file_path
stringlengths
20
202
content
stringlengths
9
3.85M
size
int64
9
3.85M
lang
stringclasses
9 values
avg_line_length
float64
3.33
100
max_line_length
int64
8
993
alphanum_fraction
float64
0.26
0.93
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_tf14/network_builder.py
import tensorflow as tf import numpy as np from rl_games.algos_tf14 import networks from rl_games.common import object_factory def normc_initializer(std=1.0): def _initializer(shape, dtype=None, partition_info=None): out = np.random.randn(*shape).astype(np.float32) out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True)) return tf.constant(out) return _initializer class NetworkBuilder: def __init__(self, **kwargs): self.activations_factory = object_factory.ObjectFactory() self.activations_factory.register_builder('relu', lambda **kwargs : tf.nn.relu) self.activations_factory.register_builder('tanh', lambda **kwargs : tf.nn.tanh) self.activations_factory.register_builder('sigmoid', lambda **kwargs : tf.nn.sigmoid) self.activations_factory.register_builder('elu', lambda **kwargs : tf.nn.elu) self.activations_factory.register_builder('selu', lambda **kwargs : tf.nn.selu) self.activations_factory.register_builder('softplus', lambda **kwargs : tf.nn.softplus) self.activations_factory.register_builder('None', lambda **kwargs : None) self.init_factory = object_factory.ObjectFactory() self.init_factory.register_builder('normc_initializer', lambda **kwargs : normc_initializer(**kwargs)) self.init_factory.register_builder('const_initializer', lambda **kwargs : tf.constant_initializer(**kwargs)) self.init_factory.register_builder('orthogonal_initializer', lambda **kwargs : tf.orthogonal_initializer(**kwargs)) self.init_factory.register_builder('glorot_normal_initializer', lambda **kwargs : tf.glorot_normal_initializer(**kwargs)) self.init_factory.register_builder('glorot_uniform_initializer', lambda **kwargs : tf.glorot_uniform_initializer(**kwargs)) self.init_factory.register_builder('variance_scaling_initializer', lambda **kwargs : tf.variance_scaling_initializer(**kwargs)) self.init_factory.register_builder('random_uniform_initializer', lambda **kwargs : tf.random_uniform_initializer(**kwargs)) self.init_factory.register_builder('None', lambda **kwargs : None) self.regularizer_factory = object_factory.ObjectFactory() self.regularizer_factory.register_builder('l1_regularizer', lambda **kwargs : tf.contrib.layers.l1_regularizer(**kwargs)) self.regularizer_factory.register_builder('l2_regularizer', lambda **kwargs : tf.contrib.layers.l2_regularizer(**kwargs)) self.regularizer_factory.register_builder('l1l2_regularizer', lambda **kwargs : tf.contrib.layers.l1l2_regularizer(**kwargs)) self.regularizer_factory.register_builder('None', lambda **kwargs : None) def load(self, params): pass def build(self, name, **kwargs): pass def __call__(self, name, **kwargs): return self.build(name, **kwargs) def _noisy_dense(self, inputs, units, activation, kernel_initializer, kernel_regularizer, name): return networks.noisy_dense(inputs, units, name, True, activation) def _build_mlp(self, name, input, units, activation, initializer, regularizer, norm_func_name = None, dense_func = tf.layers.dense, is_train=True): out = input ind = 0 for unit in units: ind += 1 out = dense_func(out, units=unit, activation=self.activations_factory.create(activation), kernel_initializer = self.init_factory.create(**initializer), kernel_regularizer = self.regularizer_factory.create(**regularizer), #bias_initializer=tf.random_uniform_initializer(-0.1, 0.1), name=name + str(ind)) if norm_func_name == 'layer_norm': out = tf.contrib.layers.layer_norm(out) elif norm_func_name == 'batch_norm': out = tf.layers.batch_normalization(out, training=is_train) return out def _build_lstm(self, name, input, units, batch_num, games_num): dones_ph = tf.placeholder(tf.float32, [batch_num]) states_ph = tf.placeholder(tf.float32, [games_num, 2*units]) lstm_out, lstm_state, initial_state = networks.openai_lstm(name, input, dones_ph=dones_ph, states_ph=states_ph, units=units, env_num=games_num, batch_num=batch_num) return lstm_out, lstm_state, initial_state, dones_ph, states_ph def _build_lstm2(self, name, inputs, units, batch_num, games_num): dones_ph = tf.placeholder(tf.bool, [batch_num]) states_ph = tf.placeholder(tf.float32, [games_num, 2*units]) hidden = tf.concat((inputs[0], inputs[1]), axis=1) lstm_out, lstm_state, initial_state = networks.openai_lstm(name, hidden, dones_ph=dones_ph, states_ph=states_ph, units=units, env_num=games_num, batch_num=batch_num) #lstm_outa, lstm_outc = tf.split(lstm_out, 2, axis=1) return lstm_out, lstm_state, initial_state, dones_ph, states_ph def _build_lstm_sep(self, name, inputs, units, batch_num, games_num): dones_ph = tf.placeholder(tf.bool, [batch_num], name='lstm_masks') states_ph = tf.placeholder(tf.float32, [games_num, 4*units], name='lstm_states') statesa, statesc = tf.split(states_ph, 2, axis=1) a_out, lstm_statea, initial_statea = networks.openai_lstm(name +'a', inputs[0], dones_ph=dones_ph, states_ph=statesa, units=units, env_num=games_num, batch_num=batch_num) c_out, lstm_statec, initial_statec = networks.openai_lstm(name + 'c', inputs[1], dones_ph=dones_ph, states_ph=statesc, units=units, env_num=games_num, batch_num=batch_num) lstm_state = tf.concat([lstm_statea, lstm_statec], axis=1) initial_state = np.concatenate([initial_statea, initial_statec], axis=1) #lstm_outa, lstm_outc = tf.split(lstm_out, 2, axis=1) return a_out, c_out, lstm_state, initial_state, dones_ph, states_ph def _build_conv(self, ctype, **kwargs): print('conv_name:', ctype) if ctype == 'conv2d': return self._build_cnn(**kwargs) if ctype == 'conv1d': return self._build_cnn1d(**kwargs) def _build_cnn(self, name, input, convs, activation, initializer, regularizer, norm_func_name=None, is_train=True): out = input ind = 0 for conv in convs: print(out.shape.as_list()) ind += 1 config = conv.copy() config['filters'] = conv['filters'] config['padding'] = conv['padding'] config['kernel_size'] = [conv['kernel_size']] * 2 config['strides'] = [conv['strides']] * 2 config['activation'] = self.activations_factory.create(activation) config['kernel_initializer'] = self.init_factory.create(**initializer) config['kernel_regularizer'] = self.regularizer_factory.create(**regularizer) config['name'] = name + str(ind) out = tf.layers.conv2d(inputs=out, **config) if norm_func_name == 'layer_norm': out = tf.contrib.layers.layer_norm(out) elif norm_func_name == 'batch_norm': out = tf.layers.batch_normalization(out, name='bn_'+ config['name'], training=is_train) return out def _build_cnn1d(self, name, input, convs, activation, initializer, regularizer, norm_func_name=None, is_train=True): out = input ind = 0 print('_build_cnn1d') for conv in convs: ind += 1 config = conv.copy() config['activation'] = self.activations_factory.create(activation) config['kernel_initializer'] = self.init_factory.create(**initializer) config['kernel_regularizer'] = self.regularizer_factory.create(**regularizer) config['name'] = name + str(ind) #config['bias_initializer'] = tf.random_uniform_initializer, # bias_initializer=tf.random_uniform_initializer(-0.1, 0.1) out = tf.layers.conv1d(inputs=out, **config) print('shapes of layer_' + str(ind), str(out.get_shape().as_list())) if norm_func_name == 'layer_norm': out = tf.contrib.layers.layer_norm(out) elif norm_func_name == 'batch_norm': out = tf.layers.batch_normalization(out, training=is_train) return out class A2CBuilder(NetworkBuilder): def __init__(self, **kwargs): NetworkBuilder.__init__(self) def load(self, params): self.separate = params['separate'] self.units = params['mlp']['units'] self.activation = params['mlp']['activation'] self.initializer = params['mlp']['initializer'] self.regularizer = params['mlp']['regularizer'] self.is_discrete = 'discrete' in params['space'] self.is_continuous = 'continuous'in params['space'] self.value_activation = params.get('value_activation', 'None') self.normalization = params.get('normalization', None) self.has_lstm = 'lstm' in params if self.is_continuous: self.space_config = params['space']['continuous'] elif self.is_discrete: self.space_config = params['space']['discrete'] if self.has_lstm: self.lstm_units = params['lstm']['units'] self.concated = params['lstm']['concated'] if 'cnn' in params: self.has_cnn = True self.cnn = params['cnn'] else: self.has_cnn = False def build(self, name, **kwargs): actions_num = kwargs.pop('actions_num') input = kwargs.pop('inputs') reuse = kwargs.pop('reuse') batch_num = kwargs.pop('batch_num', 1) games_num = kwargs.pop('games_num', 1) is_train = kwargs.pop('is_train', True) with tf.variable_scope(name, reuse=reuse): actor_input = critic_input = input if self.has_cnn: cnn_args = { 'name' :'actor_cnn', 'ctype' : self.cnn['type'], 'input' : input, 'convs' :self.cnn['convs'], 'activation' : self.cnn['activation'], 'initializer' : self.cnn['initializer'], 'regularizer' : self.cnn['regularizer'], 'norm_func_name' : self.normalization, 'is_train' : is_train } actor_input = self._build_conv(**cnn_args) actor_input = tf.contrib.layers.flatten(actor_input) critic_input = actor_input if self.separate: cnn_args['name'] = 'critic_cnn' critic_input = self._build_conv( **cnn_args) critic_input = tf.contrib.layers.flatten(critic_input) mlp_args = { 'name' :'actor_fc', 'input' : actor_input, 'units' :self.units, 'activation' : self.activation, 'initializer' : self.initializer, 'regularizer' : self.regularizer, 'norm_func_name' : self.normalization, 'is_train' : is_train } out_actor = self._build_mlp(**mlp_args) if self.separate: mlp_args['name'] = 'critic_fc' mlp_args['input'] = critic_input out_critic = self._build_mlp(**mlp_args) if self.has_lstm: if self.concated: out_actor, lstm_state, initial_state, dones_ph, states_ph = self._build_lstm2('lstm', [out_actor, out_critic], self.lstm_units, batch_num, games_num) out_critic = out_actor else: out_actor, out_critic, lstm_state, initial_state, dones_ph, states_ph = self._build_lstm_sep('lstm_', [out_actor, out_critic], self.lstm_units, batch_num, games_num) else: if self.has_lstm: out_actor, lstm_state, initial_state, dones_ph, states_ph = self._build_lstm('lstm', out_actor, self.lstm_units, batch_num, games_num) out_critic = out_actor value = tf.layers.dense(out_critic, units = 1, kernel_initializer = self.init_factory.create(**self.initializer), activation=self.activations_factory.create(self.value_activation), name='value') if self.is_continuous: mu = tf.layers.dense(out_actor, units = actions_num, activation=self.activations_factory.create(self.space_config['mu_activation']), kernel_initializer = self.init_factory.create(**self.space_config['mu_init']), name='mu') if self.space_config['fixed_sigma']: sigma_out = tf.get_variable(name='sigma_out', shape=(actions_num), initializer=self.init_factory.create(**self.space_config['sigma_init']), trainable=True) else: sigma_out = tf.layers.dense(out_actor, units = actions_num, kernel_initializer=self.init_factory.create(**self.space_config['sigma_init']), activation=self.activations_factory.create(self.space_config['sigma_activation']), name='sigma_out') if self.has_lstm: return mu, mu * 0 + sigma_out, value, states_ph, dones_ph, lstm_state, initial_state return mu, mu * 0 + sigma_out, value if self.is_discrete: logits = tf.layers.dense(inputs=out_actor, units=actions_num, name='logits', kernel_initializer = self.init_factory.create(**self.initializer)) if self.has_lstm: return logits, value, states_ph, dones_ph, lstm_state, initial_state return logits, value class DQNBuilder(NetworkBuilder): def __init__(self, **kwargs): NetworkBuilder.