quat_from_axis_angle(var_axis, var_8); var_12 = df::spatial_transform(var_10, var_11); goto label1; } var_13 = df::select(var_7, var_2, var_8); var_14 = df::select(var_7, var_5, var_12); var_15 = df::select(var_7, var_5, var_12); var_17 = (var_type == var_16); if (var_17) { var_18 = df::add(var_start, var_0); var_19 = df::load(var_joint_q, var_18); var_20 = df::add(var_start, var_6); var_21 = df::load(var_joint_q, var_20); var_22 = df::add(var_start, var_16); var_23 = df::load(var_joint_q, var_22); var_25 = df::add(var_start, var_24); var_26 = df::load(var_joint_q, var_25); var_27 = df::float3(var_9, var_9, var_9); var_28 = df::quat(var_19, var_21, var_23, var_26); var_29 = df::spatial_transform(var_27, var_28); goto label2; } var_30 = df::select(var_17, var_14, var_29); var_31 = df::select(var_17, var_15, var_29); var_32 = (var_type == var_24); if (var_32) { var_33 = df::spatial_transform_identity(); goto label3; } var_34 = df::select(var_32, var_30, var_33); var_35 = df::select(var_32, var_31, var_33); var_37 = (var_type == var_36); if (var_37) { var_38 = df::add(var_start, var_0); var_39 = df::load(var_joint_q, var_38); var_40 = df::add(var_start, var_6); var_41 = df::load(var_joint_q, var_40); var_42 = df::add(var_start, var_16); var_43 = df::load(var_joint_q, var_42); var_44 = df::add(var_start, var_24); var_45 = df::load(var_joint_q, var_44); var_46 = df::add(var_start, var_36); var_47 = df::load(var_joint_q, var_46); var_49 = df::add(var_start, var_48); var_50 = df::load(var_joint_q, var_49); var_52 = df::add(var_start, var_51); var_53 = df::load(var_joint_q, var_52); var_54 = df::float3(var_39, var_41, var_43); var_55 = df::quat(var_45, var_47, var_50, var_53); var_56 = df::spatial_transform(var_54, var_55); goto label4; } var_57 = df::select(var_37, var_34, var_56); var_58 = df::select(var_37, var_35, var_56); var_59 = df::select(var_37, var_19, var_45); var_60 = df::select(var_37, var_21, var_47); var_61 = df::select(var_37, var_23, var_50); var_62 = df::select(var_37, var_26, var_53); var_63 = df::spatial_transform_identity(); goto label5; //--------- // reverse label5:; adj_63 += adj_ret; df::adj_select(var_37, var_26, var_53, adj_37, adj_26, adj_53, adj_62); df::adj_select(var_37, var_23, var_50, adj_37, adj_23, adj_50, adj_61); df::adj_select(var_37, var_21, var_47, adj_37, adj_21, adj_47, adj_60); df::adj_select(var_37, var_19, var_45, adj_37, adj_19, adj_45, adj_59); df::adj_select(var_37, var_35, var_56, adj_37, adj_35, adj_56, adj_58); df::adj_select(var_37, var_34, var_56, adj_37, adj_34, adj_56, adj_57); if (var_37) { label4:; adj_56 += adj_ret; df::adj_spatial_transform(var_54, var_55, adj_54, adj_55, adj_56); df::adj_quat(var_45, var_47, var_50, var_53, adj_45, adj_47, adj_50, adj_53, adj_55); df::adj_float3(var_39, var_41, var_43, adj_39, adj_41, adj_43, adj_54); df::adj_load(var_joint_q, var_52, adj_joint_q, adj_52, adj_53); df::adj_add(var_start, var_51, adj_start, adj_51, adj_52); df::adj_load(var_joint_q, var_49, adj_joint_q, adj_49, adj_50); df::adj_add(var_start, var_48, adj_start, adj_48, adj_49); df::adj_load(var_joint_q, var_46, adj_joint_q, adj_46, adj_47); df::adj_add(var_start, var_36, adj_start, adj_36, adj_46); df::adj_load(var_joint_q, var_44, adj_joint_q, adj_44, adj_45); df::adj_add(var_start, var_24, adj_start, adj_24, adj_44); df::adj_load(var_joint_q, var_42, adj_joint_q, adj_42, adj_43); df::adj_add(var_start, var_16, adj_start, adj_16, adj_42); df::adj_load(var_joint_q, var_40, adj_joint_q, adj_40, adj_41); df::adj_add(var_start, var_6, adj_start, adj_6, adj_40); df::adj_load(var_joint_q, var_38, adj_joint_q, adj_38, adj_39); df::adj_add(var_start, var_0, adj_start, adj_0, adj_38); } df::adj_select(var_32, var_31, var_33, adj_32, adj_31, adj_33, adj_35); df::adj_select(var_32, var_30, var_33, adj_32, adj_30, adj_33, adj_34); if (var_32) { label3:; adj_33 += adj_ret; } df::adj_select(var_17, var_15, var_29, adj_17, adj_15, adj_29, adj_31); df::adj_select(var_17, var_14, var_29, adj_17, adj_14, adj_29, adj_30); if (var_17) { label2:; adj_29 += adj_ret; df::adj_spatial_transform(var_27, var_28, adj_27, adj_28, adj_29); df::adj_quat(var_19, var_21, var_23, var_26, adj_19, adj_21, adj_23, adj_26, adj_28); df::adj_float3(var_9, var_9, var_9, adj_9, adj_9, adj_9, adj_27); df::adj_load(var_joint_q, var_25, adj_joint_q, adj_25, adj_26); df::adj_add(var_start, var_24, adj_start, adj_24, adj_25); df::adj_load(var_joint_q, var_22, adj_joint_q, adj_22, adj_23); df::adj_add(var_start, var_16, adj_start, adj_16, adj_22); df::adj_load(var_joint_q, var_20, adj_joint_q, adj_20, adj_21); df::adj_add(var_start, var_6, adj_start, adj_6, adj_20); df::adj_load(var_joint_q, var_18, adj_joint_q, adj_18, adj_19); df::adj_add(var_start, var_0, adj_start, adj_0, adj_18); } df::adj_select(var_7, var_5, var_12, adj_7, adj_5, adj_12, adj_15); df::adj_select(var_7, var_5, var_12, adj_7, adj_5, adj_12, adj_14); df::adj_select(var_7, var_2, var_8, adj_7, adj_2, adj_8, adj_13); if (var_7) { label1:; adj_12 += adj_ret; df::adj_spatial_transform(var_10, var_11, adj_10, adj_11, adj_12); df::adj_quat_from_axis_angle(var_axis, var_8, adj_axis, adj_8, adj_11); df::adj_float3(var_9, var_9, var_9, adj_9, adj_9, adj_9, adj_10); df::adj_load(var_joint_q, var_start, adj_joint_q, adj_start, adj_8); } if (var_1) { label0:; adj_5 += adj_ret; df::adj_spatial_transform(var_3, var_4, adj_3, adj_4, adj_5); df::adj_mul(var_axis, var_2, adj_axis, adj_2, adj_3); df::adj_load(var_joint_q, var_start, adj_joint_q, adj_start, adj_2); } return; } spatial_vector jcalc_motion_cpu_func( int var_type, df::float3 var_axis, spatial_transform var_X_sc, spatial_vector* var_joint_S_s, float* var_joint_qd, int var_joint_start) { //--------- // primal vars const int var_0 = 0; bool var_1; const float var_2 = 0.0; df::float3 var_3; spatial_vector var_4; spatial_vector var_5; float var_6; spatial_vector var_7; const int var_8 = 1; bool var_9; df::float3 var_10; spatial_vector var_11; spatial_vector var_12; float var_13; spatial_vector var_14; spatial_vector var_15; spatial_vector var_16; spatial_vector var_17; const int var_18 = 2; bool var_19; int var_20; float var_21; int var_22; float var_23; int var_24; float var_25; df::float3 var_26; const float var_27 = 1.0; spatial_vector var_28; spatial_vector var_29; spatial_vector var_30; spatial_vector var_31; spatial_vector var_32; spatial_vector var_33; int var_34; int var_35; int var_36; float var_37; spatial_vector var_38; float var_39; spatial_vector var_40; spatial_vector var_41; float var_42; spatial_vector var_43; spatial_vector var_44; spatial_vector var_45; const int var_46 = 3; bool var_47; spatial_vector var_48; spatial_vector var_49; const int var_50 = 4; bool var_51; int var_52; float var_53; int var_54; float var_55; int var_56; float var_57; int var_58; float var_59; int var_60; float var_61; const int var_62 = 5; int var_63; float var_64; spatial_vector var_65; int var_66; spatial_vector var_67; int var_68; spatial_vector var_69; int var_70; spatial_vector var_71; int var_72; spatial_vector var_73; int var_74; spatial_vector var_75; int var_76; spatial_vector var_77; spatial_vector var_78; spatial_vector var_79; spatial_vector var_80; //--------- // forward var_1 = (var_type == var_0); if (var_1) { var_3 = df::float3(var_2, var_2, var_2); var_4 = df::spatial_vector(var_3, var_axis); var_5 = spatial_transform_twist_cpu_func(var_X_sc, var_4); var_6 = df::load(var_joint_qd, var_joint_start); var_7 = df::mul(var_5, var_6); df::store(var_joint_S_s, var_joint_start, var_5); return var_7; } var_9 = (var_type == var_8); if (var_9) { var_10 = df::float3(var_2, var_2, var_2); var_11 = df::spatial_vector(var_axis, var_10); var_12 = spatial_transform_twist_cpu_func(var_X_sc, var_11); var_13 = df::load(var_joint_qd, var_joint_start); var_14 = df::mul(var_12, var_13); df::store(var_joint_S_s, var_joint_start, var_12); return var_14; } var_15 = df::select(var_9, var_5, var_12); var_16 = df::select(var_9, var_7, var_14); var_17 = df::select(var_9, var_7, var_14); var_19 = (var_type == var_18); if (var_19) { var_20 = df::add(var_joint_start, var_0); var_21 = df::load(var_joint_qd, var_20); var_22 = df::add(var_joint_start, var_8); var_23 = df::load(var_joint_qd, var_22); var_24 = df::add(var_joint_start, var_18); var_25 = df::load(var_joint_qd, var_24); var_26 = df::float3(var_21, var_23, var_25); var_28 = df::spatial_vector(var_27, var_2, var_2, var_2, var_2, var_2); var_29 = spatial_transform_twist_cpu_func(var_X_sc, var_28); var_30 = df::spatial_vector(var_2, var_27, var_2, var_2, var_2, var_2); var_31 = spatial_transform_twist_cpu_func(var_X_sc, var_30); var_32 = df::spatial_vector(var_2, var_2, var_27, var_2, var_2, var_2); var_33 = spatial_transform_twist_cpu_func(var_X_sc, var_32); var_34 = df::add(var_joint_start, var_0); df::store(var_joint_S_s, var_34, var_29); var_35 = df::add(var_joint_start, var_8); df::store(var_joint_S_s, var_35, var_31); var_36 = df::add(var_joint_start, var_18); df::store(var_joint_S_s, var_36, var_33); var_37 = df::index(var_26, var_0); var_38 = df::mul(var_29, var_37); var_39 = df::index(var_26, var_8); var_40 = df::mul(var_31, var_39); var_41 = df::add(var_38, var_40); var_42 = df::index(var_26, var_18); var_43 = df::mul(var_33, var_42); var_44 = df::add(var_41, var_43); return var_44; } var_45 = df::select(var_19, var_17, var_44); var_47 = (var_type == var_46); if (var_47) { var_48 = df::spatial_vector(); return var_48; } var_49 = df::select(var_47, var_45, var_48); var_51 = (var_type == var_50); if (var_51) { var_52 = df::add(var_joint_start, var_0); var_53 = df::load(var_joint_qd, var_52); var_54 = df::add(var_joint_start, var_8); var_55 = df::load(var_joint_qd, var_54); var_56 = df::add(var_joint_start, var_18); var_57 = df::load(var_joint_qd, var_56); var_58 = df::add(var_joint_start, var_46); var_59 = df::load(var_joint_qd, var_58); var_60 = df::add(var_joint_start, var_50); var_61 = df::load(var_joint_qd, var_60); var_63 = df::add(var_joint_start, var_62); var_64 = df::load(var_joint_qd, var_63); var_65 = df::spatial_vector(var_53, var_55, var_57, var_59, var_61, var_64); var_66 = df::add(var_joint_start, var_0); var_67 = df::spatial_vector(var_27, var_2, var_2, var_2, var_2, var_2); df::store(var_joint_S_s, var_66, var_67); var_68 = df::add(var_joint_start, var_8); var_69 = df::spatial_vector(var_2, var_27, var_2, var_2, var_2, var_2); df::store(var_joint_S_s, var_68, var_69); var_70 = df::add(var_joint_start, var_18); var_71 = df::spatial_vector(var_2, var_2, var_27, var_2, var_2, var_2); df::store(var_joint_S_s, var_70, var_71); var_72 = df::add(var_joint_start, var_46); var_73 = df::spatial_vector(var_2, var_2, var_2, var_27, var_2, var_2); df::store(var_joint_S_s, var_72, var_73); var_74 = df::add(var_joint_start, var_50); var_75 = df::spatial_vector(var_2, var_2, var_2, var_2, var_27, var_2); df::store(var_joint_S_s, var_74, var_75); var_76 = df::add(var_joint_start, var_62); var_77 = df::spatial_vector(var_2, var_2, var_2, var_2, var_2, var_27); df::store(var_joint_S_s, var_76, var_77); return var_65; } var_78 = df::select(var_51, var_16, var_65); var_79 = df::select(var_51, var_49, var_65); var_80 = df::spatial_vector(); return var_80; } void adj_jcalc_motion_cpu_func( int var_type, df::float3 var_axis, spatial_transform var_X_sc, spatial_vector* var_joint_S_s, float* var_joint_qd, int var_joint_start, int & adj_type, df::float3 & adj_axis, spatial_transform & adj_X_sc, spatial_vector* adj_joint_S_s, float* adj_joint_qd, int & adj_joint_start, spatial_vector & adj_ret) { //--------- // primal vars const int var_0 = 0; bool var_1; const float var_2 = 0.0; df::float3 var_3; spatial_vector var_4; spatial_vector var_5; float var_6; spatial_vector var_7; const int var_8 = 1; bool var_9; df::float3 var_10; spatial_vector var_11; spatial_vector var_12; float var_13; spatial_vector var_14; spatial_vector var_15; spatial_vector var_16; spatial_vector var_17; const int var_18 = 2; bool var_19; int var_20; float var_21; int var_22; float var_23; int var_24; float var_25; df::float3 var_26; const float var_27 = 1.0; spatial_vector var_28; spatial_vector var_29; spatial_vector var_30; spatial_vector var_31; spatial_vector var_32; spatial_vector var_33; int var_34; int var_35; int var_36; float var_37; spatial_vector var_38; float var_39; spatial_vector var_40; spatial_vector var_41; float var_42; spatial_vector var_43; spatial_vector var_44; spatial_vector var_45; const int var_46 = 3; bool var_47; spatial_vector var_48; spatial_vector var_49; const int var_50 = 4; bool var_51; int var_52; float var_53; int var_54; float var_55; int var_56; float var_57; int var_58; float var_59; int var_60; float var_61; const int var_62 = 5; int var_63; float var_64; spatial_vector var_65; int var_66; spatial_vector var_67; int var_68; spatial_vector var_69; int var_70; spatial_vector var_71; int var_72; spatial_vector var_73; int var_74; spatial_vector var_75; int var_76; spatial_vector var_77; spatial_vector var_78; spatial_vector var_79; spatial_vector var_80; //--------- // dual vars int adj_0 = 0; bool adj_1 = 0; float adj_2 = 0; df::float3 adj_3 = 0; spatial_vector adj_4 = 0; spatial_vector adj_5 = 0; float adj_6 = 0; spatial_vector adj_7 = 0; int adj_8 = 0; bool adj_9 = 0; df::float3 adj_10 = 0; spatial_vector adj_11 = 0; spatial_vector adj_12 = 0; float adj_13 = 0; spatial_vector adj_14 = 0; spatial_vector adj_15 = 0; spatial_vector adj_16 = 0; spatial_vector adj_17 = 0; int adj_18 = 0; bool adj_19 = 0; int adj_20 = 0; float adj_21 = 0; int adj_22 = 0; float adj_23 = 0; int adj_24 = 0; float adj_25 = 0; df::float3 adj_26 = 0; float adj_27 = 0; spatial_vector adj_28 = 0; spatial_vector adj_29 = 0; spatial_vector adj_30 = 0; spatial_vector adj_31 = 0; spatial_vector adj_32 = 0; spatial_vector adj_33 = 0; int adj_34 = 0; int adj_35 = 0; int adj_36 = 0; float adj_37 = 0; spatial_vector adj_38 = 0; float adj_39 = 0; spatial_vector adj_40 = 0; spatial_vector adj_41 = 0; float adj_42 = 0; spatial_vector adj_43 = 0; spatial_vector adj_44 = 0; spatial_vector adj_45 = 0; int adj_46 = 0; bool adj_47 = 0; spatial_vector adj_48 = 0; spatial_vector adj_49 = 0; int adj_50 = 0; bool adj_51 = 0; int adj_52 = 0; float adj_53 = 0; int adj_54 = 0; float adj_55 = 0; int adj_56 = 0; float adj_57 = 0; int adj_58 = 0; float adj_59 = 0; int adj_60 = 0; float adj_61 = 0; int adj_62 = 0; int adj_63 = 0; float adj_64 = 0; spatial_vector adj_65 = 0; int adj_66 = 0; spatial_vector adj_67 = 0; int adj_68 = 0; spatial_vector adj_69 = 0; int adj_70 = 0; spatial_vector adj_71 = 0; int adj_72 = 0; spatial_vector adj_73 = 0; int adj_74 = 0; spatial_vector adj_75 = 0; int adj_76 = 0; spatial_vector adj_77 = 0; spatial_vector adj_78 = 0; spatial_vector adj_79 = 0; spatial_vector adj_80 = 0; //--------- // forward var_1 = (var_type == var_0); if (var_1) { var_3 = df::float3(var_2, var_2, var_2); var_4 = df::spatial_vector(var_3, var_axis); var_5 = spatial_transform_twist_cpu_func(var_X_sc, var_4); var_6 = df::load(var_joint_qd, var_joint_start); var_7 = df::mul(var_5, var_6); df::store(var_joint_S_s, var_joint_start, var_5); goto label0; } var_9 = (var_type == var_8); if (var_9) { var_10 = df::float3(var_2, var_2, var_2); var_11 = df::spatial_vector(var_axis, var_10); var_12 = spatial_transform_twist_cpu_func(var_X_sc, var_11); var_13 = df::load(var_joint_qd, var_joint_start); var_14 = df::mul(var_12, var_13); df::store(var_joint_S_s, var_joint_start, var_12); goto label1; } var_15 = df::select(var_9, var_5, var_12); var_16 = df::select(var_9, var_7, var_14); var_17 = df::select(var_9, var_7, var_14); var_19 = (var_type == var_18); if (var_19) { var_20 = df::add(var_joint_start, var_0); var_21 = df::load(var_joint_qd, var_20); var_22 = df::add(var_joint_start, var_8); var_23 = df::load(var_joint_qd, var_22); var_24 = df::add(var_joint_start, var_18); var_25 = df::load(var_joint_qd, var_24); var_26 = df::float3(var_21, var_23, var_25); var_28 = df::spatial_vector(var_27, var_2, var_2, var_2, var_2, var_2); var_29 = spatial_transform_twist_cpu_func(var_X_sc, var_28); var_30 = df::spatial_vector(var_2, var_27, var_2, var_2, var_2, var_2); var_31 = spatial_transform_twist_cpu_func(var_X_sc, var_30); var_32 = df::spatial_vector(var_2, var_2, var_27, var_2, var_2, var_2); var_33 = spatial_transform_twist_cpu_func(var_X_sc, var_32); var_34 = df::add(var_joint_start, var_0); df::store(var_joint_S_s, var_34, var_29); var_35 = df::add(var_joint_start, var_8); df::store(var_joint_S_s, var_35, var_31); var_36 = df::add(var_joint_start, var_18); df::store(var_joint_S_s, var_36, var_33); var_37 = df::index(var_26, var_0); var_38 = df::mul(var_29, var_37); var_39 = df::index(var_26, var_8); var_40 = df::mul(var_31, var_39); var_41 = df::add(var_38, var_40); var_42 = df::index(var_26, var_18); var_43 = df::mul(var_33, var_42); var_44 = df::add(var_41, var_43); goto label2; } var_45 = df::select(var_19, var_17, var_44); var_47 = (var_type == var_46); if (var_47) { var_48 = df::spatial_vector(); goto label3; } var_49 = df::select(var_47, var_45, var_48); var_51 = (var_type == var_50); if (var_51) { var_52 = df::add(var_joint_start, var_0); var_53 = df::load(var_joint_qd, var_52); var_54 = df::add(var_joint_start, var_8); var_55 = df::load(var_joint_qd, var_54); var_56 = df::add(var_joint_start, var_18); var_57 = df::load(var_joint_qd, var_56); var_58 = df::add(var_joint_start, var_46); var_59 = df::load(var_joint_qd, var_58); var_60 = df::add(var_joint_start, var_50); var_61 = df::load(var_joint_qd, var_60); var_63 = df::add(var_joint_start, var_62); var_64 = df::load(var_joint_qd, var_63); var_65 = df::spatial_vector(var_53, var_55, var_57, var_59, var_61, var_64); var_66 = df::add(var_joint_start, var_0); var_67 = df::spatial_vector(var_27, var_2, var_2, var_2, var_2, var_2); df::store(var_joint_S_s, var_66, var_67); var_68 = df::add(var_joint_start, var_8); var_69 = df::spatial_vector(var_2, var_27, var_2, var_2, var_2, var_2); df::store(var_joint_S_s, var_68, var_69); var_70 = df::add(var_joint_start, var_18); var_71 = df::spatial_vector(var_2, var_2, var_27, var_2, var_2, var_2); df::store(var_joint_S_s, var_70, var_71); var_72 = df::add(var_joint_start, var_46); var_73 = df::spatial_vector(var_2, var_2, var_2, var_27, var_2, var_2); df::store(var_joint_S_s, var_72, var_73); var_74 = df::add(var_joint_start, var_50); var_75 = df::spatial_vector(var_2, var_2, var_2, var_2, var_27, var_2); df::store(var_joint_S_s, var_74, var_75); var_76 = df::add(var_joint_start, var_62); var_77 = df::spatial_vector(var_2, var_2, var_2, var_2, var_2, var_27); df::store(var_joint_S_s, var_76, var_77); goto label4; } var_78 = df::select(var_51, var_16, var_65); var_79 = df::select(var_51, var_49, var_65); var_80 = df::spatial_vector(); goto label5; //--------- // reverse label5:; adj_80 += adj_ret; df::adj_select(var_51, var_49, var_65, adj_51, adj_49, adj_65, adj_79); df::adj_select(var_51, var_16, var_65, adj_51, adj_16, adj_65, adj_78); if (var_51) { label4:; adj_65 += adj_ret; df::adj_store(var_joint_S_s, var_76, var_77, adj_joint_S_s, adj_76, adj_77); df::adj_spatial_vector(var_2, var_2, var_2, var_2, var_2, var_27, adj_2, adj_2, adj_2, adj_2, adj_2, adj_27, adj_77); df::adj_add(var_joint_start, var_62, adj_joint_start, adj_62, adj_76); df::adj_store(var_joint_S_s, var_74, var_75, adj_joint_S_s, adj_74, adj_75); df::adj_spatial_vector(var_2, var_2, var_2, var_2, var_27, var_2, adj_2, adj_2, adj_2, adj_2, adj_27, adj_2, adj_75); df::adj_add(var_joint_start, var_50, adj_joint_start, adj_50, adj_74); df::adj_store(var_joint_S_s, var_72, var_73, adj_joint_S_s, adj_72, adj_73); df::adj_spatial_vector(var_2, var_2, var_2, var_27, var_2, var_2, adj_2, adj_2, adj_2, adj_27, adj_2, adj_2, adj_73); df::adj_add(var_joint_start, var_46, adj_joint_start, adj_46, adj_72); df::adj_store(var_joint_S_s, var_70, var_71, adj_joint_S_s, adj_70, adj_71); df::adj_spatial_vector(var_2, var_2, var_27, var_2, var_2, var_2, adj_2, adj_2, adj_27, adj_2, adj_2, adj_2, adj_71); df::adj_add(var_joint_start, var_18, adj_joint_start, adj_18, adj_70); df::adj_store(var_joint_S_s, var_68, var_69, adj_joint_S_s, adj_68, adj_69); df::adj_spatial_vector(var_2, var_27, var_2, var_2, var_2, var_2, adj_2, adj_27, adj_2, adj_2, adj_2, adj_2, adj_69); df::adj_add(var_joint_start, var_8, adj_joint_start, adj_8, adj_68); df::adj_store(var_joint_S_s, var_66, var_67, adj_joint_S_s, adj_66, adj_67); df::adj_spatial_vector(var_27, var_2, var_2, var_2, var_2, var_2, adj_27, adj_2, adj_2, adj_2, adj_2, adj_2, adj_67); df::adj_add(var_joint_start, var_0, adj_joint_start, adj_0, adj_66); df::adj_spatial_vector(var_53, var_55, var_57, var_59, var_61, var_64, adj_53, adj_55, adj_57, adj_59, adj_61, adj_64, adj_65); df::adj_load(var_joint_qd, var_63, adj_joint_qd, adj_63, adj_64); df::adj_add(var_joint_start, var_62, adj_joint_start, adj_62, adj_63); df::adj_load(var_joint_qd, var_60, adj_joint_qd, adj_60, adj_61); df::adj_add(var_joint_start, var_50, adj_joint_start, adj_50, adj_60); df::adj_load(var_joint_qd, var_58, adj_joint_qd, adj_58, adj_59); df::adj_add(var_joint_start, var_46, adj_joint_start, adj_46, adj_58); df::adj_load(var_joint_qd, var_56, adj_joint_qd, adj_56, adj_57); df::adj_add(var_joint_start, var_18, adj_joint_start, adj_18, adj_56); df::adj_load(var_joint_qd, var_54, adj_joint_qd, adj_54, adj_55); df::adj_add(var_joint_start, var_8, adj_joint_start, adj_8, adj_54); df::adj_load(var_joint_qd, var_52, adj_joint_qd, adj_52, adj_53); df::adj_add(var_joint_start, var_0, adj_joint_start, adj_0, adj_52); } df::adj_select(var_47, var_45, var_48, adj_47, adj_45, adj_48, adj_49); if (var_47) { label3:; adj_48 += adj_ret; } df::adj_select(var_19, var_17, var_44, adj_19, adj_17, adj_44, adj_45); if (var_19) { label2:; adj_44 += adj_ret; df::adj_add(var_41, var_43, adj_41, adj_43, adj_44); df::adj_mul(var_33, var_42, adj_33, adj_42, adj_43); df::adj_index(var_26, var_18, adj_26, adj_18, adj_42); df::adj_add(var_38, var_40, adj_38, adj_40, adj_41); df::adj_mul(var_31, var_39, adj_31, adj_39, adj_40); df::adj_index(var_26, var_8, adj_26, adj_8, adj_39); df::adj_mul(var_29, var_37, adj_29, adj_37, adj_38); df::adj_index(var_26, var_0, adj_26, adj_0, adj_37); df::adj_store(var_joint_S_s, var_36, var_33, adj_joint_S_s, adj_36, adj_33); df::adj_add(var_joint_start, var_18, adj_joint_start, adj_18, adj_36); df::adj_store(var_joint_S_s, var_35, var_31, adj_joint_S_s, adj_35, adj_31); df::adj_add(var_joint_start, var_8, adj_joint_start, adj_8, adj_35); df::adj_store(var_joint_S_s, var_34, var_29, adj_joint_S_s, adj_34, adj_29); df::adj_add(var_joint_start, var_0, adj_joint_start, adj_0, adj_34); adj_spatial_transform_twist_cpu_func(var_X_sc, var_32, adj_X_sc, adj_32, adj_33); df::adj_spatial_vector(var_2, var_2, var_27, var_2, var_2, var_2, adj_2, adj_2, adj_27, adj_2, adj_2, adj_2, adj_32); adj_spatial_transform_twist_cpu_func(var_X_sc, var_30, adj_X_sc, adj_30, adj_31); df::adj_spatial_vector(var_2, var_27, var_2, var_2, var_2, var_2, adj_2, adj_27, adj_2, adj_2, adj_2, adj_2, adj_30); adj_spatial_transform_twist_cpu_func(var_X_sc, var_28, adj_X_sc, adj_28, adj_29); df::adj_spatial_vector(var_27, var_2, var_2, var_2, var_2, var_2, adj_27, adj_2, adj_2, adj_2, adj_2, adj_2, adj_28); df::adj_float3(var_21, var_23, var_25, adj_21, adj_23, adj_25, adj_26); df::adj_load(var_joint_qd, var_24, adj_joint_qd, adj_24, adj_25); df::adj_add(var_joint_start, var_18, adj_joint_start, adj_18, adj_24); df::adj_load(var_joint_qd, var_22, adj_joint_qd, adj_22, adj_23); df::adj_add(var_joint_start, var_8, adj_joint_start, adj_8, adj_22); df::adj_load(var_joint_qd, var_20, adj_joint_qd, adj_20, adj_21); df::adj_add(var_joint_start, var_0, adj_joint_start, adj_0, adj_20); } df::adj_select(var_9, var_7, var_14, adj_9, adj_7, adj_14, adj_17); df::adj_select(var_9, var_7, var_14, adj_9, adj_7, adj_14, adj_16); df::adj_select(var_9, var_5, var_12, adj_9, adj_5, adj_12, adj_15); if (var_9) { label1:; adj_14 += adj_ret; df::adj_store(var_joint_S_s, var_joint_start, var_12, adj_joint_S_s, adj_joint_start, adj_12); df::adj_mul(var_12, var_13, adj_12, adj_13, adj_14); df::adj_load(var_joint_qd, var_joint_start, adj_joint_qd, adj_joint_start, adj_13); adj_spatial_transform_twist_cpu_func(var_X_sc, var_11, adj_X_sc, adj_11, adj_12); df::adj_spatial_vector(var_axis, var_10, adj_axis, adj_10, adj_11); df::adj_float3(var_2, var_2, var_2, adj_2, adj_2, adj_2, adj_10); } if (var_1) { label0:; adj_7 += adj_ret; df::adj_store(var_joint_S_s, var_joint_start, var_5, adj_joint_S_s, adj_joint_start, adj_5); df::adj_mul(var_5, var_6, adj_5, adj_6, adj_7); df::adj_load(var_joint_qd, var_joint_start, adj_joint_qd, adj_joint_start, adj_6); adj_spatial_transform_twist_cpu_func(var_X_sc, var_4, adj_X_sc, adj_4, adj_5); df::adj_spatial_vector(var_3, var_axis, adj_3, adj_axis, adj_4); df::adj_float3(var_2, var_2, var_2, adj_2, adj_2, adj_2, adj_3); } return; } int jcalc_tau_cpu_func( int var_type, float var_target_k_e, float var_target_k_d, float var_limit_k_e, float var_limit_k_d, spatial_vector* var_joint_S_s, float* var_joint_q, float* var_joint_qd, float* var_joint_act, float* var_joint_target, float* var_joint_limit_lower, float* var_joint_limit_upper, int var_coord_start, int var_dof_start, spatial_vector var_body_f_s, float* var_tau) { //--------- // primal vars const int var_0 = 0; bool var_1; const int var_2 = 1; bool var_3; bool var_4; spatial_vector var_5; float var_6; float var_7; float var_8; float var_9; float var_10; float var_11; const float var_12 = 0.0; bool var_13; float var_14; float var_15; float var_16; bool var_17; float var_18; float var_19; float var_20; float var_21; float var_22; float var_23; float var_24; float var_25; float var_26; float var_27; float var_28; float var_29; float var_30; float var_31; float var_32; const int var_33 = 2; bool var_34; int var_35; float var_36; int var_37; float var_38; int var_39; float var_40; df::float3 var_41; int var_42; float var_43; int var_44; float var_45; int var_46; float var_47; df::float3 var_48; const int var_49 = 0; int var_50; spatial_vector var_51; float var_52; float var_53; int var_54; float var_55; float var_56; float var_57; float var_58; float var_59; float var_60; const int var_61 = 1; int var_62; spatial_vector var_63; float var_64; float var_65; int var_66; float var_67; float var_68; float var_69; float var_70; float var_71; float var_72; const int var_73 = 2; int var_74; spatial_vector var_75; float var_76; float var_77; int var_78; float var_79; float var_80; float var_81; float var_82; float var_83; float var_84; spatial_vector var_85; const int var_86 = 4; bool var_87; const int var_88 = 0; int var_89; spatial_vector var_90; int var_91; float var_92; float var_93; const int var_94 = 1; int var_95; spatial_vector var_96; int var_97; float var_98; float var_99; const int var_100 = 2; int var_101; spatial_vector var_102; int var_103; float var_104; float var_105; const int var_106 = 3; int var_107; spatial_vector var_108; int var_109; float var_110; float var_111; const int var_112 = 4; int var_113; spatial_vector var_114; int var_115; float var_116; float var_117; const int var_118 = 5; int var_119; spatial_vector var_120; int var_121; float var_122; float var_123; spatial_vector var_124; int var_125; //--------- // forward var_1 = (var_type == var_0); var_3 = (var_type == var_2); var_4 = var_1 || var_3; if (var_4) { var_5 = df::load(var_joint_S_s, var_dof_start); var_6 = df::load(var_joint_q, var_coord_start); var_7 = df::load(var_joint_qd, var_dof_start); var_8 = df::load(var_joint_act, var_dof_start); var_9 = df::load(var_joint_target, var_coord_start); var_10 = df::load(var_joint_limit_lower, var_coord_start); var_11 = df::load(var_joint_limit_upper, var_coord_start); var_13 = (var_6 < var_10); if (var_13) { var_14 = df::sub(var_10, var_6); var_15 = df::mul(var_limit_k_e, var_14); } var_16 = df::select(var_13, var_12, var_15); var_17 = (var_6 > var_11); if (var_17) { var_18 = df::sub(var_11, var_6); var_19 = df::mul(var_limit_k_e, var_18); } var_20 = df::select(var_17, var_16, var_19); var_21 = df::sub(var_12, var_limit_k_d); var_22 = df::mul(var_21, var_7); var_23 = df::spatial_dot(var_5, var_body_f_s); var_24 = df::sub(var_12, var_23); var_25 = df::sub(var_6, var_9); var_26 = df::mul(var_target_k_e, var_25); var_27 = df::sub(var_24, var_26); var_28 = df::mul(var_target_k_d, var_7); var_29 = df::sub(var_27, var_28); var_30 = df::add(var_29, var_8); var_31 = df::add(var_30, var_20); var_32 = df::add(var_31, var_22); df::store(var_tau, var_dof_start, var_32); } var_34 = (var_type == var_33); if (var_34) { var_35 = df::add(var_coord_start, var_0); var_36 = df::load(var_joint_q, var_35); var_37 = df::add(var_coord_start, var_2); var_38 = df::load(var_joint_q, var_37); var_39 = df::add(var_coord_start, var_33); var_40 = df::load(var_joint_q, var_39); var_41 = df::float3(var_36, var_38, var_40); var_42 = df::add(var_dof_start, var_0); var_43 = df::load(var_joint_qd, var_42); var_44 = df::add(var_dof_start, var_2); var_45 = df::load(var_joint_qd, var_44); var_46 = df::add(var_dof_start, var_33); var_47 = df::load(var_joint_qd, var_46); var_48 = df::float3(var_43, var_45, var_47); var_50 = df::add(var_dof_start, var_49); var_51 = df::load(var_joint_S_s, var_50); var_52 = df::index(var_48, var_49); var_53 = df::index(var_41, var_49); var_54 = df::add(var_dof_start, var_49); var_55 = df::spatial_dot(var_51, var_body_f_s); var_56 = df::sub(var_12, var_55); var_57 = df::mul(var_52, var_target_k_d); var_58 = df::sub(var_56, var_57); var_59 = df::mul(var_53, var_target_k_e); var_60 = df::sub(var_58, var_59); df::store(var_tau, var_54, var_60); var_62 = df::add(var_dof_start, var_61); var_63 = df::load(var_joint_S_s, var_62); var_64 = df::index(var_48, var_61); var_65 = df::index(var_41, var_61); var_66 = df::add(var_dof_start, var_61); var_67 = df::spatial_dot(var_63, var_body_f_s); var_68 = df::sub(var_12, var_67); var_69 = df::mul(var_64, var_target_k_d); var_70 = df::sub(var_68, var_69); var_71 = df::mul(var_65, var_target_k_e); var_72 = df::sub(var_70, var_71); df::store(var_tau, var_66, var_72); var_74 = df::add(var_dof_start, var_73); var_75 = df::load(var_joint_S_s, var_74); var_76 = df::index(var_48, var_73); var_77 = df::index(var_41, var_73); var_78 = df::add(var_dof_start, var_73); var_79 = df::spatial_dot(var_75, var_body_f_s); var_80 = df::sub(var_12, var_79); var_81 = df::mul(var_76, var_target_k_d); var_82 = df::sub(var_80, var_81); var_83 = df::mul(var_77, var_target_k_e); var_84 = df::sub(var_82, var_83); df::store(var_tau, var_78, var_84); } var_85 = df::select(var_34, var_5, var_75); var_87 = (var_type == var_86); if (var_87) { var_89 = df::add(var_dof_start, var_88); var_90 = df::load(var_joint_S_s, var_89); var_91 = df::add(var_dof_start, var_88); var_92 = df::spatial_dot(var_90, var_body_f_s); var_93 = df::sub(var_12, var_92); df::store(var_tau, var_91, var_93); var_95 = df::add(var_dof_start, var_94); var_96 = df::load(var_joint_S_s, var_95); var_97 = df::add(var_dof_start, var_94); var_98 = df::spatial_dot(var_96, var_body_f_s); var_99 = df::sub(var_12, var_98); df::store(var_tau, var_97, var_99); var_101 = df::add(var_dof_start, var_100); var_102 = df::load(var_joint_S_s, var_101); var_103 = df::add(var_dof_start, var_100); var_104 = df::spatial_dot(var_102, var_body_f_s); var_105 = df::sub(var_12, var_104); df::store(var_tau, var_103, var_105); var_107 = df::add(var_dof_start, var_106); var_108 = df::load(var_joint_S_s, var_107); var_109 = df::add(var_dof_start, var_106); var_110 = df::spatial_dot(var_108, var_body_f_s); var_111 = df::sub(var_12, var_110); df::store(var_tau, var_109, var_111); var_113 = df::add(var_dof_start, var_112); var_114 = df::load(var_joint_S_s, var_113); var_115 = df::add(var_dof_start, var_112); var_116 = df::spatial_dot(var_114, var_body_f_s); var_117 = df::sub(var_12, var_116); df::store(var_tau, var_115, var_117); var_119 = df::add(var_dof_start, var_118); var_120 = df::load(var_joint_S_s, var_119); var_121 = df::add(var_dof_start, var_118); var_122 = df::spatial_dot(var_120, var_body_f_s); var_123 = df::sub(var_12, var_122); df::store(var_tau, var_121, var_123); } var_124 = df::select(var_87, var_85, var_120); var_125 = df::select(var_87, var_73, var_118); return var_0; } void adj_jcalc_tau_cpu_func( int var_type, float var_target_k_e, float var_target_k_d, float var_limit_k_e, float var_limit_k_d, spatial_vector* var_joint_S_s, float* var_joint_q, float* var_joint_qd, float* var_joint_act, float* var_joint_target, float* var_joint_limit_lower, float* var_joint_limit_upper, int var_coord_start, int var_dof_start, spatial_vector var_body_f_s, float* var_tau, int & adj_type, float & adj_target_k_e, float & adj_target_k_d, float & adj_limit_k_e, float & adj_limit_k_d, spatial_vector* adj_joint_S_s, float* adj_joint_q, float* adj_joint_qd, float* adj_joint_act, float* adj_joint_target, float* adj_joint_limit_lower, float* adj_joint_limit_upper, int & adj_coord_start, int & adj_dof_start, spatial_vector & adj_body_f_s, float* adj_tau, int & adj_ret) { //--------- // primal vars const int var_0 = 0; bool var_1; const int var_2 = 1; bool var_3; bool var_4; spatial_vector var_5; float var_6; float var_7; float var_8; float var_9; float var_10; float var_11; const float var_12 = 0.0; bool var_13; float var_14; float var_15; float var_16; bool var_17; float var_18; float var_19; float var_20; float var_21; float var_22; float var_23; float var_24; float var_25; float var_26; float var_27; float var_28; float var_29; float var_30; float var_31; float var_32; const int var_33 = 2; bool var_34; int var_35; float var_36; int var_37; float var_38; int var_39; float var_40; df::float3 var_41; int var_42; float var_43; int var_44; float var_45; int var_46; float var_47; df::float3 var_48; const int var_49 = 0; int var_50; spatial_vector var_51; float var_52; float var_53; int var_54; float var_55; float var_56; float var_57; float var_58; float var_59; float var_60; const int var_61 = 1; int var_62; spatial_vector var_63; float var_64; float var_65; int var_66; float var_67; float var_68; float var_69; float var_70; float var_71; float var_72; const int var_73 = 2; int var_74; spatial_vector var_75; float var_76; float var_77; int var_78; float var_79; float var_80; float var_81; float var_82; float var_83; float var_84; spatial_vector var_85; const int var_86 = 4; bool var_87; const int var_88 = 0; int var_89; spatial_vector var_90; int var_91; float var_92; float var_93; const int var_94 = 1; int var_95; spatial_vector var_96; int var_97; float var_98; float var_99; const int var_100 = 2; int var_101; spatial_vector var_102; int var_103; float var_104; float var_105; const int var_106 = 3; int var_107; spatial_vector var_108; int var_109; float var_110; float var_111; const int var_112 = 4; int var_113; spatial_vector var_114; int var_115; float var_116; float var_117; const int var_118 = 5; int var_119; spatial_vector var_120; int var_121; float var_122; float var_123; spatial_vector var_124; int var_125; //--------- // dual vars int adj_0 = 0; bool adj_1 = 0; int adj_2 = 0; bool adj_3 = 0; bool adj_4 = 0; spatial_vector adj_5 = 0; float adj_6 = 0; float adj_7 = 0; float adj_8 = 0; float adj_9 = 0; float adj_10 = 0; float adj_11 = 0; float adj_12 = 0; bool adj_13 = 0; float adj_14 = 0; float adj_15 = 0; float adj_16 = 0; bool adj_17 = 0; float adj_18 = 0; float adj_19 = 0; float adj_20 = 0; float adj_21 = 0; float adj_22 = 0; float adj_23 = 0; float adj_24 = 0; float adj_25 = 0; float adj_26 = 0; float adj_27 = 0; float adj_28 = 0; float adj_29 = 0; float adj_30 = 0; float adj_31 = 0; float adj_32 = 0; int adj_33 = 0; bool adj_34 = 0; int adj_35 = 0; float adj_36 = 0; int adj_37 = 0; float adj_38 = 0; int adj_39 = 0; float adj_40 = 0; df::float3 adj_41 = 0; int adj_42 = 0; float adj_43 = 0; int adj_44 = 0; float adj_45 = 0; int adj_46 = 0; float adj_47 = 0; df::float3 adj_48 = 0; int adj_49 = 0; int adj_50 = 0; spatial_vector adj_51 = 0; float adj_52 = 0; float adj_53 = 0; int adj_54 = 0; float adj_55 = 0; float adj_56 = 0; float adj_57 = 0; float adj_58 = 0; float adj_59 = 0; float adj_60 = 0; int adj_61 = 0; int adj_62 = 0; spatial_vector adj_63 = 0; float adj_64 = 0; float adj_65 = 0; int adj_66 = 0; float adj_67 = 0; float adj_68 = 0; float adj_69 = 0; float adj_70 = 0; float adj_71 = 0; float adj_72 = 0; int adj_73 = 0; int adj_74 = 0; spatial_vector adj_75 = 0; float adj_76 = 0; float adj_77 = 0; int adj_78 = 0; float adj_79 = 0; float adj_80 = 0; float adj_81 = 0; float adj_82 = 0; float adj_83 = 0; float adj_84 = 0; spatial_vector adj_85 = 0; int adj_86 = 0; bool adj_87 = 0; int adj_88 = 0; int adj_89 = 0; spatial_vector adj_90 = 0; int adj_91 = 0; float adj_92 = 0; float adj_93 = 0; int adj_94 = 0; int adj_95 = 0; spatial_vector adj_96 = 0; int adj_97 = 0; float adj_98 = 0; float adj_99 = 0; int adj_100 = 0; int adj_101 = 0; spatial_vector adj_102 = 0; int adj_103 = 0; float adj_104 = 0; float adj_105 = 0; int adj_106 = 0; int adj_107 = 0; spatial_vector adj_108 = 0; int adj_109 = 0; float adj_110 = 0; float adj_111 = 0; int adj_112 = 0; int adj_113 = 0; spatial_vector adj_114 = 0; int adj_115 = 0; float adj_116 = 0; float adj_117 = 0; int adj_118 = 0; int adj_119 = 0; spatial_vector adj_120 = 0; int adj_121 = 0; float adj_122 = 0; float adj_123 = 0; spatial_vector adj_124 = 0; int adj_125 = 0; //--------- // forward var_1 = (var_type == var_0); var_3 = (var_type == var_2); var_4 = var_1 || var_3; if (var_4) { var_5 = df::load(var_joint_S_s, var_dof_start); var_6 = df::load(var_joint_q, var_coord_start); var_7 = df::load(var_joint_qd, var_dof_start); var_8 = df::load(var_joint_act, var_dof_start); var_9 = df::load(var_joint_target, var_coord_start); var_10 = df::load(var_joint_limit_lower, var_coord_start); var_11 = df::load(var_joint_limit_upper, var_coord_start); var_13 = (var_6 < var_10); if (var_13) { var_14 = df::sub(var_10, var_6); var_15 = df::mul(var_limit_k_e, var_14); } var_16 = df::select(var_13, var_12, var_15); var_17 = (var_6 > var_11); if (var_17) { var_18 = df::sub(var_11, var_6); var_19 = df::mul(var_limit_k_e, var_18); } var_20 = df::select(var_17, var_16, var_19); var_21 = df::sub(var_12, var_limit_k_d); var_22 = df::mul(var_21, var_7); var_23 = df::spatial_dot(var_5, var_body_f_s); var_24 = df::sub(var_12, var_23); var_25 = df::sub(var_6, var_9); var_26 = df::mul(var_target_k_e, var_25); var_27 = df::sub(var_24, var_26); var_28 = df::mul(var_target_k_d, var_7); var_29 = df::sub(var_27, var_28); var_30 = df::add(var_29, var_8); var_31 = df::add(var_30, var_20); var_32 = df::add(var_31, var_22); df::store(var_tau, var_dof_start, var_32); } var_34 = (var_type == var_33); if (var_34) { var_35 = df::add(var_coord_start, var_0); var_36 = df::load(var_joint_q, var_35); var_37 = df::add(var_coord_start, var_2); var_38 = df::load(var_joint_q, var_37); var_39 = df::add(var_coord_start, var_33); var_40 = df::load(var_joint_q, var_39); var_41 = df::float3(var_36, var_38, var_40); var_42 = df::add(var_dof_start, var_0); var_43 = df::load(var_joint_qd, var_42); var_44 = df::add(var_dof_start, var_2); var_45 = df::load(var_joint_qd, var_44); var_46 = df::add(var_dof_start, var_33); var_47 = df::load(var_joint_qd, var_46); var_48 = df::float3(var_43, var_45, var_47); var_50 = df::add(var_dof_start, var_49); var_51 = df::load(var_joint_S_s, var_50); var_52 = df::index(var_48, var_49); var_53 = df::index(var_41, var_49); var_54 = df::add(var_dof_start, var_49); var_55 = df::spatial_dot(var_51, var_body_f_s); var_56 = df::sub(var_12, var_55); var_57 = df::mul(var_52, var_target_k_d); var_58 = df::sub(var_56, var_57); var_59 = df::mul(var_53, var_target_k_e); var_60 = df::sub(var_58, var_59); df::store(var_tau, var_54, var_60); var_62 = df::add(var_dof_start, var_61); var_63 = df::load(var_joint_S_s, var_62); var_64 = df::index(var_48, var_61); var_65 = df::index(var_41, var_61); var_66 = df::add(var_dof_start, var_61); var_67 = df::spatial_dot(var_63, var_body_f_s); var_68 = df::sub(var_12, var_67); var_69 = df::mul(var_64, var_target_k_d); var_70 = df::sub(var_68, var_69); var_71 = df::mul(var_65, var_target_k_e); var_72 = df::sub(var_70, var_71); df::store(var_tau, var_66, var_72); var_74 = df::add(var_dof_start, var_73); var_75 = df::load(var_joint_S_s, var_74); var_76 = df::index(var_48, var_73); var_77 = df::index(var_41, var_73); var_78 = df::add(var_dof_start, var_73); var_79 = df::spatial_dot(var_75, var_body_f_s); var_80 = df::sub(var_12, var_79); var_81 = df::mul(var_76, var_target_k_d); var_82 = df::sub(var_80, var_81); var_83 = df::mul(var_77, var_target_k_e); var_84 = df::sub(var_82, var_83); df::store(var_tau, var_78, var_84); } var_85 = df::select(var_34, var_5, var_75); var_87 = (var_type == var_86); if (var_87) { var_89 = df::add(var_dof_start, var_88); var_90 = df::load(var_joint_S_s, var_89); var_91 = df::add(var_dof_start, var_88); var_92 = df::spatial_dot(var_90, var_body_f_s); var_93 = df::sub(var_12, var_92); df::store(var_tau, var_91, var_93); var_95 = df::add(var_dof_start, var_94); var_96 = df::load(var_joint_S_s, var_95); var_97 = df::add(var_dof_start, var_94); var_98 = df::spatial_dot(var_96, var_body_f_s); var_99 = df::sub(var_12, var_98); df::store(var_tau, var_97, var_99); var_101 = df::add(var_dof_start, var_100); var_102 = df::load(var_joint_S_s, var_101); var_103 = df::add(var_dof_start, var_100); var_104 = df::spatial_dot(var_102, var_body_f_s); var_105 = df::sub(var_12, var_104); df::store(var_tau, var_103, var_105); var_107 = df::add(var_dof_start, var_106); var_108 = df::load(var_joint_S_s, var_107); var_109 = df::add(var_dof_start, var_106); var_110 = df::spatial_dot(var_108, var_body_f_s); var_111 = df::sub(var_12, var_110); df::store(var_tau, var_109, var_111); var_113 = df::add(var_dof_start, var_112); var_114 = df::load(var_joint_S_s, var_113); var_115 = df::add(var_dof_start, var_112); var_116 = df::spatial_dot(var_114, var_body_f_s); var_117 = df::sub(var_12, var_116); df::store(var_tau, var_115, var_117); var_119 = df::add(var_dof_start, var_118); var_120 = df::load(var_joint_S_s, var_119); var_121 = df::add(var_dof_start, var_118); var_122 = df::spatial_dot(var_120, var_body_f_s); var_123 = df::sub(var_12, var_122); df::store(var_tau, var_121, var_123); } var_124 = df::select(var_87, var_85, var_120); var_125 = df::select(var_87, var_73, var_118); goto label0; //--------- // reverse label0:; adj_0 += adj_ret; df::adj_select(var_87, var_73, var_118, adj_87, adj_73, adj_118, adj_125); df::adj_select(var_87, var_85, var_120, adj_87, adj_85, adj_120, adj_124); if (var_87) { df::adj_store(var_tau, var_121, var_123, adj_tau, adj_121, adj_123); df::adj_sub(var_12, var_122, adj_12, adj_122, adj_123); df::adj_spatial_dot(var_120, var_body_f_s, adj_120, adj_body_f_s, adj_122); df::adj_add(var_dof_start, var_118, adj_dof_start, adj_118, adj_121); df::adj_load(var_joint_S_s, var_119, adj_joint_S_s, adj_119, adj_120); df::adj_add(var_dof_start, var_118, adj_dof_start, adj_118, adj_119); df::adj_store(var_tau, var_115, var_117, adj_tau, adj_115, adj_117); df::adj_sub(var_12, var_116, adj_12, adj_116, adj_117); df::adj_spatial_dot(var_114, var_body_f_s, adj_114, adj_body_f_s, adj_116); df::adj_add(var_dof_start, var_112, adj_dof_start, adj_112, adj_115); df::adj_load(var_joint_S_s, var_113, adj_joint_S_s, adj_113, adj_114); df::adj_add(var_dof_start, var_112, adj_dof_start, adj_112, adj_113); df::adj_store(var_tau, var_109, var_111, adj_tau, adj_109, adj_111); df::adj_sub(var_12, var_110, adj_12, adj_110, adj_111); df::adj_spatial_dot(var_108, var_body_f_s, adj_108, adj_body_f_s, adj_110); df::adj_add(var_dof_start, var_106, adj_dof_start, adj_106, adj_109); df::adj_load(var_joint_S_s, var_107, adj_joint_S_s, adj_107, adj_108); df::adj_add(var_dof_start, var_106, adj_dof_start, adj_106, adj_107); df::adj_store(var_tau, var_103, var_105, adj_tau, adj_103, adj_105); df::adj_sub(var_12, var_104, adj_12, adj_104, adj_105); df::adj_spatial_dot(var_102, var_body_f_s, adj_102, adj_body_f_s, adj_104); df::adj_add(var_dof_start, var_100, adj_dof_start, adj_100, adj_103); df::adj_load(var_joint_S_s, var_101, adj_joint_S_s, adj_101, adj_102); df::adj_add(var_dof_start, var_100, adj_dof_start, adj_100, adj_101); df::adj_store(var_tau, var_97, var_99, adj_tau, adj_97, adj_99); df::adj_sub(var_12, var_98, adj_12, adj_98, adj_99); df::adj_spatial_dot(var_96, var_body_f_s, adj_96, adj_body_f_s, adj_98); df::adj_add(var_dof_start, var_94, adj_dof_start, adj_94, adj_97); df::adj_load(var_joint_S_s, var_95, adj_joint_S_s, adj_95, adj_96); df::adj_add(var_dof_start, var_94, adj_dof_start, adj_94, adj_95); df::adj_store(var_tau, var_91, var_93, adj_tau, adj_91, adj_93); df::adj_sub(var_12, var_92, adj_12, adj_92, adj_93); df::adj_spatial_dot(var_90, var_body_f_s, adj_90, adj_body_f_s, adj_92); df::adj_add(var_dof_start, var_88, adj_dof_start, adj_88, adj_91); df::adj_load(var_joint_S_s, var_89, adj_joint_S_s, adj_89, adj_90); df::adj_add(var_dof_start, var_88, adj_dof_start, adj_88, adj_89); } df::adj_select(var_34, var_5, var_75, adj_34, adj_5, adj_75, adj_85); if (var_34) { df::adj_store(var_tau, var_78, var_84, adj_tau, adj_78, adj_84); df::adj_sub(var_82, var_83, adj_82, adj_83, adj_84); df::adj_mul(var_77, var_target_k_e, adj_77, adj_target_k_e, adj_83); df::adj_sub(var_80, var_81, adj_80, adj_81, adj_82); df::adj_mul(var_76, var_target_k_d, adj_76, adj_target_k_d, adj_81); df::adj_sub(var_12, var_79, adj_12, adj_79, adj_80); df::adj_spatial_dot(var_75, var_body_f_s, adj_75, adj_body_f_s, adj_79); df::adj_add(var_dof_start, var_73, adj_dof_start, adj_73, adj_78); df::adj_index(var_41, var_73, adj_41, adj_73, adj_77); df::adj_index(var_48, var_73, adj_48, adj_73, adj_76); df::adj_load(var_joint_S_s, var_74, adj_joint_S_s, adj_74, adj_75); df::adj_add(var_dof_start, var_73, adj_dof_start, adj_73, adj_74); df::adj_store(var_tau, var_66, var_72, adj_tau, adj_66, adj_72); df::adj_sub(var_70, var_71, adj_70, adj_71, adj_72); df::adj_mul(var_65, var_target_k_e, adj_65, adj_target_k_e, adj_71); df::adj_sub(var_68, var_69, adj_68, adj_69, adj_70); df::adj_mul(var_64, var_target_k_d, adj_64, adj_target_k_d, adj_69); df::adj_sub(var_12, var_67, adj_12, adj_67, adj_68); df::adj_spatial_dot(var_63, var_body_f_s, adj_63, adj_body_f_s, adj_67); df::adj_add(var_dof_start, var_61, adj_dof_start, adj_61, adj_66); df::adj_index(var_41, var_61, adj_41, adj_61, adj_65); df::adj_index(var_48, var_61, adj_48, adj_61, adj_64); df::adj_load(var_joint_S_s, var_62, adj_joint_S_s, adj_62, adj_63); df::adj_add(var_dof_start, var_61, adj_dof_start, adj_61, adj_62); df::adj_store(var_tau, var_54, var_60, adj_tau, adj_54, adj_60); df::adj_sub(var_58, var_59, adj_58, adj_59, adj_60); df::adj_mul(var_53, var_target_k_e, adj_53, adj_target_k_e, adj_59); df::adj_sub(var_56, var_57, adj_56, adj_57, adj_58); df::adj_mul(var_52, var_target_k_d, adj_52, adj_target_k_d, adj_57); df::adj_sub(var_12, var_55, adj_12, adj_55, adj_56); df::adj_spatial_dot(var_51, var_body_f_s, adj_51, adj_body_f_s, adj_55); df::adj_add(var_dof_start, var_49, adj_dof_start, adj_49, adj_54); df::adj_index(var_41, var_49, adj_41, adj_49, adj_53); df::adj_index(var_48, var_49, adj_48, adj_49, adj_52); df::adj_load(var_joint_S_s, var_50, adj_joint_S_s, adj_50, adj_51); df::adj_add(var_dof_start, var_49, adj_dof_start, adj_49, adj_50); df::adj_float3(var_43, var_45, var_47, adj_43, adj_45, adj_47, adj_48); df::adj_load(var_joint_qd, var_46, adj_joint_qd, adj_46, adj_47); df::adj_add(var_dof_start, var_33, adj_dof_start, adj_33, adj_46); df::adj_load(var_joint_qd, var_44, adj_joint_qd, adj_44, adj_45); df::adj_add(var_dof_start, var_2, adj_dof_start, adj_2, adj_44); df::adj_load(var_joint_qd, var_42, adj_joint_qd, adj_42, adj_43); df::adj_add(var_dof_start, var_0, adj_dof_start, adj_0, adj_42); df::adj_float3(var_36, var_38, var_40, adj_36, adj_38, adj_40, adj_41); df::adj_load(var_joint_q, var_39, adj_joint_q, adj_39, adj_40); df::adj_add(var_coord_start, var_33, adj_coord_start, adj_33, adj_39); df::adj_load(var_joint_q, var_37, adj_joint_q, adj_37, adj_38); df::adj_add(var_coord_start, var_2, adj_coord_start, adj_2, adj_37); df::adj_load(var_joint_q, var_35, adj_joint_q, adj_35, adj_36); df::adj_add(var_coord_start, var_0, adj_coord_start, adj_0, adj_35); } if (var_4) { df::adj_store(var_tau, var_dof_start, var_32, adj_tau, adj_dof_start, adj_32); df::adj_add(var_31, var_22, adj_31, adj_22, adj_32); df::adj_add(var_30, var_20, adj_30, adj_20, adj_31); df::adj_add(var_29, var_8, adj_29, adj_8, adj_30); df::adj_sub(var_27, var_28, adj_27, adj_28, adj_29); df::adj_mul(var_target_k_d, var_7, adj_target_k_d, adj_7, adj_28); df::adj_sub(var_24, var_26, adj_24, adj_26, adj_27); df::adj_mul(var_target_k_e, var_25, adj_target_k_e, adj_25, adj_26); df::adj_sub(var_6, var_9, adj_6, adj_9, adj_25); df::adj_sub(var_12, var_23, adj_12, adj_23, adj_24); df::adj_spatial_dot(var_5, var_body_f_s, adj_5, adj_body_f_s, adj_23); df::adj_mul(var_21, var_7, adj_21, adj_7, adj_22); df::adj_sub(var_12, var_limit_k_d, adj_12, adj_limit_k_d, adj_21); df::adj_select(var_17, var_16, var_19, adj_17, adj_16, adj_19, adj_20); if (var_17) { df::adj_mul(var_limit_k_e, var_18, adj_limit_k_e, adj_18, adj_19); df::adj_sub(var_11, var_6, adj_11, adj_6, adj_18); } df::adj_select(var_13, var_12, var_15, adj_13, adj_12, adj_15, adj_16); if (var_13) { df::adj_mul(var_limit_k_e, var_14, adj_limit_k_e, adj_14, adj_15); df::adj_sub(var_10, var_6, adj_10, adj_6, adj_14); } df::adj_load(var_joint_limit_upper, var_coord_start, adj_joint_limit_upper, adj_coord_start, adj_11); df::adj_load(var_joint_limit_lower, var_coord_start, adj_joint_limit_lower, adj_coord_start, adj_10); df::adj_load(var_joint_target, var_coord_start, adj_joint_target, adj_coord_start, adj_9); df::adj_load(var_joint_act, var_dof_start, adj_joint_act, adj_dof_start, adj_8); df::adj_load(var_joint_qd, var_dof_start, adj_joint_qd, adj_dof_start, adj_7); df::adj_load(var_joint_q, var_coord_start, adj_joint_q, adj_coord_start, adj_6); df::adj_load(var_joint_S_s, var_dof_start, adj_joint_S_s, adj_dof_start, adj_5); } return; } int jcalc_integrate_cpu_func( int var_type, float* var_joint_q, float* var_joint_qd, float* var_joint_qdd, int var_coord_start, int var_dof_start, float var_dt, float* var_joint_q_new, float* var_joint_qd_new) { //--------- // primal vars const int var_0 = 0; bool var_1; const int var_2 = 1; bool var_3; bool var_4; float var_5; float var_6; float var_7; float var_8; float var_9; float var_10; float var_11; const int var_12 = 2; bool var_13; int var_14; float var_15; int var_16; float var_17; int var_18; float var_19; df::float3 var_20; int var_21; float var_22; int var_23; float var_24; int var_25; float var_26; df::float3 var_27; int var_28; float var_29; int var_30; float var_31; int var_32; float var_33; const int var_34 = 3; int var_35; float var_36; quat var_37; df::float3 var_38; df::float3 var_39; const float var_40 = 0.0; quat var_41; quat var_42; const float var_43 = 0.5; quat var_44; quat var_45; quat var_46; quat var_47; int var_48; float var_49; int var_50; float var_51; int var_52; float var_53; int var_54; float var_55; int var_56; float var_57; int var_58; float var_59; int var_60; float var_61; const int var_62 = 4; bool var_63; int var_64; float var_65; int var_66; float var_67; int var_68; float var_69; df::float3 var_70; int var_71; float var_72; int var_73; float var_74; const int var_75 = 5; int var_76; float var_77; df::float3 var_78; int var_79; float var_80; int var_81; float var_82; int var_83; float var_84; df::float3 var_85; int var_86; float var_87; int var_88; float var_89; int var_90; float var_91; df::float3 var_92; df::float3 var_93; df::float3 var_94; df::float3 var_95; df::float3 var_96; int var_97; float var_98; int var_99; float var_100; int var_101; float var_102; df::float3 var_103; df::float3 var_104; df::float3 var_105; int var_106; float var_107; int var_108; float var_109; int var_110; float var_111; const int var_112 = 6; int var_113; float var_114; quat var_115; quat var_116; quat var_117; quat var_118; df::float3 var_119; df::float3 var_120; quat var_121; quat var_122; quat var_123; int var_124; float var_125; int var_126; float var_127; int var_128; float var_129; int var_130; float var_131; int var_132; float var_133; int var_134; float var_135; int var_136; float var_137; int var_138; float var_139; int var_140; float var_141; int var_142; float var_143; int var_144; float var_145; int var_146; float var_147; int var_148; float var_149; //--------- // forward var_1 = (var_type == var_0); var_3 = (var_type == var_2); var_4 = var_1 || var_3; if (var_4) { var_5 = df::load(var_joint_qdd, var_dof_start); var_6 = df::load(var_joint_qd, var_dof_start); var_7 = df::load(var_joint_q, var_coord_start); var_8 = df::mul(var_5, var_dt); var_9 = df::add(var_6, var_8); var_10 = df::mul(var_9, var_dt); var_11 = df::add(var_7, var_10); df::store(var_joint_qd_new, var_dof_start, var_9); df::store(var_joint_q_new, var_coord_start, var_11); } var_13 = (var_type == var_12); if (var_13) { var_14 = df::add(var_dof_start, var_0); var_15 = df::load(var_joint_qdd, var_14); var_16 = df::add(var_dof_start, var_2); var_17 = df::load(var_joint_qdd, var_16); var_18 = df::add(var_dof_start, var_12); var_19 = df::load(var_joint_qdd, var_18); var_20 = df::float3(var_15, var_17, var_19); var_21 = df::add(var_dof_start, var_0); var_22 = df::load(var_joint_qd, var_21); var_23 = df::add(var_dof_start, var_2); var_24 = df::load(var_joint_qd, var_23); var_25 = df::add(var_dof_start, var_12); var_26 = df::load(var_joint_qd, var_25); var_27 = df::float3(var_22, var_24, var_26); var_28 = df::add(var_coord_start, var_0); var_29 = df::load(var_joint_q, var_28); var_30 = df::add(var_coord_start, var_2); var_31 = df::load(var_joint_q, var_30); var_32 = df::add(var_coord_start, var_12); var_33 = df::load(var_joint_q, var_32); var_35 = df::add(var_coord_start, var_34); var_36 = df::load(var_joint_q, var_35); var_37 = df::quat(var_29, var_31, var_33, var_36); var_38 = df::mul(var_20, var_dt); var_39 = df::add(var_27, var_38); var_41 = df::quat(var_39, var_40); var_42 = df::mul(var_41, var_37); var_44 = df::mul(var_42, var_43); var_45 = df::mul(var_44, var_dt); var_46 = df::add(var_37, var_45); var_47 = df::normalize(var_46); var_48 = df::add(var_coord_start, var_0); var_49 = df::index(var_47, var_0); df::store(var_joint_q_new, var_48, var_49); var_50 = df::add(var_coord_start, var_2); var_51 = df::index(var_47, var_2); df::store(var_joint_q_new, var_50, var_51); var_52 = df::add(var_coord_start, var_12); var_53 = df::index(var_47, var_12); df::store(var_joint_q_new, var_52, var_53); var_54 = df::add(var_coord_start, var_34); var_55 = df::index(var_47, var_34); df::store(var_joint_q_new, var_54, var_55); var_56 = df::add(var_dof_start, var_0); var_57 = df::index(var_39, var_0); df::store(var_joint_qd_new, var_56, var_57); var_58 = df::add(var_dof_start, var_2); var_59 = df::index(var_39, var_2); df::store(var_joint_qd_new, var_58, var_59); var_60 = df::add(var_dof_start, var_12); var_61 = df::index(var_39, var_12); df::store(var_joint_qd_new, var_60, var_61); } var_63 = (var_type == var_62); if (var_63) { var_64 = df::add(var_dof_start, var_0); var_65 = df::load(var_joint_qdd, var_64); var_66 = df::add(var_dof_start, var_2); var_67 = df::load(var_joint_qdd, var_66); var_68 = df::add(var_dof_start, var_12); var_69 = df::load(var_joint_qdd, var_68); var_70 = df::float3(var_65, var_67, var_69); var_71 = df::add(var_dof_start, var_34); var_72 = df::load(var_joint_qdd, var_71); var_73 = df::add(var_dof_start, var_62); var_74 = df::load(var_joint_qdd, var_73); var_76 = df::add(var_dof_start, var_75); var_77 = df::load(var_joint_qdd, var_76); var_78 = df::float3(var_72, var_74, var_77); var_79 = df::add(var_dof_start, var_0); var_80 = df::load(var_joint_qd, var_79); var_81 = df::add(var_dof_start, var_2); var_82 = df::load(var_joint_qd, var_81); var_83 = df::add(var_dof_start, var_12); var_84 = df::load(var_joint_qd, var_83); var_85 = df::float3(var_80, var_82, var_84); var_86 = df::add(var_dof_start, var_34); var_87 = df::load(var_joint_qd, var_86); var_88 = df::add(var_dof_start, var_62); var_89 = df::load(var_joint_qd, var_88); var_90 = df::add(var_dof_start, var_75); var_91 = df::load(var_joint_qd, var_90); var_92 = df::float3(var_87, var_89, var_91); var_93 = df::mul(var_70, var_dt); var_94 = df::add(var_85, var_93); var_95 = df::mul(var_78, var_dt); var_96 = df::add(var_92, var_95); var_97 = df::add(var_coord_start, var_0); var_98 = df::load(var_joint_q, var_97); var_99 = df::add(var_coord_start, var_2); var_100 = df::load(var_joint_q, var_99); var_101 = df::add(var_coord_start, var_12); var_102 = df::load(var_joint_q, var_101); var_103 = df::float3(var_98, var_100, var_102); var_104 = df::cross(var_94, var_103); var_105 = df::add(var_96, var_104); var_106 = df::add(var_coord_start, var_34); var_107 = df::load(var_joint_q, var_106); var_108 = df::add(var_coord_start, var_62); var_109 = df::load(var_joint_q, var_108); var_110 = df::add(var_coord_start, var_75); var_111 = df::load(var_joint_q, var_110); var_113 = df::add(var_coord_start, var_112); var_114 = df::load(var_joint_q, var_113); var_115 = df::quat(var_107, var_109, var_111, var_114); var_116 = df::quat(var_94, var_40); var_117 = df::mul(var_116, var_115); var_118 = df::mul(var_117, var_43); var_119 = df::mul(var_105, var_dt); var_120 = df::add(var_103, var_119); var_121 = df::mul(var_118, var_dt); var_122 = df::add(var_115, var_121); var_123 = df::normalize(var_122); var_124 = df::add(var_coord_start, var_0); var_125 = df::index(var_120, var_0); df::store(var_joint_q_new, var_124, var_125); var_126 = df::add(var_coord_start, var_2); var_127 = df::index(var_120, var_2); df::store(var_joint_q_new, var_126, var_127); var_128 = df::add(var_coord_start, var_12); var_129 = df::index(var_120, var_12); df::store(var_joint_q_new, var_128, var_129); var_130 = df::add(var_coord_start, var_34); var_131 = df::index(var_123, var_0); df::store(var_joint_q_new, var_130, var_131); var_132 = df::add(var_coord_start, var_62); var_133 = df::index(var_123, var_2); df::store(var_joint_q_new, var_132, var_133); var_134 = df::add(var_coord_start, var_75); var_135 = df::index(var_123, var_12); df::store(var_joint_q_new, var_134, var_135); var_136 = df::add(var_coord_start, var_112); var_137 = df::index(var_123, var_34); df::store(var_joint_q_new, var_136, var_137); var_138 = df::add(var_dof_start, var_0); var_139 = df::index(var_94, var_0); df::store(var_joint_qd_new, var_138, var_139); var_140 = df::add(var_dof_start, var_2); var_141 = df::index(var_94, var_2); df::store(var_joint_qd_new, var_140, var_141); var_142 = df::add(var_dof_start, var_12); var_143 = df::index(var_94, var_12); df::store(var_joint_qd_new, var_142, var_143); var_144 = df::add(var_dof_start, var_34); var_145 = df::index(var_96, var_0); df::store(var_joint_qd_new, var_144, var_145); var_146 = df::add(var_dof_start, var_62); var_147 = df::index(var_96, var_2); df::store(var_joint_qd_new, var_146, var_147); var_148 = df::add(var_dof_start, var_75); var_149 = df::index(var_96, var_12); df::store(var_joint_qd_new, var_148, var_149); } return var_0; } void adj_jcalc_integrate_cpu_func( int var_type, float* var_joint_q, float* var_joint_qd, float* var_joint_qdd, int var_coord_start, int var_dof_start, float var_dt, float* var_joint_q_new, float* var_joint_qd_new, int & adj_type, float* adj_joint_q, float* adj_joint_qd, float* adj_joint_qdd, int & adj_coord_start, int & adj_dof_start, float & adj_dt, float* adj_joint_q_new, float* adj_joint_qd_new, int & adj_ret) { //--------- // primal vars const int var_0 = 0; bool var_1; const int var_2 = 1; bool var_3; bool var_4; float var_5; float var_6; float var_7; float var_8; float var_9; float var_10; float var_11; const int var_12 = 2; bool var_13; int var_14; float var_15; int var_16; float var_17; int var_18; float var_19; df::float3 var_20; int var_21; float var_22; int var_23; float var_24; int var_25; float var_26; df::float3 var_27; int var_28; float var_29; int var_30; float var_31; int var_32; float var_33; const int var_34 = 3; int var_35; float var_36; quat var_37; df::float3 var_38; df::float3 var_39; const float var_40 = 0.0; quat var_41; quat var_42; const float var_43 = 0.5; quat var_44; quat var_45; quat var_46; quat var_47; int var_48; float var_49; int var_50; float var_51; int var_52; float var_53; int var_54; float var_55; int var_56; float var_57; int var_58; float var_59; int var_60; float var_61; const int var_62 = 4; bool var_63; int var_64; float var_65; int var_66; float var_67; int var_68; float var_69; df::float3 var_70; int var_71; float var_72; int var_73; float var_74; const int var_75 = 5; int var_76; float var_77; df::float3 var_78; int var_79; float var_80; int var_81; float var_82; int var_83; float var_84; df::float3 var_85; int var_86; float var_87; int var_88; float var_89; int var_90; float var_91; df::float3 var_92; df::float3 var_93; df::float3 var_94; df::float3 var_95; df::float3 var_96; int var_97; float var_98; int var_99; float var_100; int var_101; float var_102; df::float3 var_103; df::float3 var_104; df::float3 var_105; int var_106; float var_107; int var_108; float var_109; int var_110; float var_111; const int var_112 = 6; int var_113; float var_114; quat var_115; quat var_116; quat var_117; quat var_118; df::float3 var_119; df::float3 var_120; quat var_121; quat var_122; quat var_123; int var_124; float var_125; int var_126; float var_127; int var_128; float var_129; int var_130; float var_131; int var_132; float var_133; int var_134; float var_135; int var_136; float var_137; int var_138; float var_139; int var_140; float var_141; int var_142; float var_143; int var_144; float var_145; int var_146; float var_147; int var_148; float var_149; //--------- // dual vars int adj_0 = 0; bool adj_1 = 0; int adj_2 = 0; bool adj_3 = 0; bool adj_4 = 0; float adj_5 = 0; float adj_6 = 0; float adj_7 = 0; float adj_8 = 0; float adj_9 = 0; float adj_10 = 0; float adj_11 = 0; int adj_12 = 0; bool adj_13 = 0; int adj_14 = 0; float adj_15 = 0; int adj_16 = 0; float adj_17 = 0; int adj_18 = 0; float adj_19 = 0; df::float3 adj_20 = 0; int adj_21 = 0; float adj_22 = 0; int adj_23 = 0; float adj_24 = 0; int adj_25 = 0; float adj_26 = 0; df::float3 adj_27 = 0; int adj_28 = 0; float adj_29 = 0; int adj_30 = 0; float adj_31 = 0; int adj_32 = 0; float adj_33 = 0; int adj_34 = 0; int adj_35 = 0; float adj_36 = 0; quat adj_37 = 0; df::float3 adj_38 = 0; df::float3 adj_39 = 0; float adj_40 = 0; quat adj_41 = 0; quat adj_42 = 0; float adj_43 = 0; quat adj_44 = 0; quat adj_45 = 0; quat adj_46 = 0; quat adj_47 = 0; int adj_48 = 0; float adj_49 = 0; int adj_50 = 0; float adj_51 = 0; int adj_52 = 0; float adj_53 = 0; int adj_54 = 0; float adj_55 = 0; int adj_56 = 0; float adj_57 = 0; int adj_58 = 0; float adj_59 = 0; int adj_60 = 0; float adj_61 = 0; int adj_62 = 0; bool adj_63 = 0; int adj_64 = 0; float adj_65 = 0; int adj_66 = 0; float adj_67 = 0; int adj_68 = 0; float adj_69 = 0; df::float3 adj_70 = 0; int adj_71 = 0; float adj_72 = 0; int adj_73 = 0; float adj_74 = 0; int adj_75 = 0; int adj_76 = 0; float adj_77 = 0; df::float3 adj_78 = 0; int adj_79 = 0; float adj_80 = 0; int adj_81 = 0; float adj_82 = 0; int adj_83 = 0; float adj_84 = 0; df::float3 adj_85 = 0; int adj_86 = 0; float adj_87 = 0; int adj_88 = 0; float adj_89 = 0; int adj_90 = 0; float adj_91 = 0; df::float3 adj_92 = 0; df::float3 adj_93 = 0; df::float3 adj_94 = 0; df::float3 adj_95 = 0; df::float3 adj_96 = 0; int adj_97 = 0; float adj_98 = 0; int adj_99 = 0; float adj_100 = 0; int adj_101 = 0; float adj_102 = 0; df::float3 adj_103 = 0; df::float3 adj_104 = 0; df::float3 adj_105 = 0; int adj_106 = 0; float adj_107 = 0; int adj_108 = 0; float adj_109 = 0; int adj_110 = 0; float adj_111 = 0; int adj_112 = 0; int adj_113 = 0; float adj_114 = 0; quat adj_115 = 0; quat adj_116 = 0; quat adj_117 = 0; quat adj_118 = 0; df::float3 adj_119 = 0; df::float3 adj_120 = 0; quat adj_121 = 0; quat adj_122 = 0; quat adj_123 = 0; int adj_124 = 0; float adj_125 = 0; int adj_126 = 0; float adj_127 = 0; int adj_128 = 0; float adj_129 = 0; int adj_130 = 0; float adj_131 = 0; int adj_132 = 0; float adj_133 = 0; int adj_134 = 0; float adj_135 = 0; int adj_136 = 0; float adj_137 = 0; int adj_138 = 0; float adj_139 = 0; int adj_140 = 0; float adj_141 = 0; int adj_142 = 0; float adj_143 = 0; int adj_144 = 0; float adj_145 = 0; int adj_146 = 0; float adj_147 = 0; int adj_148 = 0; float adj_149 = 0; //--------- // forward var_1 = (var_type == var_0); var_3 = (var_type == var_2); var_4 = var_1 || var_3; if (var_4) { var_5 = df::load(var_joint_qdd, var_dof_start); var_6 = df::load(var_joint_qd, var_dof_start); var_7 = df::load(var_joint_q, var_coord_start); var_8 = df::mul(var_5, var_dt); var_9 = df::add(var_6, var_8); var_10 = df::mul(var_9, var_dt); var_11 = df::add(var_7, var_10); df::store(var_joint_qd_new, var_dof_start, var_9); df::store(var_joint_q_new, var_coord_start, var_11); } var_13 = (var_type == var_12); if (var_13) { var_14 = df::add(var_dof_start, var_0); var_15 = df::load(var_joint_qdd, var_14); var_16 = df::add(var_dof_start, var_2); var_17 = df::load(var_joint_qdd, var_16); var_18 = df::add(var_dof_start, var_12); var_19 = df::load(var_joint_qdd, var_18); var_20 = df::float3(var_15, var_17, var_19); var_21 = df::add(var_dof_start, var_0); var_22 = df::load(var_joint_qd, var_21); var_23 = df::add(var_dof_start, var_2); var_24 = df::load(var_joint_qd, var_23); var_25 = df::add(var_dof_start, var_12); var_26 = df::load(var_joint_qd, var_25); var_27 = df::float3(var_22, var_24, var_26); var_28 = df::add(var_coord_start, var_0); var_29 = df::load(var_joint_q, var_28); var_30 = df::add(var_coord_start, var_2); var_31 = df::load(var_joint_q, var_30); var_32 = df::add(var_coord_start, var_12); var_33 = df::load(var_joint_q, var_32); var_35 = df::add(var_coord_start, var_34); var_36 = df::load(var_joint_q, var_35); var_37 = df::quat(var_29, var_31, var_33, var_36); var_38 = df::mul(var_20, var_dt); var_39 = df::add(var_27, var_38); var_41 = df::quat(var_39, var_40); var_42 = df::mul(var_41, var_37); var_44 = df::mul(var_42, var_43); var_45 = df::mul(var_44, var_dt); var_46 = df::add(var_37, var_45); var_47 = df::normalize(var_46); var_48 = df::add(var_coord_start, var_0); var_49 = df::index(var_47, var_0); df::store(var_joint_q_new, var_48, var_49); var_50 = df::add(var_coord_start, var_2); var_51 = df::index(var_47, var_2); df::store(var_joint_q_new, var_50, var_51); var_52 = df::add(var_coord_start, var_12); var_53 = df::index(var_47, var_12); df::store(var_joint_q_new, var_52, var_53); var_54 = df::add(var_coord_start, var_34); var_55 = df::index(var_47, var_34); df::store(var_joint_q_new, var_54, var_55); var_56 = df::add(var_dof_start, var_0); var_57 = df::index(var_39, var_0); df::store(var_joint_qd_new, var_56, var_57); var_58 = df::add(var_dof_start, var_2); var_59 = df::index(var_39, var_2); df::store(var_joint_qd_new, var_58, var_59); var_60 = df::add(var_dof_start, var_12); var_61 = df::index(var_39, var_12); df::store(var_joint_qd_new, var_60, var_61); } var_63 = (var_type == var_62); if (var_63) { var_64 = df::add(var_dof_start, var_0); var_65 = df::load(var_joint_qdd, var_64); var_66 = df::add(var_dof_start, var_2); var_67 = df::load(var_joint_qdd, var_66); var_68 = df::add(var_dof_start, var_12); var_69 = df::load(var_joint_qdd, var_68); var_70 = df::float3(var_65, var_67, var_69); var_71 = df::add(var_dof_start, var_34); var_72 = df::load(var_joint_qdd, var_71); var_73 = df::add(var_dof_start, var_62); var_74 = df::load(var_joint_qdd, var_73); var_76 = df::add(var_dof_start, var_75); var_77 = df::load(var_joint_qdd, var_76); var_78 = df::float3(var_72, var_74, var_77); var_79 = df::add(var_dof_start, var_0); var_80 = df::load(var_joint_qd, var_79); var_81 = df::add(var_dof_start, var_2); var_82 = df::load(var_joint_qd, var_81); var_83 = df::add(var_dof_start, var_12); var_84 = df::load(var_joint_qd, var_83); var_85 = df::float3(var_80, var_82, var_84); var_86 = df::add(var_dof_start, var_34); var_87 = df::load(var_joint_qd, var_86); var_88 = df::add(var_dof_start, var_62); var_89 = df::load(var_joint_qd, var_88); var_90 = df::add(var_dof_start, var_75); var_91 = df::load(var_joint_qd, var_90); var_92 = df::float3(var_87, var_89, var_91); var_93 = df::mul(var_70, var_dt); var_94 = df::add(var_85, var_93); var_95 = df::mul(var_78, var_dt); var_96 = df::add(var_92, var_95); var_97 = df::add(var_coord_start, var_0); var_98 = df::load(var_joint_q, var_97); var_99 = df::add(var_coord_start, var_2); var_100 = df::load(var_joint_q, var_99); var_101 = df::add(var_coord_start, var_12); var_102 = df::load(var_joint_q, var_101); var_103 = df::float3(var_98, var_100, var_102); var_104 = df::cross(var_94, var_103); var_105 = df::add(var_96, var_104); var_106 = df::add(var_coord_start, var_34); var_107 = df::load(var_joint_q, var_106); var_108 = df::add(var_coord_start, var_62); var_109 = df::load(var_joint_q, var_108); var_110 = df::add(var_coord_start, var_75); var_111 = df::load(var_joint_q, var_110); var_113 = df::add(var_coord_start, var_112); var_114 = df::load(var_joint_q, var_113); var_115 = df::quat(var_107, var_109, var_111, var_114); var_116 = df::quat(var_94, var_40); var_117 = df::mul(var_116, var_115); var_118 = df::mul(var_117, var_43); var_119 = df::mul(var_105, var_dt); var_120 = df::add(var_103, var_119); var_121 = df::mul(var_118, var_dt); var_122 = df::add(var_115, var_121); var_123 = df::normalize(var_122); var_124 = df::add(var_coord_start, var_0); var_125 = df::index(var_120, var_0); df::store(var_joint_q_new, var_124, var_125); var_126 = df::add(var_coord_start, var_2); var_127 = df::index(var_120, var_2); df::store(var_joint_q_new, var_126, var_127); var_128 = df::add(var_coord_start, var_12); var_129 = df::index(var_120, var_12); df::store(var_joint_q_new, var_128, var_129); var_130 = df::add(var_coord_start, var_34); var_131 = df::index(var_123, var_0); df::store(var_joint_q_new, var_130, var_131); var_132 = df::add(var_coord_start, var_62); var_133 = df::index(var_123, var_2); df::store(var_joint_q_new, var_132, var_133); var_134 = df::add(var_coord_start, var_75); var_135 = df::index(var_123, var_12); df::store(var_joint_q_new, var_134, var_135); var_136 = df::add(var_coord_start, var_112); var_137 = df::index(var_123, var_34); df::store(var_joint_q_new, var_136, var_137); var_138 = df::add(var_dof_start, var_0); var_139 = df::index(var_94, var_0); df::store(var_joint_qd_new, var_138, var_139); var_140 = df::add(var_dof_start, var_2); var_141 = df::index(var_94, var_2); df::store(var_joint_qd_new, var_140, var_141); var_142 = df::add(var_dof_start, var_12); var_143 = df::index(var_94, var_12); df::store(var_joint_qd_new, var_142, var_143); var_144 = df::add(var_dof_start, var_34); var_145 = df::index(var_96, var_0); df::store(var_joint_qd_new, var_144, var_145); var_146 = df::add(var_dof_start, var_62); var_147 = df::index(var_96, var_2); df::store(var_joint_qd_new, var_146, var_147); var_148 = df::add(var_dof_start, var_75); var_149 = df::index(var_96, var_12); df::store(var_joint_qd_new, var_148, var_149); } goto label0; //--------- // reverse label0:; adj_0 += adj_ret; if (var_63) { df::adj_store(var_joint_qd_new, var_148, var_149, adj_joint_qd_new, adj_148, adj_149); df::adj_index(var_96, var_12, adj_96, adj_12, adj_149); df::adj_add(var_dof_start, var_75, adj_dof_start, adj_75, adj_148); df::adj_store(var_joint_qd_new, var_146, var_147, adj_joint_qd_new, adj_146, adj_147); df::adj_index(var_96, var_2, adj_96, adj_2, adj_147); df::adj_add(var_dof_start, var_62, adj_dof_start, adj_62, adj_146); df::adj_store(var_joint_qd_new, var_144, var_145, adj_joint_qd_new, adj_144, adj_145); df::adj_index(var_96, var_0, adj_96, adj_0, adj_145); df::adj_add(var_dof_start, var_34, adj_dof_start, adj_34, adj_144); df::adj_store(var_joint_qd_new, var_142, var_143, adj_joint_qd_new, adj_142, adj_143); df::adj_index(var_94, var_12, adj_94, adj_12, adj_143); df::adj_add(var_dof_start, var_12, adj_dof_start, adj_12, adj_142); df::adj_store(var_joint_qd_new, var_140, var_141, adj_joint_qd_new, adj_140, adj_141); df::adj_index(var_94, var_2, adj_94, adj_2, adj_141); df::adj_add(var_dof_start, var_2, adj_dof_start, adj_2, adj_140); df::adj_store(var_joint_qd_new, var_138, var_139, adj_joint_qd_new, adj_138, adj_139); df::adj_index(var_94, var_0, adj_94, adj_0, adj_139); df::adj_add(var_dof_start, var_0, adj_dof_start, adj_0, adj_138); df::adj_store(var_joint_q_new, var_136, var_137, adj_joint_q_new, adj_136, adj_137); df::adj_index(var_123, var_34, adj_123, adj_34, adj_137); df::adj_add(var_coord_start, var_112, adj_coord_start, adj_112, adj_136); df::adj_store(var_joint_q_new, var_134, var_135, adj_joint_q_new, adj_134, adj_135); df::adj_index(var_123, var_12, adj_123, adj_12, adj_135); df::adj_add(var_coord_start, var_75, adj_coord_start, adj_75, adj_134); df::adj_store(var_joint_q_new, var_132, var_133, adj_joint_q_new, adj_132, adj_133); df::adj_index(var_123, var_2, adj_123, adj_2, adj_133); df::adj_add(var_coord_start, var_62, adj_coord_start, adj_62, adj_132); df::adj_store(var_joint_q_new, var_130, var_131, adj_joint_q_new, adj_130, adj_131); df::adj_index(var_123, var_0, adj_123, adj_0, adj_131); df::adj_add(var_coord_start, var_34, adj_coord_start, adj_34, adj_130); df::adj_store(var_joint_q_new, var_128, var_129, adj_joint_q_new, adj_128, adj_129); df::adj_index(var_120, var_12, adj_120, adj_12, adj_129); df::adj_add(var_coord_start, var_12, adj_coord_start, adj_12, adj_128); df::adj_store(var_joint_q_new, var_126, var_127, adj_joint_q_new, adj_126, adj_127); df::adj_index(var_120, var_2, adj_120, adj_2, adj_127); df::adj_add(var_coord_start, var_2, adj_coord_start, adj_2, adj_126); df::adj_store(var_joint_q_new, var_124, var_125, adj_joint_q_new, adj_124, adj_125); df::adj_index(var_120, var_0, adj_120, adj_0, adj_125); df::adj_add(var_coord_start, var_0, adj_coord_start, adj_0, adj_124); df::adj_normalize(var_122, adj_122, adj_123); df::adj_add(var_115, var_121, adj_115, adj_121, adj_122); df::adj_mul(var_118, var_dt, adj_118, adj_dt, adj_121); df::adj_add(var_103, var_119, adj_103, adj_119, adj_120); df::adj_mul(var_105, var_dt, adj_105, adj_dt, adj_119); df::adj_mul(var_117, var_43, adj_117, adj_43, adj_118); df::adj_mul(var_116, var_115, adj_116, adj_115, adj_117); df::adj_quat(var_94, var_40, adj_94, adj_40, adj_116); df::adj_quat(var_107, var_109, var_111, var_114, adj_107, adj_109, adj_111, adj_114, adj_115); df::adj_load(var_joint_q, var_113, adj_joint_q, adj_113, adj_114); df::adj_add(var_coord_start, var_112, adj_coord_start, adj_112, adj_113); df::adj_load(var_joint_q, var_110, adj_joint_q, adj_110, adj_111); df::adj_add(var_coord_start, var_75, adj_coord_start, adj_75, adj_110); df::adj_load(var_joint_q, var_108, adj_joint_q, adj_108, adj_109); df::adj_add(var_coord_start, var_62, adj_coord_start, adj_62, adj_108); df::adj_load(var_joint_q, var_106, adj_joint_q, adj_106, adj_107); df::adj_add(var_coord_start, var_34, adj_coord_start, adj_34, adj_106); df::adj_add(var_96, var_104, adj_96, adj_104, adj_105); df::adj_cross(var_94, var_103, adj_94, adj_103, adj_104); df::adj_float3(var_98, var_100, var_102, adj_98, adj_100, adj_102, adj_103); df::adj_load(var_joint_q, var_101, adj_joint_q, adj_101, adj_102); df::adj_add(var_coord_start, var_12, adj_coord_start, adj_12, adj_101); df::adj_load(var_joint_q, var_99, adj_joint_q, adj_99, adj_100); df::adj_add(var_coord_start, var_2, adj_coord_start, adj_2, adj_99); df::adj_load(var_joint_q, var_97, adj_joint_q, adj_97, adj_98); df::adj_add(var_coord_start, var_0, adj_coord_start, adj_0, adj_97); df::adj_add(var_92, var_95, adj_92, adj_95, adj_96); df::adj_mul(var_78, var_dt, adj_78, adj_dt, adj_95); df::adj_add(var_85, var_93, adj_85, adj_93, adj_94); df::adj_mul(var_70, var_dt, adj_70, adj_dt, adj_93); df::adj_float3(var_87, var_89, var_91, adj_87, adj_89, adj_91, adj_92); df::adj_load(var_joint_qd, var_90, adj_joint_qd, adj_90, adj_91); df::adj_add(var_dof_start, var_75, adj_dof_start, adj_75, adj_90); df::adj_load(var_joint_qd, var_88, adj_joint_qd, adj_88, adj_89); df::adj_add(var_dof_start, var_62, adj_dof_start, adj_62, adj_88); df::adj_load(var_joint_qd, var_86, adj_joint_qd, adj_86, adj_87); df::adj_add(var_dof_start, var_34, adj_dof_start, adj_34, adj_86); df::adj_float3(var_80, var_82, var_84, adj_80, adj_82, adj_84, adj_85); df::adj_load(var_joint_qd, var_83, adj_joint_qd, adj_83, adj_84); df::adj_add(var_dof_start, var_12, adj_dof_start, adj_12, adj_83); df::adj_load(var_joint_qd, var_81, adj_joint_qd, adj_81, adj_82); df::adj_add(var_dof_start, var_2, adj_dof_start, adj_2, adj_81); df::adj_load(var_joint_qd, var_79, adj_joint_qd, adj_79, adj_80); df::adj_add(var_dof_start, var_0, adj_dof_start, adj_0, adj_79); df::adj_float3(var_72, var_74, var_77, adj_72, adj_74, adj_77, adj_78); df::adj_load(var_joint_qdd, var_76, adj_joint_qdd, adj_76, adj_77); df::adj_add(var_dof_start, var_75, adj_dof_start, adj_75, adj_76); df::adj_load(var_joint_qdd, var_73, adj_joint_qdd, adj_73, adj_74); df::adj_add(var_dof_start, var_62, adj_dof_start, adj_62, adj_73); df::adj_load(var_joint_qdd, var_71, adj_joint_qdd, adj_71, adj_72); df::adj_add(var_dof_start, var_34, adj_dof_start, adj_34, adj_71); df::adj_float3(var_65, var_67, var_69, adj_65, adj_67, adj_69, adj_70); df::adj_load(var_joint_qdd, var_68, adj_joint_qdd, adj_68, adj_69); df::adj_add(var_dof_start, var_12, adj_dof_start, adj_12, adj_68); df::adj_load(var_joint_qdd, var_66, adj_joint_qdd, adj_66, adj_67); df::adj_add(var_dof_start, var_2, adj_dof_start, adj_2, adj_66); df::adj_load(var_joint_qdd, var_64, adj_joint_qdd, adj_64, adj_65); df::adj_add(var_dof_start, var_0, adj_dof_start, adj_0, adj_64); } if (var_13) { df::adj_store(var_joint_qd_new, var_60, var_61, adj_joint_qd_new, adj_60, adj_61); df::adj_index(var_39, var_12, adj_39, adj_12, adj_61); df::adj_add(var_dof_start, var_12, adj_dof_start, adj_12, adj_60); df::adj_store(var_joint_qd_new, var_58, var_59, adj_joint_qd_new, adj_58, adj_59); df::adj_index(var_39, var_2, adj_39, adj_2, adj_59); df::adj_add(var_dof_start, var_2, adj_dof_start, adj_2, adj_58); df::adj_store(var_joint_qd_new, var_56, var_57, adj_joint_qd_new, adj_56, adj_57); df::adj_index(var_39, var_0, adj_39, adj_0, adj_57); df::adj_add(var_dof_start, var_0, adj_dof_start, adj_0, adj_56); df::adj_store(var_joint_q_new, var_54, var_55, adj_joint_q_new, adj_54, adj_55); df::adj_index(var_47, var_34, adj_47, adj_34, adj_55); df::adj_add(var_coord_start, var_34, adj_coord_start, adj_34, adj_54); df::adj_store(var_joint_q_new, var_52, var_53, adj_joint_q_new, adj_52, adj_53); df::adj_index(var_47, var_12, adj_47, adj_12, adj_53); df::adj_add(var_coord_start, var_12, adj_coord_start, adj_12, adj_52); df::adj_store(var_joint_q_new, var_50, var_51, adj_joint_q_new, adj_50, adj_51); df::adj_index(var_47, var_2, adj_47, adj_2, adj_51); df::adj_add(var_coord_start, var_2, adj_coord_start, adj_2, adj_50); df::adj_store(var_joint_q_new, var_48, var_49, adj_joint_q_new, adj_48, adj_49); df::adj_index(var_47, var_0, adj_47, adj_0, adj_49); df::adj_add(var_coord_start, var_0, adj_coord_start, adj_0, adj_48); df::adj_normalize(var_46, adj_46, adj_47); df::adj_add(var_37, var_45, adj_37, adj_45, adj_46); df::adj_mul(var_44, var_dt, adj_44, adj_dt, adj_45); df::adj_mul(var_42, var_43, adj_42, adj_43, adj_44); df::adj_mul(var_41, var_37, adj_41, adj_37, adj_42); df::adj_quat(var_39, var_40, adj_39, adj_40, adj_41); df::adj_add(var_27, var_38, adj_27, adj_38, adj_39); df::adj_mul(var_20, var_dt, adj_20, adj_dt, adj_38); df::adj_quat(var_29, var_31, var_33, var_36, adj_29, adj_31, adj_33, adj_36, adj_37); df::adj_load(var_joint_q, var_35, adj_joint_q, adj_35, adj_36); df::adj_add(var_coord_start, var_34, adj_coord_start, adj_34, adj_35); df::adj_load(var_joint_q, var_32, adj_joint_q, adj_32, adj_33); df::adj_add(var_coord_start, var_12, adj_coord_start, adj_12, adj_32); df::adj_load(var_joint_q, var_30, adj_joint_q, adj_30, adj_31); df::adj_add(var_coord_start, var_2, adj_coord_start, adj_2, adj_30); df::adj_load(var_joint_q, var_28, adj_joint_q, adj_28, adj_29); df::adj_add(var_coord_start, var_0, adj_coord_start, adj_0, adj_28); df::adj_float3(var_22, var_24, var_26, adj_22, adj_24, adj_26, adj_27); df::adj_load(var_joint_qd, var_25, adj_joint_qd, adj_25, adj_26); df::adj_add(var_dof_start, var_12, adj_dof_start, adj_12, adj_25); df::adj_load(var_joint_qd, var_23, adj_joint_qd, adj_23, adj_24); df::adj_add(var_dof_start, var_2, adj_dof_start, adj_2, adj_23); df::adj_load(var_joint_qd, var_21, adj_joint_qd, adj_21, adj_22); df::adj_add(var_dof_start, var_0, adj_dof_start, adj_0, adj_21); df::adj_float3(var_15, var_17, var_19, adj_15, adj_17, adj_19, adj_20); df::adj_load(var_joint_qdd, var_18, adj_joint_qdd, adj_18, adj_19); df::adj_add(var_dof_start, var_12, adj_dof_start, adj_12, adj_18); df::adj_load(var_joint_qdd, var_16, adj_joint_qdd, adj_16, adj_17); df::adj_add(var_dof_start, var_2, adj_dof_start, adj_2, adj_16); df::adj_load(var_joint_qdd, var_14, adj_joint_qdd, adj_14, adj_15); df::adj_add(var_dof_start, var_0, adj_dof_start, adj_0, adj_14); } if (var_4) { df::adj_store(var_joint_q_new, var_coord_start, var_11, adj_joint_q_new, adj_coord_start, adj_11); df::adj_store(var_joint_qd_new, var_dof_start, var_9, adj_joint_qd_new, adj_dof_start, adj_9); df::adj_add(var_7, var_10, adj_7, adj_10, adj_11); df::adj_mul(var_9, var_dt, adj_9, adj_dt, adj_10); df::adj_add(var_6, var_8, adj_6, adj_8, adj_9); df::adj_mul(var_5, var_dt, adj_5, adj_dt, adj_8); df::adj_load(var_joint_q, var_coord_start, adj_joint_q, adj_coord_start, adj_7); df::adj_load(var_joint_qd, var_dof_start, adj_joint_qd, adj_dof_start, adj_6); df::adj_load(var_joint_qdd, var_dof_start, adj_joint_qdd, adj_dof_start, adj_5); } return; } int compute_link_transform_cpu_func( int var_i, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, spatial_transform* var_joint_X_pj, spatial_transform* var_joint_X_cm, df::float3* var_joint_axis, spatial_transform* var_body_X_sc, spatial_transform* var_body_X_sm) { //--------- // primal vars int var_0; spatial_transform var_1; const int var_2 = 0; bool var_3; spatial_transform var_4; spatial_transform var_5; int var_6; df::float3 var_7; int var_8; int var_9; spatial_transform var_10; spatial_transform var_11; spatial_transform var_12; spatial_transform var_13; spatial_transform var_14; spatial_transform var_15; //--------- // forward var_0 = df::load(var_joint_parent, var_i); var_1 = df::spatial_transform_identity(); var_3 = (var_0 >= var_2); if (var_3) { var_4 = df::load(var_body_X_sc, var_0); } var_5 = df::select(var_3, var_1, var_4); var_6 = df::load(var_joint_type, var_i); var_7 = df::load(var_joint_axis, var_i); var_8 = df::load(var_joint_q_start, var_i); var_9 = df::load(var_joint_qd_start, var_i); var_10 = jcalc_transform_cpu_func(var_6, var_7, var_joint_q, var_8); var_11 = df::load(var_joint_X_pj, var_i); var_12 = df::spatial_transform_multiply(var_11, var_10); var_13 = df::spatial_transform_multiply(var_5, var_12); var_14 = df::load(var_joint_X_cm, var_i); var_15 = df::spatial_transform_multiply(var_13, var_14); df::store(var_body_X_sc, var_i, var_13); df::store(var_body_X_sm, var_i, var_15); return var_2; } void adj_compute_link_transform_cpu_func( int var_i, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, spatial_transform* var_joint_X_pj, spatial_transform* var_joint_X_cm, df::float3* var_joint_axis, spatial_transform* var_body_X_sc, spatial_transform* var_body_X_sm, int & adj_i, int* adj_joint_type, int* adj_joint_parent, int* adj_joint_q_start, int* adj_joint_qd_start, float* adj_joint_q, spatial_transform* adj_joint_X_pj, spatial_transform* adj_joint_X_cm, df::float3* adj_joint_axis, spatial_transform* adj_body_X_sc, spatial_transform* adj_body_X_sm, int & adj_ret) { //--------- // primal vars int var_0; spatial_transform var_1; const int var_2 = 0; bool var_3; spatial_transform var_4; spatial_transform var_5; int var_6; df::float3 var_7; int var_8; int var_9; spatial_transform var_10; spatial_transform var_11; spatial_transform var_12; spatial_transform var_13; spatial_transform var_14; spatial_transform var_15; //--------- // dual vars int adj_0 = 0; spatial_transform adj_1 = 0; int adj_2 = 0; bool adj_3 = 0; spatial_transform adj_4 = 0; spatial_transform adj_5 = 0; int adj_6 = 0; df::float3 adj_7 = 0; int adj_8 = 0; int adj_9 = 0; spatial_transform adj_10 = 0; spatial_transform adj_11 = 0; spatial_transform adj_12 = 0; spatial_transform adj_13 = 0; spatial_transform adj_14 = 0; spatial_transform adj_15 = 0; //--------- // forward var_0 = df::load(var_joint_parent, var_i); var_1 = df::spatial_transform_identity(); var_3 = (var_0 >= var_2); if (var_3) { var_4 = df::load(var_body_X_sc, var_0); } var_5 = df::select(var_3, var_1, var_4); var_6 = df::load(var_joint_type, var_i); var_7 = df::load(var_joint_axis, var_i); var_8 = df::load(var_joint_q_start, var_i); var_9 = df::load(var_joint_qd_start, var_i); var_10 = jcalc_transform_cpu_func(var_6, var_7, var_joint_q, var_8); var_11 = df::load(var_joint_X_pj, var_i); var_12 = df::spatial_transform_multiply(var_11, var_10); var_13 = df::spatial_transform_multiply(var_5, var_12); var_14 = df::load(var_joint_X_cm, var_i); var_15 = df::spatial_transform_multiply(var_13, var_14); df::store(var_body_X_sc, var_i, var_13); df::store(var_body_X_sm, var_i, var_15); goto label0; //--------- // reverse label0:; adj_2 += adj_ret; df::adj_store(var_body_X_sm, var_i, var_15, adj_body_X_sm, adj_i, adj_15); df::adj_store(var_body_X_sc, var_i, var_13, adj_body_X_sc, adj_i, adj_13); df::adj_spatial_transform_multiply(var_13, var_14, adj_13, adj_14, adj_15); df::adj_load(var_joint_X_cm, var_i, adj_joint_X_cm, adj_i, adj_14); df::adj_spatial_transform_multiply(var_5, var_12, adj_5, adj_12, adj_13); df::adj_spatial_transform_multiply(var_11, var_10, adj_11, adj_10, adj_12); df::adj_load(var_joint_X_pj, var_i, adj_joint_X_pj, adj_i, adj_11); adj_jcalc_transform_cpu_func(var_6, var_7, var_joint_q, var_8, adj_6, adj_7, adj_joint_q, adj_8, adj_10); df::adj_load(var_joint_qd_start, var_i, adj_joint_qd_start, adj_i, adj_9); df::adj_load(var_joint_q_start, var_i, adj_joint_q_start, adj_i, adj_8); df::adj_load(var_joint_axis, var_i, adj_joint_axis, adj_i, adj_7); df::adj_load(var_joint_type, var_i, adj_joint_type, adj_i, adj_6); df::adj_select(var_3, var_1, var_4, adj_3, adj_1, adj_4, adj_5); if (var_3) { df::adj_load(var_body_X_sc, var_0, adj_body_X_sc, adj_0, adj_4); } df::adj_load(var_joint_parent, var_i, adj_joint_parent, adj_i, adj_0); return; } int compute_link_velocity_cpu_func( int var_i, int* var_joint_type, int* var_joint_parent, int* var_joint_qd_start, float* var_joint_qd, df::float3* var_joint_axis, spatial_matrix* var_body_I_m, spatial_transform* var_body_X_sc, spatial_transform* var_body_X_sm, spatial_transform* var_joint_X_pj, df::float3* var_gravity, spatial_vector* var_joint_S_s, spatial_matrix* var_body_I_s, spatial_vector* var_body_v_s, spatial_vector* var_body_f_s, spatial_vector* var_body_a_s) { //--------- // primal vars int var_0; df::float3 var_1; int var_2; int var_3; spatial_transform var_4; spatial_transform var_5; const int var_6 = 0; bool var_7; spatial_transform var_8; spatial_transform var_9; spatial_transform var_10; spatial_transform var_11; spatial_vector var_12; spatial_vector var_13; spatial_vector var_14; bool var_15; spatial_vector var_16; spatial_vector var_17; spatial_vector var_18; spatial_vector var_19; spatial_vector var_20; spatial_vector var_21; spatial_vector var_22; spatial_transform var_23; spatial_matrix var_24; df::float3 var_25; const int var_26 = 3; float var_27; df::float3 var_28; spatial_vector var_29; spatial_vector var_30; df::float3 var_31; quat var_32; spatial_transform var_33; spatial_vector var_34; spatial_matrix var_35; spatial_vector var_36; spatial_vector var_37; spatial_vector var_38; spatial_vector var_39; spatial_vector var_40; //--------- // forward var_0 = df::load(var_joint_type, var_i); var_1 = df::load(var_joint_axis, var_i); var_2 = df::load(var_joint_parent, var_i); var_3 = df::load(var_joint_qd_start, var_i); var_4 = df::load(var_body_X_sc, var_i); var_5 = df::spatial_transform_identity(); var_7 = (var_2 >= var_6); if (var_7) { var_8 = df::load(var_body_X_sc, var_2); } var_9 = df::select(var_7, var_5, var_8); var_10 = df::load(var_joint_X_pj, var_i); var_11 = df::spatial_transform_multiply(var_9, var_10); var_12 = jcalc_motion_cpu_func(var_0, var_1, var_11, var_joint_S_s, var_joint_qd, var_3); var_13 = df::spatial_vector(); var_14 = df::spatial_vector(); var_15 = (var_2 >= var_6); if (var_15) { var_16 = df::load(var_body_v_s, var_2); var_17 = df::load(var_body_a_s, var_2); } var_18 = df::select(var_15, var_13, var_16); var_19 = df::select(var_15, var_14, var_17); var_20 = df::add(var_18, var_12); var_21 = df::spatial_cross(var_20, var_12); var_22 = df::add(var_19, var_21); var_23 = df::load(var_body_X_sm, var_i); var_24 = df::load(var_body_I_m, var_i); var_25 = df::load(var_gravity, var_6); var_27 = df::index(var_24, var_26, var_26); var_28 = df::float3(); var_29 = df::spatial_vector(var_28, var_25); var_30 = df::mul(var_29, var_27); var_31 = df::spatial_transform_get_translation(var_23); var_32 = df::quat_identity(); var_33 = df::spatial_transform(var_31, var_32); var_34 = spatial_transform_wrench_cpu_func(var_33, var_30); var_35 = spatial_transform_inertia_cpu_func(var_23, var_24); var_36 = df::mul(var_35, var_22); var_37 = df::mul(var_35, var_20); var_38 = df::spatial_cross_dual(var_20, var_37); var_39 = df::add(var_36, var_38); df::store(var_body_v_s, var_i, var_20); df::store(var_body_a_s, var_i, var_22); var_40 = df::sub(var_39, var_34); df::store(var_body_f_s, var_i, var_40); df::store(var_body_I_s, var_i, var_35); return var_6; } void adj_compute_link_velocity_cpu_func( int var_i, int* var_joint_type, int* var_joint_parent, int* var_joint_qd_start, float* var_joint_qd, df::float3* var_joint_axis, spatial_matrix* var_body_I_m, spatial_transform* var_body_X_sc, spatial_transform* var_body_X_sm, spatial_transform* var_joint_X_pj, df::float3* var_gravity, spatial_vector* var_joint_S_s, spatial_matrix* var_body_I_s, spatial_vector* var_body_v_s, spatial_vector* var_body_f_s, spatial_vector* var_body_a_s, int & adj_i, int* adj_joint_type, int* adj_joint_parent, int* adj_joint_qd_start, float* adj_joint_qd, df::float3* adj_joint_axis, spatial_matrix* adj_body_I_m, spatial_transform* adj_body_X_sc, spatial_transform* adj_body_X_sm, spatial_transform* adj_joint_X_pj, df::float3* adj_gravity, spatial_vector* adj_joint_S_s, spatial_matrix* adj_body_I_s, spatial_vector* adj_body_v_s, spatial_vector* adj_body_f_s, spatial_vector* adj_body_a_s, int & adj_ret) { //--------- // primal vars int var_0; df::float3 var_1; int var_2; int var_3; spatial_transform var_4; spatial_transform var_5; const int var_6 = 0; bool var_7; spatial_transform var_8; spatial_transform var_9; spatial_transform var_10; spatial_transform var_11; spatial_vector var_12; spatial_vector var_13; spatial_vector var_14; bool var_15; spatial_vector var_16; spatial_vector var_17; spatial_vector var_18; spatial_vector var_19; spatial_vector var_20; spatial_vector var_21; spatial_vector var_22; spatial_transform var_23; spatial_matrix var_24; df::float3 var_25; const int var_26 = 3; float var_27; df::float3 var_28; spatial_vector var_29; spatial_vector var_30; df::float3 var_31; quat var_32; spatial_transform var_33; spatial_vector var_34; spatial_matrix var_35; spatial_vector var_36; spatial_vector var_37; spatial_vector var_38; spatial_vector var_39; spatial_vector var_40; //--------- // dual vars int adj_0 = 0; df::float3 adj_1 = 0; int adj_2 = 0; int adj_3 = 0; spatial_transform adj_4 = 0; spatial_transform adj_5 = 0; int adj_6 = 0; bool adj_7 = 0; spatial_transform adj_8 = 0; spatial_transform adj_9 = 0; spatial_transform adj_10 = 0; spatial_transform adj_11 = 0; spatial_vector adj_12 = 0; spatial_vector adj_13 = 0; spatial_vector adj_14 = 0; bool adj_15 = 0; spatial_vector adj_16 = 0; spatial_vector adj_17 = 0; spatial_vector adj_18 = 0; spatial_vector adj_19 = 0; spatial_vector adj_20 = 0; spatial_vector adj_21 = 0; spatial_vector adj_22 = 0; spatial_transform adj_23 = 0; spatial_matrix adj_24 = 0; df::float3 adj_25 = 0; int adj_26 = 0; float adj_27 = 0; df::float3 adj_28 = 0; spatial_vector adj_29 = 0; spatial_vector adj_30 = 0; df::float3 adj_31 = 0; quat adj_32 = 0; spatial_transform adj_33 = 0; spatial_vector adj_34 = 0; spatial_matrix adj_35 = 0; spatial_vector adj_36 = 0; spatial_vector adj_37 = 0; spatial_vector adj_38 = 0; spatial_vector adj_39 = 0; spatial_vector adj_40 = 0; //--------- // forward var_0 = df::load(var_joint_type, var_i); var_1 = df::load(var_joint_axis, var_i); var_2 = df::load(var_joint_parent, var_i); var_3 = df::load(var_joint_qd_start, var_i); var_4 = df::load(var_body_X_sc, var_i); var_5 = df::spatial_transform_identity(); var_7 = (var_2 >= var_6); if (var_7) { var_8 = df::load(var_body_X_sc, var_2); } var_9 = df::select(var_7, var_5, var_8); var_10 = df::load(var_joint_X_pj, var_i); var_11 = df::spatial_transform_multiply(var_9, var_10); var_12 = jcalc_motion_cpu_func(var_0, var_1, var_11, var_joint_S_s, var_joint_qd, var_3); var_13 = df::spatial_vector(); var_14 = df::spatial_vector(); var_15 = (var_2 >= var_6); if (var_15) { var_16 = df::load(var_body_v_s, var_2); var_17 = df::load(var_body_a_s, var_2); } var_18 = df::select(var_15, var_13, var_16); var_19 = df::select(var_15, var_14, var_17); var_20 = df::add(var_18, var_12); var_21 = df::spatial_cross(var_20, var_12); var_22 = df::add(var_19, var_21); var_23 = df::load(var_body_X_sm, var_i); var_24 = df::load(var_body_I_m, var_i); var_25 = df::load(var_gravity, var_6); var_27 = df::index(var_24, var_26, var_26); var_28 = df::float3(); var_29 = df::spatial_vector(var_28, var_25); var_30 = df::mul(var_29, var_27); var_31 = df::spatial_transform_get_translation(var_23); var_32 = df::quat_identity(); var_33 = df::spatial_transform(var_31, var_32); var_34 = spatial_transform_wrench_cpu_func(var_33, var_30); var_35 = spatial_transform_inertia_cpu_func(var_23, var_24); var_36 = df::mul(var_35, var_22); var_37 = df::mul(var_35, var_20); var_38 = df::spatial_cross_dual(var_20, var_37); var_39 = df::add(var_36, var_38); df::store(var_body_v_s, var_i, var_20); df::store(var_body_a_s, var_i, var_22); var_40 = df::sub(var_39, var_34); df::store(var_body_f_s, var_i, var_40); df::store(var_body_I_s, var_i, var_35); goto label0; //--------- // reverse label0:; adj_6 += adj_ret; df::adj_store(var_body_I_s, var_i, var_35, adj_body_I_s, adj_i, adj_35); df::adj_store(var_body_f_s, var_i, var_40, adj_body_f_s, adj_i, adj_40); df::adj_sub(var_39, var_34, adj_39, adj_34, adj_40); df::adj_store(var_body_a_s, var_i, var_22, adj_body_a_s, adj_i, adj_22); df::adj_store(var_body_v_s, var_i, var_20, adj_body_v_s, adj_i, adj_20); df::adj_add(var_36, var_38, adj_36, adj_38, adj_39); df::adj_spatial_cross_dual(var_20, var_37, adj_20, adj_37, adj_38); df::adj_mul(var_35, var_20, adj_35, adj_20, adj_37); df::adj_mul(var_35, var_22, adj_35, adj_22, adj_36); adj_spatial_transform_inertia_cpu_func(var_23, var_24, adj_23, adj_24, adj_35); adj_spatial_transform_wrench_cpu_func(var_33, var_30, adj_33, adj_30, adj_34); df::adj_spatial_transform(var_31, var_32, adj_31, adj_32, adj_33); df::adj_spatial_transform_get_translation(var_23, adj_23, adj_31); df::adj_mul(var_29, var_27, adj_29, adj_27, adj_30); df::adj_spatial_vector(var_28, var_25, adj_28, adj_25, adj_29); df::adj_index(var_24, var_26, var_26, adj_24, adj_26, adj_26, adj_27); df::adj_load(var_gravity, var_6, adj_gravity, adj_6, adj_25); df::adj_load(var_body_I_m, var_i, adj_body_I_m, adj_i, adj_24); df::adj_load(var_body_X_sm, var_i, adj_body_X_sm, adj_i, adj_23); df::adj_add(var_19, var_21, adj_19, adj_21, adj_22); df::adj_spatial_cross(var_20, var_12, adj_20, adj_12, adj_21); df::adj_add(var_18, var_12, adj_18, adj_12, adj_20); df::adj_select(var_15, var_14, var_17, adj_15, adj_14, adj_17, adj_19); df::adj_select(var_15, var_13, var_16, adj_15, adj_13, adj_16, adj_18); if (var_15) { df::adj_load(var_body_a_s, var_2, adj_body_a_s, adj_2, adj_17); df::adj_load(var_body_v_s, var_2, adj_body_v_s, adj_2, adj_16); } adj_jcalc_motion_cpu_func(var_0, var_1, var_11, var_joint_S_s, var_joint_qd, var_3, adj_0, adj_1, adj_11, adj_joint_S_s, adj_joint_qd, adj_3, adj_12); df::adj_spatial_transform_multiply(var_9, var_10, adj_9, adj_10, adj_11); df::adj_load(var_joint_X_pj, var_i, adj_joint_X_pj, adj_i, adj_10); df::adj_select(var_7, var_5, var_8, adj_7, adj_5, adj_8, adj_9); if (var_7) { df::adj_load(var_body_X_sc, var_2, adj_body_X_sc, adj_2, adj_8); } df::adj_load(var_body_X_sc, var_i, adj_body_X_sc, adj_i, adj_4); df::adj_load(var_joint_qd_start, var_i, adj_joint_qd_start, adj_i, adj_3); df::adj_load(var_joint_parent, var_i, adj_joint_parent, adj_i, adj_2); df::adj_load(var_joint_axis, var_i, adj_joint_axis, adj_i, adj_1); df::adj_load(var_joint_type, var_i, adj_joint_type, adj_i, adj_0); return; } int compute_link_tau_cpu_func( int var_offset, int var_joint_end, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, float* var_joint_qd, float* var_joint_act, float* var_joint_target, float* var_joint_target_ke, float* var_joint_target_kd, float* var_joint_limit_lower, float* var_joint_limit_upper, float* var_joint_limit_ke, float* var_joint_limit_kd, spatial_vector* var_joint_S_s, spatial_vector* var_body_fb_s, spatial_vector* var_body_ft_s, float* var_tau) { //--------- // primal vars int var_0; const int var_1 = 1; int var_2; int var_3; int var_4; int var_5; int var_6; float var_7; float var_8; float var_9; float var_10; spatial_vector var_11; spatial_vector var_12; spatial_vector var_13; int var_14; const int var_15 = 0; bool var_16; //--------- // forward var_0 = df::sub(var_joint_end, var_offset); var_2 = df::sub(var_0, var_1); var_3 = df::load(var_joint_type, var_2); var_4 = df::load(var_joint_parent, var_2); var_5 = df::load(var_joint_qd_start, var_2); var_6 = df::load(var_joint_q_start, var_2); var_7 = df::load(var_joint_target_ke, var_2); var_8 = df::load(var_joint_target_kd, var_2); var_9 = df::load(var_joint_limit_ke, var_2); var_10 = df::load(var_joint_limit_kd, var_2); var_11 = df::load(var_body_fb_s, var_2); var_12 = df::load(var_body_ft_s, var_2); var_13 = df::add(var_11, var_12); var_14 = jcalc_tau_cpu_func(var_3, var_7, var_8, var_9, var_10, var_joint_S_s, var_joint_q, var_joint_qd, var_joint_act, var_joint_target, var_joint_limit_lower, var_joint_limit_upper, var_6, var_5, var_13, var_tau); var_16 = (var_4 >= var_15); if (var_16) { df::atomic_add(var_body_ft_s, var_4, var_13); } return var_15; } void adj_compute_link_tau_cpu_func( int var_offset, int var_joint_end, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, float* var_joint_qd, float* var_joint_act, float* var_joint_target, float* var_joint_target_ke, float* var_joint_target_kd, float* var_joint_limit_lower, float* var_joint_limit_upper, float* var_joint_limit_ke, float* var_joint_limit_kd, spatial_vector* var_joint_S_s, spatial_vector* var_body_fb_s, spatial_vector* var_body_ft_s, float* var_tau, int & adj_offset, int & adj_joint_end, int* adj_joint_type, int* adj_joint_parent, int* adj_joint_q_start, int* adj_joint_qd_start, float* adj_joint_q, float* adj_joint_qd, float* adj_joint_act, float* adj_joint_target, float* adj_joint_target_ke, float* adj_joint_target_kd, float* adj_joint_limit_lower, float* adj_joint_limit_upper, float* adj_joint_limit_ke, float* adj_joint_limit_kd, spatial_vector* adj_joint_S_s, spatial_vector* adj_body_fb_s, spatial_vector* adj_body_ft_s, float* adj_tau, int & adj_ret) { //--------- // primal vars int var_0; const int var_1 = 1; int var_2; int var_3; int var_4; int var_5; int var_6; float var_7; float var_8; float var_9; float var_10; spatial_vector var_11; spatial_vector var_12; spatial_vector var_13; int var_14; const int var_15 = 0; bool var_16; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; float adj_7 = 0; float adj_8 = 0; float adj_9 = 0; float adj_10 = 0; spatial_vector adj_11 = 0; spatial_vector adj_12 = 0; spatial_vector adj_13 = 0; int adj_14 = 0; int adj_15 = 0; bool adj_16 = 0; //--------- // forward var_0 = df::sub(var_joint_end, var_offset); var_2 = df::sub(var_0, var_1); var_3 = df::load(var_joint_type, var_2); var_4 = df::load(var_joint_parent, var_2); var_5 = df::load(var_joint_qd_start, var_2); var_6 = df::load(var_joint_q_start, var_2); var_7 = df::load(var_joint_target_ke, var_2); var_8 = df::load(var_joint_target_kd, var_2); var_9 = df::load(var_joint_limit_ke, var_2); var_10 = df::load(var_joint_limit_kd, var_2); var_11 = df::load(var_body_fb_s, var_2); var_12 = df::load(var_body_ft_s, var_2); var_13 = df::add(var_11, var_12); var_14 = jcalc_tau_cpu_func(var_3, var_7, var_8, var_9, var_10, var_joint_S_s, var_joint_q, var_joint_qd, var_joint_act, var_joint_target, var_joint_limit_lower, var_joint_limit_upper, var_6, var_5, var_13, var_tau); var_16 = (var_4 >= var_15); if (var_16) { df::atomic_add(var_body_ft_s, var_4, var_13); } goto label0; //--------- // reverse label0:; adj_15 += adj_ret; if (var_16) { df::adj_atomic_add(var_body_ft_s, var_4, var_13, adj_body_ft_s, adj_4, adj_13); } adj_jcalc_tau_cpu_func(var_3, var_7, var_8, var_9, var_10, var_joint_S_s, var_joint_q, var_joint_qd, var_joint_act, var_joint_target, var_joint_limit_lower, var_joint_limit_upper, var_6, var_5, var_13, var_tau, adj_3, adj_7, adj_8, adj_9, adj_10, adj_joint_S_s, adj_joint_q, adj_joint_qd, adj_joint_act, adj_joint_target, adj_joint_limit_lower, adj_joint_limit_upper, adj_6, adj_5, adj_13, adj_tau, adj_14); df::adj_add(var_11, var_12, adj_11, adj_12, adj_13); df::adj_load(var_body_ft_s, var_2, adj_body_ft_s, adj_2, adj_12); df::adj_load(var_body_fb_s, var_2, adj_body_fb_s, adj_2, adj_11); df::adj_load(var_joint_limit_kd, var_2, adj_joint_limit_kd, adj_2, adj_10); df::adj_load(var_joint_limit_ke, var_2, adj_joint_limit_ke, adj_2, adj_9); df::adj_load(var_joint_target_kd, var_2, adj_joint_target_kd, adj_2, adj_8); df::adj_load(var_joint_target_ke, var_2, adj_joint_target_ke, adj_2, adj_7); df::adj_load(var_joint_q_start, var_2, adj_joint_q_start, adj_2, adj_6); df::adj_load(var_joint_qd_start, var_2, adj_joint_qd_start, adj_2, adj_5); df::adj_load(var_joint_parent, var_2, adj_joint_parent, adj_2, adj_4); df::adj_load(var_joint_type, var_2, adj_joint_type, adj_2, adj_3); df::adj_sub(var_0, var_1, adj_0, adj_1, adj_2); df::adj_sub(var_joint_end, var_offset, adj_joint_end, adj_offset, adj_0); return; } void integrate_particles_cpu_kernel_forward( df::float3* var_x, df::float3* var_v, df::float3* var_f, float* var_w, df::float3* var_gravity, float var_dt, df::float3* var_x_new, df::float3* var_v_new) { //--------- // primal vars int var_0; df::float3 var_1; df::float3 var_2; df::float3 var_3; float var_4; const int var_5 = 0; df::float3 var_6; df::float3 var_7; const float var_8 = 0.0; float var_9; float var_10; df::float3 var_11; df::float3 var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_x, var_0); var_2 = df::load(var_v, var_0); var_3 = df::load(var_f, var_0); var_4 = df::load(var_w, var_0); var_6 = df::load(var_gravity, var_5); var_7 = df::mul(var_3, var_4); var_9 = df::sub(var_8, var_4); var_10 = df::step(var_9); var_11 = df::mul(var_6, var_10); var_12 = df::add(var_7, var_11); var_13 = df::mul(var_12, var_dt); var_14 = df::add(var_2, var_13); var_15 = df::mul(var_14, var_dt); var_16 = df::add(var_1, var_15); df::store(var_x_new, var_0, var_16); df::store(var_v_new, var_0, var_14); } void integrate_particles_cpu_kernel_backward( df::float3* var_x, df::float3* var_v, df::float3* var_f, float* var_w, df::float3* var_gravity, float var_dt, df::float3* var_x_new, df::float3* var_v_new, df::float3* adj_x, df::float3* adj_v, df::float3* adj_f, float* adj_w, df::float3* adj_gravity, float adj_dt, df::float3* adj_x_new, df::float3* adj_v_new) { //--------- // primal vars int var_0; df::float3 var_1; df::float3 var_2; df::float3 var_3; float var_4; const int var_5 = 0; df::float3 var_6; df::float3 var_7; const float var_8 = 0.0; float var_9; float var_10; df::float3 var_11; df::float3 var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; //--------- // dual vars int adj_0 = 0; df::float3 adj_1 = 0; df::float3 adj_2 = 0; df::float3 adj_3 = 0; float adj_4 = 0; int adj_5 = 0; df::float3 adj_6 = 0; df::float3 adj_7 = 0; float adj_8 = 0; float adj_9 = 0; float adj_10 = 0; df::float3 adj_11 = 0; df::float3 adj_12 = 0; df::float3 adj_13 = 0; df::float3 adj_14 = 0; df::float3 adj_15 = 0; df::float3 adj_16 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_x, var_0); var_2 = df::load(var_v, var_0); var_3 = df::load(var_f, var_0); var_4 = df::load(var_w, var_0); var_6 = df::load(var_gravity, var_5); var_7 = df::mul(var_3, var_4); var_9 = df::sub(var_8, var_4); var_10 = df::step(var_9); var_11 = df::mul(var_6, var_10); var_12 = df::add(var_7, var_11); var_13 = df::mul(var_12, var_dt); var_14 = df::add(var_2, var_13); var_15 = df::mul(var_14, var_dt); var_16 = df::add(var_1, var_15); df::store(var_x_new, var_0, var_16); df::store(var_v_new, var_0, var_14); //--------- // reverse df::adj_store(var_v_new, var_0, var_14, adj_v_new, adj_0, adj_14); df::adj_store(var_x_new, var_0, var_16, adj_x_new, adj_0, adj_16); df::adj_add(var_1, var_15, adj_1, adj_15, adj_16); df::adj_mul(var_14, var_dt, adj_14, adj_dt, adj_15); df::adj_add(var_2, var_13, adj_2, adj_13, adj_14); df::adj_mul(var_12, var_dt, adj_12, adj_dt, adj_13); df::adj_add(var_7, var_11, adj_7, adj_11, adj_12); df::adj_mul(var_6, var_10, adj_6, adj_10, adj_11); df::adj_step(var_9, adj_9, adj_10); df::adj_sub(var_8, var_4, adj_8, adj_4, adj_9); df::adj_mul(var_3, var_4, adj_3, adj_4, adj_7); df::adj_load(var_gravity, var_5, adj_gravity, adj_5, adj_6); df::adj_load(var_w, var_0, adj_w, adj_0, adj_4); df::adj_load(var_f, var_0, adj_f, adj_0, adj_3); df::adj_load(var_v, var_0, adj_v, adj_0, adj_2); df::adj_load(var_x, var_0, adj_x, adj_0, adj_1); return; } // Python entry points void integrate_particles_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_f, torch::Tensor var_w, torch::Tensor var_gravity, float var_dt, torch::Tensor var_x_new, torch::Tensor var_v_new) { for (int i=0; i < dim; ++i) { s_threadIdx = i; integrate_particles_cpu_kernel_forward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<df::float3*>(var_f), cast<float*>(var_w), cast<df::float3*>(var_gravity), var_dt, cast<df::float3*>(var_x_new), cast<df::float3*>(var_v_new)); } } void integrate_particles_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_f, torch::Tensor var_w, torch::Tensor var_gravity, float var_dt, torch::Tensor var_x_new, torch::Tensor var_v_new, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_f, torch::Tensor adj_w, torch::Tensor adj_gravity, float adj_dt, torch::Tensor adj_x_new, torch::Tensor adj_v_new) { for (int i=0; i < dim; ++i) { s_threadIdx = i; integrate_particles_cpu_kernel_backward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<df::float3*>(var_f), cast<float*>(var_w), cast<df::float3*>(var_gravity), var_dt, cast<df::float3*>(var_x_new), cast<df::float3*>(var_v_new), cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<df::float3*>(adj_f), cast<float*>(adj_w), cast<df::float3*>(adj_gravity), adj_dt, cast<df::float3*>(adj_x_new), cast<df::float3*>(adj_v_new)); } } // Python entry points void integrate_particles_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_f, torch::Tensor var_w, torch::Tensor var_gravity, float var_dt, torch::Tensor var_x_new, torch::Tensor var_v_new); void integrate_particles_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_f, torch::Tensor var_w, torch::Tensor var_gravity, float var_dt, torch::Tensor var_x_new, torch::Tensor var_v_new, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_f, torch::Tensor adj_w, torch::Tensor adj_gravity, float adj_dt, torch::Tensor adj_x_new, torch::Tensor adj_v_new); void integrate_rigids_cpu_kernel_forward( df::float3* var_rigid_x, quat* var_rigid_r, df::float3* var_rigid_v, df::float3* var_rigid_w, df::float3* var_rigid_f, df::float3* var_rigid_t, float* var_inv_m, mat33* var_inv_I, df::float3* var_gravity, float var_dt, df::float3* var_rigid_x_new, quat* var_rigid_r_new, df::float3* var_rigid_v_new, df::float3* var_rigid_w_new) { //--------- // primal vars int var_0; df::float3 var_1; quat var_2; df::float3 var_3; df::float3 var_4; df::float3 var_5; df::float3 var_6; float var_7; mat33 var_8; const int var_9 = 0; df::float3 var_10; df::float3 var_11; float var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; df::float3 var_17; df::float3 var_18; df::float3 var_19; df::float3 var_20; df::float3 var_21; df::float3 var_22; df::float3 var_23; df::float3 var_24; const float var_25 = 0.0; quat var_26; quat var_27; const float var_28 = 0.5; quat var_29; quat var_30; quat var_31; quat var_32; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_rigid_x, var_0); var_2 = df::load(var_rigid_r, var_0); var_3 = df::load(var_rigid_v, var_0); var_4 = df::load(var_rigid_w, var_0); var_5 = df::load(var_rigid_f, var_0); var_6 = df::load(var_rigid_t, var_0); var_7 = df::load(var_inv_m, var_0); var_8 = df::load(var_inv_I, var_0); var_10 = df::load(var_gravity, var_9); var_11 = df::mul(var_5, var_7); var_12 = df::nonzero(var_7); var_13 = df::mul(var_10, var_12); var_14 = df::add(var_11, var_13); var_15 = df::mul(var_14, var_dt); var_16 = df::add(var_3, var_15); var_17 = df::mul(var_16, var_dt); var_18 = df::add(var_1, var_17); var_19 = df::rotate_inv(var_2, var_4); var_20 = df::rotate_inv(var_2, var_6); var_21 = df::mul(var_8, var_20); var_22 = df::mul(var_21, var_dt); var_23 = df::add(var_19, var_22); var_24 = df::rotate(var_2, var_23); var_26 = df::quat(var_24, var_25); var_27 = df::mul(var_26, var_2); var_29 = df::mul(var_27, var_28); var_30 = df::mul(var_29, var_dt); var_31 = df::add(var_2, var_30); var_32 = df::normalize(var_31); df::store(var_rigid_x_new, var_0, var_18); df::store(var_rigid_r_new, var_0, var_32); df::store(var_rigid_v_new, var_0, var_16); df::store(var_rigid_w_new, var_0, var_24); } void integrate_rigids_cpu_kernel_backward( df::float3* var_rigid_x, quat* var_rigid_r, df::float3* var_rigid_v, df::float3* var_rigid_w, df::float3* var_rigid_f, df::float3* var_rigid_t, float* var_inv_m, mat33* var_inv_I, df::float3* var_gravity, float var_dt, df::float3* var_rigid_x_new, quat* var_rigid_r_new, df::float3* var_rigid_v_new, df::float3* var_rigid_w_new, df::float3* adj_rigid_x, quat* adj_rigid_r, df::float3* adj_rigid_v, df::float3* adj_rigid_w, df::float3* adj_rigid_f, df::float3* adj_rigid_t, float* adj_inv_m, mat33* adj_inv_I, df::float3* adj_gravity, float adj_dt, df::float3* adj_rigid_x_new, quat* adj_rigid_r_new, df::float3* adj_rigid_v_new, df::float3* adj_rigid_w_new) { //--------- // primal vars int var_0; df::float3 var_1; quat var_2; df::float3 var_3; df::float3 var_4; df::float3 var_5; df::float3 var_6; float var_7; mat33 var_8; const int var_9 = 0; df::float3 var_10; df::float3 var_11; float var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; df::float3 var_17; df::float3 var_18; df::float3 var_19; df::float3 var_20; df::float3 var_21; df::float3 var_22; df::float3 var_23; df::float3 var_24; const float var_25 = 0.0; quat var_26; quat var_27; const float var_28 = 0.5; quat var_29; quat var_30; quat var_31; quat var_32; //--------- // dual vars int adj_0 = 0; df::float3 adj_1 = 0; quat adj_2 = 0; df::float3 adj_3 = 0; df::float3 adj_4 = 0; df::float3 adj_5 = 0; df::float3 adj_6 = 0; float adj_7 = 0; mat33 adj_8 = 0; int adj_9 = 0; df::float3 adj_10 = 0; df::float3 adj_11 = 0; float adj_12 = 0; df::float3 adj_13 = 0; df::float3 adj_14 = 0; df::float3 adj_15 = 0; df::float3 adj_16 = 0; df::float3 adj_17 = 0; df::float3 adj_18 = 0; df::float3 adj_19 = 0; df::float3 adj_20 = 0; df::float3 adj_21 = 0; df::float3 adj_22 = 0; df::float3 adj_23 = 0; df::float3 adj_24 = 0; float adj_25 = 0; quat adj_26 = 0; quat adj_27 = 0; float adj_28 = 0; quat adj_29 = 0; quat adj_30 = 0; quat adj_31 = 0; quat adj_32 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_rigid_x, var_0); var_2 = df::load(var_rigid_r, var_0); var_3 = df::load(var_rigid_v, var_0); var_4 = df::load(var_rigid_w, var_0); var_5 = df::load(var_rigid_f, var_0); var_6 = df::load(var_rigid_t, var_0); var_7 = df::load(var_inv_m, var_0); var_8 = df::load(var_inv_I, var_0); var_10 = df::load(var_gravity, var_9); var_11 = df::mul(var_5, var_7); var_12 = df::nonzero(var_7); var_13 = df::mul(var_10, var_12); var_14 = df::add(var_11, var_13); var_15 = df::mul(var_14, var_dt); var_16 = df::add(var_3, var_15); var_17 = df::mul(var_16, var_dt); var_18 = df::add(var_1, var_17); var_19 = df::rotate_inv(var_2, var_4); var_20 = df::rotate_inv(var_2, var_6); var_21 = df::mul(var_8, var_20); var_22 = df::mul(var_21, var_dt); var_23 = df::add(var_19, var_22); var_24 = df::rotate(var_2, var_23); var_26 = df::quat(var_24, var_25); var_27 = df::mul(var_26, var_2); var_29 = df::mul(var_27, var_28); var_30 = df::mul(var_29, var_dt); var_31 = df::add(var_2, var_30); var_32 = df::normalize(var_31); df::store(var_rigid_x_new, var_0, var_18); df::store(var_rigid_r_new, var_0, var_32); df::store(var_rigid_v_new, var_0, var_16); df::store(var_rigid_w_new, var_0, var_24); //--------- // reverse df::adj_store(var_rigid_w_new, var_0, var_24, adj_rigid_w_new, adj_0, adj_24); df::adj_store(var_rigid_v_new, var_0, var_16, adj_rigid_v_new, adj_0, adj_16); df::adj_store(var_rigid_r_new, var_0, var_32, adj_rigid_r_new, adj_0, adj_32); df::adj_store(var_rigid_x_new, var_0, var_18, adj_rigid_x_new, adj_0, adj_18); df::adj_normalize(var_31, adj_31, adj_32); df::adj_add(var_2, var_30, adj_2, adj_30, adj_31); df::adj_mul(var_29, var_dt, adj_29, adj_dt, adj_30); df::adj_mul(var_27, var_28, adj_27, adj_28, adj_29); df::adj_mul(var_26, var_2, adj_26, adj_2, adj_27); df::adj_quat(var_24, var_25, adj_24, adj_25, adj_26); df::adj_rotate(var_2, var_23, adj_2, adj_23, adj_24); df::adj_add(var_19, var_22, adj_19, adj_22, adj_23); df::adj_mul(var_21, var_dt, adj_21, adj_dt, adj_22); df::adj_mul(var_8, var_20, adj_8, adj_20, adj_21); df::adj_rotate_inv(var_2, var_6, adj_2, adj_6, adj_20); df::adj_rotate_inv(var_2, var_4, adj_2, adj_4, adj_19); df::adj_add(var_1, var_17, adj_1, adj_17, adj_18); df::adj_mul(var_16, var_dt, adj_16, adj_dt, adj_17); df::adj_add(var_3, var_15, adj_3, adj_15, adj_16); df::adj_mul(var_14, var_dt, adj_14, adj_dt, adj_15); df::adj_add(var_11, var_13, adj_11, adj_13, adj_14); df::adj_mul(var_10, var_12, adj_10, adj_12, adj_13); df::adj_nonzero(var_7, adj_7, adj_12); df::adj_mul(var_5, var_7, adj_5, adj_7, adj_11); df::adj_load(var_gravity, var_9, adj_gravity, adj_9, adj_10); df::adj_load(var_inv_I, var_0, adj_inv_I, adj_0, adj_8); df::adj_load(var_inv_m, var_0, adj_inv_m, adj_0, adj_7); df::adj_load(var_rigid_t, var_0, adj_rigid_t, adj_0, adj_6); df::adj_load(var_rigid_f, var_0, adj_rigid_f, adj_0, adj_5); df::adj_load(var_rigid_w, var_0, adj_rigid_w, adj_0, adj_4); df::adj_load(var_rigid_v, var_0, adj_rigid_v, adj_0, adj_3); df::adj_load(var_rigid_r, var_0, adj_rigid_r, adj_0, adj_2); df::adj_load(var_rigid_x, var_0, adj_rigid_x, adj_0, adj_1); return; } // Python entry points void integrate_rigids_cpu_forward(int dim, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_rigid_f, torch::Tensor var_rigid_t, torch::Tensor var_inv_m, torch::Tensor var_inv_I, torch::Tensor var_gravity, float var_dt, torch::Tensor var_rigid_x_new, torch::Tensor var_rigid_r_new, torch::Tensor var_rigid_v_new, torch::Tensor var_rigid_w_new) { for (int i=0; i < dim; ++i) { s_threadIdx = i; integrate_rigids_cpu_kernel_forward( cast<df::float3*>(var_rigid_x), cast<quat*>(var_rigid_r), cast<df::float3*>(var_rigid_v), cast<df::float3*>(var_rigid_w), cast<df::float3*>(var_rigid_f), cast<df::float3*>(var_rigid_t), cast<float*>(var_inv_m), cast<mat33*>(var_inv_I), cast<df::float3*>(var_gravity), var_dt, cast<df::float3*>(var_rigid_x_new), cast<quat*>(var_rigid_r_new), cast<df::float3*>(var_rigid_v_new), cast<df::float3*>(var_rigid_w_new)); } } void integrate_rigids_cpu_backward(int dim, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_rigid_f, torch::Tensor var_rigid_t, torch::Tensor var_inv_m, torch::Tensor var_inv_I, torch::Tensor var_gravity, float var_dt, torch::Tensor var_rigid_x_new, torch::Tensor var_rigid_r_new, torch::Tensor var_rigid_v_new, torch::Tensor var_rigid_w_new, torch::Tensor adj_rigid_x, torch::Tensor adj_rigid_r, torch::Tensor adj_rigid_v, torch::Tensor adj_rigid_w, torch::Tensor adj_rigid_f, torch::Tensor adj_rigid_t, torch::Tensor adj_inv_m, torch::Tensor adj_inv_I, torch::Tensor adj_gravity, float adj_dt, torch::Tensor adj_rigid_x_new, torch::Tensor adj_rigid_r_new, torch::Tensor adj_rigid_v_new, torch::Tensor adj_rigid_w_new) { for (int i=0; i < dim; ++i) { s_threadIdx = i; integrate_rigids_cpu_kernel_backward( cast<df::float3*>(var_rigid_x), cast<quat*>(var_rigid_r), cast<df::float3*>(var_rigid_v), cast<df::float3*>(var_rigid_w), cast<df::float3*>(var_rigid_f), cast<df::float3*>(var_rigid_t), cast<float*>(var_inv_m), cast<mat33*>(var_inv_I), cast<df::float3*>(var_gravity), var_dt, cast<df::float3*>(var_rigid_x_new), cast<quat*>(var_rigid_r_new), cast<df::float3*>(var_rigid_v_new), cast<df::float3*>(var_rigid_w_new), cast<df::float3*>(adj_rigid_x), cast<quat*>(adj_rigid_r), cast<df::float3*>(adj_rigid_v), cast<df::float3*>(adj_rigid_w), cast<df::float3*>(adj_rigid_f), cast<df::float3*>(adj_rigid_t), cast<float*>(adj_inv_m), cast<mat33*>(adj_inv_I), cast<df::float3*>(adj_gravity), adj_dt, cast<df::float3*>(adj_rigid_x_new), cast<quat*>(adj_rigid_r_new), cast<df::float3*>(adj_rigid_v_new), cast<df::float3*>(adj_rigid_w_new)); } } // Python entry points void integrate_rigids_cpu_forward(int dim, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_rigid_f, torch::Tensor var_rigid_t, torch::Tensor var_inv_m, torch::Tensor var_inv_I, torch::Tensor var_gravity, float var_dt, torch::Tensor var_rigid_x_new, torch::Tensor var_rigid_r_new, torch::Tensor var_rigid_v_new, torch::Tensor var_rigid_w_new); void integrate_rigids_cpu_backward(int dim, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_rigid_f, torch::Tensor var_rigid_t, torch::Tensor var_inv_m, torch::Tensor var_inv_I, torch::Tensor var_gravity, float var_dt, torch::Tensor var_rigid_x_new, torch::Tensor var_rigid_r_new, torch::Tensor var_rigid_v_new, torch::Tensor var_rigid_w_new, torch::Tensor adj_rigid_x, torch::Tensor adj_rigid_r, torch::Tensor adj_rigid_v, torch::Tensor adj_rigid_w, torch::Tensor adj_rigid_f, torch::Tensor adj_rigid_t, torch::Tensor adj_inv_m, torch::Tensor adj_inv_I, torch::Tensor adj_gravity, float adj_dt, torch::Tensor adj_rigid_x_new, torch::Tensor adj_rigid_r_new, torch::Tensor adj_rigid_v_new, torch::Tensor adj_rigid_w_new); void eval_springs_cpu_kernel_forward( df::float3* var_x, df::float3* var_v, int* var_spring_indices, float* var_spring_rest_lengths, float* var_spring_stiffness, float* var_spring_damping, df::float3* var_f) { //--------- // primal vars int var_0; const int var_1 = 2; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; float var_10; float var_11; float var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; df::float3 var_17; df::float3 var_18; float var_19; const float var_20 = 1.0; float var_21; df::float3 var_22; float var_23; float var_24; float var_25; float var_26; float var_27; df::float3 var_28; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_spring_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_spring_indices, var_8); var_10 = df::load(var_spring_stiffness, var_0); var_11 = df::load(var_spring_damping, var_0); var_12 = df::load(var_spring_rest_lengths, var_0); var_13 = df::load(var_x, var_5); var_14 = df::load(var_x, var_9); var_15 = df::load(var_v, var_5); var_16 = df::load(var_v, var_9); var_17 = df::sub(var_13, var_14); var_18 = df::sub(var_15, var_16); var_19 = df::length(var_17); var_21 = df::div(var_20, var_19); var_22 = df::mul(var_17, var_21); var_23 = df::sub(var_19, var_12); var_24 = df::dot(var_22, var_18); var_25 = df::mul(var_10, var_23); var_26 = df::mul(var_11, var_24); var_27 = df::add(var_25, var_26); var_28 = df::mul(var_22, var_27); df::atomic_sub(var_f, var_5, var_28); df::atomic_add(var_f, var_9, var_28); } void eval_springs_cpu_kernel_backward( df::float3* var_x, df::float3* var_v, int* var_spring_indices, float* var_spring_rest_lengths, float* var_spring_stiffness, float* var_spring_damping, df::float3* var_f, df::float3* adj_x, df::float3* adj_v, int* adj_spring_indices, float* adj_spring_rest_lengths, float* adj_spring_stiffness, float* adj_spring_damping, df::float3* adj_f) { //--------- // primal vars int var_0; const int var_1 = 2; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; float var_10; float var_11; float var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; df::float3 var_17; df::float3 var_18; float var_19; const float var_20 = 1.0; float var_21; df::float3 var_22; float var_23; float var_24; float var_25; float var_26; float var_27; df::float3 var_28; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; int adj_9 = 0; float adj_10 = 0; float adj_11 = 0; float adj_12 = 0; df::float3 adj_13 = 0; df::float3 adj_14 = 0; df::float3 adj_15 = 0; df::float3 adj_16 = 0; df::float3 adj_17 = 0; df::float3 adj_18 = 0; float adj_19 = 0; float adj_20 = 0; float adj_21 = 0; df::float3 adj_22 = 0; float adj_23 = 0; float adj_24 = 0; float adj_25 = 0; float adj_26 = 0; float adj_27 = 0; df::float3 adj_28 = 0; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_spring_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_spring_indices, var_8); var_10 = df::load(var_spring_stiffness, var_0); var_11 = df::load(var_spring_damping, var_0); var_12 = df::load(var_spring_rest_lengths, var_0); var_13 = df::load(var_x, var_5); var_14 = df::load(var_x, var_9); var_15 = df::load(var_v, var_5); var_16 = df::load(var_v, var_9); var_17 = df::sub(var_13, var_14); var_18 = df::sub(var_15, var_16); var_19 = df::length(var_17); var_21 = df::div(var_20, var_19); var_22 = df::mul(var_17, var_21); var_23 = df::sub(var_19, var_12); var_24 = df::dot(var_22, var_18); var_25 = df::mul(var_10, var_23); var_26 = df::mul(var_11, var_24); var_27 = df::add(var_25, var_26); var_28 = df::mul(var_22, var_27); df::atomic_sub(var_f, var_5, var_28); df::atomic_add(var_f, var_9, var_28); //--------- // reverse df::adj_atomic_add(var_f, var_9, var_28, adj_f, adj_9, adj_28); df::adj_atomic_sub(var_f, var_5, var_28, adj_f, adj_5, adj_28); df::adj_mul(var_22, var_27, adj_22, adj_27, adj_28); df::adj_add(var_25, var_26, adj_25, adj_26, adj_27); df::adj_mul(var_11, var_24, adj_11, adj_24, adj_26); df::adj_mul(var_10, var_23, adj_10, adj_23, adj_25); df::adj_dot(var_22, var_18, adj_22, adj_18, adj_24); df::adj_sub(var_19, var_12, adj_19, adj_12, adj_23); df::adj_mul(var_17, var_21, adj_17, adj_21, adj_22); df::adj_div(var_20, var_19, adj_20, adj_19, adj_21); df::adj_length(var_17, adj_17, adj_19); df::adj_sub(var_15, var_16, adj_15, adj_16, adj_18); df::adj_sub(var_13, var_14, adj_13, adj_14, adj_17); df::adj_load(var_v, var_9, adj_v, adj_9, adj_16); df::adj_load(var_v, var_5, adj_v, adj_5, adj_15); df::adj_load(var_x, var_9, adj_x, adj_9, adj_14); df::adj_load(var_x, var_5, adj_x, adj_5, adj_13); df::adj_load(var_spring_rest_lengths, var_0, adj_spring_rest_lengths, adj_0, adj_12); df::adj_load(var_spring_damping, var_0, adj_spring_damping, adj_0, adj_11); df::adj_load(var_spring_stiffness, var_0, adj_spring_stiffness, adj_0, adj_10); df::adj_load(var_spring_indices, var_8, adj_spring_indices, adj_8, adj_9); df::adj_add(var_6, var_7, adj_6, adj_7, adj_8); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_6); df::adj_load(var_spring_indices, var_4, adj_spring_indices, adj_4, adj_5); df::adj_add(var_2, var_3, adj_2, adj_3, adj_4); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_2); return; } // Python entry points void eval_springs_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_spring_indices, torch::Tensor var_spring_rest_lengths, torch::Tensor var_spring_stiffness, torch::Tensor var_spring_damping, torch::Tensor var_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_springs_cpu_kernel_forward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_spring_indices), cast<float*>(var_spring_rest_lengths), cast<float*>(var_spring_stiffness), cast<float*>(var_spring_damping), cast<df::float3*>(var_f)); } } void eval_springs_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_spring_indices, torch::Tensor var_spring_rest_lengths, torch::Tensor var_spring_stiffness, torch::Tensor var_spring_damping, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_spring_indices, torch::Tensor adj_spring_rest_lengths, torch::Tensor adj_spring_stiffness, torch::Tensor adj_spring_damping, torch::Tensor adj_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_springs_cpu_kernel_backward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_spring_indices), cast<float*>(var_spring_rest_lengths), cast<float*>(var_spring_stiffness), cast<float*>(var_spring_damping), cast<df::float3*>(var_f), cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<int*>(adj_spring_indices), cast<float*>(adj_spring_rest_lengths), cast<float*>(adj_spring_stiffness), cast<float*>(adj_spring_damping), cast<df::float3*>(adj_f)); } } // Python entry points void eval_springs_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_spring_indices, torch::Tensor var_spring_rest_lengths, torch::Tensor var_spring_stiffness, torch::Tensor var_spring_damping, torch::Tensor var_f); void eval_springs_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_spring_indices, torch::Tensor var_spring_rest_lengths, torch::Tensor var_spring_stiffness, torch::Tensor var_spring_damping, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_spring_indices, torch::Tensor adj_spring_rest_lengths, torch::Tensor adj_spring_stiffness, torch::Tensor adj_spring_damping, torch::Tensor adj_f); void eval_triangles_cpu_kernel_forward( df::float3* var_x, df::float3* var_v, int* var_indices, mat22* var_pose, float* var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, df::float3* var_f) { //--------- // primal vars int var_0; const int var_1 = 3; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; int var_10; const int var_11 = 2; int var_12; int var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; df::float3 var_17; df::float3 var_18; df::float3 var_19; df::float3 var_20; df::float3 var_21; mat22 var_22; float var_23; const float var_24 = 2.0; float var_25; const float var_26 = 1.0; float var_27; float var_28; float var_29; float var_30; float var_31; df::float3 var_32; float var_33; df::float3 var_34; df::float3 var_35; float var_36; df::float3 var_37; float var_38; df::float3 var_39; df::float3 var_40; float var_41; df::float3 var_42; float var_43; df::float3 var_44; df::float3 var_45; df::float3 var_46; float var_47; df::float3 var_48; float var_49; df::float3 var_50; df::float3 var_51; df::float3 var_52; float var_53; float var_54; df::float3 var_55; float var_56; const float var_57 = 0.5; float var_58; float var_59; float var_60; float var_61; float var_62; df::float3 var_63; df::float3 var_64; df::float3 var_65; df::float3 var_66; df::float3 var_67; df::float3 var_68; df::float3 var_69; float var_70; float var_71; float var_72; float var_73; df::float3 var_74; float var_75; float var_76; float var_77; float var_78; df::float3 var_79; df::float3 var_80; float var_81; df::float3 var_82; df::float3 var_83; df::float3 var_84; df::float3 var_85; df::float3 var_86; const float var_87 = 0.3333; df::float3 var_88; df::float3 var_89; float var_90; float var_91; float var_92; float var_93; df::float3 var_94; float var_95; const float var_96 = 1.57079; float var_97; float var_98; float var_99; float var_100; df::float3 var_101; float var_102; df::float3 var_103; df::float3 var_104; df::float3 var_105; df::float3 var_106; df::float3 var_107; df::float3 var_108; df::float3 var_109; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_indices, var_8); var_10 = df::mul(var_0, var_1); var_12 = df::add(var_10, var_11); var_13 = df::load(var_indices, var_12); var_14 = df::load(var_x, var_5); var_15 = df::load(var_x, var_9); var_16 = df::load(var_x, var_13); var_17 = df::load(var_v, var_5); var_18 = df::load(var_v, var_9); var_19 = df::load(var_v, var_13); var_20 = df::sub(var_15, var_14); var_21 = df::sub(var_16, var_14); var_22 = df::load(var_pose, var_0); var_23 = df::determinant(var_22); var_25 = df::mul(var_23, var_24); var_27 = df::div(var_26, var_25); var_28 = df::mul(var_k_mu, var_27); var_29 = df::mul(var_k_lambda, var_27); var_30 = df::mul(var_k_damp, var_27); var_31 = df::index(var_22, var_3, var_3); var_32 = df::mul(var_20, var_31); var_33 = df::index(var_22, var_7, var_3); var_34 = df::mul(var_21, var_33); var_35 = df::add(var_32, var_34); var_36 = df::index(var_22, var_3, var_7); var_37 = df::mul(var_20, var_36); var_38 = df::index(var_22, var_7, var_7); var_39 = df::mul(var_21, var_38); var_40 = df::add(var_37, var_39); var_41 = df::index(var_22, var_3, var_3); var_42 = df::mul(var_35, var_41); var_43 = df::index(var_22, var_3, var_7); var_44 = df::mul(var_40, var_43); var_45 = df::add(var_42, var_44); var_46 = df::mul(var_45, var_28); var_47 = df::index(var_22, var_7, var_3); var_48 = df::mul(var_35, var_47); var_49 = df::index(var_22, var_7, var_7); var_50 = df::mul(var_40, var_49); var_51 = df::add(var_48, var_50); var_52 = df::mul(var_51, var_28); var_53 = df::div(var_28, var_29); var_54 = df::add(var_26, var_53); var_55 = df::cross(var_20, var_21); var_56 = df::length(var_55); var_58 = df::mul(var_56, var_57); var_59 = df::load(var_activation, var_0); var_60 = df::mul(var_58, var_25); var_61 = df::sub(var_60, var_54); var_62 = df::add(var_61, var_59); var_63 = df::normalize(var_55); var_64 = df::cross(var_21, var_63); var_65 = df::mul(var_64, var_25); var_66 = df::mul(var_65, var_57); var_67 = df::cross(var_63, var_20); var_68 = df::mul(var_67, var_25); var_69 = df::mul(var_68, var_57); var_70 = df::mul(var_29, var_62); var_71 = df::dot(var_66, var_18); var_72 = df::dot(var_69, var_19); var_73 = df::add(var_71, var_72); var_74 = df::add(var_66, var_69); var_75 = df::dot(var_74, var_17); var_76 = df::sub(var_73, var_75); var_77 = df::mul(var_30, var_76); var_78 = df::add(var_70, var_77); var_79 = df::mul(var_66, var_78); var_80 = df::add(var_46, var_79); var_81 = df::add(var_70, var_77); var_82 = df::mul(var_69, var_81); var_83 = df::add(var_52, var_82); var_84 = df::add(var_80, var_83); var_85 = df::add(var_17, var_19); var_86 = df::add(var_85, var_18); var_88 = df::mul(var_86, var_87); var_89 = df::normalize(var_88); var_90 = df::mul(var_k_drag, var_58); var_91 = df::dot(var_63, var_88); var_92 = df::abs(var_91); var_93 = df::mul(var_90, var_92); var_94 = df::mul(var_88, var_93); var_95 = df::mul(var_k_lift, var_58); var_97 = df::dot(var_63, var_89); var_98 = df::acos(var_97); var_99 = df::sub(var_96, var_98); var_100 = df::mul(var_95, var_99); var_101 = df::mul(var_63, var_100); var_102 = df::dot(var_88, var_88); var_103 = df::mul(var_101, var_102); var_104 = df::sub(var_84, var_94); var_105 = df::sub(var_104, var_103); var_106 = df::add(var_80, var_94); var_107 = df::add(var_106, var_103); var_108 = df::add(var_83, var_94); var_109 = df::add(var_108, var_103); df::atomic_add(var_f, var_5, var_105); df::atomic_sub(var_f, var_9, var_107); df::atomic_sub(var_f, var_13, var_109); } void eval_triangles_cpu_kernel_backward( df::float3* var_x, df::float3* var_v, int* var_indices, mat22* var_pose, float* var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, df::float3* var_f, df::float3* adj_x, df::float3* adj_v, int* adj_indices, mat22* adj_pose, float* adj_activation, float adj_k_mu, float adj_k_lambda, float adj_k_damp, float adj_k_drag, float adj_k_lift, df::float3* adj_f) { //--------- // primal vars int var_0; const int var_1 = 3; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; int var_10; const int var_11 = 2; int var_12; int var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; df::float3 var_17; df::float3 var_18; df::float3 var_19; df::float3 var_20; df::float3 var_21; mat22 var_22; float var_23; const float var_24 = 2.0; float var_25; const float var_26 = 1.0; float var_27; float var_28; float var_29; float var_30; float var_31; df::float3 var_32; float var_33; df::float3 var_34; df::float3 var_35; float var_36; df::float3 var_37; float var_38; df::float3 var_39; df::float3 var_40; float var_41; df::float3 var_42; float var_43; df::float3 var_44; df::float3 var_45; df::float3 var_46; float var_47; df::float3 var_48; float var_49; df::float3 var_50; df::float3 var_51; df::float3 var_52; float var_53; float var_54; df::float3 var_55; float var_56; const float var_57 = 0.5; float var_58; float var_59; float var_60; float var_61; float var_62; df::float3 var_63; df::float3 var_64; df::float3 var_65; df::float3 var_66; df::float3 var_67; df::float3 var_68; df::float3 var_69; float var_70; float var_71; float var_72; float var_73; df::float3 var_74; float var_75; float var_76; float var_77; float var_78; df::float3 var_79; df::float3 var_80; float var_81; df::float3 var_82; df::float3 var_83; df::float3 var_84; df::float3 var_85; df::float3 var_86; const float var_87 = 0.3333; df::float3 var_88; df::float3 var_89; float var_90; float var_91; float var_92; float var_93; df::float3 var_94; float var_95; const float var_96 = 1.57079; float var_97; float var_98; float var_99; float var_100; df::float3 var_101; float var_102; df::float3 var_103; df::float3 var_104; df::float3 var_105; df::float3 var_106; df::float3 var_107; df::float3 var_108; df::float3 var_109; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; int adj_9 = 0; int adj_10 = 0; int adj_11 = 0; int adj_12 = 0; int adj_13 = 0; df::float3 adj_14 = 0; df::float3 adj_15 = 0; df::float3 adj_16 = 0; df::float3 adj_17 = 0; df::float3 adj_18 = 0; df::float3 adj_19 = 0; df::float3 adj_20 = 0; df::float3 adj_21 = 0; mat22 adj_22 = 0; float adj_23 = 0; float adj_24 = 0; float adj_25 = 0; float adj_26 = 0; float adj_27 = 0; float adj_28 = 0; float adj_29 = 0; float adj_30 = 0; float adj_31 = 0; df::float3 adj_32 = 0; float adj_33 = 0; df::float3 adj_34 = 0; df::float3 adj_35 = 0; float adj_36 = 0; df::float3 adj_37 = 0; float adj_38 = 0; df::float3 adj_39 = 0; df::float3 adj_40 = 0; float adj_41 = 0; df::float3 adj_42 = 0; float adj_43 = 0; df::float3 adj_44 = 0; df::float3 adj_45 = 0; df::float3 adj_46 = 0; float adj_47 = 0; df::float3 adj_48 = 0; float adj_49 = 0; df::float3 adj_50 = 0; df::float3 adj_51 = 0; df::float3 adj_52 = 0; float adj_53 = 0; float adj_54 = 0; df::float3 adj_55 = 0; float adj_56 = 0; float adj_57 = 0; float adj_58 = 0; float adj_59 = 0; float adj_60 = 0; float adj_61 = 0; float adj_62 = 0; df::float3 adj_63 = 0; df::float3 adj_64 = 0; df::float3 adj_65 = 0; df::float3 adj_66 = 0; df::float3 adj_67 = 0; df::float3 adj_68 = 0; df::float3 adj_69 = 0; float adj_70 = 0; float adj_71 = 0; float adj_72 = 0; float adj_73 = 0; df::float3 adj_74 = 0; float adj_75 = 0; float adj_76 = 0; float adj_77 = 0; float adj_78 = 0; df::float3 adj_79 = 0; df::float3 adj_80 = 0; float adj_81 = 0; df::float3 adj_82 = 0; df::float3 adj_83 = 0; df::float3 adj_84 = 0; df::float3 adj_85 = 0; df::float3 adj_86 = 0; float adj_87 = 0; df::float3 adj_88 = 0; df::float3 adj_89 = 0; float adj_90 = 0; float adj_91 = 0; float adj_92 = 0; float adj_93 = 0; df::float3 adj_94 = 0; float adj_95 = 0; float adj_96 = 0; float adj_97 = 0; float adj_98 = 0; float adj_99 = 0; float adj_100 = 0; df::float3 adj_101 = 0; float adj_102 = 0; df::float3 adj_103 = 0; df::float3 adj_104 = 0; df::float3 adj_105 = 0; df::float3 adj_106 = 0; df::float3 adj_107 = 0; df::float3 adj_108 = 0; df::float3 adj_109 = 0; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_indices, var_8); var_10 = df::mul(var_0, var_1); var_12 = df::add(var_10, var_11); var_13 = df::load(var_indices, var_12); var_14 = df::load(var_x, var_5); var_15 = df::load(var_x, var_9); var_16 = df::load(var_x, var_13); var_17 = df::load(var_v, var_5); var_18 = df::load(var_v, var_9); var_19 = df::load(var_v, var_13); var_20 = df::sub(var_15, var_14); var_21 = df::sub(var_16, var_14); var_22 = df::load(var_pose, var_0); var_23 = df::determinant(var_22); var_25 = df::mul(var_23, var_24); var_27 = df::div(var_26, var_25); var_28 = df::mul(var_k_mu, var_27); var_29 = df::mul(var_k_lambda, var_27); var_30 = df::mul(var_k_damp, var_27); var_31 = df::index(var_22, var_3, var_3); var_32 = df::mul(var_20, var_31); var_33 = df::index(var_22, var_7, var_3); var_34 = df::mul(var_21, var_33); var_35 = df::add(var_32, var_34); var_36 = df::index(var_22, var_3, var_7); var_37 = df::mul(var_20, var_36); var_38 = df::index(var_22, var_7, var_7); var_39 = df::mul(var_21, var_38); var_40 = df::add(var_37, var_39); var_41 = df::index(var_22, var_3, var_3); var_42 = df::mul(var_35, var_41); var_43 = df::index(var_22, var_3, var_7); var_44 = df::mul(var_40, var_43); var_45 = df::add(var_42, var_44); var_46 = df::mul(var_45, var_28); var_47 = df::index(var_22, var_7, var_3); var_48 = df::mul(var_35, var_47); var_49 = df::index(var_22, var_7, var_7); var_50 = df::mul(var_40, var_49); var_51 = df::add(var_48, var_50); var_52 = df::mul(var_51, var_28); var_53 = df::div(var_28, var_29); var_54 = df::add(var_26, var_53); var_55 = df::cross(var_20, var_21); var_56 = df::length(var_55); var_58 = df::mul(var_56, var_57); var_59 = df::load(var_activation, var_0); var_60 = df::mul(var_58, var_25); var_61 = df::sub(var_60, var_54); var_62 = df::add(var_61, var_59); var_63 = df::normalize(var_55); var_64 = df::cross(var_21, var_63); var_65 = df::mul(var_64, var_25); var_66 = df::mul(var_65, var_57); var_67 = df::cross(var_63, var_20); var_68 = df::mul(var_67, var_25); var_69 = df::mul(var_68, var_57); var_70 = df::mul(var_29, var_62); var_71 = df::dot(var_66, var_18); var_72 = df::dot(var_69, var_19); var_73 = df::add(var_71, var_72); var_74 = df::add(var_66, var_69); var_75 = df::dot(var_74, var_17); var_76 = df::sub(var_73, var_75); var_77 = df::mul(var_30, var_76); var_78 = df::add(var_70, var_77); var_79 = df::mul(var_66, var_78); var_80 = df::add(var_46, var_79); var_81 = df::add(var_70, var_77); var_82 = df::mul(var_69, var_81); var_83 = df::add(var_52, var_82); var_84 = df::add(var_80, var_83); var_85 = df::add(var_17, var_19); var_86 = df::add(var_85, var_18); var_88 = df::mul(var_86, var_87); var_89 = df::normalize(var_88); var_90 = df::mul(var_k_drag, var_58); var_91 = df::dot(var_63, var_88); var_92 = df::abs(var_91); var_93 = df::mul(var_90, var_92); var_94 = df::mul(var_88, var_93); var_95 = df::mul(var_k_lift, var_58); var_97 = df::dot(var_63, var_89); var_98 = df::acos(var_97); var_99 = df::sub(var_96, var_98); var_100 = df::mul(var_95, var_99); var_101 = df::mul(var_63, var_100); var_102 = df::dot(var_88, var_88); var_103 = df::mul(var_101, var_102); var_104 = df::sub(var_84, var_94); var_105 = df::sub(var_104, var_103); var_106 = df::add(var_80, var_94); var_107 = df::add(var_106, var_103); var_108 = df::add(var_83, var_94); var_109 = df::add(var_108, var_103); df::atomic_add(var_f, var_5, var_105); df::atomic_sub(var_f, var_9, var_107); df::atomic_sub(var_f, var_13, var_109); //--------- // reverse df::adj_atomic_sub(var_f, var_13, var_109, adj_f, adj_13, adj_109); df::adj_atomic_sub(var_f, var_9, var_107, adj_f, adj_9, adj_107); df::adj_atomic_add(var_f, var_5, var_105, adj_f, adj_5, adj_105); df::adj_add(var_108, var_103, adj_108, adj_103, adj_109); df::adj_add(var_83, var_94, adj_83, adj_94, adj_108); df::adj_add(var_106, var_103, adj_106, adj_103, adj_107); df::adj_add(var_80, var_94, adj_80, adj_94, adj_106); df::adj_sub(var_104, var_103, adj_104, adj_103, adj_105); df::adj_sub(var_84, var_94, adj_84, adj_94, adj_104); df::adj_mul(var_101, var_102, adj_101, adj_102, adj_103); df::adj_dot(var_88, var_88, adj_88, adj_88, adj_102); df::adj_mul(var_63, var_100, adj_63, adj_100, adj_101); df::adj_mul(var_95, var_99, adj_95, adj_99, adj_100); df::adj_sub(var_96, var_98, adj_96, adj_98, adj_99); df::adj_acos(var_97, adj_97, adj_98); df::adj_dot(var_63, var_89, adj_63, adj_89, adj_97); df::adj_mul(var_k_lift, var_58, adj_k_lift, adj_58, adj_95); df::adj_mul(var_88, var_93, adj_88, adj_93, adj_94); df::adj_mul(var_90, var_92, adj_90, adj_92, adj_93); df::adj_abs(var_91, adj_91, adj_92); df::adj_dot(var_63, var_88, adj_63, adj_88, adj_91); df::adj_mul(var_k_drag, var_58, adj_k_drag, adj_58, adj_90); df::adj_normalize(var_88, adj_88, adj_89); df::adj_mul(var_86, var_87, adj_86, adj_87, adj_88); df::adj_add(var_85, var_18, adj_85, adj_18, adj_86); df::adj_add(var_17, var_19, adj_17, adj_19, adj_85); df::adj_add(var_80, var_83, adj_80, adj_83, adj_84); df::adj_add(var_52, var_82, adj_52, adj_82, adj_83); df::adj_mul(var_69, var_81, adj_69, adj_81, adj_82); df::adj_add(var_70, var_77, adj_70, adj_77, adj_81); df::adj_add(var_46, var_79, adj_46, adj_79, adj_80); df::adj_mul(var_66, var_78, adj_66, adj_78, adj_79); df::adj_add(var_70, var_77, adj_70, adj_77, adj_78); df::adj_mul(var_30, var_76, adj_30, adj_76, adj_77); df::adj_sub(var_73, var_75, adj_73, adj_75, adj_76); df::adj_dot(var_74, var_17, adj_74, adj_17, adj_75); df::adj_add(var_66, var_69, adj_66, adj_69, adj_74); df::adj_add(var_71, var_72, adj_71, adj_72, adj_73); df::adj_dot(var_69, var_19, adj_69, adj_19, adj_72); df::adj_dot(var_66, var_18, adj_66, adj_18, adj_71); df::adj_mul(var_29, var_62, adj_29, adj_62, adj_70); df::adj_mul(var_68, var_57, adj_68, adj_57, adj_69); df::adj_mul(var_67, var_25, adj_67, adj_25, adj_68); df::adj_cross(var_63, var_20, adj_63, adj_20, adj_67); df::adj_mul(var_65, var_57, adj_65, adj_57, adj_66); df::adj_mul(var_64, var_25, adj_64, adj_25, adj_65); df::adj_cross(var_21, var_63, adj_21, adj_63, adj_64); df::adj_normalize(var_55, adj_55, adj_63); df::adj_add(var_61, var_59, adj_61, adj_59, adj_62); df::adj_sub(var_60, var_54, adj_60, adj_54, adj_61); df::adj_mul(var_58, var_25, adj_58, adj_25, adj_60); df::adj_load(var_activation, var_0, adj_activation, adj_0, adj_59); df::adj_mul(var_56, var_57, adj_56, adj_57, adj_58); df::adj_length(var_55, adj_55, adj_56); df::adj_cross(var_20, var_21, adj_20, adj_21, adj_55); df::adj_add(var_26, var_53, adj_26, adj_53, adj_54); df::adj_div(var_28, var_29, adj_28, adj_29, adj_53); df::adj_mul(var_51, var_28, adj_51, adj_28, adj_52); df::adj_add(var_48, var_50, adj_48, adj_50, adj_51); df::adj_mul(var_40, var_49, adj_40, adj_49, adj_50); df::adj_index(var_22, var_7, var_7, adj_22, adj_7, adj_7, adj_49); df::adj_mul(var_35, var_47, adj_35, adj_47, adj_48); df::adj_index(var_22, var_7, var_3, adj_22, adj_7, adj_3, adj_47); df::adj_mul(var_45, var_28, adj_45, adj_28, adj_46); df::adj_add(var_42, var_44, adj_42, adj_44, adj_45); df::adj_mul(var_40, var_43, adj_40, adj_43, adj_44); df::adj_index(var_22, var_3, var_7, adj_22, adj_3, adj_7, adj_43); df::adj_mul(var_35, var_41, adj_35, adj_41, adj_42); df::adj_index(var_22, var_3, var_3, adj_22, adj_3, adj_3, adj_41); df::adj_add(var_37, var_39, adj_37, adj_39, adj_40); df::adj_mul(var_21, var_38, adj_21, adj_38, adj_39); df::adj_index(var_22, var_7, var_7, adj_22, adj_7, adj_7, adj_38); df::adj_mul(var_20, var_36, adj_20, adj_36, adj_37); df::adj_index(var_22, var_3, var_7, adj_22, adj_3, adj_7, adj_36); df::adj_add(var_32, var_34, adj_32, adj_34, adj_35); df::adj_mul(var_21, var_33, adj_21, adj_33, adj_34); df::adj_index(var_22, var_7, var_3, adj_22, adj_7, adj_3, adj_33); df::adj_mul(var_20, var_31, adj_20, adj_31, adj_32); df::adj_index(var_22, var_3, var_3, adj_22, adj_3, adj_3, adj_31); df::adj_mul(var_k_damp, var_27, adj_k_damp, adj_27, adj_30); df::adj_mul(var_k_lambda, var_27, adj_k_lambda, adj_27, adj_29); df::adj_mul(var_k_mu, var_27, adj_k_mu, adj_27, adj_28); df::adj_div(var_26, var_25, adj_26, adj_25, adj_27); df::adj_mul(var_23, var_24, adj_23, adj_24, adj_25); df::adj_determinant(var_22, adj_22, adj_23); df::adj_load(var_pose, var_0, adj_pose, adj_0, adj_22); df::adj_sub(var_16, var_14, adj_16, adj_14, adj_21); df::adj_sub(var_15, var_14, adj_15, adj_14, adj_20); df::adj_load(var_v, var_13, adj_v, adj_13, adj_19); df::adj_load(var_v, var_9, adj_v, adj_9, adj_18); df::adj_load(var_v, var_5, adj_v, adj_5, adj_17); df::adj_load(var_x, var_13, adj_x, adj_13, adj_16); df::adj_load(var_x, var_9, adj_x, adj_9, adj_15); df::adj_load(var_x, var_5, adj_x, adj_5, adj_14); df::adj_load(var_indices, var_12, adj_indices, adj_12, adj_13); df::adj_add(var_10, var_11, adj_10, adj_11, adj_12); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_10); df::adj_load(var_indices, var_8, adj_indices, adj_8, adj_9); df::adj_add(var_6, var_7, adj_6, adj_7, adj_8); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_6); df::adj_load(var_indices, var_4, adj_indices, adj_4, adj_5); df::adj_add(var_2, var_3, adj_2, adj_3, adj_4); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_2); return; } // Python entry points void eval_triangles_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, torch::Tensor var_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_triangles_cpu_kernel_forward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<mat22*>(var_pose), cast<float*>(var_activation), var_k_mu, var_k_lambda, var_k_damp, var_k_drag, var_k_lift, cast<df::float3*>(var_f)); } } void eval_triangles_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_pose, torch::Tensor adj_activation, float adj_k_mu, float adj_k_lambda, float adj_k_damp, float adj_k_drag, float adj_k_lift, torch::Tensor adj_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_triangles_cpu_kernel_backward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<mat22*>(var_pose), cast<float*>(var_activation), var_k_mu, var_k_lambda, var_k_damp, var_k_drag, var_k_lift, cast<df::float3*>(var_f), cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<int*>(adj_indices), cast<mat22*>(adj_pose), cast<float*>(adj_activation), adj_k_mu, adj_k_lambda, adj_k_damp, adj_k_drag, adj_k_lift, cast<df::float3*>(adj_f)); } } // Python entry points void eval_triangles_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, torch::Tensor var_f); void eval_triangles_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_pose, torch::Tensor adj_activation, float adj_k_mu, float adj_k_lambda, float adj_k_damp, float adj_k_drag, float adj_k_lift, torch::Tensor adj_f); void eval_triangles_contact_cpu_kernel_forward( int var_num_particles, df::float3* var_x, df::float3* var_v, int* var_indices, mat22* var_pose, float* var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, df::float3* var_f) { //--------- // primal vars int var_0; int var_1; int var_2; df::float3 var_3; const int var_4 = 3; int var_5; const int var_6 = 0; int var_7; int var_8; int var_9; const int var_10 = 1; int var_11; int var_12; int var_13; const int var_14 = 2; int var_15; int var_16; bool var_17; bool var_18; bool var_19; bool var_20; df::float3 var_21; df::float3 var_22; df::float3 var_23; df::float3 var_24; float var_25; df::float3 var_26; float var_27; df::float3 var_28; df::float3 var_29; float var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; float var_34; df::float3 var_35; const float var_36 = 0.01; float var_37; const float var_38 = 0.0; float var_39; df::float3 var_40; const float var_41 = 100000.0; df::float3 var_42; float var_43; df::float3 var_44; float var_45; df::float3 var_46; float var_47; df::float3 var_48; //--------- // forward var_0 = df::tid(); var_1 = df::div(var_0, var_num_particles); var_2 = df::mod(var_0, var_num_particles); var_3 = df::load(var_x, var_2); var_5 = df::mul(var_1, var_4); var_7 = df::add(var_5, var_6); var_8 = df::load(var_indices, var_7); var_9 = df::mul(var_1, var_4); var_11 = df::add(var_9, var_10); var_12 = df::load(var_indices, var_11); var_13 = df::mul(var_1, var_4); var_15 = df::add(var_13, var_14); var_16 = df::load(var_indices, var_15); var_17 = (var_8 == var_2); var_18 = (var_12 == var_2); var_19 = (var_16 == var_2); var_20 = var_17 || var_18 || var_19; if (var_20) { return; } var_21 = df::load(var_x, var_8); var_22 = df::load(var_x, var_12); var_23 = df::load(var_x, var_16); var_24 = triangle_closest_point_barycentric_cpu_func(var_21, var_22, var_23, var_3); var_25 = df::index(var_24, var_6); var_26 = df::mul(var_21, var_25); var_27 = df::index(var_24, var_10); var_28 = df::mul(var_22, var_27); var_29 = df::add(var_26, var_28); var_30 = df::index(var_24, var_14); var_31 = df::mul(var_23, var_30); var_32 = df::add(var_29, var_31); var_33 = df::sub(var_3, var_32); var_34 = df::dot(var_33, var_33); var_35 = df::normalize(var_33); var_37 = df::sub(var_34, var_36); var_39 = df::min(var_37, var_38); var_40 = df::mul(var_35, var_39); var_42 = df::mul(var_40, var_41); df::atomic_sub(var_f, var_2, var_42); var_43 = df::index(var_24, var_6); var_44 = df::mul(var_42, var_43); df::atomic_add(var_f, var_8, var_44); var_45 = df::index(var_24, var_10); var_46 = df::mul(var_42, var_45); df::atomic_add(var_f, var_12, var_46); var_47 = df::index(var_24, var_14); var_48 = df::mul(var_42, var_47); df::atomic_add(var_f, var_16, var_48); } void eval_triangles_contact_cpu_kernel_backward( int var_num_particles, df::float3* var_x, df::float3* var_v, int* var_indices, mat22* var_pose, float* var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, df::float3* var_f, int adj_num_particles, df::float3* adj_x, df::float3* adj_v, int* adj_indices, mat22* adj_pose, float* adj_activation, float adj_k_mu, float adj_k_lambda, float adj_k_damp, float adj_k_drag, float adj_k_lift, df::float3* adj_f) { //--------- // primal vars int var_0; int var_1; int var_2; df::float3 var_3; const int var_4 = 3; int var_5; const int var_6 = 0; int var_7; int var_8; int var_9; const int var_10 = 1; int var_11; int var_12; int var_13; const int var_14 = 2; int var_15; int var_16; bool var_17; bool var_18; bool var_19; bool var_20; df::float3 var_21; df::float3 var_22; df::float3 var_23; df::float3 var_24; float var_25; df::float3 var_26; float var_27; df::float3 var_28; df::float3 var_29; float var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; float var_34; df::float3 var_35; const float var_36 = 0.01; float var_37; const float var_38 = 0.0; float var_39; df::float3 var_40; const float var_41 = 100000.0; df::float3 var_42; float var_43; df::float3 var_44; float var_45; df::float3 var_46; float var_47; df::float3 var_48; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; df::float3 adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; int adj_9 = 0; int adj_10 = 0; int adj_11 = 0; int adj_12 = 0; int adj_13 = 0; int adj_14 = 0; int adj_15 = 0; int adj_16 = 0; bool adj_17 = 0; bool adj_18 = 0; bool adj_19 = 0; bool adj_20 = 0; df::float3 adj_21 = 0; df::float3 adj_22 = 0; df::float3 adj_23 = 0; df::float3 adj_24 = 0; float adj_25 = 0; df::float3 adj_26 = 0; float adj_27 = 0; df::float3 adj_28 = 0; df::float3 adj_29 = 0; float adj_30 = 0; df::float3 adj_31 = 0; df::float3 adj_32 = 0; df::float3 adj_33 = 0; float adj_34 = 0; df::float3 adj_35 = 0; float adj_36 = 0; float adj_37 = 0; float adj_38 = 0; float adj_39 = 0; df::float3 adj_40 = 0; float adj_41 = 0; df::float3 adj_42 = 0; float adj_43 = 0; df::float3 adj_44 = 0; float adj_45 = 0; df::float3 adj_46 = 0; float adj_47 = 0; df::float3 adj_48 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::div(var_0, var_num_particles); var_2 = df::mod(var_0, var_num_particles); var_3 = df::load(var_x, var_2); var_5 = df::mul(var_1, var_4); var_7 = df::add(var_5, var_6); var_8 = df::load(var_indices, var_7); var_9 = df::mul(var_1, var_4); var_11 = df::add(var_9, var_10); var_12 = df::load(var_indices, var_11); var_13 = df::mul(var_1, var_4); var_15 = df::add(var_13, var_14); var_16 = df::load(var_indices, var_15); var_17 = (var_8 == var_2); var_18 = (var_12 == var_2); var_19 = (var_16 == var_2); var_20 = var_17 || var_18 || var_19; if (var_20) { goto label0; } var_21 = df::load(var_x, var_8); var_22 = df::load(var_x, var_12); var_23 = df::load(var_x, var_16); var_24 = triangle_closest_point_barycentric_cpu_func(var_21, var_22, var_23, var_3); var_25 = df::index(var_24, var_6); var_26 = df::mul(var_21, var_25); var_27 = df::index(var_24, var_10); var_28 = df::mul(var_22, var_27); var_29 = df::add(var_26, var_28); var_30 = df::index(var_24, var_14); var_31 = df::mul(var_23, var_30); var_32 = df::add(var_29, var_31); var_33 = df::sub(var_3, var_32); var_34 = df::dot(var_33, var_33); var_35 = df::normalize(var_33); var_37 = df::sub(var_34, var_36); var_39 = df::min(var_37, var_38); var_40 = df::mul(var_35, var_39); var_42 = df::mul(var_40, var_41); df::atomic_sub(var_f, var_2, var_42); var_43 = df::index(var_24, var_6); var_44 = df::mul(var_42, var_43); df::atomic_add(var_f, var_8, var_44); var_45 = df::index(var_24, var_10); var_46 = df::mul(var_42, var_45); df::atomic_add(var_f, var_12, var_46); var_47 = df::index(var_24, var_14); var_48 = df::mul(var_42, var_47); df::atomic_add(var_f, var_16, var_48); //--------- // reverse df::adj_atomic_add(var_f, var_16, var_48, adj_f, adj_16, adj_48); df::adj_mul(var_42, var_47, adj_42, adj_47, adj_48); df::adj_index(var_24, var_14, adj_24, adj_14, adj_47); df::adj_atomic_add(var_f, var_12, var_46, adj_f, adj_12, adj_46); df::adj_mul(var_42, var_45, adj_42, adj_45, adj_46); df::adj_index(var_24, var_10, adj_24, adj_10, adj_45); df::adj_atomic_add(var_f, var_8, var_44, adj_f, adj_8, adj_44); df::adj_mul(var_42, var_43, adj_42, adj_43, adj_44); df::adj_index(var_24, var_6, adj_24, adj_6, adj_43); df::adj_atomic_sub(var_f, var_2, var_42, adj_f, adj_2, adj_42); df::adj_mul(var_40, var_41, adj_40, adj_41, adj_42); df::adj_mul(var_35, var_39, adj_35, adj_39, adj_40); df::adj_min(var_37, var_38, adj_37, adj_38, adj_39); df::adj_sub(var_34, var_36, adj_34, adj_36, adj_37); df::adj_normalize(var_33, adj_33, adj_35); df::adj_dot(var_33, var_33, adj_33, adj_33, adj_34); df::adj_sub(var_3, var_32, adj_3, adj_32, adj_33); df::adj_add(var_29, var_31, adj_29, adj_31, adj_32); df::adj_mul(var_23, var_30, adj_23, adj_30, adj_31); df::adj_index(var_24, var_14, adj_24, adj_14, adj_30); df::adj_add(var_26, var_28, adj_26, adj_28, adj_29); df::adj_mul(var_22, var_27, adj_22, adj_27, adj_28); df::adj_index(var_24, var_10, adj_24, adj_10, adj_27); df::adj_mul(var_21, var_25, adj_21, adj_25, adj_26); df::adj_index(var_24, var_6, adj_24, adj_6, adj_25); adj_triangle_closest_point_barycentric_cpu_func(var_21, var_22, var_23, var_3, adj_21, adj_22, adj_23, adj_3, adj_24); df::adj_load(var_x, var_16, adj_x, adj_16, adj_23); df::adj_load(var_x, var_12, adj_x, adj_12, adj_22); df::adj_load(var_x, var_8, adj_x, adj_8, adj_21); if (var_20) { label0:; } df::adj_load(var_indices, var_15, adj_indices, adj_15, adj_16); df::adj_add(var_13, var_14, adj_13, adj_14, adj_15); df::adj_mul(var_1, var_4, adj_1, adj_4, adj_13); df::adj_load(var_indices, var_11, adj_indices, adj_11, adj_12); df::adj_add(var_9, var_10, adj_9, adj_10, adj_11); df::adj_mul(var_1, var_4, adj_1, adj_4, adj_9); df::adj_load(var_indices, var_7, adj_indices, adj_7, adj_8); df::adj_add(var_5, var_6, adj_5, adj_6, adj_7); df::adj_mul(var_1, var_4, adj_1, adj_4, adj_5); df::adj_load(var_x, var_2, adj_x, adj_2, adj_3); df::adj_mod(var_0, var_num_particles, adj_0, adj_num_particles, adj_2); df::adj_div(var_0, var_num_particles, adj_0, adj_num_particles, adj_1); return; } // Python entry points void eval_triangles_contact_cpu_forward(int dim, int var_num_particles, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, torch::Tensor var_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_triangles_contact_cpu_kernel_forward( var_num_particles, cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<mat22*>(var_pose), cast<float*>(var_activation), var_k_mu, var_k_lambda, var_k_damp, var_k_drag, var_k_lift, cast<df::float3*>(var_f)); } } void eval_triangles_contact_cpu_backward(int dim, int var_num_particles, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, torch::Tensor var_f, int adj_num_particles, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_pose, torch::Tensor adj_activation, float adj_k_mu, float adj_k_lambda, float adj_k_damp, float adj_k_drag, float adj_k_lift, torch::Tensor adj_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_triangles_contact_cpu_kernel_backward( var_num_particles, cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<mat22*>(var_pose), cast<float*>(var_activation), var_k_mu, var_k_lambda, var_k_damp, var_k_drag, var_k_lift, cast<df::float3*>(var_f), adj_num_particles, cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<int*>(adj_indices), cast<mat22*>(adj_pose), cast<float*>(adj_activation), adj_k_mu, adj_k_lambda, adj_k_damp, adj_k_drag, adj_k_lift, cast<df::float3*>(adj_f)); } } // Python entry points void eval_triangles_contact_cpu_forward(int dim, int var_num_particles, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, torch::Tensor var_f); void eval_triangles_contact_cpu_backward(int dim, int var_num_particles, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, torch::Tensor var_f, int adj_num_particles, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_pose, torch::Tensor adj_activation, float adj_k_mu, float adj_k_lambda, float adj_k_damp, float adj_k_drag, float adj_k_lift, torch::Tensor adj_f); void eval_triangles_rigid_contacts_cpu_kernel_forward( int var_num_particles, df::float3* var_x, df::float3* var_v, int* var_indices, df::float3* var_rigid_x, quat* var_rigid_r, df::float3* var_rigid_v, df::float3* var_rigid_w, int* var_contact_body, df::float3* var_contact_point, float* var_contact_dist, int* var_contact_mat, float* var_materials, df::float3* var_tri_f) { //--------- // primal vars int var_0; int var_1; int var_2; int var_3; df::float3 var_4; float var_5; int var_6; const int var_7 = 4; int var_8; const int var_9 = 0; int var_10; float var_11; int var_12; const int var_13 = 1; int var_14; float var_15; int var_16; const int var_17 = 2; int var_18; float var_19; int var_20; const int var_21 = 3; int var_22; float var_23; df::float3 var_24; quat var_25; df::float3 var_26; df::float3 var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; df::float3 var_35; int var_36; int var_37; int var_38; int var_39; int var_40; int var_41; int var_42; int var_43; int var_44; df::float3 var_45; df::float3 var_46; df::float3 var_47; df::float3 var_48; df::float3 var_49; df::float3 var_50; df::float3 var_51; float var_52; df::float3 var_53; float var_54; df::float3 var_55; df::float3 var_56; float var_57; df::float3 var_58; df::float3 var_59; df::float3 var_60; float var_61; df::float3 var_62; const float var_63 = 0.05; float var_64; const float var_65 = 0.0; float var_66; float var_67; float var_68; df::float3 var_69; float var_70; df::float3 var_71; df::float3 var_72; float var_73; df::float3 var_74; df::float3 var_75; df::float3 var_76; float var_77; df::float3 var_78; df::float3 var_79; float var_80; float var_81; float var_82; float var_83; float var_84; float var_85; float var_86; float var_87; const float var_88 = 1.0; df::float3 var_89; df::float3 var_90; df::float3 var_91; df::float3 var_92; df::float3 var_93; float var_94; float var_95; df::float3 var_96; float var_97; float var_98; df::float3 var_99; df::float3 var_100; df::float3 var_101; float var_102; float var_103; df::float3 var_104; float var_105; df::float3 var_106; df::float3 var_107; float var_108; df::float3 var_109; float var_110; df::float3 var_111; float var_112; df::float3 var_113; //--------- // forward var_0 = df::tid(); var_1 = df::div(var_0, var_num_particles); var_2 = df::mod(var_0, var_num_particles); var_3 = df::load(var_contact_body, var_2); var_4 = df::load(var_contact_point, var_2); var_5 = df::load(var_contact_dist, var_2); var_6 = df::load(var_contact_mat, var_2); var_8 = df::mul(var_6, var_7); var_10 = df::add(var_8, var_9); var_11 = df::load(var_materials, var_10); var_12 = df::mul(var_6, var_7); var_14 = df::add(var_12, var_13); var_15 = df::load(var_materials, var_14); var_16 = df::mul(var_6, var_7); var_18 = df::add(var_16, var_17); var_19 = df::load(var_materials, var_18); var_20 = df::mul(var_6, var_7); var_22 = df::add(var_20, var_21); var_23 = df::load(var_materials, var_22); var_24 = df::load(var_rigid_x, var_3); var_25 = df::load(var_rigid_r, var_3); var_26 = df::load(var_rigid_v, var_3); var_27 = df::load(var_rigid_w, var_3); var_28 = df::rotate(var_25, var_4); var_29 = df::add(var_24, var_28); var_30 = df::sub(var_29, var_24); var_31 = df::normalize(var_30); var_32 = df::mul(var_31, var_5); var_33 = df::add(var_29, var_32); var_34 = df::cross(var_27, var_30); var_35 = df::add(var_26, var_34); var_36 = df::mul(var_1, var_21); var_37 = df::add(var_36, var_9); var_38 = df::load(var_indices, var_37); var_39 = df::mul(var_1, var_21); var_40 = df::add(var_39, var_13); var_41 = df::load(var_indices, var_40); var_42 = df::mul(var_1, var_21); var_43 = df::add(var_42, var_17); var_44 = df::load(var_indices, var_43); var_45 = df::load(var_x, var_38); var_46 = df::load(var_x, var_41); var_47 = df::load(var_x, var_44); var_48 = df::load(var_v, var_38); var_49 = df::load(var_v, var_41); var_50 = df::load(var_v, var_44); var_51 = triangle_closest_point_barycentric_cpu_func(var_45, var_46, var_47, var_33); var_52 = df::index(var_51, var_9); var_53 = df::mul(var_45, var_52); var_54 = df::index(var_51, var_13); var_55 = df::mul(var_46, var_54); var_56 = df::add(var_53, var_55); var_57 = df::index(var_51, var_17); var_58 = df::mul(var_47, var_57); var_59 = df::add(var_56, var_58); var_60 = df::sub(var_33, var_59); var_61 = df::dot(var_60, var_60); var_62 = df::normalize(var_60); var_64 = df::sub(var_61, var_63); var_66 = df::min(var_64, var_65); var_67 = df::mul(var_66, var_11); var_68 = df::index(var_51, var_9); var_69 = df::mul(var_48, var_68); var_70 = df::index(var_51, var_13); var_71 = df::mul(var_49, var_70); var_72 = df::add(var_69, var_71); var_73 = df::index(var_51, var_17); var_74 = df::mul(var_50, var_73); var_75 = df::add(var_72, var_74); var_76 = df::sub(var_75, var_35); var_77 = df::dot(var_62, var_76); var_78 = df::mul(var_62, var_77); var_79 = df::sub(var_76, var_78); var_80 = df::max(var_77, var_65); var_81 = df::mul(var_80, var_15); var_82 = df::step(var_66); var_83 = df::mul(var_81, var_82); var_84 = df::sub(var_65, var_83); var_85 = df::add(var_67, var_84); var_86 = df::mul(var_23, var_85); var_87 = df::sub(var_65, var_86); var_89 = df::float3(var_65, var_65, var_88); var_90 = df::cross(var_62, var_89); var_91 = df::float3(var_88, var_65, var_65); var_92 = df::cross(var_62, var_91); var_93 = df::mul(var_90, var_19); var_94 = df::dot(var_93, var_79); var_95 = df::clamp(var_94, var_86, var_87); var_96 = df::mul(var_92, var_19); var_97 = df::dot(var_96, var_79); var_98 = df::clamp(var_97, var_86, var_87); var_99 = df::mul(var_90, var_95); var_100 = df::mul(var_92, var_98); var_101 = df::add(var_99, var_100); var_102 = df::step(var_66); var_103 = df::sub(var_65, var_102); var_104 = df::mul(var_101, var_103); var_105 = df::add(var_67, var_84); var_106 = df::mul(var_62, var_105); var_107 = df::add(var_106, var_104); var_108 = df::index(var_51, var_9); var_109 = df::mul(var_107, var_108); df::atomic_add(var_tri_f, var_38, var_109); var_110 = df::index(var_51, var_13); var_111 = df::mul(var_107, var_110); df::atomic_add(var_tri_f, var_41, var_111); var_112 = df::index(var_51, var_17); var_113 = df::mul(var_107, var_112); df::atomic_add(var_tri_f, var_44, var_113); } void eval_triangles_rigid_contacts_cpu_kernel_backward( int var_num_particles, df::float3* var_x, df::float3* var_v, int* var_indices, df::float3* var_rigid_x, quat* var_rigid_r, df::float3* var_rigid_v, df::float3* var_rigid_w, int* var_contact_body, df::float3* var_contact_point, float* var_contact_dist, int* var_contact_mat, float* var_materials, df::float3* var_tri_f, int adj_num_particles, df::float3* adj_x, df::float3* adj_v, int* adj_indices, df::float3* adj_rigid_x, quat* adj_rigid_r, df::float3* adj_rigid_v, df::float3* adj_rigid_w, int* adj_contact_body, df::float3* adj_contact_point, float* adj_contact_dist, int* adj_contact_mat, float* adj_materials, df::float3* adj_tri_f) { //--------- // primal vars int var_0; int var_1; int var_2; int var_3; df::float3 var_4; float var_5; int var_6; const int var_7 = 4; int var_8; const int var_9 = 0; int var_10; float var_11; int var_12; const int var_13 = 1; int var_14; float var_15; int var_16; const int var_17 = 2; int var_18; float var_19; int var_20; const int var_21 = 3; int var_22; float var_23; df::float3 var_24; quat var_25; df::float3 var_26; df::float3 var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; df::float3 var_35; int var_36; int var_37; int var_38; int var_39; int var_40; int var_41; int var_42; int var_43; int var_44; df::float3 var_45; df::float3 var_46; df::float3 var_47; df::float3 var_48; df::float3 var_49; df::float3 var_50; df::float3 var_51; float var_52; df::float3 var_53; float var_54; df::float3 var_55; df::float3 var_56; float var_57; df::float3 var_58; df::float3 var_59; df::float3 var_60; float var_61; df::float3 var_62; const float var_63 = 0.05; float var_64; const float var_65 = 0.0; float var_66; float var_67; float var_68; df::float3 var_69; float var_70; df::float3 var_71; df::float3 var_72; float var_73; df::float3 var_74; df::float3 var_75; df::float3 var_76; float var_77; df::float3 var_78; df::float3 var_79; float var_80; float var_81; float var_82; float var_83; float var_84; float var_85; float var_86; float var_87; const float var_88 = 1.0; df::float3 var_89; df::float3 var_90; df::float3 var_91; df::float3 var_92; df::float3 var_93; float var_94; float var_95; df::float3 var_96; float var_97; float var_98; df::float3 var_99; df::float3 var_100; df::float3 var_101; float var_102; float var_103; df::float3 var_104; float var_105; df::float3 var_106; df::float3 var_107; float var_108; df::float3 var_109; float var_110; df::float3 var_111; float var_112; df::float3 var_113; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; df::float3 adj_4 = 0; float adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; int adj_9 = 0; int adj_10 = 0; float adj_11 = 0; int adj_12 = 0; int adj_13 = 0; int adj_14 = 0; float adj_15 = 0; int adj_16 = 0; int adj_17 = 0; int adj_18 = 0; float adj_19 = 0; int adj_20 = 0; int adj_21 = 0; int adj_22 = 0; float adj_23 = 0; df::float3 adj_24 = 0; quat adj_25 = 0; df::float3 adj_26 = 0; df::float3 adj_27 = 0; df::float3 adj_28 = 0; df::float3 adj_29 = 0; df::float3 adj_30 = 0; df::float3 adj_31 = 0; df::float3 adj_32 = 0; df::float3 adj_33 = 0; df::float3 adj_34 = 0; df::float3 adj_35 = 0; int adj_36 = 0; int adj_37 = 0; int adj_38 = 0; int adj_39 = 0; int adj_40 = 0; int adj_41 = 0; int adj_42 = 0; int adj_43 = 0; int adj_44 = 0; df::float3 adj_45 = 0; df::float3 adj_46 = 0; df::float3 adj_47 = 0; df::float3 adj_48 = 0; df::float3 adj_49 = 0; df::float3 adj_50 = 0; df::float3 adj_51 = 0; float adj_52 = 0; df::float3 adj_53 = 0; float adj_54 = 0; df::float3 adj_55 = 0; df::float3 adj_56 = 0; float adj_57 = 0; df::float3 adj_58 = 0; df::float3 adj_59 = 0; df::float3 adj_60 = 0; float adj_61 = 0; df::float3 adj_62 = 0; float adj_63 = 0; float adj_64 = 0; float adj_65 = 0; float adj_66 = 0; float adj_67 = 0; float adj_68 = 0; df::float3 adj_69 = 0; float adj_70 = 0; df::float3 adj_71 = 0; df::float3 adj_72 = 0; float adj_73 = 0; df::float3 adj_74 = 0; df::float3 adj_75 = 0; df::float3 adj_76 = 0; float adj_77 = 0; df::float3 adj_78 = 0; df::float3 adj_79 = 0; float adj_80 = 0; float adj_81 = 0; float adj_82 = 0; float adj_83 = 0; float adj_84 = 0; float adj_85 = 0; float adj_86 = 0; float adj_87 = 0; float adj_88 = 0; df::float3 adj_89 = 0; df::float3 adj_90 = 0; df::float3 adj_91 = 0; df::float3 adj_92 = 0; df::float3 adj_93 = 0; float adj_94 = 0; float adj_95 = 0; df::float3 adj_96 = 0; float adj_97 = 0; float adj_98 = 0; df::float3 adj_99 = 0; df::float3 adj_100 = 0; df::float3 adj_101 = 0; float adj_102 = 0; float adj_103 = 0; df::float3 adj_104 = 0; float adj_105 = 0; df::float3 adj_106 = 0; df::float3 adj_107 = 0; float adj_108 = 0; df::float3 adj_109 = 0; float adj_110 = 0; df::float3 adj_111 = 0; float adj_112 = 0; df::float3 adj_113 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::div(var_0, var_num_particles); var_2 = df::mod(var_0, var_num_particles); var_3 = df::load(var_contact_body, var_2); var_4 = df::load(var_contact_point, var_2); var_5 = df::load(var_contact_dist, var_2); var_6 = df::load(var_contact_mat, var_2); var_8 = df::mul(var_6, var_7); var_10 = df::add(var_8, var_9); var_11 = df::load(var_materials, var_10); var_12 = df::mul(var_6, var_7); var_14 = df::add(var_12, var_13); var_15 = df::load(var_materials, var_14); var_16 = df::mul(var_6, var_7); var_18 = df::add(var_16, var_17); var_19 = df::load(var_materials, var_18); var_20 = df::mul(var_6, var_7); var_22 = df::add(var_20, var_21); var_23 = df::load(var_materials, var_22); var_24 = df::load(var_rigid_x, var_3); var_25 = df::load(var_rigid_r, var_3); var_26 = df::load(var_rigid_v, var_3); var_27 = df::load(var_rigid_w, var_3); var_28 = df::rotate(var_25, var_4); var_29 = df::add(var_24, var_28); var_30 = df::sub(var_29, var_24); var_31 = df::normalize(var_30); var_32 = df::mul(var_31, var_5); var_33 = df::add(var_29, var_32); var_34 = df::cross(var_27, var_30); var_35 = df::add(var_26, var_34); var_36 = df::mul(var_1, var_21); var_37 = df::add(var_36, var_9); var_38 = df::load(var_indices, var_37); var_39 = df::mul(var_1, var_21); var_40 = df::add(var_39, var_13); var_41 = df::load(var_indices, var_40); var_42 = df::mul(var_1, var_21); var_43 = df::add(var_42, var_17); var_44 = df::load(var_indices, var_43); var_45 = df::load(var_x, var_38); var_46 = df::load(var_x, var_41); var_47 = df::load(var_x, var_44); var_48 = df::load(var_v, var_38); var_49 = df::load(var_v, var_41); var_50 = df::load(var_v, var_44); var_51 = triangle_closest_point_barycentric_cpu_func(var_45, var_46, var_47, var_33); var_52 = df::index(var_51, var_9); var_53 = df::mul(var_45, var_52); var_54 = df::index(var_51, var_13); var_55 = df::mul(var_46, var_54); var_56 = df::add(var_53, var_55); var_57 = df::index(var_51, var_17); var_58 = df::mul(var_47, var_57); var_59 = df::add(var_56, var_58); var_60 = df::sub(var_33, var_59); var_61 = df::dot(var_60, var_60); var_62 = df::normalize(var_60); var_64 = df::sub(var_61, var_63); var_66 = df::min(var_64, var_65); var_67 = df::mul(var_66, var_11); var_68 = df::index(var_51, var_9); var_69 = df::mul(var_48, var_68); var_70 = df::index(var_51, var_13); var_71 = df::mul(var_49, var_70); var_72 = df::add(var_69, var_71); var_73 = df::index(var_51, var_17); var_74 = df::mul(var_50, var_73); var_75 = df::add(var_72, var_74); var_76 = df::sub(var_75, var_35); var_77 = df::dot(var_62, var_76); var_78 = df::mul(var_62, var_77); var_79 = df::sub(var_76, var_78); var_80 = df::max(var_77, var_65); var_81 = df::mul(var_80, var_15); var_82 = df::step(var_66); var_83 = df::mul(var_81, var_82); var_84 = df::sub(var_65, var_83); var_85 = df::add(var_67, var_84); var_86 = df::mul(var_23, var_85); var_87 = df::sub(var_65, var_86); var_89 = df::float3(var_65, var_65, var_88); var_90 = df::cross(var_62, var_89); var_91 = df::float3(var_88, var_65, var_65); var_92 = df::cross(var_62, var_91); var_93 = df::mul(var_90, var_19); var_94 = df::dot(var_93, var_79); var_95 = df::clamp(var_94, var_86, var_87); var_96 = df::mul(var_92, var_19); var_97 = df::dot(var_96, var_79); var_98 = df::clamp(var_97, var_86, var_87); var_99 = df::mul(var_90, var_95); var_100 = df::mul(var_92, var_98); var_101 = df::add(var_99, var_100); var_102 = df::step(var_66); var_103 = df::sub(var_65, var_102); var_104 = df::mul(var_101, var_103); var_105 = df::add(var_67, var_84); var_106 = df::mul(var_62, var_105); var_107 = df::add(var_106, var_104); var_108 = df::index(var_51, var_9); var_109 = df::mul(var_107, var_108); df::atomic_add(var_tri_f, var_38, var_109); var_110 = df::index(var_51, var_13); var_111 = df::mul(var_107, var_110); df::atomic_add(var_tri_f, var_41, var_111); var_112 = df::index(var_51, var_17); var_113 = df::mul(var_107, var_112); df::atomic_add(var_tri_f, var_44, var_113); //--------- // reverse df::adj_atomic_add(var_tri_f, var_44, var_113, adj_tri_f, adj_44, adj_113); df::adj_mul(var_107, var_112, adj_107, adj_112, adj_113); df::adj_index(var_51, var_17, adj_51, adj_17, adj_112); df::adj_atomic_add(var_tri_f, var_41, var_111, adj_tri_f, adj_41, adj_111); df::adj_mul(var_107, var_110, adj_107, adj_110, adj_111); df::adj_index(var_51, var_13, adj_51, adj_13, adj_110); df::adj_atomic_add(var_tri_f, var_38, var_109, adj_tri_f, adj_38, adj_109); df::adj_mul(var_107, var_108, adj_107, adj_108, adj_109); df::adj_index(var_51, var_9, adj_51, adj_9, adj_108); df::adj_add(var_106, var_104, adj_106, adj_104, adj_107); df::adj_mul(var_62, var_105, adj_62, adj_105, adj_106); df::adj_add(var_67, var_84, adj_67, adj_84, adj_105); df::adj_mul(var_101, var_103, adj_101, adj_103, adj_104); df::adj_sub(var_65, var_102, adj_65, adj_102, adj_103); df::adj_step(var_66, adj_66, adj_102); df::adj_add(var_99, var_100, adj_99, adj_100, adj_101); df::adj_mul(var_92, var_98, adj_92, adj_98, adj_100); df::adj_mul(var_90, var_95, adj_90, adj_95, adj_99); df::adj_clamp(var_97, var_86, var_87, adj_97, adj_86, adj_87, adj_98); df::adj_dot(var_96, var_79, adj_96, adj_79, adj_97); df::adj_mul(var_92, var_19, adj_92, adj_19, adj_96); df::adj_clamp(var_94, var_86, var_87, adj_94, adj_86, adj_87, adj_95); df::adj_dot(var_93, var_79, adj_93, adj_79, adj_94); df::adj_mul(var_90, var_19, adj_90, adj_19, adj_93); df::adj_cross(var_62, var_91, adj_62, adj_91, adj_92); df::adj_float3(var_88, var_65, var_65, adj_88, adj_65, adj_65, adj_91); df::adj_cross(var_62, var_89, adj_62, adj_89, adj_90); df::adj_float3(var_65, var_65, var_88, adj_65, adj_65, adj_88, adj_89); df::adj_sub(var_65, var_86, adj_65, adj_86, adj_87); df::adj_mul(var_23, var_85, adj_23, adj_85, adj_86); df::adj_add(var_67, var_84, adj_67, adj_84, adj_85); df::adj_sub(var_65, var_83, adj_65, adj_83, adj_84); df::adj_mul(var_81, var_82, adj_81, adj_82, adj_83); df::adj_step(var_66, adj_66, adj_82); df::adj_mul(var_80, var_15, adj_80, adj_15, adj_81); df::adj_max(var_77, var_65, adj_77, adj_65, adj_80); df::adj_sub(var_76, var_78, adj_76, adj_78, adj_79); df::adj_mul(var_62, var_77, adj_62, adj_77, adj_78); df::adj_dot(var_62, var_76, adj_62, adj_76, adj_77); df::adj_sub(var_75, var_35, adj_75, adj_35, adj_76); df::adj_add(var_72, var_74, adj_72, adj_74, adj_75); df::adj_mul(var_50, var_73, adj_50, adj_73, adj_74); df::adj_index(var_51, var_17, adj_51, adj_17, adj_73); df::adj_add(var_69, var_71, adj_69, adj_71, adj_72); df::adj_mul(var_49, var_70, adj_49, adj_70, adj_71); df::adj_index(var_51, var_13, adj_51, adj_13, adj_70); df::adj_mul(var_48, var_68, adj_48, adj_68, adj_69); df::adj_index(var_51, var_9, adj_51, adj_9, adj_68); df::adj_mul(var_66, var_11, adj_66, adj_11, adj_67); df::adj_min(var_64, var_65, adj_64, adj_65, adj_66); df::adj_sub(var_61, var_63, adj_61, adj_63, adj_64); df::adj_normalize(var_60, adj_60, adj_62); df::adj_dot(var_60, var_60, adj_60, adj_60, adj_61); df::adj_sub(var_33, var_59, adj_33, adj_59, adj_60); df::adj_add(var_56, var_58, adj_56, adj_58, adj_59); df::adj_mul(var_47, var_57, adj_47, adj_57, adj_58); df::adj_index(var_51, var_17, adj_51, adj_17, adj_57); df::adj_add(var_53, var_55, adj_53, adj_55, adj_56); df::adj_mul(var_46, var_54, adj_46, adj_54, adj_55); df::adj_index(var_51, var_13, adj_51, adj_13, adj_54); df::adj_mul(var_45, var_52, adj_45, adj_52, adj_53); df::adj_index(var_51, var_9, adj_51, adj_9, adj_52); adj_triangle_closest_point_barycentric_cpu_func(var_45, var_46, var_47, var_33, adj_45, adj_46, adj_47, adj_33, adj_51); df::adj_load(var_v, var_44, adj_v, adj_44, adj_50); df::adj_load(var_v, var_41, adj_v, adj_41, adj_49); df::adj_load(var_v, var_38, adj_v, adj_38, adj_48); df::adj_load(var_x, var_44, adj_x, adj_44, adj_47); df::adj_load(var_x, var_41, adj_x, adj_41, adj_46); df::adj_load(var_x, var_38, adj_x, adj_38, adj_45); df::adj_load(var_indices, var_43, adj_indices, adj_43, adj_44); df::adj_add(var_42, var_17, adj_42, adj_17, adj_43); df::adj_mul(var_1, var_21, adj_1, adj_21, adj_42); df::adj_load(var_indices, var_40, adj_indices, adj_40, adj_41); df::adj_add(var_39, var_13, adj_39, adj_13, adj_40); df::adj_mul(var_1, var_21, adj_1, adj_21, adj_39); df::adj_load(var_indices, var_37, adj_indices, adj_37, adj_38); df::adj_add(var_36, var_9, adj_36, adj_9, adj_37); df::adj_mul(var_1, var_21, adj_1, adj_21, adj_36); df::adj_add(var_26, var_34, adj_26, adj_34, adj_35); df::adj_cross(var_27, var_30, adj_27, adj_30, adj_34); df::adj_add(var_29, var_32, adj_29, adj_32, adj_33); df::adj_mul(var_31, var_5, adj_31, adj_5, adj_32); df::adj_normalize(var_30, adj_30, adj_31); df::adj_sub(var_29, var_24, adj_29, adj_24, adj_30); df::adj_add(var_24, var_28, adj_24, adj_28, adj_29); df::adj_rotate(var_25, var_4, adj_25, adj_4, adj_28); df::adj_load(var_rigid_w, var_3, adj_rigid_w, adj_3, adj_27); df::adj_load(var_rigid_v, var_3, adj_rigid_v, adj_3, adj_26); df::adj_load(var_rigid_r, var_3, adj_rigid_r, adj_3, adj_25); df::adj_load(var_rigid_x, var_3, adj_rigid_x, adj_3, adj_24); df::adj_load(var_materials, var_22, adj_materials, adj_22, adj_23); df::adj_add(var_20, var_21, adj_20, adj_21, adj_22); df::adj_mul(var_6, var_7, adj_6, adj_7, adj_20); df::adj_load(var_materials, var_18, adj_materials, adj_18, adj_19); df::adj_add(var_16, var_17, adj_16, adj_17, adj_18); df::adj_mul(var_6, var_7, adj_6, adj_7, adj_16); df::adj_load(var_materials, var_14, adj_materials, adj_14, adj_15); df::adj_add(var_12, var_13, adj_12, adj_13, adj_14); df::adj_mul(var_6, var_7, adj_6, adj_7, adj_12); df::adj_load(var_materials, var_10, adj_materials, adj_10, adj_11); df::adj_add(var_8, var_9, adj_8, adj_9, adj_10); df::adj_mul(var_6, var_7, adj_6, adj_7, adj_8); df::adj_load(var_contact_mat, var_2, adj_contact_mat, adj_2, adj_6); df::adj_load(var_contact_dist, var_2, adj_contact_dist, adj_2, adj_5); df::adj_load(var_contact_point, var_2, adj_contact_point, adj_2, adj_4); df::adj_load(var_contact_body, var_2, adj_contact_body, adj_2, adj_3); df::adj_mod(var_0, var_num_particles, adj_0, adj_num_particles, adj_2); df::adj_div(var_0, var_num_particles, adj_0, adj_num_particles, adj_1); return; } // Python entry points void eval_triangles_rigid_contacts_cpu_forward(int dim, int var_num_particles, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_tri_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_triangles_rigid_contacts_cpu_kernel_forward( var_num_particles, cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<df::float3*>(var_rigid_x), cast<quat*>(var_rigid_r), cast<df::float3*>(var_rigid_v), cast<df::float3*>(var_rigid_w), cast<int*>(var_contact_body), cast<df::float3*>(var_contact_point), cast<float*>(var_contact_dist), cast<int*>(var_contact_mat), cast<float*>(var_materials), cast<df::float3*>(var_tri_f)); } } void eval_triangles_rigid_contacts_cpu_backward(int dim, int var_num_particles, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_tri_f, int adj_num_particles, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_rigid_x, torch::Tensor adj_rigid_r, torch::Tensor adj_rigid_v, torch::Tensor adj_rigid_w, torch::Tensor adj_contact_body, torch::Tensor adj_contact_point, torch::Tensor adj_contact_dist, torch::Tensor adj_contact_mat, torch::Tensor adj_materials, torch::Tensor adj_tri_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_triangles_rigid_contacts_cpu_kernel_backward( var_num_particles, cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<df::float3*>(var_rigid_x), cast<quat*>(var_rigid_r), cast<df::float3*>(var_rigid_v), cast<df::float3*>(var_rigid_w), cast<int*>(var_contact_body), cast<df::float3*>(var_contact_point), cast<float*>(var_contact_dist), cast<int*>(var_contact_mat), cast<float*>(var_materials), cast<df::float3*>(var_tri_f), adj_num_particles, cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<int*>(adj_indices), cast<df::float3*>(adj_rigid_x), cast<quat*>(adj_rigid_r), cast<df::float3*>(adj_rigid_v), cast<df::float3*>(adj_rigid_w), cast<int*>(adj_contact_body), cast<df::float3*>(adj_contact_point), cast<float*>(adj_contact_dist), cast<int*>(adj_contact_mat), cast<float*>(adj_materials), cast<df::float3*>(adj_tri_f)); } } // Python entry points void eval_triangles_rigid_contacts_cpu_forward(int dim, int var_num_particles, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_tri_f); void eval_triangles_rigid_contacts_cpu_backward(int dim, int var_num_particles, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_tri_f, int adj_num_particles, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_rigid_x, torch::Tensor adj_rigid_r, torch::Tensor adj_rigid_v, torch::Tensor adj_rigid_w, torch::Tensor adj_contact_body, torch::Tensor adj_contact_point, torch::Tensor adj_contact_dist, torch::Tensor adj_contact_mat, torch::Tensor adj_materials, torch::Tensor adj_tri_f); void eval_bending_cpu_kernel_forward( df::float3* var_x, df::float3* var_v, int* var_indices, float* var_rest, float var_ke, float var_kd, df::float3* var_f) { //--------- // primal vars int var_0; const int var_1 = 4; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; int var_10; const int var_11 = 2; int var_12; int var_13; int var_14; const int var_15 = 3; int var_16; int var_17; float var_18; df::float3 var_19; df::float3 var_20; df::float3 var_21; df::float3 var_22; df::float3 var_23; df::float3 var_24; df::float3 var_25; df::float3 var_26; df::float3 var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; float var_33; float var_34; const float var_35 = 1.0; float var_36; float var_37; float var_38; float var_39; float var_40; df::float3 var_41; df::float3 var_42; df::float3 var_43; df::float3 var_44; df::float3 var_45; df::float3 var_46; float var_47; df::float3 var_48; float var_49; float var_50; float var_51; float var_52; df::float3 var_53; df::float3 var_54; df::float3 var_55; float var_56; df::float3 var_57; df::float3 var_58; float var_59; df::float3 var_60; df::float3 var_61; df::float3 var_62; float var_63; df::float3 var_64; df::float3 var_65; float var_66; df::float3 var_67; df::float3 var_68; float var_69; float var_70; float var_71; float var_72; float var_73; float var_74; float var_75; float var_76; float var_77; float var_78; const float var_79 = 0.0; float var_80; float var_81; float var_82; df::float3 var_83; df::float3 var_84; df::float3 var_85; df::float3 var_86; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_indices, var_8); var_10 = df::mul(var_0, var_1); var_12 = df::add(var_10, var_11); var_13 = df::load(var_indices, var_12); var_14 = df::mul(var_0, var_1); var_16 = df::add(var_14, var_15); var_17 = df::load(var_indices, var_16); var_18 = df::load(var_rest, var_0); var_19 = df::load(var_x, var_5); var_20 = df::load(var_x, var_9); var_21 = df::load(var_x, var_13); var_22 = df::load(var_x, var_17); var_23 = df::load(var_v, var_5); var_24 = df::load(var_v, var_9); var_25 = df::load(var_v, var_13); var_26 = df::load(var_v, var_17); var_27 = df::sub(var_21, var_19); var_28 = df::sub(var_22, var_19); var_29 = df::cross(var_27, var_28); var_30 = df::sub(var_22, var_20); var_31 = df::sub(var_21, var_20); var_32 = df::cross(var_30, var_31); var_33 = df::length(var_29); var_34 = df::length(var_32); var_36 = df::div(var_35, var_33); var_37 = df::div(var_35, var_34); var_38 = df::dot(var_29, var_32); var_39 = df::mul(var_38, var_36); var_40 = df::mul(var_39, var_37); var_41 = df::mul(var_29, var_36); var_42 = df::mul(var_41, var_36); var_43 = df::mul(var_32, var_37); var_44 = df::mul(var_43, var_37); var_45 = df::sub(var_22, var_21); var_46 = df::normalize(var_45); var_47 = df::length(var_45); var_48 = df::cross(var_44, var_42); var_49 = df::dot(var_48, var_46); var_50 = df::sign(var_49); var_51 = df::acos(var_40); var_52 = df::mul(var_51, var_50); var_53 = df::mul(var_42, var_47); var_54 = df::mul(var_44, var_47); var_55 = df::sub(var_19, var_22); var_56 = df::dot(var_55, var_46); var_57 = df::mul(var_42, var_56); var_58 = df::sub(var_20, var_22); var_59 = df::dot(var_58, var_46); var_60 = df::mul(var_44, var_59); var_61 = df::add(var_57, var_60); var_62 = df::sub(var_21, var_19); var_63 = df::dot(var_62, var_46); var_64 = df::mul(var_42, var_63); var_65 = df::sub(var_21, var_20); var_66 = df::dot(var_65, var_46); var_67 = df::mul(var_44, var_66); var_68 = df::add(var_64, var_67); var_69 = df::sub(var_52, var_18); var_70 = df::mul(var_ke, var_69); var_71 = df::dot(var_53, var_23); var_72 = df::dot(var_54, var_24); var_73 = df::add(var_71, var_72); var_74 = df::dot(var_61, var_25); var_75 = df::add(var_73, var_74); var_76 = df::dot(var_68, var_26); var_77 = df::add(var_75, var_76); var_78 = df::mul(var_kd, var_77); var_80 = df::add(var_70, var_78); var_81 = df::mul(var_47, var_80); var_82 = df::sub(var_79, var_81); var_83 = df::mul(var_53, var_82); df::atomic_add(var_f, var_5, var_83); var_84 = df::mul(var_54, var_82); df::atomic_add(var_f, var_9, var_84); var_85 = df::mul(var_61, var_82); df::atomic_add(var_f, var_13, var_85); var_86 = df::mul(var_68, var_82); df::atomic_add(var_f, var_17, var_86); } void eval_bending_cpu_kernel_backward( df::float3* var_x, df::float3* var_v, int* var_indices, float* var_rest, float var_ke, float var_kd, df::float3* var_f, df::float3* adj_x, df::float3* adj_v, int* adj_indices, float* adj_rest, float adj_ke, float adj_kd, df::float3* adj_f) { //--------- // primal vars int var_0; const int var_1 = 4; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; int var_10; const int var_11 = 2; int var_12; int var_13; int var_14; const int var_15 = 3; int var_16; int var_17; float var_18; df::float3 var_19; df::float3 var_20; df::float3 var_21; df::float3 var_22; df::float3 var_23; df::float3 var_24; df::float3 var_25; df::float3 var_26; df::float3 var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; float var_33; float var_34; const float var_35 = 1.0; float var_36; float var_37; float var_38; float var_39; float var_40; df::float3 var_41; df::float3 var_42; df::float3 var_43; df::float3 var_44; df::float3 var_45; df::float3 var_46; float var_47; df::float3 var_48; float var_49; float var_50; float var_51; float var_52; df::float3 var_53; df::float3 var_54; df::float3 var_55; float var_56; df::float3 var_57; df::float3 var_58; float var_59; df::float3 var_60; df::float3 var_61; df::float3 var_62; float var_63; df::float3 var_64; df::float3 var_65; float var_66; df::float3 var_67; df::float3 var_68; float var_69; float var_70; float var_71; float var_72; float var_73; float var_74; float var_75; float var_76; float var_77; float var_78; const float var_79 = 0.0; float var_80; float var_81; float var_82; df::float3 var_83; df::float3 var_84; df::float3 var_85; df::float3 var_86; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; int adj_9 = 0; int adj_10 = 0; int adj_11 = 0; int adj_12 = 0; int adj_13 = 0; int adj_14 = 0; int adj_15 = 0; int adj_16 = 0; int adj_17 = 0; float adj_18 = 0; df::float3 adj_19 = 0; df::float3 adj_20 = 0; df::float3 adj_21 = 0; df::float3 adj_22 = 0; df::float3 adj_23 = 0; df::float3 adj_24 = 0; df::float3 adj_25 = 0; df::float3 adj_26 = 0; df::float3 adj_27 = 0; df::float3 adj_28 = 0; df::float3 adj_29 = 0; df::float3 adj_30 = 0; df::float3 adj_31 = 0; df::float3 adj_32 = 0; float adj_33 = 0; float adj_34 = 0; float adj_35 = 0; float adj_36 = 0; float adj_37 = 0; float adj_38 = 0; float adj_39 = 0; float adj_40 = 0; df::float3 adj_41 = 0; df::float3 adj_42 = 0; df::float3 adj_43 = 0; df::float3 adj_44 = 0; df::float3 adj_45 = 0; df::float3 adj_46 = 0; float adj_47 = 0; df::float3 adj_48 = 0; float adj_49 = 0; float adj_50 = 0; float adj_51 = 0; float adj_52 = 0; df::float3 adj_53 = 0; df::float3 adj_54 = 0; df::float3 adj_55 = 0; float adj_56 = 0; df::float3 adj_57 = 0; df::float3 adj_58 = 0; float adj_59 = 0; df::float3 adj_60 = 0; df::float3 adj_61 = 0; df::float3 adj_62 = 0; float adj_63 = 0; df::float3 adj_64 = 0; df::float3 adj_65 = 0; float adj_66 = 0; df::float3 adj_67 = 0; df::float3 adj_68 = 0; float adj_69 = 0; float adj_70 = 0; float adj_71 = 0; float adj_72 = 0; float adj_73 = 0; float adj_74 = 0; float adj_75 = 0; float adj_76 = 0; float adj_77 = 0; float adj_78 = 0; float adj_79 = 0; float adj_80 = 0; float adj_81 = 0; float adj_82 = 0; df::float3 adj_83 = 0; df::float3 adj_84 = 0; df::float3 adj_85 = 0; df::float3 adj_86 = 0; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_indices, var_8); var_10 = df::mul(var_0, var_1); var_12 = df::add(var_10, var_11); var_13 = df::load(var_indices, var_12); var_14 = df::mul(var_0, var_1); var_16 = df::add(var_14, var_15); var_17 = df::load(var_indices, var_16); var_18 = df::load(var_rest, var_0); var_19 = df::load(var_x, var_5); var_20 = df::load(var_x, var_9); var_21 = df::load(var_x, var_13); var_22 = df::load(var_x, var_17); var_23 = df::load(var_v, var_5); var_24 = df::load(var_v, var_9); var_25 = df::load(var_v, var_13); var_26 = df::load(var_v, var_17); var_27 = df::sub(var_21, var_19); var_28 = df::sub(var_22, var_19); var_29 = df::cross(var_27, var_28); var_30 = df::sub(var_22, var_20); var_31 = df::sub(var_21, var_20); var_32 = df::cross(var_30, var_31); var_33 = df::length(var_29); var_34 = df::length(var_32); var_36 = df::div(var_35, var_33); var_37 = df::div(var_35, var_34); var_38 = df::dot(var_29, var_32); var_39 = df::mul(var_38, var_36); var_40 = df::mul(var_39, var_37); var_41 = df::mul(var_29, var_36); var_42 = df::mul(var_41, var_36); var_43 = df::mul(var_32, var_37); var_44 = df::mul(var_43, var_37); var_45 = df::sub(var_22, var_21); var_46 = df::normalize(var_45); var_47 = df::length(var_45); var_48 = df::cross(var_44, var_42); var_49 = df::dot(var_48, var_46); var_50 = df::sign(var_49); var_51 = df::acos(var_40); var_52 = df::mul(var_51, var_50); var_53 = df::mul(var_42, var_47); var_54 = df::mul(var_44, var_47); var_55 = df::sub(var_19, var_22); var_56 = df::dot(var_55, var_46); var_57 = df::mul(var_42, var_56); var_58 = df::sub(var_20, var_22); var_59 = df::dot(var_58, var_46); var_60 = df::mul(var_44, var_59); var_61 = df::add(var_57, var_60); var_62 = df::sub(var_21, var_19); var_63 = df::dot(var_62, var_46); var_64 = df::mul(var_42, var_63); var_65 = df::sub(var_21, var_20); var_66 = df::dot(var_65, var_46); var_67 = df::mul(var_44, var_66); var_68 = df::add(var_64, var_67); var_69 = df::sub(var_52, var_18); var_70 = df::mul(var_ke, var_69); var_71 = df::dot(var_53, var_23); var_72 = df::dot(var_54, var_24); var_73 = df::add(var_71, var_72); var_74 = df::dot(var_61, var_25); var_75 = df::add(var_73, var_74); var_76 = df::dot(var_68, var_26); var_77 = df::add(var_75, var_76); var_78 = df::mul(var_kd, var_77); var_80 = df::add(var_70, var_78); var_81 = df::mul(var_47, var_80); var_82 = df::sub(var_79, var_81); var_83 = df::mul(var_53, var_82); df::atomic_add(var_f, var_5, var_83); var_84 = df::mul(var_54, var_82); df::atomic_add(var_f, var_9, var_84); var_85 = df::mul(var_61, var_82); df::atomic_add(var_f, var_13, var_85); var_86 = df::mul(var_68, var_82); df::atomic_add(var_f, var_17, var_86); //--------- // reverse df::adj_atomic_add(var_f, var_17, var_86, adj_f, adj_17, adj_86); df::adj_mul(var_68, var_82, adj_68, adj_82, adj_86); df::adj_atomic_add(var_f, var_13, var_85, adj_f, adj_13, adj_85); df::adj_mul(var_61, var_82, adj_61, adj_82, adj_85); df::adj_atomic_add(var_f, var_9, var_84, adj_f, adj_9, adj_84); df::adj_mul(var_54, var_82, adj_54, adj_82, adj_84); df::adj_atomic_add(var_f, var_5, var_83, adj_f, adj_5, adj_83); df::adj_mul(var_53, var_82, adj_53, adj_82, adj_83); df::adj_sub(var_79, var_81, adj_79, adj_81, adj_82); df::adj_mul(var_47, var_80, adj_47, adj_80, adj_81); df::adj_add(var_70, var_78, adj_70, adj_78, adj_80); df::adj_mul(var_kd, var_77, adj_kd, adj_77, adj_78); df::adj_add(var_75, var_76, adj_75, adj_76, adj_77); df::adj_dot(var_68, var_26, adj_68, adj_26, adj_76); df::adj_add(var_73, var_74, adj_73, adj_74, adj_75); df::adj_dot(var_61, var_25, adj_61, adj_25, adj_74); df::adj_add(var_71, var_72, adj_71, adj_72, adj_73); df::adj_dot(var_54, var_24, adj_54, adj_24, adj_72); df::adj_dot(var_53, var_23, adj_53, adj_23, adj_71); df::adj_mul(var_ke, var_69, adj_ke, adj_69, adj_70); df::adj_sub(var_52, var_18, adj_52, adj_18, adj_69); df::adj_add(var_64, var_67, adj_64, adj_67, adj_68); df::adj_mul(var_44, var_66, adj_44, adj_66, adj_67); df::adj_dot(var_65, var_46, adj_65, adj_46, adj_66); df::adj_sub(var_21, var_20, adj_21, adj_20, adj_65); df::adj_mul(var_42, var_63, adj_42, adj_63, adj_64); df::adj_dot(var_62, var_46, adj_62, adj_46, adj_63); df::adj_sub(var_21, var_19, adj_21, adj_19, adj_62); df::adj_add(var_57, var_60, adj_57, adj_60, adj_61); df::adj_mul(var_44, var_59, adj_44, adj_59, adj_60); df::adj_dot(var_58, var_46, adj_58, adj_46, adj_59); df::adj_sub(var_20, var_22, adj_20, adj_22, adj_58); df::adj_mul(var_42, var_56, adj_42, adj_56, adj_57); df::adj_dot(var_55, var_46, adj_55, adj_46, adj_56); df::adj_sub(var_19, var_22, adj_19, adj_22, adj_55); df::adj_mul(var_44, var_47, adj_44, adj_47, adj_54); df::adj_mul(var_42, var_47, adj_42, adj_47, adj_53); df::adj_mul(var_51, var_50, adj_51, adj_50, adj_52); df::adj_acos(var_40, adj_40, adj_51); df::adj_sign(var_49, adj_49, adj_50); df::adj_dot(var_48, var_46, adj_48, adj_46, adj_49); df::adj_cross(var_44, var_42, adj_44, adj_42, adj_48); df::adj_length(var_45, adj_45, adj_47); df::adj_normalize(var_45, adj_45, adj_46); df::adj_sub(var_22, var_21, adj_22, adj_21, adj_45); df::adj_mul(var_43, var_37, adj_43, adj_37, adj_44); df::adj_mul(var_32, var_37, adj_32, adj_37, adj_43); df::adj_mul(var_41, var_36, adj_41, adj_36, adj_42); df::adj_mul(var_29, var_36, adj_29, adj_36, adj_41); df::adj_mul(var_39, var_37, adj_39, adj_37, adj_40); df::adj_mul(var_38, var_36, adj_38, adj_36, adj_39); df::adj_dot(var_29, var_32, adj_29, adj_32, adj_38); df::adj_div(var_35, var_34, adj_35, adj_34, adj_37); df::adj_div(var_35, var_33, adj_35, adj_33, adj_36); df::adj_length(var_32, adj_32, adj_34); df::adj_length(var_29, adj_29, adj_33); df::adj_cross(var_30, var_31, adj_30, adj_31, adj_32); df::adj_sub(var_21, var_20, adj_21, adj_20, adj_31); df::adj_sub(var_22, var_20, adj_22, adj_20, adj_30); df::adj_cross(var_27, var_28, adj_27, adj_28, adj_29); df::adj_sub(var_22, var_19, adj_22, adj_19, adj_28); df::adj_sub(var_21, var_19, adj_21, adj_19, adj_27); df::adj_load(var_v, var_17, adj_v, adj_17, adj_26); df::adj_load(var_v, var_13, adj_v, adj_13, adj_25); df::adj_load(var_v, var_9, adj_v, adj_9, adj_24); df::adj_load(var_v, var_5, adj_v, adj_5, adj_23); df::adj_load(var_x, var_17, adj_x, adj_17, adj_22); df::adj_load(var_x, var_13, adj_x, adj_13, adj_21); df::adj_load(var_x, var_9, adj_x, adj_9, adj_20); df::adj_load(var_x, var_5, adj_x, adj_5, adj_19); df::adj_load(var_rest, var_0, adj_rest, adj_0, adj_18); df::adj_load(var_indices, var_16, adj_indices, adj_16, adj_17); df::adj_add(var_14, var_15, adj_14, adj_15, adj_16); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_14); df::adj_load(var_indices, var_12, adj_indices, adj_12, adj_13); df::adj_add(var_10, var_11, adj_10, adj_11, adj_12); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_10); df::adj_load(var_indices, var_8, adj_indices, adj_8, adj_9); df::adj_add(var_6, var_7, adj_6, adj_7, adj_8); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_6); df::adj_load(var_indices, var_4, adj_indices, adj_4, adj_5); df::adj_add(var_2, var_3, adj_2, adj_3, adj_4); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_2); return; } // Python entry points void eval_bending_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_rest, float var_ke, float var_kd, torch::Tensor var_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_bending_cpu_kernel_forward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<float*>(var_rest), var_ke, var_kd, cast<df::float3*>(var_f)); } } void eval_bending_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_rest, float var_ke, float var_kd, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_rest, float adj_ke, float adj_kd, torch::Tensor adj_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_bending_cpu_kernel_backward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<float*>(var_rest), var_ke, var_kd, cast<df::float3*>(var_f), cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<int*>(adj_indices), cast<float*>(adj_rest), adj_ke, adj_kd, cast<df::float3*>(adj_f)); } } // Python entry points void eval_bending_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_rest, float var_ke, float var_kd, torch::Tensor var_f); void eval_bending_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_rest, float var_ke, float var_kd, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_rest, float adj_ke, float adj_kd, torch::Tensor adj_f); void eval_tetrahedra_cpu_kernel_forward( df::float3* var_x, df::float3* var_v, int* var_indices, mat33* var_pose, float* var_activation, float* var_materials, df::float3* var_f) { //--------- // primal vars int var_0; const int var_1 = 4; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; int var_10; const int var_11 = 2; int var_12; int var_13; int var_14; const int var_15 = 3; int var_16; int var_17; float var_18; int var_19; int var_20; float var_21; int var_22; int var_23; float var_24; int var_25; int var_26; float var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; df::float3 var_35; df::float3 var_36; df::float3 var_37; df::float3 var_38; df::float3 var_39; df::float3 var_40; df::float3 var_41; mat33 var_42; mat33 var_43; float var_44; const float var_45 = 6.0; float var_46; const float var_47 = 1.0; float var_48; float var_49; float var_50; const float var_51 = 4.0; float var_52; float var_53; float var_54; float var_55; float var_56; float var_57; mat33 var_58; mat33 var_59; mat33 var_60; float var_61; float var_62; float var_63; df::float3 var_64; float var_65; float var_66; float var_67; df::float3 var_68; float var_69; float var_70; float var_71; df::float3 var_72; float var_73; float var_74; float var_75; float var_76; float var_77; mat33 var_78; float var_79; float var_80; float var_81; mat33 var_82; mat33 var_83; mat33 var_84; mat33 var_85; mat33 var_86; float var_87; float var_88; float var_89; df::float3 var_90; float var_91; float var_92; float var_93; df::float3 var_94; float var_95; float var_96; float var_97; df::float3 var_98; float var_99; float var_100; df::float3 var_101; df::float3 var_102; df::float3 var_103; df::float3 var_104; df::float3 var_105; df::float3 var_106; float var_107; float var_108; float var_109; float var_110; float var_111; float var_112; float var_113; float var_114; float var_115; float var_116; df::float3 var_117; df::float3 var_118; df::float3 var_119; df::float3 var_120; df::float3 var_121; df::float3 var_122; df::float3 var_123; df::float3 var_124; const float var_125 = 0.0; float var_126; df::float3 var_127; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_indices, var_8); var_10 = df::mul(var_0, var_1); var_12 = df::add(var_10, var_11); var_13 = df::load(var_indices, var_12); var_14 = df::mul(var_0, var_1); var_16 = df::add(var_14, var_15); var_17 = df::load(var_indices, var_16); var_18 = df::load(var_activation, var_0); var_19 = df::mul(var_0, var_15); var_20 = df::add(var_19, var_3); var_21 = df::load(var_materials, var_20); var_22 = df::mul(var_0, var_15); var_23 = df::add(var_22, var_7); var_24 = df::load(var_materials, var_23); var_25 = df::mul(var_0, var_15); var_26 = df::add(var_25, var_11); var_27 = df::load(var_materials, var_26); var_28 = df::load(var_x, var_5); var_29 = df::load(var_x, var_9); var_30 = df::load(var_x, var_13); var_31 = df::load(var_x, var_17); var_32 = df::load(var_v, var_5); var_33 = df::load(var_v, var_9); var_34 = df::load(var_v, var_13); var_35 = df::load(var_v, var_17); var_36 = df::sub(var_29, var_28); var_37 = df::sub(var_30, var_28); var_38 = df::sub(var_31, var_28); var_39 = df::sub(var_33, var_32); var_40 = df::sub(var_34, var_32); var_41 = df::sub(var_35, var_32); var_42 = df::mat33(var_36, var_37, var_38); var_43 = df::load(var_pose, var_0); var_44 = df::determinant(var_43); var_46 = df::mul(var_44, var_45); var_48 = df::div(var_47, var_46); var_49 = df::div(var_21, var_24); var_50 = df::add(var_47, var_49); var_52 = df::mul(var_51, var_24); var_53 = df::div(var_21, var_52); var_54 = df::sub(var_50, var_53); var_55 = df::mul(var_21, var_48); var_56 = df::mul(var_24, var_48); var_57 = df::mul(var_27, var_48); var_58 = df::mul(var_42, var_43); var_59 = df::mat33(var_39, var_40, var_41); var_60 = df::mul(var_59, var_43); var_61 = df::index(var_58, var_3, var_3); var_62 = df::index(var_58, var_7, var_3); var_63 = df::index(var_58, var_11, var_3); var_64 = df::float3(var_61, var_62, var_63); var_65 = df::index(var_58, var_3, var_7); var_66 = df::index(var_58, var_7, var_7); var_67 = df::index(var_58, var_11, var_7); var_68 = df::float3(var_65, var_66, var_67); var_69 = df::index(var_58, var_3, var_11); var_70 = df::index(var_58, var_7, var_11); var_71 = df::index(var_58, var_11, var_11); var_72 = df::float3(var_69, var_70, var_71); var_73 = df::dot(var_64, var_64); var_74 = df::dot(var_68, var_68); var_75 = df::add(var_73, var_74); var_76 = df::dot(var_72, var_72); var_77 = df::add(var_75, var_76); var_78 = df::mul(var_58, var_55); var_79 = df::add(var_77, var_47); var_80 = df::div(var_47, var_79); var_81 = df::sub(var_47, var_80); var_82 = df::mul(var_78, var_81); var_83 = df::mul(var_60, var_57); var_84 = df::add(var_82, var_83); var_85 = df::transpose(var_43); var_86 = df::mul(var_84, var_85); var_87 = df::index(var_86, var_3, var_3); var_88 = df::index(var_86, var_7, var_3); var_89 = df::index(var_86, var_11, var_3); var_90 = df::float3(var_87, var_88, var_89); var_91 = df::index(var_86, var_3, var_7); var_92 = df::index(var_86, var_7, var_7); var_93 = df::index(var_86, var_11, var_7); var_94 = df::float3(var_91, var_92, var_93); var_95 = df::index(var_86, var_3, var_11); var_96 = df::index(var_86, var_7, var_11); var_97 = df::index(var_86, var_11, var_11); var_98 = df::float3(var_95, var_96, var_97); var_99 = df::determinant(var_58); var_100 = df::div(var_46, var_45); var_101 = df::cross(var_37, var_38); var_102 = df::mul(var_101, var_100); var_103 = df::cross(var_38, var_36); var_104 = df::mul(var_103, var_100); var_105 = df::cross(var_36, var_37); var_106 = df::mul(var_105, var_100); var_107 = df::sub(var_99, var_54); var_108 = df::add(var_107, var_18); var_109 = df::mul(var_108, var_56); var_110 = df::dot(var_102, var_33); var_111 = df::dot(var_104, var_34); var_112 = df::add(var_110, var_111); var_113 = df::dot(var_106, var_35); var_114 = df::add(var_112, var_113); var_115 = df::mul(var_114, var_57); var_116 = df::add(var_109, var_115); var_117 = df::mul(var_102, var_116); var_118 = df::add(var_90, var_117); var_119 = df::mul(var_104, var_116); var_120 = df::add(var_94, var_119); var_121 = df::mul(var_106, var_116); var_122 = df::add(var_98, var_121); var_123 = df::add(var_118, var_120); var_124 = df::add(var_123, var_122); var_126 = df::sub(var_125, var_47); var_127 = df::mul(var_124, var_126); df::atomic_sub(var_f, var_5, var_127); df::atomic_sub(var_f, var_9, var_118); df::atomic_sub(var_f, var_13, var_120); df::atomic_sub(var_f, var_17, var_122); } void eval_tetrahedra_cpu_kernel_backward( df::float3* var_x, df::float3* var_v, int* var_indices, mat33* var_pose, float* var_activation, float* var_materials, df::float3* var_f, df::float3* adj_x, df::float3* adj_v, int* adj_indices, mat33* adj_pose, float* adj_activation, float* adj_materials, df::float3* adj_f) { //--------- // primal vars int var_0; const int var_1 = 4; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; int var_10; const int var_11 = 2; int var_12; int var_13; int var_14; const int var_15 = 3; int var_16; int var_17; float var_18; int var_19; int var_20; float var_21; int var_22; int var_23; float var_24; int var_25; int var_26; float var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; df::float3 var_35; df::float3 var_36; df::float3 var_37; df::float3 var_38; df::float3 var_39; df::float3 var_40; df::float3 var_41; mat33 var_42; mat33 var_43; float var_44; const float var_45 = 6.0; float var_46; const float var_47 = 1.0; float var_48; float var_49; float var_50; const float var_51 = 4.0; float var_52; float var_53; float var_54; float var_55; float var_56; float var_57; mat33 var_58; mat33 var_59; mat33 var_60; float var_61; float var_62; float var_63; df::float3 var_64; float var_65; float var_66; float var_67; df::float3 var_68; float var_69; float var_70; float var_71; df::float3 var_72; float var_73; float var_74; float var_75; float var_76; float var_77; mat33 var_78; float var_79; float var_80; float var_81; mat33 var_82; mat33 var_83; mat33 var_84; mat33 var_85; mat33 var_86; float var_87; float var_88; float var_89; df::float3 var_90; float var_91; float var_92; float var_93; df::float3 var_94; float var_95; float var_96; float var_97; df::float3 var_98; float var_99; float var_100; df::float3 var_101; df::float3 var_102; df::float3 var_103; df::float3 var_104; df::float3 var_105; df::float3 var_106; float var_107; float var_108; float var_109; float var_110; float var_111; float var_112; float var_113; float var_114; float var_115; float var_116; df::float3 var_117; df::float3 var_118; df::float3 var_119; df::float3 var_120; df::float3 var_121; df::float3 var_122; df::float3 var_123; df::float3 var_124; const float var_125 = 0.0; float var_126; df::float3 var_127; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; int adj_9 = 0; int adj_10 = 0; int adj_11 = 0; int adj_12 = 0; int adj_13 = 0; int adj_14 = 0; int adj_15 = 0; int adj_16 = 0; int adj_17 = 0; float adj_18 = 0; int adj_19 = 0; int adj_20 = 0; float adj_21 = 0; int adj_22 = 0; int adj_23 = 0; float adj_24 = 0; int adj_25 = 0; int adj_26 = 0; float adj_27 = 0; df::float3 adj_28 = 0; df::float3 adj_29 = 0; df::float3 adj_30 = 0; df::float3 adj_31 = 0; df::float3 adj_32 = 0; df::float3 adj_33 = 0; df::float3 adj_34 = 0; df::float3 adj_35 = 0; df::float3 adj_36 = 0; df::float3 adj_37 = 0; df::float3 adj_38 = 0; df::float3 adj_39 = 0; df::float3 adj_40 = 0; df::float3 adj_41 = 0; mat33 adj_42 = 0; mat33 adj_43 = 0; float adj_44 = 0; float adj_45 = 0; float adj_46 = 0; float adj_47 = 0; float adj_48 = 0; float adj_49 = 0; float adj_50 = 0; float adj_51 = 0; float adj_52 = 0; float adj_53 = 0; float adj_54 = 0; float adj_55 = 0; float adj_56 = 0; float adj_57 = 0; mat33 adj_58 = 0; mat33 adj_59 = 0; mat33 adj_60 = 0; float adj_61 = 0; float adj_62 = 0; float adj_63 = 0; df::float3 adj_64 = 0; float adj_65 = 0; float adj_66 = 0; float adj_67 = 0; df::float3 adj_68 = 0; float adj_69 = 0; float adj_70 = 0; float adj_71 = 0; df::float3 adj_72 = 0; float adj_73 = 0; float adj_74 = 0; float adj_75 = 0; float adj_76 = 0; float adj_77 = 0; mat33 adj_78 = 0; float adj_79 = 0; float adj_80 = 0; float adj_81 = 0; mat33 adj_82 = 0; mat33 adj_83 = 0; mat33 adj_84 = 0; mat33 adj_85 = 0; mat33 adj_86 = 0; float adj_87 = 0; float adj_88 = 0; float adj_89 = 0; df::float3 adj_90 = 0; float adj_91 = 0; float adj_92 = 0; float adj_93 = 0; df::float3 adj_94 = 0; float adj_95 = 0; float adj_96 = 0; float adj_97 = 0; df::float3 adj_98 = 0; float adj_99 = 0; float adj_100 = 0; df::float3 adj_101 = 0; df::float3 adj_102 = 0; df::float3 adj_103 = 0; df::float3 adj_104 = 0; df::float3 adj_105 = 0; df::float3 adj_106 = 0; float adj_107 = 0; float adj_108 = 0; float adj_109 = 0; float adj_110 = 0; float adj_111 = 0; float adj_112 = 0; float adj_113 = 0; float adj_114 = 0; float adj_115 = 0; float adj_116 = 0; df::float3 adj_117 = 0; df::float3 adj_118 = 0; df::float3 adj_119 = 0; df::float3 adj_120 = 0; df::float3 adj_121 = 0; df::float3 adj_122 = 0; df::float3 adj_123 = 0; df::float3 adj_124 = 0; float adj_125 = 0; float adj_126 = 0; df::float3 adj_127 = 0; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_indices, var_8); var_10 = df::mul(var_0, var_1); var_12 = df::add(var_10, var_11); var_13 = df::load(var_indices, var_12); var_14 = df::mul(var_0, var_1); var_16 = df::add(var_14, var_15); var_17 = df::load(var_indices, var_16); var_18 = df::load(var_activation, var_0); var_19 = df::mul(var_0, var_15); var_20 = df::add(var_19, var_3); var_21 = df::load(var_materials, var_20); var_22 = df::mul(var_0, var_15); var_23 = df::add(var_22, var_7); var_24 = df::load(var_materials, var_23); var_25 = df::mul(var_0, var_15); var_26 = df::add(var_25, var_11); var_27 = df::load(var_materials, var_26); var_28 = df::load(var_x, var_5); var_29 = df::load(var_x, var_9); var_30 = df::load(var_x, var_13); var_31 = df::load(var_x, var_17); var_32 = df::load(var_v, var_5); var_33 = df::load(var_v, var_9); var_34 = df::load(var_v, var_13); var_35 = df::load(var_v, var_17); var_36 = df::sub(var_29, var_28); var_37 = df::sub(var_30, var_28); var_38 = df::sub(var_31, var_28); var_39 = df::sub(var_33, var_32); var_40 = df::sub(var_34, var_32); var_41 = df::sub(var_35, var_32); var_42 = df::mat33(var_36, var_37, var_38); var_43 = df::load(var_pose, var_0); var_44 = df::determinant(var_43); var_46 = df::mul(var_44, var_45); var_48 = df::div(var_47, var_46); var_49 = df::div(var_21, var_24); var_50 = df::add(var_47, var_49); var_52 = df::mul(var_51, var_24); var_53 = df::div(var_21, var_52); var_54 = df::sub(var_50, var_53); var_55 = df::mul(var_21, var_48); var_56 = df::mul(var_24, var_48); var_57 = df::mul(var_27, var_48); var_58 = df::mul(var_42, var_43); var_59 = df::mat33(var_39, var_40, var_41); var_60 = df::mul(var_59, var_43); var_61 = df::index(var_58, var_3, var_3); var_62 = df::index(var_58, var_7, var_3); var_63 = df::index(var_58, var_11, var_3); var_64 = df::float3(var_61, var_62, var_63); var_65 = df::index(var_58, var_3, var_7); var_66 = df::index(var_58, var_7, var_7); var_67 = df::index(var_58, var_11, var_7); var_68 = df::float3(var_65, var_66, var_67); var_69 = df::index(var_58, var_3, var_11); var_70 = df::index(var_58, var_7, var_11); var_71 = df::index(var_58, var_11, var_11); var_72 = df::float3(var_69, var_70, var_71); var_73 = df::dot(var_64, var_64); var_74 = df::dot(var_68, var_68); var_75 = df::add(var_73, var_74); var_76 = df::dot(var_72, var_72); var_77 = df::add(var_75, var_76); var_78 = df::mul(var_58, var_55); var_79 = df::add(var_77, var_47); var_80 = df::div(var_47, var_79); var_81 = df::sub(var_47, var_80); var_82 = df::mul(var_78, var_81); var_83 = df::mul(var_60, var_57); var_84 = df::add(var_82, var_83); var_85 = df::transpose(var_43); var_86 = df::mul(var_84, var_85); var_87 = df::index(var_86, var_3, var_3); var_88 = df::index(var_86, var_7, var_3); var_89 = df::index(var_86, var_11, var_3); var_90 = df::float3(var_87, var_88, var_89); var_91 = df::index(var_86, var_3, var_7); var_92 = df::index(var_86, var_7, var_7); var_93 = df::index(var_86, var_11, var_7); var_94 = df::float3(var_91, var_92, var_93); var_95 = df::index(var_86, var_3, var_11); var_96 = df::index(var_86, var_7, var_11); var_97 = df::index(var_86, var_11, var_11); var_98 = df::float3(var_95, var_96, var_97); var_99 = df::determinant(var_58); var_100 = df::div(var_46, var_45); var_101 = df::cross(var_37, var_38); var_102 = df::mul(var_101, var_100); var_103 = df::cross(var_38, var_36); var_104 = df::mul(var_103, var_100); var_105 = df::cross(var_36, var_37); var_106 = df::mul(var_105, var_100); var_107 = df::sub(var_99, var_54); var_108 = df::add(var_107, var_18); var_109 = df::mul(var_108, var_56); var_110 = df::dot(var_102, var_33); var_111 = df::dot(var_104, var_34); var_112 = df::add(var_110, var_111); var_113 = df::dot(var_106, var_35); var_114 = df::add(var_112, var_113); var_115 = df::mul(var_114, var_57); var_116 = df::add(var_109, var_115); var_117 = df::mul(var_102, var_116); var_118 = df::add(var_90, var_117); var_119 = df::mul(var_104, var_116); var_120 = df::add(var_94, var_119); var_121 = df::mul(var_106, var_116); var_122 = df::add(var_98, var_121); var_123 = df::add(var_118, var_120); var_124 = df::add(var_123, var_122); var_126 = df::sub(var_125, var_47); var_127 = df::mul(var_124, var_126); df::atomic_sub(var_f, var_5, var_127); df::atomic_sub(var_f, var_9, var_118); df::atomic_sub(var_f, var_13, var_120); df::atomic_sub(var_f, var_17, var_122); //--------- // reverse df::adj_atomic_sub(var_f, var_17, var_122, adj_f, adj_17, adj_122); df::adj_atomic_sub(var_f, var_13, var_120, adj_f, adj_13, adj_120); df::adj_atomic_sub(var_f, var_9, var_118, adj_f, adj_9, adj_118); df::adj_atomic_sub(var_f, var_5, var_127, adj_f, adj_5, adj_127); df::adj_mul(var_124, var_126, adj_124, adj_126, adj_127); df::adj_sub(var_125, var_47, adj_125, adj_47, adj_126); df::adj_add(var_123, var_122, adj_123, adj_122, adj_124); df::adj_add(var_118, var_120, adj_118, adj_120, adj_123); df::adj_add(var_98, var_121, adj_98, adj_121, adj_122); df::adj_mul(var_106, var_116, adj_106, adj_116, adj_121); df::adj_add(var_94, var_119, adj_94, adj_119, adj_120); df::adj_mul(var_104, var_116, adj_104, adj_116, adj_119); df::adj_add(var_90, var_117, adj_90, adj_117, adj_118); df::adj_mul(var_102, var_116, adj_102, adj_116, adj_117); df::adj_add(var_109, var_115, adj_109, adj_115, adj_116); df::adj_mul(var_114, var_57, adj_114, adj_57, adj_115); df::adj_add(var_112, var_113, adj_112, adj_113, adj_114); df::adj_dot(var_106, var_35, adj_106, adj_35, adj_113); df::adj_add(var_110, var_111, adj_110, adj_111, adj_112); df::adj_dot(var_104, var_34, adj_104, adj_34, adj_111); df::adj_dot(var_102, var_33, adj_102, adj_33, adj_110); df::adj_mul(var_108, var_56, adj_108, adj_56, adj_109); df::adj_add(var_107, var_18, adj_107, adj_18, adj_108); df::adj_sub(var_99, var_54, adj_99, adj_54, adj_107); df::adj_mul(var_105, var_100, adj_105, adj_100, adj_106); df::adj_cross(var_36, var_37, adj_36, adj_37, adj_105); df::adj_mul(var_103, var_100, adj_103, adj_100, adj_104); df::adj_cross(var_38, var_36, adj_38, adj_36, adj_103); df::adj_mul(var_101, var_100, adj_101, adj_100, adj_102); df::adj_cross(var_37, var_38, adj_37, adj_38, adj_101); df::adj_div(var_46, var_45, adj_46, adj_45, adj_100); df::adj_determinant(var_58, adj_58, adj_99); df::adj_float3(var_95, var_96, var_97, adj_95, adj_96, adj_97, adj_98); df::adj_index(var_86, var_11, var_11, adj_86, adj_11, adj_11, adj_97); df::adj_index(var_86, var_7, var_11, adj_86, adj_7, adj_11, adj_96); df::adj_index(var_86, var_3, var_11, adj_86, adj_3, adj_11, adj_95); df::adj_float3(var_91, var_92, var_93, adj_91, adj_92, adj_93, adj_94); df::adj_index(var_86, var_11, var_7, adj_86, adj_11, adj_7, adj_93); df::adj_index(var_86, var_7, var_7, adj_86, adj_7, adj_7, adj_92); df::adj_index(var_86, var_3, var_7, adj_86, adj_3, adj_7, adj_91); df::adj_float3(var_87, var_88, var_89, adj_87, adj_88, adj_89, adj_90); df::adj_index(var_86, var_11, var_3, adj_86, adj_11, adj_3, adj_89); df::adj_index(var_86, var_7, var_3, adj_86, adj_7, adj_3, adj_88); df::adj_index(var_86, var_3, var_3, adj_86, adj_3, adj_3, adj_87); df::adj_mul(var_84, var_85, adj_84, adj_85, adj_86); df::adj_transpose(var_43, adj_43, adj_85); df::adj_add(var_82, var_83, adj_82, adj_83, adj_84); df::adj_mul(var_60, var_57, adj_60, adj_57, adj_83); df::adj_mul(var_78, var_81, adj_78, adj_81, adj_82); df::adj_sub(var_47, var_80, adj_47, adj_80, adj_81); df::adj_div(var_47, var_79, adj_47, adj_79, adj_80); df::adj_add(var_77, var_47, adj_77, adj_47, adj_79); df::adj_mul(var_58, var_55, adj_58, adj_55, adj_78); df::adj_add(var_75, var_76, adj_75, adj_76, adj_77); df::adj_dot(var_72, var_72, adj_72, adj_72, adj_76); df::adj_add(var_73, var_74, adj_73, adj_74, adj_75); df::adj_dot(var_68, var_68, adj_68, adj_68, adj_74); df::adj_dot(var_64, var_64, adj_64, adj_64, adj_73); df::adj_float3(var_69, var_70, var_71, adj_69, adj_70, adj_71, adj_72); df::adj_index(var_58, var_11, var_11, adj_58, adj_11, adj_11, adj_71); df::adj_index(var_58, var_7, var_11, adj_58, adj_7, adj_11, adj_70); df::adj_index(var_58, var_3, var_11, adj_58, adj_3, adj_11, adj_69); df::adj_float3(var_65, var_66, var_67, adj_65, adj_66, adj_67, adj_68); df::adj_index(var_58, var_11, var_7, adj_58, adj_11, adj_7, adj_67); df::adj_index(var_58, var_7, var_7, adj_58, adj_7, adj_7, adj_66); df::adj_index(var_58, var_3, var_7, adj_58, adj_3, adj_7, adj_65); df::adj_float3(var_61, var_62, var_63, adj_61, adj_62, adj_63, adj_64); df::adj_index(var_58, var_11, var_3, adj_58, adj_11, adj_3, adj_63); df::adj_index(var_58, var_7, var_3, adj_58, adj_7, adj_3, adj_62); df::adj_index(var_58, var_3, var_3, adj_58, adj_3, adj_3, adj_61); df::adj_mul(var_59, var_43, adj_59, adj_43, adj_60); df::adj_mat33(var_39, var_40, var_41, adj_39, adj_40, adj_41, adj_59); df::adj_mul(var_42, var_43, adj_42, adj_43, adj_58); df::adj_mul(var_27, var_48, adj_27, adj_48, adj_57); df::adj_mul(var_24, var_48, adj_24, adj_48, adj_56); df::adj_mul(var_21, var_48, adj_21, adj_48, adj_55); df::adj_sub(var_50, var_53, adj_50, adj_53, adj_54); df::adj_div(var_21, var_52, adj_21, adj_52, adj_53); df::adj_mul(var_51, var_24, adj_51, adj_24, adj_52); df::adj_add(var_47, var_49, adj_47, adj_49, adj_50); df::adj_div(var_21, var_24, adj_21, adj_24, adj_49); df::adj_div(var_47, var_46, adj_47, adj_46, adj_48); df::adj_mul(var_44, var_45, adj_44, adj_45, adj_46); df::adj_determinant(var_43, adj_43, adj_44); df::adj_load(var_pose, var_0, adj_pose, adj_0, adj_43); df::adj_mat33(var_36, var_37, var_38, adj_36, adj_37, adj_38, adj_42); df::adj_sub(var_35, var_32, adj_35, adj_32, adj_41); df::adj_sub(var_34, var_32, adj_34, adj_32, adj_40); df::adj_sub(var_33, var_32, adj_33, adj_32, adj_39); df::adj_sub(var_31, var_28, adj_31, adj_28, adj_38); df::adj_sub(var_30, var_28, adj_30, adj_28, adj_37); df::adj_sub(var_29, var_28, adj_29, adj_28, adj_36); df::adj_load(var_v, var_17, adj_v, adj_17, adj_35); df::adj_load(var_v, var_13, adj_v, adj_13, adj_34); df::adj_load(var_v, var_9, adj_v, adj_9, adj_33); df::adj_load(var_v, var_5, adj_v, adj_5, adj_32); df::adj_load(var_x, var_17, adj_x, adj_17, adj_31); df::adj_load(var_x, var_13, adj_x, adj_13, adj_30); df::adj_load(var_x, var_9, adj_x, adj_9, adj_29); df::adj_load(var_x, var_5, adj_x, adj_5, adj_28); df::adj_load(var_materials, var_26, adj_materials, adj_26, adj_27); df::adj_add(var_25, var_11, adj_25, adj_11, adj_26); df::adj_mul(var_0, var_15, adj_0, adj_15, adj_25); df::adj_load(var_materials, var_23, adj_materials, adj_23, adj_24); df::adj_add(var_22, var_7, adj_22, adj_7, adj_23); df::adj_mul(var_0, var_15, adj_0, adj_15, adj_22); df::adj_load(var_materials, var_20, adj_materials, adj_20, adj_21); df::adj_add(var_19, var_3, adj_19, adj_3, adj_20); df::adj_mul(var_0, var_15, adj_0, adj_15, adj_19); df::adj_load(var_activation, var_0, adj_activation, adj_0, adj_18); df::adj_load(var_indices, var_16, adj_indices, adj_16, adj_17); df::adj_add(var_14, var_15, adj_14, adj_15, adj_16); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_14); df::adj_load(var_indices, var_12, adj_indices, adj_12, adj_13); df::adj_add(var_10, var_11, adj_10, adj_11, adj_12); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_10); df::adj_load(var_indices, var_8, adj_indices, adj_8, adj_9); df::adj_add(var_6, var_7, adj_6, adj_7, adj_8); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_6); df::adj_load(var_indices, var_4, adj_indices, adj_4, adj_5); df::adj_add(var_2, var_3, adj_2, adj_3, adj_4); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_2); return; } // Python entry points void eval_tetrahedra_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, torch::Tensor var_materials, torch::Tensor var_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_tetrahedra_cpu_kernel_forward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<mat33*>(var_pose), cast<float*>(var_activation), cast<float*>(var_materials), cast<df::float3*>(var_f)); } } void eval_tetrahedra_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, torch::Tensor var_materials, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_pose, torch::Tensor adj_activation, torch::Tensor adj_materials, torch::Tensor adj_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_tetrahedra_cpu_kernel_backward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<mat33*>(var_pose), cast<float*>(var_activation), cast<float*>(var_materials), cast<df::float3*>(var_f), cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<int*>(adj_indices), cast<mat33*>(adj_pose), cast<float*>(adj_activation), cast<float*>(adj_materials), cast<df::float3*>(adj_f)); } } // Python entry points void eval_tetrahedra_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, torch::Tensor var_materials, torch::Tensor var_f); void eval_tetrahedra_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, torch::Tensor var_materials, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_pose, torch::Tensor adj_activation, torch::Tensor adj_materials, torch::Tensor adj_f); void eval_contacts_cpu_kernel_forward( df::float3* var_x, df::float3* var_v, float var_ke, float var_kd, float var_kf, float var_mu, df::float3* var_f) { //--------- // primal vars int var_0; df::float3 var_1; df::float3 var_2; const float var_3 = 0.0; const float var_4 = 1.0; df::float3 var_5; float var_6; const float var_7 = 0.01; float var_8; float var_9; float var_10; df::float3 var_11; df::float3 var_12; df::float3 var_13; df::float3 var_14; float var_15; df::float3 var_16; df::float3 var_17; float var_18; float var_19; float var_20; df::float3 var_21; float var_22; float var_23; df::float3 var_24; float var_25; float var_26; df::float3 var_27; df::float3 var_28; float var_29; df::float3 var_30; df::float3 var_31; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_x, var_0); var_2 = df::load(var_v, var_0); var_5 = df::float3(var_3, var_4, var_3); var_6 = df::dot(var_5, var_1); var_8 = df::sub(var_6, var_7); var_9 = df::min(var_8, var_3); var_10 = df::dot(var_5, var_2); var_11 = df::mul(var_5, var_10); var_12 = df::sub(var_2, var_11); var_13 = df::mul(var_5, var_9); var_14 = df::mul(var_13, var_ke); var_15 = df::min(var_10, var_3); var_16 = df::mul(var_5, var_15); var_17 = df::mul(var_16, var_kd); var_18 = df::mul(var_mu, var_9); var_19 = df::mul(var_18, var_ke); var_20 = df::sub(var_3, var_19); var_21 = df::float3(var_kf, var_3, var_3); var_22 = df::dot(var_21, var_12); var_23 = df::clamp(var_22, var_19, var_20); var_24 = df::float3(var_3, var_3, var_kf); var_25 = df::dot(var_24, var_12); var_26 = df::clamp(var_25, var_19, var_20); var_27 = df::float3(var_23, var_3, var_26); var_28 = df::add(var_17, var_27); var_29 = df::step(var_9); var_30 = df::mul(var_28, var_29); var_31 = df::add(var_14, var_30); df::atomic_sub(var_f, var_0, var_31); } void eval_contacts_cpu_kernel_backward( df::float3* var_x, df::float3* var_v, float var_ke, float var_kd, float var_kf, float var_mu, df::float3* var_f, df::float3* adj_x, df::float3* adj_v, float adj_ke, float adj_kd, float adj_kf, float adj_mu, df::float3* adj_f) { //--------- // primal vars int var_0; df::float3 var_1; df::float3 var_2; const float var_3 = 0.0; const float var_4 = 1.0; df::float3 var_5; float var_6; const float var_7 = 0.01; float var_8; float var_9; float var_10; df::float3 var_11; df::float3 var_12; df::float3 var_13; df::float3 var_14; float var_15; df::float3 var_16; df::float3 var_17; float var_18; float var_19; float var_20; df::float3 var_21; float var_22; float var_23; df::float3 var_24; float var_25; float var_26; df::float3 var_27; df::float3 var_28; float var_29; df::float3 var_30; df::float3 var_31; //--------- // dual vars int adj_0 = 0; df::float3 adj_1 = 0; df::float3 adj_2 = 0; float adj_3 = 0; float adj_4 = 0; df::float3 adj_5 = 0; float adj_6 = 0; float adj_7 = 0; float adj_8 = 0; float adj_9 = 0; float adj_10 = 0; df::float3 adj_11 = 0; df::float3 adj_12 = 0; df::float3 adj_13 = 0; df::float3 adj_14 = 0; float adj_15 = 0; df::float3 adj_16 = 0; df::float3 adj_17 = 0; float adj_18 = 0; float adj_19 = 0; float adj_20 = 0; df::float3 adj_21 = 0; float adj_22 = 0; float adj_23 = 0; df::float3 adj_24 = 0; float adj_25 = 0; float adj_26 = 0; df::float3 adj_27 = 0; df::float3 adj_28 = 0; float adj_29 = 0; df::float3 adj_30 = 0; df::float3 adj_31 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_x, var_0); var_2 = df::load(var_v, var_0); var_5 = df::float3(var_3, var_4, var_3); var_6 = df::dot(var_5, var_1); var_8 = df::sub(var_6, var_7); var_9 = df::min(var_8, var_3); var_10 = df::dot(var_5, var_2); var_11 = df::mul(var_5, var_10); var_12 = df::sub(var_2, var_11); var_13 = df::mul(var_5, var_9); var_14 = df::mul(var_13, var_ke); var_15 = df::min(var_10, var_3); var_16 = df::mul(var_5, var_15); var_17 = df::mul(var_16, var_kd); var_18 = df::mul(var_mu, var_9); var_19 = df::mul(var_18, var_ke); var_20 = df::sub(var_3, var_19); var_21 = df::float3(var_kf, var_3, var_3); var_22 = df::dot(var_21, var_12); var_23 = df::clamp(var_22, var_19, var_20); var_24 = df::float3(var_3, var_3, var_kf); var_25 = df::dot(var_24, var_12); var_26 = df::clamp(var_25, var_19, var_20); var_27 = df::float3(var_23, var_3, var_26); var_28 = df::add(var_17, var_27); var_29 = df::step(var_9); var_30 = df::mul(var_28, var_29); var_31 = df::add(var_14, var_30); df::atomic_sub(var_f, var_0, var_31); //--------- // reverse df::adj_atomic_sub(var_f, var_0, var_31, adj_f, adj_0, adj_31); df::adj_add(var_14, var_30, adj_14, adj_30, adj_31); df::adj_mul(var_28, var_29, adj_28, adj_29, adj_30); df::adj_step(var_9, adj_9, adj_29); df::adj_add(var_17, var_27, adj_17, adj_27, adj_28); df::adj_float3(var_23, var_3, var_26, adj_23, adj_3, adj_26, adj_27); df::adj_clamp(var_25, var_19, var_20, adj_25, adj_19, adj_20, adj_26); df::adj_dot(var_24, var_12, adj_24, adj_12, adj_25); df::adj_float3(var_3, var_3, var_kf, adj_3, adj_3, adj_kf, adj_24); df::adj_clamp(var_22, var_19, var_20, adj_22, adj_19, adj_20, adj_23); df::adj_dot(var_21, var_12, adj_21, adj_12, adj_22); df::adj_float3(var_kf, var_3, var_3, adj_kf, adj_3, adj_3, adj_21); df::adj_sub(var_3, var_19, adj_3, adj_19, adj_20); df::adj_mul(var_18, var_ke, adj_18, adj_ke, adj_19); df::adj_mul(var_mu, var_9, adj_mu, adj_9, adj_18); df::adj_mul(var_16, var_kd, adj_16, adj_kd, adj_17); df::adj_mul(var_5, var_15, adj_5, adj_15, adj_16); df::adj_min(var_10, var_3, adj_10, adj_3, adj_15); df::adj_mul(var_13, var_ke, adj_13, adj_ke, adj_14); df::adj_mul(var_5, var_9, adj_5, adj_9, adj_13); df::adj_sub(var_2, var_11, adj_2, adj_11, adj_12); df::adj_mul(var_5, var_10, adj_5, adj_10, adj_11); df::adj_dot(var_5, var_2, adj_5, adj_2, adj_10); df::adj_min(var_8, var_3, adj_8, adj_3, adj_9); df::adj_sub(var_6, var_7, adj_6, adj_7, adj_8); df::adj_dot(var_5, var_1, adj_5, adj_1, adj_6); df::adj_float3(var_3, var_4, var_3, adj_3, adj_4, adj_3, adj_5); df::adj_load(var_v, var_0, adj_v, adj_0, adj_2); df::adj_load(var_x, var_0, adj_x, adj_0, adj_1); return; } // Python entry points void eval_contacts_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, float var_ke, float var_kd, float var_kf, float var_mu, torch::Tensor var_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_contacts_cpu_kernel_forward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), var_ke, var_kd, var_kf, var_mu, cast<df::float3*>(var_f)); } } void eval_contacts_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, float var_ke, float var_kd, float var_kf, float var_mu, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, float adj_ke, float adj_kd, float adj_kf, float adj_mu, torch::Tensor adj_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_contacts_cpu_kernel_backward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), var_ke, var_kd, var_kf, var_mu, cast<df::float3*>(var_f), cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), adj_ke, adj_kd, adj_kf, adj_mu, cast<df::float3*>(adj_f)); } } // Python entry points void eval_contacts_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, float var_ke, float var_kd, float var_kf, float var_mu, torch::Tensor var_f); void eval_contacts_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, float var_ke, float var_kd, float var_kf, float var_mu, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, float adj_ke, float adj_kd, float adj_kf, float adj_mu, torch::Tensor adj_f); void eval_soft_contacts_cpu_kernel_forward( int var_num_particles, df::float3* var_particle_x, df::float3* var_particle_v, spatial_transform* var_body_X_sc, spatial_vector* var_body_v_sc, spatial_transform* var_shape_X_co, int* var_shape_body, int* var_shape_geo_type, int* var_shape_geo_src, df::float3* var_shape_geo_scale, float* var_shape_materials, float var_ke, float var_kd, float var_kf, float var_mu, df::float3* var_particle_f, spatial_vector* var_body_f) { //--------- // primal vars int var_0; int var_1; int var_2; int var_3; df::float3 var_4; df::float3 var_5; spatial_transform var_6; const int var_7 = 0; bool var_8; spatial_transform var_9; spatial_transform var_10; spatial_transform var_11; spatial_transform var_12; spatial_transform var_13; df::float3 var_14; int var_15; df::float3 var_16; const float var_17 = 0.01; const float var_18 = 0.0; df::float3 var_19; bool var_20; df::float3 var_21; float var_22; float var_23; float var_24; float var_25; df::float3 var_26; float var_27; df::float3 var_28; df::float3 var_29; float var_30; df::float3 var_31; const int var_32 = 1; bool var_33; float var_34; float var_35; float var_36; df::float3 var_37; df::float3 var_38; float var_39; df::float3 var_40; const int var_41 = 2; bool var_42; float var_43; float var_44; float var_45; float var_46; float var_47; float var_48; float var_49; df::float3 var_50; df::float3 var_51; float var_52; df::float3 var_53; spatial_vector var_54; bool var_55; spatial_vector var_56; spatial_vector var_57; df::float3 var_58; df::float3 var_59; df::float3 var_60; df::float3 var_61; df::float3 var_62; float var_63; df::float3 var_64; df::float3 var_65; df::float3 var_66; df::float3 var_67; float var_68; df::float3 var_69; df::float3 var_70; float var_71; float var_72; float var_73; df::float3 var_74; float var_75; float var_76; df::float3 var_77; float var_78; float var_79; df::float3 var_80; df::float3 var_81; float var_82; df::float3 var_83; df::float3 var_84; df::float3 var_85; bool var_86; spatial_vector var_87; //--------- // forward var_0 = df::tid(); var_1 = df::div(var_0, var_num_particles); var_2 = df::mod(var_0, var_num_particles); var_3 = df::load(var_shape_body, var_1); var_4 = df::load(var_particle_x, var_2); var_5 = df::load(var_particle_v, var_2); var_6 = df::spatial_transform_identity(); var_8 = (var_3 >= var_7); if (var_8) { var_9 = df::load(var_body_X_sc, var_3); } var_10 = df::select(var_8, var_6, var_9); var_11 = df::load(var_shape_X_co, var_1); var_12 = df::spatial_transform_multiply(var_10, var_11); var_13 = spatial_transform_inverse_cpu_func(var_12); var_14 = df::spatial_transform_point(var_13, var_4); var_15 = df::load(var_shape_geo_type, var_1); var_16 = df::load(var_shape_geo_scale, var_1); var_19 = df::float3(var_18, var_18, var_18); var_20 = (var_15 == var_7); if (var_20) { var_21 = df::float3(var_18, var_18, var_18); var_22 = df::index(var_16, var_7); var_23 = sphere_sdf_cpu_func(var_21, var_22, var_14); var_24 = df::sub(var_23, var_17); var_25 = df::min(var_24, var_18); var_26 = df::float3(var_18, var_18, var_18); var_27 = df::index(var_16, var_7); var_28 = sphere_sdf_grad_cpu_func(var_26, var_27, var_14); var_29 = df::spatial_transform_vector(var_12, var_28); } var_30 = df::select(var_20, var_18, var_25); var_31 = df::select(var_20, var_19, var_29); var_33 = (var_15 == var_32); if (var_33) { var_34 = box_sdf_cpu_func(var_16, var_14); var_35 = df::sub(var_34, var_17); var_36 = df::min(var_35, var_18); var_37 = box_sdf_grad_cpu_func(var_16, var_14); var_38 = df::spatial_transform_vector(var_12, var_37); } var_39 = df::select(var_33, var_30, var_36); var_40 = df::select(var_33, var_31, var_38); var_42 = (var_15 == var_41); if (var_42) { var_43 = df::index(var_16, var_7); var_44 = df::index(var_16, var_32); var_45 = capsule_sdf_cpu_func(var_43, var_44, var_14); var_46 = df::sub(var_45, var_17); var_47 = df::min(var_46, var_18); var_48 = df::index(var_16, var_7); var_49 = df::index(var_16, var_32); var_50 = capsule_sdf_grad_cpu_func(var_48, var_49, var_14); var_51 = df::spatial_transform_vector(var_12, var_50); } var_52 = df::select(var_42, var_39, var_47); var_53 = df::select(var_42, var_40, var_51); var_54 = df::spatial_vector(); var_55 = (var_3 >= var_7); if (var_55) { var_56 = df::load(var_body_v_sc, var_3); } var_57 = df::select(var_55, var_54, var_56); var_58 = df::spatial_top(var_57); var_59 = df::spatial_bottom(var_57); var_60 = df::cross(var_58, var_4); var_61 = df::add(var_59, var_60); var_62 = df::sub(var_5, var_61); var_63 = df::dot(var_53, var_62); var_64 = df::mul(var_53, var_63); var_65 = df::sub(var_62, var_64); var_66 = df::mul(var_53, var_52); var_67 = df::mul(var_66, var_ke); var_68 = df::min(var_63, var_18); var_69 = df::mul(var_53, var_68); var_70 = df::mul(var_69, var_kd); var_71 = df::mul(var_mu, var_52); var_72 = df::mul(var_71, var_ke); var_73 = df::sub(var_18, var_72); var_74 = df::float3(var_kf, var_18, var_18); var_75 = df::dot(var_74, var_65); var_76 = df::clamp(var_75, var_72, var_73); var_77 = df::float3(var_18, var_18, var_kf); var_78 = df::dot(var_77, var_65); var_79 = df::clamp(var_78, var_72, var_73); var_80 = df::float3(var_76, var_18, var_79); var_81 = df::add(var_70, var_80); var_82 = df::step(var_52); var_83 = df::mul(var_81, var_82); var_84 = df::add(var_67, var_83); var_85 = df::cross(var_4, var_84); df::atomic_sub(var_particle_f, var_2, var_84); var_86 = (var_3 >= var_7); if (var_86) { var_87 = df::spatial_vector(var_85, var_84); df::atomic_sub(var_body_f, var_3, var_87); } } void eval_soft_contacts_cpu_kernel_backward( int var_num_particles, df::float3* var_particle_x, df::float3* var_particle_v, spatial_transform* var_body_X_sc, spatial_vector* var_body_v_sc, spatial_transform* var_shape_X_co, int* var_shape_body, int* var_shape_geo_type, int* var_shape_geo_src, df::float3* var_shape_geo_scale, float* var_shape_materials, float var_ke, float var_kd, float var_kf, float var_mu, df::float3* var_particle_f, spatial_vector* var_body_f, int adj_num_particles, df::float3* adj_particle_x, df::float3* adj_particle_v, spatial_transform* adj_body_X_sc, spatial_vector* adj_body_v_sc, spatial_transform* adj_shape_X_co, int* adj_shape_body, int* adj_shape_geo_type, int* adj_shape_geo_src, df::float3* adj_shape_geo_scale, float* adj_shape_materials, float adj_ke, float adj_kd, float adj_kf, float adj_mu, df::float3* adj_particle_f, spatial_vector* adj_body_f) { //--------- // primal vars int var_0; int var_1; int var_2; int var_3; df::float3 var_4; df::float3 var_5; spatial_transform var_6; const int var_7 = 0; bool var_8; spatial_transform var_9; spatial_transform var_10; spatial_transform var_11; spatial_transform var_12; spatial_transform var_13; df::float3 var_14; int var_15; df::float3 var_16; const float var_17 = 0.01; const float var_18 = 0.0; df::float3 var_19; bool var_20; df::float3 var_21; float var_22; float var_23; float var_24; float var_25; df::float3 var_26; float var_27; df::float3 var_28; df::float3 var_29; float var_30; df::float3 var_31; const int var_32 = 1; bool var_33; float var_34; float var_35; float var_36; df::float3 var_37; df::float3 var_38; float var_39; df::float3 var_40; const int var_41 = 2; bool var_42; float var_43; float var_44; float var_45; float var_46; float var_47; float var_48; float var_49; df::float3 var_50; df::float3 var_51; float var_52; df::float3 var_53; spatial_vector var_54; bool var_55; spatial_vector var_56; spatial_vector var_57; df::float3 var_58; df::float3 var_59; df::float3 var_60; df::float3 var_61; df::float3 var_62; float var_63; df::float3 var_64; df::float3 var_65; df::float3 var_66; df::float3 var_67; float var_68; df::float3 var_69; df::float3 var_70; float var_71; float var_72; float var_73; df::float3 var_74; float var_75; float var_76; df::float3 var_77; float var_78; float var_79; df::float3 var_80; df::float3 var_81; float var_82; df::float3 var_83; df::float3 var_84; df::float3 var_85; bool var_86; spatial_vector var_87; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; df::float3 adj_4 = 0; df::float3 adj_5 = 0; spatial_transform adj_6 = 0; int adj_7 = 0; bool adj_8 = 0; spatial_transform adj_9 = 0; spatial_transform adj_10 = 0; spatial_transform adj_11 = 0; spatial_transform adj_12 = 0; spatial_transform adj_13 = 0; df::float3 adj_14 = 0; int adj_15 = 0; df::float3 adj_16 = 0; float adj_17 = 0; float adj_18 = 0; df::float3 adj_19 = 0; bool adj_20 = 0; df::float3 adj_21 = 0; float adj_22 = 0; float adj_23 = 0; float adj_24 = 0; float adj_25 = 0; df::float3 adj_26 = 0; float adj_27 = 0; df::float3 adj_28 = 0; df::float3 adj_29 = 0; float adj_30 = 0; df::float3 adj_31 = 0; int adj_32 = 0; bool adj_33 = 0; float adj_34 = 0; float adj_35 = 0; float adj_36 = 0; df::float3 adj_37 = 0; df::float3 adj_38 = 0; float adj_39 = 0; df::float3 adj_40 = 0; int adj_41 = 0; bool adj_42 = 0; float adj_43 = 0; float adj_44 = 0; float adj_45 = 0; float adj_46 = 0; float adj_47 = 0; float adj_48 = 0; float adj_49 = 0; df::float3 adj_50 = 0; df::float3 adj_51 = 0; float adj_52 = 0; df::float3 adj_53 = 0; spatial_vector adj_54 = 0; bool adj_55 = 0; spatial_vector adj_56 = 0; spatial_vector adj_57 = 0; df::float3 adj_58 = 0; df::float3 adj_59 = 0; df::float3 adj_60 = 0; df::float3 adj_61 = 0; df::float3 adj_62 = 0; float adj_63 = 0; df::float3 adj_64 = 0; df::float3 adj_65 = 0; df::float3 adj_66 = 0; df::float3 adj_67 = 0; float adj_68 = 0; df::float3 adj_69 = 0; df::float3 adj_70 = 0; float adj_71 = 0; float adj_72 = 0; float adj_73 = 0; df::float3 adj_74 = 0; float adj_75 = 0; float adj_76 = 0; df::float3 adj_77 = 0; float adj_78 = 0; float adj_79 = 0; df::float3 adj_80 = 0; df::float3 adj_81 = 0; float adj_82 = 0; df::float3 adj_83 = 0; df::float3 adj_84 = 0; df::float3 adj_85 = 0; bool adj_86 = 0; spatial_vector adj_87 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::div(var_0, var_num_particles); var_2 = df::mod(var_0, var_num_particles); var_3 = df::load(var_shape_body, var_1); var_4 = df::load(var_particle_x, var_2); var_5 = df::load(var_particle_v, var_2); var_6 = df::spatial_transform_identity(); var_8 = (var_3 >= var_7); if (var_8) { var_9 = df::load(var_body_X_sc, var_3); } var_10 = df::select(var_8, var_6, var_9); var_11 = df::load(var_shape_X_co, var_1); var_12 = df::spatial_transform_multiply(var_10, var_11); var_13 = spatial_transform_inverse_cpu_func(var_12); var_14 = df::spatial_transform_point(var_13, var_4); var_15 = df::load(var_shape_geo_type, var_1); var_16 = df::load(var_shape_geo_scale, var_1); var_19 = df::float3(var_18, var_18, var_18); var_20 = (var_15 == var_7); if (var_20) { var_21 = df::float3(var_18, var_18, var_18); var_22 = df::index(var_16, var_7); var_23 = sphere_sdf_cpu_func(var_21, var_22, var_14); var_24 = df::sub(var_23, var_17); var_25 = df::min(var_24, var_18); var_26 = df::float3(var_18, var_18, var_18); var_27 = df::index(var_16, var_7); var_28 = sphere_sdf_grad_cpu_func(var_26, var_27, var_14); var_29 = df::spatial_transform_vector(var_12, var_28); } var_30 = df::select(var_20, var_18, var_25); var_31 = df::select(var_20, var_19, var_29); var_33 = (var_15 == var_32); if (var_33) { var_34 = box_sdf_cpu_func(var_16, var_14); var_35 = df::sub(var_34, var_17); var_36 = df::min(var_35, var_18); var_37 = box_sdf_grad_cpu_func(var_16, var_14); var_38 = df::spatial_transform_vector(var_12, var_37); } var_39 = df::select(var_33, var_30, var_36); var_40 = df::select(var_33, var_31, var_38); var_42 = (var_15 == var_41); if (var_42) { var_43 = df::index(var_16, var_7); var_44 = df::index(var_16, var_32); var_45 = capsule_sdf_cpu_func(var_43, var_44, var_14); var_46 = df::sub(var_45, var_17); var_47 = df::min(var_46, var_18); var_48 = df::index(var_16, var_7); var_49 = df::index(var_16, var_32); var_50 = capsule_sdf_grad_cpu_func(var_48, var_49, var_14); var_51 = df::spatial_transform_vector(var_12, var_50); } var_52 = df::select(var_42, var_39, var_47); var_53 = df::select(var_42, var_40, var_51); var_54 = df::spatial_vector(); var_55 = (var_3 >= var_7); if (var_55) { var_56 = df::load(var_body_v_sc, var_3); } var_57 = df::select(var_55, var_54, var_56); var_58 = df::spatial_top(var_57); var_59 = df::spatial_bottom(var_57); var_60 = df::cross(var_58, var_4); var_61 = df::add(var_59, var_60); var_62 = df::sub(var_5, var_61); var_63 = df::dot(var_53, var_62); var_64 = df::mul(var_53, var_63); var_65 = df::sub(var_62, var_64); var_66 = df::mul(var_53, var_52); var_67 = df::mul(var_66, var_ke); var_68 = df::min(var_63, var_18); var_69 = df::mul(var_53, var_68); var_70 = df::mul(var_69, var_kd); var_71 = df::mul(var_mu, var_52); var_72 = df::mul(var_71, var_ke); var_73 = df::sub(var_18, var_72); var_74 = df::float3(var_kf, var_18, var_18); var_75 = df::dot(var_74, var_65); var_76 = df::clamp(var_75, var_72, var_73); var_77 = df::float3(var_18, var_18, var_kf); var_78 = df::dot(var_77, var_65); var_79 = df::clamp(var_78, var_72, var_73); var_80 = df::float3(var_76, var_18, var_79); var_81 = df::add(var_70, var_80); var_82 = df::step(var_52); var_83 = df::mul(var_81, var_82); var_84 = df::add(var_67, var_83); var_85 = df::cross(var_4, var_84); df::atomic_sub(var_particle_f, var_2, var_84); var_86 = (var_3 >= var_7); if (var_86) { var_87 = df::spatial_vector(var_85, var_84); df::atomic_sub(var_body_f, var_3, var_87); } //--------- // reverse if (var_86) { df::adj_atomic_sub(var_body_f, var_3, var_87, adj_body_f, adj_3, adj_87); df::adj_spatial_vector(var_85, var_84, adj_85, adj_84, adj_87); } df::adj_atomic_sub(var_particle_f, var_2, var_84, adj_particle_f, adj_2, adj_84); df::adj_cross(var_4, var_84, adj_4, adj_84, adj_85); df::adj_add(var_67, var_83, adj_67, adj_83, adj_84); df::adj_mul(var_81, var_82, adj_81, adj_82, adj_83); df::adj_step(var_52, adj_52, adj_82); df::adj_add(var_70, var_80, adj_70, adj_80, adj_81); df::adj_float3(var_76, var_18, var_79, adj_76, adj_18, adj_79, adj_80); df::adj_clamp(var_78, var_72, var_73, adj_78, adj_72, adj_73, adj_79); df::adj_dot(var_77, var_65, adj_77, adj_65, adj_78); df::adj_float3(var_18, var_18, var_kf, adj_18, adj_18, adj_kf, adj_77); df::adj_clamp(var_75, var_72, var_73, adj_75, adj_72, adj_73, adj_76); df::adj_dot(var_74, var_65, adj_74, adj_65, adj_75); df::adj_float3(var_kf, var_18, var_18, adj_kf, adj_18, adj_18, adj_74); df::adj_sub(var_18, var_72, adj_18, adj_72, adj_73); df::adj_mul(var_71, var_ke, adj_71, adj_ke, adj_72); df::adj_mul(var_mu, var_52, adj_mu, adj_52, adj_71); df::adj_mul(var_69, var_kd, adj_69, adj_kd, adj_70); df::adj_mul(var_53, var_68, adj_53, adj_68, adj_69); df::adj_min(var_63, var_18, adj_63, adj_18, adj_68); df::adj_mul(var_66, var_ke, adj_66, adj_ke, adj_67); df::adj_mul(var_53, var_52, adj_53, adj_52, adj_66); df::adj_sub(var_62, var_64, adj_62, adj_64, adj_65); df::adj_mul(var_53, var_63, adj_53, adj_63, adj_64); df::adj_dot(var_53, var_62, adj_53, adj_62, adj_63); df::adj_sub(var_5, var_61, adj_5, adj_61, adj_62); df::adj_add(var_59, var_60, adj_59, adj_60, adj_61); df::adj_cross(var_58, var_4, adj_58, adj_4, adj_60); df::adj_spatial_bottom(var_57, adj_57, adj_59); df::adj_spatial_top(var_57, adj_57, adj_58); df::adj_select(var_55, var_54, var_56, adj_55, adj_54, adj_56, adj_57); if (var_55) { df::adj_load(var_body_v_sc, var_3, adj_body_v_sc, adj_3, adj_56); } df::adj_select(var_42, var_40, var_51, adj_42, adj_40, adj_51, adj_53); df::adj_select(var_42, var_39, var_47, adj_42, adj_39, adj_47, adj_52); if (var_42) { df::adj_spatial_transform_vector(var_12, var_50, adj_12, adj_50, adj_51); adj_capsule_sdf_grad_cpu_func(var_48, var_49, var_14, adj_48, adj_49, adj_14, adj_50); df::adj_index(var_16, var_32, adj_16, adj_32, adj_49); df::adj_index(var_16, var_7, adj_16, adj_7, adj_48); df::adj_min(var_46, var_18, adj_46, adj_18, adj_47); df::adj_sub(var_45, var_17, adj_45, adj_17, adj_46); adj_capsule_sdf_cpu_func(var_43, var_44, var_14, adj_43, adj_44, adj_14, adj_45); df::adj_index(var_16, var_32, adj_16, adj_32, adj_44); df::adj_index(var_16, var_7, adj_16, adj_7, adj_43); } df::adj_select(var_33, var_31, var_38, adj_33, adj_31, adj_38, adj_40); df::adj_select(var_33, var_30, var_36, adj_33, adj_30, adj_36, adj_39); if (var_33) { df::adj_spatial_transform_vector(var_12, var_37, adj_12, adj_37, adj_38); adj_box_sdf_grad_cpu_func(var_16, var_14, adj_16, adj_14, adj_37); df::adj_min(var_35, var_18, adj_35, adj_18, adj_36); df::adj_sub(var_34, var_17, adj_34, adj_17, adj_35); adj_box_sdf_cpu_func(var_16, var_14, adj_16, adj_14, adj_34); } df::adj_select(var_20, var_19, var_29, adj_20, adj_19, adj_29, adj_31); df::adj_select(var_20, var_18, var_25, adj_20, adj_18, adj_25, adj_30); if (var_20) { df::adj_spatial_transform_vector(var_12, var_28, adj_12, adj_28, adj_29); adj_sphere_sdf_grad_cpu_func(var_26, var_27, var_14, adj_26, adj_27, adj_14, adj_28); df::adj_index(var_16, var_7, adj_16, adj_7, adj_27); df::adj_float3(var_18, var_18, var_18, adj_18, adj_18, adj_18, adj_26); df::adj_min(var_24, var_18, adj_24, adj_18, adj_25); df::adj_sub(var_23, var_17, adj_23, adj_17, adj_24); adj_sphere_sdf_cpu_func(var_21, var_22, var_14, adj_21, adj_22, adj_14, adj_23); df::adj_index(var_16, var_7, adj_16, adj_7, adj_22); df::adj_float3(var_18, var_18, var_18, adj_18, adj_18, adj_18, adj_21); } df::adj_float3(var_18, var_18, var_18, adj_18, adj_18, adj_18, adj_19); df::adj_load(var_shape_geo_scale, var_1, adj_shape_geo_scale, adj_1, adj_16); df::adj_load(var_shape_geo_type, var_1, adj_shape_geo_type, adj_1, adj_15); df::adj_spatial_transform_point(var_13, var_4, adj_13, adj_4, adj_14); adj_spatial_transform_inverse_cpu_func(var_12, adj_12, adj_13); df::adj_spatial_transform_multiply(var_10, var_11, adj_10, adj_11, adj_12); df::adj_load(var_shape_X_co, var_1, adj_shape_X_co, adj_1, adj_11); df::adj_select(var_8, var_6, var_9, adj_8, adj_6, adj_9, adj_10); if (var_8) { df::adj_load(var_body_X_sc, var_3, adj_body_X_sc, adj_3, adj_9); } df::adj_load(var_particle_v, var_2, adj_particle_v, adj_2, adj_5); df::adj_load(var_particle_x, var_2, adj_particle_x, adj_2, adj_4); df::adj_load(var_shape_body, var_1, adj_shape_body, adj_1, adj_3); df::adj_mod(var_0, var_num_particles, adj_0, adj_num_particles, adj_2); df::adj_div(var_0, var_num_particles, adj_0, adj_num_particles, adj_1); return; } // Python entry points void eval_soft_contacts_cpu_forward(int dim, int var_num_particles, torch::Tensor var_particle_x, torch::Tensor var_particle_v, torch::Tensor var_body_X_sc, torch::Tensor var_body_v_sc, torch::Tensor var_shape_X_co, torch::Tensor var_shape_body, torch::Tensor var_shape_geo_type, torch::Tensor var_shape_geo_src, torch::Tensor var_shape_geo_scale, torch::Tensor var_shape_materials, float var_ke, float var_kd, float var_kf, float var_mu, torch::Tensor var_particle_f, torch::Tensor var_body_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_soft_contacts_cpu_kernel_forward( var_num_particles, cast<df::float3*>(var_particle_x), cast<df::float3*>(var_particle_v), cast<spatial_transform*>(var_body_X_sc), cast<spatial_vector*>(var_body_v_sc), cast<spatial_transform*>(var_shape_X_co), cast<int*>(var_shape_body), cast<int*>(var_shape_geo_type), cast<int*>(var_shape_geo_src), cast<df::float3*>(var_shape_geo_scale), cast<float*>(var_shape_materials), var_ke, var_kd, var_kf, var_mu, cast<df::float3*>(var_particle_f), cast<spatial_vector*>(var_body_f)); } } void eval_soft_contacts_cpu_backward(int dim, int var_num_particles, torch::Tensor var_particle_x, torch::Tensor var_particle_v, torch::Tensor var_body_X_sc, torch::Tensor var_body_v_sc, torch::Tensor var_shape_X_co, torch::Tensor var_shape_body, torch::Tensor var_shape_geo_type, torch::Tensor var_shape_geo_src, torch::Tensor var_shape_geo_scale, torch::Tensor var_shape_materials, float var_ke, float var_kd, float var_kf, float var_mu, torch::Tensor var_particle_f, torch::Tensor var_body_f, int adj_num_particles, torch::Tensor adj_particle_x, torch::Tensor adj_particle_v, torch::Tensor adj_body_X_sc, torch::Tensor adj_body_v_sc, torch::Tensor adj_shape_X_co, torch::Tensor adj_shape_body, torch::Tensor adj_shape_geo_type, torch::Tensor adj_shape_geo_src, torch::Tensor adj_shape_geo_scale, torch::Tensor adj_shape_materials, float adj_ke, float adj_kd, float adj_kf, float adj_mu, torch::Tensor adj_particle_f, torch::Tensor adj_body_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_soft_contacts_cpu_kernel_backward( var_num_particles, cast<df::float3*>(var_particle_x), cast<df::float3*>(var_particle_v), cast<spatial_transform*>(var_body_X_sc), cast<spatial_vector*>(var_body_v_sc), cast<spatial_transform*>(var_shape_X_co), cast<int*>(var_shape_body), cast<int*>(var_shape_geo_type), cast<int*>(var_shape_geo_src), cast<df::float3*>(var_shape_geo_scale), cast<float*>(var_shape_materials), var_ke, var_kd, var_kf, var_mu, cast<df::float3*>(var_particle_f), cast<spatial_vector*>(var_body_f), adj_num_particles, cast<df::float3*>(adj_particle_x), cast<df::float3*>(adj_particle_v), cast<spatial_transform*>(adj_body_X_sc), cast<spatial_vector*>(adj_body_v_sc), cast<spatial_transform*>(adj_shape_X_co), cast<int*>(adj_shape_body), cast<int*>(adj_shape_geo_type), cast<int*>(adj_shape_geo_src), cast<df::float3*>(adj_shape_geo_scale), cast<float*>(adj_shape_materials), adj_ke, adj_kd, adj_kf, adj_mu, cast<df::float3*>(adj_particle_f), cast<spatial_vector*>(adj_body_f)); } } // Python entry points void eval_soft_contacts_cpu_forward(int dim, int var_num_particles, torch::Tensor var_particle_x, torch::Tensor var_particle_v, torch::Tensor var_body_X_sc, torch::Tensor var_body_v_sc, torch::Tensor var_shape_X_co, torch::Tensor var_shape_body, torch::Tensor var_shape_geo_type, torch::Tensor var_shape_geo_src, torch::Tensor var_shape_geo_scale, torch::Tensor var_shape_materials, float var_ke, float var_kd, float var_kf, float var_mu, torch::Tensor var_particle_f, torch::Tensor var_body_f); void eval_soft_contacts_cpu_backward(int dim, int var_num_particles, torch::Tensor var_particle_x, torch::Tensor var_particle_v, torch::Tensor var_body_X_sc, torch::Tensor var_body_v_sc, torch::Tensor var_shape_X_co, torch::Tensor var_shape_body, torch::Tensor var_shape_geo_type, torch::Tensor var_shape_geo_src, torch::Tensor var_shape_geo_scale, torch::Tensor var_shape_materials, float var_ke, float var_kd, float var_kf, float var_mu, torch::Tensor var_particle_f, torch::Tensor var_body_f, int adj_num_particles, torch::Tensor adj_particle_x, torch::Tensor adj_particle_v, torch::Tensor adj_body_X_sc, torch::Tensor adj_body_v_sc, torch::Tensor adj_shape_X_co, torch::Tensor adj_shape_body, torch::Tensor adj_shape_geo_type, torch::Tensor adj_shape_geo_src, torch::Tensor adj_shape_geo_scale, torch::Tensor adj_shape_materials, float adj_ke, float adj_kd, float adj_kf, float adj_mu, torch::Tensor adj_particle_f, torch::Tensor adj_body_f); void eval_rigid_contacts_cpu_kernel_forward( df::float3* var_rigid_x, quat* var_rigid_r, df::float3* var_rigid_v, df::float3* var_rigid_w, int* var_contact_body, df::float3* var_contact_point, float* var_contact_dist, int* var_contact_mat, float* var_materials, df::float3* var_rigid_f, df::float3* var_rigid_t) { //--------- // primal vars int var_0; int var_1; df::float3 var_2; float var_3; int var_4; const int var_5 = 4; int var_6; const int var_7 = 0; int var_8; float var_9; int var_10; const int var_11 = 1; int var_12; float var_13; int var_14; const int var_15 = 2; int var_16; float var_17; int var_18; const int var_19 = 3; int var_20; float var_21; df::float3 var_22; quat var_23; df::float3 var_24; df::float3 var_25; const float var_26 = 0.0; const float var_27 = 1.0; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; df::float3 var_35; float var_36; float var_37; float var_38; df::float3 var_39; df::float3 var_40; float var_41; float var_42; float var_43; float var_44; float var_45; float var_46; float var_47; float var_48; df::float3 var_49; float var_50; float var_51; df::float3 var_52; float var_53; float var_54; df::float3 var_55; float var_56; df::float3 var_57; float var_58; df::float3 var_59; df::float3 var_60; df::float3 var_61; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_contact_body, var_0); var_2 = df::load(var_contact_point, var_0); var_3 = df::load(var_contact_dist, var_0); var_4 = df::load(var_contact_mat, var_0); var_6 = df::mul(var_4, var_5); var_8 = df::add(var_6, var_7); var_9 = df::load(var_materials, var_8); var_10 = df::mul(var_4, var_5); var_12 = df::add(var_10, var_11); var_13 = df::load(var_materials, var_12); var_14 = df::mul(var_4, var_5); var_16 = df::add(var_14, var_15); var_17 = df::load(var_materials, var_16); var_18 = df::mul(var_4, var_5); var_20 = df::add(var_18, var_19); var_21 = df::load(var_materials, var_20); var_22 = df::load(var_rigid_x, var_1); var_23 = df::load(var_rigid_r, var_1); var_24 = df::load(var_rigid_v, var_1); var_25 = df::load(var_rigid_w, var_1); var_28 = df::float3(var_26, var_27, var_26); var_29 = df::rotate(var_23, var_2); var_30 = df::add(var_22, var_29); var_31 = df::mul(var_28, var_3); var_32 = df::sub(var_30, var_31); var_33 = df::sub(var_32, var_22); var_34 = df::cross(var_25, var_33); var_35 = df::add(var_24, var_34); var_36 = df::dot(var_28, var_32); var_37 = df::min(var_36, var_26); var_38 = df::dot(var_28, var_35); var_39 = df::mul(var_28, var_38); var_40 = df::sub(var_35, var_39); var_41 = df::mul(var_37, var_9); var_42 = df::min(var_38, var_26); var_43 = df::mul(var_42, var_13); var_44 = df::step(var_37); var_45 = df::mul(var_43, var_44); var_46 = df::add(var_41, var_45); var_47 = df::mul(var_21, var_46); var_48 = df::sub(var_26, var_47); var_49 = df::float3(var_17, var_26, var_26); var_50 = df::dot(var_49, var_40); var_51 = df::clamp(var_50, var_47, var_48); var_52 = df::float3(var_26, var_26, var_17); var_53 = df::dot(var_52, var_40); var_54 = df::clamp(var_53, var_47, var_48); var_55 = df::float3(var_51, var_26, var_54); var_56 = df::step(var_37); var_57 = df::mul(var_55, var_56); var_58 = df::add(var_41, var_45); var_59 = df::mul(var_28, var_58); var_60 = df::add(var_59, var_57); var_61 = df::cross(var_33, var_60); df::atomic_sub(var_rigid_f, var_1, var_60); df::atomic_sub(var_rigid_t, var_1, var_61); } void eval_rigid_contacts_cpu_kernel_backward( df::float3* var_rigid_x, quat* var_rigid_r, df::float3* var_rigid_v, df::float3* var_rigid_w, int* var_contact_body, df::float3* var_contact_point, float* var_contact_dist, int* var_contact_mat, float* var_materials, df::float3* var_rigid_f, df::float3* var_rigid_t, df::float3* adj_rigid_x, quat* adj_rigid_r, df::float3* adj_rigid_v, df::float3* adj_rigid_w, int* adj_contact_body, df::float3* adj_contact_point, float* adj_contact_dist, int* adj_contact_mat, float* adj_materials, df::float3* adj_rigid_f, df::float3* adj_rigid_t) { //--------- // primal vars int var_0; int var_1; df::float3 var_2; float var_3; int var_4; const int var_5 = 4; int var_6; const int var_7 = 0; int var_8; float var_9; int var_10; const int var_11 = 1; int var_12; float var_13; int var_14; const int var_15 = 2; int var_16; float var_17; int var_18; const int var_19 = 3; int var_20; float var_21; df::float3 var_22; quat var_23; df::float3 var_24; df::float3 var_25; const float var_26 = 0.0; const float var_27 = 1.0; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; df::float3 var_35; float var_36; float var_37; float var_38; df::float3 var_39; df::float3 var_40; float var_41; float var_42; float var_43; float var_44; float var_45; float var_46; float var_47; float var_48; df::float3 var_49; float var_50; float var_51; df::float3 var_52; float var_53; float var_54; df::float3 var_55; float var_56; df::float3 var_57; float var_58; df::float3 var_59; df::float3 var_60; df::float3 var_61; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; df::float3 adj_2 = 0; float adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; float adj_9 = 0; int adj_10 = 0; int adj_11 = 0; int adj_12 = 0; float adj_13 = 0; int adj_14 = 0; int adj_15 = 0; int adj_16 = 0; float adj_17 = 0; int adj_18 = 0; int adj_19 = 0; int adj_20 = 0; float adj_21 = 0; df::float3 adj_22 = 0; quat adj_23 = 0; df::float3 adj_24 = 0; df::float3 adj_25 = 0; float adj_26 = 0; float adj_27 = 0; df::float3 adj_28 = 0; df::float3 adj_29 = 0; df::float3 adj_30 = 0; df::float3 adj_31 = 0; df::float3 adj_32 = 0; df::float3 adj_33 = 0; df::float3 adj_34 = 0; df::float3 adj_35 = 0; float adj_36 = 0; float adj_37 = 0; float adj_38 = 0; df::float3 adj_39 = 0; df::float3 adj_40 = 0; float adj_41 = 0; float adj_42 = 0; float adj_43 = 0; float adj_44 = 0; float adj_45 = 0; float adj_46 = 0; float adj_47 = 0; float adj_48 = 0; df::float3 adj_49 = 0; float adj_50 = 0; float adj_51 = 0; df::float3 adj_52 = 0; float adj_53 = 0; float adj_54 = 0; df::float3 adj_55 = 0; float adj_56 = 0; df::float3 adj_57 = 0; float adj_58 = 0; df::float3 adj_59 = 0; df::float3 adj_60 = 0; df::float3 adj_61 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_contact_body, var_0); var_2 = df::load(var_contact_point, var_0); var_3 = df::load(var_contact_dist, var_0); var_4 = df::load(var_contact_mat, var_0); var_6 = df::mul(var_4, var_5); var_8 = df::add(var_6, var_7); var_9 = df::load(var_materials, var_8); var_10 = df::mul(var_4, var_5); var_12 = df::add(var_10, var_11); var_13 = df::load(var_materials, var_12); var_14 = df::mul(var_4, var_5); var_16 = df::add(var_14, var_15); var_17 = df::load(var_materials, var_16); var_18 = df::mul(var_4, var_5); var_20 = df::add(var_18, var_19); var_21 = df::load(var_materials, var_20); var_22 = df::load(var_rigid_x, var_1); var_23 = df::load(var_rigid_r, var_1); var_24 = df::load(var_rigid_v, var_1); var_25 = df::load(var_rigid_w, var_1); var_28 = df::float3(var_26, var_27, var_26); var_29 = df::rotate(var_23, var_2); var_30 = df::add(var_22, var_29); var_31 = df::mul(var_28, var_3); var_32 = df::sub(var_30, var_31); var_33 = df::sub(var_32, var_22); var_34 = df::cross(var_25, var_33); var_35 = df::add(var_24, var_34); var_36 = df::dot(var_28, var_32); var_37 = df::min(var_36, var_26); var_38 = df::dot(var_28, var_35); var_39 = df::mul(var_28, var_38); var_40 = df::sub(var_35, var_39); var_41 = df::mul(var_37, var_9); var_42 = df::min(var_38, var_26); var_43 = df::mul(var_42, var_13); var_44 = df::step(var_37); var_45 = df::mul(var_43, var_44); var_46 = df::add(var_41, var_45); var_47 = df::mul(var_21, var_46); var_48 = df::sub(var_26, var_47); var_49 = df::float3(var_17, var_26, var_26); var_50 = df::dot(var_49, var_40); var_51 = df::clamp(var_50, var_47, var_48); var_52 = df::float3(var_26, var_26, var_17); var_53 = df::dot(var_52, var_40); var_54 = df::clamp(var_53, var_47, var_48); var_55 = df::float3(var_51, var_26, var_54); var_56 = df::step(var_37); var_57 = df::mul(var_55, var_56); var_58 = df::add(var_41, var_45); var_59 = df::mul(var_28, var_58); var_60 = df::add(var_59, var_57); var_61 = df::cross(var_33, var_60); df::atomic_sub(var_rigid_f, var_1, var_60); df::atomic_sub(var_rigid_t, var_1, var_61); //--------- // reverse df::adj_atomic_sub(var_rigid_t, var_1, var_61, adj_rigid_t, adj_1, adj_61); df::adj_atomic_sub(var_rigid_f, var_1, var_60, adj_rigid_f, adj_1, adj_60); df::adj_cross(var_33, var_60, adj_33, adj_60, adj_61); df::adj_add(var_59, var_57, adj_59, adj_57, adj_60); df::adj_mul(var_28, var_58, adj_28, adj_58, adj_59); df::adj_add(var_41, var_45, adj_41, adj_45, adj_58); df::adj_mul(var_55, var_56, adj_55, adj_56, adj_57); df::adj_step(var_37, adj_37, adj_56); df::adj_float3(var_51, var_26, var_54, adj_51, adj_26, adj_54, adj_55); df::adj_clamp(var_53, var_47, var_48, adj_53, adj_47, adj_48, adj_54); df::adj_dot(var_52, var_40, adj_52, adj_40, adj_53); df::adj_float3(var_26, var_26, var_17, adj_26, adj_26, adj_17, adj_52); df::adj_clamp(var_50, var_47, var_48, adj_50, adj_47, adj_48, adj_51); df::adj_dot(var_49, var_40, adj_49, adj_40, adj_50); df::adj_float3(var_17, var_26, var_26, adj_17, adj_26, adj_26, adj_49); df::adj_sub(var_26, var_47, adj_26, adj_47, adj_48); df::adj_mul(var_21, var_46, adj_21, adj_46, adj_47); df::adj_add(var_41, var_45, adj_41, adj_45, adj_46); df::adj_mul(var_43, var_44, adj_43, adj_44, adj_45); df::adj_step(var_37, adj_37, adj_44); df::adj_mul(var_42, var_13, adj_42, adj_13, adj_43); df::adj_min(var_38, var_26, adj_38, adj_26, adj_42); df::adj_mul(var_37, var_9, adj_37, adj_9, adj_41); df::adj_sub(var_35, var_39, adj_35, adj_39, adj_40); df::adj_mul(var_28, var_38, adj_28, adj_38, adj_39); df::adj_dot(var_28, var_35, adj_28, adj_35, adj_38); df::adj_min(var_36, var_26, adj_36, adj_26, adj_37); df::adj_dot(var_28, var_32, adj_28, adj_32, adj_36); df::adj_add(var_24, var_34, adj_24, adj_34, adj_35); df::adj_cross(var_25, var_33, adj_25, adj_33, adj_34); df::adj_sub(var_32, var_22, adj_32, adj_22, adj_33); df::adj_sub(var_30, var_31, adj_30, adj_31, adj_32); df::adj_mul(var_28, var_3, adj_28, adj_3, adj_31); df::adj_add(var_22, var_29, adj_22, adj_29, adj_30); df::adj_rotate(var_23, var_2, adj_23, adj_2, adj_29); df::adj_float3(var_26, var_27, var_26, adj_26, adj_27, adj_26, adj_28); df::adj_load(var_rigid_w, var_1, adj_rigid_w, adj_1, adj_25); df::adj_load(var_rigid_v, var_1, adj_rigid_v, adj_1, adj_24); df::adj_load(var_rigid_r, var_1, adj_rigid_r, adj_1, adj_23); df::adj_load(var_rigid_x, var_1, adj_rigid_x, adj_1, adj_22); df::adj_load(var_materials, var_20, adj_materials, adj_20, adj_21); df::adj_add(var_18, var_19, adj_18, adj_19, adj_20); df::adj_mul(var_4, var_5, adj_4, adj_5, adj_18); df::adj_load(var_materials, var_16, adj_materials, adj_16, adj_17); df::adj_add(var_14, var_15, adj_14, adj_15, adj_16); df::adj_mul(var_4, var_5, adj_4, adj_5, adj_14); df::adj_load(var_materials, var_12, adj_materials, adj_12, adj_13); df::adj_add(var_10, var_11, adj_10, adj_11, adj_12); df::adj_mul(var_4, var_5, adj_4, adj_5, adj_10); df::adj_load(var_materials, var_8, adj_materials, adj_8, adj_9); df::adj_add(var_6, var_7, adj_6, adj_7, adj_8); df::adj_mul(var_4, var_5, adj_4, adj_5, adj_6); df::adj_load(var_contact_mat, var_0, adj_contact_mat, adj_0, adj_4); df::adj_load(var_contact_dist, var_0, adj_contact_dist, adj_0, adj_3); df::adj_load(var_contact_point, var_0, adj_contact_point, adj_0, adj_2); df::adj_load(var_contact_body, var_0, adj_contact_body, adj_0, adj_1); return; } // Python entry points void eval_rigid_contacts_cpu_forward(int dim, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_rigid_f, torch::Tensor var_rigid_t) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_contacts_cpu_kernel_forward( cast<df::float3*>(var_rigid_x), cast<quat*>(var_rigid_r), cast<df::float3*>(var_rigid_v), cast<df::float3*>(var_rigid_w), cast<int*>(var_contact_body), cast<df::float3*>(var_contact_point), cast<float*>(var_contact_dist), cast<int*>(var_contact_mat), cast<float*>(var_materials), cast<df::float3*>(var_rigid_f), cast<df::float3*>(var_rigid_t)); } } void eval_rigid_contacts_cpu_backward(int dim, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_rigid_f, torch::Tensor var_rigid_t, torch::Tensor adj_rigid_x, torch::Tensor adj_rigid_r, torch::Tensor adj_rigid_v, torch::Tensor adj_rigid_w, torch::Tensor adj_contact_body, torch::Tensor adj_contact_point, torch::Tensor adj_contact_dist, torch::Tensor adj_contact_mat, torch::Tensor adj_materials, torch::Tensor adj_rigid_f, torch::Tensor adj_rigid_t) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_contacts_cpu_kernel_backward( cast<df::float3*>(var_rigid_x), cast<quat*>(var_rigid_r), cast<df::float3*>(var_rigid_v), cast<df::float3*>(var_rigid_w), cast<int*>(var_contact_body), cast<df::float3*>(var_contact_point), cast<float*>(var_contact_dist), cast<int*>(var_contact_mat), cast<float*>(var_materials), cast<df::float3*>(var_rigid_f), cast<df::float3*>(var_rigid_t), cast<df::float3*>(adj_rigid_x), cast<quat*>(adj_rigid_r), cast<df::float3*>(adj_rigid_v), cast<df::float3*>(adj_rigid_w), cast<int*>(adj_contact_body), cast<df::float3*>(adj_contact_point), cast<float*>(adj_contact_dist), cast<int*>(adj_contact_mat), cast<float*>(adj_materials), cast<df::float3*>(adj_rigid_f), cast<df::float3*>(adj_rigid_t)); } } // Python entry points void eval_rigid_contacts_cpu_forward(int dim, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_rigid_f, torch::Tensor var_rigid_t); void eval_rigid_contacts_cpu_backward(int dim, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_rigid_f, torch::Tensor var_rigid_t, torch::Tensor adj_rigid_x, torch::Tensor adj_rigid_r, torch::Tensor adj_rigid_v, torch::Tensor adj_rigid_w, torch::Tensor adj_contact_body, torch::Tensor adj_contact_point, torch::Tensor adj_contact_dist, torch::Tensor adj_contact_mat, torch::Tensor adj_materials, torch::Tensor adj_rigid_f, torch::Tensor adj_rigid_t); void eval_rigid_contacts_art_cpu_kernel_forward( spatial_transform* var_body_X_s, spatial_vector* var_body_v_s, int* var_contact_body, df::float3* var_contact_point, float* var_contact_dist, int* var_contact_mat, float* var_materials, spatial_vector* var_body_f_s) { //--------- // primal vars int var_0; int var_1; df::float3 var_2; float var_3; int var_4; const int var_5 = 4; int var_6; const int var_7 = 0; int var_8; float var_9; int var_10; const int var_11 = 1; int var_12; float var_13; int var_14; const int var_15 = 2; int var_16; float var_17; int var_18; const int var_19 = 3; int var_20; float var_21; spatial_transform var_22; spatial_vector var_23; const float var_24 = 0.0; const float var_25 = 1.0; df::float3 var_26; df::float3 var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; float var_34; bool var_35; float var_36; df::float3 var_37; df::float3 var_38; float var_39; float var_40; float var_41; float var_42; float var_43; float var_44; float var_45; float var_46; float var_47; float var_48; df::float3 var_49; float var_50; float var_51; df::float3 var_52; float var_53; float var_54; df::float3 var_55; float var_56; float var_57; float var_58; float var_59; float var_60; float var_61; df::float3 var_62; float var_63; df::float3 var_64; float var_65; df::float3 var_66; df::float3 var_67; df::float3 var_68; spatial_vector var_69; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_contact_body, var_0); var_2 = df::load(var_contact_point, var_0); var_3 = df::load(var_contact_dist, var_0); var_4 = df::load(var_contact_mat, var_0); var_6 = df::mul(var_4, var_5); var_8 = df::add(var_6, var_7); var_9 = df::load(var_materials, var_8); var_10 = df::mul(var_4, var_5); var_12 = df::add(var_10, var_11); var_13 = df::load(var_materials, var_12); var_14 = df::mul(var_4, var_5); var_16 = df::add(var_14, var_15); var_17 = df::load(var_materials, var_16); var_18 = df::mul(var_4, var_5); var_20 = df::add(var_18, var_19); var_21 = df::load(var_materials, var_20); var_22 = df::load(var_body_X_s, var_1); var_23 = df::load(var_body_v_s, var_1); var_26 = df::float3(var_24, var_25, var_24); var_27 = df::spatial_transform_point(var_22, var_2); var_28 = df::mul(var_26, var_3); var_29 = df::sub(var_27, var_28); var_30 = df::spatial_top(var_23); var_31 = df::spatial_bottom(var_23); var_32 = df::cross(var_30, var_29); var_33 = df::add(var_31, var_32); var_34 = df::dot(var_26, var_29); var_35 = (var_34 >= var_24); if (var_35) { return; } var_36 = df::dot(var_26, var_33); var_37 = df::mul(var_26, var_36); var_38 = df::sub(var_33, var_37); var_39 = df::mul(var_34, var_9); var_40 = df::min(var_36, var_24); var_41 = df::mul(var_40, var_13); var_42 = df::step(var_34); var_43 = df::mul(var_41, var_42); var_44 = df::sub(var_24, var_34); var_45 = df::mul(var_43, var_44); var_46 = df::add(var_39, var_45); var_47 = df::mul(var_21, var_46); var_48 = df::sub(var_24, var_47); var_49 = df::float3(var_17, var_24, var_24); var_50 = df::dot(var_49, var_38); var_51 = df::clamp(var_50, var_47, var_48); var_52 = df::float3(var_24, var_24, var_17); var_53 = df::dot(var_52, var_38); var_54 = df::clamp(var_53, var_47, var_48); var_55 = df::normalize(var_38); var_56 = df::length(var_38); var_57 = df::mul(var_17, var_56); var_58 = df::mul(var_21, var_34); var_59 = df::mul(var_58, var_9); var_60 = df::sub(var_24, var_59); var_61 = df::min(var_57, var_60); var_62 = df::mul(var_55, var_61); var_63 = df::step(var_34); var_64 = df::mul(var_62, var_63); var_65 = df::add(var_39, var_45); var_66 = df::mul(var_26, var_65); var_67 = df::add(var_66, var_64); var_68 = df::cross(var_29, var_67); var_69 = df::spatial_vector(var_68, var_67); df::atomic_add(var_body_f_s, var_1, var_69); } void eval_rigid_contacts_art_cpu_kernel_backward( spatial_transform* var_body_X_s, spatial_vector* var_body_v_s, int* var_contact_body, df::float3* var_contact_point, float* var_contact_dist, int* var_contact_mat, float* var_materials, spatial_vector* var_body_f_s, spatial_transform* adj_body_X_s, spatial_vector* adj_body_v_s, int* adj_contact_body, df::float3* adj_contact_point, float* adj_contact_dist, int* adj_contact_mat, float* adj_materials, spatial_vector* adj_body_f_s) { //--------- // primal vars int var_0; int var_1; df::float3 var_2; float var_3; int var_4; const int var_5 = 4; int var_6; const int var_7 = 0; int var_8; float var_9; int var_10; const int var_11 = 1; int var_12; float var_13; int var_14; const int var_15 = 2; int var_16; float var_17; int var_18; const int var_19 = 3; int var_20; float var_21; spatial_transform var_22; spatial_vector var_23; const float var_24 = 0.0; const float var_25 = 1.0; df::float3 var_26; df::float3 var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; float var_34; bool var_35; float var_36; df::float3 var_37; df::float3 var_38; float var_39; float var_40; float var_41; float var_42; float var_43; float var_44; float var_45; float var_46; float var_47; float var_48; df::float3 var_49; float var_50; float var_51; df::float3 var_52; float var_53; float var_54; df::float3 var_55; float var_56; float var_57; float var_58; float var_59; float var_60; float var_61; df::float3 var_62; float var_63; df::float3 var_64; float var_65; df::float3 var_66; df::float3 var_67; df::float3 var_68; spatial_vector var_69; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; df::float3 adj_2 = 0; float adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; float adj_9 = 0; int adj_10 = 0; int adj_11 = 0; int adj_12 = 0; float adj_13 = 0; int adj_14 = 0; int adj_15 = 0; int adj_16 = 0; float adj_17 = 0; int adj_18 = 0; int adj_19 = 0; int adj_20 = 0; float adj_21 = 0; spatial_transform adj_22 = 0; spatial_vector adj_23 = 0; float adj_24 = 0; float adj_25 = 0; df::float3 adj_26 = 0; df::float3 adj_27 = 0; df::float3 adj_28 = 0; df::float3 adj_29 = 0; df::float3 adj_30 = 0; df::float3 adj_31 = 0; df::float3 adj_32 = 0; df::float3 adj_33 = 0; float adj_34 = 0; bool adj_35 = 0; float adj_36 = 0; df::float3 adj_37 = 0; df::float3 adj_38 = 0; float adj_39 = 0; float adj_40 = 0; float adj_41 = 0; float adj_42 = 0; float adj_43 = 0; float adj_44 = 0; float adj_45 = 0; float adj_46 = 0; float adj_47 = 0; float adj_48 = 0; df::float3 adj_49 = 0; float adj_50 = 0; float adj_51 = 0; df::float3 adj_52 = 0; float adj_53 = 0; float adj_54 = 0; df::float3 adj_55 = 0; float adj_56 = 0; float adj_57 = 0; float adj_58 = 0; float adj_59 = 0; float adj_60 = 0; float adj_61 = 0; df::float3 adj_62 = 0; float adj_63 = 0; df::float3 adj_64 = 0; float adj_65 = 0; df::float3 adj_66 = 0; df::float3 adj_67 = 0; df::float3 adj_68 = 0; spatial_vector adj_69 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_contact_body, var_0); var_2 = df::load(var_contact_point, var_0); var_3 = df::load(var_contact_dist, var_0); var_4 = df::load(var_contact_mat, var_0); var_6 = df::mul(var_4, var_5); var_8 = df::add(var_6, var_7); var_9 = df::load(var_materials, var_8); var_10 = df::mul(var_4, var_5); var_12 = df::add(var_10, var_11); var_13 = df::load(var_materials, var_12); var_14 = df::mul(var_4, var_5); var_16 = df::add(var_14, var_15); var_17 = df::load(var_materials, var_16); var_18 = df::mul(var_4, var_5); var_20 = df::add(var_18, var_19); var_21 = df::load(var_materials, var_20); var_22 = df::load(var_body_X_s, var_1); var_23 = df::load(var_body_v_s, var_1); var_26 = df::float3(var_24, var_25, var_24); var_27 = df::spatial_transform_point(var_22, var_2); var_28 = df::mul(var_26, var_3); var_29 = df::sub(var_27, var_28); var_30 = df::spatial_top(var_23); var_31 = df::spatial_bottom(var_23); var_32 = df::cross(var_30, var_29); var_33 = df::add(var_31, var_32); var_34 = df::dot(var_26, var_29); var_35 = (var_34 >= var_24); if (var_35) { goto label0; } var_36 = df::dot(var_26, var_33); var_37 = df::mul(var_26, var_36); var_38 = df::sub(var_33, var_37); var_39 = df::mul(var_34, var_9); var_40 = df::min(var_36, var_24); var_41 = df::mul(var_40, var_13); var_42 = df::step(var_34); var_43 = df::mul(var_41, var_42); var_44 = df::sub(var_24, var_34); var_45 = df::mul(var_43, var_44); var_46 = df::add(var_39, var_45); var_47 = df::mul(var_21, var_46); var_48 = df::sub(var_24, var_47); var_49 = df::float3(var_17, var_24, var_24); var_50 = df::dot(var_49, var_38); var_51 = df::clamp(var_50, var_47, var_48); var_52 = df::float3(var_24, var_24, var_17); var_53 = df::dot(var_52, var_38); var_54 = df::clamp(var_53, var_47, var_48); var_55 = df::normalize(var_38); var_56 = df::length(var_38); var_57 = df::mul(var_17, var_56); var_58 = df::mul(var_21, var_34); var_59 = df::mul(var_58, var_9); var_60 = df::sub(var_24, var_59); var_61 = df::min(var_57, var_60); var_62 = df::mul(var_55, var_61); var_63 = df::step(var_34); var_64 = df::mul(var_62, var_63); var_65 = df::add(var_39, var_45); var_66 = df::mul(var_26, var_65); var_67 = df::add(var_66, var_64); var_68 = df::cross(var_29, var_67); var_69 = df::spatial_vector(var_68, var_67); df::atomic_add(var_body_f_s, var_1, var_69); //--------- // reverse df::adj_atomic_add(var_body_f_s, var_1, var_69, adj_body_f_s, adj_1, adj_69); df::adj_spatial_vector(var_68, var_67, adj_68, adj_67, adj_69); df::adj_cross(var_29, var_67, adj_29, adj_67, adj_68); df::adj_add(var_66, var_64, adj_66, adj_64, adj_67); df::adj_mul(var_26, var_65, adj_26, adj_65, adj_66); df::adj_add(var_39, var_45, adj_39, adj_45, adj_65); df::adj_mul(var_62, var_63, adj_62, adj_63, adj_64); df::adj_step(var_34, adj_34, adj_63); df::adj_mul(var_55, var_61, adj_55, adj_61, adj_62); df::adj_min(var_57, var_60, adj_57, adj_60, adj_61); df::adj_sub(var_24, var_59, adj_24, adj_59, adj_60); df::adj_mul(var_58, var_9, adj_58, adj_9, adj_59); df::adj_mul(var_21, var_34, adj_21, adj_34, adj_58); df::adj_mul(var_17, var_56, adj_17, adj_56, adj_57); df::adj_length(var_38, adj_38, adj_56); df::adj_normalize(var_38, adj_38, adj_55); df::adj_clamp(var_53, var_47, var_48, adj_53, adj_47, adj_48, adj_54); df::adj_dot(var_52, var_38, adj_52, adj_38, adj_53); df::adj_float3(var_24, var_24, var_17, adj_24, adj_24, adj_17, adj_52); df::adj_clamp(var_50, var_47, var_48, adj_50, adj_47, adj_48, adj_51); df::adj_dot(var_49, var_38, adj_49, adj_38, adj_50); df::adj_float3(var_17, var_24, var_24, adj_17, adj_24, adj_24, adj_49); df::adj_sub(var_24, var_47, adj_24, adj_47, adj_48); df::adj_mul(var_21, var_46, adj_21, adj_46, adj_47); df::adj_add(var_39, var_45, adj_39, adj_45, adj_46); df::adj_mul(var_43, var_44, adj_43, adj_44, adj_45); df::adj_sub(var_24, var_34, adj_24, adj_34, adj_44); df::adj_mul(var_41, var_42, adj_41, adj_42, adj_43); df::adj_step(var_34, adj_34, adj_42); df::adj_mul(var_40, var_13, adj_40, adj_13, adj_41); df::adj_min(var_36, var_24, adj_36, adj_24, adj_40); df::adj_mul(var_34, var_9, adj_34, adj_9, adj_39); df::adj_sub(var_33, var_37, adj_33, adj_37, adj_38); df::adj_mul(var_26, var_36, adj_26, adj_36, adj_37); df::adj_dot(var_26, var_33, adj_26, adj_33, adj_36); if (var_35) { label0:; } df::adj_dot(var_26, var_29, adj_26, adj_29, adj_34); df::adj_add(var_31, var_32, adj_31, adj_32, adj_33); df::adj_cross(var_30, var_29, adj_30, adj_29, adj_32); df::adj_spatial_bottom(var_23, adj_23, adj_31); df::adj_spatial_top(var_23, adj_23, adj_30); df::adj_sub(var_27, var_28, adj_27, adj_28, adj_29); df::adj_mul(var_26, var_3, adj_26, adj_3, adj_28); df::adj_spatial_transform_point(var_22, var_2, adj_22, adj_2, adj_27); df::adj_float3(var_24, var_25, var_24, adj_24, adj_25, adj_24, adj_26); df::adj_load(var_body_v_s, var_1, adj_body_v_s, adj_1, adj_23); df::adj_load(var_body_X_s, var_1, adj_body_X_s, adj_1, adj_22); df::adj_load(var_materials, var_20, adj_materials, adj_20, adj_21); df::adj_add(var_18, var_19, adj_18, adj_19, adj_20); df::adj_mul(var_4, var_5, adj_4, adj_5, adj_18); df::adj_load(var_materials, var_16, adj_materials, adj_16, adj_17); df::adj_add(var_14, var_15, adj_14, adj_15, adj_16); df::adj_mul(var_4, var_5, adj_4, adj_5, adj_14); df::adj_load(var_materials, var_12, adj_materials, adj_12, adj_13); df::adj_add(var_10, var_11, adj_10, adj_11, adj_12); df::adj_mul(var_4, var_5, adj_4, adj_5, adj_10); df::adj_load(var_materials, var_8, adj_materials, adj_8, adj_9); df::adj_add(var_6, var_7, adj_6, adj_7, adj_8); df::adj_mul(var_4, var_5, adj_4, adj_5, adj_6); df::adj_load(var_contact_mat, var_0, adj_contact_mat, adj_0, adj_4); df::adj_load(var_contact_dist, var_0, adj_contact_dist, adj_0, adj_3); df::adj_load(var_contact_point, var_0, adj_contact_point, adj_0, adj_2); df::adj_load(var_contact_body, var_0, adj_contact_body, adj_0, adj_1); return; } // Python entry points void eval_rigid_contacts_art_cpu_forward(int dim, torch::Tensor var_body_X_s, torch::Tensor var_body_v_s, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_body_f_s) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_contacts_art_cpu_kernel_forward( cast<spatial_transform*>(var_body_X_s), cast<spatial_vector*>(var_body_v_s), cast<int*>(var_contact_body), cast<df::float3*>(var_contact_point), cast<float*>(var_contact_dist), cast<int*>(var_contact_mat), cast<float*>(var_materials), cast<spatial_vector*>(var_body_f_s)); } } void eval_rigid_contacts_art_cpu_backward(int dim, torch::Tensor var_body_X_s, torch::Tensor var_body_v_s, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_body_f_s, torch::Tensor adj_body_X_s, torch::Tensor adj_body_v_s, torch::Tensor adj_contact_body, torch::Tensor adj_contact_point, torch::Tensor adj_contact_dist, torch::Tensor adj_contact_mat, torch::Tensor adj_materials, torch::Tensor adj_body_f_s) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_contacts_art_cpu_kernel_backward( cast<spatial_transform*>(var_body_X_s), cast<spatial_vector*>(var_body_v_s), cast<int*>(var_contact_body), cast<df::float3*>(var_contact_point), cast<float*>(var_contact_dist), cast<int*>(var_contact_mat), cast<float*>(var_materials), cast<spatial_vector*>(var_body_f_s), cast<spatial_transform*>(adj_body_X_s), cast<spatial_vector*>(adj_body_v_s), cast<int*>(adj_contact_body), cast<df::float3*>(adj_contact_point), cast<float*>(adj_contact_dist), cast<int*>(adj_contact_mat), cast<float*>(adj_materials), cast<spatial_vector*>(adj_body_f_s)); } } // Python entry points void eval_rigid_contacts_art_cpu_forward(int dim, torch::Tensor var_body_X_s, torch::Tensor var_body_v_s, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_body_f_s); void eval_rigid_contacts_art_cpu_backward(int dim, torch::Tensor var_body_X_s, torch::Tensor var_body_v_s, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_body_f_s, torch::Tensor adj_body_X_s, torch::Tensor adj_body_v_s, torch::Tensor adj_contact_body, torch::Tensor adj_contact_point, torch::Tensor adj_contact_dist, torch::Tensor adj_contact_mat, torch::Tensor adj_materials, torch::Tensor adj_body_f_s); void eval_muscles_cpu_kernel_forward( spatial_transform* var_body_X_s, spatial_vector* var_body_v_s, int* var_muscle_start, float* var_muscle_params, int* var_muscle_links, df::float3* var_muscle_points, float* var_muscle_activation, spatial_vector* var_body_f_s) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; float var_6; int var_7; int var_8; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_muscle_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_muscle_start, var_3); var_5 = df::sub(var_4, var_2); var_6 = df::load(var_muscle_activation, var_0); for (var_7=var_1; var_7 < var_5; ++var_7) { var_8 = compute_muscle_force_cpu_func(var_7, var_body_X_s, var_body_v_s, var_muscle_links, var_muscle_points, var_6, var_body_f_s); } } void eval_muscles_cpu_kernel_backward( spatial_transform* var_body_X_s, spatial_vector* var_body_v_s, int* var_muscle_start, float* var_muscle_params, int* var_muscle_links, df::float3* var_muscle_points, float* var_muscle_activation, spatial_vector* var_body_f_s, spatial_transform* adj_body_X_s, spatial_vector* adj_body_v_s, int* adj_muscle_start, float* adj_muscle_params, int* adj_muscle_links, df::float3* adj_muscle_points, float* adj_muscle_activation, spatial_vector* adj_body_f_s) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; float var_6; int var_7; int var_8; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; float adj_6 = 0; int adj_7 = 0; int adj_8 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_muscle_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_muscle_start, var_3); var_5 = df::sub(var_4, var_2); var_6 = df::load(var_muscle_activation, var_0); if (false) { var_8 = compute_muscle_force_cpu_func(var_7, var_body_X_s, var_body_v_s, var_muscle_links, var_muscle_points, var_6, var_body_f_s); } //--------- // reverse for (var_7=var_5-1; var_7 >= var_1; --var_7) { adj_compute_muscle_force_cpu_func(var_7, var_body_X_s, var_body_v_s, var_muscle_links, var_muscle_points, var_6, var_body_f_s, adj_7, adj_body_X_s, adj_body_v_s, adj_muscle_links, adj_muscle_points, adj_6, adj_body_f_s, adj_8); } df::adj_load(var_muscle_activation, var_0, adj_muscle_activation, adj_0, adj_6); df::adj_sub(var_4, var_2, adj_4, adj_2, adj_5); df::adj_load(var_muscle_start, var_3, adj_muscle_start, adj_3, adj_4); df::adj_add(var_0, var_2, adj_0, adj_2, adj_3); df::adj_load(var_muscle_start, var_0, adj_muscle_start, adj_0, adj_1); return; } // Python entry points void eval_muscles_cpu_forward(int dim, torch::Tensor var_body_X_s, torch::Tensor var_body_v_s, torch::Tensor var_muscle_start, torch::Tensor var_muscle_params, torch::Tensor var_muscle_links, torch::Tensor var_muscle_points, torch::Tensor var_muscle_activation, torch::Tensor var_body_f_s) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_muscles_cpu_kernel_forward( cast<spatial_transform*>(var_body_X_s), cast<spatial_vector*>(var_body_v_s), cast<int*>(var_muscle_start), cast<float*>(var_muscle_params), cast<int*>(var_muscle_links), cast<df::float3*>(var_muscle_points), cast<float*>(var_muscle_activation), cast<spatial_vector*>(var_body_f_s)); } } void eval_muscles_cpu_backward(int dim, torch::Tensor var_body_X_s, torch::Tensor var_body_v_s, torch::Tensor var_muscle_start, torch::Tensor var_muscle_params, torch::Tensor var_muscle_links, torch::Tensor var_muscle_points, torch::Tensor var_muscle_activation, torch::Tensor var_body_f_s, torch::Tensor adj_body_X_s, torch::Tensor adj_body_v_s, torch::Tensor adj_muscle_start, torch::Tensor adj_muscle_params, torch::Tensor adj_muscle_links, torch::Tensor adj_muscle_points, torch::Tensor adj_muscle_activation, torch::Tensor adj_body_f_s) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_muscles_cpu_kernel_backward( cast<spatial_transform*>(var_body_X_s), cast<spatial_vector*>(var_body_v_s), cast<int*>(var_muscle_start), cast<float*>(var_muscle_params), cast<int*>(var_muscle_links), cast<df::float3*>(var_muscle_points), cast<float*>(var_muscle_activation), cast<spatial_vector*>(var_body_f_s), cast<spatial_transform*>(adj_body_X_s), cast<spatial_vector*>(adj_body_v_s), cast<int*>(adj_muscle_start), cast<float*>(adj_muscle_params), cast<int*>(adj_muscle_links), cast<df::float3*>(adj_muscle_points), cast<float*>(adj_muscle_activation), cast<spatial_vector*>(adj_body_f_s)); } } // Python entry points void eval_muscles_cpu_forward(int dim, torch::Tensor var_body_X_s, torch::Tensor var_body_v_s, torch::Tensor var_muscle_start, torch::Tensor var_muscle_params, torch::Tensor var_muscle_links, torch::Tensor var_muscle_points, torch::Tensor var_muscle_activation, torch::Tensor var_body_f_s); void eval_muscles_cpu_backward(int dim, torch::Tensor var_body_X_s, torch::Tensor var_body_v_s, torch::Tensor var_muscle_start, torch::Tensor var_muscle_params, torch::Tensor var_muscle_links, torch::Tensor var_muscle_points, torch::Tensor var_muscle_activation, torch::Tensor var_body_f_s, torch::Tensor adj_body_X_s, torch::Tensor adj_body_v_s, torch::Tensor adj_muscle_start, torch::Tensor adj_muscle_params, torch::Tensor adj_muscle_links, torch::Tensor adj_muscle_points, torch::Tensor adj_muscle_activation, torch::Tensor adj_body_f_s); void eval_rigid_fk_cpu_kernel_forward( int* var_articulation_start, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, spatial_transform* var_joint_X_pj, spatial_transform* var_joint_X_cm, df::float3* var_joint_axis, spatial_transform* var_body_X_sc, spatial_transform* var_body_X_sm) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; int var_6; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); for (var_5=var_1; var_5 < var_4; ++var_5) { var_6 = compute_link_transform_cpu_func(var_5, var_joint_type, var_joint_parent, var_joint_q_start, var_joint_qd_start, var_joint_q, var_joint_X_pj, var_joint_X_cm, var_joint_axis, var_body_X_sc, var_body_X_sm); } } void eval_rigid_fk_cpu_kernel_backward( int* var_articulation_start, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, spatial_transform* var_joint_X_pj, spatial_transform* var_joint_X_cm, df::float3* var_joint_axis, spatial_transform* var_body_X_sc, spatial_transform* var_body_X_sm, int* adj_articulation_start, int* adj_joint_type, int* adj_joint_parent, int* adj_joint_q_start, int* adj_joint_qd_start, float* adj_joint_q, spatial_transform* adj_joint_X_pj, spatial_transform* adj_joint_X_cm, df::float3* adj_joint_axis, spatial_transform* adj_body_X_sc, spatial_transform* adj_body_X_sm) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; int var_6; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); if (false) { var_6 = compute_link_transform_cpu_func(var_5, var_joint_type, var_joint_parent, var_joint_q_start, var_joint_qd_start, var_joint_q, var_joint_X_pj, var_joint_X_cm, var_joint_axis, var_body_X_sc, var_body_X_sm); } //--------- // reverse for (var_5=var_4-1; var_5 >= var_1; --var_5) { adj_compute_link_transform_cpu_func(var_5, var_joint_type, var_joint_parent, var_joint_q_start, var_joint_qd_start, var_joint_q, var_joint_X_pj, var_joint_X_cm, var_joint_axis, var_body_X_sc, var_body_X_sm, adj_5, adj_joint_type, adj_joint_parent, adj_joint_q_start, adj_joint_qd_start, adj_joint_q, adj_joint_X_pj, adj_joint_X_cm, adj_joint_axis, adj_body_X_sc, adj_body_X_sm, adj_6); } df::adj_load(var_articulation_start, var_3, adj_articulation_start, adj_3, adj_4); df::adj_add(var_0, var_2, adj_0, adj_2, adj_3); df::adj_load(var_articulation_start, var_0, adj_articulation_start, adj_0, adj_1); return; } // Python entry points void eval_rigid_fk_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_X_pj, torch::Tensor var_joint_X_cm, torch::Tensor var_joint_axis, torch::Tensor var_body_X_sc, torch::Tensor var_body_X_sm) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_fk_cpu_kernel_forward( cast<int*>(var_articulation_start), cast<int*>(var_joint_type), cast<int*>(var_joint_parent), cast<int*>(var_joint_q_start), cast<int*>(var_joint_qd_start), cast<float*>(var_joint_q), cast<spatial_transform*>(var_joint_X_pj), cast<spatial_transform*>(var_joint_X_cm), cast<df::float3*>(var_joint_axis), cast<spatial_transform*>(var_body_X_sc), cast<spatial_transform*>(var_body_X_sm)); } } void eval_rigid_fk_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_X_pj, torch::Tensor var_joint_X_cm, torch::Tensor var_joint_axis, torch::Tensor var_body_X_sc, torch::Tensor var_body_X_sm, torch::Tensor adj_articulation_start, torch::Tensor adj_joint_type, torch::Tensor adj_joint_parent, torch::Tensor adj_joint_q_start, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_q, torch::Tensor adj_joint_X_pj, torch::Tensor adj_joint_X_cm, torch::Tensor adj_joint_axis, torch::Tensor adj_body_X_sc, torch::Tensor adj_body_X_sm) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_fk_cpu_kernel_backward( cast<int*>(var_articulation_start), cast<int*>(var_joint_type), cast<int*>(var_joint_parent), cast<int*>(var_joint_q_start), cast<int*>(var_joint_qd_start), cast<float*>(var_joint_q), cast<spatial_transform*>(var_joint_X_pj), cast<spatial_transform*>(var_joint_X_cm), cast<df::float3*>(var_joint_axis), cast<spatial_transform*>(var_body_X_sc), cast<spatial_transform*>(var_body_X_sm), cast<int*>(adj_articulation_start), cast<int*>(adj_joint_type), cast<int*>(adj_joint_parent), cast<int*>(adj_joint_q_start), cast<int*>(adj_joint_qd_start), cast<float*>(adj_joint_q), cast<spatial_transform*>(adj_joint_X_pj), cast<spatial_transform*>(adj_joint_X_cm), cast<df::float3*>(adj_joint_axis), cast<spatial_transform*>(adj_body_X_sc), cast<spatial_transform*>(adj_body_X_sm)); } } // Python entry points void eval_rigid_fk_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_X_pj, torch::Tensor var_joint_X_cm, torch::Tensor var_joint_axis, torch::Tensor var_body_X_sc, torch::Tensor var_body_X_sm); void eval_rigid_fk_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_X_pj, torch::Tensor var_joint_X_cm, torch::Tensor var_joint_axis, torch::Tensor var_body_X_sc, torch::Tensor var_body_X_sm, torch::Tensor adj_articulation_start, torch::Tensor adj_joint_type, torch::Tensor adj_joint_parent, torch::Tensor adj_joint_q_start, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_q, torch::Tensor adj_joint_X_pj, torch::Tensor adj_joint_X_cm, torch::Tensor adj_joint_axis, torch::Tensor adj_body_X_sc, torch::Tensor adj_body_X_sm); void eval_rigid_id_cpu_kernel_forward( int* var_articulation_start, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, float* var_joint_qd, df::float3* var_joint_axis, float* var_joint_target_ke, float* var_joint_target_kd, spatial_matrix* var_body_I_m, spatial_transform* var_body_X_sc, spatial_transform* var_body_X_sm, spatial_transform* var_joint_X_pj, df::float3* var_gravity, spatial_vector* var_joint_S_s, spatial_matrix* var_body_I_s, spatial_vector* var_body_v_s, spatial_vector* var_body_f_s, spatial_vector* var_body_a_s) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; int var_6; int var_7; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); var_5 = df::sub(var_4, var_1); for (var_6=var_1; var_6 < var_4; ++var_6) { var_7 = compute_link_velocity_cpu_func(var_6, var_joint_type, var_joint_parent, var_joint_qd_start, var_joint_qd, var_joint_axis, var_body_I_m, var_body_X_sc, var_body_X_sm, var_joint_X_pj, var_gravity, var_joint_S_s, var_body_I_s, var_body_v_s, var_body_f_s, var_body_a_s); } } void eval_rigid_id_cpu_kernel_backward( int* var_articulation_start, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, float* var_joint_qd, df::float3* var_joint_axis, float* var_joint_target_ke, float* var_joint_target_kd, spatial_matrix* var_body_I_m, spatial_transform* var_body_X_sc, spatial_transform* var_body_X_sm, spatial_transform* var_joint_X_pj, df::float3* var_gravity, spatial_vector* var_joint_S_s, spatial_matrix* var_body_I_s, spatial_vector* var_body_v_s, spatial_vector* var_body_f_s, spatial_vector* var_body_a_s, int* adj_articulation_start, int* adj_joint_type, int* adj_joint_parent, int* adj_joint_q_start, int* adj_joint_qd_start, float* adj_joint_q, float* adj_joint_qd, df::float3* adj_joint_axis, float* adj_joint_target_ke, float* adj_joint_target_kd, spatial_matrix* adj_body_I_m, spatial_transform* adj_body_X_sc, spatial_transform* adj_body_X_sm, spatial_transform* adj_joint_X_pj, df::float3* adj_gravity, spatial_vector* adj_joint_S_s, spatial_matrix* adj_body_I_s, spatial_vector* adj_body_v_s, spatial_vector* adj_body_f_s, spatial_vector* adj_body_a_s) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; int var_6; int var_7; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); var_5 = df::sub(var_4, var_1); if (false) { var_7 = compute_link_velocity_cpu_func(var_6, var_joint_type, var_joint_parent, var_joint_qd_start, var_joint_qd, var_joint_axis, var_body_I_m, var_body_X_sc, var_body_X_sm, var_joint_X_pj, var_gravity, var_joint_S_s, var_body_I_s, var_body_v_s, var_body_f_s, var_body_a_s); } //--------- // reverse for (var_6=var_4-1; var_6 >= var_1; --var_6) { adj_compute_link_velocity_cpu_func(var_6, var_joint_type, var_joint_parent, var_joint_qd_start, var_joint_qd, var_joint_axis, var_body_I_m, var_body_X_sc, var_body_X_sm, var_joint_X_pj, var_gravity, var_joint_S_s, var_body_I_s, var_body_v_s, var_body_f_s, var_body_a_s, adj_6, adj_joint_type, adj_joint_parent, adj_joint_qd_start, adj_joint_qd, adj_joint_axis, adj_body_I_m, adj_body_X_sc, adj_body_X_sm, adj_joint_X_pj, adj_gravity, adj_joint_S_s, adj_body_I_s, adj_body_v_s, adj_body_f_s, adj_body_a_s, adj_7); } df::adj_sub(var_4, var_1, adj_4, adj_1, adj_5); df::adj_load(var_articulation_start, var_3, adj_articulation_start, adj_3, adj_4); df::adj_add(var_0, var_2, adj_0, adj_2, adj_3); df::adj_load(var_articulation_start, var_0, adj_articulation_start, adj_0, adj_1); return; } // Python entry points void eval_rigid_id_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_axis, torch::Tensor var_joint_target_ke, torch::Tensor var_joint_target_kd, torch::Tensor var_body_I_m, torch::Tensor var_body_X_sc, torch::Tensor var_body_X_sm, torch::Tensor var_joint_X_pj, torch::Tensor var_gravity, torch::Tensor var_joint_S_s, torch::Tensor var_body_I_s, torch::Tensor var_body_v_s, torch::Tensor var_body_f_s, torch::Tensor var_body_a_s) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_id_cpu_kernel_forward( cast<int*>(var_articulation_start), cast<int*>(var_joint_type), cast<int*>(var_joint_parent), cast<int*>(var_joint_q_start), cast<int*>(var_joint_qd_start), cast<float*>(var_joint_q), cast<float*>(var_joint_qd), cast<df::float3*>(var_joint_axis), cast<float*>(var_joint_target_ke), cast<float*>(var_joint_target_kd), cast<spatial_matrix*>(var_body_I_m), cast<spatial_transform*>(var_body_X_sc), cast<spatial_transform*>(var_body_X_sm), cast<spatial_transform*>(var_joint_X_pj), cast<df::float3*>(var_gravity), cast<spatial_vector*>(var_joint_S_s), cast<spatial_matrix*>(var_body_I_s), cast<spatial_vector*>(var_body_v_s), cast<spatial_vector*>(var_body_f_s), cast<spatial_vector*>(var_body_a_s)); } } void eval_rigid_id_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_axis, torch::Tensor var_joint_target_ke, torch::Tensor var_joint_target_kd, torch::Tensor var_body_I_m, torch::Tensor var_body_X_sc, torch::Tensor var_body_X_sm, torch::Tensor var_joint_X_pj, torch::Tensor var_gravity, torch::Tensor var_joint_S_s, torch::Tensor var_body_I_s, torch::Tensor var_body_v_s, torch::Tensor var_body_f_s, torch::Tensor var_body_a_s, torch::Tensor adj_articulation_start, torch::Tensor adj_joint_type, torch::Tensor adj_joint_parent, torch::Tensor adj_joint_q_start, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_q, torch::Tensor adj_joint_qd, torch::Tensor adj_joint_axis, torch::Tensor adj_joint_target_ke, torch::Tensor adj_joint_target_kd, torch::Tensor adj_body_I_m, torch::Tensor adj_body_X_sc, torch::Tensor adj_body_X_sm, torch::Tensor adj_joint_X_pj, torch::Tensor adj_gravity, torch::Tensor adj_joint_S_s, torch::Tensor adj_body_I_s, torch::Tensor adj_body_v_s, torch::Tensor adj_body_f_s, torch::Tensor adj_body_a_s) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_id_cpu_kernel_backward( cast<int*>(var_articulation_start), cast<int*>(var_joint_type), cast<int*>(var_joint_parent), cast<int*>(var_joint_q_start), cast<int*>(var_joint_qd_start), cast<float*>(var_joint_q), cast<float*>(var_joint_qd), cast<df::float3*>(var_joint_axis), cast<float*>(var_joint_target_ke), cast<float*>(var_joint_target_kd), cast<spatial_matrix*>(var_body_I_m), cast<spatial_transform*>(var_body_X_sc), cast<spatial_transform*>(var_body_X_sm), cast<spatial_transform*>(var_joint_X_pj), cast<df::float3*>(var_gravity), cast<spatial_vector*>(var_joint_S_s), cast<spatial_matrix*>(var_body_I_s), cast<spatial_vector*>(var_body_v_s), cast<spatial_vector*>(var_body_f_s), cast<spatial_vector*>(var_body_a_s), cast<int*>(adj_articulation_start), cast<int*>(adj_joint_type), cast<int*>(adj_joint_parent), cast<int*>(adj_joint_q_start), cast<int*>(adj_joint_qd_start), cast<float*>(adj_joint_q), cast<float*>(adj_joint_qd), cast<df::float3*>(adj_joint_axis), cast<float*>(adj_joint_target_ke), cast<float*>(adj_joint_target_kd), cast<spatial_matrix*>(adj_body_I_m), cast<spatial_transform*>(adj_body_X_sc), cast<spatial_transform*>(adj_body_X_sm), cast<spatial_transform*>(adj_joint_X_pj), cast<df::float3*>(adj_gravity), cast<spatial_vector*>(adj_joint_S_s), cast<spatial_matrix*>(adj_body_I_s), cast<spatial_vector*>(adj_body_v_s), cast<spatial_vector*>(adj_body_f_s), cast<spatial_vector*>(adj_body_a_s)); } } // Python entry points void eval_rigid_id_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_axis, torch::Tensor var_joint_target_ke, torch::Tensor var_joint_target_kd, torch::Tensor var_body_I_m, torch::Tensor var_body_X_sc, torch::Tensor var_body_X_sm, torch::Tensor var_joint_X_pj, torch::Tensor var_gravity, torch::Tensor var_joint_S_s, torch::Tensor var_body_I_s, torch::Tensor var_body_v_s, torch::Tensor var_body_f_s, torch::Tensor var_body_a_s); void eval_rigid_id_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_axis, torch::Tensor var_joint_target_ke, torch::Tensor var_joint_target_kd, torch::Tensor var_body_I_m, torch::Tensor var_body_X_sc, torch::Tensor var_body_X_sm, torch::Tensor var_joint_X_pj, torch::Tensor var_gravity, torch::Tensor var_joint_S_s, torch::Tensor var_body_I_s, torch::Tensor var_body_v_s, torch::Tensor var_body_f_s, torch::Tensor var_body_a_s, torch::Tensor adj_articulation_start, torch::Tensor adj_joint_type, torch::Tensor adj_joint_parent, torch::Tensor adj_joint_q_start, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_q, torch::Tensor adj_joint_qd, torch::Tensor adj_joint_axis, torch::Tensor adj_joint_target_ke, torch::Tensor adj_joint_target_kd, torch::Tensor adj_body_I_m, torch::Tensor adj_body_X_sc, torch::Tensor adj_body_X_sm, torch::Tensor adj_joint_X_pj, torch::Tensor adj_gravity, torch::Tensor adj_joint_S_s, torch::Tensor adj_body_I_s, torch::Tensor adj_body_v_s, torch::Tensor adj_body_f_s, torch::Tensor adj_body_a_s); void eval_rigid_tau_cpu_kernel_forward( int* var_articulation_start, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, float* var_joint_qd, float* var_joint_act, float* var_joint_target, float* var_joint_target_ke, float* var_joint_target_kd, float* var_joint_limit_lower, float* var_joint_limit_upper, float* var_joint_limit_ke, float* var_joint_limit_kd, df::float3* var_joint_axis, spatial_vector* var_joint_S_s, spatial_vector* var_body_fb_s, spatial_vector* var_body_ft_s, float* var_tau) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; const int var_6 = 0; int var_7; int var_8; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); var_5 = df::sub(var_4, var_1); for (var_7=var_6; var_7 < var_5; ++var_7) { var_8 = compute_link_tau_cpu_func(var_7, var_4, var_joint_type, var_joint_parent, var_joint_q_start, var_joint_qd_start, var_joint_q, var_joint_qd, var_joint_act, var_joint_target, var_joint_target_ke, var_joint_target_kd, var_joint_limit_lower, var_joint_limit_upper, var_joint_limit_ke, var_joint_limit_kd, var_joint_S_s, var_body_fb_s, var_body_ft_s, var_tau); } } void eval_rigid_tau_cpu_kernel_backward( int* var_articulation_start, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, float* var_joint_qd, float* var_joint_act, float* var_joint_target, float* var_joint_target_ke, float* var_joint_target_kd, float* var_joint_limit_lower, float* var_joint_limit_upper, float* var_joint_limit_ke, float* var_joint_limit_kd, df::float3* var_joint_axis, spatial_vector* var_joint_S_s, spatial_vector* var_body_fb_s, spatial_vector* var_body_ft_s, float* var_tau, int* adj_articulation_start, int* adj_joint_type, int* adj_joint_parent, int* adj_joint_q_start, int* adj_joint_qd_start, float* adj_joint_q, float* adj_joint_qd, float* adj_joint_act, float* adj_joint_target, float* adj_joint_target_ke, float* adj_joint_target_kd, float* adj_joint_limit_lower, float* adj_joint_limit_upper, float* adj_joint_limit_ke, float* adj_joint_limit_kd, df::float3* adj_joint_axis, spatial_vector* adj_joint_S_s, spatial_vector* adj_body_fb_s, spatial_vector* adj_body_ft_s, float* adj_tau) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; const int var_6 = 0; int var_7; int var_8; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); var_5 = df::sub(var_4, var_1); if (false) { var_8 = compute_link_tau_cpu_func(var_7, var_4, var_joint_type, var_joint_parent, var_joint_q_start, var_joint_qd_start, var_joint_q, var_joint_qd, var_joint_act, var_joint_target, var_joint_target_ke, var_joint_target_kd, var_joint_limit_lower, var_joint_limit_upper, var_joint_limit_ke, var_joint_limit_kd, var_joint_S_s, var_body_fb_s, var_body_ft_s, var_tau); } //--------- // reverse for (var_7=var_5-1; var_7 >= var_6; --var_7) { adj_compute_link_tau_cpu_func(var_7, var_4, var_joint_type, var_joint_parent, var_joint_q_start, var_joint_qd_start, var_joint_q, var_joint_qd, var_joint_act, var_joint_target, var_joint_target_ke, var_joint_target_kd, var_joint_limit_lower, var_joint_limit_upper, var_joint_limit_ke, var_joint_limit_kd, var_joint_S_s, var_body_fb_s, var_body_ft_s, var_tau, adj_7, adj_4, adj_joint_type, adj_joint_parent, adj_joint_q_start, adj_joint_qd_start, adj_joint_q, adj_joint_qd, adj_joint_act, adj_joint_target, adj_joint_target_ke, adj_joint_target_kd, adj_joint_limit_lower, adj_joint_limit_upper, adj_joint_limit_ke, adj_joint_limit_kd, adj_joint_S_s, adj_body_fb_s, adj_body_ft_s, adj_tau, adj_8); } df::adj_sub(var_4, var_1, adj_4, adj_1, adj_5); df::adj_load(var_articulation_start, var_3, adj_articulation_start, adj_3, adj_4); df::adj_add(var_0, var_2, adj_0, adj_2, adj_3); df::adj_load(var_articulation_start, var_0, adj_articulation_start, adj_0, adj_1); return; } // Python entry points void eval_rigid_tau_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_act, torch::Tensor var_joint_target, torch::Tensor var_joint_target_ke, torch::Tensor var_joint_target_kd, torch::Tensor var_joint_limit_lower, torch::Tensor var_joint_limit_upper, torch::Tensor var_joint_limit_ke, torch::Tensor var_joint_limit_kd, torch::Tensor var_joint_axis, torch::Tensor var_joint_S_s, torch::Tensor var_body_fb_s, torch::Tensor var_body_ft_s, torch::Tensor