__init__(self) def load(self, params): self.units = params['mlp']['units'] self.activation = params['mlp']['activation'] self.initializer = params['mlp']['initializer'] self.regularizer = params['mlp']['regularizer'] self.is_dueling = params['dueling'] self.atoms = params['atoms'] self.is_noisy = params['noisy'] self.normalization = params.get('normalization', None) if 'cnn' in params: self.has_cnn = True self.cnn = params['cnn'] else: self.has_cnn = False def build(self, name, **kwargs): actions_num = kwargs.pop('actions_num') input = kwargs.pop('inputs') reuse = kwargs.pop('reuse') is_train = kwargs.pop('is_train', True) if self.is_noisy: dense_layer = self._noisy_dense else: dense_layer = tf.layers.dense with tf.variable_scope(name, reuse=reuse): out = input if self.has_cnn: cnn_args = { 'name' :'dqn_cnn', 'ctype' : self.cnn['type'], 'input' : input, 'convs' :self.cnn['convs'], 'activation' : self.cnn['activation'], 'initializer' : self.cnn['initializer'], 'regularizer' : self.cnn['regularizer'], 'norm_func_name' : self.normalization, 'is_train' : is_train } out = self._build_conv(**cnn_args) out = tf.contrib.layers.flatten(out) mlp_args = { 'name' :'dqn_mlp', 'input' : out, 'activation' : self.activation, 'initializer' : self.initializer, 'regularizer' : self.regularizer, 'norm_func_name' : self.normalization, 'is_train' : is_train, 'dense_func' : dense_layer } if self.is_dueling: if len(self.units) > 1: mlp_args['units'] = self.units[:-1] out = self._build_mlp(**mlp_args) hidden_value = dense_layer(inputs=out, units=self.units[-1], kernel_initializer = self.init_factory.create(**self.initializer), activation=self.activations_factory.create(self.activation), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), name='hidden_val') hidden_advantage = dense_layer(inputs=out, units=self.units[-1], kernel_initializer = self.init_factory.create(**self.initializer), activation=self.activations_factory.create(self.activation), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), name='hidden_adv') value = dense_layer(inputs=hidden_value, units=self.atoms, kernel_initializer = self.init_factory.create(**self.initializer), activation=tf.identity, kernel_regularizer = self.regularizer_factory.create(**self.regularizer), name='value') advantage = dense_layer(inputs=hidden_advantage, units= actions_num * self.atoms, kernel_initializer = self.init_factory.create(**self.initializer), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), activation=tf.identity, name='advantage') advantage = tf.reshape(advantage, shape = [-1, actions_num, self.atoms]) value = tf.reshape(value, shape = [-1, 1, self.atoms]) q_values = value + advantage - tf.reduce_mean(advantage, reduction_indices=1, keepdims=True) else: mlp_args['units'] = self.units out = self._build_mlp('dqn_mlp', out, self.units, self.activation, self.initializer, self.regularizer) q_values = dense_layer(inputs=out, units=actions_num *self.atoms, kernel_initializer = self.init_factory.create(**self.initializer), kernel_regularizer = self.regularizer_factory.create(**self.regularizer), activation=tf.identity, name='q_vals') q_values = tf.reshape(q_values, shape = [-1, actions_num, self.atoms]) if self.atoms == 1: return tf.squeeze(q_values) else: return q_values
18,263
Python
51.034188
301
0.592345
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/algos_tf14/a2c_continuous.py
from rl_games.common import tr_helpers, vecenv from rl_games.algos_tf14 import networks from rl_games.algos_tf14.tensorflow_utils import TensorFlowVariables from rl_games.algos_tf14.tf_moving_mean_std import MovingMeanStd import tensorflow as tf import numpy as np import collections import time from collections import deque, OrderedDict from tensorboardX import SummaryWriter import gym import ray from datetime import datetime def swap_and_flatten01(arr): s = arr.shape return arr.swapaxes(0, 1).reshape(s[0] * s[1], *s[2:]) #(-1, 1) -> (low, high) def rescale_actions(low, high, action): d = (high - low) / 2.0 m = (high + low) / 2.0 scaled_action = action * d + m return scaled_action #(horizon_length, actions_num) def policy_kl(p0_mu, p0_sigma, p1_mu, p1_sigma): c1 = np.log(p0_sigma/p1_sigma + 1e-5) c2 = (np.square(p0_sigma) + np.square(p1_mu - p0_mu))/(2.0 *(np.square(p1_sigma) + 1e-5)) c3 = -1.0 / 2.0 kl = c1 + c2 + c3 kl = np.mean(np.sum(kl, axis = -1)) # returning mean between all steps of sum between all actions return kl def policy_kl_tf(p0_mu, p0_sigma, p1_mu, p1_sigma): c1 = tf.log(p1_sigma/p0_sigma + 1e-5) c2 = (tf.square(p0_sigma) + tf.square(p1_mu - p0_mu))/(2.0 * (tf.square(p1_sigma) + 1e-5)) c3 = -1.0 / 2.0 kl = c1 + c2 + c3 kl = tf.reduce_mean(tf.reduce_sum(kl, axis=-1)) # returning mean between all steps of sum between all actions return kl class A2CAgent: def __init__(self, sess, base_name, observation_space, action_space, config): self.name = base_name self.actions_low = action_space.low self.actions_high = action_space.high self.env_name = config['env_name'] self.ppo = config['ppo'] self.is_adaptive_lr = config['lr_schedule'] == 'adaptive' self.is_polynom_decay_lr = config['lr_schedule'] == 'polynom_decay' self.is_exp_decay_lr = config['lr_schedule'] == 'exp_decay' self.lr_multiplier = tf.constant(1, shape=(), dtype=tf.float32) self.e_clip = config['e_clip'] self.clip_value = config['clip_value'] self.network = config['network'] self.rewards_shaper = config['reward_shaper'] self.num_actors = config['num_actors'] self.env_config = config.get('env_config', {}) self.vec_env = vecenv.create_vec_env(self.env_name, self.num_actors, **self.env_config) self.num_agents = self.vec_env.get_number_of_agents() self.horizon_length = config['horizon_length'] self.normalize_advantage = config['normalize_advantage'] self.config = config self.state_shape = observation_space.shape self.critic_coef = config['critic_coef'] self.writer = SummaryWriter('runs/' + config['name'] + datetime.now().strftime("_%d-%H-%M-%S")) self.sess = sess self.grad_norm = config['grad_norm'] self.gamma = self.config['gamma'] self.tau = self.config['tau'] self.normalize_input = self.config['normalize_input'] self.seq_len = self.config['seq_length'] self.dones = np.asarray([False]*self.num_actors, dtype=np.bool) self.current_rewards = np.asarray([0]*self.num_actors, dtype=np.float32) self.current_lengths = np.asarray([0]*self.num_actors, dtype=np.float32) self.game_rewards = deque([], maxlen=100) self.game_lengths = deque([], maxlen=100) self.obs_ph = tf.placeholder('float32', (None, ) + self.state_shape, name = 'obs') self.target_obs_ph = tf.placeholder('float32', (None, ) + self.state_shape, name = 'target_obs') self.actions_num = action_space.shape[0] self.actions_ph = tf.placeholder('float32', (None,) + action_space.shape, name = 'actions') self.old_mu_ph = tf.placeholder('float32', (None,) + action_space.shape, name = 'old_mu_ph') self.old_sigma_ph = tf.placeholder('float32', (None,) + action_space.shape, name = 'old_sigma_ph') self.old_neglogp_actions_ph = tf.placeholder('float32', (None, ), name = 'old_logpactions') self.rewards_ph = tf.placeholder('float32', (None,), name = 'rewards') self.old_values_ph = tf.placeholder('float32', (None,), name = 'old_values') self.advantages_ph = tf.placeholder('float32', (None,), name = 'advantages') self.learning_rate_ph = tf.placeholder('float32', (), name = 'lr_ph') self.epoch_num = tf.Variable(tf.constant(0, shape=(), dtype=tf.float32), trainable=False) self.update_epoch_op = self.epoch_num.assign(self.epoch_num + 1) self.current_lr = self.learning_rate_ph self.bounds_loss_coef = config.get('bounds_loss_coef', None) if self.is_adaptive_lr: self.kl_threshold = config['kl_threshold'] if self.is_polynom_decay_lr: self.lr_multiplier = tf.train.polynomial_decay(1.0, global_step=self.epoch_num, decay_steps=config['max_epochs'], end_learning_rate=0.001, power=config.get('decay_power', 1.0)) if self.is_exp_decay_lr: self.lr_multiplier = tf.train.exponential_decay(1.0, global_step=self.epoch_num, decay_steps=config['max_epochs'], decay_rate = config['decay_rate']) self.input_obs = self.obs_ph self.input_target_obs = self.target_obs_ph if observation_space.dtype == np.uint8: self.input_obs = tf.to_float(self.input_obs) / 255.0 self.input_target_obs = tf.to_float(self.input_target_obs) / 255.0 if self.normalize_input: self.moving_mean_std = MovingMeanStd(shape = observation_space.shape, epsilon = 1e-5, decay = 0.99) self.input_obs = self.moving_mean_std.normalize(self.input_obs, train=True) self.input_target_obs = self.moving_mean_std.normalize(self.input_target_obs, train=False) games_num = self.config['minibatch_size'] // self.seq_len # it is used only for current rnn implementation self.train_dict = { 'name' : 'agent', 'inputs' : self.input_obs, 'batch_num' : self.config['minibatch_size'], 'games_num' : games_num, 'actions_num' : self.actions_num, 'prev_actions_ph' : self.actions_ph, } self.run_dict = { 'name' : 'agent', 'inputs' : self.input_target_obs, 'batch_num' : self.num_actors, 'games_num' : self.num_actors, 'actions_num' : self.actions_num, 'prev_actions_ph' : None, } self.states = None if self.network.is_rnn(): self.neglogp_actions ,self.state_values, self.action, self.entropy, self.mu, self.sigma, self.states_ph, self.masks_ph, self.lstm_state, self.initial_state = self.network(self.train_dict, reuse=False) self.target_neglogp, self.target_state_values, self.target_action, _, self.target_mu, self.target_sigma, self.target_states_ph, self.target_masks_ph, self.target_lstm_state, self.target_initial_state = self.network(self.run_dict, reuse=True) self.states = self.target_initial_state else: self.neglogp_actions ,self.state_values, self.action, self.entropy, self.mu, self.sigma = self.network(self.train_dict, reuse=False) self.target_neglogp, self.target_state_values, self.target_action, _, self.target_mu, self.target_sigma = self.network(self.run_dict, reuse=True) curr_e_clip = self.e_clip * self.lr_multiplier if (self.ppo): self.prob_ratio = tf.exp(self.old_neglogp_actions_ph - self.neglogp_actions) self.prob_ratio = tf.clip_by_value(self.prob_ratio, 0.0, 16.0) self.pg_loss_unclipped = -tf.multiply(self.advantages_ph, self.prob_ratio) self.pg_loss_clipped = -tf.multiply(self.advantages_ph, tf.clip_by_value(self.prob_ratio, 1.- curr_e_clip, 1.