var_tau) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_tau_cpu_kernel_forward( cast<int*>(var_articulation_start), cast<int*>(var_joint_type), cast<int*>(var_joint_parent), cast<int*>(var_joint_q_start), cast<int*>(var_joint_qd_start), cast<float*>(var_joint_q), cast<float*>(var_joint_qd), cast<float*>(var_joint_act), cast<float*>(var_joint_target), cast<float*>(var_joint_target_ke), cast<float*>(var_joint_target_kd), cast<float*>(var_joint_limit_lower), cast<float*>(var_joint_limit_upper), cast<float*>(var_joint_limit_ke), cast<float*>(var_joint_limit_kd), cast<df::float3*>(var_joint_axis), cast<spatial_vector*>(var_joint_S_s), cast<spatial_vector*>(var_body_fb_s), cast<spatial_vector*>(var_body_ft_s), cast<float*>(var_tau)); } } void eval_rigid_tau_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_act, torch::Tensor var_joint_target, torch::Tensor var_joint_target_ke, torch::Tensor var_joint_target_kd, torch::Tensor var_joint_limit_lower, torch::Tensor var_joint_limit_upper, torch::Tensor var_joint_limit_ke, torch::Tensor var_joint_limit_kd, torch::Tensor var_joint_axis, torch::Tensor var_joint_S_s, torch::Tensor var_body_fb_s, torch::Tensor var_body_ft_s, torch::Tensor var_tau, torch::Tensor adj_articulation_start, torch::Tensor adj_joint_type, torch::Tensor adj_joint_parent, torch::Tensor adj_joint_q_start, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_q, torch::Tensor adj_joint_qd, torch::Tensor adj_joint_act, torch::Tensor adj_joint_target, torch::Tensor adj_joint_target_ke, torch::Tensor adj_joint_target_kd, torch::Tensor adj_joint_limit_lower, torch::Tensor adj_joint_limit_upper, torch::Tensor adj_joint_limit_ke, torch::Tensor adj_joint_limit_kd, torch::Tensor adj_joint_axis, torch::Tensor adj_joint_S_s, torch::Tensor adj_body_fb_s, torch::Tensor adj_body_ft_s, torch::Tensor adj_tau) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_tau_cpu_kernel_backward( cast<int*>(var_articulation_start), cast<int*>(var_joint_type), cast<int*>(var_joint_parent), cast<int*>(var_joint_q_start), cast<int*>(var_joint_qd_start), cast<float*>(var_joint_q), cast<float*>(var_joint_qd), cast<float*>(var_joint_act), cast<float*>(var_joint_target), cast<float*>(var_joint_target_ke), cast<float*>(var_joint_target_kd), cast<float*>(var_joint_limit_lower), cast<float*>(var_joint_limit_upper), cast<float*>(var_joint_limit_ke), cast<float*>(var_joint_limit_kd), cast<df::float3*>(var_joint_axis), cast<spatial_vector*>(var_joint_S_s), cast<spatial_vector*>(var_body_fb_s), cast<spatial_vector*>(var_body_ft_s), cast<float*>(var_tau), cast<int*>(adj_articulation_start), cast<int*>(adj_joint_type), cast<int*>(adj_joint_parent), cast<int*>(adj_joint_q_start), cast<int*>(adj_joint_qd_start), cast<float*>(adj_joint_q), cast<float*>(adj_joint_qd), cast<float*>(adj_joint_act), cast<float*>(adj_joint_target), cast<float*>(adj_joint_target_ke), cast<float*>(adj_joint_target_kd), cast<float*>(adj_joint_limit_lower), cast<float*>(adj_joint_limit_upper), cast<float*>(adj_joint_limit_ke), cast<float*>(adj_joint_limit_kd), cast<df::float3*>(adj_joint_axis), cast<spatial_vector*>(adj_joint_S_s), cast<spatial_vector*>(adj_body_fb_s), cast<spatial_vector*>(adj_body_ft_s), cast<float*>(adj_tau)); } } // Python entry points void eval_rigid_tau_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_act, torch::Tensor var_joint_target, torch::Tensor var_joint_target_ke, torch::Tensor var_joint_target_kd, torch::Tensor var_joint_limit_lower, torch::Tensor var_joint_limit_upper, torch::Tensor var_joint_limit_ke, torch::Tensor var_joint_limit_kd, torch::Tensor var_joint_axis, torch::Tensor var_joint_S_s, torch::Tensor var_body_fb_s, torch::Tensor var_body_ft_s, torch::Tensor var_tau); void eval_rigid_tau_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_act, torch::Tensor var_joint_target, torch::Tensor var_joint_target_ke, torch::Tensor var_joint_target_kd, torch::Tensor var_joint_limit_lower, torch::Tensor var_joint_limit_upper, torch::Tensor var_joint_limit_ke, torch::Tensor var_joint_limit_kd, torch::Tensor var_joint_axis, torch::Tensor var_joint_S_s, torch::Tensor var_body_fb_s, torch::Tensor var_body_ft_s, torch::Tensor var_tau, torch::Tensor adj_articulation_start, torch::Tensor adj_joint_type, torch::Tensor adj_joint_parent, torch::Tensor adj_joint_q_start, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_q, torch::Tensor adj_joint_qd, torch::Tensor adj_joint_act, torch::Tensor adj_joint_target, torch::Tensor adj_joint_target_ke, torch::Tensor adj_joint_target_kd, torch::Tensor adj_joint_limit_lower, torch::Tensor adj_joint_limit_upper, torch::Tensor adj_joint_limit_ke, torch::Tensor adj_joint_limit_kd, torch::Tensor adj_joint_axis, torch::Tensor adj_joint_S_s, torch::Tensor adj_body_fb_s, torch::Tensor adj_body_ft_s, torch::Tensor adj_tau); void eval_rigid_jacobian_cpu_kernel_forward( int* var_articulation_start, int* var_articulation_J_start, int* var_joint_parent, int* var_joint_qd_start, spatial_vector* var_joint_S_s, float* var_J) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; int var_6; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); var_5 = df::sub(var_4, var_1); var_6 = df::load(var_articulation_J_start, var_0); df::spatial_jacobian(var_joint_S_s, var_joint_parent, var_joint_qd_start, var_1, var_5, var_6, var_J); } void eval_rigid_jacobian_cpu_kernel_backward( int* var_articulation_start, int* var_articulation_J_start, int* var_joint_parent, int* var_joint_qd_start, spatial_vector* var_joint_S_s, float* var_J, int* adj_articulation_start, int* adj_articulation_J_start, int* adj_joint_parent, int* adj_joint_qd_start, spatial_vector* adj_joint_S_s, float* adj_J) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; int var_6; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); var_5 = df::sub(var_4, var_1); var_6 = df::load(var_articulation_J_start, var_0); df::spatial_jacobian(var_joint_S_s, var_joint_parent, var_joint_qd_start, var_1, var_5, var_6, var_J); //--------- // reverse df::adj_spatial_jacobian(var_joint_S_s, var_joint_parent, var_joint_qd_start, var_1, var_5, var_6, var_J, adj_joint_S_s, adj_joint_parent, adj_joint_qd_start, adj_1, adj_5, adj_6, adj_J); df::adj_load(var_articulation_J_start, var_0, adj_articulation_J_start, adj_0, adj_6); df::adj_sub(var_4, var_1, adj_4, adj_1, adj_5); df::adj_load(var_articulation_start, var_3, adj_articulation_start, adj_3, adj_4); df::adj_add(var_0, var_2, adj_0, adj_2, adj_3); df::adj_load(var_articulation_start, var_0, adj_articulation_start, adj_0, adj_1); return; } // Python entry points void eval_rigid_jacobian_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_articulation_J_start, torch::Tensor var_joint_parent, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_S_s, torch::Tensor var_J) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_jacobian_cpu_kernel_forward( cast<int*>(var_articulation_start), cast<int*>(var_articulation_J_start), cast<int*>(var_joint_parent), cast<int*>(var_joint_qd_start), cast<spatial_vector*>(var_joint_S_s), cast<float*>(var_J)); } } void eval_rigid_jacobian_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_articulation_J_start, torch::Tensor var_joint_parent, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_S_s, torch::Tensor var_J, torch::Tensor adj_articulation_start, torch::Tensor adj_articulation_J_start, torch::Tensor adj_joint_parent, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_S_s, torch::Tensor adj_J) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_jacobian_cpu_kernel_backward( cast<int*>(var_articulation_start), cast<int*>(var_articulation_J_start), cast<int*>(var_joint_parent), cast<int*>(var_joint_qd_start), cast<spatial_vector*>(var_joint_S_s), cast<float*>(var_J), cast<int*>(adj_articulation_start), cast<int*>(adj_articulation_J_start), cast<int*>(adj_joint_parent), cast<int*>(adj_joint_qd_start), cast<spatial_vector*>(adj_joint_S_s), cast<float*>(adj_J)); } } // Python entry points void eval_rigid_jacobian_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_articulation_J_start, torch::Tensor var_joint_parent, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_S_s, torch::Tensor var_J); void eval_rigid_jacobian_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_articulation_J_start, torch::Tensor var_joint_parent, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_S_s, torch::Tensor var_J, torch::Tensor adj_articulation_start, torch::Tensor adj_articulation_J_start, torch::Tensor adj_joint_parent, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_S_s, torch::Tensor adj_J); void eval_rigid_mass_cpu_kernel_forward( int* var_articulation_start, int* var_articulation_M_start, spatial_matrix* var_body_I_s, float* var_M) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; int var_6; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); var_5 = df::sub(var_4, var_1); var_6 = df::load(var_articulation_M_start, var_0); df::spatial_mass(var_body_I_s, var_1, var_5, var_6, var_M); } void eval_rigid_mass_cpu_kernel_backward( int* var_articulation_start, int* var_articulation_M_start, spatial_matrix* var_body_I_s, float* var_M, int* adj_articulation_start, int* adj_articulation_M_start, spatial_matrix* adj_body_I_s, float* adj_M) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; int var_6; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); var_5 = df::sub(var_4, var_1); var_6 = df::load(var_articulation_M_start, var_0); df::spatial_mass(var_body_I_s, var_1, var_5, var_6, var_M); //--------- // reverse df::adj_spatial_mass(var_body_I_s, var_1, var_5, var_6, var_M, adj_body_I_s, adj_1, adj_5, adj_6, adj_M); df::adj_load(var_articulation_M_start, var_0, adj_articulation_M_start, adj_0, adj_6); df::adj_sub(var_4, var_1, adj_4, adj_1, adj_5); df::adj_load(var_articulation_start, var_3, adj_articulation_start, adj_3, adj_4); df::adj_add(var_0, var_2, adj_0, adj_2, adj_3); df::adj_load(var_articulation_start, var_0, adj_articulation_start, adj_0, adj_1); return; } // Python entry points void eval_rigid_mass_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_articulation_M_start, torch::Tensor var_body_I_s, torch::Tensor var_M) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_mass_cpu_kernel_forward( cast<int*>(var_articulation_start), cast<int*>(var_articulation_M_start), cast<spatial_matrix*>(var_body_I_s), cast<float*>(var_M)); } } void eval_rigid_mass_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_articulation_M_start, torch::Tensor var_body_I_s, torch::Tensor var_M, torch::Tensor adj_articulation_start, torch::Tensor adj_articulation_M_start, torch::Tensor adj_body_I_s, torch::Tensor adj_M) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_mass_cpu_kernel_backward( cast<int*>(var_articulation_start), cast<int*>(var_articulation_M_start), cast<spatial_matrix*>(var_body_I_s), cast<float*>(var_M), cast<int*>(adj_articulation_start), cast<int*>(adj_articulation_M_start), cast<spatial_matrix*>(adj_body_I_s), cast<float*>(adj_M)); } } // Python entry points void eval_rigid_mass_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_articulation_M_start, torch::Tensor var_body_I_s, torch::Tensor var_M); void eval_rigid_mass_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_articulation_M_start, torch::Tensor var_body_I_s, torch::Tensor var_M, torch::Tensor adj_articulation_start, torch::Tensor adj_articulation_M_start, torch::Tensor adj_body_I_s, torch::Tensor adj_M); void eval_dense_gemm_cpu_kernel_forward( int var_m, int var_n, int var_p, int var_t1, int var_t2, float* var_A, float* var_B, float* var_C) { //--------- // primal vars //--------- // forward df::dense_gemm(var_m, var_n, var_p, var_t1, var_t2, var_A, var_B, var_C); } void eval_dense_gemm_cpu_kernel_backward( int var_m, int var_n, int var_p, int var_t1, int var_t2, float* var_A, float* var_B, float* var_C, int adj_m, int adj_n, int adj_p, int adj_t1, int adj_t2, float* adj_A, float* adj_B, float* adj_C) { //--------- // primal vars //--------- // dual vars //--------- // forward df::dense_gemm(var_m, var_n, var_p, var_t1, var_t2, var_A, var_B, var_C); //--------- // reverse df::adj_dense_gemm(var_m, var_n, var_p, var_t1, var_t2, var_A, var_B, var_C, adj_m, adj_n, adj_p, adj_t1, adj_t2, adj_A, adj_B, adj_C); return; } // Python entry points void eval_dense_gemm_cpu_forward(int dim, int var_m, int var_n, int var_p, int var_t1, int var_t2, torch::Tensor var_A, torch::Tensor var_B, torch::Tensor var_C) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_gemm_cpu_kernel_forward( var_m, var_n, var_p, var_t1, var_t2, cast<float*>(var_A), cast<float*>(var_B), cast<float*>(var_C)); } } void eval_dense_gemm_cpu_backward(int dim, int var_m, int var_n, int var_p, int var_t1, int var_t2, torch::Tensor var_A, torch::Tensor var_B, torch::Tensor var_C, int adj_m, int adj_n, int adj_p, int adj_t1, int adj_t2, torch::Tensor adj_A, torch::Tensor adj_B, torch::Tensor adj_C) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_gemm_cpu_kernel_backward( var_m, var_n, var_p, var_t1, var_t2, cast<float*>(var_A), cast<float*>(var_B), cast<float*>(var_C), adj_m, adj_n, adj_p, adj_t1, adj_t2, cast<float*>(adj_A), cast<float*>(adj_B), cast<float*>(adj_C)); } } // Python entry points void eval_dense_gemm_cpu_forward(int dim, int var_m, int var_n, int var_p, int var_t1, int var_t2, torch::Tensor var_A, torch::Tensor var_B, torch::Tensor var_C); void eval_dense_gemm_cpu_backward(int dim, int var_m, int var_n, int var_p, int var_t1, int var_t2, torch::Tensor var_A, torch::Tensor var_B, torch::Tensor var_C, int adj_m, int adj_n, int adj_p, int adj_t1, int adj_t2, torch::Tensor adj_A, torch::Tensor adj_B, torch::Tensor adj_C); void eval_dense_gemm_batched_cpu_kernel_forward( int* var_m, int* var_n, int* var_p, int var_t1, int var_t2, int* var_A_start, int* var_B_start, int* var_C_start, float* var_A, float* var_B, float* var_C) { //--------- // primal vars //--------- // forward df::dense_gemm_batched(var_m, var_n, var_p, var_t1, var_t2, var_A_start, var_B_start, var_C_start, var_A, var_B, var_C); } void eval_dense_gemm_batched_cpu_kernel_backward( int* var_m, int* var_n, int* var_p, int var_t1, int var_t2, int* var_A_start, int* var_B_start, int* var_C_start, float* var_A, float* var_B, float* var_C, int* adj_m, int* adj_n, int* adj_p, int adj_t1, int adj_t2, int* adj_A_start, int* adj_B_start, int* adj_C_start, float* adj_A, float* adj_B, float* adj_C) { //--------- // primal vars //--------- // dual vars //--------- // forward df::dense_gemm_batched(var_m, var_n, var_p, var_t1, var_t2, var_A_start, var_B_start, var_C_start, var_A, var_B, var_C); //--------- // reverse df::adj_dense_gemm_batched(var_m, var_n, var_p, var_t1, var_t2, var_A_start, var_B_start, var_C_start, var_A, var_B, var_C, adj_m, adj_n, adj_p, adj_t1, adj_t2, adj_A_start, adj_B_start, adj_C_start, adj_A, adj_B, adj_C); return; } // Python entry points void eval_dense_gemm_batched_cpu_forward(int dim, torch::Tensor var_m, torch::Tensor var_n, torch::Tensor var_p, int var_t1, int var_t2, torch::Tensor var_A_start, torch::Tensor var_B_start, torch::Tensor var_C_start, torch::Tensor var_A, torch::Tensor var_B, torch::Tensor var_C) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_gemm_batched_cpu_kernel_forward( cast<int*>(var_m), cast<int*>(var_n), cast<int*>(var_p), var_t1, var_t2, cast<int*>(var_A_start), cast<int*>(var_B_start), cast<int*>(var_C_start), cast<float*>(var_A), cast<float*>(var_B), cast<float*>(var_C)); } } void eval_dense_gemm_batched_cpu_backward(int dim, torch::Tensor var_m, torch::Tensor var_n, torch::Tensor var_p, int var_t1, int var_t2, torch::Tensor var_A_start, torch::Tensor var_B_start, torch::Tensor var_C_start, torch::Tensor var_A, torch::Tensor var_B, torch::Tensor var_C, torch::Tensor adj_m, torch::Tensor adj_n, torch::Tensor adj_p, int adj_t1, int adj_t2, torch::Tensor adj_A_start, torch::Tensor adj_B_start, torch::Tensor adj_C_start, torch::Tensor adj_A, torch::Tensor adj_B, torch::Tensor adj_C) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_gemm_batched_cpu_kernel_backward( cast<int*>(var_m), cast<int*>(var_n), cast<int*>(var_p), var_t1, var_t2, cast<int*>(var_A_start), cast<int*>(var_B_start), cast<int*>(var_C_start), cast<float*>(var_A), cast<float*>(var_B), cast<float*>(var_C), cast<int*>(adj_m), cast<int*>(adj_n), cast<int*>(adj_p), adj_t1, adj_t2, cast<int*>(adj_A_start), cast<int*>(adj_B_start), cast<int*>(adj_C_start), cast<float*>(adj_A), cast<float*>(adj_B), cast<float*>(adj_C)); } } // Python entry points void eval_dense_gemm_batched_cpu_forward(int dim, torch::Tensor var_m, torch::Tensor var_n, torch::Tensor var_p, int var_t1, int var_t2, torch::Tensor var_A_start, torch::Tensor var_B_start, torch::Tensor var_C_start, torch::Tensor var_A, torch::Tensor var_B, torch::Tensor var_C); void eval_dense_gemm_batched_cpu_backward(int dim, torch::Tensor var_m, torch::Tensor var_n, torch::Tensor var_p, int var_t1, int var_t2, torch::Tensor var_A_start, torch::Tensor var_B_start, torch::Tensor var_C_start, torch::Tensor var_A, torch::Tensor var_B, torch::Tensor var_C, torch::Tensor adj_m, torch::Tensor adj_n, torch::Tensor adj_p, int adj_t1, int adj_t2, torch::Tensor adj_A_start, torch::Tensor adj_B_start, torch::Tensor adj_C_start, torch::Tensor adj_A, torch::Tensor adj_B, torch::Tensor adj_C); void eval_dense_cholesky_cpu_kernel_forward( int var_n, float* var_A, float* var_regularization, float* var_L) { //--------- // primal vars //--------- // forward df::dense_chol(var_n, var_A, var_regularization, var_L); } void eval_dense_cholesky_cpu_kernel_backward( int var_n, float* var_A, float* var_regularization, float* var_L, int adj_n, float* adj_A, float* adj_regularization, float* adj_L) { //--------- // primal vars //--------- // dual vars //--------- // forward df::dense_chol(var_n, var_A, var_regularization, var_L); //--------- // reverse df::adj_dense_chol(var_n, var_A, var_regularization, var_L, adj_n, adj_A, adj_regularization, adj_L); return; } // Python entry points void eval_dense_cholesky_cpu_forward(int dim, int var_n, torch::Tensor var_A, torch::Tensor var_regularization, torch::Tensor var_L) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_cholesky_cpu_kernel_forward( var_n, cast<float*>(var_A), cast<float*>(var_regularization), cast<float*>(var_L)); } } void eval_dense_cholesky_cpu_backward(int dim, int var_n, torch::Tensor var_A, torch::Tensor var_regularization, torch::Tensor var_L, int adj_n, torch::Tensor adj_A, torch::Tensor adj_regularization, torch::Tensor adj_L) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_cholesky_cpu_kernel_backward( var_n, cast<float*>(var_A), cast<float*>(var_regularization), cast<float*>(var_L), adj_n, cast<float*>(adj_A), cast<float*>(adj_regularization), cast<float*>(adj_L)); } } // Python entry points void eval_dense_cholesky_cpu_forward(int dim, int var_n, torch::Tensor var_A, torch::Tensor var_regularization, torch::Tensor var_L); void eval_dense_cholesky_cpu_backward(int dim, int var_n, torch::Tensor var_A, torch::Tensor var_regularization, torch::Tensor var_L, int adj_n, torch::Tensor adj_A, torch::Tensor adj_regularization, torch::Tensor adj_L); void eval_dense_cholesky_batched_cpu_kernel_forward( int* var_A_start, int* var_A_dim, float* var_A, float* var_regularization, float* var_L) { //--------- // primal vars //--------- // forward df::dense_chol_batched(var_A_start, var_A_dim, var_A, var_regularization, var_L); } void eval_dense_cholesky_batched_cpu_kernel_backward( int* var_A_start, int* var_A_dim, float* var_A, float* var_regularization, float* var_L, int* adj_A_start, int* adj_A_dim, float* adj_A, float* adj_regularization, float* adj_L) { //--------- // primal vars //--------- // dual vars //--------- // forward df::dense_chol_batched(var_A_start, var_A_dim, var_A, var_regularization, var_L); //--------- // reverse df::adj_dense_chol_batched(var_A_start, var_A_dim, var_A, var_regularization, var_L, adj_A_start, adj_A_dim, adj_A, adj_regularization, adj_L); return; } // Python entry points void eval_dense_cholesky_batched_cpu_forward(int dim, torch::Tensor var_A_start, torch::Tensor var_A_dim, torch::Tensor var_A, torch::Tensor var_regularization, torch::Tensor var_L) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_cholesky_batched_cpu_kernel_forward( cast<int*>(var_A_start), cast<int*>(var_A_dim), cast<float*>(var_A), cast<float*>(var_regularization), cast<float*>(var_L)); } } void eval_dense_cholesky_batched_cpu_backward(int dim, torch::Tensor var_A_start, torch::Tensor var_A_dim, torch::Tensor var_A, torch::Tensor var_regularization, torch::Tensor var_L, torch::Tensor adj_A_start, torch::Tensor adj_A_dim, torch::Tensor adj_A, torch::Tensor adj_regularization, torch::Tensor adj_L) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_cholesky_batched_cpu_kernel_backward( cast<int*>(var_A_start), cast<int*>(var_A_dim), cast<float*>(var_A), cast<float*>(var_regularization), cast<float*>(var_L), cast<int*>(adj_A_start), cast<int*>(adj_A_dim), cast<float*>(adj_A), cast<float*>(adj_regularization), cast<float*>(adj_L)); } } // Python entry points void eval_dense_cholesky_batched_cpu_forward(int dim, torch::Tensor var_A_start, torch::Tensor var_A_dim, torch::Tensor var_A, torch::Tensor var_regularization, torch::Tensor var_L); void eval_dense_cholesky_batched_cpu_backward(int dim, torch::Tensor var_A_start, torch::Tensor var_A_dim, torch::Tensor var_A, torch::Tensor var_regularization, torch::Tensor var_L, torch::Tensor adj_A_start, torch::Tensor adj_A_dim, torch::Tensor adj_A, torch::Tensor adj_regularization, torch::Tensor adj_L); void eval_dense_subs_cpu_kernel_forward( int var_n, float* var_L, float* var_b, float* var_x) { //--------- // primal vars //--------- // forward df::dense_subs(var_n, var_L, var_b, var_x); } void eval_dense_subs_cpu_kernel_backward( int var_n, float* var_L, float* var_b, float* var_x, int adj_n, float* adj_L, float* adj_b, float* adj_x) { //--------- // primal vars //--------- // dual vars //--------- // forward df::dense_subs(var_n, var_L, var_b, var_x); //--------- // reverse df::adj_dense_subs(var_n, var_L, var_b, var_x, adj_n, adj_L, adj_b, adj_x); return; } // Python entry points void eval_dense_subs_cpu_forward(int dim, int var_n, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_x) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_subs_cpu_kernel_forward( var_n, cast<float*>(var_L), cast<float*>(var_b), cast<float*>(var_x)); } } void eval_dense_subs_cpu_backward(int dim, int var_n, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_x, int adj_n, torch::Tensor adj_L, torch::Tensor adj_b, torch::Tensor adj_x) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_subs_cpu_kernel_backward( var_n, cast<float*>(var_L), cast<float*>(var_b), cast<float*>(var_x), adj_n, cast<float*>(adj_L), cast<float*>(adj_b), cast<float*>(adj_x)); } } // Python entry points void eval_dense_subs_cpu_forward(int dim, int var_n, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_x); void eval_dense_subs_cpu_backward(int dim, int var_n, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_x, int adj_n, torch::Tensor adj_L, torch::Tensor adj_b, torch::Tensor adj_x); void eval_dense_solve_cpu_kernel_forward( int var_n, float* var_A, float* var_L, float* var_b, float* var_tmp, float* var_x) { //--------- // primal vars //--------- // forward df::dense_solve(var_n, var_A, var_L, var_b, var_tmp, var_x); } void eval_dense_solve_cpu_kernel_backward( int var_n, float* var_A, float* var_L, float* var_b, float* var_tmp, float* var_x, int adj_n, float* adj_A, float* adj_L, float* adj_b, float* adj_tmp, float* adj_x) { //--------- // primal vars //--------- // dual vars //--------- // forward df::dense_solve(var_n, var_A, var_L, var_b, var_tmp, var_x); //--------- // reverse df::adj_dense_solve(var_n, var_A, var_L, var_b, var_tmp, var_x, adj_n, adj_A, adj_L, adj_b, adj_tmp, adj_x); return; } // Python entry points void eval_dense_solve_cpu_forward(int dim, int var_n, torch::Tensor var_A, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_tmp, torch::Tensor var_x) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_solve_cpu_kernel_forward( var_n, cast<float*>(var_A), cast<float*>(var_L), cast<float*>(var_b), cast<float*>(var_tmp), cast<float*>(var_x)); } } void eval_dense_solve_cpu_backward(int dim, int var_n, torch::Tensor var_A, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_tmp, torch::Tensor var_x, int adj_n, torch::Tensor adj_A, torch::Tensor adj_L, torch::Tensor adj_b, torch::Tensor adj_tmp, torch::Tensor adj_x) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_solve_cpu_kernel_backward( var_n, cast<float*>(var_A), cast<float*>(var_L), cast<float*>(var_b), cast<float*>(var_tmp), cast<float*>(var_x), adj_n, cast<float*>(adj_A), cast<float*>(adj_L), cast<float*>(adj_b), cast<float*>(adj_tmp), cast<float*>(adj_x)); } } // Python entry points void eval_dense_solve_cpu_forward(int dim, int var_n, torch::Tensor var_A, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_tmp, torch::Tensor var_x); void eval_dense_solve_cpu_backward(int dim, int var_n, torch::Tensor var_A, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_tmp, torch::Tensor var_x, int adj_n, torch::Tensor adj_A, torch::Tensor adj_L, torch::Tensor adj_b, torch::Tensor adj_tmp, torch::Tensor adj_x); void eval_dense_solve_batched_cpu_kernel_forward( int* var_b_start, int* var_A_start, int* var_A_dim, float* var_A, float* var_L, float* var_b, float* var_tmp, float* var_x) { //--------- // primal vars //--------- // forward df::dense_solve_batched(var_b_start, var_A_start, var_A_dim, var_A, var_L, var_b, var_tmp, var_x); } void eval_dense_solve_batched_cpu_kernel_backward( int* var_b_start, int* var_A_start, int* var_A_dim, float* var_A, float* var_L, float* var_b, float* var_tmp, float* var_x, int* adj_b_start, int* adj_A_start, int* adj_A_dim, float* adj_A, float* adj_L, float* adj_b, float* adj_tmp, float* adj_x) { //--------- // primal vars //--------- // dual vars //--------- // forward df::dense_solve_batched(var_b_start, var_A_start, var_A_dim, var_A, var_L, var_b, var_tmp, var_x); //--------- // reverse df::adj_dense_solve_batched(var_b_start, var_A_start, var_A_dim, var_A, var_L, var_b, var_tmp, var_x, adj_b_start, adj_A_start, adj_A_dim, adj_A, adj_L, adj_b, adj_tmp, adj_x); return; } // Python entry points void eval_dense_solve_batched_cpu_forward(int dim, torch::Tensor var_b_start, torch::Tensor var_A_start, torch::Tensor var_A_dim, torch::Tensor var_A, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_tmp, torch::Tensor var_x) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_solve_batched_cpu_kernel_forward( cast<int*>(var_b_start), cast<int*>(var_A_start), cast<int*>(var_A_dim), cast<float*>(var_A), cast<float*>(var_L), cast<float*>(var_b), cast<float*>(var_tmp), cast<float*>(var_x)); } } void eval_dense_solve_batched_cpu_backward(int dim, torch::Tensor var_b_start, torch::Tensor var_A_start, torch::Tensor var_A_dim, torch::Tensor var_A, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_tmp, torch::Tensor var_x, torch::Tensor adj_b_start, torch::Tensor adj_A_start, torch::Tensor adj_A_dim, torch::Tensor adj_A, torch::Tensor adj_L, torch::Tensor adj_b, torch::Tensor adj_tmp, torch::Tensor adj_x) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_solve_batched_cpu_kernel_backward( cast<int*>(var_b_start), cast<int*>(var_A_start), cast<int*>(var_A_dim), cast<float*>(var_A), cast<float*>(var_L), cast<float*>(var_b), cast<float*>(var_tmp), cast<float*>(var_x), cast<int*>(adj_b_start), cast<int*>(adj_A_start), cast<int*>(adj_A_dim), cast<float*>(adj_A), cast<float*>(adj_L), cast<float*>(adj_b), cast<float*>(adj_tmp), cast<float*>(adj_x)); } } // Python entry points void eval_dense_solve_batched_cpu_forward(int dim, torch::Tensor var_b_start, torch::Tensor var_A_start, torch::Tensor var_A_dim, torch::Tensor var_A, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_tmp, torch::Tensor var_x); void eval_dense_solve_batched_cpu_backward(int dim, torch::Tensor var_b_start, torch::Tensor var_A_start, torch::Tensor var_A_dim, torch::Tensor var_A, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_tmp, torch::Tensor var_x, torch::Tensor adj_b_start, torch::Tensor adj_A_start, torch::Tensor adj_A_dim, torch::Tensor adj_A, torch::Tensor adj_L, torch::Tensor adj_b, torch::Tensor adj_tmp, torch::Tensor adj_x); void eval_rigid_integrate_cpu_kernel_forward( int* var_joint_type, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, float* var_joint_qd, float* var_joint_qdd, float var_dt, float* var_joint_q_new, float* var_joint_qd_new) { //--------- // primal vars int var_0; int var_1; int var_2; int var_3; int var_4; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_joint_type, var_0); var_2 = df::load(var_joint_q_start, var_0); var_3 = df::load(var_joint_qd_start, var_0); var_4 = jcalc_integrate_cpu_func(var_1, var_joint_q, var_joint_qd, var_joint_qdd, var_2, var_3, var_dt, var_joint_q_new, var_joint_qd_new); } void eval_rigid_integrate_cpu_kernel_backward( int* var_joint_type, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, float* var_joint_qd, float* var_joint_qdd, float var_dt, float* var_joint_q_new, float* var_joint_qd_new, int* adj_joint_type, int* adj_joint_q_start, int* adj_joint_qd_start, float* adj_joint_q, float* adj_joint_qd, float* adj_joint_qdd, float adj_dt, float* adj_joint_q_new, float* adj_joint_qd_new) { //--------- // primal vars int var_0; int var_1; int var_2; int var_3; int var_4; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_joint_type, var_0); var_2 = df::load(var_joint_q_start, var_0); var_3 = df::load(var_joint_qd_start, var_0); var_4 = jcalc_integrate_cpu_func(var_1, var_joint_q, var_joint_qd, var_joint_qdd, var_2, var_3, var_dt, var_joint_q_new, var_joint_qd_new); //--------- // reverse adj_jcalc_integrate_cpu_func(var_1, var_joint_q, var_joint_qd, var_joint_qdd, var_2, var_3, var_dt, var_joint_q_new, var_joint_qd_new, adj_1, adj_joint_q, adj_joint_qd, adj_joint_qdd, adj_2, adj_3, adj_dt, adj_joint_q_new, adj_joint_qd_new, adj_4); df::adj_load(var_joint_qd_start, var_0, adj_joint_qd_start, adj_0, adj_3); df::adj_load(var_joint_q_start, var_0, adj_joint_q_start, adj_0, adj_2); df::adj_load(var_joint_type, var_0, adj_joint_type, adj_0, adj_1); return; } // Python entry points void eval_rigid_integrate_cpu_forward(int dim, torch::Tensor var_joint_type, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_qdd, float var_dt, torch::Tensor var_joint_q_new, torch::Tensor var_joint_qd_new) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_integrate_cpu_kernel_forward( cast<int*>(var_joint_type), cast<int*>(var_joint_q_start), cast<int*>(var_joint_qd_start), cast<float*>(var_joint_q), cast<float*>(var_joint_qd), cast<float*>(var_joint_qdd), var_dt, cast<float*>(var_joint_q_new), cast<float*>(var_joint_qd_new)); } } void eval_rigid_integrate_cpu_backward(int dim, torch::Tensor var_joint_type, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_qdd, float var_dt, torch::Tensor var_joint_q_new, torch::Tensor var_joint_qd_new, torch::Tensor adj_joint_type, torch::Tensor adj_joint_q_start, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_q, torch::Tensor adj_joint_qd, torch::Tensor adj_joint_qdd, float adj_dt, torch::Tensor adj_joint_q_new, torch::Tensor adj_joint_qd_new) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_integrate_cpu_kernel_backward( cast<int*>(var_joint_type), cast<int*>(var_joint_q_start), cast<int*>(var_joint_qd_start), cast<float*>(var_joint_q), cast<float*>(var_joint_qd), cast<float*>(var_joint_qdd), var_dt, cast<float*>(var_joint_q_new), cast<float*>(var_joint_qd_new), cast<int*>(adj_joint_type), cast<int*>(adj_joint_q_start), cast<int*>(adj_joint_qd_start), cast<float*>(adj_joint_q), cast<float*>(adj_joint_qd), cast<float*>(adj_joint_qdd), adj_dt, cast<float*>(adj_joint_q_new), cast<float*>(adj_joint_qd_new)); } } // Python entry points void eval_rigid_integrate_cpu_forward(int dim, torch::Tensor var_joint_type, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_qdd, float var_dt, torch::Tensor var_joint_q_new, torch::Tensor var_joint_qd_new); void eval_rigid_integrate_cpu_backward(int dim, torch::Tensor var_joint_type, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_qdd, float var_dt, torch::Tensor var_joint_q_new, torch::Tensor var_joint_qd_new, torch::Tensor adj_joint_type, torch::Tensor adj_joint_q_start, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_q, torch::Tensor adj_joint_qd, torch::Tensor adj_joint_qdd, float adj_dt, torch::Tensor adj_joint_q_new, torch::Tensor adj_joint_qd_new); void solve_springs_cpu_kernel_forward( df::float3* var_x, df::float3* var_v, float* var_invmass, int* var_spring_indices, float* var_spring_rest_lengths, float* var_spring_stiffness, float* var_spring_damping, float var_dt, df::float3* var_delta) { //--------- // primal vars int var_0; const int var_1 = 2; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; float var_10; float var_11; float var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; df::float3 var_17; df::float3 var_18; float var_19; const float var_20 = 1.0; float var_21; df::float3 var_22; float var_23; float var_24; float var_25; float var_26; float var_27; float var_28; float var_29; float var_30; float var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_spring_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_spring_indices, var_8); var_10 = df::load(var_spring_stiffness, var_0); var_11 = df::load(var_spring_damping, var_0); var_12 = df::load(var_spring_rest_lengths, var_0); var_13 = df::load(var_x, var_5); var_14 = df::load(var_x, var_9); var_15 = df::load(var_v, var_5); var_16 = df::load(var_v, var_9); var_17 = df::sub(var_13, var_14); var_18 = df::sub(var_15, var_16); var_19 = df::length(var_17); var_21 = df::div(var_20, var_19); var_22 = df::mul(var_17, var_21); var_23 = df::sub(var_19, var_12); var_24 = df::dot(var_22, var_18); var_25 = df::load(var_invmass, var_5); var_26 = df::load(var_invmass, var_9); var_27 = df::add(var_25, var_26); var_28 = df::mul(var_10, var_dt); var_29 = df::mul(var_28, var_dt); var_30 = df::div(var_20, var_29); var_31 = df::div(var_23, var_27); var_32 = df::mul(var_22, var_31); var_33 = df::mul(var_32, var_25); df::atomic_sub(var_delta, var_5, var_33); var_34 = df::mul(var_32, var_26); df::atomic_add(var_delta, var_9, var_34); } void solve_springs_cpu_kernel_backward( df::float3* var_x, df::float3* var_v, float* var_invmass, int* var_spring_indices, float* var_spring_rest_lengths, float* var_spring_stiffness, float* var_spring_damping, float var_dt, df::float3* var_delta, df::float3* adj_x, df::float3* adj_v, float* adj_invmass, int* adj_spring_indices, float* adj_spring_rest_lengths, float* adj_spring_stiffness, float* adj_spring_damping, float adj_dt, df::float3* adj_delta) { //--------- // primal vars int var_0; const int var_1 = 2; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; float var_10; float var_11; float var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; df::float3 var_17; df::float3 var_18; float var_19; const float var_20 = 1.0; float var_21; df::float3 var_22; float var_23; float var_24; float var_25; float var_26; float var_27; float var_28; float var_29; float var_30; float var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; int adj_9 = 0; float adj_10 = 0; float adj_11 = 0; float adj_12 = 0; df::float3 adj_13 = 0; df::float3 adj_14 = 0; df::float3 adj_15 = 0; df::float3 adj_16 = 0; df::float3 adj_17 = 0; df::float3 adj_18 = 0; float adj_19 = 0; float adj_20 = 0; float adj_21 = 0; df::float3 adj_22 = 0; float adj_23 = 0; float adj_24 = 0; float adj_25 = 0; float adj_26 = 0; float adj_27 = 0; float adj_28 = 0; float adj_29 = 0; float adj_30 = 0; float adj_31 = 0; df::float3 adj_32 = 0; df::float3 adj_33 = 0; df::float3 adj_34 = 0; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_spring_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_spring_indices, var_8); var_10 = df::load(var_spring_stiffness, var_0); var_11 = df::load(var_spring_damping, var_0); var_12 = df::load(var_spring_rest_lengths, var_0); var_13 = df::load(var_x, var_5); var_14 = df::load(var_x, var_9); var_15 = df::load(var_v, var_5); var_16 = df::load(var_v, var_9); var_17 = df::sub(var_13, var_14); var_18 = df::sub(var_15, var_16); var_19 = df::length(var_17); var_21 = df::div(var_20, var_19); var_22 = df::mul(var_17, var_21); var_23 = df::sub(var_19, var_12); var_24 = df::dot(var_22, var_18); var_25 = df::load(var_invmass, var_5); var_26 = df::load(var_invmass, var_9); var_27 = df::add(var_25, var_26); var_28 = df::mul(var_10, var_dt); var_29 = df::mul(var_28, var_dt); var_30 = df::div(var_20, var_29); var_31 = df::div(var_23, var_27); var_32 = df::mul(var_22, var_31); var_33 = df::mul(var_32, var_25); df::atomic_sub(var_delta, var_5, var_33); var_34 = df::mul(var_32, var_26); df::atomic_add(var_delta, var_9, var_34); //--------- // reverse df::adj_atomic_add(var_delta, var_9, var_34, adj_delta, adj_9, adj_34); df::adj_mul(var_32, var_26, adj_32, adj_26, adj_34); df::adj_atomic_sub(var_delta, var_5, var_33, adj_delta, adj_5, adj_33); df::adj_mul(var_32, var_25, adj_32, adj_25, adj_33); df::adj_mul(var_22, var_31, adj_22, adj_31, adj_32); df::adj_div(var_23, var_27, adj_23, adj_27, adj_31); df::adj_div(var_20, var_29, adj_20, adj_29, adj_30); df::adj_mul(var_28, var_dt, adj_28, adj_dt, adj_29); df::adj_mul(var_10, var_dt, adj_10, adj_dt, adj_28); df::adj_add(var_25, var_26, adj_25, adj_26, adj_27); df::adj_load(var_invmass, var_9, adj_invmass, adj_9, adj_26); df::adj_load(var_invmass, var_5, adj_invmass, adj_5, adj_25); df::adj_dot(var_22, var_18, adj_22, adj_18, adj_24); df::adj_sub(var_19, var_12, adj_19, adj_12, adj_23); df::adj_mul(var_17, var_21, adj_17, adj_21, adj_22); df::adj_div(var_20, var_19, adj_20, adj_19, adj_21); df::adj_length(var_17, adj_17, adj_19); df::adj_sub(var_15, var_16, adj_15, adj_16, adj_18); df::adj_sub(var_13, var_14, adj_13, adj_14, adj_17); df::adj_load(var_v, var_9, adj_v, adj_9, adj_16); df::adj_load(var_v, var_5, adj_v, adj_5, adj_15); df::adj_load(var_x, var_9, adj_x, adj_9, adj_14); df::adj_load(var_x, var_5, adj_x, adj_5, adj_13); df::adj_load(var_spring_rest_lengths, var_0, adj_spring_rest_lengths, adj_0, adj_12); df::adj_load(var_spring_damping, var_0, adj_spring_damping, adj_0, adj_11); df::adj_load(var_spring_stiffness, var_0, adj_spring_stiffness, adj_0, adj_10); df::adj_load(var_spring_indices, var_8, adj_spring_indices, adj_8, adj_9); df::adj_add(var_6, var_7, adj_6, adj_7, adj_8); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_6); df::adj_load(var_spring_indices, var_4, adj_spring_indices, adj_4, adj_5); df::adj_add(var_2, var_3, adj_2, adj_3, adj_4); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_2); return; } // Python entry points void solve_springs_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_invmass, torch::Tensor var_spring_indices, torch::Tensor var_spring_rest_lengths, torch::Tensor var_spring_stiffness, torch::Tensor var_spring_damping, float var_dt, torch::Tensor var_delta) { for (int i=0; i < dim; ++i) { s_threadIdx = i; solve_springs_cpu_kernel_forward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<float*>(var_invmass), cast<int*>(var_spring_indices), cast<float*>(var_spring_rest_lengths), cast<float*>(var_spring_stiffness), cast<float*>(var_spring_damping), var_dt, cast<df::float3*>(var_delta)); } } void solve_springs_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_invmass, torch::Tensor var_spring_indices, torch::Tensor var_spring_rest_lengths, torch::Tensor var_spring_stiffness, torch::Tensor var_spring_damping, float var_dt, torch::Tensor var_delta, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_invmass, torch::Tensor adj_spring_indices, torch::Tensor adj_spring_rest_lengths, torch::Tensor adj_spring_stiffness, torch::Tensor adj_spring_damping, float adj_dt, torch::Tensor adj_delta) { for (int i=0; i < dim; ++i) { s_threadIdx = i; solve_springs_cpu_kernel_backward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<float*>(var_invmass), cast<int*>(var_spring_indices), cast<float*>(var_spring_rest_lengths), cast<float*>(var_spring_stiffness), cast<float*>(var_spring_damping), var_dt, cast<df::float3*>(var_delta), cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<float*>(adj_invmass), cast<int*>(adj_spring_indices), cast<float*>(adj_spring_rest_lengths), cast<float*>(adj_spring_stiffness), cast<float*>(adj_spring_damping), adj_dt, cast<df::float3*>(adj_delta)); } } // Python entry points void solve_springs_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_invmass, torch::Tensor var_spring_indices, torch::Tensor var_spring_rest_lengths, torch::Tensor var_spring_stiffness, torch::Tensor var_spring_damping, float var_dt, torch::Tensor var_delta); void solve_springs_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_invmass, torch::Tensor var_spring_indices, torch::Tensor var_spring_rest_lengths, torch::Tensor var_spring_stiffness, torch::Tensor var_spring_damping, float var_dt, torch::Tensor var_delta, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_invmass, torch::Tensor adj_spring_indices, torch::Tensor adj_spring_rest_lengths, torch::Tensor adj_spring_stiffness, torch::Tensor adj_spring_damping, float adj_dt, torch::Tensor adj_delta); void solve_tetrahedra_cpu_kernel_forward( df::float3* var_x, df::float3* var_v, float* var_inv_mass, int* var_indices, mat33* var_pose, float* var_activation, float* var_materials, float var_dt, float var_relaxation, df::float3* var_delta) { //--------- // primal vars int var_0; const int var_1 = 4; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; int var_10; const int var_11 = 2; int var_12; int var_13; int var_14; const int var_15 = 3; int var_16; int var_17; float var_18; int var_19; int var_20; float var_21; int var_22; int var_23; float var_24; int var_25; int var_26; float var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; df::float3 var_35; float var_36; float var_37; float var_38; float var_39; df::float3 var_40; df::float3 var_41; df::float3 var_42; df::float3 var_43; df::float3 var_44; df::float3 var_45; mat33 var_46; mat33 var_47; float var_48; const float var_49 = 6.0; float var_50; const float var_51 = 1.0; float var_52; mat33 var_53; float var_54; float var_55; float var_56; df::float3 var_57; float var_58; float var_59; float var_60; df::float3 var_61; float var_62; float var_63; float var_64; df::float3 var_65; float var_66; float var_67; float var_68; float var_69; float var_70; const float var_71 = 3.0; float var_72; float var_73; float var_74; const float var_75 = 0.0; bool var_76; bool var_77; float var_78; float var_79; mat33 var_80; mat33 var_81; float var_82; mat33 var_83; float var_84; float var_85; float var_86; float var_87; float var_88; df::float3 var_89; float var_90; float var_91; float var_92; df::float3 var_93; float var_94; float var_95; float var_96; df::float3 var_97; df::float3 var_98; df::float3 var_99; float var_100; df::float3 var_101; float var_102; float var_103; float var_104; float var_105; float var_106; float var_107; float var_108; float var_109; float var_110; float var_111; float var_112; float var_113; float var_114; float var_115; float var_116; float var_117; float var_118; df::float3 var_119; df::float3 var_120; df::float3 var_121; df::float3 var_122; float var_123; float var_124; float var_125; df::float3 var_126; df::float3 var_127; df::float3 var_128; df::float3 var_129; df::float3 var_130; df::float3 var_131; df::float3 var_132; df::float3 var_133; float var_134; df::float3 var_135; float var_136; float var_137; float var_138; float var_139; float var_140; float var_141; float var_142; float var_143; float var_144; float var_145; float var_146; float var_147; float var_148; float var_149; float var_150; float var_151; float var_152; df::float3 var_153; df::float3 var_154; df::float3 var_155; df::float3 var_156; df::float3 var_157; df::float3 var_158; df::float3 var_159; df::float3 var_160; df::float3 var_161; df::float3 var_162; df::float3 var_163; df::float3 var_164; df::float3 var_165; df::float3 var_166; df::float3 var_167; df::float3 var_168; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_indices, var_8); var_10 = df::mul(var_0, var_1); var_12 = df::add(var_10, var_11); var_13 = df::load(var_indices, var_12); var_14 = df::mul(var_0, var_1); var_16 = df::add(var_14, var_15); var_17 = df::load(var_indices, var_16); var_18 = df::load(var_activation, var_0); var_19 = df::mul(var_0, var_15); var_20 = df::add(var_19, var_3); var_21 = df::load(var_materials, var_20); var_22 = df::mul(var_0, var_15); var_23 = df::add(var_22, var_7); var_24 = df::load(var_materials, var_23); var_25 = df::mul(var_0, var_15); var_26 = df::add(var_25, var_11); var_27 = df::load(var_materials, var_26); var_28 = df::load(var_x, var_5); var_29 = df::load(var_x, var_9); var_30 = df::load(var_x, var_13); var_31 = df::load(var_x, var_17); var_32 = df::load(var_v, var_5); var_33 = df::load(var_v, var_9); var_34 = df::load(var_v, var_13); var_35 = df::load(var_v, var_17); var_36 = df::load(var_inv_mass, var_5); var_37 = df::load(var_inv_mass, var_9); var_38 = df::load(var_inv_mass, var_13); var_39 = df::load(var_inv_mass, var_17); var_40 = df::sub(var_29, var_28); var_41 = df::sub(var_30, var_28); var_42 = df::sub(var_31, var_28); var_43 = df::sub(var_33, var_32); var_44 = df::sub(var_34, var_32); var_45 = df::sub(var_35, var_32); var_46 = df::mat33(var_40, var_41, var_42); var_47 = df::load(var_pose, var_0); var_48 = df::determinant(var_47); var_50 = df::mul(var_48, var_49); var_52 = df::div(var_51, var_50); var_53 = df::mul(var_46, var_47); var_54 = df::index(var_53, var_3, var_3); var_55 = df::index(var_53, var_7, var_3); var_56 = df::index(var_53, var_11, var_3); var_57 = df::float3(var_54, var_55, var_56); var_58 = df::index(var_53, var_3, var_7); var_59 = df::index(var_53, var_7, var_7); var_60 = df::index(var_53, var_11, var_7); var_61 = df::float3(var_58, var_59, var_60); var_62 = df::index(var_53, var_3, var_11); var_63 = df::index(var_53, var_7, var_11); var_64 = df::index(var_53, var_11, var_11); var_65 = df::float3(var_62, var_63, var_64); var_66 = df::dot(var_57, var_57); var_67 = df::dot(var_61, var_61); var_68 = df::add(var_66, var_67); var_69 = df::dot(var_65, var_65); var_70 = df::add(var_68, var_69); var_72 = df::sub(var_70, var_71); var_73 = df::abs(var_72); var_74 = df::sqrt(var_73); var_76 = (var_74 == var_75); if (var_76) { return; } var_77 = (var_70 < var_71); if (var_77) { var_78 = df::sub(var_75, var_74); } var_79 = df::select(var_77, var_74, var_78); var_80 = df::transpose(var_47); var_81 = df::mul(var_53, var_80); var_82 = df::div(var_51, var_79); var_83 = df::mul(var_81, var_82); var_84 = df::div(var_21, var_24); var_85 = df::add(var_51, var_84); var_86 = df::index(var_83, var_3, var_3); var_87 = df::index(var_83, var_7, var_3); var_88 = df::index(var_83, var_11, var_3); var_89 = df::float3(var_86, var_87, var_88); var_90 = df::index(var_83, var_3, var_7); var_91 = df::index(var_83, var_7, var_7); var_92 = df::index(var_83, var_11, var_7); var_93 = df::float3(var_90, var_91, var_92); var_94 = df::index(var_83, var_3, var_11); var_95 = df::index(var_83, var_7, var_11); var_96 = df::index(var_83, var_11, var_11); var_97 = df::float3(var_94, var_95, var_96); var_98 = df::add(var_89, var_93); var_99 = df::add(var_98, var_97); var_100 = df::sub(var_75, var_51); var_101 = df::mul(var_99, var_100); var_102 = df::dot(var_101, var_101); var_103 = df::mul(var_102, var_36); var_104 = df::dot(var_89, var_89); var_105 = df::mul(var_104, var_37); var_106 = df::add(var_103, var_105); var_107 = df::dot(var_93, var_93); var_108 = df::mul(var_107, var_38); var_109 = df::add(var_106, var_108); var_110 = df::dot(var_97, var_97); var_111 = df::mul(var_110, var_39); var_112 = df::add(var_109, var_111); var_113 = df::mul(var_21, var_dt); var_114 = df::mul(var_113, var_dt); var_115 = df::mul(var_114, var_52); var_116 = df::div(var_51, var_115); var_117 = df::add(var_112, var_116); var_118 = df::div(var_74, var_117); var_119 = df::mul(var_101, var_118); var_120 = df::mul(var_89, var_118); var_121 = df::mul(var_93, var_118); var_122 = df::mul(var_97, var_118); var_123 = df::determinant(var_53); var_124 = df::sub(var_123, var_85); var_125 = df::div(var_50, var_49); var_126 = df::cross(var_41, var_42); var_127 = df::mul(var_126, var_125); var_128 = df::cross(var_42, var_40); var_129 = df::mul(var_128, var_125); var_130 = df::cross(var_40, var_41); var_131 = df::mul(var_130, var_125); var_132 = df::add(var_127, var_129); var_133 = df::add(var_132, var_131); var_134 = df::sub(var_75, var_51); var_135 = df::mul(var_133, var_134); var_136 = df::dot(var_135, var_135); var_137 = df::mul(var_136, var_36); var_138 = df::dot(var_127, var_127); var_139 = df::mul(var_138, var_37); var_140 = df::add(var_137, var_139); var_141 = df::dot(var_129, var_129); var_142 = df::mul(var_141, var_38); var_143 = df::add(var_140, var_142); var_144 = df::dot(var_131, var_131); var_145 = df::mul(var_144, var_39); var_146 = df::add(var_143, var_145); var_147 = df::mul(var_24, var_dt); var_148 = df::mul(var_147, var_dt); var_149 = df::mul(var_148, var_52); var_150 = df::div(var_51, var_149); var_151 = df::add(var_146, var_150); var_152 = df::div(var_124, var_151); var_153 = df::mul(var_135, var_152); var_154 = df::add(var_119, var_153); var_155 = df::mul(var_127, var_152); var_156 = df::add(var_120, var_155); var_157 = df::mul(var_129, var_152); var_158 = df::add(var_121, var_157); var_159 = df::mul(var_131, var_152); var_160 = df::add(var_122, var_159); var_161 = df::mul(var_154, var_36); var_162 = df::mul(var_161, var_relaxation); df::atomic_sub(var_delta, var_5, var_162); var_163 = df::mul(var_156, var_37); var_164 = df::mul(var_163, var_relaxation); df::atomic_sub(var_delta, var_9, var_164); var_165 = df::mul(var_158, var_38); var_166 = df::mul(var_165, var_relaxation); df::atomic_sub(var_delta, var_13, var_166); var_167 = df::mul(var_160, var_39); var_168 = df::mul(var_167, var_relaxation); df::atomic_sub(var_delta, var_17, var_168); } void solve_tetrahedra_cpu_kernel_backward( df::float3* var_x, df::float3* var_v, float* var_inv_mass, int* var_indices, mat33* var_pose, float* var_activation, float* var_materials, float var_dt, float var_relaxation, df::float3* var_delta, df::float3* adj_x, df::float3* adj_v, float* adj_inv_mass, int* adj_indices, mat33* adj_pose, float* adj_activation, float* adj_materials, float adj_dt, float adj_relaxation, df::float3* adj_delta) { //--------- // primal vars int var_0; const int var_1 = 4; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; int var_10; const int var_11 = 2; int var_12; int var_13; int var_14; const int var_15 = 3; int var_16; int var_17; float var_18; int var_19; int var_20; float var_21; int var_22; int var_23; float var_24; int var_25; int var_26; float var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; df::float3 var_35; float var_36; float var_37; float var_38; float var_39; df::float3 var_40; df::float3 var_41; df::float3 var_42; df::float3 var_43; df::float3 var_44; df::float3 var_45; mat33 var_46; mat33 var_47; float var_48; const float var_49 = 6.0; float var_50; const float var_51 = 1.0; float var_52; mat33 var_53; float var_54; float var_55; float var_56; df::float3 var_57; float var_58; float var_59; float var_60; df::float3 var_61; float var_62; float var_63; float var_64; df::float3 var_65; float var_66; float var_67; float var_68; float var_69; float var_70; const float var_71 = 3.0; float var_72; float var_73; float var_74; const float var_75 = 0.0; bool var_76; bool var_77; float var_78; float var_79; mat33 var_80; mat33 var_81; float var_82; mat33 var_83; float var_84; float var_85; float var_86; float var_87; float var_88; df::float3 var_89; float var_90; float var_91; float var_92; df::float3 var_93; float var_94; float var_95; float var_96; df::float3 var_97; df::float3 var_98; df::float3 var_99; float var_100; df::float3 var_101; float var_102; float var_103; float var_104; float var_105; float var_106; float var_107; float var_108; float var_109; float var_110; float var_111; float var_112; float var_113; float var_114; float var_115; float var_116; float var_117; float var_118; df::float3 var_119; df::float3 var_120; df::float3 var_121; df::float3 var_122; float var_123; float var_124; float var_125; df::float3 var_126; df::float3 var_127; df::float3 var_128; df::float3 var_129; df::float3 var_130; df::float3 var_131; df::float3 var_132; df::float3 var_133; float var_134; df::float3 var_135; float var_136; float var_137; float var_138; float var_139; float var_140; float var_141; float var_142; float var_143; float var_144; float var_145; float var_146; float var_147; float var_148; float var_149; float var_150; float var_151; float var_152; df::float3 var_153; df::float3 var_154; df::float3 var_155; df::float3 var_156; df::float3 var_157; df::float3 var_158; df::float3 var_159; df::float3 var_160; df::float3 var_161; df::float3 var_162; df::float3 var_163; df::float3 var_164; df::float3 var_165; df::float3 var_166; df::float3 var_167; df::float3 var_168; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; int adj_9 = 0; int adj_10 = 0; int adj_11 = 0; int adj_12 = 0; int adj_13 = 0; int adj_14 = 0; int adj_15 = 0; int adj_16 = 0; int adj_17 = 0; float adj_18 = 0; int adj_19 = 0; int adj_20 = 0; float adj_21 = 0; int adj_22 = 0; int adj_23 = 0; float adj_24 = 0; int adj_25 = 0; int adj_26 = 0; float adj_27 = 0; df::float3 adj_28 = 0; df::float3 adj_29 = 0; df::float3 adj_30 = 0; df::float3 adj_31 = 0; df::float3 adj_32 = 0; df::float3 adj_33 = 0; df::float3 adj_34 = 0; df::float3 adj_35 = 0; float adj_36 = 0; float adj_37 = 0; float adj_38 = 0; float adj_39 = 0; df::float3 adj_40 = 0; df::float3 adj_41 = 0; df::float3 adj_42 = 0; df::float3 adj_43 = 0; df::float3 adj_44 = 0; df::float3 adj_45 = 0; mat33 adj_46 = 0; mat33 adj_47 = 0; float adj_48 = 0; float adj_49 = 0; float adj_50 = 0; float adj_51 = 0; float adj_52 = 0; mat33 adj_53 = 0; float adj_54 = 0; float adj_55 = 0; float adj_56 = 0; df::float3 adj_57 = 0; float adj_58 = 0; float adj_59 = 0; float adj_60 = 0; df::float3 adj_61 = 0; float adj_62 = 0; float adj_63 = 0; float adj_64 = 0; df::float3 adj_65 = 0; float adj_66 = 0; float adj_67 = 0; float adj_68 = 0; float adj_69 = 0; float adj_70 = 0; float adj_71 = 0; float adj_72 = 0; float adj_73 = 0; float adj_74 = 0; float adj_75 = 0; bool adj_76 = 0; bool adj_77 = 0; float adj_78 = 0; float adj_79 = 0; mat33 adj_80 = 0; mat33 adj_81 = 0; float adj_82 = 0; mat33 adj_83 = 0; float adj_84 = 0; float adj_85 = 0; float adj_86 = 0; float adj_87 = 0; float adj_88 = 0; df::float3 adj_89 = 0; float adj_90 = 0; float adj_91 = 0; float adj_92 = 0; df::float3 adj_93 = 0; float adj_94 = 0; float adj_95 = 0; float adj_96 = 0; df::float3 adj_97 = 0; df::float3 adj_98 = 0; df::float3 adj_99 = 0; float adj_100 = 0; df::float3 adj_101 = 0; float adj_102 = 0; float adj_103 = 0; float adj_104 = 0; float adj_105 = 0; float adj_106 = 0; float adj_107 = 0; float adj_108 = 0; float adj_109 = 0; float adj_110 = 0; float adj_111 = 0; float adj_112 = 0; float adj_113 = 0; float adj_114 = 0; float adj_115 = 0; float adj_116 = 0; float adj_117 = 0; float adj_118 = 0; df::float3 adj_119 = 0; df::float3 adj_120 = 0; df::float3 adj_121 = 0; df::float3 adj_122 = 0; float adj_123 = 0; float adj_124 = 0; float adj_125 = 0; df::float3 adj_126 = 0; df::float3 adj_127 = 0; df::float3 adj_128 = 0; df::float3 adj_129 = 0; df::float3 adj_130 = 0; df::float3 adj_131 = 0; df::float3 adj_132 = 0; df::float3 adj_133 = 0; float adj_134 = 0; df::float3 adj_135 = 0; float adj_136 = 0; float adj_137 = 0; float adj_138 = 0; float adj_139 = 0; float adj_140 = 0; float adj_141 = 0; float adj_142 = 0; float adj_143 = 0; float adj_144 = 0; float adj_145 = 0; float adj_146 = 0; float adj_147 = 0; float adj_148 = 0; float adj_149 = 0; float adj_150 = 0; float adj_151 = 0; float adj_152 = 0; df::float3 adj_153 = 0; df::float3 adj_154 = 0; df::float3 adj_155 = 0; df::float3 adj_156 = 0; df::float3 adj_157 = 0; df::float3 adj_158 = 0; df::float3 adj_159 = 0; df::float3 adj_160 = 0; df::float3 adj_161 = 0; df::float3 adj_162 = 0; df::float3 adj_163 = 0; df::float3 adj_164 = 0; df::float3 adj_165 = 0; df::float3 adj_166 = 0; df::float3 adj_167 = 0; df::float3 adj_168 = 0; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_indices, var_8); var_10 = df::mul(var_0, var_1); var_12 = df::add(var_10, var_11); var_13 = df::load(var_indices, var_12); var_14 = df::mul(var_0, var_1); var_16 = df::add(var_14, var_15); var_17 = df::load(var_indices, var_16); var_18 = df::load(var_activation, var_0); var_19 = df::mul(var_0, var_15); var_20 = df::add(var_19, var_3); var_21 = df::load(var_materials, var_20); var_22 = df::mul(var_0, var_15); var_23 = df::add(var_22, var_7); var_24 = df::load(var_materials, var_23); var_25 = df::mul(var_0, var_15); var_26 = df::add(var_25, var_11); var_27 = df::load(var_materials, var_26); var_28 = df::load(var_x, var_5); var_29 = df::load(var_x, var_9); var_30 = df::load(var_x, var_13); var_31 = df::load(var_x, var_17); var_32 = df::load(var_v, var_5); var_33 = df::load(var_v, var_9); var_34 = df::load(var_v, var_13); var_35 = df::load(var_v, var_17); var_36 = df::load(var_inv_mass, var_5); var_37 = df::load(var_inv_mass, var_9); var_38 = df::load(var_inv_mass, var_13); var_39 = df::load(var_inv_mass, var_17); var_40 = df::sub(var_29, var_28); var_41 = df::sub(var_30, var_28); var_42 = df::sub(var_31, var_28); var_43 = df::sub(var_33, var_32); var_44 = df::sub(var_34, var_32); var_45 = df::sub(var_35, var_32); var_46 = df::mat33(var_40, var_41, var_42); var_47 = df::load(var_pose, var_0); var_48 = df::determinant(var_47); var_50 = df::mul(var_48, var_49); var_52 = df::div(var_51, var_50); var_53 = df::mul(var_46, var_47); var_54 = df::index(var_53, var_3, var_3); var_55 = df::index(var_53, var_7, var_3); var_56 = df::index(var_53, var_11, var_3); var_57 = df::float3(var_54, var_55, var_56); var_58 = df::index(var_53, var_3, var_7); var_59 = df::index(var_53, var_7, var_7); var_60 = df::index(var_53, var_11, var_7); var_61 = df::float3(var_58, var_59, var_60); var_62 = df::index(var_53, var_3, var_11); var_63 = df::index(var_53, var_7, var_11); var_64 = df::index(var_53, var_11, var_11); var_65 = df::float3(var_62, var_63, var_64); var_66 = df::dot(var_57, var_57); var_67 = df::dot(var_61, var_61); var_68 = df::add(var_66, var_67); var_69 = df::dot(var_65, var_65); var_70 = df::add(var_68, var_69); var_72 = df::sub(var_70, var_71); var_73 = df::abs(var_72); var_74 = df::sqrt(var_73); var_76 = (var_74 == var_75); if (var_76) { goto label0; } var_77 = (var_70 < var_71); if (var_77) { var_78 = df::sub(var_75, var_74); } var_79 = df::select(var_77, var_74, var_78); var_80 = df::transpose(var_47); var_81 = df::mul(var_53, var_80); var_82 = df::div(var_51, var_79); var_83 = df::mul(var_81, var_82); var_84 = df::div(var_21, var_24); var_85 = df::add(var_51, var_84); var_86 = df::index(var_83, var_3, var_3); var_87 = df::index(var_83, var_7, var_3); var_88 = df::index(var_83, var_11, var_3); var_89 = df::float3(var_86, var_87, var_88); var_90 = df::index(var_83, var_3, var_7); var_91 = df::index(var_83, var_7, var_7); var_92 = df::index(var_83, var_11, var_7); var_93 = df::float3(var_90, var_91, var_92); var_94 = df::index(var_83, var_3, var_11); var_95 = df::index(var_83, var_7, var_11); var_96 = df::index(var_83, var_11, var_11); var_97 = df::float3(var_94, var_95, var_96); var_98 = df::add(var_89, var_93); var_99 = df::add(var_98, var_97); var_100 = df::sub(var_75, var_51); var_101 = df::mul(var_99, var_100); var_102 = df::dot(var_101, var_101); var_103 = df::mul(var_102, var_36); var_104 = df::dot(var_89, var_89); var_105 = df::mul(var_104, var_37); var_106 = df::add(var_103, var_105); var_107 = df::dot(var_93, var_93); var_108 = df::mul(var_107, var_38); var_109 = df::add(var_106, var_108); var_110 = df::dot(var_97, var_97); var_111 = df::mul(var_110, var_39); var_112 = df::add(var_109, var_111); var_113 = df::mul(var_21, var_dt); var_114 = df::mul(var_113, var_dt); var_115 = df::mul(var_114, var_52); var_116 = df::div(var_51, var_115); var_117 = df::add(var_112, var_116); var_118 = df::div(var_74, var_117); var_119 = df::mul(var_101, var_118); var_120 = df::mul(var_89, var_118); var_121 = df::mul(var_93, var_118); var_122 = df::mul(var_97, var_118); var_123 = df::determinant(var_53); var_124 = df::sub(var_123, var_85); var_125 = df::div(var_50, var_49); var_126 = df::cross(var_41, var_42); var_127 = df::mul(var_126, var_125); var_128 = df::cross(var_42, var_40); var_129 = df::mul(var_128, var_125); var_130 = df::cross(var_40, var_41); var_131 = df::mul(var_130, var_125); var_132 = df::add(var_127, var_129); var_133 = df::add(var_132, var_131); var_134 = df::sub(var_75, var_51); var_135 = df::mul(var_133, var_134); var_136 = df::dot(var_135, var_135); var_137 = df::mul(var_136, var_36); var_138 = df::dot(var_127, var_127); var_139 = df::mul(var_138, var_37); var_140 = df::add(var_137, var_139); var_141 = df::dot(var_129, var_129); var_142 = df::mul(var_141, var_38); var_143 = df::add(var_140, var_142); var_144 = df::dot(var_131, var_131); var_145 = df::mul(var_144, var_39); var_146 = df::add(var_143, var_145); var_147 = df::mul(var_24, var_dt); var_148 = df::mul(var_147, var_dt); var_149 = df::mul(var_148, var_52); var_150 = df::div(var_51, var_149); var_151 = df::add(var_146, var_150); var_152 = df::div(var_124, var_151); var_153 = df::mul(var_135, var_152); var_154 = df::add(var_119, var_153); var_155 = df::mul(var_127, var_152); var_156 = df::add(var_120, var_155); var_157 = df::mul(var_129, var_152); var_158 = df::add(var_121, var_157); var_159 = df::mul(var_131, var_152); var_160 = df::add(var_122, var_159); var_161 = df::mul(var_154, var_36); var_162 = df::mul(var_161, var_relaxation); df::atomic_sub(var_delta, var_5, var_162); var_163 = df::mul(var_156, var_37); var_164 = df::mul(var_163, var_relaxation); df::atomic_sub(var_delta, var_9, var_164); var_165 = df::mul(var_158, var_38); var_166 = df::mul(var_165, var_relaxation); df::atomic_sub(var_delta, var_13, var_166); var_167 = df::mul(var_160, var_39); var_168 = df::mul(var_167, var_relaxation); df::atomic_sub(var_delta, var_17, var_168); //--------- // reverse df::adj_atomic_sub(var_delta, var_17, var_168, adj_delta, adj_17, adj_168); df::adj_mul(var_167, var_relaxation, adj_167, adj_relaxation, adj_168); df::adj_mul(var_160, var_39, adj_160, adj_39, adj_167); df::adj_atomic_sub(var_delta, var_13, var_166, adj_delta, adj_13, adj_166); df::adj_mul(var_165, var_relaxation, adj_165, adj_relaxation, adj_166); df::adj_mul(var_158, var_38, adj_158, adj_38, adj_165); df::adj_atomic_sub(var_delta, var_9, var_164, adj_delta, adj_9, adj_164); df::adj_mul(var_163, var_relaxation, adj_163, adj_relaxation, adj_164); df::adj_mul(var_156, var_37, adj_156, adj_37, adj_163); df::adj_atomic_sub(var_delta, var_5, var_162, adj_delta, adj_5, adj_162); df::adj_mul(var_161, var_relaxation, adj_161, adj_relaxation, adj_162); df::adj_mul(var_154, var_36, adj_154, adj_36, adj_161); df::adj_add(var_122, var_159, adj_122, adj_159, adj_160); df::adj_mul(var_131, var_152, adj_131, adj_152, adj_159); df::adj_add(var_121, var_157, adj_121, adj_157, adj_158); df::adj_mul(var_129, var_152, adj_129, adj_152, adj_157); df::adj_add(var_120, var_155, adj_120, adj_155, adj_156); df::adj_mul(var_127, var_152, adj_127, adj_152, adj_155); df::adj_add(var_119, var_153, adj_119, adj_153, adj_154); df::adj_mul(var_135, var_152, adj_135, adj_152, adj_153); df::adj_div(var_124, var_151, adj_124, adj_151, adj_152); df::adj_add(var_146, var_150, adj_146, adj_150, adj_151); df::adj_div(var_51, var_149, adj_51, adj_149, adj_150); df::adj_mul(var_148, var_52, adj_148, adj_52, adj_149); df::adj_mul(var_147, var_dt, adj_147, adj_dt, adj_148); df::adj_mul(var_24, var_dt, adj_24, adj_dt, adj_147); df::adj_add(var_143, var_145, adj_143, adj_145, adj_146); df::adj_mul(var_144, var_39, adj_144, adj_39, adj_145); df::adj_dot(var_131, var_131, adj_131, adj_131, adj_144); df::adj_add(var_140, var_142, adj_140, adj_142, adj_143); df::adj_mul(var_141, var_38, adj_141, adj_38, adj_142); df::adj_dot(var_129, var_129, adj_129, adj_129, adj_141); df::adj_add(var_137, var_139, adj_137, adj_139, adj_140); df::adj_mul(var_138, var_37, adj_138, adj_37, adj_139); df::adj_dot(var_127, var_127, adj_127, adj_127, adj_138); df::adj_mul(var_136, var_36, adj_136, adj_36, adj_137); df::adj_dot(var_135, var_135, adj_135, adj_135, adj_136); df::adj_mul(var_133, var_134, adj_133, adj_134, adj_135); df::adj_sub(var_75, var_51, adj_75, adj_51, adj_134); df::adj_add(var_132, var_131, adj_132, adj_131, adj_133); df::adj_add(var_127, var_129, adj_127, adj_129, adj_132); df::adj_mul(var_130, var_125, adj_130, adj_125, adj_131); df::adj_cross(var_40, var_41, adj_40, adj_41, adj_130); df::adj_mul(var_128, var_125, adj_128, adj_125, adj_129); df::adj_cross(var_42, var_40, adj_42, adj_40, adj_128); df::adj_mul(var_126, var_125, adj_126, adj_125, adj_127); df::adj_cross(var_41, var_42, adj_41, adj_42, adj_126); df::adj_div(var_50, var_49, adj_50, adj_49, adj_125); df::adj_sub(var_123, var_85, adj_123, adj_85, adj_124); df::adj_determinant(var_53, adj_53, adj_123); df::adj_mul(var_97, var_118, adj_97, adj_118, adj_122); df::adj_mul(var_93, var_118, adj_93, adj_118, adj_121); df::adj_mul(var_89, var_118, adj_89, adj_118, adj_120); df::adj_mul(var_101, var_118, adj_101, adj_118, adj_119); df::adj_div(var_74, var_117, adj_74, adj_117, adj_118); df::adj_add(var_112, var_116, adj_112, adj_116, adj_117); df::adj_div(var_51, var_115, adj_51, adj_115, adj_116); df::adj_mul(var_114, var_52, adj_114, adj_52, adj_115); df::adj_mul(var_113, var_dt, adj_113, adj_dt, adj_114); df::adj_mul(var_21, var_dt, adj_21, adj_dt, adj_113); df::adj_add(var_109, var_111, adj_109, adj_111, adj_112); df::adj_mul(var_110, var_39, adj_110, adj_39, adj_111); df::adj_dot(var_97, var_97, adj_97, adj_97, adj_110); df::adj_add(var_106, var_108, adj_106, adj_108, adj_109); df::adj_mul(var_107, var_38, adj_107, adj_38, adj_108); df::adj_dot(var_93, var_93, adj_93, adj_93, adj_107); df::adj_add(var_103, var_105, adj_103, adj_105, adj_106); df::adj_mul(var_104, var_37, adj_104, adj_37, adj_105); df::adj_dot(var_89, var_89, adj_89, adj_89, adj_104); df::adj_mul(var_102, var_36, adj_102, adj_36, adj_103); df::adj_dot(var_101, var_101, adj_101, adj_101, adj_102); df::adj_mul(var_99, var_100, adj_99, adj_100, adj_101); df::adj_sub(var_75, var_51, adj_75, adj_51, adj_100); df::adj_add(var_98, var_97, adj_98, adj_97, adj_99); df::adj_add(var_89, var_93, adj_89, adj_93, adj_98); df::adj_float3(var_94, var_95, var_96, adj_94, adj_95, adj_96, adj_97); df::adj_index(var_83, var_11, var_11, adj_83, adj_11, adj_11, adj_96); df::adj_index(var_83, var_7, var_11, adj_83, adj_7, adj_11, adj_95); df::adj_index(var_83, var_3, var_11, adj_83, adj_3, adj_11, adj_94); df::adj_float3(var_90, var_91, var_92, adj_90, adj_91, adj_92, adj_93); df::adj_index(var_83, var_11, var_7, adj_83, adj_11, adj_7, adj_92); df::adj_index(var_83, var_7, var_7, adj_83, adj_7, adj_7, adj_91); df::adj_index(var_83, var_3, var_7, adj_83, adj_3, adj_7, adj_90); df::adj_float3(var_86, var_87, var_88, adj_86, adj_87, adj_88, adj_89); df::adj_index(var_83, var_11, var_3, adj_83, adj_11, adj_3, adj_88); df::adj_index(var_83, var_7, var_3, adj_83, adj_7, adj_3, adj_87); df::adj_index(var_83, var_3, var_3, adj_83, adj_3, adj_3, adj_86); df::adj_add(var_51, var_84, adj_51, adj_84, adj_85); df::adj_div(var_21, var_24, adj_21, adj_24, adj_84); df::adj_mul(var_81, var_82, adj_81, adj_82, adj_83); df::adj_div(var_51, var_79, adj_51, adj_79, adj_82); df::adj_mul(var_53, var_80, adj_53, adj_80, adj_81); df::adj_transpose(var_47, adj_47, adj_80); df::adj_select(var_77, var_74, var_78, adj_77, adj_74, adj_78, adj_79); if (var_77) { df::adj_sub(var_75, var_74, adj_75, adj_74, adj_78); } if (var_76) { label0:; } df::adj_sqrt(var_73, adj_73, adj_74); df::adj_abs(var_72, adj_72, adj_73); df::adj_sub(var_70, var_71, adj_70, adj_71, adj_72); df::adj_add(var_68, var_69, adj_68, adj_69, adj_70); df::adj_dot(var_65, var_65, adj_65, adj_65, adj_69); df::adj_add(var_66, var_67, adj_66, adj_67, adj_68); df::adj_dot(var_61, var_61, adj_61, adj_61, adj_67); df::adj_dot(var_57, var_57, adj_57, adj_57, adj_66); df::adj_float3(var_62, var_63, var_64, adj_62, adj_63, adj_64, adj_65); df::adj_index(var_53, var_11, var_11, adj_53, adj_11, adj_11, adj_64); df::adj_index(var_53, var_7, var_11, adj_53, adj_7, adj_11, adj_63); df::adj_index(var_53, var_3, var_11, adj_53, adj_3, adj_11, adj_62); df::adj_float3(var_58, var_59, var_60, adj_58, adj_59, adj_60, adj_61); df::adj_index(var_53, var_11, var_7, adj_53, adj_11, adj_7, adj_60); df::adj_index(var_53, var_7, var_7, adj_53, adj_7, adj_7, adj_59); df::adj_index(var_53, var_3, var_7, adj_53, adj_3, adj_7, adj_58); df::adj_float3(var_54, var_55, var_56, adj_54, adj_55, adj_56, adj_57); df::adj_index(var_53, var_11, var_3, adj_53, adj_11, adj_3, adj_56); df::adj_index(var_53, var_7, var_3, adj_53, adj_7, adj_3, adj_55); df::adj_index(var_53, var_3, var_3, adj_53, adj_3, adj_3, adj_54); df::adj_mul(var_46, var_47, adj_46, adj_47, adj_53); df::adj_div(var_51, var_50, adj_51, adj_50, adj_52); df::adj_mul(var_48, var_49, adj_48, adj_49, adj_50); df::adj_determinant(var_47, adj_47, adj_48); df::adj_load(var_pose, var_0, adj_pose, adj_0, adj_47); df::adj_mat33(var_40, var_41, var_42, adj_40, adj_41, adj_42, adj_46); df::adj_sub(var_35, var_32, adj_35, adj_32, adj_45); df::adj_sub(var_34, var_32, adj_34, adj_32, adj_44); df::adj_sub(var_33, var_32, adj_33, adj_32, adj_43); df::adj_sub(var_31, var_28, adj_31, adj_28, adj_42); df::adj_sub(var_30, var_28, adj_30, adj_28, adj_41); df::adj_sub(var_29, var_28, adj_29, adj_28, adj_40); df::adj_load(var_inv_mass, var_17, adj_inv_mass, adj_17, adj_39); df::adj_load(var_inv_mass, var_13, adj_inv_mass, adj_13, adj_38); df::adj_load(var_inv_mass, var_9, adj_inv_mass, adj_9, adj_37); df::adj_load(var_inv_mass, var_5, adj_inv_mass, adj_5, adj_36); df::adj_load(var_v, var_17, adj_v, adj_17, adj_35); df::adj_load(var_v, var_13, adj_v, adj_13, adj_34); df::adj_load(var_v, var_9, adj_v, adj_9, adj_33); df::adj_load(var_v, var_5, adj_v, adj_5, adj_32); df::adj_load(var_x, var_17, adj_x, adj_17, adj_31); df::adj_load(var_x, var_13, adj_x, adj_13, adj_30); df::adj_load(var_x, var_9, adj_x, adj_9, adj_29); df::adj_load(var_x, var_5, adj_x, adj_5, adj_28); df::adj_load(var_materials, var_26, adj_materials, adj_26, adj_27); df::adj_add(var_25, var_11, adj_25, adj_11, adj_26); df::adj_mul(var_0, var_15, adj_0, adj_15, adj_25); df::adj_load(var_materials, var_23, adj_materials, adj_23, adj_24); df::adj_add(var_22, var_7, adj_22, adj_7, adj_23); df::adj_mul(var_0, var_15, adj_0, adj_15, adj_22); df::adj_load(var_materials, var_20, adj_materials, adj_20, adj_21); df::adj_add(var_19, var_3, adj_19, adj_3, adj_20); df::adj_mul(var_0, var_15, adj_0, adj_15, adj_19); df::adj_load(var_activation, var_0, adj_activation, adj_0, adj_18); df::adj_load(var_indices, var_16, adj_indices, adj_16, adj_17); df::adj_add(var_14, var_15, adj_14, adj_15, adj_16); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_14); df::adj_load(var_indices, var_12, adj_indices, adj_12, adj_13); df::adj_add(var_10, var_11, adj_10, adj_11, adj_12); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_10); df::adj_load(var_indices, var_8, adj_indices, adj_8, adj_9); df::adj_add(var_6, var_7, adj_6, adj_7, adj_8); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_6); df::adj_load(var_indices, var_4, adj_indices, adj_4, adj_5); df::adj_add(var_2, var_3, adj_2, adj_3, adj_4); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_2); return; } // Python entry points void solve_tetrahedra_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_inv_mass, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, torch::Tensor var_materials, float var_dt, float var_relaxation, torch::Tensor var_delta) { for (int i=0; i < dim; ++i) { s_threadIdx = i; solve_tetrahedra_cpu_kernel_forward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<float*>(var_inv_mass), cast<int*>(var_indices), cast<mat33*>(var_pose), cast<float*>(var_activation), cast<float*>(var_materials), var_dt, var_relaxation, cast<df::float3*>(var_delta)); } } void solve_tetrahedra_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_inv_mass, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, torch::Tensor var_materials, float var_dt, float var_relaxation, torch::Tensor var_delta, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_inv_mass, torch::Tensor adj_indices, torch::Tensor adj_pose, torch::Tensor adj_activation, torch::Tensor adj_materials, float adj_dt, float adj_relaxation, torch::Tensor adj_delta) { for (int i=0; i < dim; ++i) { s_threadIdx = i; solve_tetrahedra_cpu_kernel_backward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<float*>(var_inv_mass), cast<int*>(var_indices), cast<mat33*>(var_pose), cast<float*>(var_activation), cast<float*>(var_materials), var_dt, var_relaxation, cast<df::float3*>(var_delta), cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<float*>(adj_inv_mass), cast<int*>(adj_indices), cast<mat33*>(adj_pose), cast<float*>(adj_activation), cast<float*>(adj_materials), adj_dt, adj_relaxation, cast<df::float3*>(adj_delta)); } } // Python entry points void solve_tetrahedra_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_inv_mass, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, torch::Tensor var_materials, float var_dt, float var_relaxation, torch::Tensor var_delta); void solve_tetrahedra_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_inv_mass, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, torch::Tensor var_materials, float var_dt, float var_relaxation, torch::Tensor var_delta, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_inv_mass, torch::Tensor adj_indices, torch::Tensor adj_pose, torch::Tensor adj_activation, torch::Tensor adj_materials, float adj_dt, float adj_relaxation, torch::Tensor adj_delta); void solve_contacts_cpu_kernel_forward( df::float3* var_x, df::float3* var_v, float* var_inv_mass, float var_mu, float var_dt, df::float3* var_delta) { //--------- // primal vars int var_0; df::float3 var_1; df::float3 var_2; float var_3; const float var_4 = 0.0; const float var_5 = 1.0; df::float3 var_6; float var_7; const float var_8 = 0.01; float var_9; bool var_10; df::float3 var_11; float var_12; df::float3 var_13; df::float3 var_14; float var_15; float var_16; float var_17; float var_18; float var_19; df::float3 var_20; df::float3 var_21; df::float3 var_22; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_x, var_0); var_2 = df::load(var_v, var_0); var_3 = df::load(var_inv_mass, var_0); var_6 = df::float3(var_4, var_5, var_4); var_7 = df::dot(var_6, var_1); var_9 = df::sub(var_7, var_8); var_10 = (var_9 > var_4); if (var_10) { return; } var_11 = df::mul(var_6, var_9); var_12 = df::dot(var_6, var_2); var_13 = df::mul(var_6, var_12); var_14 = df::sub(var_2, var_13); var_15 = df::mul(var_mu, var_9); var_16 = df::length(var_14); var_17 = df::mul(var_16, var_dt); var_18 = df::sub(var_4, var_17); var_19 = df::max(var_15, var_18); var_20 = df::normalize(var_14); var_21 = df::mul(var_20, var_19); var_22 = df::sub(var_21, var_11); df::atomic_add(var_delta, var_0, var_22); } void solve_contacts_cpu_kernel_backward( df::float3* var_x, df::float3* var_v, float* var_inv_mass, float var_mu, float var_dt, df::float3* var_delta, df::float3* adj_x, df::float3* adj_v, float* adj_inv_mass, float adj_mu, float adj_dt, df::float3* adj_delta) { //--------- // primal vars int var_0; df::float3 var_1; df::float3 var_2; float var_3; const float var_4 = 0.0; const float var_5 = 1.0; df::float3 var_6; float var_7; const float var_8 = 0.01; float var_9; bool var_10; df::float3 var_11; float var_12; df::float3 var_13; df::float3 var_14; float var_15; float var_16; float var_17; float var_18; float var_19; df::float3 var_20; df::float3 var_21; df::float3 var_22; //--------- // dual vars int adj_0 = 0; df::float3 adj_1 = 0; df::float3 adj_2 = 0; float adj_3 = 0; float adj_4 = 0; float adj_5 = 0; df::float3 adj_6 = 0; float adj_7 = 0; float adj_8 = 0; float adj_9 = 0; bool adj_10 = 0; df::float3 adj_11 = 0; float adj_12 = 0; df::float3 adj_13 = 0; df::float3 adj_14 = 0; float adj_15 = 0; float adj_16 = 0; float adj_17 = 0; float adj_18 = 0; float adj_19 = 0; df::float3 adj_20 = 0; df::float3 adj_21 = 0; df::float3 adj_22 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_x, var_0); var_2 = df::load(var_v, var_0); var_3 = df::load(var_inv_mass, var_0); var_6 = df::float3(var_4, var_5, var_4); var_7 = df::dot(var_6, var_1); var_9 = df::sub(var_7, var_8); var_10 = (var_9 > var_4); if (var_10) { goto label0; } var_11 = df::mul(var_6, var_9); var_12 = df::dot(var_6, var_2); var_13 = df::mul(var_6, var_12); var_14 = df::sub(var_2, var_13); var_15 = df::mul(var_mu, var_9); var_16 = df::length(var_14); var_17 = df::mul(var_16, var_dt); var_18 = df::sub(var_4, var_17); var_19 = df::max(var_15, var_18); var_20 = df::normalize(var_14); var_21 = df::mul(var_20, var_19); var_22 = df::sub(var_21, var_11); df::atomic_add(var_delta, var_0, var_22); //--------- // reverse df::adj_atomic_add(var_delta, var_0, var_22, adj_delta, adj_0, adj_22); df::adj_sub(var_21, var_11, adj_21, adj_11, adj_22); df::adj_mul(var_20, var_19, adj_20, adj_19, adj_21); df::adj_normalize(var_14, adj_14, adj_20); df::adj_max(var_15, var_18, adj_15, adj_18, adj_19); df::adj_sub(var_4, var_17, adj_4, adj_17, adj_18); df::adj_mul(var_16, var_dt, adj_16, adj_dt, adj_17); df::adj_length(var_14, adj_14, adj_16); df::adj_mul(var_mu, var_9, adj_mu, adj_9, adj_15); df::adj_sub(var_2, var_13, adj_2, adj_13, adj_14); df::adj_mul(var_6, var_12, adj_6, adj_12, adj_13); df::adj_dot(var_6, var_2, adj_6, adj_2, adj_12); df::adj_mul(var_6, var_9, adj_6, adj_9, adj_11); if (var_10) { label0:; } df::adj_sub(var_7, var_8, adj_7, adj_8, adj_9); df::adj_dot(var_6, var_1, adj_6, adj_1, adj_7); df::adj_float3(var_4, var_5, var_4, adj_4, adj_5, adj_4, adj_6); df::adj_load(var_inv_mass, var_0, adj_inv_mass, adj_0, adj_3); df::adj_load(var_v, var_0, adj_v, adj_0, adj_2); df::adj_load(var_x, var_0, adj_x, adj_0, adj_1); return; } // Python entry points void solve_contacts_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_inv_mass, float var_mu, float var_dt, torch::Tensor var_delta) { for (int i=0; i < dim; ++i) { s_threadIdx = i; solve_contacts_cpu_kernel_forward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<float*>(var_inv_mass), var_mu, var_dt, cast<df::float3*>(var_delta)); } } void solve_contacts_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_inv_mass, float var_mu, float var_dt, torch::Tensor var_delta, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_inv_mass, float adj_mu, float adj_dt, torch::Tensor adj_delta) { for (int i=0; i < dim; ++i) { s_threadIdx = i; solve_contacts_cpu_kernel_backward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<float*>(var_inv_mass), var_mu, var_dt, cast<df::float3*>(var_delta), cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<float*>(adj_inv_mass), adj_mu, adj_dt, cast<df::float3*>(adj_delta)); } } // Python entry points void solve_contacts_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_inv_mass, float var_mu, float var_dt, torch::Tensor var_delta); void solve_contacts_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_inv_mass, float var_mu, float var_dt, torch::Tensor var_delta, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_inv_mass, float adj_mu, float adj_dt, torch::Tensor adj_delta); void apply_deltas_cpu_kernel_forward( df::float3* var_x_orig, df::float3* var_v_orig, df::float3* var_x_pred, df::float3* var_delta, float var_dt, df::float3* var_x_out, df::float3* var_v_out) { //--------- // primal vars int var_0; df::float3 var_1; df::float3 var_2; df::float3 var_3; df::float3 var_4; df::float3 var_5; df::float3 var_6; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_x_orig, var_0); var_2 = df::load(var_x_pred, var_0); var_3 = df::load(var_delta, var_0); var_4 = df::add(var_2, var_3); var_5 = df::sub(var_4, var_1); var_6 = df::div(var_5, var_dt); df::store(var_x_out, var_0, var_4); df::store(var_v_out, var_0, var_6); } void apply_deltas_cpu_kernel_backward( df::float3* var_x_orig, df::float3* var_v_orig, df::float3* var_x_pred, df::float3* var_delta, float var_dt, df::float3* var_x_out, df::float3* var_v_out, df::float3* adj_x_orig, df::float3* adj_v_orig, df::float3* adj_x_pred, df::float3* adj_delta, float adj_dt, df::float3* adj_x_out, df::float3* adj_v_out) { //--------- // primal vars int var_0; df::float3 var_1; df::float3 var_2; df::float3 var_3; df::float3 var_4; df::float3 var_5; df::float3 var_6; //--------- // dual vars int adj_0 = 0; df::float3 adj_1 = 0; df::float3 adj_2 = 0; df::float3 adj_3 = 0; df::float3 adj_4 = 0; df::float3 adj_5 = 0; df::float3 adj_6 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_x_orig, var_0); var_2 = df::load(var_x_pred, var_0); var_3 = df::load(var_delta, var_0); var_4 = df::add(var_2, var_3); var_5 = df::sub(var_4, var_1); var_6 = df::div(var_5, var_dt); df::store(var_x_out, var_0, var_4); df::store(var_v_out, var_0, var_6); //--------- // reverse df::adj_store(var_v_out, var_0, var_6, adj_v_out, adj_0, adj_6); df::adj_store(var_x_out, var_0, var_4, adj_x_out, adj_0, adj_4); df::adj_div(var_5, var_dt, adj_5, adj_dt, adj_6); df::adj_sub(var_4, var_1, adj_4, adj_1, adj_5); df::adj_add(var_2, var_3, adj_2, adj_3, adj_4); df::adj_load(var_delta, var_0, adj_delta, adj_0, adj_3); df::adj_load(var_x_pred, var_0, adj_x_pred, adj_0, adj_2); df::adj_load(var_x_orig, var_0, adj_x_orig, adj_0, adj_1); return; } // Python entry points void apply_deltas_cpu_forward(int dim, torch::Tensor var_x_orig, torch::Tensor var_v_orig, torch::Tensor var_x_pred, torch::Tensor var_delta, float var_dt, torch::Tensor var_x_out, torch::Tensor var_v_out) { for (int i=0; i < dim; ++i) { s_threadIdx = i; apply_deltas_cpu_kernel_forward( cast<df::float3*>(var_x_orig), cast<df::float3*>(var_v_orig), cast<df::float3*>(var_x_pred), cast<df::float3*>(var_delta), var_dt, cast<df::float3*>(var_x_out), cast<df::float3*>(var_v_out)); } } void apply_deltas_cpu_backward(int dim, torch::Tensor var_x_orig, torch::Tensor var_v_orig, torch::Tensor var_x_pred, torch::Tensor var_delta, float var_dt, torch::Tensor var_x_out, torch::Tensor var_v_out, torch::Tensor adj_x_orig, torch::Tensor adj_v_orig, torch::Tensor adj_x_pred, torch::Tensor adj_delta, float adj_dt, torch::Tensor adj_x_out, torch::Tensor adj_v_out) { for (int i=0; i < dim; ++i) { s_threadIdx = i; apply_deltas_cpu_kernel_backward( cast<df::float3*>(var_x_orig), cast<df::float3*>(var_v_orig), cast<df::float3*>(var_x_pred), cast<df::float3*>(var_delta), var_dt, cast<df::float3*>(var_x_out), cast<df::float3*>(var_v_out), cast<df::float3*>(adj_x_orig), cast<df::float3*>(adj_v_orig), cast<df::float3*>(adj_x_pred), cast<df::float3*>(adj_delta), adj_dt, cast<df::float3*>(adj_x_out), cast<df::float3*>(adj_v_out)); } } // Python entry points void apply_deltas_cpu_forward(int dim, torch::Tensor var_x_orig, torch::Tensor var_v_orig, torch::Tensor var_x_pred, torch::Tensor var_delta, float var_dt, torch::Tensor var_x_out, torch::Tensor var_v_out); void apply_deltas_cpu_backward(int dim, torch::Tensor var_x_orig, torch::Tensor var_v_orig, torch::Tensor var_x_pred, torch::Tensor var_delta, float var_dt, torch::Tensor var_x_out, torch::Tensor var_v_out, torch::Tensor adj_x_orig, torch::Tensor adj_v_orig, torch::Tensor adj_x_pred, torch::Tensor adj_delta, float adj_dt, torch::Tensor adj_x_out, torch::Tensor adj_v_out); PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("integrate_particles_cpu_forward", integrate_particles_cpu_forward, "integrate_particles_cpu_forward"); m.def("integrate_particles_cpu_backward", integrate_particles_cpu_backward, "integrate_particles_cpu_backward"); m.def("integrate_rigids_cpu_forward", integrate_rigids_cpu_forward, "integrate_rigids_cpu_forward"); m.def("integrate_rigids_cpu_backward", integrate_rigids_cpu_backward, "integrate_rigids_cpu_backward"); m.def("eval_springs_cpu_forward", eval_springs_cpu_forward, "eval_springs_cpu_forward"); m.def("eval_springs_cpu_backward", eval_springs_cpu_backward, "eval_springs_cpu_backward"); m.def("eval_triangles_cpu_forward", eval_triangles_cpu_forward, "eval_triangles_cpu_forward"); m.def("eval_triangles_cpu_backward", eval_triangles_cpu_backward, "eval_triangles_cpu_backward"); m.def("eval_triangles_contact_cpu_forward", eval_triangles_contact_cpu_forward, "eval_triangles_contact_cpu_forward"); m.def("eval_triangles_contact_cpu_backward", eval_triangles_contact_cpu_backward, "eval_triangles_contact_cpu_backward"); m.def("eval_triangles_rigid_contacts_cpu_forward", eval_triangles_rigid_contacts_cpu_forward, "eval_triangles_rigid_contacts_cpu_forward"); m.def("eval_triangles_rigid_contacts_cpu_backward", eval_triangles_rigid_contacts_cpu_backward, "eval_triangles_rigid_contacts_cpu_backward"); m.def("eval_bending_cpu_forward", eval_bending_cpu_forward, "eval_bending_cpu_forward"); m.def("eval_bending_cpu_backward", eval_bending_cpu_backward, "eval_bending_cpu_backward"); m.def("eval_tetrahedra_cpu_forward", eval_tetrahedra_cpu_forward, "eval_tetrahedra_cpu_forward"); m.def("eval_tetrahedra_cpu_backward", eval_tetrahedra_cpu_backward, "eval_tetrahedra_cpu_backward"); m.def("eval_contacts_cpu_forward", eval_contacts_cpu_forward, "eval_contacts_cpu_forward"); m.def("eval_contacts_cpu_backward", eval_contacts_cpu_backward, "eval_contacts_cpu_backward"); m.def("eval_soft_contacts_cpu_forward", eval_soft_contacts_cpu_forward, "eval_soft_contacts_cpu_forward"); m.def("eval_soft_contacts_cpu_backward", eval_soft_contacts_cpu_backward, "eval_soft_contacts_cpu_backward"); m.def("eval_rigid_contacts_cpu_forward", eval_rigid_contacts_cpu_forward, "eval_rigid_contacts_cpu_forward"); m.def("eval_rigid_contacts_cpu_backward", eval_rigid_contacts_cpu_backward, "eval_rigid_contacts_cpu_backward"); m.def("eval_rigid_contacts_art_cpu_forward", eval_rigid_contacts_art_cpu_forward, "eval_rigid_contacts_art_cpu_forward"); m.def("eval_rigid_contacts_art_cpu_backward", eval_rigid_contacts_art_cpu_backward, "eval_rigid_contacts_art_cpu_backward"); m.def("eval_muscles_cpu_forward", eval_muscles_cpu_forward, "eval_muscles_cpu_forward"); m.def("eval_muscles_cpu_backward", eval_muscles_cpu_backward, "eval_muscles_cpu_backward"); m.def("eval_rigid_fk_cpu_forward", eval_rigid_fk_cpu_forward, "eval_rigid_fk_cpu_forward"); m.def("eval_rigid_fk_cpu_backward", eval_rigid_fk_cpu_backward, "eval_rigid_fk_cpu_backward"); m.def("eval_rigid_id_cpu_forward", eval_rigid_id_cpu_forward, "eval_rigid_id_cpu_forward"); m.def("eval_rigid_id_cpu_backward", eval_rigid_id_cpu_backward, "eval_rigid_id_cpu_backward"); m.def("eval_rigid_tau_cpu_forward", eval_rigid_tau_cpu_forward, "eval_rigid_tau_cpu_forward"); m.def("eval_rigid_tau_cpu_backward", eval_rigid_tau_cpu_backward, "eval_rigid_tau_cpu_backward"); m.def("eval_rigid_jacobian_cpu_forward", eval_rigid_jacobian_cpu_forward, "eval_rigid_jacobian_cpu_forward"); m.def("eval_rigid_jacobian_cpu_backward", eval_rigid_jacobian_cpu_backward, "eval_rigid_jacobian_cpu_backward"); m.def("eval_rigid_mass_cpu_forward", eval_rigid_mass_cpu_forward, "eval_rigid_mass_cpu_forward"); m.def("eval_rigid_mass_cpu_backward", eval_rigid_mass_cpu_backward, "eval_rigid_mass_cpu_backward"); m.def("eval_dense_gemm_cpu_forward", eval_dense_gemm_cpu_forward, "eval_dense_gemm_cpu_forward"); m.def("eval_dense_gemm_cpu_backward", eval_dense_gemm_cpu_backward, "eval_dense_gemm_cpu_backward"); m.def("eval_dense_gemm_batched_cpu_forward", eval_dense_gemm_batched_cpu_forward, "eval_dense_gemm_batched_cpu_forward"); m.def("eval_dense_gemm_batched_cpu_backward", eval_dense_gemm_batched_cpu_backward, "eval_dense_gemm_batched_cpu_backward"); m.def("eval_dense_cholesky_cpu_forward", eval_dense_cholesky_cpu_forward, "eval_dense_cholesky_cpu_forward"); m.def("eval_dense_cholesky_cpu_backward", eval_dense_cholesky_cpu_backward, "eval_dense_cholesky_cpu_backward"); m.def("eval_dense_cholesky_batched_cpu_forward", eval_dense_cholesky_batched_cpu_forward, "eval_dense_cholesky_batched_cpu_forward"); m.def("eval_dense_cholesky_batched_cpu_backward", eval_dense_cholesky_batched_cpu_backward, "eval_dense_cholesky_batched_cpu_backward"); m.def("eval_dense_subs_cpu_forward", eval_dense_subs_cpu_forward, "eval_dense_subs_cpu_forward"); m.def("eval_dense_subs_cpu_backward", eval_dense_subs_cpu_backward, "eval_dense_subs_cpu_backward"); m.def("eval_dense_solve_cpu_forward", eval_dense_solve_cpu_forward, "eval_dense_solve_cpu_forward"); m.def("eval_dense_solve_cpu_backward", eval_dense_solve_cpu_backward, "eval_dense_solve_cpu_backward"); m.def("eval_dense_solve_batched_cpu_forward", eval_dense_solve_batched_cpu_forward, "eval_dense_solve_batched_cpu_forward"); m.def("eval_dense_solve_batched_cpu_backward", eval_dense_solve_batched_cpu_backward, "eval_dense_solve_batched_cpu_backward"); m.def("eval_rigid_integrate_cpu_forward", eval_rigid_integrate_cpu_forward, "eval_rigid_integrate_cpu_forward"); m.def("eval_rigid_integrate_cpu_backward", eval_rigid_integrate_cpu_backward, "eval_rigid_integrate_cpu_backward"); m.def("solve_springs_cpu_forward", solve_springs_cpu_forward, "solve_springs_cpu_forward"); m.def("solve_springs_cpu_backward", solve_springs_cpu_backward, "solve_springs_cpu_backward"); m.def("solve_tetrahedra_cpu_forward", solve_tetrahedra_cpu_forward, "solve_tetrahedra_cpu_forward"); m.def("solve_tetrahedra_cpu_backward", solve_tetrahedra_cpu_backward, "solve_tetrahedra_cpu_backward"); m.def("solve_contacts_cpu_forward", solve_contacts_cpu_forward, "solve_contacts_cpu_forward"); m.def("solve_contacts_cpu_backward", solve_contacts_cpu_backward, "solve_contacts_cpu_backward"); m.def("apply_deltas_cpu_forward", apply_deltas_cpu_forward, "apply_deltas_cpu_forward"); m.def("apply_deltas_cpu_backward", apply_deltas_cpu_backward, "apply_deltas_cpu_backward"); }
532,217
C++
29.40377
700
0.581105
RoboticExplorationLab/Deep-ILC/dflex/tests/test_humanoid.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class Robot: frame_dt = 1.0/60.0 episode_duration = 2.0 # seconds episode_frames = int(episode_duration/frame_dt) sim_substeps = 16 sim_dt = frame_dt / sim_substeps sim_steps = int(episode_duration / sim_dt) sim_time = 0.0 train_iters = 1024 train_rate = 0.05 ground = True name = "humanoid" regularization = 1.e-3 phase_count = 8 def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render # humanoid test_util.urdf_load( builder, "assets/humanoid.urdf", df.transform((0.0, 1.35, 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5)), #df.transform((0.0, 0.65, 0.0), df.quat_identity()), floating=True, shape_ke=1.e+3*5.0, shape_kd=1.e+2*2.0, shape_kf=1.e+2, shape_mu=0.5) # set pd-stiffness for i in range(len(builder.joint_target_ke)): builder.joint_target_ke[i] = 10.0 builder.joint_target_kd[i] = 1.0 # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) self.model.joint_q.requires_grad_() self.model.joint_qd.requires_grad_() #self.actions = torch.zeros((self.episode_frames, len(self.model.joint_qd)), dtype=torch.float32, device=adapter, requires_grad=True) #self.actions = torch.zeros(1, device=adapter, requires_grad=True) self.network = torch.nn.Sequential(torch.nn.Linear(self.phase_count, len(self.model.joint_qd), bias=False), torch.nn.Tanh()).to(adapter) self.action_strength = 0.0 self.action_penalty = 0.01 self.balance_reward = 15.0 self.forward_reward = 1.0 self.discount_scale = 3.0 self.discount_factor = 0.5 self.target = torch.tensor((0.0, 0.65, 0.0, 0.0, 0.0, 0.0, 1.0), dtype=torch.float32, device=adapter, requires_grad=False) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self, render=True): #--------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() if (self.model.ground): self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, dtype=torch.float32, device=self.model.adapter) for f in range(0, self.episode_frames): # df.config.no_grad = True #df.config.verify_fp = True # simulate with df.ScopedTimer("fk-id-dflex", detailed=False, active=False): phases = torch.zeros(self.phase_count, device=self.model.adapter) # build sinusoidal phase inputs for p in range(self.phase_count): phases[p] = math.sin(10.0 * (self.sim_time + 0.5 * p * math.pi)) actions = self.network(phases)*self.action_strength for i in range(0, self.sim_substeps): self.state.joint_act = actions self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt discount_time = self.sim_time discount = math.pow(self.discount_factor, discount_time*self.discount_scale) loss = loss - self.state.joint_q[1]*self.state.joint_q[1]*self.balance_reward*discount #torch.norm(actions)*self.action_penalty # loss = loss + self.state.joint_qd[5]*self.state.joint_q[1]# + torch.norm(actions)*self.action_penalty # render with df.ScopedTimer("render", False): if (self.render): self.render_time += self.frame_dt self.renderer.update(self.state, self.render_time) if (self.render): try: self.stage.Save() except: print("USD save error") return loss def run(self): df.config.no_grad = True #with torch.no_grad(): l = self.loss() def verify(self, eps=1.e-4): frame = 60 params = self.actions[frame] n = len(params) # evaluate analytic gradient l = self.loss(render=False) l.backward() # evaluate numeric gradient grad_analytic = self.actions.grad[frame].numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(n): mid = params[i].item() params[i] = mid - eps left = self.loss(render=False) params[i] = mid + eps right = self.loss(render=False) # reset params[i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = self.network.parameters() def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward", detailed=True): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward", detailed=True): #with torch.autograd.detect_anomaly(): l.backward() #print("vel: " + str(params[0])) #print("grad: " + str(params[0].grad)) #print("--------") print(str(self.step_count) + ": " + str(l)) self.step_count += 1 # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) def save(self): torch.save(self.network, "outputs/" + self.name + ".pt") def load(self): self.network = torch.load("outputs/" + self.name + ".pt") #--------- robot = Robot(depth=1, mode='dflex', render=True, adapter='cpu') robot.run() #robot.load() #robot.train(mode='adam')
9,237
Python
28.514377
144
0.533831
RoboticExplorationLab/Deep-ILC/dflex/tests/test_bending.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import time import cProfile import numpy as np import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class Bending: sim_duration = 10.0 # seconds sim_substeps = 32 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 200 train_rate = 0.01 def __init__(self, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() if (True): mesh = Usd.Stage.Open("assets/icosphere_open.usda") geom = UsdGeom.Mesh(mesh.GetPrimAtPath("/Shell/Mesh")) #mesh = Usd.Stage.Open("assets/cylinder_long_open.usda") #geom = UsdGeom.Mesh(mesh.GetPrimAtPath("/CylinderLong/CylinderLong")) points = geom.GetPointsAttr().Get() indices = geom.GetFaceVertexIndicesAttr().Get() counts = geom.GetFaceVertexCountsAttr().Get() linear_vel = np.array((1.0, 0.0, 0.0)) angular_vel = np.array((0.0, 0.0, 0.0)) center = np.array((0.0, 1.6, 0.0)) radius = 0.5 r = df.quat_multiply(df.quat_from_axis_angle((0.0, 0.0, 1.0), math.pi * 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi * 0.5)) builder.add_cloth_mesh(pos=center, rot=(0.0, 0.0, 0.0, 1.0), scale=radius, vel=(0.0, 0.0, 0.0), vertices=points, indices=indices, density=10.0) for i in range(len(builder.particle_qd)): v = np.cross(np.array(builder.particle_q) - center, angular_vel) builder.particle_qd[i] = v + linear_vel self.model = builder.finalize(adapter) self.model.tri_ke = 2000.0 self.model.tri_ka = 2000.0 self.model.tri_kd = 3.0 self.model.tri_lift = 0.0 self.model.tri_drag = 0.0 self.model.edge_ke = 20.0 self.model.edge_kd = 0.3 self.model.gravity = torch.tensor((0.0, -10.0, 0.0), device=adapter) else: builder.add_particle(pos=(1.0, 2.0, 1.0), vel=(0.0, 0.0, 0.0), mass=0.0) builder.add_particle(pos=(1.0, 2.0, -1.0), vel=(0.0, 0.0, 0.0), mass=0.0) builder.add_particle(pos=(-1.0, 2.0, -1.0), vel=(0.0, 0.0, 0.0), mass=0.0) builder.add_particle(pos=(-1.0, 2.0, 1.0), vel=(0.0, 0.0, 0.0), mass=1.0) builder.add_triangle(0, 1, 2) builder.add_triangle(0, 2, 3) builder.add_edge(1, 3, 2, 0) builder.edge_rest_angle[0] = -math.pi * 0.6 self.model = builder.finalize(adapter) self.model.tri_ke = 2000.0 self.model.tri_ka = 2000.0 self.model.tri_kd = 3.0 self.model.tri_lift = 0.0 self.model.tri_drag = 0.0 self.model.edge_ke = 20.0 self.model.edge_kd = 1.7 self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) # contact params self.model.contact_ke = 1.e+4 self.model.contact_kd = 1.0 self.model.contact_kf = 1000.0 self.model.contact_mu = 5.0 self.model.particle_radius = 0.01 self.model.ground = True # training params self.target_pos = torch.tensor((4.0, 2.0, 0.0), device=adapter) #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/bending.usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.renderer.add_sphere(self.target_pos.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #----------------------- # run simulation self.state = self.model.state() loss = torch.zeros(1, requires_grad=True) for i in range(0, self.sim_steps): # forward dynamics self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # render if (render and (i % self.sim_substeps == 0)): self.sim_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.sim_time) # loss #com_loss = torch.mean(self.state.particle_qd*self.model.particle_mass[:, None], 0) #act_loss = torch.norm(activation)*self.activation_penalty #loss = loss - com_loss[1] return loss def run(self): with torch.no_grad(): l = self.loss() self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None def closure(): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True l = self.loss(render) l.backward() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 try: if (render): self.stage.Save() except: print("USD save error") return l if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(self.network.parameters(), lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(self.network.parameters(), lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(self.network.parameters(), lr=self.train_rate, momentum=0.5) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- bending = Bending(adapter='cpu') bending.run() #bending.train('lbfgs') #bending.train('sgd')
7,170
Python
28.755187
156
0.54212