+ curr_e_clip)) self.actor_loss = tf.reduce_mean(tf.maximum(self.pg_loss_unclipped, self.pg_loss_clipped)) else: self.actor_loss = tf.reduce_mean(self.neglogp_actions * self.advantages_ph) self.c_loss = (tf.squeeze(self.state_values) - self.rewards_ph)**2 if self.clip_value: self.cliped_values = self.old_values_ph + tf.clip_by_value(tf.squeeze(self.state_values) - self.old_values_ph, -curr_e_clip, curr_e_clip) self.c_loss_clipped = tf.square(self.cliped_values - self.rewards_ph) self.critic_loss = tf.reduce_mean(tf.maximum(self.c_loss, self.c_loss_clipped)) else: self.critic_loss = tf.reduce_mean(self.c_loss) self._calc_kl_dist() self.loss = self.actor_loss + 0.5 * self.critic_coef * self.critic_loss - self.config['entropy_coef'] * self.entropy self._apply_bound_loss() self.reg_loss = tf.losses.get_regularization_loss() self.loss += self.reg_loss self.train_step = tf.train.AdamOptimizer(self.current_lr * self.lr_multiplier) self.weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='agent') grads = tf.gradients(self.loss, self.weights) if self.config['truncate_grads']: grads, _ = tf.clip_by_global_norm(grads, self.grad_norm) grads = list(zip(grads, self.weights)) self.train_op = self.train_step.apply_gradients(grads) self.saver = tf.train.Saver() self.sess.run(tf.global_variables_initializer()) def _calc_kl_dist(self): self.kl_dist = policy_kl_tf(self.mu, self.sigma, self.old_mu_ph, self.old_sigma_ph) if self.is_adaptive_lr: self.current_lr = tf.where(self.kl_dist > (2.0 * self.kl_threshold), tf.maximum(self.current_lr / 1.5, 1e-6), self.current_lr) self.current_lr = tf.where(self.kl_dist < (0.5 * self.kl_threshold), tf.minimum(self.current_lr * 1.5, 1e-2), self.current_lr) def _apply_bound_loss(self): if self.bounds_loss_coef: soft_bound = 1.1 mu_loss_high = tf.square(tf.maximum(0.0, self.mu - soft_bound)) mu_loss_low = tf.square(tf.maximum(0.0, -soft_bound - self.mu)) self.bounds_loss = tf.reduce_sum(mu_loss_high + mu_loss_low, axis=1) self.loss += self.bounds_loss * self.bounds_loss_coef else: self.bounds_loss = None def update_epoch(self): return self.sess.run([self.update_epoch_op])[0] def get_action_values(self, obs): run_ops = [self.target_action, self.target_state_values, self.target_neglogp, self.target_mu, self.target_sigma] if self.network.is_rnn(): run_ops.append(self.target_lstm_state) return self.sess.run(run_ops, {self.target_obs_ph : obs, self.target_states_ph : self.states, self.target_masks_ph : self.dones}) else: return (*self.sess.run(run_ops, {self.target_obs_ph : obs}), None) def get_values(self, obs): if self.network.is_rnn(): return self.sess.run([self.target_state_values], {self.target_obs_ph : obs, self.target_states_ph : self.states, self.target_masks_ph : self.dones}) else: return self.sess.run([self.target_state_values], {self.target_obs_ph : obs}) def play_steps(self): # Here, we init the lists that will contain the mb of experiences mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs, mb_mus, mb_sigmas = [],[],[],[],[],[],[],[] mb_states = [] epinfos = [] # For n in range number of steps for _ in range(self.horizon_length): if self.network.is_rnn(): mb_states.append(self.states) actions, values, neglogpacs, mu, sigma, self.states = self.get_action_values(self.obs) #actions = np.squeeze(actions) values = np.squeeze(values) neglogpacs = np.squeeze(neglogpacs) mb_obs.append(self.obs.copy()) mb_actions.append(actions) mb_values.append(values) mb_neglogpacs.append(neglogpacs) mb_dones.append(self.dones.copy()) mb_mus.append(mu) mb_sigmas.append(sigma) self.obs[:], rewards, self.dones, infos = self.vec_env.step(rescale_actions(self.actions_low, self.actions_high, np.clip(actions, -1.0, 1.0))) self.current_rewards += rewards self.current_lengths += 1 for reward, length, done in zip(self.current_rewards, self.current_lengths, self.dones): if done: self.game_rewards.append(reward) self.game_lengths.append(length) shaped_rewards = self.rewards_shaper(rewards) epinfos.append(infos) mb_rewards.append(shaped_rewards) self.current_rewards = self.current_rewards * (1.0 - self.dones) self.current_lengths = self.current_lengths * (1.0 - self.dones) #using openai baseline approach mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype) mb_rewards = np.asarray(mb_rewards, dtype=np.float32) mb_actions = np.asarray(mb_actions, dtype=np.float32) mb_values = np.asarray(mb_values, dtype=np.float32) mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32) mb_mus = np.asarray(mb_mus, dtype=np.float32) mb_sigmas = np.asarray(mb_sigmas, dtype=np.float32) mb_dones = np.asarray(mb_dones, dtype=np.bool) mb_states = np.asarray(mb_states, dtype=np.float32) last_values = self.get_values(self.obs) last_values = np.squeeze(last_values) mb_returns = np.zeros_like(mb_rewards) mb_advs = np.zeros_like(mb_rewards) lastgaelam = 0 for t in reversed(range(self.horizon_length)): if t == self.horizon_length - 1: nextnonterminal = 1.0 - self.dones nextvalues = last_values else: nextnonterminal = 1.0 - mb_dones[t+1] nextvalues = mb_values[t+1] delta = mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_values[t] mb_advs[t] = lastgaelam = delta + self.gamma * self.tau * nextnonterminal * lastgaelam mb_returns = mb_advs + mb_values if self.network.is_rnn(): result = (*map(swap_and_flatten01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs, mb_mus, mb_sigmas, mb_states )), epinfos) else: result = (*map(swap_and_flatten01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs, mb_mus, mb_sigmas)), None, epinfos) return result def save(self, fn): self.saver.save(self.sess, fn) def restore(self, fn): self.saver.restore(self.sess, fn) def train(self): max_epochs = self.config.get('max_epochs', 1e6) self.obs = self.vec_env.reset() batch_size = self.horizon_length * self.num_actors * self.num_agents minibatch_size = self.config['minibatch_size'] mini_epochs_num = self.config['mini_epochs'] num_minibatches = batch_size // minibatch_size last_lr = self.config['learning_rate'] self.last_mean_rewards = -100500 epoch_num = 0 frame = 0 update_time = 0 play_time = 0 start_time = time.time() total_time = 0 while True: play_time_start = time.time() epoch_num = self.update_epoch() frame += batch_size obses, returns, dones, actions, values, neglogpacs, mus, sigmas, lstm_states, _ = self.play_steps() advantages = returns - values if self.normalize_advantage: advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8) a_losses = [] c_losses = [] b_losses = [] entropies = [] kls = [] play_time_end = time.time() play_time = play_time_end - play_time_start update_time_start = time.time() if self.network.is_rnn(): total_games = batch_size // self.seq_len num_games_batch = minibatch_size // self.seq_len game_indexes = np.arange(total_games) flat_indexes = np.arange(total_games * self.seq_len).reshape(total_games, self.seq_len) lstm_states = lstm_states[::self.seq_len] for _ in range(0, mini_epochs_num): np.random.shuffle(game_indexes) for i in range(0, num_minibatches): batch = range(i * num_games_batch, (i + 1) * num_games_batch) mb_indexes = game_indexes[batch] mbatch = flat_indexes[mb_indexes].ravel() dict = {} dict[self.old_values_ph] = values[mbatch] dict[self.old_neglogp_actions_ph] = neglogpacs[mbatch] dict[self.advantages_ph] = advantages[mbatch] dict[self.rewards_ph] = returns[mbatch] dict[self.actions_ph] = actions[mbatch] dict[self.obs_ph] = obses[mbatch] dict[self.old_mu_ph] = mus[mbatch] dict[self.old_sigma_ph] = sigmas[mbatch] dict[self.masks_ph] = dones[mbatch] dict[self.states_ph] = lstm_states[mb_indexes] dict[self.learning_rate_ph] = last_lr run_ops = [self.actor_loss, self.critic_loss, self.entropy, self.kl_dist, self.current_lr, self.mu, self.sigma, self.lr_multiplier] if self.bounds_loss is not None: run_ops.append(self.bounds_loss) run_ops.append(self.train_op) run_ops.append(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) res_dict = self.sess.run(run_ops, dict) a_loss = res_dict[0] c_loss = res_dict[1] entropy = res_dict[2] kl = res_dict[3] last_lr = res_dict[4] cmu = res_dict[5] csigma = res_dict[6] lr_mul = res_dict[7] if self.bounds_loss is not None: b_loss = res_dict[8] b_losses.append(b_loss) mus[mbatch] = cmu sigmas[mbatch] = csigma a_losses.append(a_loss) c_losses.append(c_loss) kls.append(kl) entropies.append(entropy) else: for _ in range(0, mini_epochs_num): permutation = np.random.permutation(batch_size) obses = obses[permutation] returns = returns[permutation] actions = actions[permutation] values = values[permutation] neglogpacs = neglogpacs[permutation] advantages = advantages[permutation] mus = mus[permutation] sigmas = sigmas[permutation] for i in range(0, num_minibatches): batch = range(i * minibatch_size, (i + 1) * minibatch_size) dict = {self.obs_ph: obses[batch], self.actions_ph : actions[batch], self.rewards_ph : returns[batch], self.advantages_ph : advantages[batch], self.old_neglogp_actions_ph : neglogpacs[batch], self.old_values_ph : values[batch]} dict[self.old_mu_ph] = mus[batch] dict[self.old_sigma_ph] = sigmas[batch] dict[self.learning_rate_ph] = last_lr run_ops = [self.actor_loss, self.critic_loss, self.entropy, self.kl_dist, self.current_lr, self.mu, self.sigma, self.lr_multiplier] if self.bounds_loss is not None: run_ops.append(self.bounds_loss) run_ops.append(self.train_op) run_ops.append(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) res_dict = self.sess.run(run_ops, dict) a_loss = res_dict[0] c_loss = res_dict[1] entropy = res_dict[2] kl = res_dict[3] last_lr = res_dict[4] cmu = res_dict[5] csigma = res_dict[6] lr_mul = res_dict[7] if self.bounds_loss is not None: b_loss = res_dict[8] b_losses.append(b_loss) mus[batch] = cmu sigmas[batch] = csigma a_losses.append(a_loss) c_losses.append(c_loss) kls.append(kl) entropies.append(entropy) update_time_end = time.time() update_time = update_time_end - update_time_start sum_time = update_time + play_time total_time = update_time_end - start_time if self.rank == 0: scaled_time = sum_time # self.num_agents * scaled_play_time = play_time # self.num_agents * if self.print_stats: fps_step = batch_size / scaled_play_time fps_total = batch_size / scaled_time print(f'fps step: {fps_step:.1f} fps total: {fps_total:.1f}') # performance self.writer.add_scalar('performance/total_fps', batch_size / sum_time, frame) self.writer.add_scalar('performance/step_fps', batch_size / play_time, frame) self.writer.add_scalar('performance/play_time', play_time, frame) self.writer.add_scalar('performance/update_time', update_time, frame) # losses self.writer.add_scalar('losses/a_loss', np.mean(a_losses), frame) self.writer.add_scalar('losses/c_loss', np.mean(c_losses), frame) if len(b_losses) > 0: self.writer.add_scalar('losses/bounds_loss', np.mean(b_losses), frame) self.writer.add_scalar('losses/entropy', np.mean(entropies), frame) # info self.writer.add_scalar('info/last_lr', last_lr * lr_mul, frame) self.writer.add_scalar('info/lr_mul', lr_mul, frame) self.writer.add_scalar('info/e_clip', self.e_clip * lr_mul, frame) self.writer.add_scalar('info/kl', np.mean(kls), frame) self.writer.add_scalar('info/epochs', epoch_num, frame) if len(self.game_rewards) > 0: mean_rewards = np.mean(self.game_rewards) mean_lengths = np.mean(self.game_lengths) self.writer.add_scalar('rewards/frame', mean_rewards, frame) self.writer.add_scalar('rewards/time', mean_rewards, total_time) self.writer.add_scalar('episode_lengths/frame', mean_lengths, frame) self.writer.add_scalar('episode_lengths/time', mean_lengths, total_time) if mean_rewards > self.last_mean_rewards: print('saving next best rewards: ', mean_rewards) self.last_mean_rewards = mean_rewards self.save("./nn/" + self.name) if self.last_mean_rewards > self.config['score_to_win']: self.save("./nn/" + self.config['name'] + 'ep=' + str(epoch_num) + 'rew=' + str(mean_rewards)) return self.last_mean_rewards, epoch_num if epoch_num > max_epochs: print('MAX EPOCHS NUM!') self.save("./nn/" + 'last_' + self.config['name'] + 'ep=' + str(epoch_num) + 'rew=' + str(mean_rewards)) return self.last_mean_rewards, epoch_num update_time = 0
24,499
Python
48.295775
253
0.561982
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/ppo_cartpole_masked_velocity_rnn.yaml
#Cartpole without velocities lstm test params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True space: discrete: mlp: units: [64, 64] activation: relu normalization: 'layer_norm' norm_only_first_layer: True initializer: name: default regularizer: name: None rnn: name: 'lstm' units: 64 layers: 1 before_mlp: False concat_input: True layer_norm: True config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-4 name: cartpole_vel_info score_to_win: 500 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: CartPoleMaskedVelocity-v1 ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 256 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 4
1,117
YAML
17.327869
39
0.598926
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/ppg_walker.yaml
params: seed: 8 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256,128,64] d2rl: False activation: relu initializer: name: default scale: 2 load_checkpoint: False load_path: './nn/last_walkerep=10001rew=108.35405.pth' config: reward_shaper: min_val: -1 scale_value: 0.1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 5e-4 name: walker_ppg score_to_win: 290 grad_norm: 0.5 entropy_coef: 0 #-0.005 truncate_grads: False env_name: BipedalWalker-v3 ppo: True e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 1 critic_coef: 2 schedule_type: 'standard' lr_schedule: adaptive kl_threshold: 0.004 normalize_input: False bounds_loss_coef: 0.0005 max_epochs: 10000 normalize_value: True #weight_decay: 0.0001 phasic_policy_gradients: learning_rate: 5e-4 minibatch_size: 1024 mini_epochs: 6 player: render: True determenistic: True games_num: 200
1,536
YAML
20.347222
56
0.558594
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/ppo_flex_humanoid_torch.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: # pytorch name: default scale: 0.02 # tf # name: normc_initializer # std: 0.01 sigma_init: name: const_initializer # value: 0 # tf val: 0 # pytorch fixed_sigma: True mlp: units: [256,128,64] activation: elu initializer: # pytorch name: default scale: 2 # tf # name: normc_initializer # std: 1 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 load_checkpoint: False load_path: 'nn/humanoid_torch.pth' config: reward_shaper: scale_value: 0.1 normalize_advantage : True gamma : 0.99 tau : 0.95 learning_rate : 3e-4 name : 'humanoid_torch' score_to_win : 20000 grad_norm : 0.5 entropy_coef : 0.0 truncate_grads : True env_name : FlexHumanoid ppo : True e_clip : 0.2 num_actors : 256 horizon_length : 32 minibatch_size : 4096 mini_epochs : 4 critic_coef : 1 clip_value : False lr_schedule : adaptive kl_threshold : 0.01 normalize_input : False normalize_value : True bounds_loss_coef: 0.000 max_epochs: 12000
1,468
YAML
18.851351
39
0.547684
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/ppo_reacher.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default scale: 0.02 sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256,128] activation: relu initializer: name: default regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 rnn1: name: lstm units: 64 layers: 1 load_checkpoint: False load_path: './nn/last_walkerep=10001rew=108.35405.pth' config: reward_shaper: min_val: -1 scale_value: 0.1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 3e-4 name: walker score_to_win: 300 grad_norm: 0.5 entropy_coef: 0 truncate_grads: True env_name: ReacherPyBulletEnv-v0 ppo: True e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: none kl_threshold: 0.008 normalize_input: True seq_length: 16 bounds_loss_coef: 0.00 max_epochs: 10000 weight_decay: 0.0001 player: render: True games_num: 200 experiment_config1: start_exp: 0 start_sub_exp: 0 experiments: - exp: - path: config.bounds_loss_coef value: [0.5]
1,593
YAML
18.925
56
0.549278
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/ppo_revenge_rnd.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: network: name: actor_critic separate: False value_shape: 2 space: discrete: cnn: type: conv2d activation: elu initializer: name: default regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [256, 512] activation: elu regularizer: name: 'None' initializer: name: default config: reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.999 tau: 0.9 learning_rate: 1e-4 name: atari score_to_win: 900 grad_norm: 0.5 entropy_coef: 0.002 truncate_grads: True env_name: atari_gym ppo: true e_clip: 0.1 clip_value: True num_actors: 32 horizon_length: 512 minibatch_size: 4096 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: True seq_length: 8 #lr_schedule: adaptive # kl_threshold: 0.008 # bounds_loss_coef: 0.5 # max_epochs: 5000 env_config: name: MontezumaRevengeNoFrameskip-v4 rnd_config: scale_value: 1.0 episodic: True episode_length: 256 gamma: 0.99 mini_epochs: 2 minibatch_size: 1024 learning_rate: 1e-4 network: name: rnd_curiosity cnn: type: conv2d activation: elu initializer: name: default scale: 2 regularizer: name: 'None' rnd: convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 net: convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: rnd: units: [512,512, 512] net: units: [512] activation: elu regularizer: name: 'None' initializer: name: default scale: 2
3,072
YAML
21.762963
42
0.427083
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/ppo_flex_humanoid_torch_rnn.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True normalization: 'layer_norm' space: continuous: mu_activation: None sigma_activation: None mu_init: # pytorch name: default scale: 0.01 # tf # name: normc_initializer # std: 0.01 sigma_init: name: const_initializer # value: 0 # tf val: 0 # pytorch fixed_sigma: True mlp: units: [256,128] activation: elu initializer: # pytorch name: default scale: 2 # tf # name: normc_initializer # std: 1 regularizer: name: 'None' #'l2_regularizer' #scale: 0.001 rnn: name: lstm units: 64 layers: 1 before_mlp: False load_checkpoint: True load_path: 'nn/humanoid_torch_rnn.pth' config: reward_shaper: scale_value: 0.1 normalize_advantage : True gamma : 0.99 tau : 0.95 learning_rate : 8e-4 name : 'humanoid_torch_rnn' score_to_win : 20000 grad_norm : 5 entropy_coef : 0 truncate_grads : True env_name : FlexHumanoid ppo : True e_clip : 0.2 num_actors : 256 horizon_length : 256 minibatch_size : 8192 mini_epochs : 4 critic_coef : 1 clip_value : False lr_schedule : adaptive kl_threshold : 0.01 normalize_input : True seq_length: 16 bounds_loss_coef: 0.000 weight_decay: 0.001 max_epochs: 6000
1,608
YAML
18.621951
40
0.54291
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/ppo_cartpole.yaml
#Cartpole MLP params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True space: discrete: mlp: units: [32, 32] activation: relu initializer: name: default regularizer: name: None config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: cartpole_vel_info score_to_win: 500 grad_norm: 1.0 entropy_coef: 0.01 truncate_grads: True env_name: CartPole-v1 ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 32 minibatch_size: 64 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False device: 'cuda:0'
878
YAML
16.235294
29
0.592255
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/ppo_continuous_lstm.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_lstm_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: normc_initializer std: 0.01 sigma_init: name: const_initializer value: 0.0 fixed_sigma: True mlp: units: [256, 256, 128] activation: relu initializer: name: normc_initializer std: 1 regularizer: name: 'None' lstm: units: 128 concated: False load_checkpoint: False load_path: 'nn/runBipedalWalkerHardcore-v2' config: reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 1e-4 name: walker_lstm score_to_win: 300 grad_norm: 0.5 entropy_coef: 0.000 truncate_grads: True env_name: BipedalWalkerHardcore-v2 ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 512 minibatch_size: 2048 mini_epochs: 8 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 8 bounds_loss_coef: 0.5 max_epochs: 5000
1,334
YAML
19.227272
45
0.561469
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/carracing_ppo.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd load_checkpoint: False load_path: 'nn/runCarRacing-v0' network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True cnn: type: conv2d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu initializer: name: default regularizer: name: 'None' config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 5e-4 name: racing score_to_win: 900 grad_norm: 0.5 entropy_coef: 0.000 truncate_grads: True env_name: CarRacing-v0 ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 128 minibatch_size: 1024 mini_epochs: 8 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False normalize_value: True #lr_schedule: adaptive # kl_threshold: 0.008 bounds_loss_coef: 0.001 # max_epochs: 5000 player: render: True deterministic: True
1,684
YAML
18.593023
33
0.541568
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/rainbow_dqn_breakout.yaml
params: algo: name: dqn model: name: dqn load_checkpoint: False load_path: 'nn/breakoutep=3638750.0rew=201.75' network: name: dqn dueling: True atoms: 51 noisy: True cnn: type: conv2d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 'valid' - filters: 64 kernel_size: 4 strides: 2 padding: 'valid' - filters: 64 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256] activation: relu initializer: name: default regularizer: name: 'None' config: reward_shaper: scale_value: 1 gamma : 0.99 learning_rate : 0.0001 steps_per_epoch : 4 batch_size : 32 epsilon : 0.00 min_epsilon : 0.00 epsilon_decay_frames : 1000000 num_epochs_to_copy : 10000 name : 'breakout' env_name: BreakoutNoFrameskip-v4 is_double : True score_to_win : 600 num_steps_fill_buffer : 100000 replay_buffer_type : 'prioritized' replay_buffer_size : 1000000 priority_beta : 0.4 priority_alpha : 0.6 beta_decay_frames : 1000000 max_beta : 1 horizon_length : 3 episodes_to_log : 100 lives_reward : 5 atoms_num : 51 v_min : -10 v_max : 10 games_to_track : 100 lr_schedule : None max_epochs: 10000000
1,525
YAML
19.346666
48
0.550164
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/ppo_smac.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/sc2smac' network: name: actor_critic separate: True space: discrete: mlp: units: [256, 128] activation: relu initializer: name: default regularizer: name: 'None' config: name: 6h_vs_8z reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: smac ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 3072 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: True env_config: name: 6h_vs_8z frames: 2 random_invalid_step: False