RoboticExplorationLab/Deep-ILC/dflex/tests/test_ant.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util import xml.etree.ElementTree as ET class Robot: frame_dt = 1.0/60.0 episode_duration = 2.0 # seconds episode_frames = int(episode_duration/frame_dt) sim_substeps = 32 sim_dt = frame_dt / sim_substeps sim_steps = int(episode_duration / sim_dt) sim_time = 0.0 train_iters = 1024 train_rate = 0.001 phase_count = 8 phase_step = math.pi / phase_count * 2.0 phase_freq = 6.0 ground = True name = "humanoid" regularization = 1.e-3 def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render self.parse_mjcf("./assets/" + self.name + ".xml", builder, stiffness=0.0, damping=0.0, contact_ke=1.e+3, contact_kd=1.e+3, contact_kf=1.e+2, contact_mu=0.75, limit_ke=1.e+2, limit_kd=1.e+1) # base transform # set joint targets to rest pose in mjcf if (self.name == "ant"): builder.joint_q[0:3] = [0.0, 0.70, 0.0] builder.joint_q[3:7] = df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5) builder.joint_q[7:] = [0.0, 1.0, 0.0, -1.0, 0.0, -1.0, 0.0, 1.0] builder.joint_target[7:] = [0.0, 1.0, 0.0, -1.0, 0.0, -1.0, 0.0, 1.0] if (self.name == "humanoid"): builder.joint_q[0:3] = [0.0, 1.70, 0.0] builder.joint_q[3:7] = df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5) # width = 0.1 # radius = 0.05 # builder.add_articulation() # body = -1 # for i in range(1): # body = builder.add_link( # parent=body, # X_pj=df.transform((2.0*width, 0.0, 0.0), df.quat_identity()), # axis=(0.0, 0.0, 1.0), # damping=0.0, # stiffness=0.0, # limit_lower=np.deg2rad(-30.0), # limit_upper=np.deg2rad(30.0), # limit_ke=100.0, # limit_kd=10.0, # type=df.JOINT_REVOLUTE) # shape = builder.add_shape_capsule(body, pos=(width, 0.0, 0.0), half_width=width, radius=radius) # self.ground = False # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) self.model.joint_q.requires_grad_() self.model.joint_qd.requires_grad_() self.network = torch.nn.Sequential(torch.nn.Linear(self.phase_count, len(self.model.joint_qd)-6, bias=False), torch.nn.Tanh()).to(adapter) self.action_strength = 150.0 self.action_penalty = 0.01 self.balance_reward = 15.0 self.forward_reward = 1.0 self.discount_scale = 1.0 self.discount_factor = 0.5 self.target = torch.tensor((0.0, 0.65, 0.0, 0.0, 0.0, 0.0, 1.0), dtype=torch.float32, device=adapter, requires_grad=False) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def parse_mjcf( self, filename, builder, density=1000.0, stiffness=0.0, damping=0.0, contact_ke=1000.0, contact_kd=100.0, contact_kf=100.0, contact_mu=0.5, limit_ke=100.0, limit_kd=10.0): file = ET.parse(filename) root = file.getroot() # map node names to link indices self.node_map = {} self.xform_map = {} self.mesh_map = {} type_map = { "ball": df.JOINT_BALL, "hinge": df.JOINT_REVOLUTE, "slide": df.JOINT_PRISMATIC, "free": df.JOINT_FREE, "fixed": df.JOINT_FIXED } def parse_float(node, key, default): if key in node.attrib: return float(node.attrib[key]) else: return default def parse_vec(node, key, default): if key in node.attrib: return np.fromstring(node.attrib[key], sep=" ") else: return np.array(default) def parse_body(body, parent): body_name = body.attrib["name"] body_pos = np.fromstring(body.attrib["pos"], sep=" ") #----------------- # add body for each joint for joint in body.findall("joint"): joint_name = joint.attrib["name"], joint_type = type_map[joint.attrib["type"]] joint_axis = parse_vec(joint, "axis", (0.0, 0.0, 0.0)) joint_pos = parse_vec(joint, "pos", (0.0, 0.0, 0.0)) joint_range = parse_vec(joint, "range", (-3.0, 3.0)) joint_armature = parse_float(joint, "armature", 0.0) joint_stiffness = parse_float(joint, "stiffness", stiffness) joint_damping = parse_float(joint, "damping", damping) joint_axis = df.normalize(joint_axis) if (parent == -1): body_pos = np.array((0.0, 0.0, 0.0)) link = builder.add_link( parent, X_pj=df.transform(body_pos, df.quat_identity()), axis=joint_axis, type=joint_type, limit_lower=np.deg2rad(joint_range[0]), limit_upper=np.deg2rad(joint_range[1]), limit_ke=limit_ke, limit_kd=limit_kd, stiffness=joint_stiffness, damping=joint_damping, armature=joint_armature) parent = link body_pos = [0.0, 0.0, 0.0] # todo: assumes that serial joints are all aligned at the same point #----------------- # add shapes for geom in body.findall("geom"): geom_name = geom.attrib["name"] geom_type = geom.attrib["type"] geom_size = parse_vec(geom, "size", [1.0]) geom_pos = parse_vec(geom, "pos", (0.0, 0.0, 0.0)) geom_rot = parse_vec(geom, "quat", (0.0, 0.0, 0.0, 1.0)) if (geom_type == "sphere"): builder.add_shape_sphere( link, pos=geom_pos, rot=geom_rot, radius=geom_size[0], density=density, ke=contact_ke, kd=contact_kd, kf=contact_kf, mu=contact_mu) elif (geom_type == "capsule"): if ("fromto" in geom.attrib): geom_fromto = parse_vec(geom, "fromto", (0.0, 0.0, 0.0, 1.0, 0.0, 0.0)) start = geom_fromto[0:3] end = geom_fromto[3:6] # compute rotation to align dflex capsule (along x-axis), with mjcf fromto direction axis = df.normalize(end-start) angle = math.acos(np.dot(axis, (1.0, 0.0, 0.0))) axis = df.normalize(np.cross(axis, (1.0, 0.0, 0.0))) geom_pos = (start + end)*0.5 geom_rot = df.quat_from_axis_angle(axis, -angle) geom_radius = geom_size[0] geom_width = np.linalg.norm(end-start)*0.5 else: geom_radius = geom_size[0] geom_width = geom_size[1] geom_pos = parse_vec(geom, "pos", (0.0, 0.0, 0.0)) builder.add_shape_capsule( link, pos=geom_pos, rot=geom_rot, radius=geom_radius, half_width=geom_width, density=density, ke=contact_ke, kd=contact_kd, kf=contact_kf, mu=contact_mu) else: print("Type: " + geom_type + " unsupported") #----------------- # recurse for child in body.findall("body"): parse_body(child, link) #----------------- # start articulation builder.add_articulation() world = root.find("worldbody") for body in world.findall("body"): parse_body(body, -1) def set_target(self, x, name): self.target = torch.tensor(x, device=self.adapter) self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self, render=True): #--------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() if (self.model.ground): self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, dtype=torch.float32, device=self.model.adapter) for f in range(0, self.episode_frames): # build sinusoidal input phases # with df.ScopedTimer("inference", False): # phases = torch.zeros(self.phase_count, device=self.model.adapter) # for p in range(self.phase_count): # phases[p] = math.sin(self.phase_freq * self.sim_time + p * self.phase_step) # # compute activations (joint torques) # actions = self.network(phases) * self.action_strength # simulate with df.ScopedTimer("simulate", detailed=False, active=True): for i in range(0, self.sim_substeps): # apply actions #self.state.joint_act[6:] = actions self.state = self.integrator.forward(self.model, self.state, self.sim_dt, i==0) self.sim_time += self.sim_dt discount_time = self.sim_time discount = math.pow(self.discount_factor, discount_time*self.discount_scale) pos = self.state.joint_q[0:3] vel = df.get_body_linear_velocity(self.state.joint_qd[0:6], pos) loss = loss - discount*vel[0] # + torch.norm(self.state.joint_q[1]-0.5) # render with df.ScopedTimer("render", False): if (self.render): self.render_time += self.frame_dt self.renderer.update(self.state, self.render_time) try: self.stage.Save() except: print("USD save error") return loss def run(self): df.config.no_grad = True with torch.no_grad(): l = self.loss() def verify(self, eps=1.e-4): frame = 60 params = self.actions[frame] n = len(params) # evaluate analytic gradient l = self.loss(render=False) l.backward() # evaluate numeric gradient grad_analytic = self.actions.grad[frame].numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(n): mid = params[i].item() params[i] = mid - eps left = self.loss(render=False) params[i] = mid + eps right = self.loss(render=False) # reset params[i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = self.network.parameters() def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() #print("vel: " + str(params[0])) #print("grad: " + str(params[0].grad)) #print("--------") print(str(self.step_count) + ": " + str(l)) self.step_count += 1 #df.util.mem_report() # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): for p in list(params): p -= self.train_rate * p.grad p.grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.network, "outputs/" + self.name + ".pt") def load(self): self.network = torch.load("outputs/" + self.name + ".pt") #--------- #robot = Robot(depth=1, mode='dflex', render=True, adapter='cpu') #robot.load() #robot.run() robot = Robot(depth=1, mode='dflex', render=True, adapter='cuda') #robot.load() #robot.train(mode='adam') robot.run()
16,157
Python
29.486792
146
0.47744
RoboticExplorationLab/Deep-ILC/dflex/tests/test_jelly.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import time import timeit import cProfile import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class Bending: sim_duration = 5.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 200 train_rate = 0.01 phase_count = 8 phase_step = math.pi / phase_count * 2.0 phase_freq = 2.5 def __init__(self, adapter='cpu'): torch.manual_seed(42) r = df.quat_multiply(df.quat_from_axis_angle((0.0, 0.0, 1.0), math.pi * 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi * 0.5)) builder = df.sim.ModelBuilder() mesh = Usd.Stage.Open("assets/jellyfish.usda") geom = UsdGeom.Mesh(mesh.GetPrimAtPath("/Icosphere/Icosphere")) points = geom.GetPointsAttr().Get() indices = geom.GetFaceVertexIndicesAttr().Get() counts = geom.GetFaceVertexCountsAttr().Get() face_materials = [-1] * len(counts) face_subsets = UsdGeom.Subset.GetAllGeomSubsets(geom) for i, s in enumerate(face_subsets): face_subset_indices = s.GetIndicesAttr().Get() for f in face_subset_indices: face_materials[f] = i active_material = 0 active_scale = [] def add_edge(f0, f1): if (face_materials[f0] == active_material and face_materials[f1] == active_material): active_scale.append(1.0) else: active_scale.append(0.0) builder.add_cloth_mesh(pos=(0.0, 2.5, 0.0), rot=r, scale=1.0, vel=(0.0, 0.0, 0.0), vertices=points, indices=indices, edge_callback=add_edge, density=100.0) self.model = builder.finalize(adapter) self.model.tri_ke = 5000.0 self.model.tri_ka = 5000.0 self.model.tri_kd = 100.0 self.model.tri_lift = 1000.0 self.model.tri_drag = 0.0 self.model.edge_ke = 20.0 self.model.edge_kd = 1.0 #2.5 self.model.contact_ke = 1.e+4 self.model.contact_kd = 0.0 self.model.contact_kf = 1000.0 self.model.contact_mu = 0.5 self.model.particle_radius = 0.01 self.model.ground = False self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) # training params self.target_pos = torch.tensor((4.0, 2.0, 0.0), device=adapter) self.rest_angle = self.model.edge_rest_angle # one fully connected layer + tanh activation self.network = torch.nn.Sequential(torch.nn.Linear(self.phase_count, self.model.edge_count, bias=False), torch.nn.Tanh()).to(adapter) self.activation_strength = math.pi * 0.3 self.activation_scale = torch.tensor(active_scale, device=adapter) self.activation_penalty = 0.0 #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/jelly.usd") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.renderer.add_sphere(self.target_pos.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #----------------------- # run simulation self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # build sinusoidal input phases phases = torch.zeros(self.phase_count, device=self.model.adapter) for p in range(self.phase_count): phases[p] = math.sin(self.phase_freq*self.sim_time + p * self.phase_step) # compute activations (rest angles) activation = (self.network(phases)) * self.activation_strength * self.activation_scale self.model.edge_rest_angle = self.rest_angle + activation # forward dynamics with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # render with df.ScopedTimer("render", False): if (self.stage and render and (i % self.sim_substeps == 0)): self.sim_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.sim_time) # loss with df.ScopedTimer("loss", False): com_loss = torch.mean(self.state.particle_qd * self.model.particle_mass[:, None], 0) act_loss = torch.norm(activation) * self.activation_penalty loss = loss - com_loss[1] - act_loss return loss def run(self): with torch.no_grad(): l = self.loss() if (self.stage): self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None def closure(): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): l = self.loss(render) with df.ScopedTimer("backward"): l.backward() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(self.network.parameters(), lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(self.network.parameters(), lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(self.network.parameters(), lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- bending = Bending(adapter='cpu') #bending.load('jelly_10358.net') #bending.run() #bending.train('lbfgs') bending.train('sgd')
8,059
Python
30.119691
160
0.540514
RoboticExplorationLab/Deep-ILC/dflex/tests/test_urdf.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch t = torch.tensor((1.0), requires_grad=True) i = t.item() print(i) from urdfpy import URDF #robot = URDF.load("assets/trifinger/urdf/trifinger_with_stage.urdf") #robot = URDF.load("assets/franka_description/robots/franka_panda.urdf") #robot = URDF.load("assets/anymal_b_simple_description/urdf/anymal.urdf") #robot = URDF.load("assets/kinova_description/urdf/kinova.urdf") #robot = URDF.load("assets/ur5/urdf/ur5_robot.urdf") #robot = URDF.load("assets/kuka_allegro_description/allegro.urdf") robot = URDF.load("assets/allegro_hand_description/allegro_hand_description_left.urdf") for link in robot.links: dir(link) print(link) for joint in robot.joints: print(joint) robot.show()
1,141
Python
29.052631
87
0.765118
RoboticExplorationLab/Deep-ILC/dflex/tests/test_cloth.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import time # include parent path import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf # uncomment to output timers df.ScopedTimer.enabled = True class Cloth: sim_duration = 5.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps # 60 frames per second, 16 updates between frames, # sim_steps = int(sim_duration/sim_dt) sim_steps = int(sim_duration/sim_dt) sim_time = 0.0 render_time = 0.0 train_iters = 100 train_rate = 0.01 phase_count = 4 def __init__(self, dim=20, mode="cloth", adapter='cpu'): torch.manual_seed(42) height = 2.5 builder = df.sim.ModelBuilder() builder.add_cloth_grid(pos=(0.0, height, 0.0), rot=df.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi * 1.04), vel=(0.0, 0.0, 0.0), dim_x=dim, dim_y=dim, cell_x=0.2, cell_y=0.2, mass=400 / (dim**2)) #, fix_left=True, fix_right=True, fix_top=True, fix_bottom=True) attach0 = 0 attach1 = 20 anchor0 = builder.add_particle(pos=builder.particle_q[attach0] - (1.0, 0.0, 0.0), vel=(0.0, 0.0, 0.0), mass=0.0) anchor1 = builder.add_particle(pos=builder.particle_q[attach1] + (1.0, 0.0, 0.0), vel=(0.0, 0.0, 0.0), mass=0.0) builder.add_spring(anchor0, attach0, 10000.0, 1000.0, 0) builder.add_spring(anchor1, attach1, 10000.0, 1000.0, 0) self.model = builder.finalize(adapter) self.model.tri_ke = 10000.0 self.model.tri_ka = 10000.0 self.model.tri_kd = 100.0 self.model.contact_ke = 1.e+4 self.model.contact_kd = 1000.0 self.model.contact_kf = 1000.0 self.model.contact_mu = 0.5 self.model.particle_radius = 0.01 self.model.ground = False self.model.tri_collisions = False # set optimization targets self.model.spring_rest_length.requires_grad_() #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/cloth.usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True #self.integrator = df.sim.SemiImplicitIntegrator() self.integrator = df.sim.XPBDIntegrator() def loss(self, render=True): # reset state self.sim_time = 0.0 self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) with df.ScopedTimer("forward", False): # run simulation for i in range(0, self.sim_steps): with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) with df.ScopedTimer("render", False): if (render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) if (self.state.particle_q != self.state.particle_q).sum() != 0: print("NaN found in state") import pdb pdb.set_trace() self.sim_time += self.sim_dt # compute loss with df.ScopedTimer("loss", False): com_pos = torch.mean(self.state.particle_q, 0) com_vel = torch.mean(self.state.particle_qd, 0) # use integral of velocity over course of the run loss = loss - com_pos[1] return loss def run(self): l = self.loss() self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 self.render_steps = 1 optimizer = None def closure(): # render every N steps render = False if ((self.step_count % self.render_steps) == 0): render = True # with torch.autograd.detect_anomaly(): with df.ScopedTimer("forward", False): l = self.loss(render) with df.ScopedTimer("backward", False): l.backward() with df.ScopedTimer("save", False): if (render): self.stage.Save() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 return l with df.ScopedTimer("step"): if (mode == 'gd'): param = self.model.spring_rest_length # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad param.grad.data.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS([self.model.spring_rest_length], lr=0.01, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam([self.model.spring_rest_length], lr=self.train_rate * 4.0) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD([self.model.spring_rest_length], lr=self.train_rate * 0.01, momentum=0.8) # train for i in range(self.train_iters): optimizer.zero_grad() optimizer.step(closure) def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- cloth = Cloth(adapter='cuda') cloth.run() #cloth.train('adam') # for dim in range(20, 400, 20): # cloth = Cloth(dim=dim) # cloth.run()
7,006
Python
31.142202
157
0.515273
RoboticExplorationLab/Deep-ILC/dflex/tests/test_fem_contact.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import cProfile import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import test_util from pxr import Usd, UsdGeom, Gf class FEMContact: sim_duration = 10.0 # seconds sim_substeps = 64 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 16 train_rate = 0.01 #1.0/(sim_dt*sim_dt) phase_count = 8 phase_step = math.pi / phase_count * 2.0 phase_freq = 2.5 def __init__(self, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() solid = True if (solid): builder.add_soft_grid( pos=(0.5, 1.0, 0.0), rot=(0.0, 0.0, 0.0, 1.0), vel=(0.0, 0.0, 0.0), dim_x=3, dim_y=10, dim_z=3, cell_x=0.1, cell_y=0.1, cell_z=0.1, density=1000.0, k_mu=10000.0, k_lambda=10000.0, k_damp=1.0) else: builder.add_cloth_grid( pos=(-0.7, 1.0, -0.7), rot=df.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi*0.5), vel=(0.0, 0.0, 0.0), dim_x=20, dim_y=20, cell_x=0.075, cell_y=0.075, mass=0.2) # art = builder.add_articulation() # link = builder.add_link( # parent=-1, # X_pj=df.transform_identity(), # axis=(0.0, 0.0, 0.0), # type=df.JOINT_FREE, # armature=0.0) # builder.add_shape_sphere( # body=link, # pos=(0.0, 0.5, 0.0), # rot=df.quat_identity(), # radius=0.25) # builder.add_shape_box( # body=link, # pos=(0.0, 0.5, 0.0), # rot=df.quat_identity(), # hx=0.5, # hy=0.25, # hz=0.5) builder.add_articulation() test_util.build_tree(builder, angle=0.0, length=0.25, width=0.1, max_depth=3, joint_stiffness=10000.0, joint_damping=100.0) builder.joint_X_pj[0] = df.transform((-0.5, 0.5, 0.0), df.quat_identity()) # mesh = Usd.Stage.Open("assets/torus.stl.usda") # geom = UsdGeom.Mesh(mesh.GetPrimAtPath("/mesh")) # points = geom.GetPointsAttr().Get() # tet_indices = geom.GetPrim().GetAttribute("tetraIndices").Get() # tri_indices = geom.GetFaceVertexIndicesAttr().Get() # tri_counts = geom.GetFaceVertexCountsAttr().Get() # r = df.quat_multiply(df.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi * 0.5), df.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi * 0.0)) # builder.add_soft_mesh(pos=(0.0, 2.0, 0.0), # rot=r, # scale=0.25, # vel=(1.5, 0.0, 0.0), # vertices=points, # indices=tet_indices, # density=10.0, # k_mu=1000.0, # k_lambda=1000.0, # k_damp=1.0) self.model = builder.finalize(adapter) #self.model.tet_kl = 1000.0 #self.model.tet_km = 1000.0 #self.model.tet_kd = 1.0 # disable triangle dynamics (just used for rendering) if (solid): self.model.tri_ke = 0.0 self.model.tri_ka = 0.0 self.model.tri_kd = 0.0 self.model.tri_kb = 0.0 else: self.model.tri_ke = 1000.0 self.model.tri_ka = 1000.0 self.model.tri_kd = 10.0 self.model.tri_kb = 0.0 self.model.edge_ke = 100.0 self.model.edge_kd = 0.1 self.model.contact_ke = 1.e+4*2.0 self.model.contact_kd = 10.0 self.model.contact_kf = 10.0 self.model.contact_mu = 0.5 self.model.particle_radius = 0.05 self.model.ground = True # one fully connected layer + tanh activation self.network = torch.nn.Sequential(torch.nn.Linear(self.phase_count, self.model.tet_count, bias=False), torch.nn.Tanh()).to(adapter) self.activation_strength = 0.3 self.activation_penalty = 0.0 #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/fem_contact.usd") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 #self.renderer.add_sphere((0.0, 0.5, 0.0), 0.25, "collider") #self.renderer.add_box((0.0, 0.5, 0.0), (0.25, 0.25, 0.25), "collider") self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #----------------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # forward dynamics with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt # render with df.ScopedTimer("render", False): if (self.stage and render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) return loss def run(self, profile=False, render=True): df.config.no_grad = True with torch.no_grad(): with df.ScopedTimer("run"): if profile: cp = cProfile.Profile() cp.clear() cp.enable() # run forward dynamics if profile: self.state = self.model.state() for i in range(0, self.sim_steps): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt else: l = self.loss(render) if profile: cp.disable() cp.print_stats(sort='tottime') if (self.stage): self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None def closure(): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(self.network.parameters(), lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(self.network.parameters(), lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(self.network.parameters(), lr=self.train_rate, momentum=0.5) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- fem = FEMContact(adapter='cuda') fem.run(profile=False, render=True) #fem.train('lbfgs') #fem.train('sgd')
9,689
Python
29.28125
160
0.484467
RoboticExplorationLab/Deep-ILC/dflex/tests/test_ballistic.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import time import math # include parent path import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class Ballistic: sim_duration = 2.0 # seconds sim_substeps = 10 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 5 train_rate = 0.1 #1.0/(sim_dt*sim_dt) def __init__(self, adapter='cpu'): builder = df.sim.ModelBuilder() builder.add_particle((0, 1.0, 0.0), (0.1, 0.0, 0.0), 1.0) self.model = builder.finalize(adapter) self.target = torch.tensor((2.0, 1.0, 0.0), device=adapter) #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/ballistic.usda") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.renderer.add_sphere(self.target.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def loss(self): #----------------------- # run simulation self.state = self.model.state() for i in range(0, self.sim_steps): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) if (i % self.sim_substeps) == 0: self.renderer.update(self.state, self.sim_time) self.sim_time += self.sim_dt loss = torch.norm(self.state.particle_q[0] - self.target) return loss def train(self, mode='gd'): # Gradient Descent if (mode == 'gd'): for i in range(self.train_iters): l = self.loss() l.backward() print(l) with torch.no_grad(): self.model.particle_v -= self.train_rate * self.model.particle_v.grad self.model.particle_v.grad.zero_() # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS([self.model.particle_v], self.train_rate, tolerance_grad=1.e-5, history_size=4, line_search_fn="strong_wolfe") def closure(): optimizer.zero_grad() l = self.loss() l.backward() print(l) return l for i in range(self.train_iters): optimizer.step(closure) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD([self.model.particle_v], lr=self.train_rate, momentum=0.8) for i in range(self.train_iters): optimizer.zero_grad() l = self.loss() l.backward() print(l) optimizer.step() self.stage.Save() #--------- ballistic = Ballistic(adapter='cpu') ballistic.train('lbfgs')
3,437
Python
25.446154
152
0.566773
RoboticExplorationLab/Deep-ILC/dflex/tests/test_franka.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys # to allow tests to import the module they belong to sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class Robot: sim_duration = 4.0 # seconds sim_substeps = 4 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 128 train_rate = 10.0 ground = False name = "franka" regularization = 1.e-3 env_count = 1 env_dofs = 2 def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render # cartpole for i in range(self.env_count): test_util.urdf_load( builder, "assets/franka_description/robots/franka_panda.urdf", df.transform((0.0, 0.0, 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5)), floating=False, limit_ke=1.e+3, limit_kd=1.e+2) for i in range(len(builder.joint_target_kd)): builder.joint_target_kd[i] = 1.0 # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) self.model.joint_q.requires_grad_() self.model.joint_qd.requires_grad_() self.actions = torch.zeros((self.env_count, self.sim_steps), device=adapter, requires_grad=True) #self.actions = torch.zeros(1, device=adapter, requires_grad=True) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self): #--------------- # run simulation self.sim_time = 0.0 # initial state self.state = self.model.state() if (self.render): traj = [] for e in range(self.env_count): traj.append([]) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # simulate with df.ScopedTimer("fd", detailed=False, active=False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # render with df.ScopedTimer("render", False): if (self.render and (i % self.sim_substeps == 0)): with torch.no_grad(): # draw end effector tracer # for e in range(self.env_count): # X_pole = df.transform_point(df.transform_expand(self.state.body_X_sc[e*3 + self.marker_body].tolist()), (0.0, 0.0, self.marker_offset)) # traj[e].append((X_pole[0], X_pole[1], X_pole[2])) # # render trajectory # self.renderer.add_line_strip(traj[e], (1.0, 1.0, 1.0), self.render_time, "traj_" + str(e)) # render scene self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) self.sim_time += self.sim_dt return loss def run(self): l = self.loss() if (self.render): self.stage.Save() def verify(self, eps=1.e-4): params = self.actions n = 1#len(params) self.render = False # evaluate analytic gradient l = self.loss() l.backward() # evaluate numeric gradient grad_analytic = params.grad.cpu().numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(1): mid = params[0][i].item() params[0][i] = mid - eps left = self.loss() params[0][i] = mid + eps right = self.loss() # reset params[0][i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = [self.actions] def closure(): if (optimizer): optimizer.zero_grad() # render ever y N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss() with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() # for e in range(self.env_count): # print(self.actions.grad[e][0:20]) print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.actions, "outputs/" + self.name + ".pt") def load(self): self.actions = torch.load("outputs/" + self.name + ".pt") #--------- robot = Robot(depth=1, mode='dflex', render=True, adapter='cpu') #df.config.no_grad = True #df.config.check_grad = True #df.config.verify_fp = True #robot.load() robot.run() #robot.train(mode='lbfgs') #robot.verify(eps=1.e+1)
8,591
Python
27.54485
165
0.505762
RoboticExplorationLab/Deep-ILC/dflex/tests/test_util.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import urdfpy import math import numpy as np import os import xml.etree.ElementTree as ET import dflex as df def urdf_add_collision(builder, link, collisions, shape_ke, shape_kd, shape_kf, shape_mu): # add geometry for collision in collisions: origin = urdfpy.matrix_to_xyz_rpy(collision.origin) pos = origin[0:3] rot = df.rpy2quat(*origin[3:6]) geo = collision.geometry if (geo.box): builder.add_shape_box( link, pos, rot, geo.box.size[0]*0.5, geo.box.size[1]*0.5, geo.box.size[2]*0.5, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) if (geo.sphere): builder.add_shape_sphere( link, pos, rot, geo.sphere.radius, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) if (geo.cylinder): # cylinders in URDF are aligned with z-axis, while dFlex uses x-axis r = df.quat_from_axis_angle((0.0, 1.0, 0.0), math.pi*0.5) builder.add_shape_capsule( link, pos, df.quat_multiply(rot, r), geo.cylinder.radius, geo.cylinder.length*0.5, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) if (geo.mesh): for m in geo.mesh.meshes: faces = [] vertices = [] for v in m.vertices: vertices.append(np.array(v)) for f in m.faces: faces.append(int(f[0])) faces.append(int(f[1])) faces.append(int(f[2])) mesh = df.Mesh(vertices, faces) builder.add_shape_mesh( link, pos, rot, mesh, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) def urdf_load( builder, filename, xform, floating=False, armature=0.0, shape_ke=1.e+4, shape_kd=1.e+3, shape_kf=1.e+2, shape_mu=0.25, limit_ke=100.0, limit_kd=10.0): robot = urdfpy.URDF.load(filename) # maps from link name -> link index link_index = {} builder.add_articulation() # add base if (floating): root = builder.add_link(-1, df.transform_identity(), (0,0,0), df.JOINT_FREE) # set dofs to transform start = builder.joint_q_start[root] builder.joint_q[start + 0] = xform[0][0] builder.joint_q[start + 1] = xform[0][1] builder.joint_q[start + 2] = xform[0][2] builder.joint_q[start + 3] = xform[1][0] builder.joint_q[start + 4] = xform[1][1] builder.joint_q[start + 5] = xform[1][2] builder.joint_q[start + 6] = xform[1][3] else: root = builder.add_link(-1, xform, (0,0,0), df.JOINT_FIXED) urdf_add_collision(builder, root, robot.links[0].collisions, shape_ke, shape_kd, shape_kf, shape_mu) link_index[robot.links[0].name] = root # add children for joint in robot.joints: type = None axis = (0.0, 0.0, 0.0) if (joint.joint_type == "revolute" or joint.joint_type == "continuous"): type = df.JOINT_REVOLUTE axis = joint.axis if (joint.joint_type == "prismatic"): type = df.JOINT_PRISMATIC axis = joint.axis if (joint.joint_type == "fixed"): type = df.JOINT_FIXED if (joint.joint_type == "floating"): type = df.JOINT_FREE parent = -1 if joint.parent in link_index: parent = link_index[joint.parent] origin = urdfpy.matrix_to_xyz_rpy(joint.origin) pos = origin[0:3] rot = df.rpy2quat(*origin[3:6]) lower = -1.e+3 upper = 1.e+3 damping = 0.0 # limits if (joint.limit): if (joint.limit.lower != None): lower = joint.limit.lower if (joint.limit.upper != None): upper = joint.limit.upper # damping if (joint.dynamics): if (joint.dynamics.damping): damping = joint.dynamics.damping # add link link = builder.add_link( parent=parent, X_pj=df.transform(pos, rot), axis=axis, type=type, limit_lower=lower, limit_upper=upper, limit_ke=limit_ke, limit_kd=limit_kd, damping=damping) # add collisions urdf_add_collision(builder, link, robot.link_map[joint.child].collisions, shape_ke, shape_kd, shape_kf, shape_mu) # add ourselves to the index link_index[joint.child] = link # build an articulated tree def build_tree( builder, angle, max_depth, width=0.05, length=0.25, density=1000.0, joint_stiffness=0.0, joint_damping=0.0, shape_ke = 1.e+4, shape_kd = 1.e+3, shape_kf = 1.e+2, shape_mu = 0.5, floating=False): def build_recursive(parent, depth): if (depth >= max_depth): return X_pj = df.transform((length * 2.0, 0.0, 0.0), df.quat_from_axis_angle((0.0, 0.0, 1.0), angle)) type = df.JOINT_REVOLUTE axis = (0.0, 0.0, 1.0) if (depth == 0 and floating == True): X_pj = df.transform((0.0, 0.0, 0.0), df.quat_identity()) type = df.JOINT_FREE link = builder.add_link( parent, X_pj, axis, type, stiffness=joint_stiffness, damping=joint_damping) # box # shape = builder.add_shape_box( # link, # pos=(length, 0.0, 0.0), # hx=length, # hy=width, # hz=width, # ke=shape_ke, # kd=shape_kd, # kf=shape_kf, # mu=shape_mu) # capsule shape = builder.add_shape_capsule( link, pos=(length, 0.0, 0.0), radius=width, half_width=length, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) # recurse #build_tree_recursive(builder, link, angle, width, depth + 1, max_depth, shape_ke, shape_kd, shape_kf, shape_mu, floating) build_recursive(link, depth + 1) # build_recursive(-1, 0) # SNU file format parser class MuscleUnit: def __init__(self): self.name = "" self.bones = [] self.points = [] class Skeleton: def __init__(self, skeleton_file, muscle_file, builder, filter): self.parse_skeleton(skeleton_file, builder, filter) self.parse_muscles(muscle_file, builder) def parse_skeleton(self, filename, builder, filter): file = ET.parse(filename) root = file.getroot() self.node_map = {} # map node names to link indices self.xform_map = {} # map node names to parent transforms self.mesh_map = {} # map mesh names to link indices objects self.coord_start = len(builder.joint_q) self.dof_start = len(builder.joint_qd) type_map = { "Ball": df.JOINT_BALL, "Revolute": df.JOINT_REVOLUTE, "Prismatic": df.JOINT_PRISMATIC, "Free": df.JOINT_FREE, "Fixed": df.JOINT_FIXED } builder.add_articulation() for child in root: if (child.tag == "Node"): body = child.find("Body") joint = child.find("Joint") name = child.attrib["name"] parent = child.attrib["parent"] parent_X_s = df.transform_identity() if parent in self.node_map: parent_link = self.node_map[parent] parent_X_s = self.xform_map[parent] else: parent_link = -1 body_xform = body.find("Transformation") joint_xform = joint.find("Transformation") body_mesh = body.attrib["obj"] body_size = np.fromstring(body.attrib["size"], sep=" ") body_type = body.attrib["type"] body_mass = body.attrib["mass"] body_R_s = np.fromstring(body_xform.attrib["linear"], sep=" ").reshape((3,3)) body_t_s = np.fromstring(body_xform.attrib["translation"], sep=" ") joint_R_s = np.fromstring(joint_xform.attrib["linear"], sep=" ").reshape((3,3)) joint_t_s = np.fromstring(joint_xform.attrib["translation"], sep=" ") joint_type = type_map[joint.attrib["type"]] joint_lower = np.array([-1.e+3]) joint_upper = np.array([1.e+3]) try: joint_lower = np.fromstring(joint.attrib["lower"], sep=" ") joint_upper = np.fromstring(joint.attrib["upper"], sep=" ") except: pass if ("axis" in joint.attrib): joint_axis = np.fromstring(joint.attrib["axis"], sep=" ") else: joint_axis = np.array((0.0, 0.0, 0.0)) body_X_s = df.transform(body_t_s, df.quat_from_matrix(body_R_s)) joint_X_s = df.transform(joint_t_s, df.quat_from_matrix(joint_R_s)) mesh_base = os.path.splitext(body_mesh)[0] mesh_file = mesh_base + ".usd" #----------------------------------- # one time conversion, put meshes into local body space (and meter units) # stage = Usd.Stage.Open("./assets/snu/OBJ/" + mesh_file) # geom = UsdGeom.Mesh.Get(stage, "/" + mesh_base + "_obj/defaultobject/defaultobject") # body_X_bs = df.transform_inverse(body_X_s) # joint_X_bs = df.transform_inverse(joint_X_s) # points = geom.GetPointsAttr().Get() # for i in range(len(points)): # p = df.transform_point(joint_X_bs, points[i]*0.01) # points[i] = Gf.Vec3f(p.tolist()) # cm -> meters # geom.GetPointsAttr().Set(points) # extent = UsdGeom.Boundable.ComputeExtentFromPlugins(geom, 0.0) # geom.GetExtentAttr().Set(extent) # stage.Save() #-------------------------------------- link = -1 if len(filter) == 0 or name in filter: joint_X_p = df.transform_multiply(df.transform_inverse(parent_X_s), joint_X_s) body_X_c = df.transform_multiply(df.transform_inverse(joint_X_s), body_X_s) if (parent_link == -1): joint_X_p = df.transform_identity() # add link link = builder.add_link( parent=parent_link, X_pj=joint_X_p, axis=joint_axis, type=joint_type, damping=2.0, stiffness=10.0, limit_lower=joint_lower[0], limit_upper=joint_upper[0]) # add shape shape = builder.add_shape_box( body=link, pos=body_X_c[0], rot=body_X_c[1], hx=body_size[0]*0.5, hy=body_size[1]*0.5, hz=body_size[2]*0.5, ke=1.e+3*5.0, kd=1.e+2*2.0, kf=1.e+2, mu=0.5) # add lookup in name->link map # save parent transform self.xform_map[name] = joint_X_s self.node_map[name] = link self.mesh_map[mesh_base] = link def parse_muscles(self, filename, builder): # list of MuscleUnits muscles = [] file = ET.parse(filename) root = file.getroot() self.muscle_start = len(builder.muscle_activation) for child in root: if (child.tag == "Unit"): unit_name = child.attrib["name"] unit_f0 = float(child.attrib["f0"]) unit_lm = float(child.attrib["lm"]) unit_lt = float(child.attrib["lt"]) unit_lmax = float(child.attrib["lmax"]) unit_pen = float(child.attrib["pen_angle"]) m = MuscleUnit() m.name = unit_name incomplete = False for waypoint in child.iter("Waypoint"): way_bone = waypoint.attrib["body"] way_link = self.node_map[way_bone] way_loc = np.fromstring(waypoint.attrib["p"], sep=" ", dtype=np.float32) if (way_link == -1): incomplete = True break # transform loc to joint local space joint_X_s = self.xform_map[way_bone] way_loc = df.transform_point(df.transform_inverse(joint_X_s), way_loc) m.bones.append(way_link) m.points.append(way_loc) if not incomplete: muscles.append(m) builder.add_muscle(m.bones, m.points, f0=unit_f0, lm=unit_lm, lt=unit_lt, lmax=unit_lmax, pen=unit_pen) self.muscles = muscles
14,815
Python
29.802495
130
0.468512
RoboticExplorationLab/Deep-ILC/dflex/tests/test_contact.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import time # include parent path import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class Contact: sim_duration = 2.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 16 train_rate = 0.1 #1.0/(sim_dt*sim_dt) def __init__(self, adapter='cpu'): builder = df.sim.ModelBuilder() builder.add_particle((0.0, 1.5, 0.0), (0.0, 0.0, 0.0), 0.25) self.target_pos = torch.tensor((3.0, 0.0, 0.0), device=adapter) self.target_index = 0 self.model = builder.finalize(adapter) self.model.contact_ke = 1.e+3 self.model.contact_kf = 10.0 self.model.contact_kd = 10.0 self.model.contact_mu = 0.25 self.model.particle_qd.requires_grad = True #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/contact.usda") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.renderer.add_sphere(self.target_pos.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def loss(self): #----------------------- # run simulation self.state = self.model.state() for i in range(0, self.sim_steps): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) if (i % self.sim_substeps) == 0: self.renderer.update(self.state, self.sim_time) self.sim_time += self.sim_dt self.stage.Save() loss = torch.norm(self.state.particle_q[self.target_index] - self.target_pos) return loss def run(self): l = self.loss() self.stage.Save() def train(self, mode='gd'): # param to train param = self.model.particle_qd # Gradient Descent if (mode == 'gd'): for i in range(self.train_iters): l = self.loss() l.backward() print("loss: " + str(l.item())) print("v: " + str(param)) print("vgrad: " + str(param.grad)) print("--------------------") with torch.no_grad(): param -= self.train_rate * param.grad param.grad.zero_() # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS([param], 1.0, tolerance_grad=1.e-5, history_size=4, line_search_fn="strong_wolfe") def closure(): optimizer.zero_grad() l = self.loss() l.backward() print(l) return l for i in range(self.train_iters): optimizer.step(closure) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD([param], lr=self.train_rate, momentum=0.8) for i in range(self.train_iters): optimizer.zero_grad() l = self.loss() l.backward() print(l) print(param) optimizer.step() self.stage.Save() #--------- contact = Contact(adapter='cpu') contact.train('lbfgs')
3,942
Python
25.112583
124
0.54693
RoboticExplorationLab/Deep-ILC/dflex/tests/kit_walker.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf use_omni = False if use_omni: import omni.usd class Experiment: name = "kit_walker" network_file = None record = True render_time = 0.0 render_enabled = True def __init__(self): pass def reset(self, adapter='cuda'): self.episode_duration = 5.0 # seconds self.frame_dt = 1.0/60.0 self.frame_count = int(self.episode_duration/self.frame_dt) self.sim_substeps = 64 self.sim_dt = self.frame_dt / self.sim_substeps self.sim_time = 0.0 self.train_max_iters = 10000 self.train_iter = 0 self.train_rate = 0.025 self.train_loss = [] self.train_loss_best = math.inf self.phase_count = 8 self.phase_step = math.pi / self.phase_count * 2.0 self.phase_freq = 5.0 self.render_time = 0.0 torch.manual_seed(42) builder = df.sim.ModelBuilder() self.train_loss = [] self.optimizer = None #mesh = Usd.Stage.Open("assets/prop.usda") if use_omni == False: stage = Usd.Stage.Open("kit_walker.usda") else: stage = omni.usd.get_context().get_stage() # ostrich # geom = UsdGeom.Mesh(stage.GetPrimAtPath("/ostrich")) # points = geom.GetPointsAttr().Get() # builder.add_soft_mesh(pos=(0.0, 0.0, 0.0), # rot=df.quat_identity(), # scale=2.0, # vel=(0.0, 0.0, 0.0), # vertices=points, # indices=tet_indices, # density=1.0, # k_mu=2000.0, # k_lambda=2000.0, # k_damp=1.0) # bear geom = UsdGeom.Mesh(stage.GetPrimAtPath("/bear")) points = geom.GetPointsAttr().Get() xform = geom.ComputeLocalToWorldTransform(0.0) for i in range(len(points)): points[i] = xform.Transform(points[i]) tet_indices = geom.GetPrim().GetAttribute("tetraIndices").Get() tri_indices = geom.GetFaceVertexIndicesAttr().Get() tri_counts = geom.GetFaceVertexCountsAttr().Get() builder.add_soft_mesh(pos=(0.0, 0.0, 0.0), rot=df.quat_identity(), scale=2.0, vel=(0.0, 0.0, 0.0), vertices=points, indices=tet_indices, density=1.0, k_mu=2000.0, k_lambda=2000.0, k_damp=2.0) # # table # geom = UsdGeom.Mesh(stage.GetPrimAtPath("/table")) # points = geom.GetPointsAttr().Get() # builder.add_soft_mesh(pos=(0.0, 0.0, 0.0), # rot=df.quat_identity(), # scale=1.0, # vel=(0.0, 0.0, 0.0), # vertices=points, # indices=tet_indices, # density=1.0, # k_mu=1000.0, # k_lambda=1000.0, # k_damp=1.0) #builder.add_soft_grid(pos=(0.0, 0.5, 0.0), rot=(0.0, 0.0, 0.0, 1.0), vel=(0.0, 0.0, 0.0), dim_x=1, dim_y=2, dim_z=1, cell_x=0.5, cell_y=0.5, cell_z=0.5, density=1.0) # s = 2.0 # builder.add_particle((0.0, 0.5, 0.0), (0.0, 0.0, 0.0), 1.0) # builder.add_particle((s, 0.5, 0.0), (0.0, 0.0, 0.0), 1.0) # builder.add_particle((0.0, 0.5, s), (0.0, 0.0, 0.0), 1.0) # builder.add_particle((0.0, s + 0.5, 0.0), (0.0, 0.0, 0.0), 1.0) # builder.add_tetrahedron(1, 3, 0, 2) self.model = builder.finalize(adapter) #self.model.tet_kl = 1000.0 #self.model.tet_km = 1000.0 #self.model.tet_kd = 1.0 # disable triangle dynamics (just used for rendering) self.model.tri_ke = 0.0 self.model.tri_ka = 0.0 self.model.tri_kd = 0.0 self.model.tri_kb = 0.0 self.model.contact_ke = 1.e+3*2.0 self.model.contact_kd = 0.1 self.model.contact_kf = 10.0 self.model.contact_mu = 0.7 self.model.particle_radius = 0.05 self.model.ground = True #self.model.gravity = torch.tensor((0.0, -1.0, 0.0), device=adapter) # one fully connected layer + tanh activation self.network = torch.nn.Sequential(torch.nn.Linear(self.phase_count, self.model.tet_count, bias=False), torch.nn.Tanh()).to(adapter) self.activation_strength = 0.3 self.activation_penalty = 0.0 #----------------------- # set up Usd renderer self.stage = stage#Usd.Stage.CreateNew("outputs/fem.usd") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() self.state = self.model.state() if self.network_file: self.load(self.network_file) def inference(self): # build sinusoidal input phases with df.ScopedTimer("inference", False): phases = torch.zeros(self.phase_count, device=self.model.adapter) for p in range(self.phase_count): phases[p] = math.sin(self.phase_freq*self.sim_time + p * self.phase_step) # compute activations self.model.tet_activations = self.network(phases) * self.activation_strength def simulate(self, no_grad=False): # set grad mode df.config.no_grad = no_grad for i in range(self.sim_substeps): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt def render(self): with df.ScopedTimer("render", False): if (self.record): self.render_time += self.frame_dt if (self.stage): self.renderer.update(self.state, self.render_time) def loss(self, render=True): #----------------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for f in range(self.frame_count): self.inference() self.simulate() if (self.render_enabled): self.render() # loss with df.ScopedTimer("loss", False): com_loss = torch.mean(self.state.particle_qd, 0) #act_loss = torch.norm(self.model.tet_activations)*self.activation_penalty loss = loss - com_loss[0] + torch.norm(com_loss[1]) + torch.norm(com_loss[2])# + act_loss return loss def run(self, profile=False): self.inference() self.simulate(no_grad=True) if (self.render_enabled): self.render() def train(self, mode='gd'): # create optimizer if requested if (self.optimizer == None): # L-BFGS if (mode == 'lbfgs'): self.optimizer = torch.optim.LBFGS(self.network.parameters(), lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): self.optimizer = torch.optim.Adam(self.network.parameters(), lr=self.train_rate) # SGD if (mode == 'sgd'): self.optimizer = torch.optim.SGD(self.network.parameters(), lr=self.train_rate, momentum=0.5, nesterov=True) # closure for evaluating loss (called by optimizers) def closure(): if (self.optimizer): self.optimizer.zero_grad() # render every N steps render = True with df.ScopedTimer("forward"): l = self.loss(render) # save best network so far if (l < self.train_loss_best): self.train_loss_best = float(l) self.save() self.train_loss.append(float(l)) df.log("Iteration: {} Loss: {}".format(len(self.train_loss), l.item())) # save USD file if use_omni == False: try: self.stage.Save() except: print("Usd save error") # calculate gradient with df.ScopedTimer("backward"): l.backward() return l # perform optimization step with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent closure() with torch.no_grad(): params = self.network.parameters() for p in params: if p.grad is None: continue p -= self.train_rate * p.grad p.grad.zero_() else: self.optimizer.step(closure) self.train_iter += 1 def save(self): torch.save(self.network, self.name + str(self.train_iter) + ".pt") def load(self, file): self.network = torch.load(file) self.network.eval() df.log("Loaded pretrained network: " + file) #--------- experiment = Experiment() if use_omni == False: experiment.reset(adapter='cuda') #experiment.load("kit_walker19.pt") #experiment.train_iter = 19 # with df.ScopedTimer("update", detailed=False): # for i in range(experiment.frame_count): # experiment.run() # experiment.stage.Save() experiment.render_enabled = False #with torch.autograd.profiler.profile() as prof: with df.ScopedTimer("train", detailed=True): #for i in range(experiment.train_max_iters): experiment.train('adam') #print(prof.key_averages().table())
11,009
Python
29.414365
174
0.512762
RoboticExplorationLab/Deep-ILC/dflex/tests/test_lift_drag.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch from torch.utils.tensorboard import SummaryWriter # include parent path import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf # uncomment to output timers df.ScopedTimer.enabled = False class Cloth: sim_duration = 2.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 render_time = 0.0 train_iters = 4 train_rate = 0.01 / sim_substeps phase_count = 4 def __init__(self, adapter='cpu'): torch.manual_seed(42) height = 2.5 builder = df.sim.ModelBuilder() builder.add_cloth_grid(pos=(0.0, height, 0.0), rot=df.quat_from_axis_angle((1.0, 0.5, 0.0), math.pi * 0.5), vel=(0.0, 0.0, 0.0), dim_x=16, dim_y=16, cell_x=0.125, cell_y=0.125, mass=1.0) #, fix_left=True, fix_right=True, fix_top=True, fix_bottom=True) self.model = builder.finalize(adapter) self.model.tri_ke = 10000.0 self.model.tri_ka = 10000.0 self.model.tri_kd = 100.0 self.model.tri_lift = 10.0 self.model.tri_drag = 5.0 self.model.contact_ke = 1.e+4 self.model.contact_kd = 1000.0 self.model.contact_kf = 1000.0 self.model.contact_mu = 0.5 self.model.particle_radius = 0.01 self.model.ground = False self.target = torch.tensor((8.0, 0.0, 0.0), device=adapter) self.initial_velocity = torch.tensor((1.0, 0.0, 0.0), requires_grad=True, device=adapter) #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/drag.usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.renderer.add_sphere(self.target.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): # reset state self.sim_time = 0.0 self.state = self.model.state() self.state.particle_qd = self.state.particle_qd + self.initial_velocity loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) # run simulation for i in range(0, self.sim_steps): with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) with df.ScopedTimer("render", False): if (render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) self.sim_time += self.sim_dt # compute loss with df.ScopedTimer("loss", False): com_pos = torch.mean(self.state.particle_q, 0) com_vel = torch.mean(self.state.particle_qd, 0) # use integral of velocity over course of the run loss = loss + torch.norm(com_pos - self.target) return loss def run(self): l = self.loss() self.stage.Save() def train(self, mode='gd'): writer = SummaryWriter() writer.add_hparams({"lr": self.train_rate, "mode": mode}, {}) # param to train self.step_count = 0 self.render_steps = 1 optimizer = None param = self.initial_velocity def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % self.render_steps) == 0): render = True with df.ScopedTimer("forward"): l = self.loss(render) with df.ScopedTimer("backward"): l.backward() with df.ScopedTimer("save"): if (render): self.stage.Save() print(str(self.step_count) + ": " + str(l)) writer.add_scalar("loss", l.item(), self.step_count) writer.flush() self.step_count += 1 return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad param.grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS([param], lr=0.1, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam([param], lr=self.train_rate * 4.0) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD([param], lr=self.train_rate * (1.0 / 32.0), momentum=0.8) # train for i in range(self.train_iters): optimizer.step(closure) writer.close() def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- cloth = Cloth(adapter='cpu') cloth.train('lbfgs') #cloth.run()
6,236
Python
28.559242
156
0.533355
RoboticExplorationLab/Deep-ILC/dflex/tests/test_cartpole.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys # to allow tests to import the module they belong to sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class Robot: sim_duration = 4.0 # seconds sim_substeps = 4 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 128 train_rate = 10.0 ground = True name = "cartpole" regularization = 1.e-3 env_count = 16 env_dofs = 2 def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render link_width = 0.5 max_depth = depth # cartpole for i in range(self.env_count): test_util.urdf_load(builder, "assets/" + self.name + ".urdf", df.transform((0.0, 2.5, -2.0 + i*2.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5)), floating=False) builder.joint_q[i*2 + 0] = 0 builder.joint_q[i*2 + 1] = -math.pi*0.5# + i*0.25 self.pole_angle_penalty = 10.0 self.pole_velocity_penalty = 0.5 self.cart_action_penalty = 1.e-7 self.cart_velocity_penalty = 1.0 self.cart_position_penalty = 2.0 if self.name == "cartpole": self.marker_body = 2 self.marker_offset = 1.0 self.discount_scale = 2.0 self.discount_factor = 0.5 if self.name == "cartpole_double": self.marker_body = 3 self.marker_offset = 0.5 self.discount_scale = 6.0 self.discount_factor = 0.5 # # humanoid # test_util.urdf_load( # builder, # "assets/humanoid.urdf", # df.transform((0.0, 1.5, 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5)), # floating=True, # shape_ke=1.e+3*5.0, # shape_kd=1.e+3, # shape_kf=1.e+2, # shape_mu=0.5) # # set pd-stiffness # for i in range(len(builder.joint_target_ke)): # builder.joint_target_ke[i] = 10.0 # builder.joint_target_kd[i] = 1.0 # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) self.model.joint_q.requires_grad_() self.model.joint_qd.requires_grad_() self.actions = torch.zeros((self.env_count, self.sim_steps), device=adapter, requires_grad=True) #self.actions = torch.zeros(1, device=adapter, requires_grad=True) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self): #--------------- # run simulation self.sim_time = 0.0 # initial state self.state = self.model.state() if (self.render): traj = [] for e in range(self.env_count): traj.append([]) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # apply actions self.state.joint_act[::2] = self.actions[:, i] # assign actions to cart DOF 0, 2, 4, etc #self.state.joint_act = self.state.joint_q*-50.0 - self.state.joint_qd*1.0 # simulate with df.ScopedTimer("fd", detailed=False, active=False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt, update_mass_matrix=(i%1==0)) # render with df.ScopedTimer("render", False): if (self.render and (i % self.sim_substeps == 0)): with torch.no_grad(): # draw end effector tracer # for e in range(self.env_count): # X_pole = df.transform_point(df.transform_expand(self.state.body_X_sc[e*3 + self.marker_body].tolist()), (0.0, 0.0, self.marker_offset)) # traj[e].append((X_pole[0], X_pole[1], X_pole[2])) # # render trajectory # self.renderer.add_line_strip(traj[e], (1.0, 1.0, 1.0), self.render_time, "traj_" + str(e)) # render scene self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) self.sim_time += self.sim_dt # reward reward_start = 2.0 if self.sim_time > reward_start: discount_time = (self.sim_time - reward_start) discount = math.pow(self.discount_factor, discount_time*self.discount_scale) pole_rot = self.state.joint_q[1::2] # 1,3,5 pole_vel = self.state.joint_qd[1::2] # 1,3,5 cart_pos = self.state.joint_q[0::2] # 0,2,4 cart_vel = self.state.joint_qd[0::2] # 0,2,4 actions = self.actions.view(-1) loss = loss + (torch.dot(pole_rot, pole_rot)*self.pole_angle_penalty + torch.dot(pole_vel, pole_vel)*self.pole_velocity_penalty + torch.dot(cart_pos, cart_pos)*self.cart_position_penalty + torch.dot(cart_vel, cart_vel)*self.cart_velocity_penalty)*discount loss = loss + torch.dot(actions, actions)*self.cart_action_penalty return loss def run(self): l = self.loss() if (self.render): self.stage.Save() def verify(self, eps=1.e-4): params = self.actions n = 1#len(params) self.render = False # evaluate analytic gradient l = self.loss() l.backward() # evaluate numeric gradient grad_analytic = params.grad.cpu().numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(1): mid = params[0][i].item() params[0][i] = mid - eps left = self.loss() params[0][i] = mid + eps right = self.loss() # reset params[0][i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = [self.actions] def closure(): if (optimizer): optimizer.zero_grad() # render ever y N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss() with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() # for e in range(self.env_count): # print(self.actions.grad[e][0:20]) print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.actions, "outputs/" + self.name + ".pt") def load(self): self.actions = torch.load("outputs/" + self.name + ".pt") #--------- robot = Robot(depth=1, mode='dflex', render=True, adapter='cuda') #df.config.no_grad = True #df.config.check_grad = True #df.config.verify_fp = True #robot.load() #df.config.no_grad = False #robot.run() robot.train(mode='lbfgs') #robot.verify(eps=1.e+1)
10,960
Python
29.030137
185
0.506296
RoboticExplorationLab/Deep-ILC/dflex/tests/test_snu.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys # to allow tests to import the module they belong to sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class HumanoidSNU: sim_duration = 1.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 128 train_rate = 0.01 ground = False name = "humanoid_snu_neck" regularization = 1.e-3 env_count = 16 env_dofs = 2 def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(41) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render self.filter = {} if self.name == "humanoid_snu_arm": self.filter = { "ShoulderR", "ArmR", "ForeArmR", "HandR", "Torso", "Neck" } self.ground = False if self.name == "humanoid_snu_neck": self.filter = { "Torso", "Neck", "Head", "ShoulderR", "ShoulderL"} self.ground = False self.node_map, self.xform_map, self.mesh_map = test_util.parse_skeleton("assets/snu/arm.xml", builder, self.filter) self.muscles = test_util.parse_muscles("assets/snu/muscle284.xml", builder, self.node_map, self.xform_map) # set initial position 1m off the ground if self.name == "humanoid_snu": builder.joint_q[1] = 1.0 # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) self.activations = torch.zeros((1, len(self.muscles)), dtype=torch.float32, device=adapter, requires_grad=True) #self.activations = torch.rand((1, len(self.muscles)), dtype=torch.float32, device=adapter, requires_grad=True) self.model.joint_q.requires_grad = True self.model.joint_qd.requires_grad = True self.model.muscle_activation.requires_grad = True self.target_penalty = 1.0 self.velocity_penalty = 0.1 self.action_penalty = 0.0 self.muscle_strength = 40.0 self.discount_scale = 2.0 self.discount_factor = 1.0 #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 else: self.renderer = None self.set_target((-0.1, 0.1, 0.5), "target") self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, dtype=torch.float32, device=self.adapter) if (self.renderer): self.renderer.add_sphere(self.target.tolist(), 0.05, name) def loss(self): #--------------- # run simulation self.sim_time = 0.0 # initial state self.state = self.model.state() self.model.collide(self.state) if (self.render): traj = [] for e in range(self.env_count): traj.append([]) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # apply actions self.model.muscle_activation = (torch.tanh(4.0*self.activations[0] - 2.0)*0.5 + 0.5)*self.muscle_strength #self.model.muscle_activation = self.activations[0]*self.muscle_strength # simulate with df.ScopedTimer("fd", detailed=False, active=False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # render with df.ScopedTimer("render", False): if (self.render and (i % self.sim_substeps == 0)): with torch.no_grad(): # draw end effector tracer # for e in range(self.env_count): # X_pole = df.transform_point(df.transform_expand(self.state.body_X_sc[e*3 + self.marker_body].tolist()), (0.0, 0.0, self.marker_offset)) # traj[e].append((X_pole[0], X_pole[1], X_pole[2])) # # render trajectory # self.renderer.add_line_strip(traj[e], (1.0, 1.0, 1.0), self.render_time, "traj_" + str(e)) for mesh, link in self.mesh_map.items(): if link != -1: X_sc = df.transform_expand(self.state.body_X_sc[link].tolist()) #self.renderer.add_mesh(mesh, "../assets/snu/OBJ/" + mesh + ".usd", X_sc, 1.0, self.render_time) self.renderer.add_mesh(mesh, "../assets/snu/OBJ/" + mesh + ".usd", X_sc, 1.0, self.render_time) for m in range(self.model.muscle_count): start = self.model.muscle_start[m] end = self.model.muscle_start[m+1] points = [] for w in range(start, end): link = self.model.muscle_links[w] point = self.model.muscle_points[w].cpu() X_sc = df.transform_expand(self.state.body_X_sc[link].cpu().tolist()) points.append(Gf.Vec3f(df.transform_point(X_sc, point).tolist())) self.renderer.add_line_strip(points, name=self.muscles[m].name, radius=0.0075, color=(self.model.muscle_activation[m]/self.muscle_strength, 0.2, 0.5), time=self.render_time) # render scene self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) self.sim_time += self.sim_dt # loss if self.name == "humanoid_snu_arm": hand_pos = self.state.body_X_sc[self.node_map["HandR"]][0:3] discount_time = self.sim_time discount = math.pow(self.discount_factor, discount_time*self.discount_scale) # loss = loss + (torch.norm(hand_pos - self.target)*self.target_penalty + # torch.norm(self.state.joint_qd)*self.velocity_penalty + # torch.norm(self.model.muscle_activation)*self.action_penalty)*discount #loss = loss + torch.norm(self.state.joint_qd) loss = loss + torch.norm(hand_pos - self.target)*self.target_penalty if self.name == "humanoid_snu_neck": # rotate a vector def transform_vector_torch(t, x): axis = t[3:6] w = t[6] return x * (2.0 *w*w - 1.0) + torch.cross(axis, x) * w * 2.0 + axis * torch.dot(axis, x) * 2.0 forward_dir = torch.tensor((0.0, 0.0, 1.0), dtype=torch.float32, device=self.adapter) up_dir = torch.tensor((0.0, 1.0, 0.0), dtype=torch.float32, device=self.adapter) target_dir = torch.tensor((1.0, 0.0, 0.1), dtype=torch.float32, device=self.adapter) head_forward = transform_vector_torch(self.state.body_X_sc[self.node_map["Head"]], forward_dir) head_up = transform_vector_torch(self.state.body_X_sc[self.node_map["Head"]], up_dir) loss = loss - torch.dot(head_forward, target_dir)*self.target_penalty - torch.dot(head_up, up_dir)*self.target_penalty return loss def run(self): df.config.no_grad = True with torch.no_grad(): l = self.loss() if (self.render): self.stage.Save() def verify(self, eps=1.e-4): params = self.actions n = 1#len(params) self.render = False # evaluate analytic gradient l = self.loss() l.backward() # evaluate numeric gradient grad_analytic = params.grad.cpu().numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(1): mid = params[0][i].item() params[0][i] = mid - eps left = self.loss() params[0][i] = mid + eps right = self.loss() # reset params[0][i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = [self.activations] def closure(): if (optimizer): optimizer.zero_grad() # render ever y N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss() with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() # for e in range(self.env_count): # print(self.actions.grad[e][0:20]) #print(self.activations.grad) print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9)#, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.activations, "outputs/" + self.name + ".pt") def load(self): self.activations = torch.load("outputs/" + self.name + ".pt") #--------- env = HumanoidSNU(depth=1, mode='dflex', render=True, adapter='cpu') #df.config.no_grad = True #df.config.check_grad = True #df.config.verify_fp = True #robot.load() #env.run() #env.load() env.train(mode='adam') #robot.verify(eps=1.e+1)
12,760
Python
31.306329
201
0.518103
RoboticExplorationLab/Deep-ILC/dflex/tests/test_walker.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import time # include parent path import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class Walker: sim_duration = 5.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 render_time = 0.0 train_iters = 50 train_rate = 0.0001 def __init__(self, mode="walker", adapter='cpu'): self.phase_count = 8 self.phase_step = math.pi / self.phase_count * 2.0 self.phase_freq = 20.0 torch.manual_seed(42) builder = df.sim.ModelBuilder() walker = Usd.Stage.Open("assets/walker.usda") mesh = UsdGeom.Mesh(walker.GetPrimAtPath("/Grid/Grid")) points = mesh.GetPointsAttr().Get() indices = mesh.GetFaceVertexIndicesAttr().Get() for p in points: builder.add_particle(tuple(p), (0.0, 0.0, 0.0), 1.0) for t in range(0, len(indices), 3): i = indices[t + 0] j = indices[t + 1] k = indices[t + 2] builder.add_triangle(i, j, k) self.model = builder.finalize(adapter) self.model.tri_ke = 10000.0 self.model.tri_ka = 10000.0 self.model.tri_kd = 100.0 self.model.tri_lift = 0.0 self.model.tri_drag = 0.0 self.edge_ke = 0.0 self.edge_kd = 0.0 self.model.contact_ke = 1.e+4 self.model.contact_kd = 1000.0 self.model.contact_kf = 1000.0 self.model.contact_mu = 0.5 self.model.particle_radius = 0.01 # one fully connected layer + tanh activation self.network = torch.nn.Sequential(torch.nn.Linear(self.phase_count, self.model.tri_count, bias=False), torch.nn.Tanh()).to(adapter) self.activation_strength = 0.2 self.activation_penalty = 0.1 #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/walker.usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #----------------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): phases = torch.zeros(self.phase_count, device=self.model.adapter) # build sinusoidal phase inputs for p in range(self.phase_count): phases[p] = math.cos(4.0*self.sim_time*math.pi/(2.0*self.phase_count)*(2.0*p + 1.0)) #self.phase_freq*self.sim_time + p * self.phase_step) self.model.tri_activations = self.network(phases) * self.activation_strength self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt if (render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) com_pos = torch.mean(self.state.particle_q, 0) com_vel = torch.mean(self.state.particle_qd, 0) # use integral of velocity over course of the run loss = loss - com_vel[0] + torch.norm(self.model.tri_activations) * self.activation_penalty return loss def run(self): l = self.loss() self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None def closure(): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True l = self.loss(render) l.backward() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 try: if (render): self.stage.Save() except: print("USD save error") return l if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(self.network.parameters(), lr=0.1, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(self.network.parameters(), lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(self.network.parameters(), lr=self.train_rate, momentum=0.25) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- walker = Walker(adapter='cpu') walker.train('lbfgs') #walker.run()
6,109
Python
27.685446
158
0.560485
RoboticExplorationLab/Deep-ILC/dflex/tests/test_cage.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import time # include parent path import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class Cage: sim_duration = 2.0 # seconds sim_substeps = 8 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 20 train_rate = 0.1 #1.0/(sim_dt*sim_dt) def __init__(self, mode="quad", adapter='cpu'): builder = df.sim.ModelBuilder() if (mode == "quad"): # anchors builder.add_particle((-1.0, 1.0, 0.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((1.0, 1.0, 0.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((1.0, -1.0, 0.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((-1.0, -1.0, 0.0), (0.0, 0.0, 0.0), 0.0) # ball builder.add_particle((0.0, 0.0, 0.0), (0.0, 0.0, 0.0), 1.0) ke = 1.e+2 kd = 10.0 # springs builder.add_spring(0, 4, ke, kd, 0) builder.add_spring(1, 4, ke, kd, 0) builder.add_spring(2, 4, ke, kd, 0) builder.add_spring(3, 4, ke, kd, 0) self.target_pos = torch.tensor((0.85, 0.5, 0.0), device=adapter) self.target_index = 4 if (mode == "box"): # anchors builder.add_particle((-1.0, -1.0, -1.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((-1.0, -1.0, 1.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((-1.0, 1.0, -1.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((-1.0, 1.0, 1.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((1.0, -1.0, -1.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((1.0, -1.0, 1.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((1.0, 1.0, -1.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((1.0, 1.0, 1.0), (0.0, 0.0, 0.0), 0.0) # ball builder.add_particle((0.0, 0.0, 0.0), (0.0, 0.0, 0.0), 1.0) ke = 1.e+2 kd = 10.0 target = 8 # springs builder.add_spring(0, target, ke, kd, 0) builder.add_spring(1, target, ke, kd, 0) builder.add_spring(2, target, ke, kd, 0) builder.add_spring(3, target, ke, kd, 0) builder.add_spring(4, target, ke, kd, 0) builder.add_spring(5, target, ke, kd, 0) builder.add_spring(6, target, ke, kd, 0) builder.add_spring(7, target, ke, kd, 0) self.target_pos = torch.tensor((0.85, 0.5, -0.75), device=adapter) self.target_index = target if (mode == "chain"): # anchor builder.add_particle((0.0, 0.0, 0.0), (0.0, 0.0, 0.0), 0.0) segments = 4 segment_length = 1.0 ke = 1.e+2 kd = 10.0 for i in range(1, segments + 1): builder.add_particle((segment_length * i, 0.0, 0.0), (0.0, 0.0, 0.0), 1.0) builder.add_spring(i - 1, i, ke, kd, 0) # bending spring if (i > 1): builder.add_spring(i - 2, i, ke * 4.0, kd, 0) self.target_pos = torch.tensor((3.0, 0.0, 0.0), device=adapter) self.target_index = segments self.model = builder.finalize(adapter) self.model.particle_radius = 0.05 self.model.ground = False self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) # set optimization targets self.model.spring_rest_length.requires_grad_() #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/cage.usda") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.renderer.add_sphere(self.target_pos.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def loss(self): #----------------------- # run simulation self.state = self.model.state() for i in range(0, self.sim_steps): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # print("state: ", self.state.particle_q[self.target_index]) if (i % self.sim_substeps) == 0: self.renderer.update(self.state, self.sim_time) self.sim_time += self.sim_dt # print(self.state.particle_q[self.target_index]) loss = torch.norm(self.state.particle_q[self.target_index] - self.target_pos) return loss def run(self): l = self.loss() self.stage.Save() def train(self, mode='gd'): # param to train param = self.model.spring_rest_length # Gradient Descent if (mode == 'gd'): for i in range(self.train_iters): # with torch.autograd.detect_anomaly(): l = self.loss() print(l) l.backward() with torch.no_grad(): param -= self.train_rate * param.grad param.grad.zero_() # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS([param], self.train_rate, tolerance_grad=1.e-5, history_size=4, line_search_fn="strong_wolfe") def closure(): optimizer.zero_grad() l = self.loss() l.backward() print(l) return l for i in range(self.train_iters): optimizer.step(closure) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD([param], lr=self.train_rate, momentum=0.8) for i in range(self.train_iters): optimizer.zero_grad() l = self.loss() l.backward() print(l) optimizer.step() self.stage.Save() #--------- cage = Cage("box", adapter='cpu') cage.train('gd') #cage.run()
6,656
Python
29.122172
136
0.510968
RoboticExplorationLab/Deep-ILC/dflex/tests/test_articulation_fk.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import tinyobjloader import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class Robot: sim_duration = 10.0 # seconds sim_substeps = 4 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 64 train_rate = 0.05 #1.0/(sim_dt*sim_dt) def __init__(self, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() x = 0.0 w = 0.5 max_depth = 3 # create a branched tree builder.add_articulation() test_util.build_tree(builder, angle=0.0, width=w, max_depth=max_depth) # add weight if (True): radius = 0.1 X_pj = df.transform((w * 2.0, 0.0, 0.0), df.quat_from_axis_angle( (0.0, 0.0, 1.0), 0.0)) X_cm = df.transform((radius, 0.0, 0.0), df.quat_identity()) parent = len(builder.body_mass)-1 link = builder.add_link(parent, X_pj, (0.0, 0.0, 1.0), df.JOINT_REVOLUTE) shape = builder.add_shape_sphere(link, pos=(0.0, 0.0, 0.0), radius=radius) self.model = builder.finalize(adapter) self.model.contact_ke = 1.e+4 self.model.contact_kd = 1000.0 self.model.contact_kf = 100.0 self.model.contact_mu = 0.75 self.model.ground = False self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) # base state self.state = self.model.state() self.state.joint_q.requires_grad_() # ik target self.target = torch.tensor((1.0, 2.0, 0.0), device=adapter) #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/articulation_fk.usda") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self, render=True): #--------------- # run simulation self.sim_time = 0.0 if (True): self.state.body_X_sc, self.state.body_X_sm = df.adjoint.launch(df.eval_rigid_fk, 1, [ # inputs self.model.articulation_start, self.model.joint_type, self.model.joint_parent, self.model.joint_q_start, self.model.joint_qd_start, self.state.joint_q, self.model.joint_X_pj, self.model.joint_X_cm, self.model.joint_axis ], [ # outputs self.state.body_X_sc, self.state.body_X_sm ], adapter='cpu', preserve_output=True) p = self.state.body_X_sm[3][0:3] err = torch.norm(p - self.target) # try: # art_start = self.art.articulation_start.clone() # art_end = self.art.articulation_end.clone() # joint_type = self.art.joint_type.clone() # joint_parent = self.art.joint_parent.clone() # joint_q_start = self.art.joint_q_start.clone() # joint_qd_start = self.art.joint_qd_start.clone() # joint_q = self.art.joint_q.clone() # joint_X_pj = self.art.joint_X_pj.clone() # joint_X_cm = self.art.joint_X_cm.clone() # joint_axis = self.art.joint_axis.clone() # torch.autograd.gradcheck(df.EvalRigidFowardKinematicsFunc.apply, ( # art_start, # art_end, # joint_type, # joint_parent, # joint_q_start, # joint_qd_start, # joint_q, # joint_X_pj, # joint_X_cm, # joint_axis, # 'cpu'), eps=1e-3, atol=1e-3, raise_exception=True) # except Exception as e: # print("failed: " + str(e)) # render with df.ScopedTimer("render", False): if (self.stage): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) #self.stage.Save() self.sim_time += self.sim_dt return err def run(self): #with torch.no_grad(): l = self.loss() if (self.stage): self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None params = [self.state.joint_q] def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() print("vel: " + str(params[0])) print("grad: " + str(params[0].grad)) print("--------") print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=0.2, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- robot = Robot(adapter='cpu') #robot.run() mode = 'lbfgs' robot.set_target((1.0, 2.0, 0.0), "target_1") robot.train(mode) robot.set_target((1.0, -2.0, 0.0), "target_2") robot.train(mode) robot.set_target((-1.0, -2.0, 0.0), "target_3") robot.train(mode) robot.set_target((-2.0, 2.0, 0.0), "target_4") robot.train(mode) #rigid.stage.Save()
8,503
Python
28.425605
141
0.49359
RoboticExplorationLab/Deep-ILC/dflex/tests/test_fem.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import cProfile import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class FEM: sim_duration = 5.0 # seconds sim_substeps = 32 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 16 train_rate = 0.01 #1.0/(sim_dt*sim_dt) phase_count = 8 phase_step = math.pi / phase_count * 2.0 phase_freq = 2.5 def __init__(self, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() mesh = Usd.Stage.Open("assets/prop.usda") geom = UsdGeom.Mesh(mesh.GetPrimAtPath("/mesh")) points = geom.GetPointsAttr().Get() tet_indices = geom.GetPrim().GetAttribute("tetraIndices").Get() tri_indices = geom.GetFaceVertexIndicesAttr().Get() tri_counts = geom.GetFaceVertexCountsAttr().Get() r = df.quat_multiply(df.quat_from_axis_angle((0.0, 0.0, 1.0), math.pi * 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi * 0.0)) builder.add_soft_mesh(pos=(0.0, 2.0, 0.0), rot=r, scale=1.0, vel=(1.5, 0.0, 0.0), vertices=points, indices=tet_indices, density=1.0, k_mu=1000.0, k_lambda=1000.0, k_damp=1.0) #builder.add_soft_grid(pos=(0.0, 0.5, 0.0), rot=(0.0, 0.0, 0.0, 1.0), vel=(0.0, 0.0, 0.0), dim_x=1, dim_y=2, dim_z=1, cell_x=0.5, cell_y=0.5, cell_z=0.5, density=1.0) # s = 2.0 # builder.add_particle((0.0, 0.5, 0.0), (0.0, 0.0, 0.0), 1.0) # builder.add_particle((s, 0.5, 0.0), (0.0, 0.0, 0.0), 1.0) # builder.add_particle((0.0, 0.5, s), (0.0, 0.0, 0.0), 1.0) # builder.add_particle((0.0, s + 0.5, 0.0), (0.0, 0.0, 0.0), 1.0) # builder.add_tetrahedron(1, 3, 0, 2) self.model = builder.finalize(adapter) #self.model.tet_kl = 1000.0 #self.model.tet_km = 1000.0 #self.model.tet_kd = 1.0 # disable triangle dynamics (just used for rendering) self.model.tri_ke = 0.0 self.model.tri_ka = 0.0 self.model.tri_kd = 0.0 self.model.tri_kb = 0.0 self.model.contact_ke = 1.e+4 self.model.contact_kd = 1.0 self.model.contact_kf = 10.0 self.model.contact_mu = 0.5 self.model.particle_radius = 0.05 self.model.ground = True # one fully connected layer + tanh activation self.network = torch.nn.Sequential(torch.nn.Linear(self.phase_count, self.model.tet_count, bias=False), torch.nn.Tanh()).to(adapter) self.activation_strength = 0.3 self.activation_penalty = 0.0 #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/fem.usd") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #----------------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # build sinusoidal input phases with df.ScopedTimer("inference", False): phases = torch.zeros(self.phase_count, device=self.model.adapter) for p in range(self.phase_count): phases[p] = math.sin(self.phase_freq * self.sim_time + p * self.phase_step) # compute activations (rest angles) self.model.tet_activations = self.network(phases) * self.activation_strength # forward dynamics with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt # render with df.ScopedTimer("render", False): if (self.stage and render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) # loss with df.ScopedTimer("loss", False): com_loss = torch.mean(self.state.particle_qd, 0) #act_loss = torch.norm(selfactivation)*self.activation_penalty loss = loss - com_loss[0] # - act_loss return loss def run(self, profile=False, render=True): df.config.no_grad = True with torch.no_grad(): with df.ScopedTimer("run"): if profile: cp = cProfile.Profile() cp.clear() cp.enable() # run forward dynamics if profile: self.state = self.model.state() for i in range(0, self.sim_steps): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt else: l = self.loss(render) if profile: cp.disable() cp.print_stats(sort='tottime') if (self.stage): self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None def closure(): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(self.network.parameters(), lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(self.network.parameters(), lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(self.network.parameters(), lr=self.train_rate, momentum=0.5) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- fem = FEM(adapter='cuda') fem.run(profile=False, render=True) #fem.train('lbfgs') #fem.train('sgd')
8,649
Python
30.918819
174
0.513239
RoboticExplorationLab/Deep-ILC/dflex/tests/test_beam.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class Beam: sim_duration = 3.0 # seconds sim_substeps = 32 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 64 train_rate = 1.0 def __init__(self, device='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() builder.add_soft_grid(pos=(0.0, 0.0, 0.0), rot=df.quat_identity(), vel=(0.0, 0.0, 0.0), dim_x=20, dim_y=2, dim_z=2, cell_x=0.1, cell_y=0.1, cell_z=0.1, density=10.0, k_mu=1000.0, k_lambda=1000.0, k_damp=5.0, fix_left=True, fix_right=True) self.model = builder.finalize(device) # disable triangle dynamics (just used for rendering) self.model.tri_ke = 0.0 self.model.tri_ka = 0.0 self.model.tri_kd = 0.0 self.model.tri_kb = 0.0 self.model.particle_radius = 0.05 self.model.ground = False self.target = torch.tensor((-0.5)).to(device) self.material = torch.tensor((100.0, 50.0, 5.0), requires_grad=True, device=device) #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/beam.usd") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #----------------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # clamp material params to reasonable range mat_min = torch.tensor((1.e+1, 1.e+1, 5.0), device=self.model.adapter) mat_max = torch.tensor((1.e+5, 1.e+5, 5.0), device=self.model.adapter) mat_val = torch.max(torch.min(mat_max, self.material), mat_min) # broadcast stiffness params to all tets self.model.tet_materials = mat_val.expand((self.model.tet_count, 3)).contiguous() # forward dynamics with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt # render with df.ScopedTimer("render", False): if (self.stage and render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) # loss with df.ScopedTimer("loss", False): com_loss = torch.mean(self.state.particle_q, 0) # minimize y loss = loss - torch.norm(com_loss[1] - self.target) return loss def run(self): with torch.no_grad(): l = self.loss() if (self.stage): self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None params = [ self.material, ] def closure(): if optimizer: optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True # with torch.autograd.detect_anomaly(): with df.ScopedTimer("forward"): l = self.loss(render) with df.ScopedTimer("backward"): l.backward() print(self.material) print(self.material.grad) print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): for param in params: param -= self.train_rate * param.grad else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.5, nesterov=True) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- beam = Beam(device='cpu') #beam.run() #beam.train('lbfgs') beam.train('gd')
6,623
Python
28.704036
141
0.495697
RoboticExplorationLab/Deep-ILC/dflex/tests/test_rigid_bounce.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class RigidBounce: frame_dt = 1.0/60.0 episode_duration = 2.0 # seconds episode_frames = int(episode_duration/frame_dt) sim_substeps = 16 sim_dt = frame_dt / sim_substeps sim_steps = int(episode_duration / sim_dt) sim_time = 0.0 train_iters = 128 train_rate = 0.01 ground = True name = "rigid_bounce" def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render builder.add_articulation() # add sphere link = builder.add_link(-1, df.transform((0.0, 0.0, 0.0), df.quat_identity()), (0,0,0), df.JOINT_FREE) shape = builder.add_shape_sphere( link, (0.0, 0.0, 0.0), df.quat_identity(), radius=0.1, ke=1.e+4, kd=10.0, kf=1.e+2, mu=0.25) builder.joint_q[1] = 1.0 #v_s = df.get_body_twist((0.0, 0.0, 0.0), (1.0, -1.0, 0.0), builder.joint_q[0:3]) w_m = (0.0, 0.0, 3.0) # angular velocity (expressed in world space) v_m = (0.0, 0.0, 0.0) # linear velocity at center of mass (expressed in world space) p_m = builder.joint_q[0:3] # position of the center of mass (expressed in world space) # set body0 twist builder.joint_qd[0:6] = df.get_body_twist(w_m, v_m, p_m) # get decomposed velocities print(df.get_body_angular_velocity(builder.joint_qd[0:6])) print(df.get_body_linear_velocity(builder.joint_qd[0:6], p_m)) # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=adapter) # initial velocity #self.model.joint_qd[3] = 0.5 #self.model.joint_qd[4] = -0.5 #self.model.joint_qd[2] = 1.0 self.model.joint_qd.requires_grad_() self.target = torch.tensor((1.0, 1.0, 0.0), dtype=torch.float32, device=adapter) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.renderer.add_sphere(self.target.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self, render=True): #--------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() if (self.model.ground): self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for f in range(0, self.episode_frames): # df.config.no_grad = True #df.config.verify_fp = True # simulate with df.ScopedTimer("fk-id-dflex", detailed=False, active=False): for i in range(0, self.sim_substeps): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt # render with df.ScopedTimer("render", False): if (self.render): self.render_time += self.frame_dt self.renderer.update(self.state, self.render_time) try: self.stage.Save() except: print("USD save error") #loss = loss + torch.dot(self.state.joint_qd[3:6], self.state.joint_qd[3:6])*self.balance_penalty*discount pos = self.state.joint_q[0:3] loss = torch.norm(pos-self.target) return loss def run(self): df.config.no_grad = True #with torch.no_grad(): l = self.loss() def verify(self, eps=1.e-4): frame = 60 params = self.model.joint_qd n = len(params) # evaluate analytic gradient l = self.loss(render=False) l.backward() # evaluate numeric gradient grad_analytic = self.model.joint_qd.grad.tolist() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(n): mid = params[i].item() params[i] = mid - eps left = self.loss(render=False) params[i] = mid + eps right = self.loss(render=False) # reset params[i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = [self.model.joint_qd] def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() print("vel: " + str(params[0])) print("grad: " + str(params[0].grad)) print("--------") print(str(self.step_count) + ": " + str(l)) self.step_count += 1 # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.model.joint_qd, "outputs/" + self.name + ".pt") def load(self): self.model.joint_qd = torch.load("outputs/" + self.name + ".pt") #--------- robot = RigidBounce(depth=1, mode='dflex', render=True, adapter='cpu') #df.config.check_grad = True #df.config.no_grad = True robot.run() #df.config.verify_fp = True #robot.load() #robot.train(mode='lbfgs') #robot.verify(eps=1.e-3)
8,881
Python
27.196825
118
0.516158
RoboticExplorationLab/Deep-ILC/dflex/tests/test_rigid_slide.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import tinyobjloader import numpy as np from pxr import Usd, UsdGeom, Gf class RigidSlide: sim_duration = 3.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 64 train_rate = 0.1 discount_scale = 1.0 discount_factor = 0.5 def __init__(self, adapter='cpu'): torch.manual_seed(42) # load mesh usd = Usd.Stage.Open("assets/suzanne.usda") geom = UsdGeom.Mesh(usd.GetPrimAtPath("/Suzanne/Suzanne")) points = geom.GetPointsAttr().Get() indices = geom.GetFaceVertexIndicesAttr().Get() counts = geom.GetFaceVertexCountsAttr().Get() builder = df.sim.ModelBuilder() mesh = df.sim.Mesh(points, indices) articulation = builder.add_articulation() rigid = builder.add_link( parent=-1, X_pj=df.transform((0.0, 0.0, 0.0), df.quat_identity()), axis=(0.0, 0.0, 0.0), type=df.JOINT_FREE) ke = 1.e+4 kd = 1.e+3 kf = 1.e+3 mu = 0.5 # shape = builder.add_shape_mesh( # rigid, # mesh=mesh, # scale=(0.2, 0.2, 0.2), # density=1000.0, # ke=1.e+4, # kd=1000.0, # kf=1000.0, # mu=0.75) radius = 0.1 #shape = builder.add_shape_sphere(rigid, pos=(0.0, 0.0, 0.0), ke=ke, kd=kd, kf=kf, mu=mu, radius=radius) #shape = builder.add_shape_capsule(rigid, pos=(0.0, 0.0, 0.0), radius=radius, half_width=0.5) shape = builder.add_shape_box(rigid, pos=(0.0, 0.0, 0.0), hx=radius, hy=radius, hz=radius, ke=ke, kd=kd, kf=kf, mu=mu) builder.joint_q[1] = radius self.model = builder.finalize(adapter) self.model.joint_qd.requires_grad = True self.vel = torch.tensor((1.0, 0.0, 0.0), dtype=torch.float32, device=adapter, requires_grad=True) self.target = torch.tensor((3.0, 0.2, 0.0), device=adapter) #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/rigid_slide.usda") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.renderer.add_sphere(self.target.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #--------------- # run simulation # construct contacts once at startup self.model.joint_qd = torch.cat((torch.tensor((0.0, 0.0, 0.0), dtype=torch.float32, device=self.model.adapter), self.vel)) self.sim_time = 0.0 self.state = self.model.state() self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # forward dynamics with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt # render with df.ScopedTimer("render", False): if (self.stage and render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) #com = self.state.joint_q[0:3] com = self.state.body_X_sm[0, 0:3] loss = loss + torch.norm(com - self.target) return loss def run(self): #with torch.no_grad(): l = self.loss() if (self.stage): self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None params = [self.vel] def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() print("vel: " + str(params[0])) print("grad: " + str(params[0].grad)) print("--------") print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- rigid = RigidSlide(adapter='cpu') #rigid.run() rigid.train('adam')
7,018
Python
28.124481
141
0.526503
RoboticExplorationLab/Deep-ILC/dflex/tests/test_snu_mlp.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys import torch.nn as nn import torch.nn.functional as F from torch.utils.tensorboard import SummaryWriter # to allow tests to import the module they belong to sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class MultiLayerPerceptron(nn.Module): def __init__(self, n_in, n_out, n_hd, adapter, inference=False): super(MultiLayerPerceptron,self).__init__() self.n_in = n_in self.n_out = n_out self.n_hd = n_hd #self.ll = nn.Linear(n_in, n_out) self.fc1 = nn.Linear(n_in, n_hd).to(adapter) self.fc2 = nn.Linear(n_hd, n_hd).to(adapter) self.fc3 = nn.Linear(n_hd, n_out).to(adapter) self.bn1 = nn.LayerNorm(n_in, elementwise_affine=False).to(adapter) self.bn2 = nn.LayerNorm(n_hd, elementwise_affine=False).to(adapter) self.bn3 = nn.LayerNorm(n_out, elementwise_affine=False).to(adapter) def forward(self, x: torch.Tensor): x = F.leaky_relu(self.bn2(self.fc1(x))) x = F.leaky_relu(self.bn2(self.fc2(x))) x = torch.tanh(self.bn3(self.fc3(x))-2.0) return x class HumanoidSNU: train_iters = 100000000 train_rate = 0.001 train_size = 128 train_batch_size = 4 train_batch_iters = 128 train_batch_count = int(train_size/train_batch_size) train_data = None ground = True name = "humanoid_snu_lower" regularization = 1.e-3 inference = False initial_y = 1.0 def __init__(self, depth=1, mode='numpy', render=True, sim_duration=1.0, adapter='cpu', inference=False): self.sim_duration = sim_duration # seconds self.sim_substeps = 16 self.sim_dt = (1.0 / 60.0) / self.sim_substeps self.sim_steps = int(self.sim_duration / self.sim_dt) self.sim_time = 0.0 torch.manual_seed(41) np.random.seed(41) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render self.filter = {} if self.name == "humanoid_snu_arm": self.filter = { "ShoulderR", "ArmR", "ForeArmR", "HandR", "Torso", "Neck" } self.ground = False if self.name == "humanoid_snu_neck": self.filter = { "Torso", "Neck", "Head", "ShoulderR", "ShoulderL" } self.ground = False if self.name == "humanoid_snu_lower": self.filter = { "Pelvis", "FemurR", "TibiaR", "TalusR", "FootThumbR", "FootPinkyR", "FemurL", "TibiaL", "TalusL", "FootThumbL", "FootPinkyL"} self.ground = True self.initial_y = 1.0 if self.name == "humanoid_snu": self.filter = {} self.ground = True self.skeletons = [] self.inference = inference # if (self.inference): # self.train_batch_size = 1 for i in range(self.train_batch_size): skeleton = test_util.Skeleton("assets/snu/arm.xml", "assets/snu/muscle284.xml", builder, self.filter) # set initial position 1m off the ground builder.joint_q[skeleton.coord_start + 0] = i*1.5 builder.joint_q[skeleton.coord_start + 1] = self.initial_y # offset on z-axis #builder.joint_q[skeleton.coord_start + 2] = 10.0 # initial velcoity #builder.joint_qd[skeleton.dof_start + 5] = 3.0 self.skeletons.append(skeleton) # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) #self.activations = torch.zeros((1, len(self.muscles)), dtype=torch.float32, device=adapter, requires_grad=True) #self.activations = torch.rand((1, len(self.muscles)), dtype=torch.float32, device=adapter, requires_grad=True) self.network = MultiLayerPerceptron(3, len(self.skeletons[0].muscles), 128, adapter) self.model.joint_q.requires_grad = True self.model.joint_qd.requires_grad = True self.model.muscle_activation.requires_grad = True self.target_penalty = 1.0 self.velocity_penalty = 0.1 self.action_penalty = 0.0 self.muscle_strength = 40.0 self.discount_scale = 2.0 self.discount_factor = 1.0 # generate training data targets = [] for i in range(self.train_size): # generate a random point in -1, 1 away from the head t = np.random.rand(2)*2.0 - 1.0 t[1] += 0.5 targets.append((t[0], t[1] + 0.5, 1.0)) self.train_data = torch.tensor(targets, dtype=torch.float32, device=self.adapter) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 else: self.renderer = None self.set_target(torch.tensor((0.75, 0.4, 0.5), dtype=torch.float32, device=self.adapter), "target") self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = x if (self.renderer): self.renderer.add_sphere(self.target.tolist(), 0.05, name, self.render_time) def loss(self): #--------------- # run simulation self.sim_time = 0.0 # initial state self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) # apply actions #self.model.muscle_activation = self.activations[0]*self.muscle_strength # compute activations for each target in the batch targets = self.train_data[0:self.train_batch_size] activations = torch.flatten(self.network(targets)) self.model.muscle_activation = (activations*0.5 + 0.5)*self.muscle_strength # one time collision self.model.collide(self.state) for i in range(self.sim_steps): # apply random actions per-frame #self.model.muscle_activation = (activations*0.5 + 0.5 + torch.rand_like(activations,dtype=torch.float32, device=self.model.adapter))*self.muscle_strength # simulate with df.ScopedTimer("fd", detailed=False, active=False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) #if self.inference: #x = math.cos(self.sim_time*0.5)*0.5 #y = math.sin(self.sim_time*0.5)*0.5 # t = self.sim_time*0.5 # x = math.sin(t)*0.5 # y = math.sin(t)*math.cos(t)*0.5 # self.set_target(torch.tensor((x, y + 0.5, 1.0), dtype=torch.float32, device=self.adapter), "target") # activations = self.network(self.target) # self.model.muscle_activation = (activations*0.5 + 0.5)*self.muscle_strength # render with df.ScopedTimer("render", False): if (self.render and (i % self.sim_substeps == 0)): with torch.no_grad(): muscle_start = 0 skel_index = 0 for s in self.skeletons: for mesh, link in s.mesh_map.items(): if link != -1: X_sc = df.transform_expand(self.state.body_X_sc[link].tolist()) #self.renderer.add_mesh(mesh, "../assets/snu/OBJ/" + mesh + ".usd", X_sc, 1.0, self.render_time) self.renderer.add_mesh(mesh, "../assets/snu/OBJ/" + mesh + ".usd", X_sc, 1.0, self.render_time) for m in range(len(s.muscles)):#.self.model.muscle_count): start = self.model.muscle_start[muscle_start + m].item() end = self.model.muscle_start[muscle_start + m + 1].item() points = [] for w in range(start, end): link = self.model.muscle_links[w].item() point = self.model.muscle_points[w].cpu().numpy() X_sc = df.transform_expand(self.state.body_X_sc[link].cpu().tolist()) points.append(Gf.Vec3f(df.transform_point(X_sc, point).tolist())) self.renderer.add_line_strip(points, name=s.muscles[m].name + str(skel_index), radius=0.0075, color=(self.model.muscle_activation[muscle_start + m]/self.muscle_strength, 0.2, 0.5), time=self.render_time) muscle_start += len(s.muscles) skel_index += 1 # render scene self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) self.sim_time += self.sim_dt # loss if self.name == "humanoid_snu_arm": hand_pos = self.state.body_X_sc[self.node_map["HandR"]][0:3] discount_time = self.sim_time discount = math.pow(self.discount_factor, discount_time*self.discount_scale) # loss = loss + (torch.norm(hand_pos - self.target)*self.target_penalty + # torch.norm(self.state.joint_qd)*self.velocity_penalty + # torch.norm(self.model.muscle_activation)*self.action_penalty)*discount #loss = loss + torch.norm(self.state.joint_qd) loss = loss + torch.norm(hand_pos - self.target)*self.target_penalty if self.name == "humanoid_snu_neck": # rotate a vector def transform_vector_torch(t, x): axis = t[3:6] w = t[6] return x * (2.0 *w*w - 1.0) + torch.cross(axis, x) * w * 2.0 + axis * torch.dot(axis, x) * 2.0 forward_dir = torch.tensor((0.0, 0.0, 1.0), dtype=torch.float32, device=self.adapter) up_dir = torch.tensor((0.0, 1.0, 0.0), dtype=torch.float32, device=self.adapter) for i in range(self.train_batch_size): skel = self.skeletons[i] head_pos = self.state.body_X_sc[skel.node_map["Head"]][0:3] head_forward = transform_vector_torch(self.state.body_X_sc[skel.node_map["Head"]], forward_dir) head_up = transform_vector_torch(self.state.body_X_sc[skel.node_map["Head"]], up_dir) target_dir = self.train_data[i] - head_pos loss_forward = torch.dot(head_forward, target_dir)*self.target_penalty loss_up = torch.dot(head_up, up_dir)*self.target_penalty*0.5 loss_penalty = torch.dot(activations, activations)*self.action_penalty loss = loss - loss_forward - loss_up + loss_penalty #self.writer.add_scalar("loss_forward", loss_forward.item(), self.step_count) #self.writer.add_scalar("loss_up", loss_up.item(), self.step_count) #self.writer.add_scalar("loss_penalty", loss_penalty.item(), self.step_count) return loss def run(self): df.config.no_grad = True self.inference = True with torch.no_grad(): l = self.loss() if (self.render): self.stage.Save() def verify(self, eps=1.e-4): params = self.actions n = 1#len(params) self.render = False # evaluate analytic gradient l = self.loss() l.backward() # evaluate numeric gradient grad_analytic = params.grad.cpu().numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(1): mid = params[0][i].item() params[0][i] = mid - eps left = self.loss() params[0][i] = mid + eps right = self.loss() # reset params[0][i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): self.writer = SummaryWriter() self.writer.add_hparams({"lr": self.train_rate, "mode": mode}, {}) # param to train self.step_count = 0 self.best_loss = math.inf optimizer = None scheduler = None params = self.network.parameters()#[self.activations] def closure(): batch = int(self.step_count/self.train_batch_iters)%self.train_batch_count print("Batch: " + str(batch) + " Iter: " + str(self.step_count%self.train_batch_iters)) if (optimizer): optimizer.zero_grad() # compute loss on all examples with df.ScopedTimer("forward"):#, detailed=True): l = self.loss() # compute gradient with df.ScopedTimer("backward"):#, detailed=True): l.backward() # batch stats self.writer.add_scalar("loss_batch", l.item(), self.step_count) self.writer.flush() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: self.stage.Save() except: print("USD save error") # save network if (l < self.best_loss): self.save() self.best_loss = l return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9)#, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): last_LR = 1e-5 init_LR = 1e-3 decay_LR_steps = 2000 gamma = math.exp(math.log(last_LR/init_LR)/decay_LR_steps) optimizer = torch.optim.Adam(params, lr=self.train_rate, weight_decay=1e-5) #scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma = gamma) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) if optimizer: optimizer.step(closure) if scheduler: scheduler.step() # final save try: self.stage.Save() except: print("USD save error") def save(self): torch.save(self.network, "outputs/" + self.name + ".pt") def load(self, suffix=""): self.network = torch.load("outputs/" + self.name + suffix + ".pt") if self.inference: self.network.eval() else: self.network.train() #--------- #env = HumanoidSNU(depth=1, mode='dflex', render=True, sim_duration=2.0, adapter='cuda') #env.train(mode='adam') env = HumanoidSNU(depth=1, mode='dflex', render=True, sim_duration=2.0, adapter='cuda', inference=True) #env.load() env.run()
17,357
Python
32.445087
235
0.526358
RoboticExplorationLab/Deep-ILC/dflex/tests/test_adjoint.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import time import cProfile import numpy as np import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df
626
Python
25.124999
82
0.785942
RoboticExplorationLab/Deep-ILC/dflex/tests/assets/humanoid.xml