979
YAML
17.148148
32
0.581205
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/ppo_multiwalker.yaml
params: algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256,128, 64] d2rl: False activation: relu initializer: name: default load_checkpoint: False load_path: './nn/multiwalker.pth' config: reward_shaper: min_val: -1 scale_value: 0.1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 1e-4 name: multiwalker score_to_win: 300 grad_norm: 0.5 entropy_coef: 0 truncate_grads: True env_name: multiwalker_env ppo: True e_clip: 0.2 use_experimental_cv: False clip_value: False num_actors: 16 horizon_length: 512 minibatch_size: 3072 #768 #3072 #1536 mini_epochs: 4 critic_coef: 1 schedule_type: 'standard' lr_schedule: None kl_threshold: 0.008 normalize_input: True normalize_value: True bounds_loss_coef: 0.0001 max_epochs: 10000 weight_decay: 0.0000 player: render: True games_num: 200 env_config: central_value: True use_prev_actions: True apply_agent_ids: True central_value_config: minibatch_size: 512 mini_epochs: 4 learning_rate: 3e-4 clip_value: False normalize_input: True truncate_grads: False network: name: actor_critic central_value: True mlp: units: [512, 256, 128] activation: elu initializer: name: default
1,881
YAML
20.632184
43
0.549176
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/dqn.yaml
params: algo: name: dqn model: name: dqn load_checkpoint: False load_path: path network: name: dqn dueling: True atoms: 1 noisy: False cnn: type: conv2d activation: relu initializer: name: default regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 'valid' - filters: 64 kernel_size: 4 strides: 2 padding: 'valid' - filters: 64 kernel_size: 3 strides: 1 padding: 'valid' mlp: units: [256] activation: relu initializer: name: default regularizer: name: 'None' config: reward_shaper: scale_value: 0.1 gamma : 0.99 learning_rate : 0.0005 steps_per_epoch : 4 batch_size : 128 epsilon : 0.90 min_epsilon : 0.02 epsilon_decay_frames : 100000 num_epochs_to_copy : 10000 name : 'pong_dddqn_config1' env_name: PongNoFrameskip-v4 is_double : True score_to_win : 20.9 num_steps_fill_buffer : 10000 replay_buffer_type : 'normal' replay_buffer_size : 100000 priority_beta : 0.4 priority_alpha : 0.6 beta_decay_frames : 100000 max_beta : 1 horizon_length : 3 episodes_to_log : 10 lives_reward : 1 atoms_num : 1 games_to_track : 20 lr_schedule : polynom_decay max_epochs: 100000 experiment_config: start_exp: 0 start_sub_exp: 3 experiments: # - exp: # - path: config.learning_rate # value: [0.0005, 0.0002] - exp: - path: network.initializer value: - name: variance_scaling_initializer scale: 2 - name: glorot_normal_initializer - name: glorot_uniform_initializer - name: orthogonal_initializer gain: 1.41421356237 - path: network.cnn.initializer value: - name: variance_scaling_initializer scale: 2 - name: glorot_normal_initializer - name: glorot_uniform_initializer - name: orthogonal_initializer gain: 1.41421356237
2,195
YAML
20.742574
46
0.553531
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/test/test_discrete.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: True #normalization: 'layer_norm' space: discrete: mlp: units: [32,32] activation: relu initializer: name: default regularizer: name: 'None' config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 2e-4 name: test_md score_to_win: 0.95 grad_norm: 10.5 entropy_coef: 0.005 truncate_grads: True env_name: test_env ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 512 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: True weight_decay: 0.0000 max_epochs: 10000 env_config: name: TestRnnEnv-v0 hide_object: False apply_dist_reward: True min_dist: 2 max_dist: 8 use_central_value: True multi_discrete_space: False multi_head_value: False player: games_num: 100 determenistic: True
1,207
YAML
17.584615
33
0.589892
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/atari/ppo_space_invaders_resnet.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/invaders_resnet.pth' network: name: resnet_actor_critic separate: False value_shape: 1 space: discrete: cnn: conv_depths: [16, 32, 32] activation: relu initializer: name: default regularizer: name: 'None' mlp: units: [512] activation: relu regularizer: name: 'None' initializer: name: default rnn: name: lstm units: 256 layers: 1 config: reward_shaper: min_val: -1 max_val: 1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 3e-4 name: invaders_resnet score_to_win: 100000 grad_norm: 1.5 entropy_coef: 0.001 truncate_grads: True env_name: 'atari_gym' #'openai_gym' #'PongNoFrameskip-v4' # ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 256 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: none kl_threshold: 0.01 normalize_input: False seq_length: 4 max_epochs: 200000 env_config: skip: 3 name: 'SpaceInvadersNoFrameskip-v4' episode_life: False player: render: True games_num: 10 n_game_life: 1 determenistic: True
1,416
YAML
17.166666
63
0.565678
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/atari/ppo_pacman_torch.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/pacman_ff.pth' network: name: actor_critic separate: False space: discrete: cnn: type: conv2d activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu regularizer: name: 'None' initializer: name: glorot_normal_initializer gain: 1.4142 config: reward_shaper: #min_val: -1 #max_val: 1 scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 name: pacman_ff_no_normalize score_to_win: 50000 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: 'atari_gym' ppo: true e_clip: 0.2 clip_value: False num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: linear schedule_entropy: True normalize_input: False normalize_value: True max_epochs: 20000 env_config: skip: 4 name: 'MsPacmanNoFrameskip-v4' episode_life: True player: render: True games_num: 10 n_game_life: 3 determenistic: True render_sleep: 0.05
1,692
YAML
18.686046
39
0.543144
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/ma/ppo_slime_self_play.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/slime_pvp.pth' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [128,64] activation: elu initializer: name: default regularizer: name: 'None' config: name: slime_pvp2 reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 2e-4 score_to_win: 100 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: slime_gym ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 512 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False games_to_track: 500 self_play_config: update_score: 1 games_to_check: 200 check_scores : False env_config: name: SlimeVolleyDiscrete-v0 #neg_scale: 1 #0.5 self_play: True config_path: 'rl_games/configs/ma/ppo_slime_self_play.yaml' player: render: True games_num: 200 n_game_life: 1 determenistic: True device_name: 'cpu'
1,294
YAML
18.328358
65
0.59119
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/ma/ppo_connect4_self_play.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn/connect4.pth' network: name: actor_critic separate: False normalization: batch_norm space: discrete: cnn: type: conv2d activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 64 kernel_size: 3 strides: 1 padding: 1 - filters: 64 kernel_size: 3 strides: 1 padding: 1 - filters: 128 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' config: name: connect4_3 reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 2e-4 score_to_win: 100 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: connect4_env ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 1024 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False games_to_track: 1000 use_action_masks: True weight_decay: 0.001 self_play_config: update_score: 0.1 games_to_check: 100 env_update_num: 8 env_config: name: connect_four_v0 self_play: True is_human: False random_agent: False config_path: 'rl_games/configs/ma/ppo_connect4_self_play.yaml'
1,735
YAML
19.915662
68
0.563689
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/ma/ppo_slime_v0.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: 'nn' network: name: actor_critic separate: True #normalization: layer_norm space: discrete: mlp: units: [128,64] activation: elu initializer: name: default regularizer: name: 'None' config: name: slime reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 score_to_win: 20 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: slime_gym ppo: true e_clip: 0.2 clip_value: True num_actors: 8 horizon_length: 128 minibatch_size: 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False seq_length: 4 use_action_masks: False ignore_dead_batches : False env_config: name: SlimeVolleyDiscrete-v0 player: render: True games_num: 200 n_game_life: 1 determenistic: True
1,093
YAML
16.645161
34
0.590119
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/ma/ppo_connect4_self_play_resnet.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: True load_path: 'nn/connect4_rn.pth' network: name: connect4net blocks: 5 config: name: connect4_rn reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.995 tau: 0.95 learning_rate: 2e-4 score_to_win: 100 grad_norm: 0.5 entropy_coef: 0.005 truncate_grads: True env_name: connect4_env ppo: true e_clip: 0.2 clip_value: True num_actors: 4 horizon_length: 128 minibatch_size: 512 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.05 normalize_input: False games_to_track: 1000 use_action_masks: True weight_decay: 0.001 self_play_config: update_score: 0.1 games_to_check: 100 env_update_num: 4 env_config: name: connect_four_v0 self_play: True is_human: True random_agent: False config_path: 'rl_games/configs/ma/ppo_connect4_self_play_resnet.yaml'
1,052
YAML
19.25
75
0.613118
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/minigrid/minigrid_rnn.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: path network: name: actor_critic separate: False #normalization: 'layer_norm' space: discrete: cnn: type: conv2d activation: relu initializer: name: glorot_normal_initializer gain: 1.4142 regularizer: name: 'None' convs: - filters: 16 kernel_size: 8 strides: 4 padding: 0 - filters: 32 kernel_size: 4 strides: 2 padding: 0 mlp: units: [128] activation: relu regularizer: name: 'None' initializer: name: glorot_normal_initializer gain: 1.4142 rnn: name: 'lstm' units: 128 layers: 1 before_mlp: True config: reward_shaper: scale_value: 1 normalize_advantage: True gamma: 0.99 tau: 0.9 learning_rate: 5e-4 name: minigrid_env_rnn score_to_win: 1000 grad_norm: 0.5 entropy_coef: 0.01 truncate_grads: True env_name: minigrid_env ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 256 minibatch_size: 2048 mini_epochs: 4 critic_coef: 1 lr_schedule: None kl_threshold: 0.008 normalize_input: False seq_length: 16 weight_decay: 0.0000 env_config: #action_bonus: True #state_bonus : True name: MiniGrid-MemoryS7-v0 fully_obs: False player: games_num: 100 render: True determenistic: False
1,629
YAML
18.404762
39
0.553714
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/configs/procgen/ppo_coinrun.yaml