<!-- ====================================================== This file is part of MuJoCo. Copyright 2009-2015 Roboti LLC. Model :: Humanoid Mujoco :: Advanced physics simulation engine Source : www.roboti.us Version : 1.31 Released : 23Apr16 Author :: Vikash Kumar Contacts : kumar@roboti.us Last edits : 30Apr'16, 30Nov'15, 26Sept'15 ====================================================== --> <mujoco model='humanoid (v1.31)'> <compiler inertiafromgeom='true' angle='degree'/> <default> <joint limited='true' damping='1' armature='0' /> <geom contype='1' conaffinity='1' condim='1' rgba='0.8 0.6 .4 1' margin="0.001" solref=".02 1" solimp=".8 .8 .01" material="geom"/> <motor ctrlrange='-.4 .4' ctrllimited='true'/> </default> <option timestep='0.002' iterations="50" solver="PGS"> <flag energy="enable"/> </option> <size nkey='5'/> <visual> <map fogstart="3" fogend="5" force="0.1"/> <quality shadowsize="2048"/> </visual> <asset> <texture type="skybox" builtin="gradient" width="100" height="100" rgb1=".4 .6 .8" rgb2="0 0 0"/> <texture name="texgeom" type="cube" builtin="flat" mark="cross" width="127" height="1278" rgb1="0.8 0.6 0.4" rgb2="0.8 0.6 0.4" markrgb="1 1 1" random="0.01"/> <texture name="texplane" type="2d" builtin="checker" rgb1=".2 .3 .4" rgb2=".1 0.15 0.2" width="100" height="100"/> <material name='MatPlane' reflectance='0.5' texture="texplane" texrepeat="1 1" texuniform="true"/> <material name='geom' texture="texgeom" texuniform="true"/> </asset> <worldbody> <geom name='floor' pos='0 0 0' size='10 10 0.125' type='plane' material="MatPlane" condim='3'/> <body name='torso' pos='0 0 1.4'> <light mode='trackcom' directional='false' diffuse='.8 .8 .8' specular='0.3 0.3 0.3' pos='0 0 4.0' dir='0 0 -1'/> <joint name='root' type='free' pos='0 0 0' limited='false' damping='0' armature='0' stiffness='0'/> <geom name='torso1' type='capsule' fromto='0 -.07 0 0 .07 0' size='0.07' /> <geom name='head' type='sphere' pos='0 0 .19' size='.09'/> <geom name='uwaist' type='capsule' fromto='-.01 -.06 -.12 -.01 .06 -.12' size='0.06'/> <body name='lwaist' pos='-.01 0 -0.260' quat='1.000 0 -0.002 0' > <geom name='lwaist' type='capsule' fromto='0 -.06 0 0 .06 0' size='0.06' /> <joint name='abdomen_z' type='hinge' pos='0 0 0.065' axis='0 0 1' range='-45 45' damping='5' stiffness='20' armature='0.02' /> <joint name='abdomen_y' type='hinge' pos='0 0 0.065' axis='0 1 0' range='-75 30' damping='5' stiffness='10' armature='0.02' /> <body name='pelvis' pos='0 0 -0.165' quat='1.000 0 -0.002 0' > <joint name='abdomen_x' type='hinge' pos='0 0 0.1' axis='1 0 0' range='-35 35' damping='5' stiffness='10' armature='0.02' /> <geom name='butt' type='capsule' fromto='-.02 -.07 0 -.02 .07 0' size='0.09' /> <body name='right_thigh' pos='0 -0.1 -0.04' > <joint name='right_hip_x' type='hinge' pos='0 0 0' axis='1 0 0' range='-25 5' damping='5' stiffness='10' armature='0.01' /> <joint name='right_hip_z' type='hinge' pos='0 0 0' axis='0 0 1' range='-60 35' damping='5' stiffness='10' armature='0.01' /> <joint name='right_hip_y' type='hinge' pos='0 0 0' axis='0 1 0' range='-120 20' damping='5' stiffness='20' armature='0.01' /> <geom name='right_thigh1' type='capsule' fromto='0 0 0 0 0.01 -.34' size='0.06' /> <body name='right_shin' pos='0 0.01 -0.403' > <joint name='right_knee' type='hinge' pos='0 0 .02' axis='0 -1 0' range='-160 -2' stiffness='1' armature='0.006' /> <geom name='right_shin1' type='capsule' fromto='0 0 0 0 0 -.3' size='0.049' /> <body name='right_foot' pos='0 0 -.39' > <joint name='right_ankle_y' type='hinge' pos='0 0 0.08' axis='0 1 0' range='-50 50' damping='5' stiffness='4' armature='0.008' /> <joint name='right_ankle_x' type='hinge' pos='0 0 0.08' axis='1 0 0.5' range='-50 50' damping='5' stiffness='1' armature='0.006' /> <geom name='right_foot_cap1' type='capsule' fromto='-.07 -0.02 0 0.14 -0.04 0' size='0.027' /> <geom name='right_foot_cap2' type='capsule' fromto='-.07 0 0 0.14 0.02 0' size='0.027' /> </body> </body> </body> <body name='left_thigh' pos='0 0.1 -0.04' > <joint name='left_hip_x' type='hinge' pos='0 0 0' axis='-1 0 0' range='-25 5' damping='5' stiffness='10' armature='0.01' /> <joint name='left_hip_z' type='hinge' pos='0 0 0' axis='0 0 -1' range='-60 35' damping='5' stiffness='10' armature='0.01' /> <joint name='left_hip_y' type='hinge' pos='0 0 0' axis='0 1 0' range='-120 20' damping='5' stiffness='20' armature='0.01' /> <geom name='left_thigh1' type='capsule' fromto='0 0 0 0 -0.01 -.34' size='0.06' /> <body name='left_shin' pos='0 -0.01 -0.403' > <joint name='left_knee' type='hinge' pos='0 0 .02' axis='0 -1 0' range='-160 -2' stiffness='1' armature='0.006' /> <geom name='left_shin1' type='capsule' fromto='0 0 0 0 0 -.3' size='0.049' /> <body name='left_foot' pos='0 0 -.39' > <joint name='left_ankle_y' type='hinge' pos='0 0 0.08' axis='0 1 0' range='-50 50' damping='5' stiffness='4' armature='0.008' /> <joint name='left_ankle_x' type='hinge' pos='0 0 0.08' axis='1 0 0.5' range='-50 50' damping='5' stiffness='1' armature='0.006' /> <geom name='left_foot_cap1' type='capsule' fromto='-.07 0.02 0 0.14 0.04 0' size='0.027' /> <geom name='left_foot_cap2' type='capsule' fromto='-.07 0 0 0.14 -0.02 0' size='0.027' /> </body> </body> </body> </body> </body> <body name='right_upper_arm' pos='0 -0.17 0.06' > <joint name='right_shoulder1' type='hinge' pos='0 0 0' axis='2 1 1' range='-85 60' stiffness='1' armature='0.0068' /> <joint name='right_shoulder2' type='hinge' pos='0 0 0' axis='0 -1 1' range='-85 60' stiffness='1' armature='0.0051' /> <geom name='right_uarm1' type='capsule' fromto='0 0 0 .16 -.16 -.16' size='0.04 0.16' /> <body name='right_lower_arm' pos='.18 -.18 -.18' > <joint name='right_elbow' type='hinge' pos='0 0 0' axis='0 -1 1' range='-90 50' stiffness='0' armature='0.0028' /> <geom name='right_larm' type='capsule' fromto='0.01 0.01 0.01 .17 .17 .17' size='0.031' /> <geom name='right_hand' type='sphere' pos='.18 .18 .18' size='0.04'/> </body> </body> <body name='left_upper_arm' pos='0 0.17 0.06' > <joint name='left_shoulder1' type='hinge' pos='0 0 0' axis='2 -1 1' range='-60 85' stiffness='1' armature='0.0068' /> <joint name='left_shoulder2' type='hinge' pos='0 0 0' axis='0 1 1' range='-60 85' stiffness='1' armature='0.0051' /> <geom name='left_uarm1' type='capsule' fromto='0 0 0 .16 .16 -.16' size='0.04 0.16' /> <body name='left_lower_arm' pos='.18 .18 -.18' > <joint name='left_elbow' type='hinge' pos='0 0 0' axis='0 -1 -1' range='-90 50' stiffness='0' armature='0.0028' /> <geom name='left_larm' type='capsule' fromto='0.01 -0.01 0.01 .17 -.17 .17' size='0.031' /> <geom name='left_hand' type='sphere' pos='.18 -.18 .18' size='0.04'/> </body> </body> </body> </worldbody> <tendon> <fixed name='left_hipknee'> <joint joint='left_hip_y' coef='-1'/> <joint joint='left_knee' coef='1'/> </fixed> <fixed name='right_hipknee'> <joint joint='right_hip_y' coef='-1'/> <joint joint='right_knee' coef='1'/> </fixed> </tendon> <keyframe> <key qpos='-0.0233227 0.00247283 0.0784829 0.728141 0.00223397 -0.685422 -0.00181805 -0.000580139 -0.245119 0.0329713 -0.0461148 0.0354257 0.252234 -0.0347763 -0.4663 -0.0313013 0.0285638 0.0147285 0.264063 -0.0346441 -0.559198 0.021724 -0.0333332 -0.718563 0.872778 0.000260393 0.733088 0.872748' /> <key qpos='0.0168601 -0.00192002 0.127167 0.762693 0.00191588 0.646754 -0.00210291 -0.000199049 0.0573113 -4.05731e-005 0.0134177 -0.00468944 0.0985945 -0.282695 -0.0469067 0.00874203 0.0263262 -0.00295056 0.0984851 -0.282098 -0.044293 0.00475795 0.127371 -0.42895 0.882402 -0.0980573 0.428506 0.88193' /> <key qpos='0.000471586 0.0317577 0.210587 0.758805 -0.583984 0.254155 0.136322 -0.0811633 0.0870309 -0.0935227 0.0904958 -0.0278004 -0.00978614 -0.359193 0.139761 -0.240168 0.060149 0.237062 -0.00622109 -0.252598 -0.00376874 -0.160597 0.25253 -0.278634 0.834376 -0.990444 -0.169065 0.652876' /> <key qpos='-0.0602175 0.048078 0.194579 -0.377418 -0.119412 -0.675073 -0.622553 0.139093 0.0710746 -0.0506027 0.0863461 0.196165 -0.0276685 -0.521954 -0.267784 0.179051 0.0371897 0.0560134 -0.032595 -0.0480022 0.0357436 0.108502 0.963806 0.157805 0.873092 -1.01145 -0.796409 0.24736' /> </keyframe> <actuator> <motor name='abdomen_y' gear='200' joint='abdomen_y' /> <motor name='abdomen_z' gear='200' joint='abdomen_z' /> <motor name='abdomen_x' gear='200' joint='abdomen_x' /> <motor name='right_hip_x' gear='200' joint='right_hip_x' /> <motor name='right_hip_z' gear='200' joint='right_hip_z' /> <motor name='right_hip_y' gear='600' joint='right_hip_y' /> <motor name='right_knee' gear='400' joint='right_knee' /> <motor name='right_ankle_x' gear='100' joint='right_ankle_x' /> <motor name='right_ankle_y' gear='100' joint='right_ankle_y' /> <motor name='left_hip_x' gear='200' joint='left_hip_x' /> <motor name='left_hip_z' gear='200' joint='left_hip_z' /> <motor name='left_hip_y' gear='600' joint='left_hip_y' /> <motor name='left_knee' gear='400' joint='left_knee' /> <motor name='left_ankle_x' gear='100' joint='left_ankle_x' /> <motor name='left_ankle_y' gear='100' joint='left_ankle_y' /> <motor name='right_shoulder1' gear='100' joint='right_shoulder1' /> <motor name='right_shoulder2' gear='100' joint='right_shoulder2' /> <motor name='right_elbow' gear='200' joint='right_elbow' /> <motor name='left_shoulder1' gear='100' joint='left_shoulder1' /> <motor name='left_shoulder2' gear='100' joint='left_shoulder2' /> <motor name='left_elbow' gear='200' joint='left_elbow' /> </actuator> </mujoco>
11,517
XML
68.385542
314
0.528784
RoboticExplorationLab/Deep-ILC/dflex/docs/index.rst
Welcome to dFlex's documentation! ================================== dFlex is a differentiable multiphysics engine for PyTorch. It is written entirely in Python and supports reverse mode differentiation w.r.t. to any simulation inputs. It includes a USD-based visualization module (:class:`dflex.render`), which can generate time-sampled USD files, or update an existing stage on-the-fly. Prerequisites ------------- * Python 3.6 * PyTorch 1.4.0 or higher * Pixar USD lib (for visualization) Pre-built USD Python libraries can be downloaded from https://developer.nvidia.com/usd, once they are downloaded you should follow the instructions to add them to your PYTHONPATH environment variable. .. toctree:: :maxdepth: 3 :caption: Contents: modules/model modules/sim modules/render Quick Start ----------------- First ensure that the package is installed in your local Python environment (use the -e option if you will be doing development): .. code-block:: pip install -e dflex Then, to use the engine you can import the simulation module as follows: .. code-block:: import dflex To build physical models there is a helper class available in :class:`dflex.model.ModelBuilder`. This can be used to create models programmatically from Python. For example, to create a chain of particles: .. code-block:: builder = dflex.model.ModelBuilder() # anchor point (zero mass) builder.add_particle((0, 1.0, 0.0), (0.0, 0.0, 0.0), 0.0) # build chain for i in range(1,10): builder.add_particle((i, 1.0, 0.0), (0.0, 0.0, 0.0), 1.0) builder.add_spring(i-1, i, 1.e+3, 0.0, 0) # add ground plane builder.add_shape_plane((0.0, 1.0, 0.0, 0.0), 0) Once you have built your model you must convert it to a finalized PyTorch simulation data structure using :func:`dflex.model.ModelBuilder.finalize()`: .. code-block:: model = builder.finalize('cpu') The model object represents static (non-time varying) data such as constraints, collision shapes, etc. The model is stored in PyTorch tensors, allowing differentiation with respect to both model and state. Time Stepping ------------- To advance the simulation forward in time (forward dynamics), we use an `integrator` object. dFlex currently offers semi-implicit and fully implicit (planned), via. the :class:`dflex.sim.SemiImplicitIntegrator` class as follows: .. code-block:: sim_dt = 1.0/60.0 sim_steps = 100 integrator = dflex.sim.SemiImplicitIntegrator() for i in range(0, sim_steps): state = integrator.forward(model, state, sim_dt) Rendering --------- To visualize the scene dFlex supports a USD-based update via. the :class:`dflex.render.UsdRenderer` class. To create a renderer you must first create the USD stage, and the physical model. .. code-block:: import dflex.render stage = Usd.Stage.CreateNew("test.usda") renderer = dflex.render.UsdRenderer(model, stage) renderer.draw_points = True renderer.draw_springs = True renderer.draw_shapes = True Each frame the renderer should be updated with the current model state and the current elapsed simulation time: .. code-block:: renderer.update(state, sim_time) Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`
3,311
reStructuredText
27.8
228
0.700393
RoboticExplorationLab/Deep-ILC/dflex/docs/conf.py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('../dflex')) # -- Project information ----------------------------------------------------- project = 'dFlex' copyright = '2020, NVIDIA' author = 'NVIDIA' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.intersphinx', # 'sphinx.ext.autosummary', 'sphinx.ext.todo', 'autodocsumm' ] # put type hints inside the description instead of the signature (easier to read) autodoc_typehints = 'description' # document class *and* __init__ methods autoclass_content = 'both' # todo_include_todos = True intersphinx_mapping = { 'python': ("https://docs.python.org/3", None), 'numpy': ('http://docs.scipy.org/doc/numpy/', None), 'PyTorch': ('http://pytorch.org/docs/master/', None), } # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # import sphinx_rtd_theme html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] html_theme = "sphinx_rtd_theme" # html_theme = 'alabaster' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = []
2,515
Python
32.105263
81
0.659245
RoboticExplorationLab/Deep-ILC/dflex/docs/modules/sim.rst
dflex.sim =========== .. currentmodule:: dflex.sim .. toctree:: :maxdepth: 2 .. automodule:: dflex.sim :members: :undoc-members: :show-inheritance:
171
reStructuredText
12.230768
28
0.567251
RoboticExplorationLab/Deep-ILC/dflex/docs/modules/model.rst
dflex.model =========== .. currentmodule:: dflex.model .. toctree:: :maxdepth: 2 model.modelbuilder model.model model.state
151
reStructuredText
10.692307
30
0.569536
RoboticExplorationLab/Deep-ILC/dflex/docs/modules/model.model.rst
dflex.model.Model ======================== .. autoclasssumm:: dflex.model.Model .. autoclass:: dflex.model.Model :members: :undoc-members: :show-inheritance:
173
reStructuredText
14.81818
36
0.583815
RoboticExplorationLab/Deep-ILC/dflex/docs/modules/model.modelbuilder.rst
dflex.model.ModelBuilder ======================== .. autoclasssumm:: dflex.model.ModelBuilder .. autoclass:: dflex.model.ModelBuilder :members: :undoc-members: :show-inheritance:
194
reStructuredText
16.727271
43
0.628866
RoboticExplorationLab/Deep-ILC/env_utils/common.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import sys # if there's overlap between args_list and commandline input, use commandline input def solve_argv_conflict(args_list): arguments_to_be_removed = [] arguments_size = [] for argv in sys.argv[1:]: if argv.startswith('-'): size_count = 1 for i, args in enumerate(args_list): if args == argv: arguments_to_be_removed.append(args) for more_args in args_list[i+1:]: if not more_args.startswith('-'): size_count += 1 else: break arguments_size.append(size_count) break for args, size in zip(arguments_to_be_removed, arguments_size): args_index = args_list.index(args) for _ in range(size): args_list.pop(args_index) def print_error(*message): print('\033[91m', 'ERROR ', *message, '\033[0m') raise RuntimeError def print_ok(*message): print('\033[92m', *message, '\033[0m') def print_warning(*message): print('\033[93m', *message, '\033[0m') def print_info(*message): print('\033[96m', *message, '\033[0m') from datetime import datetime def get_time_stamp(): now = datetime.now() year = now.strftime('%Y') month = now.strftime('%m') day = now.strftime('%d') hour = now.strftime('%H') minute = now.strftime('%M') second = now.strftime('%S') return '{}-{}-{}-{}-{}-{}'.format(month, day, year, hour, minute, second) import argparse def parse_model_args(model_args_path): fp = open(model_args_path, 'r') model_args = eval(fp.read()) model_args = argparse.Namespace(**model_args) return model_args import torch import numpy as np import random import os def seeding(seed=0, torch_deterministic=False): print("Setting seed: {}".format(seed)) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) if torch_deterministic: # refer to https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.use_deterministic_algorithms(True) else: torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = False return seed
2,965
Python
31.23913
91
0.629005
RoboticExplorationLab/Deep-ILC/env_utils/torch_utils.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import timeit import math import numpy as np import gc import torch import cProfile log_output = "" def log(s): print(s) global log_output log_output = log_output + s + "\n" # short hands # torch quat/vector utils def to_torch(x, dtype=torch.float, device='cuda:0', requires_grad=False): return torch.tensor(x, dtype=dtype, device=device, requires_grad=requires_grad) @torch.jit.script def quat_mul(a, b): assert a.shape == b.shape shape = a.shape a = a.reshape(-1, 4) b = b.reshape(-1, 4) x1, y1, z1, w1 = a[:, 0], a[:, 1], a[:, 2], a[:, 3] x2, y2, z2, w2 = b[:, 0], b[:, 1], b[:, 2], b[:, 3] ww = (z1 + x1) * (x2 + y2) yy = (w1 - y1) * (w2 + z2) zz = (w1 + y1) * (w2 - z2) xx = ww + yy + zz qq = 0.5 * (xx + (z1 - x1) * (x2 - y2)) w = qq - ww + (z1 - y1) * (y2 - z2) x = qq - xx + (x1 + w1) * (x2 + w2) y = qq - yy + (w1 - x1) * (y2 + z2) z = qq - zz + (z1 + y1) * (w2 - x2) quat = torch.stack([x, y, z, w], dim=-1).view(shape) return quat @torch.jit.script def normalize(x, eps: float = 1e-9): return x / x.norm(p=2, dim=-1).clamp(min=eps, max=None).unsqueeze(-1) @torch.jit.script def quat_apply(a, b): shape = b.shape a = a.reshape(-1, 4) b = b.reshape(-1, 3) xyz = a[:, :3] t = xyz.cross(b, dim=-1) * 2 return (b + a[:, 3:] * t + xyz.cross(t, dim=-1)).view(shape) @torch.jit.script def quat_rotate(q, v): shape = q.shape q_w = q[:, -1] q_vec = q[:, :3] a = v * (2.0 * q_w ** 2 - 1.0).unsqueeze(-1) b = torch.cross(q_vec, v, dim=-1) * q_w.unsqueeze(-1) * 2.0 c = q_vec * \ torch.bmm(q_vec.view(shape[0], 1, 3), v.view( shape[0], 3, 1)).squeeze(-1) * 2.0 return a + b + c @torch.jit.script def quat_rotate_inverse(q, v): shape = q.shape q_w = q[:, -1] q_vec = q[:, :3] a = v * (2.0 * q_w ** 2 - 1.0).unsqueeze(-1) b = torch.cross(q_vec, v, dim=-1) * q_w.unsqueeze(-1) * 2.0 c = q_vec * \ torch.bmm(q_vec.view(shape[0], 1, 3), v.view( shape[0], 3, 1)).squeeze(-1) * 2.0 return a - b + c @torch.jit.script def quat_axis(q, axis=0): # type: (Tensor, int) -> Tensor basis_vec = torch.zeros(q.shape[0], 3, device=q.device) basis_vec[:, axis] = 1 return quat_rotate(q, basis_vec) @torch.jit.script def quat_conjugate(a): shape = a.shape a = a.reshape(-1, 4) return torch.cat((-a[:, :3], a[:, -1:]), dim=-1).view(shape) @torch.jit.script def quat_unit(a): return normalize(a) @torch.jit.script def quat_from_angle_axis(angle, axis): theta = (angle / 2).unsqueeze(-1) xyz = normalize(axis) * theta.sin() w = theta.cos() return quat_unit(torch.cat([xyz, w], dim=-1)) @torch.jit.script def normalize_angle(x): return torch.atan2(torch.sin(x), torch.cos(x)) @torch.jit.script def tf_inverse(q, t): q_inv = quat_conjugate(q) return q_inv, -quat_apply(q_inv, t) @torch.jit.script def tf_apply(q, t, v): return quat_apply(q, v) + t @torch.jit.script def tf_vector(q, v): return quat_apply(q, v) @torch.jit.script def tf_combine(q1, t1, q2, t2): return quat_mul(q1, q2), quat_apply(q1, t2) + t1 @torch.jit.script def get_basis_vector(q, v): return quat_rotate(q, v) def mem_report(): '''Report the memory usage of the tensor.storage in pytorch Both on CPUs and GPUs are reported''' def _mem_report(tensors, mem_type): '''Print the selected tensors of type There are two major storage types in our major concern: - GPU: tensors transferred to CUDA devices - CPU: tensors remaining on the system memory (usually unimportant) Args: - tensors: the tensors of specified type - mem_type: 'CPU' or 'GPU' in current implementation ''' total_numel = 0 total_mem = 0 visited_data = [] for tensor in tensors: if tensor.is_sparse: continue # a data_ptr indicates a memory block allocated data_ptr = tensor.storage().data_ptr() if data_ptr in visited_data: continue visited_data.append(data_ptr) numel = tensor.storage().size() total_numel += numel element_size = tensor.storage().element_size() mem = numel*element_size /1024/1024 # 32bit=4Byte, MByte total_mem += mem element_type = type(tensor).__name__ size = tuple(tensor.size()) # print('%s\t\t%s\t\t%.2f' % ( # element_type, # size, # mem) ) print('Type: %s Total Tensors: %d \tUsed Memory Space: %.2f MBytes' % (mem_type, total_numel, total_mem) ) gc.collect() LEN = 65 objects = gc.get_objects() #print('%s\t%s\t\t\t%s' %('Element type', 'Size', 'Used MEM(MBytes)') ) tensors = [obj for obj in objects if torch.is_tensor(obj)] cuda_tensors = [t for t in tensors if t.is_cuda] host_tensors = [t for t in tensors if not t.is_cuda] _mem_report(cuda_tensors, 'GPU') _mem_report(host_tensors, 'CPU') print('='*LEN) def grad_norm(params): grad_norm = 0. for p in params: if p.grad is not None: grad_norm += torch.sum(p.grad ** 2) return torch.sqrt(grad_norm) def print_leaf_nodes(grad_fn, id_set): if grad_fn is None: return if hasattr(grad_fn, 'variable'): mem_id = id(grad_fn.variable) if not(mem_id in id_set): print('is leaf:', grad_fn.variable.is_leaf) print(grad_fn.variable) id_set.add(mem_id) # print(grad_fn) for i in range(len(grad_fn.next_functions)): print_leaf_nodes(grad_fn.next_functions[i][0], id_set) def policy_kl(p0_mu, p0_sigma, p1_mu, p1_sigma): c1 = torch.log(p1_sigma/p0_sigma + 1e-5) c2 = (p0_sigma**2 + (p1_mu - p0_mu)**2)/(2.0 * (p1_sigma**2 + 1e-5)) c3 = -1.0 / 2.0 kl = c1 + c2 + c3 kl = kl.sum(dim=-1) # returning mean between all steps of sum between all actions return kl.mean()
6,536
Python
27.176724
114
0.568696
RoboticExplorationLab/Deep-ILC/env_utils/average_meter.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import torch.nn as nn import numpy as np class AverageMeter(nn.Module): def __init__(self, in_shape, max_size): super(AverageMeter, self).__init__() self.max_size = max_size self.current_size = 0 self.register_buffer("mean", torch.zeros(in_shape, dtype = torch.float32)) def update(self, values): size = values.size()[0] if size == 0: return new_mean = torch.mean(values.float(), dim=0) size = np.clip(size, 0, self.max_size) old_size = min(self.max_size - size, self.current_size) size_sum = old_size + size self.current_size = size_sum self.mean = (self.mean * old_size + new_mean * size) / size_sum def clear(self): self.current_size = 0 self.mean.fill_(0) def __len__(self): return self.current_size def get_mean(self): return self.mean.squeeze(0).cpu().numpy()
1,368
Python
34.102563
82
0.65424
RoboticExplorationLab/Deep-ILC/env_utils/load_utils.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import urdfpy import math import numpy as np import os import torch import random import xml.etree.ElementTree as ET import dflex as df def set_np_formatting(): np.set_printoptions(edgeitems=30, infstr='inf', linewidth=4000, nanstr='nan', precision=2, suppress=False, threshold=10000, formatter=None) def set_seed(seed, torch_deterministic=False): if seed == -1 and torch_deterministic: seed = 42 elif seed == -1: seed = np.random.randint(0, 10000) print("Setting seed: {}".format(seed)) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) if torch_deterministic: # refer to https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.use_deterministic_algorithms(True) else: torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = False return seed def urdf_add_collision(builder, link, collisions, shape_ke, shape_kd, shape_kf, shape_mu): # add geometry for collision in collisions: origin = urdfpy.matrix_to_xyz_rpy(collision.origin) pos = origin[0:3] rot = df.rpy2quat(*origin[3:6]) geo = collision.geometry if (geo.box): builder.add_shape_box( link, pos, rot, geo.box.size[0]*0.5, geo.box.size[1]*0.5, geo.box.size[2]*0.5, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) if (geo.sphere): builder.add_shape_sphere( link, pos, rot, geo.sphere.radius, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) if (geo.cylinder): # cylinders in URDF are aligned with z-axis, while dFlex uses x-axis r = df.quat_from_axis_angle((0.0, 1.0, 0.0), math.pi*0.5) builder.add_shape_capsule( link, pos, df.quat_multiply(rot, r), geo.cylinder.radius, geo.cylinder.length*0.5, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) if (geo.mesh): for m in geo.mesh.meshes: faces = [] vertices = [] for v in m.vertices: vertices.append(np.array(v)) for f in m.faces: faces.append(int(f[0])) faces.append(int(f[1])) faces.append(int(f[2])) mesh = df.Mesh(vertices, faces) builder.add_shape_mesh( link, pos, rot, mesh, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) def urdf_load( builder, filename, xform, floating=False, armature=0.0, shape_ke=1.e+4, shape_kd=1.e+4, shape_kf=1.e+2, shape_mu=0.25, limit_ke=100.0, limit_kd=1.0): robot = urdfpy.URDF.load(filename) # maps from link name -> link index link_index = {} builder.add_articulation() # add base if (floating): root = builder.add_link(-1, df.transform_identity(), (0,0,0), df.JOINT_FREE) # set dofs to transform start = builder.joint_q_start[root] builder.joint_q[start + 0] = xform[0][0] builder.joint_q[start + 1] = xform[0][1] builder.joint_q[start + 2] = xform[0][2] builder.joint_q[start + 3] = xform[1][0] builder.joint_q[start + 4] = xform[1][1] builder.joint_q[start + 5] = xform[1][2] builder.joint_q[start + 6] = xform[1][3] else: root = builder.add_link(-1, xform, (0,0,0), df.JOINT_FIXED) urdf_add_collision(builder, root, robot.links[0].collisions, shape_ke, shape_kd, shape_kf, shape_mu) link_index[robot.links[0].name] = root # add children for joint in robot.joints: type = None axis = (0.0, 0.0, 0.0) if (joint.joint_type == "revolute" or joint.joint_type == "continuous"): type = df.JOINT_REVOLUTE axis = joint.axis if (joint.joint_type == "prismatic"): type = df.JOINT_PRISMATIC axis = joint.axis if (joint.joint_type == "fixed"): type = df.JOINT_FIXED if (joint.joint_type == "floating"): type = df.JOINT_FREE parent = -1 if joint.parent in link_index: parent = link_index[joint.parent] origin = urdfpy.matrix_to_xyz_rpy(joint.origin) pos = origin[0:3] rot = df.rpy2quat(*origin[3:6]) lower = -1.e+3 upper = 1.e+3 damping = 0.0 # limits if (joint.limit): if (joint.limit.lower != None): lower = joint.limit.lower if (joint.limit.upper != None): upper = joint.limit.upper # damping if (joint.dynamics): if (joint.dynamics.damping): damping = joint.dynamics.damping # add link link = builder.add_link( parent=parent, X_pj=df.transform(pos, rot), axis=axis, type=type, limit_lower=lower, limit_upper=upper, limit_ke=limit_ke, limit_kd=limit_kd, damping=damping) # add collisions urdf_add_collision(builder, link, robot.link_map[joint.child].collisions, shape_ke, shape_kd, shape_kf, shape_mu) # add ourselves to the index link_index[joint.child] = link # build an articulated tree def build_tree( builder, angle, max_depth, width=0.05, length=0.25, density=1000.0, joint_stiffness=0.0, joint_damping=0.0, shape_ke = 1.e+4, shape_kd = 1.e+3, shape_kf = 1.e+2, shape_mu = 0.5, floating=False): def build_recursive(parent, depth): if (depth >= max_depth): return X_pj = df.transform((length * 2.0, 0.0, 0.0), df.quat_from_axis_angle((0.0, 0.0, 1.0), angle)) type = df.JOINT_REVOLUTE axis = (0.0, 0.0, 1.0) if (depth == 0 and floating == True): X_pj = df.transform((0.0, 0.0, 0.0), df.quat_identity()) type = df.JOINT_FREE link = builder.add_link( parent, X_pj, axis, type, stiffness=joint_stiffness, damping=joint_damping) # capsule shape = builder.add_shape_capsule( link, pos=(length, 0.0, 0.0), radius=width, half_width=length, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) # recurse #build_tree_recursive(builder, link, angle, width, depth + 1, max_depth, shape_ke, shape_kd, shape_kf, shape_mu, floating) build_recursive(link, depth + 1) # build_recursive(-1, 0) # Mujoco file format parser def parse_mjcf( filename, builder, density=1000.0, stiffness=0.0, damping=1.0, contact_ke=1e4, contact_kd=1e4, contact_kf=1e3, contact_mu=0.5, limit_ke=100.0, limit_kd=10.0, armature=0.01, radians=False, load_stiffness=False, load_armature=False): file = ET.parse(filename) root = file.getroot() type_map = { "ball": df.JOINT_BALL, "hinge": df.JOINT_REVOLUTE, "slide": df.JOINT_PRISMATIC, "free": df.JOINT_FREE, "fixed": df.JOINT_FIXED } def parse_float(node, key, default): if key in node.attrib: return float(node.attrib[key]) else: return default def parse_bool(node, key, default): if key in node.attrib: if node.attrib[key] == "true": return True else: return False else: return default def parse_vec(node, key, default): if key in node.attrib: return np.fromstring(node.attrib[key], sep=" ") else: return np.array(default) def parse_body(body, parent, last_joint_pos): body_name = body.attrib["name"] body_pos = np.fromstring(body.attrib["pos"], sep=" ") # last_joint_pos = np.zeros(3) #----------------- # add body for each joint, we assume the joints attached to one body have the same joint_pos for i, joint in enumerate(body.findall("joint")): joint_name = joint.attrib["name"] joint_type = type_map[joint.attrib.get("type", 'hinge')] joint_axis = parse_vec(joint, "axis", (0.0, 0.0, 0.0)) joint_pos = parse_vec(joint, "pos", (0.0, 0.0, 0.0)) joint_limited = parse_bool(joint, "limited", True) if joint_limited: if radians: joint_range = parse_vec(joint, "range", (np.deg2rad(-170.), np.deg2rad(170.))) else: joint_range = np.deg2rad(parse_vec(joint, "range", (-170.0, 170.0))) else: joint_range = np.array([-1.e+6, 1.e+6]) if load_stiffness: joint_stiffness = parse_float(joint, 'stiffness', stiffness) else: joint_stiffness = stiffness joint_damping = parse_float(joint, 'damping', damping) if load_armature: joint_armature = parse_float(joint, "armature", armature) else: joint_armature = armature joint_axis = df.normalize(joint_axis) if (parent == -1): body_pos = np.array((0.0, 0.0, 0.0)) #----------------- # add body link = builder.add_link( parent, X_pj=df.transform(body_pos + joint_pos - last_joint_pos, df.quat_identity()), axis=joint_axis, type=joint_type, limit_lower=joint_range[0], limit_upper=joint_range[1], limit_ke=limit_ke, limit_kd=limit_kd, stiffness=joint_stiffness, damping=joint_damping, armature=joint_armature) # assume that each joint is one body in simulation parent = link body_pos = [0.0, 0.0, 0.0] last_joint_pos = joint_pos #----------------- # add shapes to the last joint in the body for geom in body.findall("geom"): geom_name = geom.attrib["name"] geom_type = geom.attrib["type"] geom_size = parse_vec(geom, "size", [1.0]) geom_pos = parse_vec(geom, "pos", (0.0, 0.0, 0.0)) geom_rot = parse_vec(geom, "quat", (0.0, 0.0, 0.0, 1.0)) if (geom_type == "sphere"): builder.add_shape_sphere( link, pos=geom_pos - last_joint_pos, # position relative to the parent frame rot=geom_rot, radius=geom_size[0], density=density, ke=contact_ke, kd=contact_kd, kf=contact_kf, mu=contact_mu) elif (geom_type == "capsule"): if ("fromto" in geom.attrib): geom_fromto = parse_vec(geom, "fromto", (0.0, 0.0, 0.0, 1.0, 0.0, 0.0)) start = geom_fromto[0:3] end = geom_fromto[3:6] # compute rotation to align dflex capsule (along x-axis), with mjcf fromto direction axis = df.normalize(end-start) angle = math.acos(np.dot(axis, (1.0, 0.0, 0.0))) axis = df.normalize(np.cross(axis, (1.0, 0.0, 0.0))) geom_pos = (start + end)*0.5 geom_rot = df.quat_from_axis_angle(axis, -angle) geom_radius = geom_size[0] geom_width = np.linalg.norm(end-start)*0.5 else: geom_radius = geom_size[0] geom_width = geom_size[1] geom_pos = parse_vec(geom, "pos", (0.0, 0.0, 0.0)) if ("axisangle" in geom.attrib): axis_angle = parse_vec(geom, "axisangle", (0.0, 1.0, 0.0, 0.0)) geom_rot = df.quat_from_axis_angle(axis_angle[0:3], axis_angle[3]) if ("quat" in geom.attrib): q = parse_vec(geom, "quat", df.quat_identity()) geom_rot = q geom_rot = df.quat_multiply(geom_rot, df.quat_from_axis_angle((0.0, 1.0, 0.0), -math.pi*0.5)) builder.add_shape_capsule( link, pos=geom_pos - last_joint_pos, rot=geom_rot, radius=geom_radius, half_width=geom_width, density=density, ke=contact_ke, kd=contact_kd, kf=contact_kf, mu=contact_mu) else: print("Type: " + geom_type + " unsupported") #----------------- # recurse for child in body.findall("body"): parse_body(child, link, last_joint_pos) #----------------- # start articulation builder.add_articulation() world = root.find("worldbody") for body in world.findall("body"): parse_body(body, -1, np.zeros(3)) # SNU file format parser class MuscleUnit: def __init__(self): self.name = "" self.bones = [] self.points = [] self.muscle_strength = 0.0 class Skeleton: def __init__(self, skeleton_file, muscle_file, builder, filter={}, visualize_shapes=True, stiffness=5.0, damping=2.0, contact_ke=5000.0, contact_kd=2000.0, contact_kf=1000.0, contact_mu=0.5, limit_ke=1000.0, limit_kd=10.0, armature = 0.05): self.armature = armature self.stiffness = stiffness self.damping = damping self.contact_ke = contact_ke self.contact_kd = contact_kd self.contact_kf = contact_kf self.limit_ke = limit_ke self.limit_kd = limit_kd self.contact_mu = contact_mu self.visualize_shapes = visualize_shapes self.parse_skeleton(skeleton_file, builder, filter) if muscle_file != None: self.parse_muscles(muscle_file, builder) def parse_skeleton(self, filename, builder, filter): file = ET.parse(filename) root = file.getroot() self.node_map = {} # map node names to link indices self.xform_map = {} # map node names to parent transforms self.mesh_map = {} # map mesh names to link indices objects self.coord_start = len(builder.joint_q) self.dof_start = len(builder.joint_qd) type_map = { "Ball": df.JOINT_BALL, "Revolute": df.JOINT_REVOLUTE, "Prismatic": df.JOINT_PRISMATIC, "Free": df.JOINT_FREE, "Fixed": df.JOINT_FIXED } builder.add_articulation() for child in root: if (child.tag == "Node"): body = child.find("Body") joint = child.find("Joint") name = child.attrib["name"] parent = child.attrib["parent"] parent_X_s = df.transform_identity() if parent in self.node_map: parent_link = self.node_map[parent] parent_X_s = self.xform_map[parent] else: parent_link = -1 body_xform = body.find("Transformation") joint_xform = joint.find("Transformation") body_mesh = body.attrib["obj"] body_size = np.fromstring(body.attrib["size"], sep=" ") body_type = body.attrib["type"] body_mass = float(body.attrib["mass"]) x=body_size[0] y=body_size[1] z=body_size[2] density = body_mass / (x*y*z) max_body_mass = 15.0 mass_scale = body_mass / max_body_mass body_R_s = np.fromstring(body_xform.attrib["linear"], sep=" ").reshape((3,3)) body_t_s = np.fromstring(body_xform.attrib["translation"], sep=" ") joint_R_s = np.fromstring(joint_xform.attrib["linear"], sep=" ").reshape((3,3)) joint_t_s = np.fromstring(joint_xform.attrib["translation"], sep=" ") joint_type = type_map[joint.attrib["type"]] joint_lower = -1.e+3 joint_upper = 1.e+3 if (joint_type == type_map["Revolute"]): if ("lower" in joint.attrib): joint_lower = np.fromstring(joint.attrib["lower"], sep=" ")[0] if ("upper" in joint.attrib): joint_upper = np.fromstring(joint.attrib["upper"], sep=" ")[0] # print(joint_type, joint_lower, joint_upper) if ("axis" in joint.attrib): joint_axis = np.fromstring(joint.attrib["axis"], sep=" ") else: joint_axis = np.array((0.0, 0.0, 0.0)) body_X_s = df.transform(body_t_s, df.quat_from_matrix(body_R_s)) joint_X_s = df.transform(joint_t_s, df.quat_from_matrix(joint_R_s)) mesh_base = os.path.splitext(body_mesh)[0] mesh_file = mesh_base + ".usd" link = -1 if len(filter) == 0 or name in filter: joint_X_p = df.transform_multiply(df.transform_inverse(parent_X_s), joint_X_s) body_X_c = df.transform_multiply(df.transform_inverse(joint_X_s), body_X_s) if (parent_link == -1): joint_X_p = df.transform_identity() # add link link = builder.add_link( parent=parent_link, X_pj=joint_X_p, axis=joint_axis, type=joint_type, limit_lower=joint_lower, limit_upper=joint_upper, limit_ke=self.limit_ke * mass_scale, limit_kd=self.limit_kd * mass_scale, damping=self.damping, stiffness=self.stiffness * math.sqrt(mass_scale), armature=self.armature) # armature=self.armature * math.sqrt(mass_scale)) # add shape shape = builder.add_shape_box( body=link, pos=body_X_c[0], rot=body_X_c[1], hx=x*0.5, hy=y*0.5, hz=z*0.5, density=density, ke=self.contact_ke, kd=self.contact_kd, kf=self.contact_kf, mu=self.contact_mu) # add lookup in name->link map # save parent transform self.xform_map[name] = joint_X_s self.node_map[name] = link self.mesh_map[mesh_base] = link def parse_muscles(self, filename, builder): # list of MuscleUnits muscles = [] file = ET.parse(filename) root = file.getroot() self.muscle_start = len(builder.muscle_activation) for child in root: if (child.tag == "Unit"): unit_name = child.attrib["name"] unit_f0 = float(child.attrib["f0"]) unit_lm = float(child.attrib["lm"]) unit_lt = float(child.attrib["lt"]) unit_lmax = float(child.attrib["lmax"]) unit_pen = float(child.attrib["pen_angle"]) m = MuscleUnit() m.name = unit_name m.muscle_strength = unit_f0 incomplete = False for waypoint in child.iter("Waypoint"): way_bone = waypoint.attrib["body"] way_link = self.node_map[way_bone] way_loc = np.fromstring(waypoint.attrib["p"], sep=" ", dtype=np.float32) if (way_link == -1): incomplete = True break # transform loc to joint local space joint_X_s = self.xform_map[way_bone] way_loc = df.transform_point(df.transform_inverse(joint_X_s), way_loc) m.bones.append(way_link) m.points.append(way_loc) if not incomplete: muscles.append(m) builder.add_muscle(m.bones, m.points, f0=unit_f0, lm=unit_lm, lt=unit_lt, lmax=unit_lmax, pen=unit_pen) self.muscles = muscles
22,759
Python
30.523546
130
0.482622
RoboticExplorationLab/Deep-ILC/env_utils/dataset.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np class CriticDataset: def __init__(self, batch_size, obs, target_values, states_grad=None, states_joint=None, early_term=None, shuffle = False, drop_last = False): self.obs = obs.view(-1, obs.shape[-1]) if states_joint is not None: self.states = states_joint.view(-1, states_joint.shape[-1]) else: self.states = states_joint if states_grad is not None: self.states_grad = states_grad.view(-1, states_grad.shape[-1]) else: self.states_grad = states_grad if early_term is not None: self.early_term = early_term.view(-1) self.target_values = target_values.view(-1) self.batch_size = batch_size if shuffle: self.shuffle() if drop_last: self.length = self.obs.shape[0] // self.batch_size else: self.length = ((self.obs.shape[0] - 1) // self.batch_size) + 1 def shuffle(self): index = np.random.permutation(self.obs.shape[0]) self.obs = self.obs[index, :] self.target_values = self.target_values[index] if self.states is not None: self.states = self.states[index] self.states_grad = self.states_grad[index] self.early_term = self.early_term[index] def __len__(self): return self.length def __getitem__(self, index): start_idx = index * self.batch_size end_idx = min((index + 1) * self.batch_size, self.obs.shape[0]) if self.states is not None: return {'obs': self.obs[start_idx:end_idx, :], 'target_values': self.target_values[start_idx:end_idx], 'states': self.states[start_idx:end_idx], 'states_grad': self.states_grad[start_idx:end_idx], 'early_term': self.early_term[start_idx:end_idx]} else: return {'obs': self.obs[start_idx:end_idx, :], 'target_values': self.target_values[start_idx:end_idx]}
2,391
Python
43.296295
258
0.627771
RoboticExplorationLab/Deep-ILC/env_utils/time_report.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import time from utils.common import * class Timer: def __init__(self, name): self.name = name self.start_time = None self.time_total = 0. def on(self): assert self.start_time is None, "Timer {} is already turned on!".format(self.name) self.start_time = time.time() def off(self): assert self.start_time is not None, "Timer {} not started yet!".format(self.name) self.time_total += time.time() - self.start_time self.start_time = None def report(self): print_info('Time report [{}]: {:.2f} seconds'.format(self.name, self.time_total)) def clear(self): self.start_time = None self.time_total = 0. class TimeReport: def __init__(self): self.timers = {} def add_timer(self, name): assert name not in self.timers, "Timer {} already exists!".format(name) self.timers[name] = Timer(name = name) def start_timer(self, name): assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].on() def end_timer(self, name): assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].off() def report(self, name = None): if name is not None: assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].report() else: print_info("------------Time Report------------") for timer_name in self.timers.keys(): self.timers[timer_name].report() print_info("-----------------------------------") def clear_timer(self, name = None): if name is not None: assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].clear() else: for timer_name in self.timers.keys(): self.timers[timer_name].clear() def pop_timer(self, name = None): if name is not None: assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].report() del self.timers[name] else: self.report() self.timers = {}
2,688
Python
34.853333
90
0.58631
RoboticExplorationLab/Deep-ILC/env_utils/running_mean_std.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import Tuple import torch class RunningMeanStd(object): def __init__(self, epsilon: float = 1e-4, shape: Tuple[int, ...] = (), device = 'cuda:0'): """ Calulates the running mean and std of a data stream https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm :param epsilon: helps with arithmetic issues :param shape: the shape of the data stream's output """ self.mean = torch.zeros(shape, dtype = torch.float32, device = device) self.var = torch.ones(shape, dtype = torch.float32, device = device) self.count = epsilon def to(self, device): rms = RunningMeanStd(device = device) rms.mean = self.mean.to(device).clone() rms.var = self.var.to(device).clone() rms.count = self.count return rms @torch.no_grad() def update(self, arr: torch.tensor) -> None: batch_mean = torch.mean(arr, dim = 0) batch_var = torch.var(arr, dim = 0, unbiased = False) batch_count = arr.shape[0] self.update_from_moments(batch_mean, batch_var, batch_count) def update_from_moments(self, batch_mean: torch.tensor, batch_var: torch.tensor, batch_count: int) -> None: delta = batch_mean - self.mean tot_count = self.count + batch_count new_mean = self.mean + delta * batch_count / tot_count m_a = self.var * self.count m_b = batch_var * batch_count m_2 = m_a + m_b + torch.square(delta) * self.count * batch_count / (self.count + batch_count) new_var = m_2 / (self.count + batch_count) new_count = batch_count + self.count self.mean = new_mean self.var = new_var self.count = new_count def normalize(self, arr:torch.tensor, un_norm = False) -> torch.tensor: if not un_norm: result = (arr - self.mean) / torch.sqrt(self.var + 1e-5) else: result = arr * torch.sqrt(self.var + 1e-5) + self.mean return result
2,462
Python
40.745762
111
0.638099
RoboticExplorationLab/CGAC/diffrl_conda.yml
name: shac channels: - pytorch - defaults dependencies: - python=3.8.13=h12debd9_0 - pytorch=1.11.0=py3.8_cuda11.3_cudnn8.2.0_0 - torchvision=0.12.0=py38_cu113 - pip: - pyyaml==6.0 - tensorboard==2.8.0 - tensorboardx==2.5 - urdfpy==0.0.22 - usd-core==22.3
288
YAML
18.266665
46
0.611111
RoboticExplorationLab/CGAC/README.md
# SHAC This repository contains the implementation for the paper [Practical Critic Gradient based Actor Critic for On-Policy Reinforcement Learning](https://openreview.net/forum?id=ddl_4qQKFmY) (L4DC 2023). In this paper, we present a different class of on-policy algorithms based on SARSA, which estimate the policy gradient using the critic-action gradients. We show that they are better suited than existing baselines (like PPO) especially when using highly parallelizable simulators. We observe that the critic gradient based on-policy method (CGAC) consistently achieves higher episode returns. Furthermore, in environments with high dimensional action space, CGAC also trains much faster (in wall-clock time) than the corresponding baselines. ## Installation - `git clone https://github.com/NVlabs/DiffRL.git --recursive` #### Prerequisites - In the project folder, create a virtual environment in Anaconda: ``` conda env create -f cgac.yml conda activate cgac ``` - dflex ``` cd dflex pip install -e . ``` - rl_games, forked from [rl-games](https://github.com/Denys88/rl_games) (used for PPO and SAC training): ```` cd externals/rl_games pip install -e . ```` - Install an older version of protobuf required for TensorboardX: ```` pip install protobuf==3.20.0 ```` Install Isaacgym and Isaacgymenvs with instructions from their [github repo](https://github.com/NVIDIA-Omniverse/IsaacGymEnvs). ## Training The results might slightly differ from the paper due to the randomness of the cuda and different Operating System/GPU/Python versions. The experiments in this paper were done on CentOS 7 with a NVIDIA GTX 2080 gpu. #### CGAC (Our Method) Run the following commands with the appropriate flags to train a model corresponding to each environment from inside the `cgac` folder. ``` python main.py --env-name AntEnv --cuda --num_actors 4096 --batch_size_update 4096 --critic_hidden 1024 1024 256 --actor_hidden 256 256 --critic_act elu --actor_act elu --num_critic_updates 2 --grad_norm 20 --final_targ_ent_coeff 3.5 --no_automatic_entropy_tuning False --alpha_schedule constant --alpha 1e-1 --final_lr 1e-5 --clip_actor_gn --seed 1 --final python main.py --env-name HumanoidEnv --cuda --num_actors 4096 --batch_size_update 4096 --critic_hidden 1024 1024 256 --actor_hidden 256 256 --critic_act elu --actor_act elu --num_critic_updates 2 --grad_norm 20 --final_targ_ent_coeff 7.5 --seed 0 --final python main.py --env-name SNUHumanoidEnv --cuda --num_actors 4096 --batch_size_update 4096 --critic_hidden 512 512 256 --actor_hidden 256 256 --critic_act elu --actor_act elu --num_critic_updates 6 --grad_norm 20 --final_targ_ent_coeff 3.5 --seed 0 --val_horizon 8 --final python main.py --env-name AllegroHand --cuda --num_actors 16384 --batch_size_update 32768 --critic_hidden 1024 512 256 --actor_hidden 512 256 --critic_act elu --actor_act elu --num_critic_updates 2 --final_targ_ent_coeff 5 --alpha 0.2 --init_targ_ent_coeff 0.1 --val_horizon 8 --tau_value 0.05 --tau_policy 1.0 --final ``` #### Baseline Algorithms In order to train the baselines for the Dflex environments (Ant, Humanoid, SNUHumanoid), simply run the following commands in the `examples` folder while switching the env-name of choice. ``` python train_script.py --env Ant --algo sac --num-seeds 5 python train_script.py --env Ant --algo ppo --num-seeds 5 ``` ### Acknowledgments The dflex env and code for testing the baselines was borrowed from the [DiffRL](https://github.com/NVlabs/DiffRL.git) repo. We also build on code from (https://github.com/pranz24/pytorch-soft-actor-critic) for various aspects of the model. We thank the authors of these repos for making their code public. ## Citation If you find our paper or code is useful, please consider citing: ``` @inproceedings{ gurumurthy2023practical, title={Practical Critic Gradient based Actor Critic for On-Policy Reinforcement Learning}, author={Swaminathan Gurumurthy and Zachary Manchester and J Zico Kolter}, booktitle={5th Annual Learning for Dynamics {\&} Control Conference}, year={2023}, url={https://openreview.net/forum?id=ddl_4qQKFmY} } ```
4,164
Markdown
48.583333
541
0.745677
RoboticExplorationLab/CGAC/examples/train_script.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import argparse configs = {'Ant': 'ant.yaml', 'CartPole': 'cartpole_swing_up.yaml', 'Hopper': 'hopper.yaml', 'Cheetah': 'cheetah.yaml', 'Humanoid': 'humanoid.yaml', 'SNUHumanoid': 'snu_humanoid.yaml'} parser = argparse.ArgumentParser() parser.add_argument('--env', type=str, default='Ant', choices=['Ant', 'CartPole', 'Hopper', 'Cheetah', 'Humanoid', 'SNUHumanoid']) parser.add_argument('--algo', type=str, default='sac', choices=['ppo', 'sac']) parser.add_argument('--num-seeds', type=int, default=5) parser.add_argument('--save-dir', type=str, default='./logs/') args = parser.parse_args() ''' generate seeds ''' seeds = [] for i in range(args.num_seeds): seeds.append(i) ''' generate commands ''' commands = [] for i in range(len(seeds)): seed = seeds[i] save_dir = os.path.join(args.save_dir, args.env, args.algo, str(seed)+'varplots') config_path = os.path.join('./cfg', args.algo, configs[args.env]) script_name = 'train_rl.py' cmd = 'python {} '\ '--cfg {} '\ '--seed {} '\ '--logdir {} '\ '--no-time-stamp'\ .format(script_name, config_path, seed, save_dir) commands.append(cmd) for command in commands: os.system(command)
1,656
Python
36.65909
184
0.669686
RoboticExplorationLab/CGAC/examples/train_rl.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import sys, os project_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) sys.path.append(project_dir) from rl_games.common import env_configurations, experiment, vecenv from rl_games.common.algo_observer import AlgoObserver from rl_games.torch_runner import Runner from rl_games.algos_torch import torch_ext import argparse import envs import os import sys import yaml import numpy as np import copy import torch from utils.common import * def create_dflex_env(**kwargs): env_fn = getattr(envs, cfg_train["params"]["diff_env"]["name"]) env = env_fn(num_envs=cfg_train["params"]["config"]["num_actors"], \ render=args.render, seed=args.seed, \ episode_length=cfg_train["params"]["diff_env"].get("episode_length", 1000), \ no_grad=True, stochastic_init=cfg_train['params']['diff_env']['stochastic_env'], \ MM_caching_frequency=cfg_train['params']['diff_env'].get('MM_caching_frequency', 1)) print('num_envs = ', env.num_envs) print('num_actions = ', env.num_actions) print('num_obs = ', env.num_obs) frames = kwargs.pop('frames', 1) if frames > 1: env = wrappers.FrameStack(env, frames, False) return env class RLGPUEnv(vecenv.IVecEnv): def __init__(self, config_name, num_actors, **kwargs): self.env = env_configurations.configurations[config_name]['env_creator'](**kwargs) self.full_state = {} self.rl_device = "cuda:0" self.full_state["obs"] = self.env.reset(force_reset=True).to(self.rl_device) print(self.full_state["obs"].shape) def step(self, actions): self.full_state["obs"], reward, is_done, info = self.env.step(actions.to(self.env.device)) return self.full_state["obs"].to(self.rl_device), reward.to(self.rl_device), is_done.to(self.rl_device), info def reset(self): self.full_state["obs"] = self.env.reset(force_reset=True) return self.full_state["obs"].to(self.rl_device) def get_number_of_agents(self): return self.env.get_number_of_agents() def get_env_info(self): info = {} info['action_space'] = self.env.action_space info['observation_space'] = self.env.observation_space print(info['action_space'], info['observation_space']) return info vecenv.register('DFLEX', lambda config_name, num_actors, **kwargs: RLGPUEnv(config_name, num_actors, **kwargs)) env_configurations.register('dflex', { 'env_creator': lambda **kwargs: create_dflex_env(**kwargs), 'vecenv_type': 'DFLEX'}) def parse_arguments(description="Testing Args", custom_parameters=[]): parser = argparse.ArgumentParser() for argument in custom_parameters: if ("name" in argument) and ("type" in argument or "action" in argument): help_str = "" if "help" in argument: help_str = argument["help"] if "type" in argument: if "default" in argument: parser.add_argument(argument["name"], type=argument["type"], default=argument["default"], help=help_str) else: print("ERROR: default must be specified if using type") elif "action" in argument: parser.add_argument(argument["name"], action=argument["action"], help=help_str) else: print() print("ERROR: command line argument name, type/action must be defined, argument not added to parser") print("supported keys: name, type, default, action, help") print() args = parser.parse_args() if args.test: args.play = args.test args.train = False elif args.play: args.train = False else: args.train = True return args def get_args(): # TODO: delve into the arguments custom_parameters = [ {"name": "--test", "action": "store_true", "default": False, "help": "Run trained policy, no training"}, {"name": "--num_envs", "type": int, "default": 0, "help": "Number of envirnments"}, {"name": "--cfg", "type": str, "default": "./cfg/rl/ant.yaml", "help": "Configuration file for training/playing"}, {"name": "--play", "action": "store_true", "default": False, "help": "Run trained policy, the same as test"}, {"name": "--checkpoint", "type": str, "default": "Base", "help": "Path to the saved weights, only for rl_games RL library"}, {"name": "--rl_device", "type": str, "default": "cuda:0", "help": "Choose CPU or GPU device for inferencing policy network"}, {"name": "--seed", "type": int, "default": 0, "help": "Random seed"}, {"name": "--render", "action": "store_true", "default": False, "help": "whether generate rendering file."}, {"name": "--logdir", "type": str, "default": "logs/tmp/rl/"}, {"name": "--no-time-stamp", "action": "store_true", "default": False, "help": "whether not add time stamp at the log path"}] # parse arguments args = parse_arguments( description="RL Policy", custom_parameters=custom_parameters) return args if __name__ == '__main__': args = get_args() with open(args.cfg, 'r') as f: cfg_train = yaml.load(f, Loader=yaml.SafeLoader) if args.play or args.test: cfg_train["params"]["config"]["num_actors"] = cfg_train["params"]["config"].get("player", {}).get("num_actors", 1) if not args.no_time_stamp: args.logdir = os.path.join(args.logdir, get_time_stamp()) if args.num_envs > 0: cfg_train["params"]["config"]["num_actors"] = args.num_envs vargs = vars(args) cfg_train["params"]["general"] = {} for key in vargs.keys(): cfg_train["params"]["general"][key] = vargs[key] # save config if cfg_train['params']['general']['train']: log_dir = cfg_train["params"]["general"]["logdir"] os.makedirs(log_dir, exist_ok = True) # save config yaml.dump(cfg_train, open(os.path.join(log_dir, 'cfg.yaml'), 'w')) runner = Runner() runner.load(cfg_train) runner.reset() runner.run(vargs)
6,658
Python
34.801075
124
0.611745
RoboticExplorationLab/CGAC/envs/cartpole_swing_up.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from envs.dflex_env import DFlexEnv import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) try: from pxr import Usd except ModuleNotFoundError: print("No pxr package") from utils import load_utils as lu from utils import torch_utils as tu import ipdb class CartPoleSwingUpEnv(DFlexEnv): def __init__(self, render=False, device='cuda:0', num_envs=1024, seed=0, episode_length=240, no_grad=True, stochastic_init=False, MM_caching_frequency = 1, early_termination = False): num_obs = 5 num_act = 1 super(CartPoleSwingUpEnv, self).__init__(num_envs, num_obs, num_act, episode_length, MM_caching_frequency, seed, no_grad, render, device) self.stochastic_init = stochastic_init self.early_termination = early_termination self.init_sim() # action parameters self.action_strength = 1000. # loss related self.pole_angle_penalty = 1.0 self.pole_velocity_penalty = 0.1 self.cart_position_penalty = 0.05 self.cart_velocity_penalty = 0.1 self.cart_action_penalty = 0.0 #----------------------- # set up Usd renderer if (self.visualize): self.stage = Usd.Stage.CreateNew("outputs/" + "CartPoleSwingUp_" + str(self.num_envs) + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 def init_sim(self): self.builder = df.sim.ModelBuilder() self.dt = 1. / 60. self.sim_substeps = 4 self.sim_dt = self.dt if self.visualize: self.env_dist = 1.0 else: self.env_dist = 0.0 self.num_joint_q = 2 self.num_joint_qd = 2 asset_folder = os.path.join(os.path.dirname(__file__), 'assets') for i in range(self.num_environments): lu.urdf_load(self.builder, os.path.join(asset_folder, 'cartpole.urdf'), df.transform((0.0, 2.5, 0.0 + self.env_dist * i), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5)), floating=False, shape_kd=1e4, limit_kd=1.) self.builder.joint_q[i * self.num_joint_q + 1] = -math.pi self.model = self.builder.finalize(self.device) self.model.ground = False self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype = torch.float, device = self.device) self.integrator = df.sim.SemiImplicitIntegrator() self.state = self.model.state() self.start_joint_q = self.state.joint_q.clone() self.start_joint_qd = self.state.joint_qd.clone() def render(self, mode = 'human'): if self.visualize: self.render_time += self.dt self.renderer.update(self.state, self.render_time) if (self.num_frames == 40): try: self.stage.Save() except: print('USD save error') self.num_frames -= 40 def step(self, actions): with df.ScopedTimer("simulate", active=False, detailed=False): actions = actions.view((self.num_envs, self.num_actions)) actions = torch.clip(actions, -1., 1.) self.actions = actions self.state.joint_act.view(self.num_envs, -1)[:, 0:1] = actions * self.action_strength self.state = self.integrator.forward(self.model, self.state, self.sim_dt, self.sim_substeps, self.MM_caching_frequency) self.sim_time += self.sim_dt self.reset_buf = torch.zeros_like(self.reset_buf) self.progress_buf += 1 self.num_frames += 1 self.calculateObservations() self.calculateReward() if self.no_grad == False: self.obs_buf_before_reset = self.obs_buf.clone() self.extras = { 'obs_before_reset': self.obs_buf_before_reset, 'episode_end': self.termination_buf } # ipdb.set_trace() try: env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) except: ipdb.set_trace() #self.obs_buf_before_reset = self.obs_buf.clone() with df.ScopedTimer("reset", active=False, detailed=False): if len(env_ids) > 0: self.reset(env_ids) with df.ScopedTimer("render", active=False, detailed=False): self.render() #self.extras = {'obs_before_reset': self.obs_buf_before_reset} return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def reset(self, env_ids=None, force_reset=True): if env_ids is None: if force_reset == True: env_ids = torch.arange(self.num_envs, dtype=torch.long, device=self.device) if env_ids is not None: # fixed start state self.state.joint_q = self.state.joint_q.clone() self.state.joint_qd = self.state.joint_qd.clone() self.state.joint_q.view(self.num_envs, -1)[env_ids, :] = self.start_joint_q.view(-1, self.num_joint_q)[env_ids, :].clone() self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = self.start_joint_qd.view(-1, self.num_joint_qd)[env_ids, :].clone() if self.stochastic_init: self.state.joint_q.view(self.num_envs, -1)[env_ids, :] = \ self.state.joint_q.view(self.num_envs, -1)[env_ids, :] \ + np.pi * (torch.rand(size=(len(env_ids), self.num_joint_q), device=self.device) - 0.5) self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = \ self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] \ + 0.5 * (torch.rand(size=(len(env_ids), self.num_joint_qd), device=self.device) - 0.5) self.progress_buf[env_ids] = 0 self.calculateObservations() return self.obs_buf ''' cut off the gradient from the current state to previous states ''' def clear_grad(self, checkpoint = None): with torch.no_grad(): # TODO: check with Miles if checkpoint is None: checkpoint = {} checkpoint['joint_q'] = self.state.joint_q.clone() checkpoint['joint_qd'] = self.state.joint_qd.clone() checkpoint['actions'] = self.state.joint_act.clone() checkpoint['progress_buf'] = self.progress_buf.clone() self.state = self.model.state() self.state.joint_q = checkpoint['joint_q'].clone().detach() self.state.joint_qd = checkpoint['joint_qd'].clone().detach() self.state.joint_act = checkpoint['actions'].clone().detach() self.progress_buf = checkpoint['progress_buf'].clone().detach() self.state.joint_q.requires_grad_(True) self.state.joint_qd.requires_grad_(True) # self.state.joint_act.requires_grad_(True) ''' This function starts collecting a new trajectory from the current states but cut off the computation graph to the previous states. It has to be called every time the algorithm starts an episode and return the observation vectors ''' def get_checkpoint(self): checkpoint = {} checkpoint['joint_q'] = self.state.joint_q.clone() checkpoint['joint_qd'] = self.state.joint_qd.clone() checkpoint['actions'] = self.actions.clone() checkpoint['progress_buf'] = self.progress_buf.clone() return checkpoint def initialize_trajectory(self): self.clear_grad() self.calculateObservations() return self.obs_buf def calculateObservations(self): x = self.state.joint_q.view(self.num_envs, -1)[:, 0:1] theta = self.state.joint_q.view(self.num_envs, -1)[:, 1:2] xdot = self.state.joint_qd.view(self.num_envs, -1)[:, 0:1] theta_dot = self.state.joint_qd.view(self.num_envs, -1)[:, 1:2] # observations: [x, xdot, sin(theta), cos(theta), theta_dot] self.obs_buf = torch.cat([x, xdot, torch.sin(theta), torch.cos(theta), theta_dot], dim = -1) def calculateReward(self): x = self.state.joint_q.view(self.num_envs, -1)[:, 0] theta = tu.normalize_angle(self.state.joint_q.view(self.num_envs, -1)[:, 1]) xdot = self.state.joint_qd.view(self.num_envs, -1)[:, 0] theta_dot = self.state.joint_qd.view(self.num_envs, -1)[:, 1] self.rew_buf = -torch.pow(theta, 2.) * self.pole_angle_penalty \ - torch.pow(theta_dot, 2.) * self.pole_velocity_penalty \ - torch.pow(x, 2.) * self.cart_position_penalty \ - torch.pow(xdot, 2.) * self.cart_velocity_penalty \ - torch.sum(self.actions ** 2, dim = -1) * self.cart_action_penalty # reset agents self.reset_buf = torch.where(self.progress_buf > self.episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf)
9,908
Python
39.117409
187
0.581348
RoboticExplorationLab/CGAC/envs/__init__.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from envs.dflex_env import DFlexEnv from envs.ant import AntEnv from envs.cheetah import CheetahEnv from envs.hopper import HopperEnv from envs.snu_humanoid import SNUHumanoidEnv from envs.cartpole_swing_up import CartPoleSwingUpEnv from envs.humanoid import HumanoidEnv
694
Python
48.642854
76
0.832853
RoboticExplorationLab/CGAC/envs/snu_humanoid.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from envs.dflex_env import DFlexEnv import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) try: from pxr import Usd, UsdGeom, Gf except ModuleNotFoundError: print("No pxr package") from utils import load_utils as lu from utils import torch_utils as tu class SNUHumanoidEnv(DFlexEnv): def __init__(self, render=False, device='cuda:0', num_envs=4096, seed=0, episode_length=1000, no_grad=True, stochastic_init=False, MM_caching_frequency = 1): self.filter = { "Pelvis", "FemurR", "TibiaR", "TalusR", "FootThumbR", "FootPinkyR", "FemurL", "TibiaL", "TalusL", "FootThumbL", "FootPinkyL"} self.skeletons = [] self.muscle_strengths = [] self.mtu_actuations = True self.inv_control_freq = 1 # "humanoid_snu_lower" self.num_joint_q = 29 self.num_joint_qd = 24 self.num_dof = self.num_joint_q - 7 # 22 self.num_muscles = 152 self.str_scale = 0.6 num_act = self.num_joint_qd - 6 # 18 num_obs = 71 # 13 + 22 + 18 + 18 if self.mtu_actuations: num_obs = 53 # 71 - 18 if self.mtu_actuations: num_act = self.num_muscles super(SNUHumanoidEnv, self).__init__(num_envs, num_obs, num_act, episode_length, MM_caching_frequency, seed, no_grad, render, device) self.stochastic_init = stochastic_init self.progress_buf_mask = torch.zeros_like(self.progress_buf) self.ep_lens = torch.zeros_like(self.progress_buf) + 10 self.init_sim() # other parameters self.termination_height = 0.46 self.termination_tolerance = 0.05 self.height_rew_scale = 4.0 self.action_strength = 100.0 self.action_penalty = -0.001 self.joint_vel_obs_scaling = 0.1 #----------------------- # set up Usd renderer if (self.visualize): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + "HumanoidSNU_Low_" + str(self.num_envs) + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 def init_sim(self): self.builder = df.sim.ModelBuilder() self.dt = 1.0/60.0 self.sim_substeps = 48 self.sim_dt = self.dt self.ground = True self.x_unit_tensor = tu.to_torch([1, 0, 0], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.y_unit_tensor = tu.to_torch([0, 1, 0], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.z_unit_tensor = tu.to_torch([0, 0, 1], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.start_rot = df.quat_from_axis_angle((0.0, 1.0, 0.0), math.pi*0.5) self.start_rotation = tu.to_torch(self.start_rot, device=self.device, requires_grad=False) # initialize some data used later on # todo - switch to z-up self.up_vec = self.y_unit_tensor.clone() self.heading_vec = self.x_unit_tensor.clone() self.inv_start_rot = tu.quat_conjugate(self.start_rotation).repeat((self.num_envs, 1)) self.basis_vec0 = self.heading_vec.clone() self.basis_vec1 = self.up_vec.clone() self.targets = tu.to_torch([10000.0, 0.0, 0.0], device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.start_pos = [] if self.visualize: self.env_dist = 2.0 else: self.env_dist = 0. # set to zero for training for numerical consistency start_height = 1.0 self.asset_folder = os.path.join(os.path.dirname(__file__), 'assets/snu') asset_path = os.path.join(self.asset_folder, "human.xml") muscle_path = os.path.join(self.asset_folder, "muscle284.xml") for i in range(self.num_environments): if self.mtu_actuations: skeleton = lu.Skeleton(asset_path, muscle_path, self.builder, self.filter, stiffness=5.0, damping=2.0, contact_ke=5e3, contact_kd=2e3, contact_kf=1e3, contact_mu=0.5, limit_ke=1e3, limit_kd=1e1, armature=0.05) else: skeleton = lu.Skeleton(asset_path, None, self.builder, self.filter, stiffness=5.0, damping=2.0, contact_ke=5e3, contact_kd=2e3, contact_kf=1e3, contact_mu=0.5, limit_ke=1e3, limit_kd=1e1, armature=0.05) # set initial position 1m off the ground self.builder.joint_q[skeleton.coord_start + 2] = i * self.env_dist self.builder.joint_q[skeleton.coord_start + 1] = start_height self.builder.joint_q[skeleton.coord_start + 3:skeleton.coord_start + 7] = self.start_rot self.start_pos.append([self.builder.joint_q[skeleton.coord_start], start_height, self.builder.joint_q[skeleton.coord_start + 2]]) self.skeletons.append(skeleton) num_muscles = len(self.skeletons[0].muscles) num_q = int(len(self.builder.joint_q)/self.num_environments) num_qd = int(len(self.builder.joint_qd)/self.num_environments) print(num_q, num_qd) print("Start joint_q: ", self.builder.joint_q[0:num_q]) print("Num muscles: ", num_muscles) self.start_joint_q = self.builder.joint_q[7:num_q].copy() self.start_joint_target = self.start_joint_q.copy() for m in self.skeletons[0].muscles: self.muscle_strengths.append(self.str_scale * m.muscle_strength) for mi in range(len(self.muscle_strengths)): self.muscle_strengths[mi] = self.str_scale * self.muscle_strengths[mi] self.muscle_strengths = tu.to_torch(self.muscle_strengths, device=self.device).repeat(self.num_envs) self.start_pos = tu.to_torch(self.start_pos, device=self.device) self.start_joint_q = tu.to_torch(self.start_joint_q, device=self.device) self.start_joint_target = tu.to_torch(self.start_joint_target, device=self.device) # finalize model self.model = self.builder.finalize(self.device) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=self.device) self.integrator = df.sim.SemiImplicitIntegrator() self.state = self.model.state() if (self.model.ground): self.model.collide(self.state) def render(self, mode = 'human'): if self.visualize: with torch.no_grad(): muscle_start = 0 skel_index = 0 for s in self.skeletons: for mesh, link in s.mesh_map.items(): if link != -1: X_sc = df.transform_expand(self.state.body_X_sc[link].tolist()) mesh_path = os.path.join(self.asset_folder, "OBJ/" + mesh + ".usd") self.renderer.add_mesh(mesh, mesh_path, X_sc, 1.0, self.render_time) for m in range(len(s.muscles)): start = self.model.muscle_start[muscle_start + m].item() end = self.model.muscle_start[muscle_start + m + 1].item() points = [] for w in range(start, end): link = self.model.muscle_links[w].item() point = self.model.muscle_points[w].cpu().numpy() X_sc = df.transform_expand(self.state.body_X_sc[link].cpu().tolist()) points.append(Gf.Vec3f(df.transform_point(X_sc, point).tolist())) self.renderer.add_line_strip(points, name=s.muscles[m].name + str(skel_index), radius=0.0075, color=(self.model.muscle_activation[muscle_start + m]/self.muscle_strengths[m], 0.2, 0.5), time=self.render_time) muscle_start += len(s.muscles) skel_index += 1 self.render_time += self.dt * self.inv_control_freq self.renderer.update(self.state, self.render_time) if (self.num_frames == 1): try: self.stage.Save() except: print("USD save error") self.num_frames -= 1 def step(self, actions, force_done_ids=None): actions = actions.view((self.num_envs, self.num_actions)) actions = torch.clip(actions, -1., 1.) actions = actions * 0.5 + 0.5 ##### an ugly fix for simulation nan values #### # reference: https://github.com/pytorch/pytorch/issues/15131 def create_hook(): def hook(grad): torch.nan_to_num(grad, 0.0, 0.0, 0.0, out = grad) return hook if self.state.joint_q.requires_grad: self.state.joint_q.register_hook(create_hook()) if self.state.joint_qd.requires_grad: self.state.joint_qd.register_hook(create_hook()) if actions.requires_grad: actions.register_hook(create_hook()) ################################################# self.actions = actions.clone() for ci in range(self.inv_control_freq): if self.mtu_actuations: self.model.muscle_activation = actions.view(-1) * self.muscle_strengths else: self.state.joint_act.view(self.num_envs, -1)[:, 6:] = actions * self.action_strength self.state = self.integrator.forward(self.model, self.state, self.sim_dt, self.sim_substeps, self.MM_caching_frequency) self.sim_time += self.sim_dt self.reset_buf = torch.zeros_like(self.reset_buf) self.progress_buf += 1 self.num_frames += 1 self.progress_buf_mask *= 0 self.calculateObservations() self.calculateReward() if force_done_ids is not None: self.reset_buf[force_done_ids] = 1 env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) # if self.no_grad == False: self.obs_buf_before_reset = self.obs_buf.clone() self.extras = { 'obs_before_reset': self.obs_buf_before_reset, 'episode_end': self.termination_buf } if len(env_ids) > 0: self.reset(env_ids) if force_done_ids is not None: self.progress_buf_mask[force_done_ids] = self.episode_length with df.ScopedTimer("render", False): self.render() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def reset(self, env_ids = None, force_reset = True, eplenupdate=True): if env_ids is None: if force_reset == True: env_ids = torch.arange(self.num_envs, dtype=torch.long, device=self.device) if env_ids is not None: # clone the state to avoid gradient error self.state.joint_q = self.state.joint_q.clone().contiguous() self.state.joint_qd = self.state.joint_qd.clone().contiguous() # fixed start state self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:3] = self.start_pos[env_ids, :].clone() self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:7] = self.start_rotation.unsqueeze(0).expand(len(env_ids),-1).clone() self.state.joint_q.view(self.num_envs, -1)[env_ids, 7:] = self.start_joint_q.unsqueeze(0).expand(len(env_ids),-1).clone() self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = 0. # randomization if self.stochastic_init: self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:3] = self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:3] + 0.1 * (torch.rand(size=(len(env_ids), 3), device=self.device) - 0.5) * 2. angle = (torch.rand(len(env_ids), device = self.device) - 0.5) * np.pi / 12. axis = torch.nn.functional.normalize(torch.rand((len(env_ids), 3), device = self.device) - 0.5) self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:7] = tu.quat_mul(self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:7], tu.quat_from_angle_axis(angle, axis)) self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = 0.5 * (torch.rand(size=(len(env_ids), self.num_joint_qd), device=self.device) - 0.5) # clear action self.actions = self.actions.clone() self.actions[env_ids, :] = torch.zeros((len(env_ids), self.num_actions), device = self.device, dtype = torch.float) self.progress_buf_mask[env_ids] = self.progress_buf[env_ids].clone() if eplenupdate: self.ep_lens = torch.cat([self.progress_buf[env_ids].clone(), self.ep_lens], dim=0)[:200] self.progress_buf[env_ids] = 0 self.calculateObservations() return self.obs_buf ''' cut off the gradient from the current state to previous states ''' def clear_grad(self, checkpoint = None): with torch.no_grad(): if checkpoint is None: checkpoint = {} # NOTE: any other things to restore? checkpoint['joint_q'] = self.state.joint_q.clone() checkpoint['joint_qd'] = self.state.joint_qd.clone() checkpoint['actions'] = self.actions.clone() checkpoint['progress_buf'] = self.progress_buf.clone() current_joint_q = checkpoint['joint_q'].clone() current_joint_qd = checkpoint['joint_qd'].clone() self.state = self.model.state() self.state.joint_q = current_joint_q self.state.joint_qd = current_joint_qd self.actions = checkpoint['actions'].clone() self.progress_buf = checkpoint['progress_buf'].clone() self.state.joint_q.requires_grad_(True) self.state.joint_qd.requires_grad_(True) ''' This function starts collecting a new trajectory from the current states but cuts off the computation graph to the previous states. It has to be called every time the algorithm starts an episode and it returns the observation vectors ''' def initialize_trajectory(self): self.clear_grad() self.calculateObservations() return self.obs_buf def get_checkpoint(self): checkpoint = {} checkpoint['joint_q'] = self.state.joint_q.clone() checkpoint['joint_qd'] = self.state.joint_qd.clone() checkpoint['actions'] = self.actions.clone() checkpoint['progress_buf'] = self.progress_buf.clone() return checkpoint def calculateObservations(self, state=None, actions=None): update_self_obs = False if state is None: state = self.state actions = self.actions update_self_obs = True torso_pos = state.joint_q.view(self.num_envs, -1)[:, 0:3] torso_rot = state.joint_q.view(self.num_envs, -1)[:, 3:7] lin_vel = state.joint_qd.view(self.num_envs, -1)[:, 3:6] ang_vel = state.joint_qd.view(self.num_envs, -1)[:, 0:3] # convert the linear velocity of the torso from twist representation to the velocity of the center of mass in world frame lin_vel = lin_vel - torch.cross(torso_pos, ang_vel, dim = -1) to_target = self.targets + self.start_pos - torso_pos to_target[:, 1] = 0.0 target_dirs = tu.normalize(to_target) torso_quat = tu.quat_mul(torso_rot, self.inv_start_rot) up_vec = tu.quat_rotate(torso_quat, self.basis_vec1) heading_vec = tu.quat_rotate(torso_quat, self.basis_vec0) obs_buf = torch.cat([torso_pos[:, 1:2], # 0 torso_rot, # 1:5 lin_vel, # 5:8 ang_vel, # 8:11 state.joint_q.view(self.num_envs, -1)[:, 7:], # 11:33 self.joint_vel_obs_scaling * state.joint_qd.view(self.num_envs, -1)[:, 6:], # 33:51 up_vec[:, 1:2], # 51 (heading_vec * target_dirs).sum(dim = -1).unsqueeze(-1)], # 52 dim = -1) if update_self_obs: self.obs_buf = obs_buf return obs_buf def calculateObservationsEx(self, state=None, actions=None): update_self_obs = False bsz = actions.shape[0] torso_pos = state.joint_q.view(bsz, -1)[:, 0:3] torso_rot = state.joint_q.view(bsz, -1)[:, 3:7] lin_vel = state.joint_qd.view(bsz, -1)[:, 3:6] ang_vel = state.joint_qd.view(bsz, -1)[:, 0:3] # convert the linear velocity of the torso from twist representation to the velocity of the center of mass in world frame lin_vel = lin_vel - torch.cross(torso_pos, ang_vel, dim = -1) to_target = self.targets[:1] + self.start_pos[:1] - torso_pos to_target[:, 1] = 0.0 target_dirs = tu.normalize(to_target) torso_quat = tu.quat_mul(torso_rot, self.inv_start_rot[:1].expand(bsz, -1)) up_vec = tu.quat_rotate(torso_quat, self.basis_vec1[:1].expand(bsz, -1)) heading_vec = tu.quat_rotate(torso_quat, self.basis_vec0[:1].expand(bsz, -1)) obs_buf = torch.cat([torso_pos[:, 1:2], # 0 torso_rot, # 1:5 lin_vel, # 5:8 ang_vel, # 8:11 state.joint_q.view(bsz, -1)[:, 7:], # 11:33 self.joint_vel_obs_scaling * state.joint_qd.view(bsz, -1)[:, 6:], # 33:51 up_vec[:, 1:2], # 51 (heading_vec * target_dirs).sum(dim = -1).unsqueeze(-1)], # 52 dim = -1) return obs_buf def calculateReward(self): up_reward = 0.1 * self.obs_buf[:, 51] heading_reward = self.obs_buf[:, 52] height_diff = self.obs_buf[:, 0] - (self.termination_height + self.termination_tolerance) height_reward = torch.clip(height_diff, -1.0, self.termination_tolerance) height_reward = torch.where(height_reward < 0.0, -200.0 * height_reward * height_reward, height_reward) # JIE: not smooth height_reward = torch.where(height_reward > 0.0, self.height_rew_scale * height_reward, height_reward) act_penalty = torch.sum(torch.abs(self.actions), dim = -1) * self.action_penalty #torch.sum(self.actions ** 2, dim = -1) * self.action_penalty progress_reward = self.obs_buf[:, 5] self.rew_buf = progress_reward + up_reward + heading_reward + act_penalty # reset agents self.reset_buf = torch.where(self.obs_buf[:, 0] < self.termination_height, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.progress_buf > self.episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf) # an ugly fix for simulation nan values nan_masks = torch.logical_or(torch.isnan(self.obs_buf).sum(-1) > 0, torch.logical_or(torch.isnan(self.state.joint_q.view(self.num_environments, -1)).sum(-1) > 0, torch.isnan(self.state.joint_qd.view(self.num_environments, -1)).sum(-1) > 0)) inf_masks = torch.logical_or(torch.isinf(self.obs_buf).sum(-1) > 0, torch.logical_or(torch.isinf(self.state.joint_q.view(self.num_environments, -1)).sum(-1) > 0, torch.isinf(self.state.joint_qd.view(self.num_environments, -1)).sum(-1) > 0)) invalid_value_masks = torch.logical_or((torch.abs(self.state.joint_q.view(self.num_environments, -1)) > 1e6).sum(-1) > 0, (torch.abs(self.state.joint_qd.view(self.num_environments, -1)) > 1e6).sum(-1) > 0) invalid_masks = torch.logical_or(invalid_value_masks, torch.logical_or(nan_masks, inf_masks)) self.reset_buf = torch.where(invalid_masks, torch.ones_like(self.reset_buf), self.reset_buf) self.rew_buf[invalid_masks] = 0.
21,635
Python
43.518518
248
0.560296
RoboticExplorationLab/CGAC/envs/humanoid.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from envs.dflex_env import DFlexEnv import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) try: from pxr import Usd except ModuleNotFoundError: print("No pxr package") from utils import load_utils as lu from utils import torch_utils as tu class HumanoidEnv(DFlexEnv): def __init__(self, render=False, device='cuda:0', num_envs=4096, seed=0, episode_length=1000, no_grad=True, stochastic_init=False, MM_caching_frequency = 1): num_obs = 76 num_act = 21 super(HumanoidEnv, self).__init__(num_envs, num_obs, num_act, episode_length, MM_caching_frequency, seed, no_grad, render, device) self.stochastic_init = stochastic_init self.progress_buf_mask = torch.zeros_like(self.progress_buf) self.ep_lens = torch.zeros_like(self.progress_buf) + 10 self.init_sim() # other parameters self.termination_height = 0.74 self.motor_strengths = [ 200, 200, 200, 200, 200, 600, 400, 100, 100, 200, 200, 600, 400, 100, 100, 100, 100, 200, 100, 100, 200] self.motor_scale = 0.35 self.motor_strengths = tu.to_torch(self.motor_strengths, dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.action_penalty = -0.002 self.joint_vel_obs_scaling = 0.1 self.termination_tolerance = 0.1 self.height_rew_scale = 10.0 #----------------------- # set up Usd renderer if (self.visualize): self.stage = Usd.Stage.CreateNew("outputs/" + "Humanoid_" + str(self.num_envs) + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 def init_sim(self): self.builder = df.sim.ModelBuilder() self.dt = 1.0/60.0 self.sim_substeps = 48 self.sim_dt = self.dt self.ground = True self.num_joint_q = 28 self.num_joint_qd = 27 self.x_unit_tensor = tu.to_torch([1, 0, 0], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.y_unit_tensor = tu.to_torch([0, 1, 0], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.z_unit_tensor = tu.to_torch([0, 0, 1], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.start_rot = df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5) self.start_rotation = tu.to_torch(self.start_rot, device=self.device, requires_grad=False) # initialize some data used later on # todo - switch to z-up self.up_vec = self.y_unit_tensor.clone() self.heading_vec = self.x_unit_tensor.clone() self.inv_start_rot = tu.quat_conjugate(self.start_rotation).repeat((self.num_envs, 1)) self.basis_vec0 = self.heading_vec.clone() self.basis_vec1 = self.up_vec.clone() self.targets = tu.to_torch([200.0, 0.0, 0.0], device=self.device, requires_grad=False).repeat((self.num_envs, 1)) self.start_pos = [] if self.visualize: self.env_dist = 2.5 else: self.env_dist = 0. # set to zero for training for numerical consistency start_height = 1.35 asset_folder = os.path.join(os.path.dirname(__file__), 'assets') for i in range(self.num_environments): lu.parse_mjcf(os.path.join(asset_folder, "humanoid.xml"), self.builder, stiffness=5.0, damping=0.1, contact_ke=2.e+4, contact_kd=5.e+3, contact_kf=1.e+3, contact_mu=0.75, limit_ke=1.e+3, limit_kd=1.e+1, armature=0.007, load_stiffness=True, load_armature=True) # base transform start_pos_z = i*self.env_dist self.start_pos.append([0.0, start_height, start_pos_z]) self.builder.joint_q[i*self.num_joint_q:i*self.num_joint_q + 3] = self.start_pos[-1] self.builder.joint_q[i*self.num_joint_q + 3:i*self.num_joint_q + 7] = self.start_rot num_q = int(len(self.builder.joint_q)/self.num_environments) num_qd = int(len(self.builder.joint_qd)/self.num_environments) print(num_q, num_qd) print("Start joint_q: ", self.builder.joint_q[0:num_q]) self.start_joint_q = self.builder.joint_q[7:num_q].copy() self.start_joint_target = self.start_joint_q.copy() self.start_pos = tu.to_torch(self.start_pos, device=self.device) self.start_joint_q = tu.to_torch(self.start_joint_q, device=self.device) self.start_joint_target = tu.to_torch(self.start_joint_target, device=self.device) # finalize model self.model = self.builder.finalize(self.device) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=self.device) self.integrator = df.sim.SemiImplicitIntegrator() self.state = self.model.state() num_act = int(len(self.state.joint_act) / self.num_environments) - 6 print('num_act = ', num_act) if (self.model.ground): self.model.collide(self.state) def render(self, mode = 'human'): if self.visualize: self.render_time += self.dt self.renderer.update(self.state, self.render_time) if (self.num_frames == 1): try: self.stage.Save() except: print("USD save error") self.num_frames -= 1 def step(self, actions, force_done_ids=None): actions = actions.view((self.num_envs, self.num_actions)) # todo - make clip range a parameter actions = torch.clip(actions, -1., 1.) ##### an ugly fix for simulation nan values #### # reference: https://github.com/pytorch/pytorch/issues/15131 def create_hook(): def hook(grad): torch.nan_to_num(grad, 0.0, 0.0, 0.0, out = grad) return hook if self.state.joint_q.requires_grad: self.state.joint_q.register_hook(create_hook()) if self.state.joint_qd.requires_grad: self.state.joint_qd.register_hook(create_hook()) if actions.requires_grad: actions.register_hook(create_hook()) ################################################# self.actions = actions.clone() self.state.joint_act.view(self.num_envs, -1)[:, 6:] = actions * self.motor_scale * self.motor_strengths self.state = self.integrator.forward(self.model, self.state, self.sim_dt, self.sim_substeps, self.MM_caching_frequency) self.sim_time += self.sim_dt self.reset_buf = torch.zeros_like(self.reset_buf) self.progress_buf += 1 self.num_frames += 1 self.progress_buf_mask *= 0 self.calculateObservations() self.calculateReward() if force_done_ids is not None: self.reset_buf[force_done_ids] = 1 env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) # if self.no_grad == False: self.obs_buf_before_reset = self.obs_buf.clone() self.extras = { 'obs_before_reset': self.obs_buf_before_reset, 'episode_end': self.termination_buf } if len(env_ids) > 0: self.reset(env_ids) if force_done_ids is not None: self.progress_buf_mask[force_done_ids] = self.episode_length self.render() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def reset(self, env_ids = None, force_reset = True, eplenupdate=True): if env_ids is None: if force_reset == True: env_ids = torch.arange(self.num_envs, dtype=torch.long, device=self.device) if env_ids is not None: # clone the state to avoid gradient error self.state.joint_q = self.state.joint_q.clone().contiguous() self.state.joint_qd = self.state.joint_qd.clone().contiguous() # fixed start state self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:3] = self.start_pos[env_ids, :].clone() self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:7] = self.start_rotation.unsqueeze(0).expand(len(env_ids),-1).clone() self.state.joint_q.view(self.num_envs, -1)[env_ids, 7:] = self.start_joint_q.unsqueeze(0).expand(len(env_ids),-1).clone() self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = 0. # randomization if self.stochastic_init: self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:3] = self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:3] + 0.1 * (torch.rand(size=(len(env_ids), 3), device=self.device) - 0.5) * 2. angle = (torch.rand(len(env_ids), device = self.device) - 0.5) * np.pi / 12. axis = torch.nn.functional.normalize(torch.rand((len(env_ids), 3), device = self.device) - 0.5) self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:7] = tu.quat_mul(self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:7], tu.quat_from_angle_axis(angle, axis)) self.state.joint_q.view(self.num_envs, -1)[env_ids, 7:] = self.state.joint_q.view(self.num_envs, -1)[env_ids, 7:] + 0.2 * (torch.rand(size=(len(env_ids), self.num_joint_q - 7), device = self.device) - 0.5) * 2. self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = 0.5 * (torch.rand(size=(len(env_ids), self.num_joint_qd), device=self.device) - 0.5) # clear action self.actions = self.actions.clone() self.actions[env_ids, :] = torch.zeros((len(env_ids), self.num_actions), device = self.device, dtype = torch.float) self.progress_buf_mask[env_ids] = self.progress_buf[env_ids].clone() if eplenupdate: self.ep_lens = torch.cat([self.progress_buf[env_ids].clone(), self.ep_lens], dim=0)[:200] self.progress_buf[env_ids] = 0 self.calculateObservations() return self.obs_buf ''' cut off the gradient from the current state to previous states ''' def clear_grad(self, checkpoint = None): with torch.no_grad(): if checkpoint is None: checkpoint = {} checkpoint['joint_q'] = self.state.joint_q.clone() checkpoint['joint_qd'] = self.state.joint_qd.clone() checkpoint['actions'] = self.actions.clone() checkpoint['progress_buf'] = self.progress_buf.clone() current_joint_q = checkpoint['joint_q'].clone() current_joint_qd = checkpoint['joint_qd'].clone() self.state = self.model.state() self.state.joint_q = current_joint_q self.state.joint_qd = current_joint_qd self.actions = checkpoint['actions'].clone() self.progress_buf = checkpoint['progress_buf'].clone() self.state.joint_q.requires_grad_(True) self.state.joint_qd.requires_grad_(True) ''' This function starts collecting a new trajectory from the current states but cuts off the computation graph to the previous states. It has to be called every time the algorithm starts an episode and it returns the observation vectors ''' def initialize_trajectory(self): self.clear_grad() self.calculateObservations() return self.obs_buf def get_checkpoint(self): checkpoint = {} checkpoint['joint_q'] = self.state.joint_q.clone() checkpoint['joint_qd'] = self.state.joint_qd.clone() checkpoint['actions'] = self.actions.clone() checkpoint['progress_buf'] = self.progress_buf.clone() return checkpoint def calculateObservations(self, state=None, actions=None): update_self_obs = False if state is None: state = self.state actions = self.actions update_self_obs = True torso_pos = state.joint_q.view(self.num_envs, -1)[:, 0:3] torso_rot = state.joint_q.view(self.num_envs, -1)[:, 3:7] lin_vel = state.joint_qd.view(self.num_envs, -1)[:, 3:6] ang_vel = state.joint_qd.view(self.num_envs, -1)[:, 0:3] # convert the linear velocity of the torso from twist representation to the velocity of the center of mass in world frame lin_vel = lin_vel - torch.cross(torso_pos, ang_vel, dim = -1) to_target = self.targets + self.start_pos - torso_pos to_target[:, 1] = 0.0 target_dirs = tu.normalize(to_target) torso_quat = tu.quat_mul(torso_rot, self.inv_start_rot) up_vec = tu.quat_rotate(torso_quat, self.basis_vec1) heading_vec = tu.quat_rotate(torso_quat, self.basis_vec0) obs_buf = torch.cat([torso_pos[:, 1:2], # 0 torso_rot, # 1:5 lin_vel, # 5:8 ang_vel, # 8:11 state.joint_q.view(self.num_envs, -1)[:, 7:], # 11:32 self.joint_vel_obs_scaling * state.joint_qd.view(self.num_envs, -1)[:, 6:], # 32:53 up_vec[:, 1:2], # 53:54 (heading_vec * target_dirs).sum(dim = -1).unsqueeze(-1), # 54:55 actions.clone()], # 55:76 dim = -1) if update_self_obs: self.obs_buf = obs_buf return obs_buf def calculateObservationsEx(self, state=None, actions=None): update_self_obs = False bsz = actions.shape[0] torso_pos = state.joint_q.view(bsz, -1)[:, 0:3] torso_rot = state.joint_q.view(bsz, -1)[:, 3:7] lin_vel = state.joint_qd.view(bsz, -1)[:, 3:6] ang_vel = state.joint_qd.view(bsz, -1)[:, 0:3] # convert the linear velocity of the torso from twist representation to the velocity of the center of mass in world frame lin_vel = lin_vel - torch.cross(torso_pos, ang_vel, dim = -1) to_target = self.targets[:1] + self.start_pos[:1] - torso_pos to_target[:, 1] = 0.0 target_dirs = tu.normalize(to_target) torso_quat = tu.quat_mul(torso_rot, self.inv_start_rot[:1].expand(bsz, -1)) up_vec = tu.quat_rotate(torso_quat, self.basis_vec1[:1].expand(bsz, -1)) heading_vec = tu.quat_rotate(torso_quat, self.basis_vec0[:1].expand(bsz, -1)) obs_buf = torch.cat([torso_pos[:, 1:2], # 0 torso_rot, # 1:5 lin_vel, # 5:8 ang_vel, # 8:11 state.joint_q.view(bsz, -1)[:, 7:], # 11:32 self.joint_vel_obs_scaling * state.joint_qd.view(bsz, -1)[:, 6:], # 32:53 up_vec[:, 1:2], # 53:54 (heading_vec * target_dirs).sum(dim = -1).unsqueeze(-1), # 54:55 actions.clone()], # 55:76 dim = -1) return obs_buf def calculateObservationsExt(self, state_joint, obs): actions = obs[:, -self.actions.shape[-1]:] bsz = obs.shape[0] joint_q_shape = self.state.joint_q.view(self.num_envs, -1).shape[-1] joint_qd_shape = self.state.joint_qd.view(self.num_envs, -1).shape[-1] joint_q = state_joint[:, :joint_q_shape] joint_qd = state_joint[:, joint_q_shape:] torso_pos = joint_q[:, 0:3] torso_rot = joint_q[:, 3:7] lin_vel = joint_qd[:, 3:6] ang_vel = joint_qd[:, 0:3] # convert the linear velocity of the torso from twist representation to the velocity of the center of mass in world frame lin_vel = lin_vel - torch.cross(torso_pos, ang_vel, dim = -1) to_target = self.targets[:1] + self.start_pos[:1] - torso_pos to_target[:, 1] = 0.0 target_dirs = tu.normalize(to_target) torso_quat = tu.quat_mul(torso_rot, self.inv_start_rot[:1].expand(bsz, -1)) up_vec = tu.quat_rotate(torso_quat, self.basis_vec1[:1].expand(bsz, -1)) heading_vec = tu.quat_rotate(torso_quat, self.basis_vec0[:1].expand(bsz, -1)) obs_buf = torch.cat([torso_pos[:, 1:2], # 0 torso_rot, # 1:5 lin_vel, # 5:8 ang_vel, # 8:11 joint_q[:, 7:], # 11:32 self.joint_vel_obs_scaling * joint_qd[:, 6:], # 32:53 up_vec[:, 1:2], # 53:54 (heading_vec * target_dirs).sum(dim = -1).unsqueeze(-1), # 54:55 actions.clone()], # 55:76 dim = -1) # if update_self_obs: # self.obs_buf = obs_buf return obs_buf def calculateReward(self): up_reward = 0.1 * self.obs_buf[:, 53] heading_reward = self.obs_buf[:, 54] height_diff = self.obs_buf[:, 0] - (self.termination_height + self.termination_tolerance) height_reward = torch.clip(height_diff, -1.0, self.termination_tolerance) height_reward = torch.where(height_reward < 0.0, -200.0 * height_reward * height_reward, height_reward) height_reward = torch.where(height_reward > 0.0, self.height_rew_scale * height_reward, height_reward) progress_reward = self.obs_buf[:, 5] self.rew_buf = progress_reward + up_reward + heading_reward + height_reward + torch.sum(self.actions ** 2, dim = -1) * self.action_penalty # reset agents self.reset_buf = torch.where(self.obs_buf[:, 0] < self.termination_height, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.progress_buf > self.episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf) # an ugly fix for simulation nan values nan_masks = torch.logical_or(torch.isnan(self.obs_buf).sum(-1) > 0, torch.logical_or(torch.isnan(self.state.joint_q.view(self.num_environments, -1)).sum(-1) > 0, torch.isnan(self.state.joint_qd.view(self.num_environments, -1)).sum(-1) > 0)) inf_masks = torch.logical_or(torch.isinf(self.obs_buf).sum(-1) > 0, torch.logical_or(torch.isinf(self.state.joint_q.view(self.num_environments, -1)).sum(-1) > 0, torch.isinf(self.state.joint_qd.view(self.num_environments, -1)).sum(-1) > 0)) invalid_value_masks = torch.logical_or((torch.abs(self.state.joint_q.view(self.num_environments, -1)) > 1e6).sum(-1) > 0, (torch.abs(self.state.joint_qd.view(self.num_environments, -1)) > 1e6).sum(-1) > 0) invalid_masks = torch.logical_or(invalid_value_masks, torch.logical_or(nan_masks, inf_masks)) self.reset_buf = torch.where(invalid_masks, torch.ones_like(self.reset_buf), self.reset_buf) self.invalid_masks = invalid_masks self.rew_buf[invalid_masks] = 0. def calculateRewardEx(self, obs_buf, actions): up_reward = 0.1 * obs_buf[:, 53] heading_reward = obs_buf[:, 54] height_diff = obs_buf[:, 0] - (self.termination_height + self.termination_tolerance) height_reward = torch.clip(height_diff, -1.0, self.termination_tolerance) height_reward = torch.where(height_reward < 0.0, -200.0 * height_reward * height_reward, height_reward) height_reward = torch.where(height_reward > 0.0, self.height_rew_scale * height_reward, height_reward) progress_reward = obs_buf[:, 5] rew_buf = progress_reward + up_reward + heading_reward + height_reward + torch.sum(actions ** 2, dim = -1) * self.action_penalty rew_buf[invalid_masks] = 0. return rew_buf
21,064
Python
42.794179
248
0.569218
RoboticExplorationLab/CGAC/externals/rl_games/setup.py
"""Setup script for rl_games""" import sys import os import pathlib from setuptools import setup, find_packages # The directory containing this file HERE = pathlib.Path(__file__).parent # The text of the README file README = (HERE / "README.md").read_text() print(find_packages()) setup(name='rl-games', long_description=README, long_description_content_type="text/markdown", url="https://github.com/Denys88/rl_games", packages = ['.','rl_games','docs'], package_data={'rl_games':['*'],'docs':['*'],}, version='1.1.0', author='Denys Makoviichuk, Viktor Makoviichuk', author_email='trrrrr97@gmail.com, victor.makoviychuk@gmail.com', license="MIT", classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], #packages=["rlg"], include_package_data=True, install_requires=[ # this setup is only for pytorch # 'gym>=0.17.2', 'numpy>=1.16.0', 'tensorboard>=1.14.0', 'tensorboardX>=1.6', 'setproctitle', 'psutil', 'pyyaml' ], )
1,300
Python
27.91111
70
0.559231
RoboticExplorationLab/CGAC/externals/rl_games/runner.py
import numpy as np import argparse, copy, os, yaml import ray, signal os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"] = "false" #import warnings #warnings.filterwarnings("error") if __name__ == '__main__': ap = argparse.ArgumentParser() ap.add_argument("-tf", "--tf", required=False, help="run tensorflow runner", action='store_true') ap.add_argument("-t", "--train", required=False, help="train network", action='store_true') ap.add_argument("-p", "--play", required=False, help="play(test) network", action='store_true') ap.add_argument("-c", "--checkpoint", required=False, help="path to checkpoint") ap.add_argument("-f", "--file", required=True, help="path to config") ap.add_argument("-na", "--num_actors", type=int, default=0, required=False, help="number of envs running in parallel, if larger than 0 will overwrite the value in yaml config") os.makedirs("nn", exist_ok=True) os.makedirs("runs", exist_ok=True) args = vars(ap.parse_args()) config_name = args['file'] print('Loading config: ', config_name) with open(config_name, 'r') as stream: config = yaml.safe_load(stream) if args['num_actors'] > 0: config['params']['config']['num_actors'] = args['num_actors'] if args['tf']: from rl_games.tf14_runner import Runner else: from rl_games.torch_runner import Runner ray.init(object_store_memory=1024*1024*1000) #signal.signal(signal.SIGINT, exit_gracefully) runner = Runner() try: runner.load(config) except yaml.YAMLError as exc: print(exc) runner.reset() runner.run(args) ray.shutdown()
1,739
Python
33.799999
120
0.615296
RoboticExplorationLab/CGAC/externals/rl_games/README.md
# RL Games: High performance RL library ## Papers and related links * Isaac Gym: High Performance GPU-Based Physics Simulation For Robot Learning: https://arxiv.org/abs/2108.10470 * Transferring Dexterous Manipulation from GPU Simulation to a Remote Real-World TriFinger: https://s2r2-ig.github.io/ https://arxiv.org/abs/2108.09779 * Is Independent Learning All You Need in the StarCraft Multi-Agent Challenge? <https://arxiv.org/abs/2011.09533> ## Some results on interesting environments * [NVIDIA Isaac Gym](docs/ISAAC_GYM.md) ![Ant_running](https://user-images.githubusercontent.com/463063/125260924-a5969800-e2b5-11eb-931c-116cc90d4bbe.gif) ![Humanoid_running](https://user-images.githubusercontent.com/463063/125266095-4edf8d00-e2ba-11eb-9c1a-4dc1524adf71.gif) ![Allegro_Hand_400](https://user-images.githubusercontent.com/463063/125261559-38373700-e2b6-11eb-80eb-b250a0693f0b.gif) ![Shadow_Hand_OpenAI](https://user-images.githubusercontent.com/463063/125262637-328e2100-e2b7-11eb-99af-ea546a53f66a.gif) * [Starcraft 2 Multi Agents](docs/SMAC.md) * [BRAX](docs/BRAX.md) * [Old TF1.x results](docs/BRAX.md) ## Config file * [Configuration](docs/CONFIG_PARAMS.md) Implemented in Pytorch: * PPO with the support of asymmetric actor-critic variant * Support of end-to-end GPU accelerated training pipeline with Isaac Gym and Brax * Masked actions support * Multi-agent training, decentralized and centralized critic variants * Self-play Implemented in Tensorflow 1.x (not updates now): * Rainbow DQN * A2C * PPO # Installation For maximum training performance a preliminary installation of Pytorch 1.9+ with CUDA 11.1 is highly recommended: ```conda install pytorch torchvision cudatoolkit=11.1 -c pytorch -c nvidia``` or: ```pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 -f https://download.pytorch.org/whl/torch_stable.htm``` Then: ```pip install rl-games``` # Training **NVIDIA Isaac Gym** Download and follow the installation instructions from https://developer.nvidia.com/isaac-gym Run from ```python/rlgpu``` directory: Ant ```python rlg_train.py --task Ant --headless``` ```python rlg_train.py --task Ant --play --checkpoint nn/Ant.pth --num_envs 100``` Humanoid ```python rlg_train.py --task Humanoid --headless``` ```python rlg_train.py --task Humanoid --play --checkpoint nn/Humanoid.pth --num_envs 100``` Shadow Hand block orientation task ```python rlg_train.py --task ShadowHand --headless``` ```python rlg_train.py --task ShadowHand --play --checkpoint nn/ShadowHand.pth --num_envs 100``` **Atari Pong** ```python runner.py --train --file rl_games/configs/atari/ppo_pong.yaml``` ```python runner.py --play --file rl_games/configs/atari/ppo_pong.yaml --checkpoint nn/PongNoFrameskip.pth``` **Brax Ant** ```python runner.py --train --file rl_games/configs/brax/ppo_ant.yaml``` ```python runner.py --play --file rl_games/configs/atari/ppo_ant.yaml --checkpoint nn/Ant_brax.pth``` # Release Notes 1.1.0 * Added to pypi: ```pip install rl-games``` * Added reporting env (sim) step fps, without policy inference. Improved naming. * Renames in yaml config for better readability: steps_num to horizon_length amd lr_threshold to kl_threshold # Troubleshouting * Some of the supported envs are not installed with setup.py, you need to manually install them * Starting from rl-games 1.1.0 old yaml configs won't be compatible with the new version: * ```steps_num``` should be changed to ```horizon_length``` amd ```lr_threshold``` to ```kl_threshold```
3,558
Markdown
35.690721
151
0.737493
RoboticExplorationLab/CGAC/externals/rl_games/tests/simple_test.py
import pytest def test_true(): assert True
48
Python
8.799998
16
0.6875
RoboticExplorationLab/CGAC/externals/rl_games/docs/SMAC.md
## Starcraft 2 Multiple Agents Results * Starcraft 2 Multiple Agents Results with PPO (https://github.com/oxwhirl/smac) * Every agent was controlled independently and has restricted information * All the environments were trained with a default difficulty level 7 * No curriculum, just baseline PPO * Full state information wasn't used for critic, actor and critic recieved the same agent observations * Most results are significantly better by win rate and were trained on a single PC much faster than QMIX (https://arxiv.org/pdf/1902.04043.pdf), MAVEN (https://arxiv.org/pdf/1910.07483.pdf) or QTRAN * No hyperparameter search * 4 frames + conv1d actor-critic network * Miniepoch num was set to 1, higher numbers didn't work * Simple MLP networks didnot work good on hard envs [![Watch the video](pictures/smac/mmm2.gif)](https://www.youtube.com/watch?v=F_IfFz-s-iQ) # How to run configs: # Pytorch * ```python runner.py --train --file rl_games/configs/smac/3m_torch.yaml``` * ```python runner.py --play --file rl_games/configs/smac/3m_torch.yaml --checkpoint 'nn/3m_cnn'``` # Tensorflow * ```python runner.py --tf --train --file rl_games/configs/smac/3m_torch.yaml``` * ```python runner.py --tf --play --file rl_games/configs/smac/3m_torch.yaml --checkpoint 'nn/3m_cnn'``` * ```tensorboard --logdir runs``` # Results on some environments: * 2m_vs_1z took near 2 minutes to achive 100% WR * corridor took near 2 hours for 95+% WR * MMM2 4 hours for 90+% WR * 6h_vs_8z got 82% WR after 8 hours of training * 5m_vs_6m got 72% WR after 8 hours of training # Plots: FPS in these plots is calculated on per env basis except MMM2 (it was scaled by number of agents which is 10), to get a win rate per number of environmental steps info, the same as used in plots in QMIX, MAVEN, QTRAN or Deep Coordination Graphs (https://arxiv.org/pdf/1910.00091.pdf) papers FPS numbers under the horizontal axis should be devided by number of agents in player's team. * 2m_vs_1z: ![2m_vs_1z](pictures/smac/2m_vs_1z.png) * 3s5z_vs_3s6z: ![3s5z_vs_3s6z](pictures/smac/3s5z_vs_3s6z.png) * 3s_vs_5z: ![3s_vs_5z](pictures/smac/3s_vs_5z.png) * corridor: ![corridor](pictures/smac/corridor.png) * 5m_vs_6m: ![5m_vs_6m](pictures/smac/5m_vs_6m.png) * MMM2: ![MMM2](pictures/smac/MMM2.png)
2,266
Markdown
48.282608
384
0.735658
RoboticExplorationLab/CGAC/externals/rl_games/docs/OTHER.md
## Old Tensorflow results * Double dueling DQN vs DQN with the same parameters ![alt text](https://github.com/Denys88/dqn_atari/blob/master/pictures/dqn_vs_dddqn.png) Near 90 minutes to learn with this setup. * Different DQN Configurations tests Light grey is noisy 1-step dddqn. Noisy 3-step dddqn was even faster. Best network (configuration 5) needs near 20 minutes to learn, on NVIDIA 1080. Currently the best setup for pong is noisy 3-step double dueling network. In pong_runs.py different experiments could be found. Less then 200k frames to take score > 18. ![alt text](https://github.com/Denys88/dqn_atari/blob/master/pictures/pong_dqn.png) DQN has more optimistic Q value estimations. # Other Games Results This results are not stable. Just best games, for good average results you need to train network more then 10 million steps. Some games need 50m steps. * 5 million frames two step noisy double dueling dqn: [![Watch the video](https://j.gifs.com/K1OL6r.gif)](https://youtu.be/Lu9Cm9K_6ms) * Random lucky game in Space Invaders after less then one hour learning: [![Watch the video](https://j.gifs.com/D1RQE5.gif)](https://www.youtube.com/watch?v=LO0RL437rh4) # A2C and PPO Results * More than 2 hours for Pong to achieve 20 score with one actor playing. * 8 Hours for Supermario lvl1 [![Watch the video](https://j.gifs.com/nxOYyp.gif)](https://www.youtube.com/watch?v=T9ujS3HIvMY) * PPO with LSTM layers [![Watch the video](https://j.gifs.com/YWV9W0.gif)](https://www.youtube.com/watch?v=fjY4AWbmhHg) ![alt text](https://github.com/Denys88/dqn_atari/blob/master/pictures/mario_random_stages.png)
1,627
Markdown
36.860464
124
0.75968
RoboticExplorationLab/CGAC/externals/rl_games/docs/BRAX.md
# Brax (https://github.com/google/brax) ## How to run: * **Ant** ```python runner.py --train --file rl_games/configs/brax/ppo_ant.yaml``` * **Humanoid** ```python runner.py --train --file rl_games/configs/brax/ppo_humanoid.yaml``` ## Visualization: * run **brax_visualization.ipynb** ## Results: * **Ant** fps step: 1692066.6 fps total: 885603.1 ![Ant](pictures/brax/brax_ant.jpg) * **Humanoid** fps step: 1244450.3 fps total: 661064.5 ![Humanoid](pictures/brax/brax_humanoid.jpg) * **ur5e** fps step: 1116872.3 fps total: 627117.0 ![Humanoid](pictures/brax/brax_ur5e.jpg) ![Alt Text](pictures/brax/humanoid.gif) ![Alt Text](pictures/brax/ur5e.gif)
672
Markdown
34.421051
92
0.671131
RoboticExplorationLab/CGAC/externals/rl_games/docs/ISAAC_GYM.md
## Isaac Gym Results https://developer.nvidia.com/isaac-gym Coming.
69
Markdown
12.999997
38
0.753623
RoboticExplorationLab/CGAC/externals/rl_games/docs/CONFIG_PARAMS.md
# Yaml Config Description Coming.
37
Markdown
8.499998
27
0.72973
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/torch_runner.py
import numpy as np import copy import torch import yaml from rl_games import envs from rl_games.common import object_factory from rl_games.common import env_configurations from rl_games.common import experiment from rl_games.common import tr_helpers from rl_games.algos_torch import network_builder from rl_games.algos_torch import model_builder from rl_games.algos_torch import a2c_continuous from rl_games.algos_torch import a2c_discrete from rl_games.algos_torch import players from rl_games.common.algo_observer import DefaultAlgoObserver from rl_games.algos_torch import sac_agent class Runner: def __init__(self, algo_observer=None): self.algo_factory = object_factory.ObjectFactory() self.algo_factory.register_builder('a2c_continuous', lambda **kwargs : a2c_continuous.A2CAgent(**kwargs)) self.algo_factory.register_builder('a2c_discrete', lambda **kwargs : a2c_discrete.DiscreteA2CAgent(**kwargs)) self.algo_factory.register_builder('sac', lambda **kwargs: sac_agent.SACAgent(**kwargs)) #self.algo_factory.register_builder('dqn', lambda **kwargs : dqnagent.DQNAgent(**kwargs)) self.player_factory = object_factory.ObjectFactory() self.player_factory.register_builder('a2c_continuous', lambda **kwargs : players.PpoPlayerContinuous(**kwargs)) self.player_factory.register_builder('a2c_discrete', lambda **kwargs : players.PpoPlayerDiscrete(**kwargs)) self.player_factory.register_builder('sac', lambda **kwargs : players.SACPlayer(**kwargs)) #self.player_factory.register_builder('dqn', lambda **kwargs : players.DQNPlayer(**kwargs)) self.model_builder = model_builder.ModelBuilder() self.network_builder = network_builder.NetworkBuilder() self.algo_observer = algo_observer torch.backends.cudnn.benchmark = True def reset(self): pass def load_config(self, params): self.seed = params.get('seed', None) self.algo_params = params['algo'] self.algo_name = self.algo_params['name'] self.load_check_point = params['load_checkpoint'] self.exp_config = None if self.seed: torch.manual_seed(self.seed) torch.cuda.manual_seed_all(self.seed) np.random.seed(self.seed) if self.load_check_point: print('Found checkpoint') print(params['load_path']) self.load_path = params['load_path'] self.model = self.model_builder.load(params) self.config = copy.deepcopy(params['config']) self.config['reward_shaper'] = tr_helpers.DefaultRewardsShaper(**self.config['reward_shaper']) self.config['network'] = self.model self.config['logdir'] = params['general'].get('logdir', './') has_rnd_net = self.config.get('rnd_config', None) != None if has_rnd_net: print('Adding RND Network') network = self.model_builder.network_factory.create(params['config']['rnd_config']['network']['name']) network.load(params['config']['rnd_config']['network']) self.config['rnd_config']['network'] = network has_central_value_net = self.config.get('central_value_config', None) != None if has_central_value_net: print('Adding Central Value Network') network = self.model_builder.network_factory.create(params['config']['central_value_config']['network']['name']) network.load(params['config']['central_value_config']['network']) self.config['central_value_config']['network'] = network def load(self, yaml_conf): self.default_config = yaml_conf['params'] self.load_config(copy.deepcopy(self.default_config)) if 'experiment_config' in yaml_conf: self.exp_config = yaml_conf['experiment_config'] def get_prebuilt_config(self): return self.config def run_train(self): print('Started to train') if self.algo_observer is None: self.algo_observer = DefaultAlgoObserver() if self.exp_config: self.experiment = experiment.Experiment(self.default_config, self.exp_config) exp_num = 0 exp = self.experiment.get_next_config() while exp is not None: exp_num += 1 print('Starting experiment number: ' + str(exp_num)) self.reset() self.load_config(exp) if 'features' not in self.config: self.config['features'] = {} self.config['features']['observer'] = self.algo_observer #if 'soft_augmentation' in self.config['features']: # self.config['features']['soft_augmentation'] = SoftAugmentation(**self.config['features']['soft_augmentation']) agent = self.algo_factory.create(self.algo_name, base_name='run', config=self.config) self.experiment.set_results(*agent.train()) exp = self.experiment.get_next_config() else: self.reset() self.load_config(self.default_config) if 'features' not in self.config: self.config['features'] = {} self.config['features']['observer'] = self.algo_observer #if 'soft_augmentation' in self.config['features']: # self.config['features']['soft_augmentation'] = SoftAugmentation(**self.config['features']['soft_augmentation']) agent = self.algo_factory.create(self.algo_name, base_name='run', config=self.config) if self.load_check_point and (self.load_path is not None): agent.restore(self.load_path) agent.train() def create_player(self): return self.player_factory.create(self.algo_name, config=self.config) def create_agent(self, obs_space, action_space): return self.algo_factory.create(self.algo_name, base_name='run', observation_space=obs_space, action_space=action_space, config=self.config) def run(self, args): if 'checkpoint' in args and args['checkpoint'] is not None: if len(args['checkpoint']) > 0: self.load_path = args['checkpoint'] if args['train']: self.run_train() elif args['play']: print('Started to play') player = self.create_player() player.restore(self.load_path) player.run() else: self.run_train()
6,556
Python
43.304054
148
0.624619
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/tf14_runner.py
import tensorflow as tf import numpy as np import yaml import ray import copy from rl_games.common import object_factory from rl_games.common import env_configurations from rl_games.common import experiment from rl_games.common import tr_helpers from rl_games.algos_tf14 import network_builder from rl_games.algos_tf14 import model_builder from rl_games.algos_tf14 import a2c_continuous from rl_games.algos_tf14 import a2c_discrete from rl_games.algos_tf14 import dqnagent from rl_games.algos_tf14 import players class Runner: def __init__(self): self.algo_factory = object_factory.ObjectFactory() self.algo_factory.register_builder('a2c_continuous', lambda **kwargs : a2c_continuous.A2CAgent(**kwargs)) self.algo_factory.register_builder('a2c_discrete', lambda **kwargs : a2c_discrete.A2CAgent(**kwargs)) self.algo_factory.register_builder('dqn', lambda **kwargs : dqnagent.DQNAgent(**kwargs)) self.player_factory = object_factory.ObjectFactory() self.player_factory.register_builder('a2c_continuous', lambda **kwargs : players.PpoPlayerContinuous(**kwargs)) self.player_factory.register_builder('a2c_discrete', lambda **kwargs : players.PpoPlayerDiscrete(**kwargs)) self.player_factory.register_builder('dqn', lambda **kwargs : players.DQNPlayer(**kwargs)) self.model_builder = model_builder.ModelBuilder() self.network_builder = network_builder.NetworkBuilder() self.sess = None def reset(self): gpu_options = tf.GPUOptions(allow_growth=True, per_process_gpu_memory_fraction=0.8) config = tf.ConfigProto(gpu_options=gpu_options) tf.reset_default_graph() if self.sess: self.sess.close() self.sess = tf.InteractiveSession(config=config) def load_config(self, params): self.seed = params.get('seed', None) self.algo_params = params['algo'] self.algo_name = self.algo_params['name'] self.load_check_point = params['load_checkpoint'] self.exp_config = None if self.seed: tf.set_random_seed(self.seed) np.random.seed(self.seed) if self.load_check_point: self.load_path = params['load_path'] self.model = self.model_builder.load(params) self.config = copy.deepcopy(params['config']) self.config['reward_shaper'] = tr_helpers.DefaultRewardsShaper(**self.config['reward_shaper'], is_torch=False) self.config['network'] = self.model def load(self, yaml_conf): self.default_config = yaml_conf['params'] self.load_config(copy.deepcopy(self.default_config)) if 'experiment_config' in yaml_conf: self.exp_config = yaml_conf['experiment_config'] def get_prebuilt_config(self): return self.config def run_train(self): print('Started to train') ray.init(object_store_memory=1024*1024*1000) shapes = env_configurations.get_obs_and_action_spaces_from_config(self.config) obs_space = shapes['observation_space'] action_space = shapes['action_space'] print('obs_space:', obs_space) print('action_space:', action_space) if self.exp_config: self.experiment = experiment.Experiment(self.default_config, self.exp_config) exp_num = 0 exp = self.experiment.get_next_config() while exp is not None: exp_num += 1 print('Starting experiment number: ' + str(exp_num)) self.reset() self.load_config(exp) agent = self.algo_factory.create(self.algo_name, sess=self.sess, base_name='run', observation_space=obs_space, action_space=action_space, config=self.config) self.experiment.set_results(*agent.train()) exp = self.experiment.get_next_config() else: self.reset() self.load_config(self.default_config) agent = self.algo_factory.create(self.algo_name, sess=self.sess, base_name='run', observation_space=obs_space, action_space=action_space, config=self.config) if self.load_check_point or (self.load_path is not None): agent.restore(self.load_path) agent.train() def create_player(self): return self.player_factory.create(self.algo_name, sess=self.sess, config=self.config) def create_agent(self, obs_space, action_space): return self.algo_factory.create(self.algo_name, sess=self.sess, base_name='run', observation_space=obs_space, action_space=action_space, config=self.config) def run(self, args): if 'checkpoint' in args: self.load_path = args['checkpoint'] if args['train']: self.run_train() elif args['play']: print('Started to play') player = self.player_factory.create(self.algo_name, sess=self.sess, config=self.config) player.restore(self.load_path) player.run() ray.shutdown()
5,099
Python
39.8
175
0.643656
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/envs/test_network.py
import torch from torch import nn import torch.nn.functional as F class TestNet(nn.Module): def __init__(self, params, **kwargs): nn.Module.__init__(self) actions_num = kwargs.pop('actions_num') input_shape = kwargs.pop('input_shape') num_inputs = 0 assert(type(input_shape) is dict) for k,v in input_shape.items(): num_inputs +=v[0] self.central_value = params.get('central_value', False) self.value_size = kwargs.pop('value_size', 1) self.linear1 = nn.Linear(num_inputs, 256) self.linear2 = nn.Linear(256, 128) self.linear3 = nn.Linear(128, 64) self.mean_linear = nn.Linear(64, actions_num) self.value_linear = nn.Linear(64, 1) def is_rnn(self): return False def forward(self, obs): obs = obs['obs'] obs = torch.cat([obs['pos'], obs['info']], axis=-1) x = F.relu(self.linear1(obs)) x = F.relu(self.linear2(x)) x = F.relu(self.linear3(x)) action = self.mean_linear(x) value = self.value_linear(x) if self.central_value: return value, None return action, value, None from rl_games.algos_torch.network_builder import NetworkBuilder class TestNetBuilder(NetworkBuilder): def __init__(self, **kwargs): NetworkBuilder.__init__(self) def load(self, params): self.params = params def build(self, name, **kwargs): return TestNet(self.params, **kwargs) def __call__(self, name, **kwargs): return self.build(name, **kwargs)
1,596
Python
28.036363
63
0.589599
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/envs/smac_env.py
import gym import numpy as np from smac.env import StarCraft2Env class SMACEnv(gym.Env): def __init__(self, name="3m", **kwargs): gym.Env.__init__(self) self.seed = kwargs.pop('seed', None) self.reward_sparse = kwargs.get('reward_sparse', False) self.use_central_value = kwargs.pop('central_value', False) self.random_invalid_step = kwargs.pop('random_invalid_step', False) self.replay_save_freq = kwargs.pop('replay_save_freq', 10000) self.apply_agent_ids = kwargs.pop('apply_agent_ids', False) self.env = StarCraft2Env(map_name=name, seed=self.seed, **kwargs) self.env_info = self.env.get_env_info() self._game_num = 0 self.n_actions = self.env_info["n_actions"] self.n_agents = self.env_info["n_agents"] self.action_space = gym.spaces.Discrete(self.n_actions) one_hot_agents = 0 if self.apply_agent_ids: one_hot_agents = self.n_agents self.observation_space = gym.spaces.Box(low=0, high=1, shape=(self.env_info['obs_shape']+one_hot_agents, ), dtype=np.float32) self.state_space = gym.spaces.Box(low=0, high=1, shape=(self.env_info['state_shape'], ), dtype=np.float32) self.obs_dict = {} def _preproc_state_obs(self, state, obs): # todo: remove from self if self.apply_agent_ids: num_agents = self.n_agents obs = np.array(obs) all_ids = np.eye(num_agents, dtype=np.float32) obs = np.concatenate([obs, all_ids], axis=-1) self.obs_dict["obs"] = np.array(obs) self.obs_dict["state"] = np.array(state) if self.use_central_value: return self.obs_dict else: return self.obs_dict["obs"] def get_number_of_agents(self): return self.n_agents def reset(self): if self._game_num % self.replay_save_freq == 1: print('saving replay') self.env.save_replay() self._game_num += 1 obs, state = self.env.reset() # rename, to think remove obs_dict = self._preproc_state_obs(state, obs) return obs_dict def _preproc_actions(self, actions): actions = actions.copy() rewards = np.zeros_like(actions) mask = self.get_action_mask() for ind, action in enumerate(actions, start=0): avail_actions = np.nonzero(mask[ind])[0] if action not in avail_actions: actions[ind] = np.random.choice(avail_actions) #rewards[ind] = -0.05 return actions, rewards def step(self, actions): fixed_rewards = None if self.random_invalid_step: actions, fixed_rewards = self._preproc_actions(actions) reward, done, info = self.env.step(actions) if done: battle_won = info.get('battle_won', False) if not battle_won and self.reward_sparse: reward = -1.0 obs = self.env.get_obs() state = self.env.get_state() obses = self._preproc_state_obs(state, obs) rewards = np.repeat (reward, self.n_agents) dones = np.repeat (done, self.n_agents) if fixed_rewards is not None: rewards += fixed_rewards return obses, rewards, dones, info def get_action_mask(self): return np.array(self.env.get_avail_actions(), dtype=np.bool) def has_action_mask(self): return not self.random_invalid_step
3,500
Python
34.01
133
0.587714
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/envs/connect4_selfplay.py
import gym import numpy as np from pettingzoo.classic import connect_four_v0 import yaml from rl_games.torch_runner import Runner import os from collections import deque class ConnectFourSelfPlay(gym.Env): def __init__(self, name="connect_four_v0", **kwargs): gym.Env.__init__(self) self.name = name self.is_determenistic = kwargs.pop('is_determenistic', False) self.is_human = kwargs.pop('is_human', False) self.random_agent = kwargs.pop('random_agent', False) self.config_path = kwargs.pop('config_path') self.agent = None self.env = connect_four_v0.env()#gym.make(name, **kwargs) self.action_space = self.env.action_spaces['player_0'] observation_space = self.env.observation_spaces['player_0'] shp = observation_space.shape self.observation_space = gym.spaces.Box(low=0, high=1, shape=(shp[:-1] + (shp[-1] * 2,)), dtype=np.uint8) self.obs_deque = deque([], maxlen=2) self.agent_id = 0 def _get_legal_moves(self, agent_id): name = 'player_0' if agent_id == 0 else 'player_1' action_ids = self.env.infos[name]['legal_moves'] mask = np.zeros(self.action_space.n, dtype = np.bool) mask[action_ids] = True return mask, action_ids def env_step(self, action): obs = self.env.step(action) info = {} name = 'player_0' if self.agent_id == 0 else 'player_1' reward = self.env.rewards[name] done = self.env.dones[name] return obs, reward, done, info def get_obs(self): return np.concatenate(self.obs_deque,-1).astype(np.uint8) * 255 def reset(self): if self.agent == None: self.create_agent(self.config_path) self.agent_id = np.random.randint(2) obs = self.env.reset() self.obs_deque.append(obs) self.obs_deque.append(obs) if self.agent_id == 1: op_obs = self.get_obs() op_obs = self.agent.obs_to_torch(op_obs) mask, ids = self._get_legal_moves(0) if self.is_human: self.render() opponent_action = int(input()) else: if self.random_agent: opponent_action = np.random.choice(ids, 1)[0] else: opponent_action = self.agent.get_masked_action(op_obs, mask, self.is_determenistic).item() obs, _, _, _ = self.env_step(opponent_action) self.obs_deque.append(obs) return self.get_obs() def create_agent(self, config): with open(config, 'r') as stream: config = yaml.safe_load(stream) runner = Runner() runner.load(config) config = runner.get_prebuilt_config() #'RAYLIB has bug here, CUDA_VISIBLE_DEVICES become unset' if 'CUDA_VISIBLE_DEVICES' in os.environ: os.environ.pop('CUDA_VISIBLE_DEVICES') self.agent = runner.create_player() self.agent.model.eval() def step(self, action): obs, reward, done, info = self.env_step(action) self.obs_deque.append(obs) if done: if reward == 1: info['battle_won'] = 1 else: info['battle_won'] = 0 return self.get_obs(), reward, done, info op_obs = self.get_obs() op_obs = self.agent.obs_to_torch(op_obs) mask, ids = self._get_legal_moves(1-self.agent_id) if self.is_human: self.render() opponent_action = int(input()) else: if self.random_agent: opponent_action = np.random.choice(ids, 1)[0] else: opponent_action = self.agent.get_masked_action(op_obs, mask, self.is_determenistic).item() obs, reward, done,_ = self.env_step(opponent_action) if done: if reward == -1: info['battle_won'] = 0 else: info['battle_won'] = 1 self.obs_deque.append(obs) return self.get_obs(), reward, done, info def render(self, mode='ansi'): self.env.render(mode) def update_weights(self, weigths): self.agent.set_weights(weigths) def get_action_mask(self): mask, _ = self._get_legal_moves(self.agent_id) return mask def has_action_mask(self): return True
4,505
Python
33.396946
113
0.552719
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/envs/__init__.py
from rl_games.envs.connect4_network import ConnectBuilder from rl_games.envs.test_network import TestNetBuilder from rl_games.algos_torch import model_builder model_builder.register_network('connect4net', ConnectBuilder) model_builder.register_network('testnet', TestNetBuilder)
282
Python
30.444441
61
0.833333
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/envs/connect4_network.py
import torch from torch import nn import torch.nn.functional as F class ConvBlock(nn.Module): def __init__(self): super(ConvBlock, self).__init__() self.action_size = 7 self.conv1 = nn.Conv2d(4, 128, 3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(128) def forward(self, s): s = s['obs'].contiguous() #s = s.view(-1, 3, 6, 7) # batch_size x channels x board_x x board_y s = F.relu(self.bn1(self.conv1(s))) return s class ResBlock(nn.Module): def __init__(self, inplanes=128, planes=128, stride=1, downsample=None): super(ResBlock, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) def forward(self, x): residual = x out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += residual out = F.relu(out) return out class OutBlock(nn.Module): def __init__(self): super(OutBlock, self).__init__() self.conv = nn.Conv2d(128, 3, kernel_size=1) # value head self.bn = nn.BatchNorm2d(3) self.fc1 = nn.Linear(3*6*7, 32) self.fc2 = nn.Linear(32, 1) self.conv1 = nn.Conv2d(128, 32, kernel_size=1) # policy head self.bn1 = nn.BatchNorm2d(32) self.fc = nn.Linear(6*7*32, 7) def forward(self,s): v = F.relu(self.bn(self.conv(s))) # value head v = v.view(-1, 3*6*7) # batch_size X channel X height X width v = F.relu(self.fc1(v)) v = F.relu(self.fc2(v)) v = torch.tanh(v) p = F.relu(self.bn1(self.conv1(s))) # policy head p = p.view(-1, 6*7*32) p = self.fc(p) return p, v, None class ConnectNet(nn.Module): def __init__(self, blocks): super(ConnectNet, self).__init__() self.blocks = blocks self.conv = ConvBlock() for block in range(self.blocks): setattr(self, "res_%i" % block,ResBlock()) self.outblock = OutBlock() def is_rnn(self): return False def forward(self,s): s = s.permute((0, 3, 1, 2)) s = self.conv(s) for block in range(self.blocks): s = getattr(self, "res_%i" % block)(s) s = self.outblock(s) return s from rl_games.algos_torch.network_builder import NetworkBuilder class ConnectBuilder(NetworkBuilder): def __init__(self, **kwargs): NetworkBuilder.__init__(self) def load(self, params): self.params = params self.blocks = params['blocks'] def build(self, name, **kwargs): return ConnectNet(self.blocks) def __call__(self, name, **kwargs): return self.build(name, **kwargs)
2,992
Python
28.93
78
0.558489
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/envs/brax.py
from rl_games.common.ivecenv import IVecEnv import gym import numpy as np import torch import torch.utils.dlpack as tpack def jax_to_torch(tensor): from jax._src.dlpack import (to_dlpack,) tensor = to_dlpack(tensor) tensor = tpack.from_dlpack(tensor) return tensor def torch_to_jax(tensor): from jax._src.dlpack import (from_dlpack,) tensor = tpack.to_dlpack(tensor) tensor = from_dlpack(tensor) return tensor class BraxEnv(IVecEnv): def __init__(self, config_name, num_actors, **kwargs): import brax from brax import envs import jax import jax.numpy as jnp self.batch_size = num_actors env_fn = envs.create_fn(env_name=kwargs.pop('env_name', 'ant')) self.env = env_fn( action_repeat=1, batch_size=num_actors, episode_length=kwargs.pop('episode_length', 1000)) obs_high = np.inf * np.ones(self.env.observation_size) self.observation_space = gym.spaces.Box(-obs_high, obs_high, dtype=np.float32) action_high = np.ones(self.env.action_size) self.action_space = gym.spaces.Box(-action_high, action_high, dtype=np.float32) def step(first_state, state, action): def test_done(a, b): if a is first_state.done or a is first_state.metrics or a is first_state.reward: return b test_shape = [a.shape[0],] + [1 for _ in range(len(a.shape) - 1)] return jnp.where(jnp.reshape(state.done, test_shape), a, b) state = self.env.step(state, action) state = jax.tree_multimap(test_done, first_state, state) return state, state.obs, state.reward, state.done, {} def reset(key): state = self.env.reset(key) return state, state.obs self._reset = jax.jit(reset, backend='gpu') self._step = jax.jit(step, backend='gpu') def step(self, action): action = torch_to_jax(action) self.state, next_obs, reward, is_done, info = self._step(self.first_state, self.state, action) #next_obs = np.asarray(next_obs).astype(np.float32) #reward = np.asarray(reward).astype(np.float32) #is_done = np.asarray(is_done).astype(np.long) next_obs = jax_to_torch(next_obs) reward = jax_to_torch(reward) is_done = jax_to_torch(is_done) return next_obs, reward, is_done, info def reset(self): import jax import jax.numpy as jnp rng = jax.random.PRNGKey(seed=0) rng = jax.random.split(rng, self.batch_size) self.first_state, _ = self._reset(rng) self.state, obs = self._reset(rng) #obs = np.asarray(obs).astype(np.float32) return jax_to_torch(obs) def get_number_of_agents(self): return 1 def get_env_info(self): info = {} info['action_space'] = self.action_space info['observation_space'] = self.observation_space return info def create_brax_env(**kwargs): return BraxEnv("", kwargs.pop('num_actors', 256), **kwargs)
3,131
Python
32.677419
102
0.600767
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/envs/multiwalker.py
import gym import numpy as np from pettingzoo.sisl import multiwalker_v6 import yaml from rl_games.torch_runner import Runner import os from collections import deque import rl_games.envs.connect4_network class MultiWalker(gym.Env): def __init__(self, name="multiwalker", **kwargs): gym.Env.__init__(self) self.name = name self.env = multiwalker_v6.parallel_env() self.use_central_value = kwargs.pop('central_value', False) self.use_prev_actions = kwargs.pop('use_prev_actions', False) self.apply_agent_ids = kwargs.pop('apply_agent_ids', False) self.add_timeouts = kwargs.pop('add_timeouts', False) self.action_space = self.env.action_spaces['walker_0'] self.steps_count = 0 obs_len = self.env.observation_spaces['walker_0'].shape[0] add_obs = 0 if self.apply_agent_ids: add_obs = 3 if self.use_prev_actions: obs_len += self.action_space.shape[0] self.observation_space = gym.spaces.Box(-1, 1, shape =(obs_len + add_obs,)) if self.use_central_value: self.state_space = gym.spaces.Box(-1, 1, shape =(obs_len*3,)) def step(self, action): self.steps_count += 1 actions = {'walker_0' : action[0], 'walker_1' : action[1], 'walker_2' : action[2],} obs, reward, done, info = self.env.step(actions) if self.use_prev_actions: obs = { k: np.concatenate([v, actions[k]]) for k,v in obs.items() } obses = np.stack([obs['walker_0'], obs['walker_1'], obs['walker_2']]) rewards = np.stack([reward['walker_0'], reward['walker_1'], reward['walker_2']]) dones = np.stack([done['walker_0'], done['walker_1'], done['walker_2']]) if self.apply_agent_ids: num_agents = 3 all_ids = np.eye(num_agents, dtype=np.float32) obses = np.concatenate([obses, all_ids], axis=-1) if self.use_central_value: states = np.concatenate([obs['walker_0'], obs['walker_1'], obs['walker_2']]) obses = { 'obs' : obses, 'state': states } return obses, rewards, dones, info def reset(self): obs = self.env.reset() self.steps_count = 0 if self.use_prev_actions: zero_actions = np.zeros(self.action_space.shape[0]) obs = { k: np.concatenate([v, zero_actions]) for k,v in obs.items() } obses = np.stack([obs['walker_0'], obs['walker_1'], obs['walker_2']]) if self.apply_agent_ids: num_agents = 3 all_ids = np.eye(num_agents, dtype=np.float32) obses = np.concatenate([obses, all_ids], axis=-1) if self.use_central_value: states = np.concatenate([obs['walker_0'], obs['walker_1'], obs['walker_2']]) obses = { 'obs' : obses, 'state': states } return obses def render(self, mode='ansi'): self.env.render(mode) def get_number_of_agents(self): return 3 def has_action_mask(self): return False
3,195
Python
37.047619
91
0.554617
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/envs/slimevolley_selfplay.py
import gym import numpy as np import slimevolleygym import yaml from rl_games.torch_runner import Runner import os class SlimeVolleySelfplay(gym.Env): def __init__(self, name="SlimeVolleyDiscrete-v0", **kwargs): gym.Env.__init__(self) self.name = name self.is_determenistic = kwargs.pop('is_determenistic', False) self.config_path = kwargs.pop('config_path') self.agent = None self.pos_scale = 1 self.neg_scale = kwargs.pop('neg_scale', 1) self.sum_rewards = 0 self.env = gym.make(name, **kwargs) self.observation_space = self.env.observation_space self.action_space = self.env.action_space def reset(self): if self.agent == None: self.create_agent(self.config_path) obs = self.env.reset() self.opponent_obs = obs self.sum_rewards = 0 return obs def create_agent(self, config='rl_games/configs/ma/ppo_slime_self_play.yaml'): with open(config, 'r') as stream: config = yaml.safe_load(stream) runner = Runner() from rl_games.common.env_configurations import get_env_info config['params']['config']['env_info'] = get_env_info(self) runner.load(config) config = runner.get_prebuilt_config() 'RAYLIB has bug here, CUDA_VISIBLE_DEVICES become unset' os.environ['CUDA_VISIBLE_DEVICES'] = '0' self.agent = runner.create_player() def step(self, action): op_obs = self.agent.obs_to_torch(self.opponent_obs) opponent_action = self.agent.get_action(op_obs, self.is_determenistic).item() obs, reward, done, info = self.env.step(action, opponent_action) self.sum_rewards += reward if reward < 0: reward = reward * self.neg_scale self.opponent_obs = info['otherObs'] if done: info['battle_won'] = np.sign(self.sum_rewards) return obs, reward, done, info def render(self,mode): self.env.render(mode) def update_weights(self, weigths): self.agent.set_weights(weigths)
2,148
Python
32.578124
85
0.607542
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/envs/test/__init__.py
import gym gym.envs.register( id='TestRnnEnv-v0', entry_point='rl_games.envs.test.rnn_env:TestRNNEnv', max_episode_steps=100500, ) gym.envs.register( id='TestAsymmetricEnv-v0', entry_point='rl_games.envs.test.test_asymmetric_env:TestAsymmetricCritic' )
279
Python
22.333331
78
0.709677
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/envs/test/rnn_env.py
import gym import numpy as np class TestRNNEnv(gym.Env): def __init__(self, **kwargs): gym.Env.__init__(self) self.obs_dict = {} self.max_steps = kwargs.pop('max_steps', 21) self.show_time = kwargs.pop('show_time', 1) self.min_dist = kwargs.pop('min_dist', 2) self.max_dist = kwargs.pop('max_dist', 8) self.hide_object = kwargs.pop('hide_object', False) self.use_central_value = kwargs.pop('use_central_value', False) self.apply_dist_reward = kwargs.pop('apply_dist_reward', False) self.apply_exploration_reward = kwargs.pop('apply_exploration_reward', False) self.multi_head_value = kwargs.pop('multi_head_value', False) if self.multi_head_value: self.value_size = 2 else: self.value_size = 1 self.multi_discrete_space = kwargs.pop('multi_discrete_space', False) if self.multi_discrete_space: self.action_space = gym.spaces.Tuple([gym.spaces.Discrete(2),gym.spaces.Discrete(3)]) else: self.action_space = gym.spaces.Discrete(4) self.multi_obs_space = kwargs.pop('multi_obs_space', False) if self.multi_obs_space: spaces = { 'pos': gym.spaces.Box(low=0, high=1, shape=(2, ), dtype=np.float32), 'info': gym.spaces.Box(low=0, high=1, shape=(4, ), dtype=np.float32), } self.observation_space = gym.spaces.Dict(spaces) else: self.observation_space = gym.spaces.Box(low=0, high=1, shape=(6, ), dtype=np.float32) self.state_space = self.observation_space if self.apply_exploration_reward: pass self.reset() def get_number_of_agents(self): return 1 def reset(self): self._curr_steps = 0 self._current_pos = [0,0] bound = self.max_dist - self.min_dist rand_dir = - 2 * np.random.randint(0, 2, (2,)) + 1 self._goal_pos = rand_dir * np.random.randint(self.min_dist, self.max_dist+1, (2,)) obs = np.concatenate([self._current_pos, self._goal_pos, [1, 0]], axis=None) obs = obs.astype(np.float32) if self.multi_obs_space: obs = { 'pos': obs[:2], 'info': obs[2:] } if self.use_central_value: obses = {} obses["obs"] = obs obses["state"] = obs else: obses = obs return obses def step_categorical(self, action): if self._curr_steps > 1: if action == 0: self._current_pos[0] += 1 if action == 1: self._current_pos[0] -= 1 if action == 2: self._current_pos[1] += 1 if action == 3: self._current_pos[1] -= 1 def step_multi_categorical(self, action): if self._curr_steps > 1: if action[0] == 0: self._current_pos[0] += 1 if action[0] == 1: self._current_pos[0] -= 1 if action[1] == 0: self._current_pos[1] += 1 if action[1] == 1: self._current_pos[1] -= 1 if action[1] == 2: pass def step(self, action): info = {} self._curr_steps += 1 if self.multi_discrete_space: self.step_multi_categorical(action) else: self.step_categorical(action) reward = [0.0, 0.0] done = False dist = self._current_pos - self._goal_pos if (dist**2).sum() < 0.0001: reward[0] = 1.0 info = {'scores' : 1} done = True elif self._curr_steps == self.max_steps: info = {'scores' : 0} done = True dist_coef = -0.1 if self.apply_dist_reward: reward[1] = dist_coef * np.abs(dist).sum() / self.max_dist show_object = 0 if self.hide_object: obs = np.concatenate([self._current_pos, [0,0], [show_object, self._curr_steps]], axis=None) else: show_object = 1 obs = np.concatenate([self._current_pos, self._goal_pos, [show_object, self._curr_steps]], axis=None) obs = obs.astype(np.float32) #state = state.astype(np.float32) if self.multi_obs_space: obs = { 'pos': obs[:2], 'info': obs[2:] } if self.use_central_value: state = np.concatenate([self._current_pos, self._goal_pos, [show_object, self._curr_steps]], axis=None) obses = {} obses["obs"] = obs if self.multi_obs_space: obses["state"] = { 'pos': state[:2], 'info': state[2:] } else: obses["state"] = state.astype(np.float32) else: obses = obs if self.multi_head_value: pass else: reward = reward[0] + reward[1] return obses, np.array(reward).astype(np.float32), done, info def has_action_mask(self): return False
5,217
Python
34.020134
115
0.500096
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/envs/test/test_asymmetric_env.py
import gym import numpy as np from rl_games.common.wrappers import MaskVelocityWrapper class TestAsymmetricCritic(gym.Env): def __init__(self, wrapped_env_name, **kwargs): gym.Env.__init__(self) self.apply_mask = kwargs.pop('apply_mask', True) self.use_central_value = kwargs.pop('use_central_value', True) self.env = gym.make(wrapped_env_name) if self.apply_mask: if wrapped_env_name not in ["CartPole-v1", "Pendulum-v0", "LunarLander-v2", "LunarLanderContinuous-v2"]: raise 'unsupported env' self.mask = MaskVelocityWrapper(self.env, wrapped_env_name).mask else: self.mask = 1 self.n_agents = 1 self.use_central_value = True self.action_space = self.env.action_space self.observation_space = self.env.observation_space self.state_space = self.env.observation_space def get_number_of_agents(self): return self.n_agents def reset(self): obs = self.env.reset() obs_dict = {} obs_dict["obs"] = obs * self.mask obs_dict["state"] = obs if self.use_central_value: obses = obs_dict else: obses = obs_dict["obs"].astype(np.float32) return obses def step(self, actions): obs, rewards, dones, info = self.env.step(actions) obs_dict = {} obs_dict["obs"] = obs * self.mask obs_dict["state"] = obs if self.use_central_value: obses = obs_dict else: obses = obs_dict["obs"].astype(np.float32) return obses, rewards, dones, info def has_action_mask(self): return False
1,715
Python
31.377358
116
0.580758
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/envs/diambra/diambra.py
import gym import numpy as np import os import random from diambra_environment.diambraGym import diambraGym from diambra_environment.makeDiambraEnv import make_diambra_env class DiambraEnv(gym.Env): def __init__(self, **kwargs): gym.Env.__init__(self) self.seed = kwargs.pop('seed', None) self.difficulty = kwargs.pop('difficulty', 3) self.env_path = kwargs.pop('env_path', "/home/trrrrr/Documents/github/ml/diambra/DIAMBRAenvironment-main") self.character = kwargs.pop('character', 'Raidou') self.frame_stack = kwargs.pop('frame_stack', 3) self.attacks_buttons = kwargs.pop('attacks_buttons', False) self._game_num = 0 self.n_agents = 1 self.rank = random.randint(0, 100500) repo_base_path = os.path.abspath(self.env_path) # Absolute path to your DIAMBRA environment env_kwargs = {} env_kwargs["gameId"] = "doapp" env_kwargs["roms_path"] = os.path.join(repo_base_path, "roms/") # Absolute path to roms env_kwargs["mame_diambra_step_ratio"] = 6 env_kwargs["render"] = False env_kwargs["lock_fps"] = False # Locks to 60 FPS env_kwargs["sound"] = env_kwargs["lock_fps"] and env_kwargs["render"] env_kwargs["player"] = "Random" env_kwargs["difficulty"] = self.difficulty env_kwargs["characters"] = [[self.character, "Random"], [self.character, "Random"]] env_kwargs["charOutfits"] = [2, 2] gym_kwargs = {} gym_kwargs["P2brain"] = None gym_kwargs["continue_game"] = 0.0 gym_kwargs["show_final"] = False gym_kwargs["gamePads"] = [None, None] gym_kwargs["actionSpace"] = ["discrete", "multiDiscrete"] #gym_kwargs["attackButCombinations"] = [False, False] gym_kwargs["attackButCombinations"] = [self.attacks_buttons, self.attacks_buttons] gym_kwargs["actBufLen"] = 12 wrapper_kwargs = {} wrapper_kwargs["hwc_obs_resize"] = [128, 128, 1] wrapper_kwargs["normalize_rewards"] = True wrapper_kwargs["clip_rewards"] = False wrapper_kwargs["frame_stack"] = self.frame_stack wrapper_kwargs["dilation"] = 1 wrapper_kwargs["scale"] = True wrapper_kwargs["scale_mod"] = 0 key_to_add = [] key_to_add.append("actionsBuf") key_to_add.append("ownHealth") key_to_add.append("oppHealth") key_to_add.append("ownPosition") key_to_add.append("oppPosition") key_to_add.append("stage") key_to_add.append("character") self.env = make_diambra_env(diambraGym, env_prefix="Train" + str(self.rank), seed= self.rank, diambra_kwargs=env_kwargs, diambra_gym_kwargs=gym_kwargs, wrapper_kwargs=wrapper_kwargs, key_to_add=key_to_add) self.observation_space = self.env.observation_space self.action_space = self.env.action_space def _preproc_state_obs(self, obs): return obs def reset(self): self._game_num += 1 obs = self.env.reset() # rename, to think remove obs_dict = self._preproc_state_obs(obs) return obs_dict def step(self, actions): obs, reward, done, info = self.env.step(actions) return obs, reward, done, info def has_action_mask(self): return False
3,496
Python
38.292134
114
0.588673
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_torch/torch_ext.py
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim.optimizer import Optimizer numpy_to_torch_dtype_dict = { np.dtype('bool') : torch.bool, np.dtype('uint8') : torch.uint8, np.dtype('int8') : torch.int8, np.dtype('int16') : torch.int16, np.dtype('int32') : torch.int32, np.dtype('int64') : torch.int64, np.dtype('float16') : torch.float16, np.dtype('float32') : torch.float32, np.dtype('float64') : torch.float64, np.dtype('complex64') : torch.complex64, np.dtype('complex128') : torch.complex128, } torch_to_numpy_dtype_dict = {value : key for (key, value) in numpy_to_torch_dtype_dict.items()} def policy_kl(p0_mu, p0_sigma, p1_mu, p1_sigma, reduce=True): c1 = torch.log(p1_sigma/p0_sigma + 1e-5) c2 = (p0_sigma**2 + (p1_mu - p0_mu)**2)/(2.0 * (p1_sigma**2 + 1e-5)) c3 = -1.0 / 2.0 kl = c1 + c2 + c3 kl = kl.sum(dim=-1) # returning mean between all steps of sum between all actions if reduce: return kl.mean() else: return kl def mean_mask(input, mask, sum_mask): return (input * rnn_masks).sum() / sum_mask def shape_whc_to_cwh(shape): #if len(shape) == 2: # return (shape[1], shape[0]) if len(shape) == 3: return (shape[2], shape[0], shape[1]) return shape def safe_filesystem_op(func, *args, **kwargs): """ This is to prevent spurious crashes related to saving checkpoints or restoring from checkpoints in a Network Filesystem environment (i.e. NGC cloud or SLURM) """ num_attempts = 5 for attempt in range(num_attempts): try: return func(*args, **kwargs) except Exception as exc: print(f'Exception {exc} when trying to execute {func} with args:{args} and kwargs:{kwargs}...') wait_sec = 2 ** attempt print(f'Waiting {wait_sec} before trying again...') time.sleep(wait_sec) raise RuntimeError(f'Could not execute {func}, give up after {num_attempts} attempts...') def safe_save(state, filename): return safe_filesystem_op(torch.save, state, filename) def safe_load(filename): return safe_filesystem_op(torch.load, filename) def save_checkpoint(filename, state): print("=> saving checkpoint '{}'".format(filename + '.pth')) safe_save(state, filename + '.pth') def load_checkpoint(filename): print("=> loading checkpoint '{}'".format(filename)) state = safe_load(filename) return state def parameterized_truncated_normal(uniform, mu, sigma, a, b): normal = torch.distributions.normal.Normal(0, 1) alpha = (a - mu) / sigma beta = (b - mu) / sigma alpha_normal_cdf = normal.cdf(torch.from_numpy(np.array(alpha))) p = alpha_normal_cdf + (normal.cdf(torch.from_numpy(np.array(beta))) - alpha_normal_cdf) * uniform p = p.numpy() one = np.array(1, dtype=p.dtype) epsilon = np.array(np.finfo(p.dtype).eps, dtype=p.dtype) v = np.clip(2 * p - 1, -one + epsilon, one - epsilon) x = mu + sigma * np.sqrt(2) * torch.erfinv(torch.from_numpy(v)) x = torch.clamp(x, a, b) return x def truncated_normal(uniform, mu=0.0, sigma=1.0, a=-2, b=2): return parameterized_truncated_normal(uniform, mu, sigma, a, b) def sample_truncated_normal(shape=(), mu=0.0, sigma=1.0, a=-2, b=2): return truncated_normal(torch.from_numpy(np.random.uniform(0, 1, shape)), mu, sigma, a, b) def variance_scaling_initializer(tensor, mode='fan_in',scale = 2.0): fan = torch.nn.init._calculate_correct_fan(tensor, mode) print(fan, scale) sigma = np.sqrt(scale / fan) with torch.no_grad(): tensor[:] = sample_truncated_normal(tensor.size(), sigma=sigma) return tensor def random_sample(obs_batch, prob): num_batches = obs_batch.size()[0] permutation = torch.randperm(num_batches, device=obs_batch.device) start = 0 end = int(prob * num_batches) indices = permutation[start:end] return torch.index_select(obs_batch, 0, indices) def mean_list(val): return torch.mean(torch.stack(val)) def apply_masks(losses, mask=None): sum_mask = None if mask is not None: mask = mask.unsqueeze(1) sum_mask = mask.numel()# #sum_mask = mask.sum() res_losses = [(l * mask).sum() / sum_mask for l in losses] else: res_losses = [torch.mean(l) for l in losses] return res_losses, sum_mask def normalization_with_masks(values, masks): sum_mask = masks.sum() values_mask = values * masks values_mean = values_mask.sum() / sum_mask min_sqr = ((((values_mask)**2)/sum_mask).sum() - ((values_mask/sum_mask).sum())**2) values_std = torch.sqrt(min_sqr * sum_mask / (sum_mask-1)) normalized_values = (values_mask - values_mean) / (values_std + 1e-8) return normalized_values class CoordConv2d(nn.Conv2d): pool = {} def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): super().__init__(in_channels + 2, out_channels, kernel_size, stride, padding, dilation, groups, bias) @staticmethod def get_coord(x): key = int(x.size(0)), int(x.size(2)), int(x.size(3)), x.type() if key not in CoordConv2d.pool: theta = torch.Tensor([[[1, 0, 0], [0, 1, 0]]]) coord = torch.nn.functional.affine_grid(theta, torch.Size([1, 1, x.size(2), x.size(3)])).permute([0, 3, 1, 2]).repeat( x.size(0), 1, 1, 1).type_as(x) CoordConv2d.pool[key] = coord return CoordConv2d.pool[key] def forward(self, x): return torch.nn.functional.conv2d(torch.cat([x, self.get_coord(x).type_as(x)], 1), self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) class LayerNorm2d(nn.Module): """ Layer norm the just works on the channel axis for a Conv2d Ref: - code modified from https://github.com/Scitator/Run-Skeleton-Run/blob/master/common/modules/LayerNorm.py - paper: https://arxiv.org/abs/1607.06450 Usage: ln = LayerNormConv(3) x = Variable(torch.rand((1,3,4,2))) ln(x).size() """ def __init__(self, features, eps=1e-6): super().__init__() self.register_buffer("gamma", torch.ones(features).unsqueeze(-1).unsqueeze(-1)) self.register_buffer("beta", torch.ones(features).unsqueeze(-1).unsqueeze(-1)) self.eps = eps self.features = features def _check_input_dim(self, input): if input.size(1) != self.gamma.nelement(): raise ValueError('got {}-feature tensor, expected {}' .format(input.size(1), self.features)) def forward(self, x): self._check_input_dim(x) x_flat = x.transpose(1,-1).contiguous().view((-1, x.size(1))) mean = x_flat.mean(0).unsqueeze(-1).unsqueeze(-1).expand_as(x) std = x_flat.std(0).unsqueeze(-1).unsqueeze(-1).expand_as(x) return self.gamma.expand_as(x) * (x - mean) / (std + self.eps) + self.beta.expand_as(x) class DiscreteActionsEncoder(nn.Module): def __init__(self, actions_max, mlp_out, emb_size, num_agents, use_embedding): super().__init__() self.actions_max = actions_max self.emb_size = emb_size self.num_agents = num_agents self.use_embedding = use_embedding if use_embedding: self.embedding = torch.nn.Embedding(actions_max, emb_size) else: self.emb_size = actions_max self.linear = torch.nn.Linear(self.emb_size * num_agents, mlp_out) def forward(self, discrete_actions): if self.use_embedding: emb = self.embedding(discrete_actions) else: emb = torch.nn.functional.one_hot(discrete_actions, num_classes=self.actions_max) emb = emb.view( -1, self.emb_size * self.num_agents).float() emb = self.linear(emb) return emb def get_model_gradients(model): grad_list = [] for param in model.parameters(): grad_list.append(param.grad) return grad_list def get_mean(v): if len(v) > 0: mean = np.mean(v) else: mean = 0 return mean class CategoricalMaskedNaive(torch.distributions.Categorical): def __init__(self, probs=None, logits=None, validate_args=None, masks=None): self.masks = masks if self.masks is None: super(CategoricalMasked, self).__init__(probs, logits, validate_args) else: inf_mask = torch.log(masks.float()) logits = logits + inf_mask super(CategoricalMasked, self).__init__(probs, logits, validate_args) def entropy(self): if self.masks is None: return super(CategoricalMasked, self).entropy() p_log_p = self.logits * self.probs p_log_p[p_log_p != p_log_p] = 0 return -p_log_p.sum(-1) class CategoricalMasked(torch.distributions.Categorical): def __init__(self, probs=None, logits=None, validate_args=None, masks=None): self.masks = masks if masks is None: super(CategoricalMasked, self).__init__(probs, logits, validate_args) else: self.device = self.masks.device logits = torch.where(self.masks, logits, torch.tensor(-1e+8).to(self.device)) super(CategoricalMasked, self).__init__(probs, logits, validate_args) def rsample(self): u = torch.distributions.Uniform(low=torch.zeros_like(self.logits, device = self.logits.device), high=torch.ones_like(self.logits, device = self.logits.device)).sample() #print(u.size(), self.logits.size()) rand_logits = self.logits -(-u.log()).log() return torch.max(rand_logits, axis=-1)[1] def entropy(self): if self.masks is None: return super(CategoricalMasked, self).entropy() p_log_p = self.logits * self.probs p_log_p = torch.where(self.masks, p_log_p, torch.tensor(0.0).to(self.device)) return -p_log_p.sum(-1) class AverageMeter(nn.Module): def __init__(self, in_shape, max_size): super(AverageMeter, self).__init__() self.max_size = max_size self.current_size = 0 self.register_buffer("mean", torch.zeros(in_shape, dtype = torch.float32)) def update(self, values): size = values.size()[0] if size == 0: return new_mean = torch.mean(values.float(), dim=0) size = np.clip(size, 0, self.max_size) old_size = min(self.max_size - size, self.current_size) size_sum = old_size + size self.current_size = size_sum self.mean = (self.mean * old_size + new_mean * size) / size_sum def clear(self): self.current_size = 0 self.mean.fill_(0) def __len__(self): return self.current_size def get_mean(self): return self.mean.squeeze(0).cpu().numpy() class IdentityRNN(nn.Module): def __init__(self, in_shape, out_shape): super(IdentityRNN, self).__init__() assert(in_shape == out_shape) self.identity = torch.nn.Identity() def forward(self, x, h): return self.identity(x), h
11,332
Python
35.092357
176
0.607395
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_torch/sac_agent.py
from rl_games.algos_torch import torch_ext from rl_games.algos_torch.running_mean_std import RunningMeanStd from rl_games.common import vecenv from rl_games.common import schedulers from rl_games.common import experience from torch.utils.tensorboard import SummaryWriter from datetime import datetime from torch import optim import torch from torch import nn import torch.nn.functional as F import numpy as np import time import os class SACAgent: def __init__(self, base_name, config): print(config) # TODO: Get obs shape and self.network self.base_init(base_name, config) self.num_seed_steps = config["num_seed_steps"] self.gamma = config["gamma"] self.critic_tau = config["critic_tau"] self.batch_size = config["batch_size"] self.init_alpha = config["init_alpha"] self.learnable_temperature = config["learnable_temperature"] self.replay_buffer_size = config["replay_buffer_size"] self.num_steps_per_episode = config.get("num_steps_per_episode", 1) self.normalize_input = config.get("normalize_input", False) self.max_env_steps = config.get("max_env_steps", 1000) # temporary, in future we will use other approach print(self.batch_size, self.num_actors, self.num_agents) self.num_frames_per_epoch = self.num_actors * self.num_steps_per_episode self.log_alpha = torch.tensor(np.log(self.init_alpha)).float().to(self.sac_device) self.log_alpha.requires_grad = True action_space = self.env_info['action_space'] self.actions_num = action_space.shape[0] self.action_range = [ float(self.env_info['action_space'].low.min()), float(self.env_info['action_space'].high.max()) ] obs_shape = torch_ext.shape_whc_to_cwh(self.obs_shape) net_config = { 'obs_dim': self.env_info["observation_space"].shape[0], 'action_dim': self.env_info["action_space"].shape[0], 'actions_num' : self.actions_num, 'input_shape' : obs_shape } self.model = self.network.build(net_config) self.model.to(self.sac_device) print("Number of Agents", self.num_actors, "Batch Size", self.batch_size) self.actor_optimizer = torch.optim.Adam(self.model.sac_network.actor.parameters(), lr=self.config['actor_lr'], betas=self.config.get("actor_betas", [0.9, 0.999])) self.critic_optimizer = torch.optim.Adam(self.model.sac_network.critic.parameters(), lr=self.config["critic_lr"], betas=self.config.get("critic_betas", [0.9, 0.999])) self.log_alpha_optimizer = torch.optim.Adam([self.log_alpha], lr=self.config["alpha_lr"], betas=self.config.get("alphas_betas", [0.9, 0.999])) self.replay_buffer = experience.VectorizedReplayBuffer(self.env_info['observation_space'].shape, self.env_info['action_space'].shape, self.replay_buffer_size, self.sac_device) self.target_entropy_coef = config.get("target_entropy_coef", 0.5) self.target_entropy = self.target_entropy_coef * -self.env_info['action_space'].shape[0] print("Target entropy", self.target_entropy) self.step = 0 self.algo_observer = config['features']['observer'] # TODO: Is there a better way to get the maximum number of episodes? self.max_episodes = torch.ones(self.num_actors, device=self.sac_device)*self.num_steps_per_episode # self.episode_lengths = np.zeros(self.num_actors, dtype=int) if self.normalize_input: self.running_mean_std = RunningMeanStd(obs_shape).to(self.sac_device) def base_init(self, base_name, config): self.config = config self.env_config = config.get('env_config', {}) self.num_actors = config.get('num_actors', 1) self.env_name = config['env_name'] print("Env name:", self.env_name) self.env_info = config.get('env_info') if self.env_info is None: self.vec_env = vecenv.create_vec_env(self.env_name, self.num_actors, **self.env_config) self.env_info = self.vec_env.get_env_info() self.sac_device = config.get('device', 'cuda:0') #temporary: self.ppo_device = self.sac_device print('Env info:') print(self.env_info) self.rewards_shaper = config['reward_shaper'] self.observation_space = self.env_info['observation_space'] self.weight_decay = config.get('weight_decay', 0.0) #self.use_action_masks = config.get('use_action_masks', False) self.is_train = config.get('is_train', True) self.c_loss = nn.MSELoss() # self.c2_loss = nn.SmoothL1Loss() self.save_best_after = config.get('save_best_after', 500) self.print_stats = config.get('print_stats', True) self.rnn_states = None self.name = base_name self.max_epochs = self.config.get('max_epochs', 1e6) self.network = config['network'] self.rewards_shaper = config['reward_shaper'] self.num_agents = self.env_info.get('agents', 1) self.obs_shape = self.observation_space.shape self.games_to_track = self.config.get('games_to_track', 100) self.game_rewards = torch_ext.AverageMeter(1, self.games_to_track).to(self.sac_device) self.game_lengths = torch_ext.AverageMeter(1, self.games_to_track).to(self.sac_device) self.obs = None self.min_alpha = torch.tensor(np.log(1)).float().to(self.sac_device) self.frame = 0 self.update_time = 0 self.last_mean_rewards = -100500 self.play_time = 0 self.epoch_num = 0 # self.writer = SummaryWriter('runs/' + config['name'] + datetime.now().strftime("_%d-%H-%M-%S")) # print("Run Directory:", config['name'] + datetime.now().strftime("_%d-%H-%M-%S")) self.experiment_dir = config.get('logdir', './') self.nn_dir = os.path.join(self.experiment_dir, 'nn') self.summaries_dir = os.path.join(self.experiment_dir, 'runs') os.makedirs(self.experiment_dir, exist_ok=True) os.makedirs(self.nn_dir, exist_ok=True) os.makedirs(self.summaries_dir, exist_ok=True) self.writer = SummaryWriter(self.summaries_dir) print("Run Directory:", self.summaries_dir) self.is_tensor_obses = None self.is_rnn = False self.last_rnn_indices = None self.last_state_indices = None def init_tensors(self): if self.observation_space.dtype == np.uint8: torch_dtype = torch.uint8 else: torch_dtype = torch.float32 batch_size = self.num_agents * self.num_actors self.current_rewards = torch.zeros(batch_size, dtype=torch.float32, device=self.sac_device) self.current_lengths = torch.zeros(batch_size, dtype=torch.long, device=self.sac_device) self.dones = torch.zeros((batch_size,), dtype=torch.uint8, device=self.sac_device) @property def alpha(self): return self.log_alpha.exp() @property def device(self): return self.sac_device def get_full_state_weights(self): state = self.get_weights() state['steps'] = self.step state['actor_optimizer'] = self.actor_optimizer.state_dict() state['critic_optimizer'] = self.critic_optimizer.state_dict() state['log_alpha_optimizer'] = self.log_alpha_optimizer.state_dict() return state def get_weights(self): state = {'actor': self.model.sac_network.actor.state_dict(), 'critic': self.model.sac_network.critic.state_dict(), 'critic_target': self.model.sac_network.critic_target.state_dict()} return state def save(self, fn): state = self.get_full_state_weights() torch_ext.save_checkpoint(fn, state) def set_weights(self, weights): self.model.sac_network.actor.load_state_dict(weights['actor']) self.model.sac_network.critic.load_state_dict(weights['critic']) self.model.sac_network.critic_target.load_state_dict(weights['critic_target']) if self.normalize_input: self.running_mean_std.load_state_dict(weights['running_mean_std']) def set_full_state_weights(self, weights): self.set_weights(weights) self.step = weights['step'] self.actor_optimizer.load_state_dict(weights['actor_optimizer']) self.critic_optimizer.load_state_dict(weights['critic_optimizer']) self.log_alpha_optimizer.load_state_dict(weights['log_alpha_optimizer']) def restore(self, fn): checkpoint = torch_ext.load_checkpoint(fn) self.set_full_state_weights(checkpoint) def get_masked_action_values(self, obs, action_masks): assert False def set_eval(self): self.model.eval() if self.normalize_input: self.running_mean_std.eval() def set_train(self): self.model.train() if self.normalize_input: self.running_mean_std.train() def update_critic(self, obs, action, reward, next_obs, not_done, step): with torch.no_grad(): dist = self.model.actor(next_obs) next_action = dist.rsample() log_prob = dist.log_prob(next_action).sum(-1, keepdim=True) target_Q1, target_Q2 = self.model.critic_target(next_obs, next_action) target_V = torch.min(target_Q1, target_Q2) - self.alpha * log_prob target_Q = reward + (not_done * self.gamma * target_V) target_Q = target_Q.detach() # get current Q estimates current_Q1, current_Q2 = self.model.critic(obs, action) critic1_loss = self.c_loss(current_Q1, target_Q) critic2_loss = self.c_loss(current_Q2, target_Q) critic_loss = critic1_loss + critic2_loss self.critic_optimizer.zero_grad(set_to_none=True) critic_loss.backward() self.critic_optimizer.step() return critic_loss.detach(), critic1_loss.detach(), critic2_loss.detach() def update_actor_and_alpha(self, obs, step): for p in self.model.sac_network.critic.parameters(): p.requires_grad = False dist = self.model.actor(obs) action = dist.rsample() log_prob = dist.log_prob(action).sum(-1, keepdim=True) entropy = dist.entropy().sum(-1, keepdim=True).mean() actor_Q1, actor_Q2 = self.model.critic(obs, action) actor_Q = torch.min(actor_Q1, actor_Q2) actor_loss = (torch.max(self.alpha.detach(), self.min_alpha) * log_prob - actor_Q) actor_loss = actor_loss.mean() self.actor_optimizer.zero_grad(set_to_none=True) actor_loss.backward() self.actor_optimizer.step() for p in self.model.sac_network.critic.parameters(): p.requires_grad = True if self.learnable_temperature: alpha_loss = (self.alpha * (-log_prob - self.target_entropy).detach()).mean() self.log_alpha_optimizer.zero_grad(set_to_none=True) alpha_loss.backward() self.log_alpha_optimizer.step() else: alpha_loss = None return actor_loss.detach(), entropy.detach(), self.alpha.detach(), alpha_loss # TODO: maybe not self.alpha def soft_update_params(self, net, target_net, tau): for param, target_param in zip(net.parameters(), target_net.parameters()): target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data) def update(self, step): obs, action, reward, next_obs, done = self.replay_buffer.sample(self.batch_size) not_done = ~done obs = self.preproc_obs(obs) next_obs = self.preproc_obs(next_obs) critic_loss, critic1_loss, critic2_loss = self.update_critic(obs, action, reward, next_obs, not_done, step) actor_loss, entropy, alpha, alpha_loss = self.update_actor_and_alpha(obs, step) actor_loss_info = actor_loss, entropy, alpha, alpha_loss self.soft_update_params(self.model.sac_network.critic, self.model.sac_network.critic_target, self.critic_tau) return actor_loss_info, critic1_loss, critic2_loss def preproc_obs(self, obs): if isinstance(obs, dict): obs = obs['obs'] if self.normalize_input: obs = self.running_mean_std(obs) return obs def env_step(self, actions): obs, rewards, dones, infos = self.vec_env.step(actions) # (obs_space) -> (n, obs_space) self.step += self.num_actors if self.is_tensor_obses: return obs, rewards, dones, infos else: return torch.from_numpy(obs).to(self.sac_device), torch.from_numpy(rewards).to(self.sac_device), torch.from_numpy(dones).to(self.sac_device), infos def env_reset(self): with torch.no_grad(): obs = self.vec_env.reset() if self.is_tensor_obses is None: self.is_tensor_obses = torch.is_tensor(obs) print("Observations are tensors:", self.is_tensor_obses) if self.is_tensor_obses: return obs.to(self.sac_device) else: return torch.from_numpy(obs).to(self.sac_device) def act(self, obs, action_dim, sample=False): obs = self.preproc_obs(obs) dist = self.model.actor(obs) actions = dist.sample() if sample else dist.mean actions = actions.clamp(*self.action_range) assert actions.ndim == 2 return actions def extract_actor_stats(self, actor_losses, entropies, alphas, alpha_losses, actor_loss_info): actor_loss, entropy, alpha, alpha_loss = actor_loss_info actor_losses.append(actor_loss) entropies.append(entropy) if alpha_losses is not None: alphas.append(alpha) alpha_losses.append(alpha_loss) def play_steps(self, random_exploration=False): total_time_start = time.time() total_update_time = 0 total_time = 0 step_time = 0.0 actor_losses = [] entropies = [] alphas = [] alpha_losses = [] critic1_losses = [] critic2_losses = [] obs = self.obs for _ in range(self.num_steps_per_episode): self.set_eval() if random_exploration: action = torch.rand((self.num_actors, *self.env_info["action_space"].shape), device=self.sac_device) * 2 - 1 else: with torch.no_grad(): action = self.act(obs.float(), self.env_info["action_space"].shape, sample=True) step_start = time.time() with torch.no_grad(): next_obs, rewards, dones, infos = self.env_step(action) step_end = time.time() self.current_rewards += rewards self.current_lengths += 1 total_time += step_end - step_start step_time += (step_end - step_start) all_done_indices = dones.nonzero(as_tuple=False) done_indices = all_done_indices[::self.num_agents] self.game_rewards.update(self.current_rewards[done_indices]) self.game_lengths.update(self.current_lengths[done_indices]) not_dones = 1.0 - dones.float() self.algo_observer.process_infos(infos, done_indices) no_timeouts = self.current_lengths != self.max_env_steps dones = dones * no_timeouts self.current_rewards = self.current_rewards * not_dones self.current_lengths = self.current_lengths * not_dones if isinstance(obs, dict): obs = obs['obs'] if isinstance(next_obs, dict): next_obs = next_obs['obs'] rewards = self.rewards_shaper(rewards) #if torch.min(obs) < -150 or torch.max(obs) > 150: # print('ATATATA') #else: self.replay_buffer.add(obs, action, torch.unsqueeze(rewards, 1), next_obs, torch.unsqueeze(dones, 1)) self.obs = obs = next_obs.clone() if not random_exploration: self.set_train() update_time_start = time.time() actor_loss_info, critic1_loss, critic2_loss = self.update(self.epoch_num) update_time_end = time.time() update_time = update_time_end - update_time_start self.extract_actor_stats(actor_losses, entropies, alphas, alpha_losses, actor_loss_info) critic1_losses.append(critic1_loss) critic2_losses.append(critic2_loss) else: update_time = 0 total_update_time += update_time total_time_end = time.time() total_time = total_time_end - total_time_start play_time = total_time - total_update_time return step_time, play_time, total_update_time, total_time, actor_losses, entropies, alphas, alpha_losses, critic1_losses, critic2_losses def train_epoch(self): if self.epoch_num < self.num_seed_steps: step_time, play_time, total_update_time, total_time, actor_losses, entropies, alphas, alpha_losses, critic1_losses, critic2_losses = self.play_steps(random_exploration=True) else: step_time, play_time, total_update_time, total_time, actor_losses, entropies, alphas, alpha_losses, critic1_losses, critic2_losses = self.play_steps(random_exploration=False) return step_time, play_time, total_update_time, total_time, actor_losses, entropies, alphas, alpha_losses, critic1_losses, critic2_losses def train(self): self.init_tensors() self.algo_observer.after_init(self) self.last_mean_rewards = -100500 total_time = 0 # rep_count = 0 self.frame = 0 self.obs = self.env_reset() while True: self.epoch_num += 1 step_time, play_time, update_time, epoch_total_time, actor_losses, entropies, alphas, alpha_losses, critic1_losses, critic2_losses = self.train_epoch() total_time += epoch_total_time scaled_time = epoch_total_time scaled_play_time = play_time curr_frames = self.num_frames_per_epoch self.frame += curr_frames frame = self.frame #TODO: Fix frame # print(frame) self.writer.add_scalar('performance/step_inference_rl_update_fps', curr_frames / scaled_time, frame) self.writer.add_scalar('performance/step_inference_fps', curr_frames / scaled_play_time, frame) self.writer.add_scalar('performance/step_fps', curr_frames / step_time, frame) self.writer.add_scalar('performance/rl_update_time', update_time, frame) self.writer.add_scalar('performance/step_inference_time', play_time, frame) self.writer.add_scalar('performance/step_time', step_time, frame) if self.epoch_num >= self.num_seed_steps: self.writer.add_scalar('losses/a_loss', torch_ext.mean_list(actor_losses).item(), frame) self.writer.add_scalar('losses/c1_loss', torch_ext.mean_list(critic1_losses).item(), frame) self.writer.add_scalar('losses/c2_loss', torch_ext.mean_list(critic2_losses).item(), frame) self.writer.add_scalar('losses/entropy', torch_ext.mean_list(entropies).item(), frame) if alpha_losses[0] is not None: self.writer.add_scalar('losses/alpha_loss', torch_ext.mean_list(alpha_losses).item(), frame) self.writer.add_scalar('info/alpha', torch_ext.mean_list(alphas).item(), frame) self.writer.add_scalar('info/epochs', self.epoch_num, frame) self.algo_observer.after_print_stats(frame, self.epoch_num, total_time) mean_rewards = 0 mean_lengths = 0 if self.game_rewards.current_size > 0: mean_rewards = self.game_rewards.get_mean() mean_lengths = self.game_lengths.get_mean() self.writer.add_scalar('rewards/step', mean_rewards, frame) self.writer.add_scalar('rewards/iter', mean_rewards, self.epoch_num) self.writer.add_scalar('rewards/time', mean_rewards, total_time) self.writer.add_scalar('episode_lengths/step', mean_lengths, frame) # self.writer.add_scalar('episode_lengths/iter', mean_lengths, epoch_num) self.writer.add_scalar('episode_lengths/time', mean_lengths, total_time) if mean_rewards > self.last_mean_rewards and self.epoch_num >= self.save_best_after: print('saving next best rewards: ', mean_rewards) self.last_mean_rewards = mean_rewards # self.save("./nn/" + self.config['name']) self.save(os.path.join(self.nn_dir, self.config['name'])) # if self.last_mean_rewards > self.config.get('score_to_win', float('inf')): # print('Network won!') # self.save("./nn/" + self.config['name'] + 'ep=' + str(self.epoch_num) + 'rew=' + str(mean_rewards)) # return self.last_mean_rewards, self.epoch_num if self.epoch_num > self.max_epochs: # self.save("./nn/" + 'last_' + self.config['name'] + 'ep=' + str(self.epoch_num) + 'rew=' + str(mean_rewards)) self.save(os.path.join(self.nn_dir, 'last_' + self.config['name'] + 'ep=' + str(self.epoch_num) + 'rew=' + str(mean_rewards))) print('MAX EPOCHS NUM!') return self.last_mean_rewards, self.epoch_num update_time = 0 if self.print_stats: fps_step = curr_frames / scaled_play_time fps_total = curr_frames / scaled_time print(f'epoch: {self.epoch_num} fps step: {fps_step:.1f} fps total: {fps_total:.1f} reward: {mean_rewards:.3f} episode len: {mean_lengths:.3f}')
22,630
Python
41.943074
186
0.595095
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_torch/d2rl.py
import torch class D2RLNet(torch.nn.Module): def __init__(self, input_size, units, activations, norm_func_name = None): torch.nn.Module.__init__(self) self.activations = torch.nn.ModuleList(activations) self.linears = torch.nn.ModuleList([]) self.norm_layers = torch.nn.ModuleList([]) self.num_layers = len(units) last_size = input_size for i in range(self.num_layers): self.linears.append(torch.nn.Linear(last_size, units[i])) last_size = units[i] + input_size if norm_func_name == 'layer_norm': self.norm_layers.append(torch.nn.LayerNorm(units[i])) elif norm_func_name == 'batch_norm': self.norm_layers.append(torch.nn.BatchNorm1d(units[i])) else: self.norm_layers.append(torch.nn.Identity()) def forward(self, input): x = self.linears[0](input) x = self.activations[0](x) x = self.norm_layers[0](x) for i in range(1,self.num_layers): x = torch.cat([x,input], dim=1) x = self.linears[i](x) x = self.norm_layers[i](x) x = self.activations[i](x) return x
1,259
Python
37.181817
71
0.544083
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_torch/players.py
from rl_games.common.player import BasePlayer from rl_games.algos_torch import torch_ext from rl_games.algos_torch.running_mean_std import RunningMeanStd from rl_games.common.tr_helpers import unsqueeze_obs import gym import torch from torch import nn import numpy as np def rescale_actions(low, high, action): d = (high - low) / 2.0 m = (high + low) / 2.0 scaled_action = action * d + m return scaled_action class PpoPlayerContinuous(BasePlayer): def __init__(self, config): BasePlayer.__init__(self, config) self.network = config['network'] self.actions_num = self.action_space.shape[0] self.actions_low = torch.from_numpy(self.action_space.low.copy()).float().to(self.device) self.actions_high = torch.from_numpy(self.action_space.high.copy()).float().to(self.device) self.mask = [False] self.normalize_input = self.config['normalize_input'] obs_shape = self.obs_shape config = { 'actions_num' : self.actions_num, 'input_shape' : obs_shape, 'num_seqs' : self.num_agents } self.model = self.network.build(config) self.model.to(self.device) self.model.eval() self.is_rnn = self.model.is_rnn() if self.normalize_input: self.running_mean_std = RunningMeanStd(obs_shape).to(self.device) self.running_mean_std.eval() def get_action(self, obs, is_determenistic = False): if self.has_batch_dimension == False: obs = unsqueeze_obs(obs) obs = self._preproc_obs(obs) input_dict = { 'is_train': False, 'prev_actions': None, 'obs' : obs, 'rnn_states' : self.states } with torch.no_grad(): res_dict = self.model(input_dict) mu = res_dict['mus'] action = res_dict['actions'] self.states = res_dict['rnn_states'] if is_determenistic: current_action = mu else: current_action = action current_action = torch.squeeze(current_action.detach()) return rescale_actions(self.actions_low, self.actions_high, torch.clamp(current_action, -1.0, 1.0)) def restore(self, fn): checkpoint = torch_ext.load_checkpoint(fn) self.model.load_state_dict(checkpoint['model']) if self.normalize_input: self.running_mean_std.load_state_dict(checkpoint['running_mean_std']) def reset(self): self.init_rnn() class PpoPlayerDiscrete(BasePlayer): def __init__(self, config): BasePlayer.__init__(self, config) self.network = config['network'] if type(self.action_space) is gym.spaces.Discrete: self.actions_num = self.action_space.n self.is_multi_discrete = False if type(self.action_space) is gym.spaces.Tuple: self.actions_num = [action.n for action in self.action_space] self.is_multi_discrete = True self.mask = [False] self.normalize_input = self.config['normalize_input'] obs_shape = self.obs_shape config = { 'actions_num' : self.actions_num, 'input_shape' : obs_shape, 'num_seqs' : self.num_agents, 'value_size': self.value_size } self.model = self.network.build(config) self.model.to(self.device) self.model.eval() self.is_rnn = self.model.is_rnn() if self.normalize_input: self.running_mean_std = RunningMeanStd(obs_shape).to(self.device) self.running_mean_std.eval() def get_masked_action(self, obs, action_masks, is_determenistic = True): if self.has_batch_dimension == False: obs = unsqueeze_obs(obs) obs = self._preproc_obs(obs) action_masks = torch.Tensor(action_masks).to(self.device) input_dict = { 'is_train': False, 'prev_actions': None, 'obs' : obs, 'action_masks' : action_masks, 'rnn_states' : self.states } self.model.eval() with torch.no_grad(): neglogp, value, action, logits, self.states = self.model(input_dict) logits = res_dict['logits'] action = res_dict['actions'] self.states = res_dict['rnn_states'] if self.is_multi_discrete: if is_determenistic: action = [torch.argmax(logit.detach(), axis=-1).squeeze() for logit in logits] return torch.stack(action,dim=-1) else: return action.squeeze().detach() else: if is_determenistic: return torch.argmax(logits.detach(), axis=-1).squeeze() else: return action.squeeze().detach() def get_action(self, obs, is_determenistic = False): if self.has_batch_dimension == False: obs = unsqueeze_obs(obs) obs = self._preproc_obs(obs) self.model.eval() input_dict = { 'is_train': False, 'prev_actions': None, 'obs' : obs, 'rnn_states' : self.states } with torch.no_grad(): res_dict = self.model(input_dict) logits = res_dict['logits'] action = res_dict['actions'] self.states = res_dict['rnn_states'] if self.is_multi_discrete: if is_determenistic: action = [torch.argmax(logit.detach(), axis=1).squeeze() for logit in logits] return torch.stack(action,dim=-1) else: return action.squeeze().detach() else: if is_determenistic: return torch.argmax(logits.detach(), axis=-1).squeeze() else: return action.squeeze().detach() def restore(self, fn): checkpoint = torch_ext.load_checkpoint(fn) self.model.load_state_dict(checkpoint['model']) if self.normalize_input: self.running_mean_std.load_state_dict(checkpoint['running_mean_std']) def reset(self): self.init_rnn() class SACPlayer(BasePlayer): def __init__(self, config): BasePlayer.__init__(self, config) self.network = config['network'] self.actions_num = self.action_space.shape[0] self.action_range = [ float(self.env_info['action_space'].low.min()), float(self.env_info['action_space'].high.max()) ] obs_shape = torch_ext.shape_whc_to_cwh(self.state_shape) self.normalize_input = False config = { 'obs_dim': self.env_info["observation_space"].shape[0], 'action_dim': self.env_info["action_space"].shape[0], 'actions_num' : self.actions_num, 'input_shape' : obs_shape } self.model = self.network.build(config) self.model.to(self.device) self.model.eval() self.is_rnn = self.model.is_rnn() # if self.normalize_input: # self.running_mean_std = RunningMeanStd(obs_shape).to(self.device) # self.running_mean_std.eval() def restore(self, fn): checkpoint = torch_ext.load_checkpoint(fn) self.model.sac_network.actor.load_state_dict(checkpoint['actor']) self.model.sac_network.critic.load_state_dict(checkpoint['critic']) self.model.sac_network.critic_target.load_state_dict(checkpoint['critic_target']) if self.normalize_input: self.running_mean_std.load_state_dict(checkpoint['running_mean_std']) def get_action(self, obs, sample=False): dist = self.model.actor(obs) actions = dist.sample() if sample else dist.mean actions = actions.clamp(*self.action_range).to(self.device) assert actions.ndim == 2 return actions def reset(self): pass
7,933
Python
36.074766
108
0.576831
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_torch/self_play_manager.py
import numpy as np class SelfPlayManager: def __init__(self, config, writter): self.config = config self.writter = writter self.update_score = self.config['update_score'] self.games_to_check = self.config['games_to_check'] self.check_scores = self.config.get('check_scores', False) self.env_update_num = self.config.get('env_update_num', 1) self.env_indexes = np.arange(start=0, stop=self.env_update_num) self.updates_num = 0 def update(self, algo): self.updates_num += 1 if self.check_scores: data = algo.game_scores else: data = algo.game_rewards if len(data) >= self.games_to_check: mean_scores = data.get_mean() mean_rewards = algo.game_rewards.get_mean() if mean_scores > self.update_score: print('Mean scores: ', mean_scores, ' mean rewards: ', mean_rewards, ' updating weights') algo.clear_stats() self.writter.add_scalar('selfplay/iters_update_weigths', self.updates_num, algo.frame) algo.vec_env.set_weights(self.env_indexes, algo.get_weights()) self.env_indexes = (self.env_indexes + 1) % (algo.num_actors) self.updates_num = 0
1,332
Python
40.656249
105
0.572072
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_torch/sac_helper.py
# from rl_games.algos_torch.network_builder import NetworkBuilder from torch import distributions as pyd import torch import torch.nn as nn import math import torch.nn.functional as F import numpy as np class TanhTransform(pyd.transforms.Transform): domain = pyd.constraints.real codomain = pyd.constraints.interval(-1.0, 1.0) bijective = True sign = +1 def __init__(self, cache_size=1): super().__init__(cache_size=cache_size) @staticmethod def atanh(x): return 0.5 * (x.log1p() - (-x).log1p()) def __eq__(self, other): return isinstance(other, TanhTransform) def _call(self, x): return x.tanh() def _inverse(self, y): # We do not clamp to the boundary here as it may degrade the performance of certain algorithms. # one should use `cache_size=1` instead return self.atanh(y) def log_abs_det_jacobian(self, x, y): # We use a formula that is more numerically stable, see details in the following link # https://github.com/tensorflow/probability/commit/ef6bb176e0ebd1cf6e25c6b5cecdd2428c22963f#diff-e120f70e92e6741bca649f04fcd907b7 return 2. * (math.log(2.) - x - F.softplus(-2. * x)) class SquashedNormal(pyd.transformed_distribution.TransformedDistribution): def __init__(self, loc, scale): self.loc = loc self.scale = scale self.base_dist = pyd.Normal(loc, scale) transforms = [TanhTransform()] super().__init__(self.base_dist, transforms) @property def mean(self): mu = self.loc for tr in self.transforms: mu = tr(mu) return mu def entropy(self): return self.base_dist.entropy()
1,720
Python
28.169491
137
0.647093
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_torch/a2c_discrete.py
from rl_games.common import a2c_common from rl_games.algos_torch import torch_ext from rl_games.algos_torch.running_mean_std import RunningMeanStd, RunningMeanStdObs from rl_games.algos_torch import central_value from rl_games.common import common_losses from rl_games.common import datasets from rl_games.algos_torch import ppg_aux from torch import optim import torch from torch import nn import numpy as np import gym class DiscreteA2CAgent(a2c_common.DiscreteA2CBase): def __init__(self, base_name, config): a2c_common.DiscreteA2CBase.__init__(self, base_name, config) obs_shape = self.obs_shape config = { 'actions_num' : self.actions_num, 'input_shape' : obs_shape, 'num_seqs' : self.num_actors * self.num_agents, 'value_size': self.env_info.get('value_size',1) } self.model = self.network.build(config) self.model.to(self.ppo_device) self.init_rnn_from_model(self.model) self.last_lr = float(self.last_lr) self.optimizer = optim.Adam(self.model.parameters(), float(self.last_lr), eps=1e-08, weight_decay=self.weight_decay) if self.normalize_input: if isinstance(self.observation_space, gym.spaces.Dict): self.running_mean_std = RunningMeanStdObs(obs_shape).to(self.ppo_device) else: self.running_mean_std = RunningMeanStd(obs_shape).to(self.ppo_device) if self.has_central_value: cv_config = { 'state_shape' : self.state_shape, 'value_size' : self.value_size, 'ppo_device' : self.ppo_device, 'num_agents' : self.num_agents, 'num_steps' : self.horizon_length, 'num_actors' : self.num_actors, 'num_actions' : self.actions_num, 'seq_len' : self.seq_len, 'model' : self.central_value_config['network'], 'config' : self.central_value_config, 'writter' : self.writer, 'max_epochs' : self.max_epochs, 'multi_gpu' : self.multi_gpu } self.central_value_net = central_value.CentralValueTrain(**cv_config).to(self.ppo_device) self.use_experimental_cv = self.config.get('use_experimental_cv', False) self.dataset = datasets.PPODataset(self.batch_size, self.minibatch_size, self.is_discrete, self.is_rnn, self.ppo_device, self.seq_len) if 'phasic_policy_gradients' in self.config: self.has_phasic_policy_gradients = True self.ppg_aux_loss = ppg_aux.PPGAux(self, self.config['phasic_policy_gradients']) self.has_value_loss = (self.has_central_value \ and self.use_experimental_cv) \ or not self.has_phasic_policy_gradients self.algo_observer.after_init(self) def update_epoch(self): self.epoch_num += 1 return self.epoch_num def save(self, fn): state = self.get_full_state_weights() torch_ext.save_checkpoint(fn, state) def restore(self, fn): checkpoint = torch_ext.load_checkpoint(fn) self.set_full_state_weights(checkpoint) def get_masked_action_values(self, obs, action_masks): processed_obs = self._preproc_obs(obs['obs']) action_masks = torch.BoolTensor(action_masks).to(self.ppo_device) input_dict = { 'is_train': False, 'prev_actions': None, 'obs' : processed_obs, 'action_masks' : action_masks, 'rnn_states' : self.rnn_states } with torch.no_grad(): res_dict = self.model(input_dict) if self.has_central_value: input_dict = { 'is_train': False, 'states' : obs['states'], #'actions' : action, } value = self.get_central_value(input_dict) res_dict['values'] = value if self.normalize_value: value = self.value_mean_std(value, True) if self.is_multi_discrete: action_masks = torch.cat(action_masks, dim=-1) res_dict['action_masks'] = action_masks return res_dict def train_actor_critic(self, input_dict): self.set_train() self.calc_gradients(input_dict) for param_group in self.optimizer.param_groups: param_group['lr'] = self.last_lr return self.train_result def calc_gradients(self, input_dict): value_preds_batch = input_dict['old_values'] old_action_log_probs_batch = input_dict['old_logp_actions'] advantage = input_dict['advantages'] return_batch = input_dict['returns'] actions_batch = input_dict['actions'] obs_batch = input_dict['obs'] obs_batch = self._preproc_obs(obs_batch) lr = self.last_lr kl = 1.0 lr_mul = 1.0 curr_e_clip = lr_mul * self.e_clip batch_dict = { 'is_train': True, 'prev_actions': actions_batch, 'obs' : obs_batch, } if self.use_action_masks: batch_dict['action_masks'] = input_dict['action_masks'] rnn_masks = None if self.is_rnn: rnn_masks = input_dict['rnn_masks'] batch_dict['rnn_states'] = input_dict['rnn_states'] batch_dict['seq_length'] = self.seq_len with torch.cuda.amp.autocast(enabled=self.mixed_precision): res_dict = self.model(batch_dict) action_log_probs = res_dict['prev_neglogp'] values = res_dict['values'] entropy = res_dict['entropy'] a_loss = common_losses.actor_loss(old_action_log_probs_batch, action_log_probs, advantage, self.ppo, curr_e_clip) if self.has_value_loss: c_loss = common_losses.critic_loss(value_preds_batch, values, curr_e_clip, return_batch, self.clip_value) else: c_loss = torch.zeros(1, device=self.ppo_device) losses, sum_mask = torch_ext.apply_masks([a_loss.unsqueeze(1), c_loss, entropy.unsqueeze(1)], rnn_masks) a_loss, c_loss, entropy = losses[0], losses[1], losses[2] loss = a_loss + 0.5 *c_loss * self.critic_coef - entropy * self.entropy_coef if self.multi_gpu: self.optimizer.zero_grad() else: for param in self.model.parameters(): param.grad = None self.scaler.scale(loss).backward() if self.truncate_grads: if self.multi_gpu: self.optimizer.synchronize() self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_norm) with self.optimizer.skip_synchronize(): self.scaler.step(self.optimizer) self.scaler.update() else: self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_norm) self.scaler.step(self.optimizer) self.scaler.update() else: self.scaler.step(self.optimizer) self.scaler.update() with torch.no_grad(): kl_dist = 0.5 * ((old_action_log_probs_batch - action_log_probs)**2) if self.is_rnn: kl_dist = (kl_dist * rnn_masks).sum() / rnn_masks.numel() # / sum_mask else: kl_dist = kl_dist.mean() if self.has_phasic_policy_gradients: c_loss = self.ppg_aux_loss.train_value(self,input_dict) self.train_result = (a_loss, c_loss, entropy, kl_dist,self.last_lr, lr_mul)
7,889
Python
38.848485
142
0.566865
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_torch/ppg_aux.py
from rl_games.common import tr_helpers from rl_games.algos_torch import torch_ext from rl_games.common import common_losses from rl_games.common.datasets import DatasetList import torch from torch import nn from torch import optim import copy class PPGAux: def __init__(self, algo, config): self.config = config self.writer = algo.writer self.mini_epoch = config['mini_epochs'] self.mini_batch = config['minibatch_size'] self.mixed_precision = algo.mixed_precision self.is_rnn = algo.network.is_rnn() self.kl_coef = config.get('kl_coef', 1.0) self.n_aux = config.get('n_aux', 16) self.is_continuous = True self.last_lr = config['learning_rate'] self.optimizer = optim.Adam(algo.model.parameters(), float(self.last_lr), eps=1e-08, weight_decay=algo.weight_decay) self.scaler = torch.cuda.amp.GradScaler(enabled=self.mixed_precision) self._freeze_grads(algo.model) self.value_optimizer = optim.Adam(filter(lambda p: p.requires_grad, algo.model.parameters()), float(self.last_lr), eps=1e-08, weight_decay=algo.weight_decay) self.value_scaler = torch.cuda.amp.GradScaler(enabled=self.mixed_precision) self._unfreeze_grads(algo.model) self.dataset_list = DatasetList() def _freeze_grads(self, model): for param in model.parameters(): param.requires_grad = False model.a2c_network.value.weight.requires_grad = True model.a2c_network.value.bias.requires_grad = True def _unfreeze_grads(self, model): for param in model.parameters(): param.requires_grad = True def train_value(self, algo, input_dict): value_preds_batch = input_dict['old_values'] return_batch = input_dict['returns'] obs_batch = input_dict['obs'] actions_batch = input_dict['actions'] obs_batch = algo._preproc_obs(obs_batch) batch_dict = { 'is_train': True, 'prev_actions': actions_batch, 'obs' : obs_batch, } rnn_masks = None if self.is_rnn: rnn_masks = input_dict['rnn_masks'] batch_dict['rnn_states'] = input_dict['rnn_states'] batch_dict['seq_length'] = self.seq_len with torch.cuda.amp.autocast(enabled=self.mixed_precision): res_dict = algo.model(batch_dict) values = res_dict['values'] c_loss = common_losses.critic_loss(value_preds_batch, values, algo.e_clip, return_batch, algo.clip_value) losses, sum_mask = torch_ext.apply_masks([c_loss], rnn_masks) c_loss = losses[0] loss = c_loss if algo.multi_gpu: self.value_optimizer.zero_grad() else: for param in algo.model.parameters(): param.grad = None self.value_scaler.scale(loss).backward() if algo.truncate_grads: if algo.multi_gpu: self.value_optimizer.synchronize() self.value_scaler.unscale_(self.value_optimizer) nn.utils.clip_grad_norm_(algo.model.parameters(), algo.grad_norm) with self.value_optimizer.skip_synchronize(): self.value_scaler.step(self.value_optimizer) self.value_scaler.update() else: self.value_scaler.unscale_(self.value_optimizer) nn.utils.clip_grad_norm_(algo.model.parameters(), algo.grad_norm) self.value_scaler.step(self.value_optimizer) self.value_scaler.update() else: self.value_scaler.step(self.value_optimizer) self.value_scaler.update() return loss.detach() def update(self, algo): self.dataset_list.add_dataset(algo.dataset) def train_net(self, algo): self.update(algo) if algo.epoch_num % self.n_aux != 0: return self.old_model = copy.deepcopy(algo.model) self.old_model.eval() dataset = self.dataset_list for _ in range(self.mini_epoch): for idx in range(len(dataset)): loss_c, loss_kl = self.calc_gradients(algo, dataset[idx]) avg_loss_c = loss_c / len(dataset) avg_loss_kl = loss_kl / len(dataset) if self.writer != None: self.writer.add_scalar('losses/pgg_loss_c', avg_loss_c, algo.frame) self.writer.add_scalar('losses/pgg_loss_kl', avg_loss_kl, algo.frame) self.dataset_list.clear() def calc_gradients(self, algo, input_dict): value_preds_batch = input_dict['old_values'] return_batch = input_dict['returns'] obs_batch = input_dict['obs'] actions_batch = input_dict['actions'] obs_batch = algo._preproc_obs(obs_batch) batch_dict = { 'is_train': True, 'prev_actions': actions_batch, 'obs' : obs_batch, } #if self.use_action_masks: # batch_dict['action_masks'] = input_dict['action_masks'] rnn_masks = None if self.is_rnn: rnn_masks = input_dict['rnn_masks'] batch_dict['rnn_states'] = input_dict['rnn_states'] batch_dict['seq_length'] = self.seq_len with torch.cuda.amp.autocast(enabled=self.mixed_precision): with torch.no_grad(): old_dict = self.old_model(batch_dict.copy()) res_dict = algo.model(batch_dict) values = res_dict['values'] if 'mu' in res_dict: old_mu_batch = input_dict['mu'] old_sigma_batch = input_dict['sigma'] mu = res_dict['mus'] sigma = res_dict['sigmas'] #kl_loss = torch_ext.policy_kl(mu, sigma.detach(), old_mu_batch, old_sigma_batch, False) kl_loss = torch.abs(mu - old_mu_batch) else: kl_loss = algo.model.kl(res_dict, old_dict) c_loss = common_losses.critic_loss(value_preds_batch, values, algo.e_clip, return_batch, algo.clip_value) losses, sum_mask = torch_ext.apply_masks([c_loss, kl_loss.unsqueeze(1)], rnn_masks) c_loss, kl_loss = losses[0], losses[1] loss = c_loss + kl_loss * self.kl_coef if algo.multi_gpu: self.optimizer.zero_grad() else: for param in algo.model.parameters(): param.grad = None self.scaler.scale(loss).backward() if algo.truncate_grads: if algo.multi_gpu: self.optimizer.synchronize() self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(algo.model.parameters(), algo.grad_norm) with self.optimizer.skip_synchronize(): self.scaler.step(self.optimizer) self.scaler.update() else: self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(algo.model.parameters(), algo.grad_norm) self.scaler.step(self.optimizer) self.scaler.update() else: self.scaler.step(self.optimizer) self.scaler.update() return c_loss, kl_loss
7,361
Python
39.010869
165
0.570439
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_torch/central_value.py
import torch from torch import nn import numpy as np from rl_games.algos_torch import torch_ext from rl_games.algos_torch.running_mean_std import RunningMeanStd from rl_games.common import common_losses from rl_games.common import datasets from rl_games.common import schedulers class CentralValueTrain(nn.Module): def __init__(self, state_shape, value_size, ppo_device, num_agents, num_steps, num_actors, num_actions, seq_len, model, config, writter, max_epochs, multi_gpu): nn.Module.__init__(self) self.ppo_device = ppo_device self.num_agents, self.num_steps, self.num_actors, self.seq_len = num_agents, num_steps, num_actors, seq_len self.num_actions = num_actions self.state_shape = state_shape self.value_size = value_size self.max_epochs = max_epochs self.multi_gpu = multi_gpu self.truncate_grads = config.get('truncate_grads', False) state_config = { 'value_size' : value_size, 'input_shape' : state_shape, 'actions_num' : num_actions, 'num_agents' : num_agents, 'num_seqs' : num_actors } self.config = config self.model = model.build('cvalue', **state_config) self.lr = float(config['learning_rate']) self.linear_lr = config.get('lr_schedule') == 'linear' if self.linear_lr: self.scheduler = schedulers.LinearScheduler(self.lr, max_steps=self.max_epochs, apply_to_entropy=False, start_entropy_coef=0) else: self.scheduler = schedulers.IdentityScheduler() self.mini_epoch = config['mini_epochs'] self.mini_batch = config['minibatch_size'] self.num_minibatches = self.num_steps * self.num_actors // self.mini_batch self.clip_value = config['clip_value'] self.normalize_input = config['normalize_input'] self.writter = writter self.weight_decay = config.get('weight_decay', 0.0) self.optimizer = torch.optim.Adam(self.model.parameters(), float(self.lr), eps=1e-08, weight_decay=self.weight_decay) self.frame = 0 self.epoch_num = 0 self.running_mean_std = None self.grad_norm = config.get('grad_norm', 1) self.truncate_grads = config.get('truncate_grads', False) self.e_clip = config.get('e_clip', 0.2) self.truncate_grad = self.config.get('truncate_grads', False) if self.normalize_input: self.running_mean_std = RunningMeanStd(state_shape) self.is_rnn = self.model.is_rnn() self.rnn_states = None self.batch_size = self.num_steps * self.num_actors if self.is_rnn: self.rnn_states = self.model.get_default_rnn_state() self.rnn_states = [s.to(self.ppo_device) for s in self.rnn_states] num_seqs = self.num_steps * self.num_actors // self.seq_len assert((self.num_steps * self.num_actors // self.num_minibatches) % self.seq_len == 0) self.mb_rnn_states = [torch.zeros((s.size()[0], num_seqs, s.size()[2]), dtype = torch.float32, device=self.ppo_device) for s in self.rnn_states] self.dataset = datasets.PPODataset(self.batch_size, self.mini_batch, True, self.is_rnn, self.ppo_device, self.seq_len) def update_lr(self, lr): if self.multi_gpu: lr_tensor = torch.tensor([lr]) self.hvd.broadcast_value(lr_tensor, 'cv_learning_rate') lr = lr_tensor.item() for param_group in self.optimizer.param_groups: param_group['lr'] = lr def get_stats_weights(self): if self.normalize_input: return self.running_mean_std.state_dict() else: return {} def set_stats_weights(self, weights): self.running_mean_std.load_state_dict(weights) def update_dataset(self, batch_dict): value_preds = batch_dict['old_values'] returns = batch_dict['returns'] actions = batch_dict['actions'] rnn_masks = batch_dict['rnn_masks'] if self.num_agents > 1: res = self.update_multiagent_tensors(value_preds, returns, actions, rnn_masks) batch_dict['old_values'] = res[0] batch_dict['returns'] = res[1] batch_dict['actions'] = res[2] if self.is_rnn: batch_dict['rnn_states'] = self.mb_rnn_states if self.num_agents > 1: rnn_masks = res[3] batch_dict['rnn_masks'] = rnn_masks self.dataset.update_values_dict(batch_dict) def _preproc_obs(self, obs_batch): if type(obs_batch) is dict: for k,v in obs_batch.items(): obs_batch[k] = self._preproc_obs(v) else: if obs_batch.dtype == torch.uint8: obs_batch = obs_batch.float() / 255.0 if self.normalize_input: obs_batch = self.running_mean_std(obs_batch) return obs_batch def pre_step_rnn(self, rnn_indices, state_indices): if self.num_agents > 1: rnn_indices = rnn_indices[::self.num_agents] shifts = rnn_indices % (self.num_steps // self.seq_len) rnn_indices = (rnn_indices - shifts) // self.num_agents + shifts state_indices = state_indices[::self.num_agents] // self.num_agents for s, mb_s in zip(self.rnn_states, self.mb_rnn_states): mb_s[:, rnn_indices, :] = s[:, state_indices, :] def post_step_rnn(self, all_done_indices): all_done_indices = all_done_indices[::self.num_agents] // self.num_agents for s in self.rnn_states: s[:,all_done_indices,:] = s[:,all_done_indices,:] * 0.0 def forward(self, input_dict): value, rnn_states = self.model(input_dict) return value, rnn_states def get_value(self, input_dict): self.eval() obs_batch = input_dict['states'] actions = input_dict.get('actions', None) obs_batch = self._preproc_obs(obs_batch) value, self.rnn_states = self.forward({'obs' : obs_batch, 'actions': actions, 'rnn_states': self.rnn_states}) if self.num_agents > 1: value = value.repeat(1, self.num_agents) value = value.view(value.size()[0]*self.num_agents, -1) return value def train_critic(self, input_dict): self.train() loss = self.calc_gradients(input_dict) return loss.item() def update_multiagent_tensors(self, value_preds, returns, actions, rnn_masks): batch_size = self.batch_size ma_batch_size = self.num_actors * self.num_agents * self.num_steps value_preds = value_preds.view(self.num_actors, self.num_agents, self.num_steps, self.value_size).transpose(0,1) returns = returns.view(self.num_actors, self.num_agents, self.num_steps, self.value_size).transpose(0,1) value_preds = value_preds.contiguous().view(ma_batch_size, self.value_size)[:batch_size] returns = returns.contiguous().view(ma_batch_size, self.value_size)[:batch_size] if self.is_rnn: rnn_masks = rnn_masks.view(self.num_actors, self.num_agents, self.num_steps).transpose(0,1) rnn_masks = rnn_masks.flatten(0)[:batch_size] return value_preds, returns, actions, rnn_masks def train_net(self): self.train() loss = 0 for _ in range(self.mini_epoch): for idx in range(len(self.dataset)): loss += self.train_critic(self.dataset[idx]) avg_loss = loss / (self.mini_epoch * self.num_minibatches) self.epoch_num += 1 self.lr, _ = self.scheduler.update(self.lr, 0, self.epoch_num, 0, 0) self.update_lr(self.lr) self.frame += self.batch_size if self.writter != None: self.writter.add_scalar('losses/cval_loss', avg_loss, self.frame) self.writter.add_scalar('info/cval_lr', self.lr, self.frame) return avg_loss def calc_gradients(self, batch): obs_batch = self._preproc_obs(batch['obs']) value_preds_batch = batch['old_values'] returns_batch = batch['returns'] actions_batch = batch['actions'] rnn_masks_batch = batch.get('rnn_masks') batch_dict = {'obs' : obs_batch, 'actions' : actions_batch, 'seq_length' : self.seq_len } if self.is_rnn: batch_dict['rnn_states'] = batch['rnn_states'] values, _ = self.forward(batch_dict) loss = common_losses.critic_loss(value_preds_batch, values, self.e_clip, returns_batch, self.clip_value) losses, _ = torch_ext.apply_masks([loss], rnn_masks_batch) loss = losses[0] if self.multi_gpu: self.optimizer.zero_grad() else: for param in self.model.parameters(): param.grad = None loss.backward() #TODO: Refactor this ugliest code of they year if self.truncate_grads: if self.multi_gpu: self.optimizer.synchronize() #self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_norm) with self.optimizer.skip_synchronize(): self.optimizer.step() else: #self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_norm) self.optimizer.step() else: self.optimizer.step() return loss
9,703
Python
41.561403
164
0.587241
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_torch/models.py
import rl_games.algos_torch.layers import numpy as np import torch.nn as nn import torch import torch.nn.functional as F import rl_games.common.divergence as divergence from rl_games.algos_torch.torch_ext import CategoricalMasked from torch.distributions import Categorical from rl_games.algos_torch.sac_helper import SquashedNormal class BaseModel(): def __init__(self): pass def is_rnn(self): return False def is_separate_critic(self): return False class ModelA2C(BaseModel): def __init__(self, network): BaseModel.__init__(self) self.network_builder = network def build(self, config): return ModelA2C.Network(self.network_builder.build('a2c', **config)) class Network(nn.Module): def __init__(self, a2c_network): nn.Module.__init__(self) self.a2c_network = a2c_network def is_rnn(self): return self.a2c_network.is_rnn() def get_default_rnn_state(self): return self.a2c_network.get_default_rnn_state() def kl(self, p_dict, q_dict): p = p_dict['logits'] q = q_dict['logits'] return divergence.d_kl_discrete(p, q) def forward(self, input_dict): is_train = input_dict.get('is_train', True) action_masks = input_dict.get('action_masks', None) prev_actions = input_dict.get('prev_actions', None) logits, value, states = self.a2c_network(input_dict) if is_train: categorical = CategoricalMasked(logits=logits, masks=action_masks) prev_neglogp = -categorical.log_prob(prev_actions) entropy = categorical.entropy() result = { 'prev_neglogp' : torch.squeeze(prev_neglogp), 'logits' : categorical.logits, 'values' : value, 'entropy' : entropy, 'rnn_states' : states } return result else: categorical = CategoricalMasked(logits=logits, masks=action_masks) selected_action = categorical.sample().long() neglogp = -categorical.log_prob(selected_action) result = { 'neglogpacs' : torch.squeeze(neglogp), 'values' : value, 'actions' : selected_action, 'logits' : categorical.logits, 'rnn_states' : states } return result class ModelA2CMultiDiscrete(BaseModel): def __init__(self, network): BaseModel.__init__(self) self.network_builder = network def build(self, config): return ModelA2CMultiDiscrete.Network(self.network_builder.build('a2c', **config)) class Network(nn.Module): def __init__(self, a2c_network): nn.Module.__init__(self) self.a2c_network = a2c_network def is_rnn(self): return self.a2c_network.is_rnn() def get_default_rnn_state(self): return self.a2c_network.get_default_rnn_state() def kl(self, p_dict, q_dict): p = p_dict['logits'] q = q_dict['logits'] return divergence.d_kl_discrete_list(p, q) def forward(self, input_dict): is_train = input_dict.get('is_train', True) action_masks = input_dict.get('action_masks', None) prev_actions = input_dict.get('prev_actions', None) logits, value, states = self.a2c_network(input_dict) if is_train: if action_masks is None: categorical = [Categorical(logits=logit) for logit in logits] else: categorical = [CategoricalMasked(logits=logit, masks=mask) for logit, mask in zip(logits, action_masks)] prev_actions = torch.split(prev_actions, 1, dim=-1) prev_neglogp = [-c.log_prob(a.squeeze()) for c,a in zip(categorical, prev_actions)] prev_neglogp = torch.stack(prev_neglogp, dim=-1).sum(dim=-1) entropy = [c.entropy() for c in categorical] entropy = torch.stack(entropy, dim=-1).sum(dim=-1) result = { 'prev_neglogp' : torch.squeeze(prev_neglogp), 'logits' : [c.logits for c in categorical], 'values' : value, 'entropy' : torch.squeeze(entropy), 'rnn_states' : states } return result else: if action_masks is None: categorical = [Categorical(logits=logit) for logit in logits] else: categorical = [CategoricalMasked(logits=logit, masks=mask) for logit, mask in zip(logits, action_masks)] selected_action = [c.sample().long() for c in categorical] neglogp = [-c.log_prob(a.squeeze()) for c,a in zip(categorical, selected_action)] selected_action = torch.stack(selected_action, dim=-1) neglogp = torch.stack(neglogp, dim=-1).sum(dim=-1) result = { 'neglogpacs' : torch.squeeze(neglogp), 'values' : value, 'actions' : selected_action, 'logits' : [c.logits for c in categorical], 'rnn_states' : states } return result class ModelA2CContinuous(BaseModel): def __init__(self, network): BaseModel.__init__(self) self.network_builder = network def build(self, config): return ModelA2CContinuous.Network(self.network_builder.build('a2c', **config)) class Network(nn.Module): def __init__(self, a2c_network): nn.Module.__init__(self) self.a2c_network = a2c_network def is_rnn(self): return self.a2c_network.is_rnn() def get_default_rnn_state(self): return self.a2c_network.get_default_rnn_state() def kl(self, p_dict, q_dict): p = p_dict['mu'], p_dict['sigma'] q = q_dict['mu'], q_dict['sigma'] return divergence.d_kl_normal(p, q) def forward(self, input_dict): is_train = input_dict.get('is_train', True) prev_actions = input_dict.get('prev_actions', None) mu, sigma, value, states = self.a2c_network(input_dict) distr = torch.distributions.Normal(mu, sigma) if is_train: entropy = distr.entropy().sum(dim=-1) prev_neglogp = -distr.log_prob(prev_actions).sum(dim=-1) result = { 'prev_neglogp' : torch.squeeze(prev_neglogp), 'value' : value, 'entropy' : entropy, 'rnn_states' : states, 'mus' : mu, 'sigmas' : sigma } return result else: selected_action = distr.sample().squeeze() neglogp = -distr.log_prob(selected_action).sum(dim=-1) result = { 'neglogpacs' : torch.squeeze(neglogp), 'values' : torch.squeeze(value), 'actions' : selected_action, 'entropy' : entropy, 'rnn_states' : states, 'mus' : mu, 'sigmas' : sigma } return result class ModelA2CContinuousLogStd(BaseModel): def __init__(self, network): BaseModel.__init__(self) self.network_builder = network def build(self, config): net = self.network_builder.build('a2c', **config) for name, _ in net.named_parameters(): print(name) return ModelA2CContinuousLogStd.Network(net) class Network(nn.Module): def __init__(self, a2c_network): nn.Module.__init__(self) self.a2c_network = a2c_network def is_rnn(self): return self.a2c_network.is_rnn() def get_default_rnn_state(self): return self.a2c_network.get_default_rnn_state() def forward(self, input_dict): is_train = input_dict.get('is_train', True) prev_actions = input_dict.get('prev_actions', None) mu, logstd, value, states = self.a2c_network(input_dict) sigma = torch.exp(logstd) distr = torch.distributions.Normal(mu, sigma) if is_train: entropy = distr.entropy().sum(dim=-1) prev_neglogp = self.neglogp(prev_actions, mu, sigma, logstd) result = { 'prev_neglogp' : torch.squeeze(prev_neglogp), 'values' : value, 'entropy' : entropy, 'rnn_states' : states, 'mus' : mu, 'sigmas' : sigma } return result else: selected_action = distr.sample() neglogp = self.neglogp(selected_action, mu, sigma, logstd) result = { 'neglogpacs' : torch.squeeze(neglogp), 'values' : value, 'actions' : selected_action, 'rnn_states' : states, 'mus' : mu, 'sigmas' : sigma } return result def neglogp(self, x, mean, std, logstd): return 0.5 * (((x - mean) / std)**2).sum(dim=-1) \ + 0.5 * np.log(2.0 * np.pi) * x.size()[-1] \ + logstd.sum(dim=-1) class ModelSACContinuous(BaseModel): def __init__(self, network): BaseModel.__init__(self) self.network_builder = network def build(self, config): return ModelSACContinuous.Network(self.network_builder.build('sac', **config)) class Network(nn.Module): def __init__(self, sac_network): nn.Module.__init__(self) self.sac_network = sac_network def critic(self, obs, action): return self.sac_network.critic(obs, action) def critic_target(self, obs, action): return self.sac_network.critic_target(obs, action) def actor(self, obs): return self.sac_network.actor(obs) def is_rnn(self): return False def forward(self, input_dict): is_train = input_dict.pop('is_train', True) mu, sigma = self.sac_network(input_dict) dist = SquashedNormal(mu, sigma) return dist
10,919
Python
36.142857
140
0.514699
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_torch/model_builder.py
from rl_games.common import object_factory import rl_games.algos_torch from rl_games.algos_torch import network_builder from rl_games.algos_torch import models NETWORK_REGISTRY = {} def register_network(name, target_class): NETWORK_REGISTRY[name] = lambda **kwargs : target_class() class ModelBuilder: def __init__(self): self.model_factory = object_factory.ObjectFactory() self.model_factory.register_builder('discrete_a2c', lambda network, **kwargs : models.ModelA2C(network)) self.model_factory.register_builder('multi_discrete_a2c', lambda network, **kwargs : models.ModelA2CMultiDiscrete(network)) self.model_factory.register_builder('continuous_a2c', lambda network, **kwargs : models.ModelA2CContinuous(network)) self.model_factory.register_builder('continuous_a2c_logstd', lambda network, **kwargs : models.ModelA2CContinuousLogStd(network)) self.model_factory.register_builder('soft_actor_critic', lambda network, **kwargs : models.ModelSACContinuous(network)) #self.model_factory.register_builder('dqn', lambda network, **kwargs : models.AtariDQN(network)) self.network_factory = object_factory.ObjectFactory() self.network_factory.set_builders(NETWORK_REGISTRY) self.network_factory.register_builder('actor_critic', lambda **kwargs : network_builder.A2CBuilder()) self.network_factory.register_builder('resnet_actor_critic', lambda **kwargs : network_builder.A2CResnetBuilder()) self.network_factory.register_builder('rnd_curiosity', lambda **kwargs : network_builder.RNDCuriosityBuilder()) self.network_factory.register_builder('soft_actor_critic', lambda **kwargs: network_builder.SACBuilder()) def load(self, params): self.model_name = params['model']['name'] self.network_name = params['network']['name'] network = self.network_factory.create(self.network_name) network.load(params['network']) model = self.model_factory.create(self.model_name, network=network) return model
2,062
Python
53.289472
137
0.723084
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_torch/moving_mean_std.py
import torch import torch.nn as nn import numpy as np ''' updates moving statistics with momentum ''' class MovingMeanStd(nn.Module): def __init__(self, insize, momentum = 0.9998, epsilon=1e-05, per_channel=False, norm_only=False): super(MovingMeanStd, self).__init__() self.insize = insize self.epsilon = epsilon self.momentum = momentum self.norm_only = norm_only self.per_channel = per_channel if per_channel: if len(self.insize) == 3: self.axis = [0,2,3] if len(self.insize) == 2: self.axis = [0,2] if len(self.insize) == 1: self.axis = [0] in_size = self.insize[0] else: self.axis = [0] in_size = insize self.register_buffer("moving_mean", torch.zeros(in_size, dtype = torch.float64)) self.register_buffer("moving_var", torch.ones(in_size, dtype = torch.float64)) def forward(self, input, unnorm=False): if self.training: mean = input.mean(self.axis) # along channel axis var = input.var(self.axis) self.moving_mean = self.moving_mean * self.momentum + mean * (1 - self.momentum) self.moving_var = self.moving_var * self.momentum + var * (1 - self.momentum) # change shape if self.per_channel: if len(self.insize) == 3: current_mean = self.moving_mean.view([1, self.insize[0], 1, 1]).expand_as(input) current_var = self.moving_var.view([1, self.insize[0], 1, 1]).expand_as(input) if len(self.insize) == 2: current_mean = self.moving_mean.view([1, self.insize[0], 1]).expand_as(input) current_var = self.moving_var.view([1, self.insize[0], 1]).expand_as(input) if len(self.insize) == 1: current_mean = self.moving_mean.view([1, self.insize[0]]).expand_as(input) current_var = self.moving_var.view([1, self.insize[0]]).expand_as(input) else: current_mean = self.moving_mean current_var = self.moving_var # get output if unnorm: y = torch.clamp(input, min=-5.0, max=5.0) y = torch.sqrt(current_var.float() + self.epsilon)*y + current_mean.float() else: y = (input - current_mean.float()) / torch.sqrt(current_var.float() + self.epsilon) y = torch.clamp(y, min=-5.0, max=5.0) return y
2,521
Python
42.482758
101
0.554145
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_torch/layers.py
import math import torch import torch.nn as nn import torch.nn.functional as F import numpy as np class NoisyLinear(nn.Linear): def __init__(self, in_features, out_features, sigma_init=0.017, bias=True): super(NoisyLinear, self).__init__(in_features, out_features, bias=bias) self.sigma_weight = nn.Parameter(torch.full((out_features, in_features), sigma_init)) self.register_buffer("epsilon_weight", torch.zeros(out_features, in_features)) if bias: self.sigma_bias = nn.Parameter(torch.full((out_features,), sigma_init)) self.register_buffer("epsilon_bias", torch.zeros(out_features)) self.reset_parameters() def reset_parameters(self): std = math.sqrt(3 / self.in_features) self.weight.data.uniform_(-std, std) self.bias.data.uniform_(-std, std) def forward(self, input): self.epsilon_weight.normal_() bias = self.bias if bias is not None: self.epsilon_bias.normal_() bias = bias + self.sigma_bias * self.epsilon_bias.data return F.linear(input, self.weight + self.sigma_weight * self.epsilon_weight.data, bias) class NoisyFactorizedLinear(nn.Linear): def __init__(self, in_features, out_features, sigma_zero=0.4, bias=True): super(NoisyFactorizedLinear, self).__init__(in_features, out_features, bias=bias) sigma_init = sigma_zero / math.sqrt(in_features) self.sigma_weight = nn.Parameter(torch.full((out_features, in_features), sigma_init)) self.register_buffer("epsilon_input", torch.zeros(1, in_features)) self.register_buffer("epsilon_output", torch.zeros(out_features, 1)) if bias: self.sigma_bias = nn.Parameter(torch.full((out_features,), sigma_init)) def forward(self, input): self.epsison_input.normal_() self.epsilon_output.normal_() func = lambda x: torch.sign(x) * torch.sqrt(torch.abs(x)) eps_in = func(self.epsilon_input.data) eps_out = func(self.epsilon_output.data) bias = self.bias if bias is not None: bias = bias + self.sigma_bias * eps_out.t() noise_v = torch.mul(eps_in, eps_out) return F.linear(input, self.weight + self.sigma_weight * noise_v, bias) class LSTMWithDones(nn.Module): def __init__(self, input_sz: int, hidden_sz: int): super().__init__() self.input_sz = input_sz self.hidden_size = hidden_sz self.weight_ih = nn.Parameter(torch.Tensor(input_sz, hidden_sz * 4)) self.weight_hh = nn.Parameter(torch.Tensor(hidden_sz, hidden_sz * 4)) self.bias = nn.Parameter(torch.Tensor(hidden_sz * 4)) self.init_weights() def init_weights(self): for p in self.parameters(): if p.data.ndimension() >= 2: nn.init.xavier_uniform_(p.data) else: nn.init.zeros_(p.data) def forward(self, x, dones, init_states): """Assumes x is of shape (batch, sequence, feature)""" bs, seq_sz, _ = x.size() hidden_seq = [] assert(init_states) h_t, c_t = init_states HS = self.hidden_size for t in range(seq_sz): d = dones[:, t] h_t = h_t * (1 - d) c_t = c_t * (1 - d) x_t = x[:, t, :] # batch the computations into a single matrix multiplication gates = x_t @ self.weight_ih + h_t @ self.weight_hh + self.bias i_t, f_t, g_t, o_t = ( torch.sigmoid(gates[:, :HS]), # input torch.sigmoid(gates[:, HS:HS*2]), # forget torch.tanh(gates[:, HS*2:HS*3]), torch.sigmoid(gates[:, HS*3:]), # output ) c_t = f_t * c_t + i_t * g_t h_t = o_t * torch.tanh(c_t) hidden_seq.append(h_t.unsqueeze(0)) hidden_seq = torch.cat(hidden_seq, dim=1) # reshape from shape (sequence, batch, feature) to (batch, sequence, feature) hidden_seq = hidden_seq.transpose(1, 0).contiguous() return hidden_seq, (h_t, c_t)
4,148
Python
39.67647
96
0.578833
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_torch/network_builder.py
from rl_games.common import object_factory from rl_games.algos_torch import torch_ext import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import math import numpy as np from rl_games.algos_torch.d2rl import D2RLNet from rl_games.algos_torch.sac_helper import SquashedNormal import ipdb def _create_initializer(func, **kwargs): return lambda v : func(v, **kwargs) class NetworkBuilder: def __init__(self, **kwargs): pass def load(self, params): pass def build(self, name, **kwargs): pass def __call__(self, name, **kwargs): return self.build(name, **kwargs) class BaseNetwork(nn.Module): def __init__(self, **kwargs): nn.Module.__init__(self, **kwargs) self.activations_factory = object_factory.ObjectFactory() self.activations_factory.register_builder('relu', lambda **kwargs : nn.ReLU(**kwargs)) self.activations_factory.register_builder('tanh', lambda **kwargs : nn.Tanh(**kwargs)) self.activations_factory.register_builder('sigmoid', lambda **kwargs : nn.Sigmoid(**kwargs)) self.activations_factory.register_builder('elu', lambda **kwargs : nn.ELU(**kwargs)) self.activations_factory.register_builder('selu', lambda **kwargs : nn.SELU(**kwargs)) self.activations_factory.register_builder('softplus', lambda **kwargs : nn.Softplus(**kwargs)) self.activations_factory.register_builder('None', lambda **kwargs : nn.Identity()) self.init_factory = object_factory.ObjectFactory() #self.init_factory.register_builder('normc_initializer', lambda **kwargs : normc_initializer(**kwargs)) self.init_factory.register_builder('const_initializer', lambda **kwargs : _create_initializer(nn.init.constant_,**kwargs)) self.init_factory.register_builder('orthogonal_initializer', lambda **kwargs : _create_initializer(nn.init.orthogonal_,**kwargs)) self.init_factory.register_builder('glorot_normal_initializer', lambda **kwargs : _create_initializer(nn.init.xavier_normal_,**kwargs)) self.init_factory.register_builder('glorot_uniform_initializer', lambda **kwargs : _create_initializer(nn.init.xavier_uniform_,**kwargs)) self.init_factory.register_builder('variance_scaling_initializer', lambda **kwargs : _create_initializer(torch_ext.variance_scaling_initializer,**kwargs)) self.init_factory.register_builder('random_uniform_initializer', lambda **kwargs : _create_initializer(nn.init.uniform_,**kwargs)) self.init_factory.register_builder('kaiming_normal', lambda **kwargs : _create_initializer(nn.init.kaiming_normal_,**kwargs)) self.init_factory.register_builder('orthogonal', lambda **kwargs : _create_initializer(nn.init.orthogonal_,**kwargs)) self.init_factory.register_builder('default', lambda **kwargs : nn.Identity() ) def is_separate_critic(self): return False def is_rnn(self): return False def get_default_rnn_state(self): return None def _calc_input_size(self, input_shape,cnn_layers=None): if cnn_layers is None: assert(len(input_shape) == 1) return input_shape[0] else: return nn.Sequential(*cnn_layers)(torch.rand(1, *(input_shape))).flatten(1).data.size(1) def _noisy_dense(self, inputs, units): return layers.NoisyFactorizedLinear(inputs, units) def _build_rnn(self, name, input, units, layers): if name == 'identity': return torch_ext.IdentityRNN(input, units) if name == 'lstm': return torch.nn.LSTM(input, units, layers, batch_first=True) if name == 'gru': return torch.nn.GRU(input, units, layers, batch_first=True) if name == 'sru': from sru import SRU return SRU(input, units, layers, dropout=0, layer_norm=False) def _build_sequential_mlp(self, input_size, units, activation, dense_func, norm_only_first_layer=False, norm_func_name = None): print('build mlp:', input_size) in_size = input_size layers = [] need_norm = True for unit in units: layers.append(dense_func(in_size, unit)) layers.append(self.activations_factory.create(activation)) if not need_norm: continue if norm_only_first_layer and norm_func_name is not None: need_norm = False if norm_func_name == 'layer_norm': layers.append(torch.nn.LayerNorm(unit)) elif norm_func_name == 'batch_norm': layers.append(torch.nn.BatchNorm1d(unit)) in_size = unit return nn.Sequential(*layers) def _build_mlp(self, input_size, units, activation, dense_func, norm_only_first_layer=False, norm_func_name = None, d2rl=False): if d2rl: act_layers = [self.activations_factory.create(activation) for i in range(len(units))] return D2RLNet(input_size, units, act_layers, norm_func_name) else: return self._build_sequential_mlp(input_size, units, activation, dense_func, norm_func_name = None,) def _build_conv(self, ctype, **kwargs): print('conv_name:', ctype) if ctype == 'conv2d': return self._build_cnn2d(**kwargs) if ctype == 'coord_conv2d': return self._build_cnn2d(conv_func=torch_ext.CoordConv2d, **kwargs) if ctype == 'conv1d': return self._build_cnn1d(**kwargs) def _build_cnn2d(self, input_shape, convs, activation, conv_func=torch.nn.Conv2d, norm_func_name=None): in_channels = input_shape[0] layers = [] for conv in convs: layers.append(conv_func(in_channels=in_channels, out_channels=conv['filters'], kernel_size=conv['kernel_size'], stride=conv['strides'], padding=conv['padding'])) conv_func=torch.nn.Conv2d act = self.activations_factory.create(activation) layers.append(act) in_channels = conv['filters'] if norm_func_name == 'layer_norm': layers.append(torch_ext.LayerNorm2d(in_channels)) elif norm_func_name == 'batch_norm': layers.append(torch.nn.BatchNorm2d(in_channels)) return nn.Sequential(*layers) def _build_cnn1d(self, input_shape, convs, activation, norm_func_name=None): print('conv1d input shape:', input_shape) in_channels = input_shape[0] layers = [] for conv in convs: layers.append(torch.nn.Conv1d(in_channels, conv['filters'], conv['kernel_size'], conv['strides'], conv['padding'])) act = self.activations_factory.create(activation) layers.append(act) in_channels = conv['filters'] if norm_func_name == 'layer_norm': layers.append(torch.nn.LayerNorm(in_channels)) elif norm_func_name == 'batch_norm': layers.append(torch.nn.BatchNorm2d(in_channels)) return nn.Sequential(*layers) class A2CBuilder(NetworkBuilder): def __init__(self, **kwargs): NetworkBuilder.__init__(self) def load(self, params): self.params = params class Network(NetworkBuilder.BaseNetwork): def __init__(self, params, **kwargs): actions_num = kwargs.pop('actions_num') input_shape = kwargs.pop('input_shape') self.value_size = kwargs.pop('value_size', 1) self.num_seqs = num_seqs = kwargs.pop('num_seqs', 1) NetworkBuilder.BaseNetwork.__init__(self) self.load(params) self.actor_cnn = nn.Sequential() self.critic_cnn = nn.Sequential() self.actor_mlp = nn.Sequential() self.critic_mlp = nn.Sequential() if self.has_cnn: input_shape = torch_ext.shape_whc_to_cwh(input_shape) cnn_args = { 'ctype' : self.cnn['type'], 'input_shape' : input_shape, 'convs' :self.cnn['convs'], 'activation' : self.cnn['activation'], 'norm_func_name' : self.normalization, } self.actor_cnn = self._build_conv(**cnn_args) if self.separate: self.critic_cnn = self._build_conv( **cnn_args) mlp_input_shape = self._calc_input_size(input_shape, self.actor_cnn) in_mlp_shape = mlp_input_shape if len(self.units) == 0: out_size = mlp_input_shape else: out_size = self.units[-1] if self.has_rnn: if not self.is_rnn_before_mlp: rnn_in_size = out_size out_size = self.rnn_units if self.rnn_concat_input: rnn_in_size += in_mlp_shape else: rnn_in_size = in_mlp_shape in_mlp_shape = self.rnn_units if self.separate: self.a_rnn = self._build_rnn(self.rnn_name, rnn_in_size, self.rnn_units, self.rnn_layers) self.c_rnn = self._build_rnn(self.rnn_name, rnn_in_size, self.rnn_units, self.rnn_layers) if self.rnn_ln: self.a_layer_norm = torch.nn.LayerNorm(self.rnn_units) self.c_layer_norm = torch.nn.LayerNorm(self.rnn_units) else: self.rnn = self._build_rnn(self.rnn_name, rnn_in_size, self.rnn_units, self.rnn_layers) if self.rnn_ln: self.layer_norm = torch.nn.LayerNorm(self.rnn_units) mlp_args = { 'input_size' : in_mlp_shape, 'units' : self.units, 'activation' : self.activation, 'norm_func_name' : self.normalization, 'dense_func' : torch.nn.Linear, 'd2rl' : self.is_d2rl, 'norm_only_first_layer' : self.norm_only_first_layer } # # ipdb.set_trace() # actor_args = { # 'input_size' : in_mlp_shape, # 'units' : [256, 256], # 'activation' : self.activation, # 'norm_func_name' : self.normalization, # 'dense_func' : torch.nn.Linear, # 'd2rl' : self.is_d2rl, # 'norm_only_first_layer' : self.norm_only_first_layer # } self.actor_mlp = self._build_mlp(**mlp_args) if self.separate: self.critic_mlp = self._build_mlp(**mlp_args) self.value = torch.nn.Linear(out_size, self.value_size) self.value_act = self.activations_factory.create(self.value_activation) if self.is_discrete: self.logits = torch.nn.Linear(out_size, actions_num) ''' for multidiscrete actions num is a tuple ''' if self.is_multi_discrete: self.logits = torch.nn.ModuleList([torch.nn.Linear(out_size, num) for num in actions_num]) if self.is_continuous: self.mu = torch.nn.Linear(out_size, actions_num) self.mu_act = self.activations_factory.create(self.space_config['mu_activation']) mu_init = self.init_factory.create(**self.space_config['mu_init']) self.sigma_act = self.activations_factory.create(self.space_config['sigma_activation']) sigma_init = self.init_factory.create(**self.space_config['sigma_init']) if self.space_config['fixed_sigma']: self.sigma = nn.Parameter(torch.zeros(actions_num, requires_grad=True, dtype=torch.float32), requires_grad=True) else: self.sigma = torch.nn.Linear(out_size, actions_num) mlp_init = self.init_factory.create(**self.initializer) if self.has_cnn: cnn_init = self.init_factory.create(**self.cnn['initializer']) for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Conv1d): cnn_init(m.weight) if getattr(m, "bias", None) is not None: torch.nn.init.zeros_(m.bias) if isinstance(m, nn.Linear): mlp_init(m.weight) if getattr(m, "bias", None) is not None: torch.nn.init.zeros_(m.bias) if self.is_continuous: mu_init(self.mu.weight) if self.space_config['fixed_sigma']: sigma_init(self.sigma) else: sigma_init(self.sigma.weight) def forward(self, obs_dict): obs = obs_dict['obs'] states = obs_dict.get('rnn_states', None) seq_length = obs_dict.get('seq_length', 1) if self.has_cnn: # for obs shape 4 # input expected shape (B, W, H, C) # convert to (B, C, W, H) if len(obs.shape) == 4: obs = obs.permute((0, 3, 1, 2)) if self.separate: a_out = c_out = obs a_out = self.actor_cnn(a_out) a_out = a_out.contiguous().view(a_out.size(0), -1) c_out = self.critic_cnn(c_out) c_out = c_out.contiguous().view(c_out.size(0), -1) if self.has_rnn: if not self.is_rnn_before_mlp: a_out_in = a_out c_out_in = c_out a_out = self.actor_mlp(a_out_in) c_out = self.critic_mlp(c_out_in) if self.rnn_concat_input: a_out = torch.cat([a_out, a_out_in], dim=1) c_out = torch.cat([c_out, c_out_in], dim=1) batch_size = a_out.size()[0] num_seqs = batch_size // seq_length a_out = a_out.reshape(num_seqs, seq_length, -1) c_out = c_out.reshape(num_seqs, seq_length, -1) if self.rnn_name == 'sru': a_out =a_out.transpose(0,1) c_out =c_out.transpose(0,1) if len(states) == 2: a_states = states[0] c_states = states[1] else: a_states = states[:2] c_states = states[2:] a_out, a_states = self.a_rnn(a_out, a_states) c_out, c_states = self.c_rnn(c_out, c_states) if self.rnn_name == 'sru': a_out = a_out.transpose(0,1) c_out = c_out.transpose(0,1) else: if self.rnn_ln: a_out = self.a_layer_norm(a_out) c_out = self.c_layer_norm(c_out) a_out = a_out.contiguous().reshape(a_out.size()[0] * a_out.size()[1], -1) c_out = c_out.contiguous().reshape(c_out.size()[0] * c_out.size()[1], -1) if type(a_states) is not tuple: a_states = (a_states,) c_states = (c_states,) states = a_states + c_states if self.is_rnn_before_mlp: a_out = self.actor_mlp(a_out) c_out = self.critic_mlp(c_out) else: a_out = self.actor_mlp(a_out) c_out = self.critic_mlp(c_out) value = self.value_act(self.value(c_out)) if self.is_discrete: logits = self.logits(a_out) return logits, value, states if self.is_multi_discrete: logits = [logit(a_out) for logit in self.logits] return logits, value, states if self.is_continuous: mu = self.mu_act(self.mu(a_out)) if self.space_config['fixed_sigma']: sigma = mu * 0.0 + self.sigma_act(self.sigma) else: sigma = self.sigma_act(self.sigma(a_out)) return mu, sigma, value, states else: out = obs out = self.actor_cnn(out) out = out.flatten(1) if self.has_rnn: out_in = out if not self.is_rnn_before_mlp: out_in = out out = self.actor_mlp(out) if self.rnn_concat_input: out = torch.cat([out, out_in], dim=1) batch_size = out.size()[0] num_seqs = batch_size // seq_length out = out.reshape(num_seqs, seq_length, -1) if len(states) == 1: states = states[0] if self.rnn_name == 'sru': out = out.transpose(0,1) out, states = self.rnn(out, states) out = out.contiguous().reshape(out.size()[0] * out.size()[1], -1) if self.rnn_name == 'sru': out = out.transpose(0,1) if self.rnn_ln: out = self.layer_norm(out) if self.is_rnn_before_mlp: out = self.actor_mlp(out) if type(states) is not tuple: states = (states,) else: out = self.actor_mlp(out) value = self.value_act(self.value(out)) if self.central_value: return value, states if self.is_discrete: logits = self.logits(out) return logits, value, states if self.is_multi_discrete: logits = [logit(out) for logit in self.logits] return logits, value, states if self.is_continuous: mu = self.mu_act(self.mu(out)) if self.space_config['fixed_sigma']: sigma = self.sigma_act(self.sigma) else: sigma = self.sigma_act(self.sigma(out)) return mu, mu*0 + sigma, value, states def is_separate_critic(self): return self.separate def is_rnn(self): return self.has_rnn def get_default_rnn_state(self): if not self.has_rnn: return None num_layers = self.rnn_layers if self.rnn_name == 'identity': rnn_units = 1 else: rnn_units = self.rnn_units if self.rnn_name == 'lstm': if self.separate: return (torch.zeros((num_layers, self.num_seqs, rnn_units)), torch.zeros((num_layers, self.num_seqs, rnn_units)), torch.zeros((num_layers, self.num_seqs, rnn_units)), torch.zeros((num_layers, self.num_seqs, rnn_units))) else: return (torch.zeros((num_layers, self.num_seqs, rnn_units)), torch.zeros((num_layers, self.num_seqs, rnn_units))) else: if self.separate: return (torch.zeros((num_layers, self.num_seqs, rnn_units)), torch.zeros((num_layers, self.num_seqs, rnn_units))) else: return (torch.zeros((num_layers, self.num_seqs, rnn_units)),) def load(self, params): self.separate = params.get('separate', False) self.units = params['mlp']['units'] self.activation = params['mlp']['activation'] self.initializer = params['mlp']['initializer'] self.is_d2rl = params['mlp'].get('d2rl', False) self.norm_only_first_layer = params['mlp'].get('norm_only_first_layer', False) self.value_activation = params.get('value_activation', 'None') self.normalization = params.get('normalization', None) self.has_rnn = 'rnn' in params self.has_space = 'space' in params self.central_value = params.get('central_value', False) self.joint_obs_actions_config = params.get('joint_obs_actions', None) if self.has_space: self.is_multi_discrete = 'multi_discrete'in params['space'] self.is_discrete = 'discrete' in params['space'] self.is_continuous = 'continuous'in params['space'] if self.is_continuous: self.space_config = params['space']['continuous'] elif self.is_discrete: self.space_config = params['space']['discrete'] elif self.is_multi_discrete: self.space_config = params['space']['multi_discrete'] else: self.is_discrete = False self.is_continuous = False self.is_multi_discrete = False if self.has_rnn: self.rnn_units = params['rnn']['units'] self.rnn_layers = params['rnn']['layers'] self.rnn_name = params['rnn']['name'] self.rnn_ln = params['rnn'].get('layer_norm', False) self.is_rnn_before_mlp = params['rnn'].get('before_mlp', False) self.rnn_concat_input = params['rnn'].get('concat_input', False) if 'cnn' in params: self.has_cnn = True self.cnn = params['cnn'] else: self.has_cnn = False def build(self, name, **kwargs): net = A2CBuilder.Network(self.params, **kwargs) return net class Conv2dAuto(nn.Conv2d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.padding = (self.kernel_size[0] // 2, self.kernel_size[1] // 2) # dynamic add padding based on the kernel_size class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels, use_bn=False): super().__init__() self.use_bn = use_bn self.conv = Conv2dAuto(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, bias=not use_bn) if use_bn: self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): x = self.conv(x) if self.use_bn: x = self.bn(x) return x class ResidualBlock(nn.Module): def __init__(self, channels, activation='relu', use_bn=False, use_zero_init=True, use_attention=False): super().__init__() self.use_zero_init=use_zero_init self.use_attention = use_attention if use_zero_init: self.alpha = nn.Parameter(torch.zeros(1)) self.activation = activation self.conv1 = ConvBlock(channels, channels, use_bn) self.conv2 = ConvBlock(channels, channels, use_bn) self.activate1 = nn.ELU() self.activate2 = nn.ELU() if use_attention: self.ca = ChannelAttention(channels) self.sa = SpatialAttention() def forward(self, x): residual = x x = self.activate1(x) x = self.conv1(x) x = self.activate2(x) x = self.conv2(x) if self.use_attention: x = self.ca(x) * x x = self.sa(x) * x if self.use_zero_init: x = x * self.alpha + residual else: x = x + residual return x class ImpalaSequential(nn.Module): def __init__(self, in_channels, out_channels, activation='elu', use_bn=True, use_zero_init=False): super().__init__() self.conv = ConvBlock(in_channels, out_channels, use_bn) self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.res_block1 = ResidualBlock(out_channels, activation=activation, use_bn=use_bn, use_zero_init=use_zero_init) self.res_block2 = ResidualBlock(out_channels, activation=activation, use_bn=use_bn, use_zero_init=use_zero_init) def forward(self, x): x = self.conv(x) x = self.max_pool(x) x = self.res_block1(x) x = self.res_block2(x) return x class A2CResnetBuilder(NetworkBuilder): def __init__(self, **kwargs): NetworkBuilder.__init__(self) def load(self, params): self.params = params class Network(NetworkBuilder.BaseNetwork): def __init__(self, params, **kwargs): actions_num = kwargs.pop('actions_num') input_shape = kwargs.pop('input_shape') input_shape = torch_ext.shape_whc_to_cwh(input_shape) self.num_seqs = num_seqs = kwargs.pop('num_seqs', 1) self.value_size = kwargs.pop('value_size', 1) NetworkBuilder.BaseNetwork.__init__(self, **kwargs) self.load(params) self.cnn = self._build_impala(input_shape, self.conv_depths) mlp_input_shape = self._calc_input_size(input_shape, self.cnn) in_mlp_shape = mlp_input_shape if len(self.units) == 0: out_size = mlp_input_shape else: out_size = self.units[-1] if self.has_rnn: if not self.is_rnn_before_mlp: rnn_in_size = out_size out_size = self.rnn_units else: rnn_in_size = in_mlp_shape in_mlp_shape = self.rnn_units self.rnn = self._build_rnn(self.rnn_name, rnn_in_size, self.rnn_units, self.rnn_layers) #self.layer_norm = torch.nn.LayerNorm(self.rnn_units) mlp_args = { 'input_size' : in_mlp_shape, 'units' :self.units, 'activation' : self.activation, 'norm_func_name' : self.normalization, 'dense_func' : torch.nn.Linear } self.mlp = self._build_mlp(**mlp_args) self.value = torch.nn.Linear(out_size, self.value_size) self.value_act = self.activations_factory.create(self.value_activation) self.flatten_act = self.activations_factory.create(self.activation) if self.is_discrete: self.logits = torch.nn.Linear(out_size, actions_num) if self.is_continuous: self.mu = torch.nn.Linear(out_size, actions_num) self.mu_act = self.activations_factory.create(self.space_config['mu_activation']) mu_init = self.init_factory.create(**self.space_config['mu_init']) self.sigma_act = self.activations_factory.create(self.space_config['sigma_activation']) sigma_init = self.init_factory.create(**self.space_config['sigma_init']) if self.space_config['fixed_sigma']: self.sigma = nn.Parameter(torch.zeros(actions_num, requires_grad=True, dtype=torch.float32), requires_grad=True) else: self.sigma = torch.nn.Linear(out_size, actions_num) mlp_init = self.init_factory.create(**self.initializer) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') #nn.init.xavier_uniform_(m.weight, gain=nn.init.calculate_gain('elu')) for m in self.mlp: if isinstance(m, nn.Linear): mlp_init(m.weight) if self.is_discrete: mlp_init(self.logits.weight) if self.is_continuous: mu_init(self.mu.weight) if self.space_config['fixed_sigma']: sigma_init(self.sigma) else: sigma_init(self.sigma.weight) mlp_init(self.value.weight) def forward(self, obs_dict): obs = obs_dict['obs'] obs = obs.permute((0, 3, 1, 2)) states = obs_dict.get('rnn_states', None) seq_length = obs_dict.get('seq_length', 1) out = obs out = self.cnn(out) out = out.flatten(1) out = self.flatten_act(out) if self.has_rnn: if not self.is_rnn_before_mlp: out = self.mlp(out) batch_size = out.size()[0] num_seqs = batch_size // seq_length out = out.reshape(num_seqs, seq_length, -1) if len(states) == 1: states = states[0] out, states = self.rnn(out, states) out = out.contiguous().reshape(out.size()[0] * out.size()[1], -1) #out = self.layer_norm(out) if type(states) is not tuple: states = (states,) if self.is_rnn_before_mlp: for l in self.mlp: out = l(out) else: for l in self.mlp: out = l(out) value = self.value_act(self.value(out)) if self.is_discrete: logits = self.logits(out) return logits, value, states if self.is_continuous: mu = self.mu_act(self.mu(out)) if self.space_config['fixed_sigma']: sigma = self.sigma_act(self.sigma) else: sigma = self.sigma_act(self.sigma(out)) return mu, mu*0 + sigma, value, states def load(self, params): self.separate = params['separate'] self.units = params['mlp']['units'] self.activation = params['mlp']['activation'] self.initializer = params['mlp']['initializer'] self.is_discrete = 'discrete' in params['space'] self.is_continuous = 'continuous' in params['space'] self.is_multi_discrete = 'multi_discrete'in params['space'] self.value_activation = params.get('value_activation', 'None') self.normalization = params.get('normalization', None) if self.is_continuous: self.space_config = params['space']['continuous'] elif self.is_discrete: self.space_config = params['space']['discrete'] elif self.is_multi_discrete: self.space_config = params['space']['multi_discrete'] self.has_rnn = 'rnn' in params if self.has_rnn: self.rnn_units = params['rnn']['units'] self.rnn_layers = params['rnn']['layers'] self.rnn_name = params['rnn']['name'] self.is_rnn_before_mlp = params['rnn'].get('before_mlp', False) self.has_cnn = True self.conv_depths = params['cnn']['conv_depths'] def _build_impala(self, input_shape, depths): in_channels = input_shape[0] layers = nn.ModuleList() for d in depths: layers.append(ImpalaSequential(in_channels, d)) in_channels = d return nn.Sequential(*layers) def is_separate_critic(self): return False def is_rnn(self): return self.has_rnn def get_default_rnn_state(self): num_layers = self.rnn_layers if self.rnn_name == 'lstm': return (torch.zeros((num_layers, self.num_seqs, self.rnn_units)), torch.zeros((num_layers, self.num_seqs, self.rnn_units))) else: return (torch.zeros((num_layers, self.num_seqs, self.rnn_units))) def build(self, name, **kwargs): net = A2CResnetBuilder.Network(self.params, **kwargs) return net class DiagGaussianActor(NetworkBuilder.BaseNetwork): """torch.distributions implementation of an diagonal Gaussian policy.""" def __init__(self, output_dim, log_std_bounds, **mlp_args): super().__init__() self.log_std_bounds = log_std_bounds self.trunk = self._build_mlp(**mlp_args) last_layer = list(self.trunk.children())[-2].out_features self.trunk = nn.Sequential(*list(self.trunk.children()), nn.Linear(last_layer, output_dim)) def forward(self, obs): mu, log_std = self.trunk(obs).chunk(2, dim=-1) # constrain log_std inside [log_std_min, log_std_max] #log_std = torch.tanh(log_std) log_std_min, log_std_max = self.log_std_bounds log_std = torch.clamp(log_std, log_std_min, log_std_max) #log_std = log_std_min + 0.5 * (log_std_max - log_std_min) * (log_std + 1) std = log_std.exp() # TODO: Refactor dist = SquashedNormal(mu, std) # Modify to only return mu and std return dist class DoubleQCritic(NetworkBuilder.BaseNetwork): """Critic network, employes double Q-learning.""" def __init__(self, output_dim, **mlp_args): super().__init__() self.Q1 = self._build_mlp(**mlp_args) last_layer = list(self.Q1.children())[-2].out_features self.Q1 = nn.Sequential(*list(self.Q1.children()), nn.Linear(last_layer, output_dim)) self.Q2 = self._build_mlp(**mlp_args) last_layer = list(self.Q2.children())[-2].out_features self.Q2 = nn.Sequential(*list(self.Q2.children()), nn.Linear(last_layer, output_dim)) def forward(self, obs, action): assert obs.size(0) == action.size(0) obs_action = torch.cat([obs, action], dim=-1) q1 = self.Q1(obs_action) q2 = self.Q2(obs_action) return q1, q2 class SACBuilder(NetworkBuilder): def __init__(self, **kwargs): NetworkBuilder.__init__(self) def load(self, params): self.params = params def build(self, name, **kwargs): net = SACBuilder.Network(self.params, **kwargs) return net class Network(NetworkBuilder.BaseNetwork): def __init__(self, params, **kwargs): actions_num = kwargs.pop('actions_num') input_shape = kwargs.pop('input_shape') obs_dim = kwargs.pop('obs_dim') action_dim = kwargs.pop('action_dim') self.num_seqs = num_seqs = kwargs.pop('num_seqs', 1) NetworkBuilder.BaseNetwork.__init__(self) self.load(params) mlp_input_shape = input_shape actor_mlp_args = { 'input_size' : obs_dim, 'units' : self.units, 'activation' : self.activation, 'norm_func_name' : self.normalization, 'dense_func' : torch.nn.Linear, 'd2rl' : self.is_d2rl, 'norm_only_first_layer' : self.norm_only_first_layer } critic_mlp_args = { 'input_size' : obs_dim + action_dim, 'units' : self.units, 'activation' : self.activation, 'norm_func_name' : self.normalization, 'dense_func' : torch.nn.Linear, 'd2rl' : self.is_d2rl, 'norm_only_first_layer' : self.norm_only_first_layer } print("Building Actor") self.actor = self._build_actor(2*action_dim, self.log_std_bounds, **actor_mlp_args) if self.separate: print("Building Critic") self.critic = self._build_critic(1, **critic_mlp_args) print("Building Critic Target") self.critic_target = self._build_critic(1, **critic_mlp_args) self.critic_target.load_state_dict(self.critic.state_dict()) mlp_init = self.init_factory.create(**self.initializer) for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Conv1d): cnn_init(m.weight) if getattr(m, "bias", None) is not None: torch.nn.init.zeros_(m.bias) if isinstance(m, nn.Linear): mlp_init(m.weight) if getattr(m, "bias", None) is not None: torch.nn.init.zeros_(m.bias) def _build_critic(self, output_dim, **mlp_args): return DoubleQCritic(output_dim, **mlp_args) def _build_actor(self, output_dim, log_std_bounds, **mlp_args): return DiagGaussianActor(output_dim, log_std_bounds, **mlp_args) def forward(self, obs_dict): """TODO""" obs = obs_dict['obs'] mu, sigma = self.actor(obs) return mu, sigma def is_separate_critic(self): return self.separate def load(self, params): self.separate = params.get('separate', True) self.units = params['mlp']['units'] self.activation = params['mlp']['activation'] self.initializer = params['mlp']['initializer'] self.is_d2rl = params['mlp'].get('d2rl', False) self.norm_only_first_layer = params['mlp'].get('norm_only_first_layer', False) self.value_activation = params.get('value_activation', 'None') self.normalization = params.get('normalization', None) self.has_space = 'space' in params self.value_shape = params.get('value_shape', 1) self.central_value = params.get('central_value', False) self.joint_obs_actions_config = params.get('joint_obs_actions', None) self.log_std_bounds = params.get('log_std_bounds', None) if self.has_space: self.is_discrete = 'discrete' in params['space'] self.is_continuous = 'continuous'in params['space'] if self.is_continuous: self.space_config = params['space']['continuous'] elif self.is_discrete: self.space_config = params['space']['discrete'] else: self.is_discrete = False self.is_continuous = False ''' class DQNBuilder(NetworkBuilder): def __init__(self, **kwargs): NetworkBuilder.__init__(self) def load(self, params): self.units = params['mlp']['units'] self.activation = params['mlp']['activation'] self.initializer = params['mlp']['initializer'] self.regularizer = params['mlp']['regularizer'] self.is_dueling = params['dueling'] self.atoms = params['atoms'] self.is_noisy = params['noisy'] self.normalization = params.get('normalization', None) if 'cnn' in params: self.has_cnn = True self.cnn = params['cnn'] else: self.has_cnn = False def build(self, name, **kwargs): actions_num = kwargs.pop('actions_num') input = kwargs.pop('inputs') reuse = kwargs.pop('reuse') is_train = kwargs.pop('is_train', True) if self.is_noisy: dense_layer = self._noisy_dense else: dense_layer = torch.nn.Linear with tf.variable_scope(name, reuse=reuse): out = input if self.has_cnn: cnn_args = { 'name' :'dqn_cnn', 'ctype' : self.cnn['type'], 'input' : input, 'convs' :self.cnn['convs'], 'activation' : self.cnn['activation'], 'initializer' : self.cnn['initializer'], 'regularizer' : self.cnn['regularizer'], 'norm_func_name' : self.normalization, 'is_train' : is_train } out = self._build_conv(**cnn_args) out = tf.contrib.layers.flatten(out) mlp_args = { 'name' :'dqn_mlp', 'input' : out, 'activation' : self.activation, 'initializer' : self.initializer, 'regularizer' : self.regularizer, 'norm_func_name' : self.normalization, 'is_train' : is_train, 'dense_func' : dense_layer } if self.is_dueling: if len(self.units) > 1: mlp_args['units'] = self.units[:-1] out = self._build_mlp(**mlp_args) hidden_value = dense_layer(inputs=out, units=self.units[-1], kernel_initializer = self.init_factory.create(**self.initializer), activation=self.activations_factory.create(self.activation), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), name='hidden_val') hidden_advantage = dense_layer(inputs=out, units=self.units[-1], kernel_initializer = self.init_factory.create(**self.initializer), activation=self.activations_factory.create(self.activation), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), name='hidden_adv') value = dense_layer(inputs=hidden_value, units=self.atoms, kernel_initializer = self.init_factory.create(**self.initializer), activation=tf.identity, kernel_regularizer = self.regularizer_factory.create(**self.regularizer), name='value') advantage = dense_layer(inputs=hidden_advantage, units= actions_num * self.atoms, kernel_initializer = self.init_factory.create(**self.initializer), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), activation=tf.identity, name='advantage') advantage = tf.reshape(advantage, shape = [-1, actions_num, self.atoms]) value = tf.reshape(value, shape = [-1, 1, self.atoms]) q_values = value + advantage - tf.reduce_mean(advantage, reduction_indices=1, keepdims=True) else: mlp_args['units'] = self.units out = self._build_mlp('dqn_mlp', out, self.units, self.activation, self.initializer, self.regularizer) q_values = dense_layer(inputs=out, units=actions_num *self.atoms, kernel_initializer = self.init_factory.create(**self.initializer), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), activation=tf.identity, name='q_vals') q_values = tf.reshape(q_values, shape = [-1, actions_num, self.atoms]) if self.atoms == 1: return tf.squeeze(q_values) else: return q_values '''
43,953
Python
42.176817
301
0.519623
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_torch/a2c_continuous.py
from rl_games.common import a2c_common from rl_games.algos_torch import torch_ext from rl_games.algos_torch.running_mean_std import RunningMeanStd, RunningMeanStdObs from rl_games.algos_torch import central_value from rl_games.common import common_losses from rl_games.common import datasets from rl_games.algos_torch import ppg_aux from torch import optim import torch from torch import nn import numpy as np import gym class A2CAgent(a2c_common.ContinuousA2CBase): def __init__(self, base_name, config): a2c_common.ContinuousA2CBase.__init__(self, base_name, config) obs_shape = self.obs_shape config = { 'actions_num' : self.actions_num, 'input_shape' : obs_shape, 'num_seqs' : self.num_actors * self.num_agents, 'value_size': self.env_info.get('value_size',1) } self.model = self.network.build(config) self.model.to(self.ppo_device) self.states = None self.init_rnn_from_model(self.model) self.last_lr = float(self.last_lr) self.optimizer = optim.Adam(self.model.parameters(), float(self.last_lr), eps=1e-08, weight_decay=self.weight_decay) if self.normalize_input: if isinstance(self.observation_space,gym.spaces.Dict): self.running_mean_std = RunningMeanStdObs(obs_shape).to(self.ppo_device) else: self.running_mean_std = RunningMeanStd(obs_shape).to(self.ppo_device) if self.has_central_value: cv_config = { 'state_shape' : self.state_shape, 'value_size' : self.value_size, 'ppo_device' : self.ppo_device, 'num_agents' : self.num_agents, 'num_steps' : self.horizon_length, 'num_actors' : self.num_actors, 'num_actions' : self.actions_num, 'seq_len' : self.seq_len, 'model' : self.central_value_config['network'], 'config' : self.central_value_config, 'writter' : self.writer, 'max_epochs' : self.max_epochs, 'multi_gpu' : self.multi_gpu } self.central_value_net = central_value.CentralValueTrain(**cv_config).to(self.ppo_device) self.use_experimental_cv = self.config.get('use_experimental_cv', True) self.dataset = datasets.PPODataset(self.batch_size, self.minibatch_size, self.is_discrete, self.is_rnn, self.ppo_device, self.seq_len) if 'phasic_policy_gradients' in self.config: self.has_phasic_policy_gradients = True self.ppg_aux_loss = ppg_aux.PPGAux(self, self.config['phasic_policy_gradients']) self.has_value_loss = (self.has_central_value \ and self.use_experimental_cv) \ or not self.has_phasic_policy_gradients self.algo_observer.after_init(self) def update_epoch(self): self.epoch_num += 1 return self.epoch_num def save(self, fn): state = self.get_full_state_weights() torch_ext.save_checkpoint(fn, state) def restore(self, fn): checkpoint = torch_ext.load_checkpoint(fn) self.set_full_state_weights(checkpoint) def get_masked_action_values(self, obs, action_masks): assert False def calc_gradients(self, input_dict): value_preds_batch = input_dict['old_values'] old_action_log_probs_batch = input_dict['old_logp_actions'] advantage = input_dict['advantages'] old_mu_batch = input_dict['mu'] old_sigma_batch = input_dict['sigma'] return_batch = input_dict['returns'] actions_batch = input_dict['actions'] obs_batch = input_dict['obs'] obs_batch = self._preproc_obs(obs_batch) lr = self.last_lr kl = 1.0 lr_mul = 1.0 curr_e_clip = lr_mul * self.e_clip batch_dict = { 'is_train': True, 'prev_actions': actions_batch, 'obs' : obs_batch, } rnn_masks = None if self.is_rnn: rnn_masks = input_dict['rnn_masks'] batch_dict['rnn_states'] = input_dict['rnn_states'] batch_dict['seq_length'] = self.seq_len with torch.cuda.amp.autocast(enabled=self.mixed_precision): res_dict = self.model(batch_dict) action_log_probs = res_dict['prev_neglogp'] values = res_dict['values'] entropy = res_dict['entropy'] mu = res_dict['mus'] sigma = res_dict['sigmas'] a_loss = common_losses.actor_loss(old_action_log_probs_batch, action_log_probs, advantage, self.ppo, curr_e_clip) if self.has_value_loss: c_loss = common_losses.critic_loss(value_preds_batch, values, curr_e_clip, return_batch, self.clip_value) else: c_loss = torch.zeros(1, device=self.ppo_device) b_loss = self.bound_loss(mu) losses, sum_mask = torch_ext.apply_masks([a_loss.unsqueeze(1), c_loss, entropy.unsqueeze(1), b_loss.unsqueeze(1)], rnn_masks) a_loss, c_loss, entropy, b_loss = losses[0], losses[1], losses[2], losses[3] loss = a_loss + 0.5 * c_loss * self.critic_coef - entropy * self.entropy_coef + b_loss * self.bounds_loss_coef pol_grad = torch.autograd.grad(loss, mu, retain_graph=True)[0] snr_ppo = (pol_grad.mean(dim=0).abs()/pol_grad.std(dim=0)).mean().item() self.snr_ppo.append(snr_ppo) if self.multi_gpu: self.optimizer.zero_grad() else: for param in self.model.parameters(): param.grad = None self.scaler.scale(loss).backward() #TODO: Refactor this ugliest code of they year if self.truncate_grads: if self.multi_gpu: self.optimizer.synchronize() self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_norm) with self.optimizer.skip_synchronize(): self.scaler.step(self.optimizer) self.scaler.update() else: self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_norm) self.scaler.step(self.optimizer) self.scaler.update() else: self.scaler.step(self.optimizer) self.scaler.update() with torch.no_grad(): reduce_kl = not self.is_rnn kl_dist = torch_ext.policy_kl(mu.detach(), sigma.detach(), old_mu_batch, old_sigma_batch, reduce_kl) if self.is_rnn: kl_dist = (kl_dist * rnn_masks).sum() / rnn_masks.numel() #/ sum_mask self.train_result = (a_loss, c_loss, entropy, \ kl_dist, self.last_lr, lr_mul, \ mu.detach(), sigma.detach(), b_loss) def train_actor_critic(self, input_dict): self.calc_gradients(input_dict) return self.train_result def bound_loss(self, mu): if self.bounds_loss_coef is not None: soft_bound = 1.1 mu_loss_high = torch.clamp_max(mu - soft_bound, 0.0)**2 mu_loss_low = torch.clamp_max(-mu + soft_bound, 0.0)**2 b_loss = (mu_loss_low + mu_loss_high).sum(axis=-1) else: b_loss = 0 return b_loss
7,600
Python
39.647059
142
0.570263
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_torch/running_mean_std.py
import torch import torch.nn as nn import numpy as np ''' updates statistic from a full data ''' class RunningMeanStd(nn.Module): def __init__(self, insize, epsilon=1e-05, per_channel=False, norm_only=False): super(RunningMeanStd, self).__init__() print('RunningMeanStd: ', insize) self.insize = insize self.epsilon = epsilon self.norm_only = norm_only self.per_channel = per_channel if per_channel: if len(self.insize) == 3: self.axis = [0,2,3] if len(self.insize) == 2: self.axis = [0,2] if len(self.insize) == 1: self.axis = [0] in_size = self.insize[0] else: self.axis = [0] in_size = insize self.register_buffer("running_mean", torch.zeros(in_size, dtype = torch.float64)) self.register_buffer("running_var", torch.ones(in_size, dtype = torch.float64)) self.register_buffer("count", torch.ones((), dtype = torch.float64)) def _update_mean_var_count_from_moments(self, mean, var, count, batch_mean, batch_var, batch_count): delta = batch_mean - mean tot_count = count + batch_count new_mean = mean + delta * batch_count / tot_count m_a = var * count m_b = batch_var * batch_count M2 = m_a + m_b + delta**2 * count * batch_count / tot_count new_var = M2 / tot_count new_count = tot_count return new_mean, new_var, new_count def forward(self, input, unnorm=False): if self.training: mean = input.mean(self.axis) # along channel axis var = input.var(self.axis) self.running_mean, self.running_var, self.count = self._update_mean_var_count_from_moments(self.running_mean, self.running_var, self.count, mean, var, input.size()[0] ) # change shape if self.per_channel: if len(self.insize) == 3: current_mean = self.running_mean.view([1, self.insize[0], 1, 1]).expand_as(input) current_var = self.running_var.view([1, self.insize[0], 1, 1]).expand_as(input) if len(self.insize) == 2: current_mean = self.running_mean.view([1, self.insize[0], 1]).expand_as(input) current_var = self.running_var.view([1, self.insize[0], 1]).expand_as(input) if len(self.insize) == 1: current_mean = self.running_mean.view([1, self.insize[0]]).expand_as(input) current_var = self.running_var.view([1, self.insize[0]]).expand_as(input) else: current_mean = self.running_mean current_var = self.running_var # get output if unnorm: y = torch.clamp(input, min=-5.0, max=5.0) y = torch.sqrt(current_var.float() + self.epsilon)*y + current_mean.float() else: if self.norm_only: y = input/ torch.sqrt(current_var.float() + self.epsilon) else: y = (input - current_mean.float()) / torch.sqrt(current_var.float() + self.epsilon) y = torch.clamp(y, min=-5.0, max=5.0) return y class RunningMeanStdObs(nn.Module): def __init__(self, insize, epsilon=1e-05, per_channel=False, norm_only=False): assert(insize is dict) super(RunningMeanStdObs, self).__init__() self.running_mean_std = nn.ModuleDict({ k : RunningMeanStd(v, epsilon, per_channel, norm_only) for k,v in insize.items() }) def forward(self, input, unnorm=False): res = {k : self.running_mean_std(v, unnorm) for k,v in input.items()} return res
3,757
Python
41.224719
152
0.558957
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_tf14/tensorflow_utils.py
import tensorflow as tf import numpy as np import collections from collections import deque, OrderedDict def unflatten(vector, shapes): i = 0 arrays = [] for shape in shapes: size = np.prod(shape, dtype=np.int) array = vector[i:(i + size)].reshape(shape) arrays.append(array) i += size assert len(vector) == i, "Passed weight does not have the correct shape." return arrays class TensorFlowVariables(object): """A class used to set and get weights for Tensorflow networks. Attributes: sess (tf.Session): The tensorflow session used to run assignment. variables (Dict[str, tf.Variable]): Extracted variables from the loss or additional variables that are passed in. placeholders (Dict[str, tf.placeholders]): Placeholders for weights. assignment_nodes (Dict[str, tf.Tensor]): Nodes that assign weights. """ def __init__(self, output, sess=None, input_variables=None): """Creates TensorFlowVariables containing extracted variables. The variables are extracted by performing a BFS search on the dependency graph with loss as the root node. After the tree is traversed and those variables are collected, we append input_variables to the collected variables. For each variable in the list, the variable has a placeholder and assignment operation created for it. Args: output (tf.Operation, List[tf.Operation]): The tensorflow operation to extract all variables from. sess (tf.Session): Session used for running the get and set methods. input_variables (List[tf.Variables]): Variables to include in the list. """ self.sess = sess if not isinstance(output, (list, tuple)): output = [output] queue = deque(output) variable_names = [] explored_inputs = set(output) # We do a BFS on the dependency graph of the input function to find # the variables. while len(queue) != 0: tf_obj = queue.popleft() if tf_obj is None: continue # The object put into the queue is not necessarily an operation, # so we want the op attribute to get the operation underlying the # object. Only operations contain the inputs that we can explore. if hasattr(tf_obj, "op"): tf_obj = tf_obj.op for input_op in tf_obj.inputs: if input_op not in explored_inputs: queue.append(input_op) explored_inputs.add(input_op) # Tensorflow control inputs can be circular, so we keep track of # explored operations. for control in tf_obj.control_inputs: if control not in explored_inputs: queue.append(control) explored_inputs.add(control) if "Variable" in tf_obj.node_def.op: variable_names.append(tf_obj.node_def.name) self.variables = OrderedDict() variable_list = [ v for v in tf.global_variables() if v.op.node_def.name in variable_names ] if input_variables is not None: variable_list += input_variables for v in variable_list: self.variables[v.op.node_def.name] = v self.placeholders = {} self.assignment_nodes = {} # Create new placeholders to put in custom weights. for k, var in self.variables.items(): self.placeholders[k] = tf.placeholder( var.value().dtype, var.get_shape().as_list(), name="Placeholder_" + k) self.assignment_nodes[k] = var.assign(self.placeholders[k]) def set_session(self, sess): """Sets the current session used by the class. Args: sess (tf.Session): Session to set the attribute with. """ self.sess = sess def get_flat_size(self): """Returns the total length of all of the flattened variables. Returns: The length of all flattened variables concatenated. """ return sum( np.prod(v.get_shape().as_list()) for v in self.variables.values()) def _check_sess(self): """Checks if the session is set, and if not throw an error message.""" assert self.sess is not None, ("The session is not set. Set the " "session either by passing it into the " "TensorFlowVariables constructor or by " "calling set_session(sess).") def get_flat(self): """Gets the weights and returns them as a flat array. Returns: 1D Array containing the flattened weights. """ self._check_sess() return np.concatenate([ v.eval(session=self.sess).flatten() for v in self.variables.values() ]) def set_flat(self, new_weights): """Sets the weights to new_weights, converting from a flat array. Note: You can only set all weights in the network using this function, i.e., the length of the array must match get_flat_size. Args: new_weights (np.ndarray): Flat array containing weights. """ self._check_sess() shapes = [v.get_shape().as_list() for v in self.variables.values()] arrays = unflatten(new_weights, shapes) placeholders = [ self.placeholders[k] for k, v in self.variables.items() ] self.sess.run( list(self.assignment_nodes.values()), feed_dict=dict(zip(placeholders, arrays))) def get_weights(self): """Returns a dictionary containing the weights of the network. Returns: Dictionary mapping variable names to their weights. """ self._check_sess() return { k: v.eval(session=self.sess) for k, v in self.variables.items() } def set_weights(self, new_weights): """Sets the weights to new_weights. Note: Can set subsets of variables as well, by only passing in the variables you want to be set. Args: new_weights (Dict): Dictionary mapping variable names to their weights. """ self._check_sess() assign_list = [ self.assignment_nodes[name] for name in new_weights.keys() if name in self.assignment_nodes ] assert assign_list, ("No variables in the input matched those in the " "network. Possible cause: Two networks were " "defined in the same TensorFlow graph. To fix " "this, place each network definition in its own " "tf.Graph.") self.sess.run( assign_list, feed_dict={ self.placeholders[name]: value for (name, value) in new_weights.items() if name in self.placeholders })
7,289
Python
39.5
79
0.571409
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_tf14/tf_moving_mean_std.py
import tensorflow as tf from tensorflow.python.training.moving_averages import assign_moving_average class MovingMeanStd(object): def __init__(self, shape, epsilon, decay, clamp = 5.0): self.moving_mean = tf.Variable(tf.constant(0.0, shape=shape, dtype=tf.float64), trainable=False)#, name='moving_mean') self.moving_variance = tf.Variable(tf.constant(1.0, shape=shape, dtype=tf.float64), trainable=False)#, name='moving_variance' ) self.epsilon = epsilon self.shape = shape self.decay = decay self.count = tf.Variable(tf.constant(epsilon, shape=shape, dtype=tf.float64), trainable=False) self.clamp = clamp def update_mean_var_count_from_moments(self, mean, var, count, batch_mean, batch_var, batch_count): delta = batch_mean - mean tot_count = count + batch_count new_mean = mean + delta * batch_count / tot_count m_a = var * count m_b = batch_var * batch_count M2 = m_a + m_b + tf.square(delta) * count * batch_count / tot_count new_var = M2 / tot_count new_count = tot_count return new_mean, new_var, new_count def normalize(self, x, train=True): x64 = tf.cast(x, tf.float64) if train: shape = x.get_shape().as_list() if (len(shape) == 2): axis = [0] if (len(shape) == 3): axis = [0, 1] if (len(shape) == 4): axis = [0, 1, 2] mean, var = tf.nn.moments(x64, axis) new_mean, new_var, new_count = self.update_mean_var_count_from_moments(self.moving_mean, self.moving_variance, self.count, mean, var, tf.cast(tf.shape(x)[0], tf.float64)) mean_op = self.moving_mean.assign(new_mean) var_op = self.moving_variance.assign(tf.maximum(new_var, 1e-2)) count_op = self.count.assign(new_count) with tf.control_dependencies([mean_op, var_op, count_op]): res = tf.cast((x64 - self.moving_mean) / (tf.sqrt(self.moving_variance)), tf.float32) return tf.clip_by_value(res, -self.clamp, self.clamp) else: res = tf.cast((x64 - self.moving_mean) / (tf.sqrt(self.moving_variance)), tf.float32) return tf.clip_by_value(res, -self.clamp, self.clamp)
2,361
Python
49.255318
182
0.581957
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_tf14/players.py
from rl_games.common import env_configurations from rl_games.algos_tf14 import dqnagent from rl_games.algos_tf14.tensorflow_utils import TensorFlowVariables from rl_games.algos_tf14.tf_moving_mean_std import MovingMeanStd import tensorflow as tf import numpy as np def rescale_actions(low, high, action): d = (high - low) / 2.0 m = (high + low) / 2.0 scaled_action = action * d + m return scaled_action class BasePlayer(object): def __init__(self, sess, config): self.config = config self.sess = sess self.env_name = self.config['env_name'] self.env_spaces = env_configurations.get_env_info(self.config) self.obs_space, self.action_space, self.num_agents = self.env_spaces['observation_space'], self.env_spaces['action_space'], self.env_spaces['agents'] self.env = None self.env_config = self.config.get('env_config', None) def restore(self, fn): raise NotImplementedError('restore') def get_weights(self): return self.variables.get_flat() def set_weights(self, weights): return self.variables.set_flat(weights) def create_env(self): return env_configurations.configurations[self.env_name]['env_creator']() def get_action(self, obs, is_determenistic = False): raise NotImplementedError('step') def get_masked_action(self, obs, mask, is_determenistic = False): raise NotImplementedError('step') def reset(self): raise NotImplementedError('raise') def run(self, n_games=1000, n_game_life = 1, render= False): self.env = self.create_env() sum_rewards = 0 sum_steps = 0 sum_game_res = 0 n_games = n_games * n_game_life has_masks = False has_masks_func = getattr(self.env, "has_action_mask", None) is not None if has_masks_func: has_masks = self.env.has_action_mask() is_determenistic = True for _ in range(n_games): cr = 0 steps = 0 s = self.env.reset() for _ in range(5000): if has_masks: masks = self.env.get_action_mask() action = self.get_masked_action(s, masks, is_determenistic) else: action = self.get_action(s, is_determenistic) s, r, done, info = self.env.step(action) cr += r steps += 1 if render: self.env.render(mode = 'human') if not np.isscalar(done): done = done.any() if done: game_res = 0.0 if isinstance(info, dict): if 'battle_won' in info: game_res = info['battle_won'] if 'scores' in info: game_res = info['scores'] print('reward:', np.mean(cr), 'steps:', steps, 'scores:', game_res) sum_game_res += game_res sum_rewards += np.mean(cr) sum_steps += steps break print('av reward:', sum_rewards / n_games * n_game_life, 'av steps:', sum_steps / n_games * n_game_life, 'scores:', sum_game_res / n_games * n_game_life) class PpoPlayerContinuous(BasePlayer): def __init__(self, sess, config): BasePlayer.__init__(self, sess, config) self.network = config['network'] self.obs_ph = tf.placeholder('float32', (None, ) + self.obs_space.shape, name = 'obs') self.actions_num = self.action_space.shape[0] self.actions_low = self.action_space.low self.actions_high = self.action_space.high self.mask = [False] self.epoch_num = tf.Variable( tf.constant(0, shape=(), dtype=tf.float32), trainable=False) self.normalize_input = self.config['normalize_input'] self.input_obs = self.obs_ph if self.obs_space.dtype == np.uint8: self.input_obs = tf.to_float(self.input_obs) / 255.0 if self.normalize_input: self.moving_mean_std = MovingMeanStd(shape = self.obs_space.shape, epsilon = 1e-5, decay = 0.99) self.input_obs = self.moving_mean_std.normalize(self.input_obs, train=False) self.run_dict = { 'name' : 'agent', 'inputs' : self.input_obs, 'batch_num' : 1, 'games_num' : 1, 'actions_num' : self.actions_num, 'prev_actions_ph' : None } self.last_state = None if self.network.is_rnn(): self.neglop, self.value, self.action, _, self.mu, _, self.states_ph, self.masks_ph, self.lstm_state, self.initial_state = self.network(self.run_dict, reuse=False) self.last_state = self.initial_state else: self.neglop, self.value, self.action, _, self.mu, _ = self.network(self.run_dict, reuse=False) self.saver = tf.train.Saver() self.sess.run(tf.global_variables_initializer()) def get_action(self, obs, is_determenistic = True): if is_determenistic: ret_action = self.mu else: ret_action = self.action if self.network.is_rnn(): action, self.last_state = self.sess.run([ret_action, self.lstm_state], {self.obs_ph : obs, self.states_ph : self.last_state, self.masks_ph : self.mask}) else: action = self.sess.run([ret_action], {self.obs_ph : obs}) action = np.squeeze(action) return rescale_actions(self.actions_low, self.actions_high, np.clip(action, -1.0, 1.0)) def restore(self, fn): self.saver.restore(self.sess, fn) def reset(self): if self.network.is_rnn(): self.last_state = self.initial_state #self.mask = [True] class PpoPlayerDiscrete(BasePlayer): def __init__(self, sess, config): BasePlayer.__init__(self, sess, config) self.network = config['network'] self.use_action_masks = config.get('use_action_masks', False) self.obs_ph = tf.placeholder(self.obs_space.dtype, (None, ) + self.obs_space.shape, name = 'obs') self.actions_num = self.action_space.n if self.use_action_masks: print('using masks for action') self.action_mask_ph = tf.placeholder('int32', (None, self.actions_num), name = 'actions_mask') else: self.action_mask_ph = None self.mask = [False] * self.num_agents self.epoch_num = tf.Variable( tf.constant(0, shape=(), dtype=tf.float32), trainable=False) self.normalize_input = self.config['normalize_input'] self.input_obs = self.obs_ph if self.obs_space.dtype == np.uint8: self.input_obs = tf.to_float(self.input_obs) / 255.0 if self.normalize_input: self.moving_mean_std = MovingMeanStd(shape = self.obs_space.shape, epsilon = 1e-5, decay = 0.99) self.input_obs = self.moving_mean_std.normalize(self.input_obs, train=False) self.run_dict = { 'name' : 'agent', 'inputs' : self.input_obs, 'batch_num' : self.num_agents, 'games_num' : self.num_agents, 'actions_num' : self.actions_num, 'prev_actions_ph' : None, 'action_mask_ph' : self.action_mask_ph } self.last_state = None if self.network.is_rnn(): self.neglop , self.value, self.action, _,self.states_ph, self.masks_ph, self.lstm_state, self.initial_state, self.logits = self.network(self.run_dict, reuse=False) self.last_state = self.initial_state * self.num_agents else: self.neglop , self.value, self.action, _, self.logits = self.network(self.run_dict, reuse=False) self.variables = TensorFlowVariables([self.neglop, self.value, self.action], self.sess) self.saver = tf.train.Saver() self.sess.run(tf.global_variables_initializer()) def get_action(self, obs, is_determenistic = True): ret_action = self.action if self.network.is_rnn(): action, self.last_state, logits = self.sess.run([ret_action, self.lstm_state, self.logits], {self.obs_ph : obs, self.states_ph : self.last_state, self.masks_ph : self.mask}) else: action, logits = self.sess.run([ret_action, self.logits], {self.obs_ph : obs}) if is_determenistic: return np.argmax(logits, axis = -1).astype(np.int32) else: return int(np.squeeze(action)) def get_masked_action(self, obs, mask, is_determenistic = False): #if is_determenistic: ret_action = self.action if self.network.is_rnn(): action, self.last_state, logits = self.sess.run([ret_action, self.lstm_state, self.logits], {self.action_mask_ph : mask, self.obs_ph : obs, self.states_ph : self.last_state, self.masks_ph : self.mask}) else: action, logits = self.sess.run([ret_action, self.logits], {self.action_mask_ph : mask, self.obs_ph : obs}) if is_determenistic: logits = np.array(logits) return np.argmax(logits, axis = -1).astype(np.int32) else: return np.squeeze(action).astype(np.int32) def restore(self, fn): self.saver.restore(self.sess, fn) def reset(self): if self.network.is_rnn(): self.last_state = self.initial_state class DQNPlayer(BasePlayer): def __init__(self, sess, config): BasePlayer.__init__(self, sess, config) self.dqn = dqnagent.DQNAgent(sess, 'player', self.obs_space, self.action_space, config) def get_action(self, obs, is_determenistic = False): return self.dqn.get_action(np.squeeze(obs), 0.0) def restore(self, fn): self.dqn.restore(fn) def reset(self): if self.network.is_rnn(): self.last_state = self.initial_state
10,057
Python
38.754941
213
0.577608
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_tf14/networks.py
import tensorflow as tf import numpy as np import tensorflow_probability as tfp tfd = tfp.distributions def normc_initializer(std=1.0): def _initializer(shape, dtype=None, partition_info=None): # pylint: disable=W0613 out = np.random.randn(*shape).astype(np.float32) out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True)) return tf.constant(out) return _initializer def sample_noise(shape, mean = 0.0, std = 1.0): noise = tf.random_normal(shape, mean = mean, stddev = std) return noise # Added by Andrew Liao # for NoisyNet-DQN (using Factorised Gaussian noise) # modified from ```dense``` function def noisy_dense(inputs, units, name, bias=True, activation=tf.identity, mean = 0.0, std = 1.0): # the function used in eq.7,8 def f(x): return tf.multiply(tf.sign(x), tf.pow(tf.abs(x), 0.5)) # Initializer of \mu and \sigma mu_init = tf.random_uniform_initializer(minval=-1*1/np.power(inputs.get_shape().as_list()[1], 0.5), maxval=1*1/np.power(inputs.get_shape().as_list()[1], 0.5)) sigma_init = tf.constant_initializer(0.4/np.power(inputs.get_shape().as_list()[1], 0.5)) # Sample noise from gaussian p = sample_noise([inputs.get_shape().as_list()[1], 1], mean = 0.0, std = 1.0) q = sample_noise([1, units], mean = 0.0, std = 1.0) f_p = f(p); f_q = f(q) w_epsilon = f_p*f_q; b_epsilon = tf.squeeze(f_q) # w = w_mu + w_sigma*w_epsilon w_mu = tf.get_variable(name + "/w_mu", [inputs.get_shape()[1], units], initializer=mu_init) w_sigma = tf.get_variable(name + "/w_sigma", [inputs.get_shape()[1], units], initializer=sigma_init) w = w_mu + tf.multiply(w_sigma, w_epsilon) ret = tf.matmul(inputs, w) if bias: # b = b_mu + b_sigma*b_epsilon b_mu = tf.get_variable(name + "/b_mu", [units], initializer=mu_init) b_sigma = tf.get_variable(name + "/b_sigma", [units], initializer=sigma_init) b = b_mu + tf.multiply(b_sigma, b_epsilon) return activation(ret + b) else: return activation(ret) def batch_to_seq(h, nbatch, nsteps, flat=False): if flat: h = tf.reshape(h, [nbatch, nsteps]) else: h = tf.reshape(h, [nbatch, nsteps, -1]) return [tf.squeeze(v, [1]) for v in tf.split(axis=1, num_or_size_splits=nsteps, value=h)] def seq_to_batch(h, flat = False): shape = h[0].get_shape().as_list() if not flat: assert(len(shape) > 1) nh = h[0].get_shape()[-1].value return tf.reshape(tf.concat(axis=1, values=h), [-1, nh]) else: return tf.reshape(tf.stack(values=h, axis=1), [-1]) def ortho_init(scale=1.0): def _ortho_init(shape, dtype, partition_info=None): #lasagne ortho init for tf shape = tuple(shape) if len(shape) == 2: flat_shape = shape elif len(shape) == 4: # assumes NHWC flat_shape = (np.prod(shape[:-1]), shape[-1]) else: raise NotImplementedError a = np.random.normal(0.0, 1.0, flat_shape) u, _, v = np.linalg.svd(a, full_matrices=False) q = u if u.shape == flat_shape else v # pick the one with the correct shape q = q.reshape(shape) return (scale * q[:shape[0], :shape[1]]).astype(np.float32) return _ortho_init def lstm(xs, ms, s, scope, nh, nin): with tf.variable_scope(scope): wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(), dtype=tf.float32 ) wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init() ) b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = tf.matmul(x, wx) + tf.matmul(h, wh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(c) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s def _ln(x, g, b, e=1e-5, axes=[1]): u, s = tf.nn.moments(x, axes=axes, keep_dims=True) x = (x-u)/tf.sqrt(s+e) x = x*g+b return x def lnlstm(xs, ms, s, scope, nh, nin): with tf.variable_scope(scope): wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init()) gx = tf.get_variable("gx", [nh*4], initializer=tf.constant_initializer(1.0)) bx = tf.get_variable("bx", [nh*4], initializer=tf.constant_initializer(0.0)) wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init()) gh = tf.get_variable("gh", [nh*4], initializer=tf.constant_initializer(1.0)) bh = tf.get_variable("bh", [nh*4], initializer=tf.constant_initializer(0.0)) b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) gc = tf.get_variable("gc", [nh], initializer=tf.constant_initializer(1.0)) bc = tf.get_variable("bc", [nh], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) tk = 0 for idx, (x, m) in enumerate(zip(xs, ms)): print(tk) tk = tk + 1 c = c*(1-m) h = h*(1-m) z = _ln(tf.matmul(x, wx), gx, bx) + _ln(tf.matmul(h, wh), gh, bh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(_ln(c, gc, bc)) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s ''' used lstm from openai baseline as the most convenient way to work with dones. TODO: try to use more efficient tensorflow way ''' def openai_lstm(name, inputs, states_ph, dones_ph, units, env_num, batch_num, layer_norm=True): nbatch = batch_num nsteps = nbatch // env_num print('nbatch: ', nbatch) print('env_num: ', env_num) dones_ph = tf.to_float(dones_ph) inputs_seq = batch_to_seq(inputs, env_num, nsteps) dones_seq = batch_to_seq(dones_ph, env_num, nsteps) nin = inputs.get_shape()[1].value with tf.variable_scope(name): if layer_norm: hidden_seq, final_state = lnlstm(inputs_seq, dones_seq, states_ph, scope='lnlstm', nin=nin, nh=units) else: hidden_seq, final_state = lstm(inputs_seq, dones_seq, states_ph, scope='lstm', nin=nin, nh=units) hidden = seq_to_batch(hidden_seq) initial_state = np.zeros(states_ph.shape.as_list(), dtype=float) return [hidden, final_state, initial_state] def distributional_output(inputs, actions_num, atoms_num): distributed_qs = tf.layers.dense(inputs=inputs, activation=tf.nn.softmax, units=atoms_num * actions_num) distributed_qs = tf.reshape(distributed_qs, shape = [-1, actions_num, atoms_num]) distributed_qs = tf.nn.softmax(distributed_qs, dim = -1) return distributed_qs def distributional_noisy_output(inputs, actions_num, atoms_num, name, mean = 0.0, std = 1.0): distributed_qs = noisy_dense(inputs=inputs, name=name, activation=tf.nn.softmax, units=atoms_num * actions_num, mean=mean, std=std) distributed_qs = tf.reshape(distributed_qs, shape = [-1, actions_num, atoms_num]) distributed_qs = tf.nn.softmax(distributed_qs, dim = -1) return distributed_qs def atari_conv_net(inputs): NUM_FILTERS_1 = 32 NUM_FILTERS_2 = 64 NUM_FILTERS_3 = 64 conv1 = tf.layers.conv2d(inputs=inputs, filters=NUM_FILTERS_1, kernel_size=[8, 8], strides=(4, 4), activation=tf.nn.relu) conv2 = tf.layers.conv2d(inputs=conv1, filters=NUM_FILTERS_2, kernel_size=[4, 4], strides=(2, 2), activation=tf.nn.relu) conv3 = tf.layers.conv2d(inputs=conv2, filters=NUM_FILTERS_3, kernel_size=[3, 3], strides=(1, 1), activation=tf.nn.relu) return conv3 def dqn_network(name, inputs, actions_num, atoms_num = 1, reuse=False): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES = 512 conv3 = atari_conv_net(inputs) flatten = tf.contrib.layers.flatten(inputs = conv3) hidden = tf.layers.dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu) if atoms_num == 1: logits = tf.layers.dense(inputs=hidden, units=actions_num) else: logits = distributional_output(inputs=hidden, actions_num=actions_num, atoms_num=atoms_num) return logits ''' dueling_type = 'SIMPLE', 'AVERAGE', 'MAX' ''' def dueling_dqn_network(name, inputs, actions_num, reuse=False, dueling_type = 'AVERAGE'): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES = 512 conv3 = atari_conv_net(inputs) flatten = tf.contrib.layers.flatten(inputs = conv3) hidden_value = tf.layers.dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu) hidden_advantage = tf.layers.dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu) value = tf.layers.dense(inputs=hidden_value, units=1) advantage = tf.layers.dense(inputs=hidden_advantage, units=actions_num) outputs = None if dueling_type == 'SIMPLE': outputs = value + advantage if dueling_type == 'AVERAGE': outputs = value + advantage - tf.reduce_mean(advantage, reduction_indices=1, keepdims=True) if dueling_type == 'MAX': outputs = value + advantage - tf.reduce_max(advantage, reduction_indices=1, keepdims=True) return outputs def dueling_dqn_network_with_batch_norm(name, inputs, actions_num, reuse=False, dueling_type = 'AVERAGE', is_train=True): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES = 512 conv3 = atari_conv_net_batch_norm(inputs, is_train) flatten = tf.contrib.layers.flatten(inputs = conv3) hidden_value = tf.layers.dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu) hidden_advantage = tf.layers.dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu) value = tf.layers.dense(inputs=hidden_value, units=1) advantage = tf.layers.dense(inputs=hidden_advantage, units=actions_num) outputs = None if dueling_type == 'SIMPLE': outputs = value + advantage if dueling_type == 'AVERAGE': outputs = value + advantage - tf.reduce_mean(advantage, reduction_indices=1, keepdims=True) if dueling_type == 'MAX': outputs = value + advantage - tf.reduce_max(advantage, reduction_indices=1, keepdims=True) return outputs def noisy_dqn_network(name, inputs, actions_num, mean, std, atoms_num = 1, reuse=False): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES = 512 conv3 = atari_conv_net(inputs) flatten = tf.contrib.layers.flatten(inputs = conv3) hidden = noisy_dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu, name = 'noisy_fc1') if atoms_num == 1: logits = noisy_dense(inputs=hidden, units=actions_num, name = 'noisy_fc2', mean = mean, std = std) else: logits = distributional_noisy_output(inputs=hidden, actions_num=actions_num, atoms_num = atoms_num, name = 'noisy_fc2', mean = mean, std = std) return logits ''' dueling_type = 'SIMPLE', 'AVERAGE', 'MAX' ''' def noisy_dueling_dqn_network(name, inputs, actions_num, mean, std, reuse=False, dueling_type = 'AVERAGE'): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES = 512 conv3 = atari_conv_net(inputs) flatten = tf.contrib.layers.flatten(inputs = conv3) hidden_value = noisy_dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu, name = 'noisy_v1', mean = mean, std = std) hidden_advantage = noisy_dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu, name = 'noisy_a1', mean = mean, std = std) value = noisy_dense(inputs=hidden_value, units=1, name = 'noisy_v2', mean = mean, std = std) advantage = noisy_dense(inputs=hidden_advantage, units=actions_num, name = 'noisy_a2', mean = mean, std = std) outputs = None if dueling_type == 'SIMPLE': outputs = value + advantage if dueling_type == 'AVERAGE': outputs = value + advantage - tf.reduce_mean(advantage, reduction_indices=1, keepdims=True) if dueling_type == 'MAX': outputs = value + advantage - tf.reduce_max(advantage, reduction_indices=1, keepdims=True) return outputs def noisy_dueling_dqn_network_with_batch_norm(name, inputs, actions_num, mean, std, reuse=False, dueling_type = 'AVERAGE', is_train=True): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES = 512 conv3 = atari_conv_net_batch_norm(inputs, is_train) flatten = tf.contrib.layers.flatten(inputs = conv3) hidden_value = noisy_dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu, name = 'noisy_v1', mean = mean, std = std) hidden_advantage = noisy_dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu, name = 'noisy_a1', mean = mean, std = std) value = noisy_dense(inputs=hidden_value, units=1, name = 'noisy_v2', mean = mean, std = std) advantage = noisy_dense(inputs=hidden_advantage, units=actions_num, name = 'noisy_a2', mean = mean, std = std) outputs = None if dueling_type == 'SIMPLE': outputs = value + advantage if dueling_type == 'AVERAGE': outputs = value + advantage - tf.reduce_mean(advantage, reduction_indices=1, keepdims=True) if dueling_type == 'MAX': outputs = value + advantage - tf.reduce_max(advantage, reduction_indices=1, keepdims=True) return outputs def normc_initializer(std=1.0): def _initializer(shape, dtype=None, partition_info=None): out = np.random.randn(*shape).astype(np.float32) out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True)) return tf.constant(out) return _initializer def default_small_a2c_network_separated(name, inputs, actions_num, continuous=False, reuse=False, activation=tf.nn.elu): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES0 = 128 NUM_HIDDEN_NODES1 = 64 NUM_HIDDEN_NODES2 = 32 hidden0c = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, kernel_initializer=normc_initializer(1.0), activation=activation) hidden1c = tf.layers.dense(inputs=hidden0c, units=NUM_HIDDEN_NODES1, kernel_initializer=normc_initializer(1.0), activation=activation) hidden2c = tf.layers.dense(inputs=hidden1c, units=NUM_HIDDEN_NODES2, kernel_initializer=normc_initializer(1.0), activation=activation) hidden0a = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, kernel_initializer=normc_initializer(1.0), activation=activation) hidden1a = tf.layers.dense(inputs=hidden0a, units=NUM_HIDDEN_NODES1, kernel_initializer=normc_initializer(1.0), activation=activation) hidden2a = tf.layers.dense(inputs=hidden1a, units=NUM_HIDDEN_NODES2, kernel_initializer=normc_initializer(1.0), activation=activation) value = tf.layers.dense(inputs=hidden2c, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=hidden2a, units=actions_num, kernel_initializer=normc_initializer(0.01), activation=None) var = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=tf.nn.softplus) return mu, var, value else: logits = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=None) return logits, value def default_a2c_network_separated(name, inputs, actions_num, continuous=False, reuse=False, activation=tf.nn.elu): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES0 = 256 NUM_HIDDEN_NODES1 = 128 NUM_HIDDEN_NODES2 = 64 hidden0c = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, kernel_initializer=normc_initializer(1.0), activation=activation) hidden1c = tf.layers.dense(inputs=hidden0c, units=NUM_HIDDEN_NODES1, kernel_initializer=normc_initializer(1.0), activation=activation) hidden2c = tf.layers.dense(inputs=hidden1c, units=NUM_HIDDEN_NODES2, kernel_initializer=normc_initializer(1.0), activation=activation) hidden0a = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, kernel_initializer=normc_initializer(1.0), activation=activation) hidden1a = tf.layers.dense(inputs=hidden0a, units=NUM_HIDDEN_NODES1, kernel_initializer=normc_initializer(1.0), activation=activation) hidden2a = tf.layers.dense(inputs=hidden1a, units=NUM_HIDDEN_NODES2, kernel_initializer=normc_initializer(1.0), activation=activation) value = tf.layers.dense(inputs=hidden2c, units=1, activation=None, kernel_initializer=hidden_init) if continuous: mu = tf.layers.dense(inputs=hidden2a, units=actions_num, kernel_initializer=normc_initializer(0.01), activation=None) var = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=tf.nn.softplus) return mu, var, value else: logits = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=None) return logits, value def default_a2c_network_separated_logstd(name, inputs, actions_num, continuous=False, reuse=False): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES0 = 256 NUM_HIDDEN_NODES1 = 128 NUM_HIDDEN_NODES2 = 64 hidden_init = normc_initializer(1.0) # tf.random_normal_initializer(stddev= 1.0) hidden0c = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, activation=tf.nn.elu, kernel_initializer=hidden_init) hidden1c = tf.layers.dense(inputs=hidden0c, units=NUM_HIDDEN_NODES1, activation=tf.nn.elu, kernel_initializer=hidden_init) hidden2c = tf.layers.dense(inputs=hidden1c, units=NUM_HIDDEN_NODES2, activation=tf.nn.elu, kernel_initializer=hidden_init) hidden0a = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, activation=tf.nn.elu, kernel_initializer=hidden_init) hidden1a = tf.layers.dense(inputs=hidden0a, units=NUM_HIDDEN_NODES1, activation=tf.nn.elu, kernel_initializer=hidden_init) hidden2a = tf.layers.dense(inputs=hidden1a, units=NUM_HIDDEN_NODES2, activation=tf.nn.elu, kernel_initializer=hidden_init) value = tf.layers.dense(inputs=hidden2c, units=1, activation=None, kernel_initializer=hidden_init) if continuous: mu = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=None,) #std = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=tf.nn.softplus) #logstd = tf.layers.dense(inputs=hidden2a, units=actions_num) logstd = tf.get_variable(name='log_std', shape=(actions_num), initializer=tf.constant_initializer(0.0), trainable=True) return mu, mu * 0 + logstd, value else: logits = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=None) return logits, value def default_a2c_network(name, inputs, actions_num, continuous=False, reuse=False): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES0 = 256 NUM_HIDDEN_NODES1 = 128 NUM_HIDDEN_NODES2 = 64 hidden0 = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, activation=tf.nn.relu) hidden1 = tf.layers.dense(inputs=hidden0, units=NUM_HIDDEN_NODES1, activation=tf.nn.relu) hidden2 = tf.layers.dense(inputs=hidden1, units=NUM_HIDDEN_NODES2, activation=tf.nn.relu) value = tf.layers.dense(inputs=hidden2, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=hidden2, units=actions_num, activation=tf.nn.tanh) var = tf.layers.dense(inputs=hidden2, units=actions_num, activation=tf.nn.softplus) return mu, var, value else: logits = tf.layers.dense(inputs=hidden2, units=actions_num, activation=None) return logits, value def default_a2c_lstm_network(name, inputs, actions_num, games_num, batch_num, continuous=False, reuse=False): env_num = games_num with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES0 = 128 NUM_HIDDEN_NODES1 = 64 NUM_HIDDEN_NODES2 = 64 LSTM_UNITS = 64 hidden0 = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, activation=tf.nn.relu) hidden1 = tf.layers.dense(inputs=hidden0, units=NUM_HIDDEN_NODES1, activation=tf.nn.relu) hidden2 = tf.layers.dense(inputs=hidden1, units=NUM_HIDDEN_NODES2, activation=tf.nn.relu) dones_ph = tf.placeholder(tf.float32, [batch_num]) states_ph = tf.placeholder(tf.float32, [env_num, 2*LSTM_UNITS]) lstm_out, lstm_state, initial_state = openai_lstm('lstm_ac', hidden2, dones_ph=dones_ph, states_ph=states_ph, units=LSTM_UNITS, env_num=env_num, batch_num=batch_num) value = tf.layers.dense(inputs=lstm_out, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=lstm_out, units=actions_num, activation=tf.nn.tanh) var = tf.layers.dense(inputs=lstm_out, units=actions_num, activation=tf.nn.softplus) return mu, var, value, states_ph, dones_ph, lstm_state, initial_state else: logits = tf.layers.dense(inputs=lstm_out, units=actions_num, activation=None) return logits, value, states_ph, dones_ph, lstm_state, initial_state def default_a2c_lstm_network_separated(name, inputs, actions_num, games_num, batch_num, continuous=False, reuse=False): env_num = games_num with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES0 = 256 NUM_HIDDEN_NODES1 = 128 NUM_HIDDEN_NODES2 = 64 LSTM_UNITS = 128 hidden0c = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, activation=tf.nn.elu) hidden1c = tf.layers.dense(inputs=hidden0c, units=NUM_HIDDEN_NODES1, activation=tf.nn.elu) hidden0a = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES0, activation=tf.nn.elu) hidden1a = tf.layers.dense(inputs=hidden0a, units=NUM_HIDDEN_NODES1, activation=tf.nn.elu) dones_ph = tf.placeholder(tf.bool, [batch_num]) states_ph = tf.placeholder(tf.float32, [env_num, 2*LSTM_UNITS]) hidden = tf.concat((hidden1a, hidden1c), axis=1) lstm_out, lstm_state, initial_state = openai_lstm('lstm_a', hidden, dones_ph=dones_ph, states_ph=states_ph, units=LSTM_UNITS, env_num=env_num, batch_num=batch_num) lstm_outa, lstm_outc = tf.split(lstm_out, 2, axis=1) value = tf.layers.dense(inputs=lstm_outc, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=lstm_outa, units=actions_num, activation=None, kernel_initializer=tf.random_uniform_initializer(-0.01, 0.01)) var = tf.layers.dense(inputs=lstm_outa, units=actions_num, activation=tf.nn.softplus) return mu, var, value, states_ph, dones_ph, lstm_state, initial_state else: logits = tf.layers.dense(inputs=lstm_outa, units=actions_num, activation=None) return logits, value, states_ph, dones_ph, lstm_state, initial_state def simple_a2c_lstm_network_separated(name, inputs, actions_num, games_num, batch_num, continuous=False, reuse=False): env_num = games_num with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES1 = 32 NUM_HIDDEN_NODES2 = 32 #NUM_HIDDEN_NODES3 = 16 LSTM_UNITS = 16 hidden1c = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES1, activation=tf.nn.relu) hidden2c = tf.layers.dense(inputs=hidden1c, units=NUM_HIDDEN_NODES2, activation=tf.nn.relu) hidden1a = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES1, activation=tf.nn.relu) hidden2a = tf.layers.dense(inputs=hidden1a, units=NUM_HIDDEN_NODES2, activation=tf.nn.relu) dones_ph = tf.placeholder(tf.bool, [batch_num]) states_ph = tf.placeholder(tf.float32, [env_num, 2* 2*LSTM_UNITS]) states_a, states_c = tf.split(states_ph, 2, axis=1) lstm_outa, lstm_statae, initial_statea = openai_lstm('lstm_actions', hidden2a, dones_ph=dones_ph, states_ph=states_a, units=LSTM_UNITS, env_num=env_num, batch_num=batch_num) lstm_outc, lstm_statec, initial_statec = openai_lstm('lstm_critics', hidden2c, dones_ph=dones_ph, states_ph=states_c, units=LSTM_UNITS, env_num=env_num, batch_num=batch_num) initial_state = np.concatenate((initial_statea, initial_statec), axis=1) lstm_state = tf.concat( values=(lstm_statae, lstm_statec), axis=1) #lstm_outa = tf.layers.dense(inputs=lstm_outa, units=NUM_HIDDEN_NODES2, activation=tf.nn.relu) #lstm_outc = tf.layers.dense(inputs=lstm_outc, units=NUM_HIDDEN_NODES2, activation=tf.nn.relu) value = tf.layers.dense(inputs=lstm_outc, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=lstm_outa, units=actions_num, activation=tf.nn.tanh) var = tf.layers.dense(inputs=lstm_outa, units=actions_num, activation=tf.nn.softplus) return mu, var, value, states_ph, dones_ph, lstm_state, initial_state else: logits = tf.layers.dense(inputs=lstm_outa, units=actions_num, activation=None) return logits, value, states_ph, dones_ph, lstm_state, initial_state def simple_a2c_lstm_network(name, inputs, actions_num, env_num, batch_num, continuous=False, reuse=False): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES1 = 32 NUM_HIDDEN_NODES2 = 32 LSTM_UNITS = 16 hidden1 = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES1, activation=tf.nn.relu) hidden2 = tf.layers.dense(inputs=hidden1, units=NUM_HIDDEN_NODES2, activation=tf.nn.relu) dones_ph = tf.placeholder(tf.bool, [batch_num]) states_ph = tf.placeholder(tf.float32, [env_num, 2*LSTM_UNITS]) lstm_out, lstm_state, initial_state = openai_lstm('lstm_ac', hidden2, dones_ph=dones_ph, states_ph=states_ph, units=LSTM_UNITS, env_num=env_num, batch_num=batch_num) value = tf.layers.dense(inputs=lstm_out, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=lstm_out, units=actions_num, activation=tf.nn.tanh) var = tf.layers.dense(inputs=lstm_out, units=actions_num, activation=tf.nn.softplus) return mu, var, value, states_ph, dones_ph, lstm_state, initial_state else: logits = tf.layers.dense(inputs=lstm_out, units=actions_num, activation=None) return logits, value, states_ph, dones_ph, lstm_state, initial_state def simple_a2c_network_separated(name, inputs, actions_num, activation = tf.nn.elu, continuous=False, reuse=False): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES1 = 64 NUM_HIDDEN_NODES2 = 64 hidden1c = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES1, activation=activation) hidden2c = tf.layers.dense(inputs=hidden1c, units=NUM_HIDDEN_NODES2, activation=activation) hidden1a = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES1, activation=activation) hidden2a = tf.layers.dense(inputs=hidden1a, units=NUM_HIDDEN_NODES2, activation=activation) value = tf.layers.dense(inputs=hidden2c, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=tf.nn.tanh) var = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=tf.nn.softplus) return mu, var, value else: logits = tf.layers.dense(inputs=hidden2a, units=actions_num, activation=None) return logits, value def simple_a2c_network(name, inputs, actions_num, continuous=False, reuse=False): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES1 = 128 NUM_HIDDEN_NODES2 = 64 hidden1 = tf.layers.dense(inputs=inputs, units=NUM_HIDDEN_NODES1, activation=tf.nn.relu) hidden2 = tf.layers.dense(inputs=hidden1, units=NUM_HIDDEN_NODES2, activation=tf.nn.relu) value = tf.layers.dense(inputs=hidden2, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=hidden2, units=actions_num, activation=tf.nn.tanh) var = tf.layers.dense(inputs=hidden2, units=actions_num, activation=tf.nn.softplus) return mu, var, value else: logits = tf.layers.dense(inputs=hidden2, units=actions_num, activation=None) return logits, value def atari_a2c_network_separated(name, inputs, actions_num, continuous=False, reuse=False): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES = 512 conv3a = atari_conv_net(inputs) conv3c = atari_conv_net(inputs) flattena = tf.contrib.layers.flatten(inputs = conv3a) flattenc = tf.contrib.layers.flatten(inputs = conv3c) hiddena = tf.layers.dense(inputs=flattena, units=NUM_HIDDEN_NODES, activation=tf.nn.relu) hiddenc = tf.layers.dense(inputs=flattenc, units=NUM_HIDDEN_NODES, activation=tf.nn.relu) value = tf.layers.dense(inputs=hiddenc, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=hiddena, units=actions_num, activation=tf.nn.tanh) var = tf.layers.dense(inputs=hiddena, units=actions_num, activation=tf.nn.softplus) return mu, var, value else: logits = tf.layers.dense(inputs=hiddena, units=actions_num, activation=None) return logits, value def atari_a2c_network(name, inputs, actions_num, continuous=False, reuse=False): with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES = 512 conv3 = atari_conv_net(inputs) flatten = tf.contrib.layers.flatten(inputs = conv3) hidden = tf.layers.dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu) value = tf.layers.dense(inputs=hidden, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=hidden, units=actions_num, activation=tf.nn.tanh) var = tf.layers.dense(inputs=hidden, units=actions_num, activation=tf.nn.softplus) return mu, var, value else: logits = tf.layers.dense(inputs=hidden, units=actions_num, activation=None) return logits, value def atari_a2c_network_lstm(name, inputs, actions_num, games_num, batch_num, continuous=False, reuse=False): env_num = games_num with tf.variable_scope(name, reuse=reuse): NUM_HIDDEN_NODES = 512 LSTM_UNITS = 256 conv3 = atari_conv_net(inputs) flatten = tf.contrib.layers.flatten(inputs = conv3) hidden = tf.layers.dense(inputs=flatten, units=NUM_HIDDEN_NODES, activation=tf.nn.relu) dones_ph = tf.placeholder(tf.bool, [batch_num]) states_ph = tf.placeholder(tf.float32, [env_num, 2*LSTM_UNITS]) lstm_out, lstm_state, initial_state = openai_lstm('lstm_ac', hidden, dones_ph=dones_ph, states_ph=states_ph, units=LSTM_UNITS, env_num=env_num, batch_num=batch_num) value = tf.layers.dense(inputs=lstm_out, units=1, activation=None) if continuous: mu = tf.layers.dense(inputs=lstm_out, units=actions_num, activation=tf.nn.tanh) var = tf.layers.dense(inputs=lstm_out, units=actions_num, activation=tf.nn.softplus) return mu, var, value, states_ph, dones_ph, lstm_state, initial_state else: logits = tf.layers.dense(inputs=lstm_out, units=actions_num, activation=None) return logits, value, states_ph, dones_ph, lstm_state, initial_state
32,489
Python
50.984
181
0.645141
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_tf14/a2c_discrete.py
from rl_games.common import tr_helpers, vecenv #from rl_games.algos_tf14 import networks from rl_games.algos_tf14.tensorflow_utils import TensorFlowVariables from rl_games.algos_tf14.tf_moving_mean_std import MovingMeanStd import tensorflow as tf import numpy as np import collections import time from collections import deque, OrderedDict from tensorboardX import SummaryWriter import gym from datetime import datetime def swap_and_flatten01(arr): """ swap and then flatten axes 0 and 1 """ if arr is None: return arr s = arr.shape return arr.swapaxes(0, 1).reshape(s[0] * s[1], *s[2:]) class A2CAgent: def __init__(self, sess, base_name, observation_space, action_space, config): observation_shape = observation_space.shape self.use_action_masks = config.get('use_action_masks', False) self.is_train = config.get('is_train', True) self.self_play = config.get('self_play', False) self.name = base_name self.config = config self.env_name = config['env_name'] self.ppo = config['ppo'] self.is_adaptive_lr = config['lr_schedule'] == 'adaptive' self.is_polynom_decay_lr = config['lr_schedule'] == 'polynom_decay' self.is_exp_decay_lr = config['lr_schedule'] == 'exp_decay' self.lr_multiplier = tf.constant(1, shape=(), dtype=tf.float32) self.epoch_num = tf.Variable( tf.constant(0, shape=(), dtype=tf.float32), trainable=False) self.e_clip = config['e_clip'] self.clip_value = config['clip_value'] self.network = config['network'] self.rewards_shaper = config['reward_shaper'] self.num_actors = config['num_actors'] self.env_config = self.config.get('env_config', {}) self.vec_env = vecenv.create_vec_env(self.env_name, self.num_actors, **self.env_config) self.num_agents = self.vec_env.get_number_of_agents() self.horizon_length = config['horizon_length'] self.seq_len = self.config['seq_length'] self.normalize_advantage = config['normalize_advantage'] self.normalize_input = self.config['normalize_input'] self.state_shape = observation_shape self.critic_coef = config['critic_coef'] self.writer = SummaryWriter('runs/' + config['name'] + datetime.now().strftime("_%d-%H-%M-%S")) self.sess = sess self.grad_norm = config['grad_norm'] self.gamma = self.config['gamma'] self.tau = self.config['tau'] self.ignore_dead_batches = self.config.get('ignore_dead_batches', False) self.dones = np.asarray([False]*self.num_actors *self.num_agents, dtype=np.bool) self.current_rewards = np.asarray([0]*self.num_actors *self.num_agents, dtype=np.float32) self.current_lengths = np.asarray([0]*self.num_actors *self.num_agents, dtype=np.float32) self.games_to_track = self.config.get('games_to_track', 100) self.game_rewards = deque([], maxlen=self.games_to_track) self.game_lengths = deque([], maxlen=self.games_to_track) self.game_scores = deque([], maxlen=self.games_to_track) self.obs_ph = tf.placeholder(observation_space.dtype, (None, ) + observation_shape, name = 'obs') self.target_obs_ph = tf.placeholder(observation_space.dtype, (None, ) + observation_shape, name = 'target_obs') self.actions_num = action_space.n self.actions_ph = tf.placeholder('int32', (None,), name = 'actions') if self.use_action_masks: self.action_mask_ph = tf.placeholder('int32', (None, self.actions_num), name = 'actions_mask') else: self.action_mask_ph = None self.old_logp_actions_ph = tf.placeholder('float32', (None, ), name = 'old_logpactions') self.rewards_ph = tf.placeholder('float32', (None,), name = 'rewards') self.old_values_ph = tf.placeholder('float32', (None,), name = 'old_values') self.advantages_ph = tf.placeholder('float32', (None,), name = 'advantages') self.learning_rate_ph = tf.placeholder('float32', (), name = 'lr_ph') self.update_epoch_op = self.epoch_num.assign(self.epoch_num + 1) self.current_lr = self.learning_rate_ph self.input_obs = self.obs_ph self.input_target_obs = self.target_obs_ph if observation_space.dtype == np.uint8: self.input_obs = tf.to_float(self.input_obs) / 255.0 self.input_target_obs = tf.to_float(self.input_target_obs) / 255.0 if self.is_adaptive_lr: self.kl_threshold = config['kl_threshold'] if self.is_polynom_decay_lr: self.lr_multiplier = tf.train.polynomial_decay(1.0, self.epoch_num, config['max_epochs'], end_learning_rate=0.001, power=config.get('decay_power', 1.0)) if self.is_exp_decay_lr: self.lr_multiplier = tf.train.exponential_decay(1.0, self.epoch_num,config['max_epochs'], decay_rate = config['decay_rate']) if self.normalize_input: self.moving_mean_std = MovingMeanStd(shape = observation_space.shape, epsilon = 1e-5, decay = 0.99) self.input_obs = self.moving_mean_std.normalize(self.input_obs, train=True) self.input_target_obs = self.moving_mean_std.normalize(self.input_target_obs, train=False) games_num = self.config['minibatch_size'] // self.seq_len # it is used only for current rnn implementation self.train_dict = { 'name' : 'agent', 'inputs' : self.input_obs, 'batch_num' : self.config['minibatch_size'], 'games_num' : games_num, 'actions_num' : self.actions_num, 'prev_actions_ph' : self.actions_ph, 'action_mask_ph' : None } self.run_dict = { 'name' : 'agent', 'inputs' : self.input_target_obs, 'batch_num' : self.num_actors * self.num_agents, 'games_num' : self.num_actors * self.num_agents, 'actions_num' : self.actions_num, 'prev_actions_ph' : None, 'action_mask_ph' : self.action_mask_ph } self.states = None if self.network.is_rnn(): self.logp_actions ,self.state_values, self.action, self.entropy, self.states_ph, self.masks_ph, self.lstm_state, self.initial_state = self.network(self.train_dict, reuse=False) self.target_neglogp, self.target_state_values, self.target_action, _, self.target_states_ph, self.target_masks_ph, self.target_lstm_state, self.target_initial_state, self.logits = self.network(self.run_dict, reuse=True) self.states = self.target_initial_state else: self.logp_actions ,self.state_values, self.action, self.entropy = self.network(self.train_dict, reuse=False) self.target_neglogp, self.target_state_values, self.target_action, _, self.logits = self.network(self.run_dict, reuse=True) self.saver = tf.train.Saver() self.variables = TensorFlowVariables([self.target_action, self.target_state_values, self.target_neglogp], self.sess) if self.is_train: self.setup_losses() self.sess.run(tf.global_variables_initializer()) def setup_losses(self): curr_e_clip = self.e_clip * self.lr_multiplier if (self.ppo): self.prob_ratio = tf.exp(self.old_logp_actions_ph - self.logp_actions) self.pg_loss_unclipped = -tf.multiply(self.advantages_ph, self.prob_ratio) self.pg_loss_clipped = -tf.multiply(self.advantages_ph, tf.clip_by_value(self.prob_ratio, 1.- curr_e_clip, 1.+ curr_e_clip)) self.actor_loss = tf.maximum(self.pg_loss_unclipped, self.pg_loss_clipped) else: self.actor_loss = self.logp_actions * self.advantages_ph self.actor_loss = tf.reduce_mean(self.actor_loss) self.c_loss = (tf.squeeze(self.state_values) - self.rewards_ph)**2 if self.clip_value: self.cliped_values = self.old_values_ph + tf.clip_by_value(tf.squeeze(self.state_values) - self.old_values_ph, - curr_e_clip, curr_e_clip) self.c_loss_clipped = tf.square(self.cliped_values - self.rewards_ph) self.critic_loss = tf.maximum(self.c_loss, self.c_loss_clipped) else: self.critic_loss = self.c_loss self.critic_loss = tf.reduce_mean(self.critic_loss) self.kl_approx = 0.5 * tf.stop_gradient(tf.reduce_mean((self.old_logp_actions_ph - self.logp_actions)**2)) if self.is_adaptive_lr: self.current_lr = tf.where(self.kl_approx > (2.0 * self.kl_threshold), tf.maximum(self.current_lr / 1.5, 1e-6), self.current_lr) self.current_lr = tf.where(self.kl_approx < (0.5 * self.kl_threshold), tf.minimum(self.current_lr * 1.5, 1e-2), self.current_lr) self.loss = self.actor_loss + 0.5 * self.critic_coef * self.critic_loss - self.config['entropy_coef'] * self.entropy self.reg_loss = tf.losses.get_regularization_loss() self.loss += self.reg_loss self.train_step = tf.train.AdamOptimizer(self.current_lr * self.lr_multiplier) self.weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='agent') grads = tf.gradients(self.loss, self.weights) if self.config['truncate_grads']: grads, _ = tf.clip_by_global_norm(grads, self.grad_norm) grads = list(zip(grads, self.weights)) self.train_op = self.train_step.apply_gradients(grads) def update_epoch(self): return self.sess.run([self.update_epoch_op])[0] def get_action_values(self, obs): run_ops = [self.target_action, self.target_state_values, self.target_neglogp] if self.network.is_rnn(): run_ops.append(self.target_lstm_state) return self.sess.run(run_ops, {self.target_obs_ph : obs, self.target_states_ph : self.states, self.target_masks_ph : self.dones}) else: return (*self.sess.run(run_ops, {self.target_obs_ph : obs}), None) def get_masked_action_values(self, obs, action_masks): run_ops = [self.target_action, self.target_state_values, self.target_neglogp, self.logits] if self.network.is_rnn(): run_ops.append(self.target_lstm_state) return self.sess.run(run_ops, {self.action_mask_ph: action_masks, self.target_obs_ph : obs, self.target_states_ph : self.states, self.target_masks_ph : self.dones}) else: return (*self.sess.run(run_ops, {self.action_mask_ph: action_masks, self.target_obs_ph : obs}), None) def get_values(self, obs): if self.network.is_rnn(): return self.sess.run([self.target_state_values], {self.target_obs_ph : obs, self.target_states_ph : self.states, self.target_masks_ph : self.dones}) else: return self.sess.run([self.target_state_values], {self.target_obs_ph : obs}) def get_weights(self): return self.variables.get_flat() def set_weights(self, weights): return self.variables.set_flat(weights) def play_steps(self): # here, we init the lists that will contain the mb of experiences mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs = [],[],[],[],[],[] mb_states = [] epinfos = [] # for n in range number of steps for _ in range(self.horizon_length): if self.network.is_rnn(): mb_states.append(self.states) if self.use_action_masks: masks = self.vec_env.get_action_masks() if self.use_action_masks: actions, values, neglogpacs, _, self.states = self.get_masked_action_values(self.obs, masks) else: actions, values, neglogpacs, self.states = self.get_action_values(self.obs) actions = np.squeeze(actions) values = np.squeeze(values) neglogpacs = np.squeeze(neglogpacs) mb_obs.append(self.obs.copy()) mb_actions.append(actions) mb_values.append(values) mb_neglogpacs.append(neglogpacs) mb_dones.append(self.dones.copy()) self.obs[:], rewards, self.dones, infos = self.vec_env.step(actions) self.current_rewards += rewards self.current_lengths += 1 for reward, length, done, info in zip(self.current_rewards[::self.num_agents], self.current_lengths[::self.num_agents], self.dones[::self.num_agents], infos): if done: self.game_rewards.append(reward) self.game_lengths.append(length) game_res = 1.0 if isinstance(info, dict): game_res = info.get('battle_won', 0.5) self.game_scores.append(game_res) self.current_rewards = self.current_rewards * (1.0 - self.dones) self.current_lengths = self.current_lengths * (1.0 - self.dones) shaped_rewards = self.rewards_shaper(rewards) epinfos.append(infos) mb_rewards.append(shaped_rewards) #using openai baseline approach mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype) mb_rewards = np.asarray(mb_rewards, dtype=np.float32) mb_actions = np.asarray(mb_actions, dtype=np.float32) mb_values = np.asarray(mb_values, dtype=np.float32) mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32) mb_dones = np.asarray(mb_dones, dtype=np.bool) mb_states = np.asarray(mb_states, dtype=np.float32) last_values = self.get_values(self.obs) last_values = np.squeeze(last_values) mb_returns = np.zeros_like(mb_rewards) mb_advs = np.zeros_like(mb_rewards) lastgaelam = 0 for t in reversed(range(self.horizon_length)): if t == self.horizon_length - 1: nextnonterminal = 1.0 - self.dones nextvalues = last_values else: nextnonterminal = 1.0 - mb_dones[t+1] nextvalues = mb_values[t+1] delta = mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_values[t] mb_advs[t] = lastgaelam = delta + self.gamma * self.tau * nextnonterminal * lastgaelam mb_returns = mb_advs + mb_values if self.network.is_rnn(): result = (*map(swap_and_flatten01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs, mb_states )), epinfos) else: result = (*map(swap_and_flatten01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs)), None, epinfos) return result def save(self, fn): self.saver.save(self.sess, fn) def restore(self, fn): self.saver.restore(self.sess, fn) def train(self): self.obs = self.vec_env.reset() batch_size = self.horizon_length * self.num_actors * self.num_agents batch_size_envs = self.horizon_length * self.num_actors minibatch_size = self.config['minibatch_size'] mini_epochs_num = self.config['mini_epochs'] num_minibatches = batch_size // minibatch_size last_lr = self.config['learning_rate'] frame = 0 update_time = 0 self.last_mean_rewards = -100500 play_time = 0 epoch_num = 0 max_epochs = self.config.get('max_epochs', 1e6) start_time = time.time() total_time = 0 rep_count = 0 while True: play_time_start = time.time() epoch_num = self.update_epoch() frame += batch_size_envs obses, returns, dones, actions, values, neglogpacs, lstm_states, _ = self.play_steps() advantages = returns - values if self.normalize_advantage: advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8) a_losses = [] c_losses = [] entropies = [] kls = [] play_time_end = time.time() play_time = play_time_end - play_time_start update_time_start = time.time() if self.network.is_rnn(): total_games = batch_size // self.seq_len num_games_batch = minibatch_size // self.seq_len game_indexes = np.arange(total_games) flat_indexes = np.arange(total_games * self.seq_len).reshape(total_games, self.seq_len) lstm_states = lstm_states[::self.seq_len] for _ in range(0, mini_epochs_num): np.random.shuffle(game_indexes) for i in range(0, num_minibatches): batch = range(i * num_games_batch, (i + 1) * num_games_batch) mb_indexes = game_indexes[batch] mbatch = flat_indexes[mb_indexes].ravel() dict = {} dict[self.old_values_ph] = values[mbatch] dict[self.old_logp_actions_ph] = neglogpacs[mbatch] dict[self.advantages_ph] = advantages[mbatch] dict[self.rewards_ph] = returns[mbatch] dict[self.actions_ph] = actions[mbatch] dict[self.obs_ph] = obses[mbatch] dict[self.masks_ph] = dones[mbatch] dict[self.states_ph] = lstm_states[mb_indexes] dict[self.learning_rate_ph] = last_lr run_ops = [self.actor_loss, self.critic_loss, self.entropy, self.kl_approx, self.current_lr, self.lr_multiplier, self.train_op] run_ops.append(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) a_loss, c_loss, entropy, kl, last_lr, lr_mul,_, _ = self.sess.run(run_ops, dict) a_losses.append(a_loss) c_losses.append(c_loss) kls.append(kl) entropies.append(entropy) else: for _ in range(0, mini_epochs_num): permutation = np.random.permutation(batch_size) obses = obses[permutation] returns = returns[permutation] actions = actions[permutation] values = values[permutation] neglogpacs = neglogpacs[permutation] advantages = advantages[permutation] for i in range(0, num_minibatches): batch = range(i * minibatch_size, (i + 1) * minibatch_size) dict = {self.obs_ph: obses[batch], self.actions_ph : actions[batch], self.rewards_ph : returns[batch], self.advantages_ph : advantages[batch], self.old_logp_actions_ph : neglogpacs[batch], self.old_values_ph : values[batch]} dict[self.learning_rate_ph] = last_lr run_ops = [self.actor_loss, self.critic_loss, self.entropy, self.kl_approx, self.current_lr, self.lr_multiplier, self.train_op] run_ops.append(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) a_loss, c_loss, entropy, kl, last_lr, lr_mul, _, _ = self.sess.run(run_ops, dict) a_losses.append(a_loss) c_losses.append(c_loss) kls.append(kl) entropies.append(entropy) update_time_end = time.time() update_time = update_time_end - update_time_start sum_time = update_time + play_time total_time = update_time_end - start_time if True: scaled_time = self.num_agents * sum_time print('frames per seconds: ', batch_size / scaled_time) self.writer.add_scalar('performance/fps', batch_size / scaled_time, frame) self.writer.add_scalar('performance/update_time', update_time, frame) self.writer.add_scalar('performance/play_time', play_time, frame) self.writer.add_scalar('losses/a_loss', np.mean(a_losses), frame) self.writer.add_scalar('losses/c_loss', np.mean(c_losses), frame) self.writer.add_scalar('losses/entropy', np.mean(entropies), frame) self.writer.add_scalar('info/last_lr', last_lr * lr_mul, frame) self.writer.add_scalar('info/lr_mul', lr_mul, frame) self.writer.add_scalar('info/e_clip', self.e_clip * lr_mul, frame) self.writer.add_scalar('info/kl', np.mean(kls), frame) self.writer.add_scalar('info/epochs', epoch_num, frame) if len(self.game_rewards) > 0: mean_rewards = np.mean(self.game_rewards) mean_lengths = np.mean(self.game_lengths) mean_scores = np.mean(self.game_scores) self.writer.add_scalar('rewards/mean', mean_rewards, frame) self.writer.add_scalar('rewards/time', mean_rewards, total_time) self.writer.add_scalar('episode_lengths/mean', mean_lengths, frame) self.writer.add_scalar('episode_lengths/time', mean_lengths, total_time) self.writer.add_scalar('scores/mean', mean_scores, frame) self.writer.add_scalar('scores/time', mean_scores, total_time) if rep_count % 10 == 0: self.save("./nn/" + 'last_' + self.config['name'] + 'ep=' + str(epoch_num) + 'rew=' + str(mean_rewards)) rep_count += 1 if mean_rewards > self.last_mean_rewards: print('saving next best rewards: ', mean_rewards) self.last_mean_rewards = mean_rewards self.save("./nn/" + self.config['name']) if self.last_mean_rewards > self.config['score_to_win']: print('Network won!') self.save("./nn/" + self.config['name'] + 'ep=' + str(epoch_num) + 'rew=' + str(mean_rewards)) return self.last_mean_rewards, epoch_num if epoch_num > max_epochs: self.save("./nn/" + 'last_' + self.config['name'] + 'ep=' + str(epoch_num) + 'rew=' + str(mean_rewards)) print('MAX EPOCHS NUM!') return self.last_mean_rewards, epoch_num update_time = 0
22,809
Python
49.688889
232
0.577404
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_tf14/dqnagent.py
from rl_games.common import tr_helpers, vecenv, experience, env_configurations from rl_games.common.categorical import CategoricalQ from rl_games.algos_tf14 import networks, models from rl_games.algos_tf14.tensorflow_utils import TensorFlowVariables from rl_games.algos_tf14.tf_moving_mean_std import MovingMeanStd import tensorflow as tf import numpy as np import collections import time from collections import deque from tensorboardX import SummaryWriter from datetime import datetime class DQNAgent: def __init__(self, sess, base_name, observation_space, action_space, config): observation_shape = observation_space.shape actions_num = action_space.n self.config = config self.is_adaptive_lr = config['lr_schedule'] == 'adaptive' self.is_polynom_decay_lr = config['lr_schedule'] == 'polynom_decay' self.is_exp_decay_lr = config['lr_schedule'] == 'exp_decay' self.lr_multiplier = tf.constant(1, shape=(), dtype=tf.float32) self.learning_rate_ph = tf.placeholder('float32', (), name = 'lr_ph') self.games_to_track = config.get('games_to_track', 100) self.max_epochs = config.get('max_epochs', 1e6) self.game_rewards = deque([], maxlen=self.games_to_track) self.game_lengths = deque([], maxlen=self.games_to_track) self.epoch_num = tf.Variable( tf.constant(0, shape=(), dtype=tf.float32), trainable=False) self.update_epoch_op = self.epoch_num.assign(self.epoch_num + 1) self.current_lr = self.learning_rate_ph if self.is_adaptive_lr: self.kl_threshold = config['kl_threshold'] if self.is_polynom_decay_lr: self.lr_multiplier = tf.train.polynomial_decay(1.0, global_step=self.epoch_num, decay_steps=self.max_epochs, end_learning_rate=0.001, power=config.get(config, 'decay_power', 1.0)) if self.is_exp_decay_lr: self.lr_multiplier = tf.train.exponential_decay(1.0, global_step=self.epoch_num, decay_steps=self.max_epochs, decay_rate = config['decay_rate']) self.env_name = config['env_name'] self.network = config['network'] self.state_shape = observation_shape self.actions_num = actions_num self.writer = SummaryWriter('runs/' + config['name'] + datetime.now().strftime("_%d-%H-%M-%S")) self.epsilon = self.config['epsilon'] self.rewards_shaper = self.config['reward_shaper'] self.epsilon_processor = tr_helpers.LinearValueProcessor(self.config['epsilon'], self.config['min_epsilon'], self.config['epsilon_decay_frames']) self.beta_processor = tr_helpers.LinearValueProcessor(self.config['priority_beta'], self.config['max_beta'], self.config['beta_decay_frames']) if self.env_name: self.env = env_configurations.configurations[self.env_name]['env_creator']() self.sess = sess self.horizon_length = self.config['horizon_length'] self.states = deque([], maxlen=self.horizon_length) self.is_prioritized = config['replay_buffer_type'] != 'normal' self.atoms_num = self.config['atoms_num'] self.is_categorical = self.atoms_num > 1 if self.is_categorical: self.v_min = self.config['v_min'] self.v_max = self.config['v_max'] self.delta_z = (self.v_max - self.v_min) / (self.atoms_num - 1) self.all_z = tf.range(self.v_min, self.v_max + self.delta_z, self.delta_z) self.categorical = CategoricalQ(self.atoms_num, self.v_min, self.v_max) if not self.is_prioritized: self.exp_buffer = experience.ReplayBuffer(config['replay_buffer_size'], observation_space) else: self.exp_buffer = experience.PrioritizedReplayBuffer(config['replay_buffer_size'], config['priority_alpha'], observation_space) self.sample_weights_ph = tf.placeholder(tf.float32, shape= [None,] , name='sample_weights') self.obs_ph = tf.placeholder(observation_space.dtype, shape=(None,) + self.state_shape , name = 'obs_ph') self.actions_ph = tf.placeholder(tf.int32, shape=[None,], name = 'actions_ph') self.rewards_ph = tf.placeholder(tf.float32, shape=[None,], name = 'rewards_ph') self.next_obs_ph = tf.placeholder(observation_space.dtype, shape=(None,) + self.state_shape , name = 'next_obs_ph') self.is_done_ph = tf.placeholder(tf.float32, shape=[None,], name = 'is_done_ph') self.is_not_done = 1 - self.is_done_ph self.name = base_name self.gamma = self.config['gamma'] self.gamma_step = self.gamma**self.horizon_length self.input_obs = self.obs_ph self.input_next_obs = self.next_obs_ph if observation_space.dtype == np.uint8: print('scaling obs') self.input_obs = tf.to_float(self.input_obs) / 255.0 self.input_next_obs = tf.to_float(self.input_next_obs) / 255.0 if self.atoms_num == 1: self.setup_qvalues(actions_num) else: self.setup_cat_qvalues(actions_num) self.reg_loss = tf.losses.get_regularization_loss() self.td_loss_mean += self.reg_loss self.learning_rate = self.config['learning_rate'] self.train_step = tf.train.AdamOptimizer(self.learning_rate * self.lr_multiplier).minimize(self.td_loss_mean, var_list=self.weights) self.saver = tf.train.Saver() self.assigns_op = [tf.assign(w_target, w_self, validate_shape=True) for w_self, w_target in zip(self.weights, self.target_weights)] self.variables = TensorFlowVariables(self.qvalues, self.sess) if self.env_name: sess.run(tf.global_variables_initializer()) self._reset() def _get_q(self, probs): res = probs * self.all_z return tf.reduce_sum(res, axis=2) def get_weights(self): return self.variables.get_flat() def set_weights(self, weights): return self.variables.set_flat(weights) def update_epoch(self): return self.sess.run([self.update_epoch_op])[0] def setup_cat_qvalues(self, actions_num): config = { 'name' : 'agent', 'inputs' : self.input_obs, 'actions_num' : actions_num, } self.logits = self.network(config, reuse=False) self.qvalues_c = tf.nn.softmax(self.logits, axis = 2) self.qvalues = self._get_q(self.qvalues_c) config = { 'name' : 'target', 'inputs' : self.input_next_obs, 'actions_num' : actions_num, } self.target_logits = self.network(config, reuse=False) self.target_qvalues_c = tf.nn.softmax(self.target_logits, axis = 2) self.target_qvalues = self._get_q(self.target_qvalues_c) if self.config['is_double'] == True: config = { 'name' : 'agent', 'inputs' : self.input_next_obs, 'actions_num' : actions_num, } self.next_logits = tf.stop_gradient(self.network(config, reuse=True)) self.next_qvalues_c = tf.nn.softmax(self.next_logits, axis = 2) self.next_qvalues = self._get_q(self.next_qvalues_c) self.weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='agent') self.target_weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='target') self.current_action_values = tf.reduce_sum(tf.expand_dims(tf.one_hot(self.actions_ph, actions_num), -1) * self.logits, reduction_indices = (1,)) if self.config['is_double'] == True: self.next_selected_actions = tf.argmax(self.next_qvalues, axis = 1) self.next_selected_actions_onehot = tf.one_hot(self.next_selected_actions, actions_num) self.next_state_values_target = tf.stop_gradient( tf.reduce_sum( tf.expand_dims(self.next_selected_actions_onehot, -1) * self.target_qvalues_c , reduction_indices = (1,) )) else: self.next_selected_actions = tf.argmax(self.target_qvalues, axis = 1) self.next_selected_actions_onehot = tf.one_hot(self.next_selected_actions, actions_num) self.next_state_values_target = tf.stop_gradient( tf.reduce_sum( tf.expand_dims(self.next_selected_actions_onehot, -1) * self.target_qvalues_c , reduction_indices = (1,) )) self.proj_dir_ph = tf.placeholder(tf.float32, shape=[None, self.atoms_num], name = 'best_proj_dir') log_probs = tf.nn.log_softmax( self.current_action_values, axis=1) if self.is_prioritized: # we need to return loss to update priority buffer self.abs_errors = tf.reduce_sum(-log_probs * self.proj_dir_ph, axis = 1) + 1e-5 self.td_loss = self.abs_errors * self.sample_weights_ph else: self.td_loss = tf.reduce_sum(-log_probs * self.proj_dir_ph, axis = 1) self.td_loss_mean = tf.reduce_mean(self.td_loss) def setup_qvalues(self, actions_num): config = { 'name' : 'agent', 'inputs' : self.input_obs, 'actions_num' : actions_num, } self.qvalues = self.network(config, reuse=False) config = { 'name' : 'target', 'inputs' : self.input_next_obs, 'actions_num' : actions_num, } self.target_qvalues = tf.stop_gradient(self.network(config, reuse=False)) if self.config['is_double'] == True: config = { 'name' : 'agent', 'inputs' : self.input_next_obs, 'actions_num' : actions_num, } self.next_qvalues = tf.stop_gradient(self.network(config, reuse=True)) self.weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='agent') self.target_weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='target') self.current_action_qvalues = tf.reduce_sum(tf.one_hot(self.actions_ph, actions_num) * self.qvalues, reduction_indices = 1) if self.config['is_double'] == True: self.next_selected_actions = tf.argmax(self.next_qvalues, axis = 1) self.next_selected_actions_onehot = tf.one_hot(self.next_selected_actions, actions_num) self.next_state_values_target = tf.stop_gradient( tf.reduce_sum( self.target_qvalues * self.next_selected_actions_onehot , reduction_indices=[1,] )) else: self.next_state_values_target = tf.stop_gradient(tf.reduce_max(self.target_qvalues, reduction_indices=1)) self.reference_qvalues = self.rewards_ph + self.gamma_step *self.is_not_done * self.next_state_values_target if self.is_prioritized: # we need to return l1 loss to update priority buffer self.abs_errors = tf.abs(self.current_action_qvalues - self.reference_qvalues) + 1e-5 # the same as multiply gradients later (other way is used in different examples over internet) self.td_loss = tf.losses.huber_loss(self.current_action_qvalues, self.reference_qvalues, reduction=tf.losses.Reduction.NONE) * self.sample_weights_ph self.td_loss_mean = tf.reduce_mean(self.td_loss) else: self.td_loss_mean = tf.losses.huber_loss(self.current_action_qvalues, self.reference_qvalues, reduction=tf.losses.Reduction.MEAN) self.reg_loss = tf.losses.get_regularization_loss() self.td_loss_mean += self.reg_loss self.learning_rate = self.config['learning_rate'] if self.env_name: self.train_step = tf.train.AdamOptimizer(self.learning_rate * self.lr_multiplier).minimize(self.td_loss_mean, var_list=self.weights) def save(self, fn): self.saver.save(self.sess, fn) def restore(self, fn): self.saver.restore(self.sess, fn) def _reset(self): self.states.clear() if self.env_name: self.state = self.env.reset() self.total_reward = 0.0 self.total_shaped_reward = 0.0 self.step_count = 0 def get_qvalues(self, state): return self.sess.run(self.qvalues, {self.obs_ph: state}) def get_action(self, state, epsilon=0.0): if np.random.random() < epsilon: action = self.env.action_space.sample() else: qvals = self.get_qvalues([state]) action = np.argmax(qvals) return action def play_steps(self, steps, epsilon=0.0): done_reward = None done_shaped_reward = None done_steps = None steps_rewards = 0 cur_gamma = 1 cur_states_len = len(self.states) # always break after one while True: if cur_states_len > 0: state = self.states[-1][0] else: state = self.state action = self.get_action(state, epsilon) new_state, reward, is_done, _ = self.env.step(action) #reward = reward * (1 - is_done) self.step_count += 1 self.total_reward += reward shaped_reward = self.rewards_shaper(reward) self.total_shaped_reward += shaped_reward self.states.append([new_state, action, shaped_reward]) if len(self.states) < steps: break for i in range(steps): sreward = self.states[i][2] steps_rewards += sreward * cur_gamma cur_gamma = cur_gamma * self.gamma next_state, current_action, _ = self.states[0] self.exp_buffer.add(self.state, current_action, steps_rewards, new_state, is_done) self.state = next_state break if is_done: done_reward = self.total_reward done_steps = self.step_count done_shaped_reward = self.total_shaped_reward self._reset() return done_reward, done_shaped_reward, done_steps def load_weigths_into_target_network(self): self.sess.run(self.assigns_op) def sample_batch(self, exp_replay, batch_size): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(batch_size) return { self.obs_ph:obs_batch, self.actions_ph:act_batch, self.rewards_ph:reward_batch, self.is_done_ph:is_done_batch, self.next_obs_ph:next_obs_batch } def sample_prioritized_batch(self, exp_replay, batch_size, beta): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch, sample_weights, sample_idxes = exp_replay.sample(batch_size, beta) batch = { self.obs_ph:obs_batch, self.actions_ph:act_batch, self.rewards_ph:reward_batch, self.is_done_ph:is_done_batch, self.next_obs_ph:next_obs_batch, self.sample_weights_ph: sample_weights } return [batch , sample_idxes] def train(self): mem_free_steps = 0 self.last_mean_rewards = -100500 epoch_num = 0 frame = 0 update_time = 0 play_time = 0 start_time = time.time() total_time = 0 self.load_weigths_into_target_network() for _ in range(0, self.config['num_steps_fill_buffer']): self.play_steps(self.horizon_length, self.epsilon) steps_per_epoch = self.config['steps_per_epoch'] num_epochs_to_copy = self.config['num_epochs_to_copy'] batch_size = self.config['batch_size'] lives_reward = self.config['lives_reward'] episodes_to_log = self.config['episodes_to_log'] frame = 0 play_time = 0 update_time = 0 rewards = [] shaped_rewards = [] steps = [] losses = deque([], maxlen=100) while True: epoch_num = self.update_epoch() t_play_start = time.time() self.epsilon = self.epsilon_processor(frame) self.beta = self.beta_processor(frame) for _ in range(0, steps_per_epoch): reward, shaped_reward, step = self.play_steps(self.horizon_length, self.epsilon) if reward != None: self.game_lengths.append(step) self.game_rewards.append(reward) #shaped_rewards.append(shaped_reward) t_play_end = time.time() play_time += t_play_end - t_play_start # train frame = frame + steps_per_epoch t_start = time.time() if self.is_categorical: if self.is_prioritized: batch, idxes = self.sample_prioritized_batch(self.exp_buffer, batch_size=batch_size, beta = self.beta) next_state_vals = self.sess.run([self.next_state_values_target], batch)[0] projected = self.categorical.distr_projection(next_state_vals, batch[self.rewards_ph], batch[self.is_done_ph], self.gamma ** self.horizon_length) batch[self.proj_dir_ph] = projected _, loss_t, errors_update, lr_mul = self.sess.run([self.train_step, self.td_loss_mean, self.abs_errors, self.lr_multiplier], batch) self.exp_buffer.update_priorities(idxes, errors_update) else: batch = self.sample_batch(self.exp_buffer, batch_size=batch_size) next_state_vals = self.sess.run([self.next_state_values_target], batch)[0] projected = self.categorical.distr_projection(next_state_vals, batch[self.rewards_ph], batch[self.is_done_ph], self.gamma ** self.horizon_length) batch[self.proj_dir_ph] = projected _, loss_t, lr_mul = self.sess.run([self.train_step, self.td_loss_mean, self.lr_multiplier], batch) else: if self.is_prioritized: batch, idxes = self.sample_prioritized_batch(self.exp_buffer, batch_size=batch_size, beta = self.beta) _, loss_t, errors_update, lr_mul = self.sess.run([self.train_step, self.td_loss_mean, self.abs_errors, self.lr_multiplier], batch) self.exp_buffer.update_priorities(idxes, errors_update) else: batch = self.sample_batch(self.exp_buffer, batch_size=batch_size) _, loss_t, lr_mul = self.sess.run([self.train_step, self.td_loss_mean, self.lr_multiplier], batch) losses.append(loss_t) t_end = time.time() update_time += t_end - t_start total_time += update_time if frame % 1000 == 0: mem_free_steps += 1 if mem_free_steps == 10: mem_free_steps = 0 tr_helpers.free_mem() sum_time = update_time + play_time print('frames per seconds: ', 1000 / (sum_time)) self.writer.add_scalar('performance/fps', 1000 / sum_time, frame) self.writer.add_scalar('performance/upd_time', update_time, frame) self.writer.add_scalar('performance/play_time', play_time, frame) self.writer.add_scalar('losses/td_loss', np.mean(losses), frame) self.writer.add_scalar('info/lr_mul', lr_mul, frame) self.writer.add_scalar('info/lr', self.learning_rate*lr_mul, frame) self.writer.add_scalar('info/epochs', epoch_num, frame) self.writer.add_scalar('info/epsilon', self.epsilon, frame) if self.is_prioritized: self.writer.add_scalar('beta', self.beta, frame) update_time = 0 play_time = 0 num_games = len(self.game_rewards) if num_games > 10: d = num_games / lives_reward mean_rewards = np.sum(self.game_rewards) / d mean_lengths = np.sum(self.game_lengths) / d self.writer.add_scalar('rewards/mean', mean_rewards, frame) self.writer.add_scalar('rewards/time', mean_rewards, total_time) self.writer.add_scalar('episode_lengths/mean', mean_lengths, frame) self.writer.add_scalar('episode_lengths/time', mean_lengths, total_time) if mean_rewards > self.last_mean_rewards: print('saving next best rewards: ', mean_rewards) self.last_mean_rewards = mean_rewards self.save("./nn/" + self.config['name'] + 'ep=' + str(epoch_num) + 'rew=' + str(mean_rewards)) if self.last_mean_rewards > self.config['score_to_win']: print('network won!') return self.last_mean_rewards, epoch_num #clear_output(True) # adjust agent parameters if frame % num_epochs_to_copy == 0: self.load_weigths_into_target_network() if epoch_num >= self.max_epochs: print('Max epochs reached') self.save("./nn/" + 'last_' + self.config['name'] + 'ep=' + str(epoch_num) + 'rew=' + str(np.sum(self.game_rewards) * lives_reward / len(self.game_rewards))) return self.last_mean_rewards, epoch_num
21,405
Python
48.322581
191
0.592245
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_tf14/models.py
import tensorflow as tf import numpy as np import tensorflow_probability as tfp from rl_games.algos_tf14 import networks tfd = tfp.distributions def entry_stop_gradients(target, mask): mask_h = tf.abs(mask-1) return tf.stop_gradient(mask_h * target) + mask * target class BaseModel(object): def is_rnn(self): return False class ModelA2C(BaseModel): def __init__(self, network): self.network = network def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] prev_actions_ph = dict['prev_actions_ph'] action_mask_ph = dict.get('action_mask_ph', None) is_train = prev_actions_ph is not None logits, value = self.network(name, inputs=inputs, actions_num=actions_num, continuous=False, is_train=is_train,reuse=reuse) #if action_mask_ph is not None: #masks = tf.layers.dense(tf.to_float(action_mask_ph), actions_num, activation=tf.nn.elu) #logits = masks + logits #logits = entry_stop_gradients(logits, tf.to_float(action_mask_ph)) probs = tf.nn.softmax(logits) # Gumbel Softmax if not is_train: u = tf.random_uniform(tf.shape(logits), dtype=logits.dtype) rand_logits = logits - tf.log(-tf.log(u)) if action_mask_ph is not None: inf_mask = tf.maximum(tf.log(tf.to_float(action_mask_ph)), tf.float32.min) rand_logits = rand_logits + inf_mask logits = logits + inf_mask action = tf.argmax(rand_logits, axis=-1) one_hot_actions = tf.one_hot(action, actions_num) entropy = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=probs) if not is_train: neglogp = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=tf.stop_gradient(one_hot_actions)) return neglogp, value, action, entropy, logits else: prev_neglogp = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=prev_actions_ph) return prev_neglogp, value, None, entropy class ModelA2CContinuous(BaseModel): def __init__(self, network): self.network = network def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] prev_actions_ph = dict['prev_actions_ph'] is_train = prev_actions_ph is not None mu, sigma, value = self.network(name, inputs=inputs, actions_num=actions_num, continuous=True, is_train = is_train, reuse=reuse) norm_dist = tfd.Normal(mu, sigma) action = tf.squeeze(norm_dist.sample(1), axis=0) entropy = tf.reduce_mean(tf.reduce_sum(norm_dist.entropy(), axis=-1)) if prev_actions_ph == None: neglogp = tf.reduce_sum(-tf.log(norm_dist.prob(action)+ 1e-6), axis=-1) return neglogp, value, action, entropy, mu, sigma prev_neglogp = tf.reduce_sum(-tf.log(norm_dist.prob(prev_actions_ph) + 1e-6), axis=-1) return prev_neglogp, value, action, entropy, mu, sigma class ModelA2CContinuousLogStd(BaseModel): def __init__(self, network): self.network = network def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] prev_actions_ph = dict['prev_actions_ph'] is_train = prev_actions_ph is not None mean, logstd, value = self.network(name, inputs=inputs, actions_num=actions_num, continuous=True, is_train=True, reuse=reuse) std = tf.exp(logstd) norm_dist = tfd.Normal(mean, std) action = mean + std * tf.random_normal(tf.shape(mean)) #action = tf.squeeze(norm_dist.sample(1), axis=0) #action = tf.clip_by_value(action, -1.0, 1.0) entropy = tf.reduce_mean(tf.reduce_sum(norm_dist.entropy(), axis=-1)) if prev_actions_ph is None: neglogp = self.neglogp(action, mean, std, logstd) return neglogp, value, action, entropy, mean, std prev_neglogp = self.neglogp(prev_actions_ph, mean, std, logstd) return prev_neglogp, value, action, entropy, mean, std def neglogp(self, x, mean, std, logstd): return 0.5 * tf.reduce_sum(tf.square((x - mean) / std), axis=-1) \ + 0.5 * np.log(2.0 * np.pi) * tf.to_float(tf.shape(x)[-1]) \ + tf.reduce_sum(logstd, axis=-1) class LSTMModelA2CContinuousLogStd(BaseModel): def __init__(self, network): self.network = network def is_rnn(self): return True def is_single_batched(self): return False def neglogp(self, x, mean, std, logstd): return 0.5 * tf.reduce_sum(tf.square((x - mean) / std), axis=-1) \ + 0.5 * np.log(2.0 * np.pi) * tf.to_float(tf.shape(x)[-1]) \ + tf.reduce_sum(logstd, axis=-1) def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] prev_actions_ph = dict['prev_actions_ph'] games_num = dict['games_num'] batch_num = dict['batch_num'] is_train = prev_actions_ph is not None mu, logstd, value, states_ph, masks_ph, lstm_state, initial_state = self.network(name=name, inputs=inputs, actions_num=actions_num, games_num=games_num, batch_num=batch_num, continuous=True, is_train=is_train, reuse=reuse) std = tf.exp(logstd) action = mu + std * tf.random_normal(tf.shape(mu)) norm_dist = tfd.Normal(mu, std) entropy = tf.reduce_mean(tf.reduce_sum(norm_dist.entropy(), axis=-1)) if prev_actions_ph == None: neglogp = tf.reduce_sum(-tf.log(norm_dist.prob(action)+ 1e-6), axis=-1) return neglogp, value, action, entropy, mu, std, states_ph, masks_ph, lstm_state, initial_state prev_neglogp = tf.reduce_sum(-tf.log(norm_dist.prob(prev_actions_ph) + 1e-6), axis=-1) return prev_neglogp, value, action, entropy, mu, std, states_ph, masks_ph, lstm_state, initial_state class LSTMModelA2CContinuous(BaseModel): def __init__(self, network): self.network = network def is_rnn(self): return True def is_single_batched(self): return False def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] prev_actions_ph = dict['prev_actions_ph'] games_num = dict['games_num'] batch_num = dict['batch_num'] is_train = prev_actions_ph is not None mu, var, value, states_ph, masks_ph, lstm_state, initial_state = self.network(name=name, inputs=inputs, actions_num=actions_num, games_num=games_num, batch_num=batch_num, continuous=True, is_train=is_train, reuse=reuse) sigma = tf.sqrt(var) norm_dist = tfd.Normal(mu, sigma) action = tf.squeeze(norm_dist.sample(1), axis=0) #action = tf.clip_by_value(action, -1.0, 1.0) entropy = tf.reduce_mean(tf.reduce_sum(norm_dist.entropy(), axis=-1)) if prev_actions_ph == None: neglogp = tf.reduce_sum(-tf.log(norm_dist.prob(action)+ 1e-6), axis=-1) return neglogp, value, action, entropy, mu, sigma, states_ph, masks_ph, lstm_state, initial_state prev_neglogp = tf.reduce_sum(-tf.log(norm_dist.prob(prev_actions_ph) + 1e-6), axis=-1) return prev_neglogp, value, action, entropy, mu, sigma, states_ph, masks_ph, lstm_state, initial_state class LSTMModelA2C(BaseModel): def __init__(self, network): self.network = network def is_rnn(self): return True def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] prev_actions_ph = dict['prev_actions_ph'] games_num = dict['games_num'] batch_num = dict['batch_num'] action_mask_ph = dict.get('action_mask_ph', None) is_train = prev_actions_ph is not None logits, value, states_ph, masks_ph, lstm_state, initial_state = self.network(name=name, inputs=inputs, actions_num=actions_num, games_num=games_num, batch_num=batch_num, continuous=False, is_train=is_train, reuse=reuse) if not is_train: u = tf.random_uniform(tf.shape(logits), dtype=logits.dtype) rand_logits = logits - tf.log(-tf.log(u)) if action_mask_ph is not None: inf_mask = tf.maximum(tf.log(tf.to_float(action_mask_ph)), tf.float32.min) rand_logits = rand_logits + inf_mask logits = logits + inf_mask action = tf.argmax(rand_logits, axis=-1) one_hot_actions = tf.one_hot(action, actions_num) entropy = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=tf.nn.softmax(logits)) if not is_train: neglogp = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=one_hot_actions) return neglogp, value, action, entropy, states_ph, masks_ph, lstm_state, initial_state, logits prev_neglogp = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=prev_actions_ph) return prev_neglogp, value, None, entropy, states_ph, masks_ph, lstm_state, initial_state class AtariDQN(BaseModel): def __init__(self, network): self.network = network def __call__(self, dict, reuse=False): name = dict['name'] inputs = dict['inputs'] actions_num = dict['actions_num'] ''' TODO: fix is_train ''' is_train = name == 'agent' return self.network(name=name, inputs=inputs, actions_num=actions_num, is_train=is_train, reuse=reuse)
10,090
Python
40.356557
167
0.599405
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_tf14/model_builder.py
from rl_games.common import object_factory import rl_games.algos_tf14 from rl_games.algos_tf14 import network_builder from rl_games.algos_tf14 import models class ModelBuilder: def __init__(self): self.model_factory = object_factory.ObjectFactory() self.model_factory.register_builder('discrete_a2c', lambda network, **kwargs : models.ModelA2C(network)) self.model_factory.register_builder('discrete_a2c_lstm', lambda network, **kwargs : models.LSTMModelA2C(network)) self.model_factory.register_builder('continuous_a2c', lambda network, **kwargs : models.ModelA2CContinuous(network)) self.model_factory.register_builder('continuous_a2c_logstd', lambda network, **kwargs : models.ModelA2CContinuousLogStd(network)) self.model_factory.register_builder('continuous_a2c_lstm', lambda network, **kwargs : models.LSTMModelA2CContinuous(network)) self.model_factory.register_builder('continuous_a2c_lstm_logstd', lambda network, **kwargs : models.LSTMModelA2CContinuousLogStd(network)) self.model_factory.register_builder('dqn', lambda network, **kwargs : models.AtariDQN(network)) self.network_factory = object_factory.ObjectFactory() self.network_factory.register_builder('actor_critic', lambda **kwargs : network_builder.A2CBuilder()) self.network_factory.register_builder('dqn', lambda **kwargs : network_builder.DQNBuilder()) def load(self, params): self.model_name = params['model']['name'] self.network_name = params['network']['name'] network = self.network_factory.create(self.network_name) network.load(params['network']) model = self.model_factory.create(self.model_name, network=network) return model
1,761
Python
49.342856
146
0.721181