params: algo: name: a2c_discrete model: name: discrete_a2c load_checkpoint: False load_path: network: name: resnet_actor_critic separate: False value_shape: 1 space: discrete: cnn: conv_depths: [16, 32, 32] activation: elu initializer: name: default regularizer: name: 'None' mlp: units: [512] activation: elu regularizer: name: 'None' initializer: name: default rnn1: name: lstm units: 256 layers: 1 config: reward_shaper: max_val: 10 normalize_advantage: True gamma: 0.999 tau: 0.95 learning_rate: 1e-4 name: atari score_to_win: 900 grad_norm: 0.5 entropy_coef: 0.001 truncate_grads: True env_name: 'openai_gym' #'openai_gym' #'PongNoFrameskip-v4' # ppo: true e_clip: 0.2 clip_value: True num_actors: 16 horizon_length: 256 minibatch_size: 1024 mini_epochs: 3 critic_coef: 1 lr_schedule: polynom_decay kl_threshold: 0.01 normalize_input: False seq_length: 4 max_epochs: 2000 env_config: name: "procgen:procgen-coinrun-v0" procgen: True frames: 4 num_levels: 1000 start_level: 323 limit_steps: True distribution_mode: 'easy'
1,372
YAML
18.069444
64
0.561953
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/distributed/hvd_wrapper.py
import torch import horovod.torch as hvd import os class HorovodWrapper: def __init__(self): hvd.init() self.rank = hvd.rank() self.rank_size = hvd.size() print('Starting horovod with rank: {0}, size: {1}'.format(self.rank, self.rank_size)) #self.device_name = 'cpu' self.device_name = 'cuda:' + str(self.rank) def update_algo_config(self, config): config['device'] = self.device_name if self.rank != 0: config['print_stats'] = False config['lr_schedule'] = None return config def setup_algo(self, algo): hvd.broadcast_parameters(algo.model.state_dict(), root_rank=0) hvd.broadcast_optimizer_state(algo.optimizer, root_rank=0) algo.optimizer = hvd.DistributedOptimizer(algo.optimizer, named_parameters=algo.model.named_parameters()) self.sync_stats(algo) if algo.has_central_value: hvd.broadcast_optimizer_state(algo.central_value_net.optimizer, root_rank=0) hvd.broadcast_parameters(algo.central_value_net.state_dict(), root_rank=0) algo.central_value_net.optimizer = hvd.DistributedOptimizer(algo.central_value_net.optimizer, named_parameters=algo.central_value_net.model.named_parameters()) def sync_stats(self, algo): stats_dict = algo.get_stats_weights() for k,v in stats_dict.items(): for in_k, in_v in v.items(): in_v.data = hvd.allreduce(in_v, name=k + in_k) algo.curr_frames = hvd.allreduce(torch.tensor(algo.curr_frames), average=False).item() def broadcast_value(self, val, name): hvd.broadcast_parameters({name: val}, root_rank=0) def is_root(self): return self.rank == 0 def average_stats(self, stats_dict): res_dict = {} for k,v in stats_dict.items(): res_dict[k] = self.metric_average(v, k) def average_value(self, val, name): avg_tensor = hvd.allreduce(val, name=name) return avg_tensor
2,030
Python
35.927272
171
0.625123
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/interval_summary_writer.py
import time class IntervalSummaryWriter: """ Summary writer wrapper designed to reduce the size of tf.events files. It will prevent the learner from writing the summaries more often than a specified interval, i.e. if the current interval is 20 seconds and we wrote our last summary for a particular summary key at 01:00, all summaries until 01:20 for that key will be ignored. The interval is adaptive: it will approach 1/200th of the total training time, but no less than interval_sec_min and no greater than interval_sec_max. This was created to facilitate really big training runs, such as with Population-Based training, where summary folders reached tens of gigabytes. """ def __init__(self, summary_writer, cfg): self.experiment_start = time.time() # prevents noisy summaries when experiments are restarted self.defer_summaries_sec = cfg.get('defer_summaries_sec', 5) self.interval_sec_min = cfg.get('summaries_interval_sec_min', 5) self.interval_sec_max = cfg.get('summaries_interval_sec_max', 300) self.last_interval = self.interval_sec_min # interval between summaries will be close to this fraction of the total training time, # i.e. for a run that lasted 200 minutes we write one summary every minute. self.summaries_relative_step = 1.0 / 200 self.writer = summary_writer self.last_write_for_tag = dict() def _calc_interval(self): """Write summaries more often in the beginning of the run.""" if self.last_interval >= self.interval_sec_max: return self.last_interval seconds_since_start = time.time() - self.experiment_start interval = seconds_since_start * self.summaries_relative_step interval = min(interval, self.interval_sec_max) interval = max(interval, self.interval_sec_min) self.last_interval = interval return interval def add_scalar(self, tag, value, step, *args, **kwargs): if step == 0: # removes faulty summaries that appear after the experiment restart # print('Skip summaries with step=0') return seconds_since_start = time.time() - self.experiment_start if seconds_since_start < self.defer_summaries_sec: return last_write = self.last_write_for_tag.get(tag, 0) seconds_since_last_write = time.time() - last_write interval = self._calc_interval() if seconds_since_last_write >= interval: self.writer.add_scalar(tag, value, step, *args, **kwargs) self.last_write_for_tag[tag] = time.time() def __getattr__(self, attr): return getattr(self.writer, attr)
2,750
Python
40.681818
117
0.663273
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/a2c_common.py
import os from rl_games.common import tr_helpers from rl_games.common import vecenv from rl_games.algos_torch.running_mean_std import RunningMeanStd from rl_games.algos_torch.moving_mean_std import MovingMeanStd from rl_games.algos_torch.self_play_manager import SelfPlayManager from rl_games.algos_torch import torch_ext from rl_games.common import schedulers from rl_games.common.experience import ExperienceBuffer from rl_games.common.interval_summary_writer import IntervalSummaryWriter import numpy as np import collections import time from collections import deque, OrderedDict import gym from datetime import datetime from tensorboardX import SummaryWriter import torch from torch import nn from time import sleep def swap_and_flatten01(arr): """ swap and then flatten axes 0 and 1 """ if arr is None: return arr s = arr.size() return arr.transpose(0, 1).reshape(s[0] * s[1], *s[2:]) def rescale_actions(low, high, action): d = (high - low) / 2.0 m = (high + low) / 2.0 scaled_action = action * d + m return scaled_action class A2CBase: def __init__(self, base_name, config): pbt_str = '' if config.get('population_based_training', False): # in PBT, make sure experiment name contains a unique id of the policy within a population pbt_str = f'_pbt_{config["pbt_idx"]:02d}' # This helps in PBT when we need to restart an experiment with the exact same name, rather than # generating a new name with the timestamp every time. full_experiment_name = config.get('full_experiment_name', None) if full_experiment_name: print(f'Exact experiment name requested from command line: {full_experiment_name}') self.experiment_name = full_experiment_name else: self.experiment_name = config['name'] + pbt_str + datetime.now().strftime("_%d-%H-%M-%S") self.config = config self.algo_observer = config['features']['observer'] self.algo_observer.before_init(base_name, config, self.experiment_name) self.multi_gpu = config.get('multi_gpu', False) self.rank = 0 self.rank_size = 1 if self.multi_gpu: from rl_games.distributed.hvd_wrapper import HorovodWrapper self.hvd = HorovodWrapper() self.config = self.hvd.update_algo_config(config) self.rank = self.hvd.rank self.rank_size = self.hvd.rank_size self.network_path = config.get('network_path', "./nn/") self.log_path = config.get('log_path', "runs/") self.env_config = config.get('env_config', {}) self.num_actors = config['num_actors'] self.env_name = config['env_name'] self.env_info = config.get('env_info') if self.env_info is None: self.vec_env = vecenv.create_vec_env(self.env_name, self.num_actors, **self.env_config) self.env_info = self.vec_env.get_env_info() self.ppo_device = config.get('device', 'cuda:0') print('Env info:') print(self.env_info) self.value_size = self.env_info.get('value_size',1) self.observation_space = self.env_info['observation_space'] self.weight_decay = config.get('weight_decay', 0.0) self.use_action_masks = config.get('use_action_masks', False) self.is_train = config.get('is_train', True) self.central_value_config = self.config.get('central_value_config', None) self.has_central_value = self.central_value_config is not None self.truncate_grads = self.config.get('truncate_grads', False) if self.has_central_value: self.state_space = self.env_info.get('state_space', None) if isinstance(self.state_space,gym.spaces.Dict): self.state_shape = {} for k,v in self.state_space.spaces.items(): self.state_shape[k] = v.shape else: self.state_shape = self.state_space.shape self.self_play_config = self.config.get('self_play_config', None) self.has_self_play_config = self.self_play_config is not None self.self_play = config.get('self_play', False) self.save_freq = config.get('save_frequency', 0) self.save_best_after = config.get('save_best_after', 100) self.print_stats = config.get('print_stats', True) self.rnn_states = None self.name = base_name self.ppo = config['ppo'] self.max_epochs = self.config.get('max_epochs', 1e6) self.is_adaptive_lr = config['lr_schedule'] == 'adaptive' self.linear_lr = config['lr_schedule'] == 'linear' self.schedule_type = config.get('schedule_type', 'legacy') if self.is_adaptive_lr: self.kl_threshold = config['kl_threshold'] self.scheduler = schedulers.AdaptiveScheduler(self.kl_threshold) elif self.linear_lr: self.scheduler = schedulers.LinearScheduler(float(config['learning_rate']), max_steps=self.max_epochs, apply_to_entropy=config.get('schedule_entropy', False), start_entropy_coef=config.get('entropy_coef')) else: self.scheduler = schedulers.IdentityScheduler() self.e_clip = config['e_clip'] self.clip_value = config['clip_value'] self.network = config['network'] self.rewards_shaper = config['reward_shaper'] self.num_agents = self.env_info.get('agents', 1) # self.horizon_length = config['horizon_length'] self.horizon_length = config['steps_num'] self.seq_len = self.config.get('seq_length', 4) self.normalize_advantage = config['normalize_advantage'] self.normalize_input = self.config['normalize_input'] self.normalize_value = self.config.get('normalize_value', False) self.truncate_grads = self.config.get('truncate_grads', False) self.has_phasic_policy_gradients = False if isinstance(self.observation_space,gym.spaces.Dict): self.obs_shape = {} for k,v in self.observation_space.spaces.items(): self.obs_shape[k] = v.shape else: self.obs_shape = self.observation_space.shape self.critic_coef = config['critic_coef'] self.grad_norm = config['grad_norm'] self.gamma = self.config['gamma'] self.tau = self.config['tau'] self.games_to_track = self.config.get('games_to_track', 100) self.game_rewards = torch_ext.AverageMeter(self.value_size, self.games_to_track).to(self.ppo_device) self.game_lengths = torch_ext.AverageMeter(1, self.games_to_track).to(self.ppo_device) self.obs = None self.games_num = self.config['minibatch_size'] // self.seq_len # it is used only for current rnn implementation self.batch_size = self.horizon_length * self.num_actors * self.num_agents self.batch_size_envs = self.horizon_length * self.num_actors self.minibatch_size = self.config['minibatch_size'] self.mini_epochs_num = self.config['mini_epochs'] self.num_minibatches = self.batch_size // self.minibatch_size assert(self.batch_size % self.minibatch_size == 0) self.mixed_precision = self.config.get('mixed_precision', False) self.scaler = torch.cuda.amp.GradScaler(enabled=self.mixed_precision) self.last_lr = self.config['learning_rate'] self.frame = 0 self.update_time = 0 self.mean_rewards = self.last_mean_rewards = -100500 self.play_time = 0 self.epoch_num = 0 # allows us to specify a folder where all experiments will reside self.train_dir = config.get('train_dir', 'train_dir') # a folder inside of train_dir containing everything related to a particular experiment # self.experiment_dir = os.path.join(self.train_dir, self.experiment_name) self.experiment_dir = config.get('logdir', './') # folders inside <train_dir>/<experiment_dir> for a specific purpose self.nn_dir = os.path.join(self.experiment_dir, 'nn') self.summaries_dir = os.path.join(self.experiment_dir, 'runs') os.makedirs(self.train_dir, exist_ok=True) os.makedirs(self.experiment_dir, exist_ok=True) os.makedirs(self.nn_dir, exist_ok=True) os.makedirs(self.summaries_dir, exist_ok=True) self.entropy_coef = self.config['entropy_coef'] if self.rank == 0: writer = SummaryWriter(self.summaries_dir) self.writer = IntervalSummaryWriter(writer, self.config) else: self.writer = None self.value_bootstrap = self.config.get('value_bootstrap') if self.normalize_value: self.value_mean_std = RunningMeanStd((1,)).to(self.ppo_device) self.is_tensor_obses = False self.last_rnn_indices = None self.last_state_indices = None #self_play if self.has_self_play_config: print('Initializing SelfPlay Manager') self.self_play_manager = SelfPlayManager(self.self_play_config, self.writer) # features self.algo_observer = config['features']['observer'] self.soft_aug = config['features'].get('soft_augmentation', None) self.has_soft_aug = self.soft_aug is not None # soft augmentation not yet supported assert not self.has_soft_aug def write_stats(self, total_time, epoch_num, step_time, play_time, update_time, a_losses, c_losses, entropies, kls, last_lr, lr_mul, frame, scaled_time, scaled_play_time, curr_frames): # do we need scaled time? self.writer.add_scalar('performance/step_inference_rl_update_fps', curr_frames / scaled_time, frame) self.writer.add_scalar('performance/step_inference_fps', curr_frames / scaled_play_time, frame) self.writer.add_scalar('performance/step_fps', curr_frames / step_time, frame) self.writer.add_scalar('performance/rl_update_time', update_time, frame) self.writer.add_scalar('performance/step_inference_time', play_time, frame) self.writer.add_scalar('performance/step_time', step_time, frame) self.writer.add_scalar('losses/a_loss', torch_ext.mean_list(a_losses).item(), frame) self.writer.add_scalar('losses/c_loss', torch_ext.mean_list(c_losses).item(), frame) self.writer.add_scalar('losses/entropy', torch_ext.mean_list(entropies).item(), frame) self.writer.add_scalar('info/last_lr', last_lr * lr_mul, frame) self.writer.add_scalar('info/lr_mul', lr_mul, frame) self.writer.add_scalar('info/e_clip', self.e_clip * lr_mul, frame) self.writer.add_scalar('info/kl', torch_ext.mean_list(kls).item(), frame) self.writer.add_scalar('info/epochs', epoch_num, frame) self.algo_observer.after_print_stats(frame, epoch_num, total_time) def set_eval(self): self.model.eval() if self.normalize_input: self.running_mean_std.eval() if self.normalize_value: self.value_mean_std.eval() def set_train(self): self.model.train() if self.normalize_input: self.running_mean_std.train() if self.normalize_value: self.value_mean_std.train() def update_lr(self, lr): if self.multi_gpu: lr_tensor = torch.tensor([lr]) self.hvd.broadcast_value(lr_tensor, 'learning_rate') lr = lr_tensor.item() for param_group in self.optimizer.param_groups: param_group['lr'] = lr #if self.has_central_value: # self.central_value_net.update_lr(lr) def get_action_values(self, obs): processed_obs = self._preproc_obs(obs['obs']) self.model.eval() input_dict = { 'is_train': False, 'prev_actions': None, 'obs' : processed_obs, 'rnn_states' : self.rnn_states } with torch.no_grad(): res_dict = self.model(input_dict) if self.has_central_value: states = obs['states'] input_dict = { 'is_train': False, 'states' : states, #'actions' : res_dict['action'], #'rnn_states' : self.rnn_states } value = self.get_central_value(input_dict) res_dict['values'] = value if self.normalize_value: res_dict['values'] = self.value_mean_std(res_dict['values'], True) return res_dict def get_values(self, obs): with torch.no_grad(): if self.has_central_value: states = obs['states'] self.central_value_net.eval() input_dict = { 'is_train': False, 'states' : states, 'actions' : None, 'is_done': self.dones, } value = self.get_central_value(input_dict) else: self.model.eval() processed_obs = self._preproc_obs(obs['obs']) input_dict = { 'is_train': False, 'prev_actions': None, 'obs' : processed_obs, 'rnn_states' : self.rnn_states } result = self.model(input_dict) value = result['values'] if self.normalize_value: value = self.value_mean_std(value, True) return value @property def device(self): return self.ppo_device def reset_envs(self): self.obs = self.env_reset() def init_tensors(self): batch_size = self.num_agents * self.num_actors algo_info = { 'num_actors' : self.num_actors, 'horizon_length' : self.horizon_length, 'has_central_value' : self.has_central_value, 'use_action_masks' : self.use_action_masks } self.experience_buffer = ExperienceBuffer(self.env_info, algo_info, self.ppo_device) val_shape = (self.horizon_length, batch_size, self.value_size) current_rewards_shape = (batch_size, self.value_size) self.current_rewards = torch.zeros(current_rewards_shape, dtype=torch.float32, device=self.ppo_device) self.current_lengths = torch.zeros(batch_size, dtype=torch.float32, device=self.ppo_device) self.dones = torch.ones((batch_size,), dtype=torch.uint8, device=self.ppo_device) if self.is_rnn: self.rnn_states = self.model.get_default_rnn_state() self.rnn_states = [s.to(self.ppo_device) for s in self.rnn_states] batch_size = self.num_agents * self.num_actors num_seqs = self.horizon_length * batch_size // self.seq_len assert((self.horizon_length * batch_size // self.num_minibatches) % self.seq_len == 0) self.mb_rnn_states = [torch.zeros((s.size()[0], num_seqs, s.size()[2]), dtype = torch.float32, device=self.ppo_device) for s in self.rnn_states] def init_rnn_from_model(self, model): self.is_rnn = self.model.is_rnn() def init_rnn_step(self, batch_size, mb_rnn_states): mb_rnn_states = self.mb_rnn_states mb_rnn_masks = torch.zeros(self.horizon_length*batch_size, dtype = torch.float32, device=self.ppo_device) steps_mask = torch.arange(0, batch_size * self.horizon_length, self.horizon_length, dtype=torch.long, device=self.ppo_device) play_mask = torch.arange(0, batch_size, 1, dtype=torch.long, device=self.ppo_device) steps_state = torch.arange(0, batch_size * self.horizon_length//self.seq_len, self.horizon_length//self.seq_len, dtype=torch.long, device=self.ppo_device) indices = torch.zeros((batch_size), dtype = torch.long, device=self.ppo_device) return mb_rnn_masks, indices, steps_mask, steps_state, play_mask, mb_rnn_states def process_rnn_indices(self, mb_rnn_masks, indices, steps_mask, steps_state, mb_rnn_states): seq_indices = None if indices.max().item() >= self.horizon_length: return seq_indices, True mb_rnn_masks[indices + steps_mask] = 1 seq_indices = indices % self.seq_len state_indices = (seq_indices == 0).nonzero(as_tuple=False) state_pos = indices // self.seq_len rnn_indices = state_pos[state_indices] + steps_state[state_indices] for s, mb_s in zip(self.rnn_states, mb_rnn_states): mb_s[:, rnn_indices, :] = s[:, state_indices, :] self.last_rnn_indices = rnn_indices self.last_state_indices = state_indices return seq_indices, False def process_rnn_dones(self, all_done_indices, indices, seq_indices): if len(all_done_indices) > 0: shifts = self.seq_len - 1 - seq_indices[all_done_indices] indices[all_done_indices] += shifts for s in self.rnn_states: s[:,all_done_indices,:] = s[:,all_done_indices,:] * 0.0 indices += 1 def cast_obs(self, obs): if isinstance(obs, torch.Tensor): self.is_tensor_obses = True elif isinstance(obs, np.ndarray): assert(self.observation_space.dtype != np.int8) if self.observation_space.dtype == np.uint8: obs = torch.ByteTensor(obs).to(self.ppo_device) else: obs = torch.FloatTensor(obs).to(self.ppo_device) return obs def obs_to_tensors(self, obs): obs_is_dict = isinstance(obs, dict) if obs_is_dict: upd_obs = {} for key, value in obs.items(): upd_obs[key] = self._obs_to_tensors_internal(value) else: upd_obs = self.cast_obs(obs) if not obs_is_dict or 'obs' not in obs: upd_obs = {'obs' : upd_obs} return upd_obs def _obs_to_tensors_internal(self, obs): if isinstance(obs, dict): upd_obs = {} for key, value in obs.items(): upd_obs[key] = self._obs_to_tensors_internal(value) else: upd_obs = self.cast_obs(obs) return upd_obs def preprocess_actions(self, actions): if not self.is_tensor_obses: actions = actions.cpu().numpy() return actions def env_step(self, actions): actions = self.preprocess_actions(actions) obs, rewards, dones, infos = self.vec_env.step(actions) if self.is_tensor_obses: if self.value_size == 1: rewards = rewards.unsqueeze(1) return self.obs_to_tensors(obs), rewards.to(self.ppo_device), dones.to(self.ppo_device), infos else: if self.value_size == 1: rewards = np.expand_dims(rewards, axis=1) return self.obs_to_tensors(obs), torch.from_numpy(rewards).to(self.ppo_device).float(), torch.from_numpy(dones).to(self.ppo_device), infos def env_reset(self): obs = self.vec_env.reset() obs = self.obs_to_tensors(obs) return obs def discount_values(self, fdones, last_extrinsic_values, mb_fdones, mb_extrinsic_values, mb_rewards): lastgaelam = 0 mb_advs = torch.zeros_like(mb_rewards) for t in reversed(range(self.horizon_length)): if t == self.horizon_length - 1: nextnonterminal = 1.0 - fdones nextvalues = last_extrinsic_values else: nextnonterminal = 1.0 - mb_fdones[t+1] nextvalues = mb_extrinsic_values[t+1] nextnonterminal = nextnonterminal.unsqueeze(1) delta = mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_extrinsic_values[t] mb_advs[t] = lastgaelam = delta + self.gamma * self.tau * nextnonterminal * lastgaelam return mb_advs def discount_values_masks(self, fdones, last_extrinsic_values, mb_fdones, mb_extrinsic_values, mb_rewards, mb_masks): lastgaelam = 0 mb_advs = torch.zeros_like(mb_rewards) for t in reversed(range(self.horizon_length)): if t == self.horizon_length - 1: nextnonterminal = 1.0 - fdones nextvalues = last_extrinsic_values else: nextnonterminal = 1.0 - mb_fdones[t+1] nextvalues = mb_extrinsic_values[t+1] nextnonterminal = nextnonterminal.unsqueeze(1) masks_t = mb_masks[t].unsqueeze(1) delta = (mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_extrinsic_values[t]) mb_advs[t] = lastgaelam = (delta + self.gamma * self.tau * nextnonterminal * lastgaelam) * masks_t return mb_advs def clear_stats(self): batch_size = self.num_agents * self.num_actors self.game_rewards.clear() self.game_lengths.clear() self.mean_rewards = self.last_mean_rewards = -100500 self.algo_observer.after_clear_stats() def update_epoch(self): pass def train(self): pass def prepare_dataset(self, batch_dict): pass def train_epoch(self): self.vec_env.set_train_info(self.frame) def train_actor_critic(self, obs_dict, opt_step=True): pass def calc_gradients(self): pass def get_central_value(self, obs_dict): return self.central_value_net.get_value(obs_dict) def train_central_value(self): return self.central_value_net.train_net() def get_full_state_weights(self): state = self.get_weights() state['epoch'] = self.epoch_num state['optimizer'] = self.optimizer.state_dict() if self.has_central_value: state['assymetric_vf_nets'] = self.central_value_net.state_dict() state['frame'] = self.frame # This is actually the best reward ever achieved. last_mean_rewards is perhaps not the best variable name # We save it to the checkpoint to prevent overriding the "best ever" checkpoint upon experiment restart state['last_mean_rewards'] = self.last_mean_rewards env_state = self.vec_env.get_env_state() state['env_state'] = env_state return state def set_full_state_weights(self, weights): self.set_weights(weights) self.epoch_num = weights['epoch'] if self.has_central_value: self.central_value_net.load_state_dict(weights['assymetric_vf_nets']) self.optimizer.load_state_dict(weights['optimizer']) self.frame = weights.get('frame', 0) self.last_mean_rewards = weights.get('last_mean_rewards', -100500) env_state = weights.get('env_state', None) self.vec_env.set_env_state(env_state) def get_weights(self): state = self.get_stats_weights() state['model'] = self.model.state_dict() return state def get_stats_weights(self): state = {} if self.normalize_input: state['running_mean_std'] = self.running_mean_std.state_dict() if self.normalize_value: state['reward_mean_std'] = self.value_mean_std.state_dict() if self.has_central_value: state['assymetric_vf_mean_std'] = self.central_value_net.get_stats_weights() if self.mixed_precision: state['scaler'] = self.scaler.state_dict() return state def set_stats_weights(self, weights): if self.normalize_input: self.running_mean_std.load_state_dict(weights['running_mean_std']) if self.normalize_value: self.value_mean_std.load_state_dict(weights['reward_mean_std']) if self.has_central_value: self.central_value_net.set_stats_weights(weights['assymetric_vf_mean_std']) if self.mixed_precision and 'scaler' in weights: self.scaler.load_state_dict(weights['scaler']) def set_weights(self, weights): self.model.load_state_dict(weights['model']) self.set_stats_weights(weights) def _preproc_obs(self, obs_batch): if type(obs_batch) is dict: for k,v in obs_batch.items(): obs_batch[k] = self._preproc_obs(v) else: if obs_batch.dtype == torch.uint8: obs_batch = obs_batch.float() / 255.0 if self.normalize_input: obs_batch = self.running_mean_std(obs_batch) return obs_batch def play_steps(self): epinfos = [] update_list = self.update_list step_time = 0.0 for n in range(self.horizon_length): if self.use_action_masks: masks = self.vec_env.get_action_masks() res_dict = self.get_masked_action_values(self.obs, masks) else: res_dict = self.get_action_values(self.obs) self.experience_buffer.update_data('obses', n, self.obs['obs']) self.experience_buffer.update_data('dones', n, self.dones) for k in update_list: self.experience_buffer.update_data(k, n, res_dict[k]) if self.has_central_value: self.experience_buffer.update_data('states', n, self.obs['states']) step_time_start = time.time() self.obs, rewards, self.dones, infos = self.env_step(res_dict['actions']) step_time_end = time.time() step_time += (step_time_end - step_time_start) shaped_rewards = self.rewards_shaper(rewards) if self.value_bootstrap and 'time_outs' in infos: shaped_rewards += self.gamma * res_dict['values'] * self.cast_obs(infos['time_outs']).unsqueeze(1).float() self.experience_buffer.update_data('rewards', n, shaped_rewards) self.current_rewards += rewards self.current_lengths += 1 all_done_indices = self.dones.nonzero(as_tuple=False) done_indices = all_done_indices[::self.num_agents] self.game_rewards.update(self.current_rewards[done_indices]) self.game_lengths.update(self.current_lengths[done_indices]) self.algo_observer.process_infos(infos, done_indices) not_dones = 1.0 - self.dones.float() self.current_rewards = self.current_rewards * not_dones.unsqueeze(1) self.current_lengths = self.current_lengths * not_dones last_values = self.get_values(self.obs) fdones = self.dones.float() mb_fdones = self.experience_buffer.tensor_dict['dones'].float() mb_values = self.experience_buffer.tensor_dict['values'] mb_rewards = self.experience_buffer.tensor_dict['rewards'] mb_advs = self.discount_values(fdones, last_values, mb_fdones, mb_values, mb_rewards) mb_returns = mb_advs + mb_values batch_dict = self.experience_buffer.get_transformed_list(swap_and_flatten01, self.tensor_list) batch_dict['returns'] = swap_and_flatten01(mb_returns) batch_dict['played_frames'] = self.batch_size batch_dict['step_time'] = step_time return batch_dict def play_steps_rnn(self): mb_rnn_states = [] epinfos = [] self.experience_buffer.tensor_dict['values'].fill_(0) self.experience_buffer.tensor_dict['rewards'].fill_(0) self.experience_buffer.tensor_dict['dones'].fill_(1) step_time = 0.0 update_list = self.update_list batch_size = self.num_agents * self.num_actors mb_rnn_masks = None mb_rnn_masks, indices, steps_mask, steps_state, play_mask, mb_rnn_states = self.init_rnn_step(batch_size, mb_rnn_states) for n in range(self.horizon_length): seq_indices, full_tensor = self.process_rnn_indices(mb_rnn_masks, indices, steps_mask, steps_state, mb_rnn_states) if full_tensor: break if self.has_central_value: self.central_value_net.pre_step_rnn(self.last_rnn_indices, self.last_state_indices) if self.use_action_masks: masks = self.vec_env.get_action_masks() res_dict = self.get_masked_action_values(self.obs, masks) else: res_dict = self.get_action_values(self.obs) self.rnn_states = res_dict['rnn_states'] self.experience_buffer.update_data_rnn('obses', indices, play_mask, self.obs['obs']) self.experience_buffer.update_data_rnn('dones', indices, play_mask, self.dones.byte()) for k in update_list: self.experience_buffer.update_data_rnn(k, indices, play_mask, res_dict[k]) if self.has_central_value: self.experience_buffer.update_data_rnn('states', indices[::self.num_agents] ,play_mask[::self.num_agents]//self.num_agents, self.obs['states']) step_time_start = time.time() self.obs, rewards, self.dones, infos = self.env_step(res_dict['actions']) step_time_end = time.time() step_time += (step_time_end - step_time_start) shaped_rewards = self.rewards_shaper(rewards) if self.value_bootstrap and 'time_outs' in infos: shaped_rewards += self.gamma * res_dict['values'] * self.cast_obs(infos['time_outs']).unsqueeze(1).float() self.experience_buffer.update_data_rnn('rewards', indices, play_mask, shaped_rewards) self.current_rewards += rewards self.current_lengths += 1 all_done_indices = self.dones.nonzero(as_tuple=False) done_indices = all_done_indices[::self.num_agents] self.process_rnn_dones(all_done_indices, indices, seq_indices) if self.has_central_value: self.central_value_net.post_step_rnn(all_done_indices) self.algo_observer.process_infos(infos, done_indices) fdones = self.dones.float() not_dones = 1.0 - self.dones.float() self.game_rewards.update(self.current_rewards[done_indices]) self.game_lengths.update(self.current_lengths[done_indices]) self.current_rewards = self.current_rewards * not_dones.unsqueeze(1) self.current_lengths = self.current_lengths * not_dones last_values = self.get_values(self.obs) fdones = self.dones.float() mb_fdones = self.experience_buffer.tensor_dict['dones'].float() mb_values = self.experience_buffer.tensor_dict['values'] mb_rewards = self.experience_buffer.tensor_dict['rewards'] non_finished = (indices != self.horizon_length).nonzero(as_tuple=False) ind_to_fill = indices[non_finished] mb_fdones[ind_to_fill,non_finished] = fdones[non_finished] mb_values[ind_to_fill,non_finished] = last_values[non_finished] fdones[non_finished] = 1.0 last_values[non_finished] = 0 mb_advs = self.discount_values_masks(fdones, last_values, mb_fdones, mb_values, mb_rewards, mb_rnn_masks.view(-1,self.horizon_length).transpose(0,1)) mb_returns = mb_advs + mb_values batch_dict = self.experience_buffer.get_transformed_list(swap_and_flatten01, self.tensor_list) batch_dict['returns'] = swap_and_flatten01(mb_returns) batch_dict['rnn_states'] = mb_rnn_states batch_dict['rnn_masks'] = mb_rnn_masks batch_dict['played_frames'] = n * self.num_actors * self.num_agents batch_dict['step_time'] = step_time return batch_dict class DiscreteA2CBase(A2CBase): def __init__(self, base_name, config): A2CBase.__init__(self, base_name, config) batch_size = self.num_agents * self.num_actors action_space = self.env_info['action_space'] if type(action_space) is gym.spaces.Discrete: self.actions_shape = (self.horizon_length, batch_size) self.actions_num = action_space.n self.is_multi_discrete = False if type(action_space) is gym.spaces.Tuple: self.actions_shape = (self.horizon_length, batch_size, len(action_space)) self.actions_num = [action.n for action in action_space] self.is_multi_discrete = True self.is_discrete = True def init_tensors(self): A2CBase.init_tensors(self) self.update_list = ['actions', 'neglogpacs', 'values'] if self.use_action_masks: self.update_list += ['action_masks'] self.tensor_list = self.update_list + ['obses', 'states', 'dones'] def train_epoch(self): super().train_epoch() self.set_eval() play_time_start = time.time() with torch.no_grad(): if self.is_rnn: batch_dict = self.play_steps_rnn() else: batch_dict = self.play_steps() self.set_train() play_time_end = time.time() update_time_start = time.time() rnn_masks = batch_dict.get('rnn_masks', None) self.curr_frames = batch_dict.pop('played_frames') self.prepare_dataset(batch_dict) self.algo_observer.after_steps() a_losses = [] c_losses = [] entropies = [] kls = [] if self.has_central_value: self.train_central_value() if self.is_rnn: print('non masked rnn obs ratio: ', rnn_masks.sum().item() / (rnn_masks.nelement())) for _ in range(0, self.mini_epochs_num): ep_kls = [] for i in range(len(self.dataset)): a_loss, c_loss, entropy, kl, last_lr, lr_mul = self.train_actor_critic(self.dataset[i]) a_losses.append(a_loss) c_losses.append(c_loss) ep_kls.append(kl) entropies.append(entropy) av_kls = torch_ext.mean_list(ep_kls) if self.multi_gpu: av_kls = self.hvd.average_value(av_kls, 'ep_kls') self.last_lr, self.entropy_coef = self.scheduler.update(self.last_lr, self.entropy_coef, self.epoch_num, 0, av_kls.item()) self.update_lr(self.last_lr) kls.append(av_kls) if self.has_phasic_policy_gradients: self.ppg_aux_loss.train_net(self) update_time_end = time.time() play_time = play_time_end - play_time_start update_time = update_time_end - update_time_start total_time = update_time_end - play_time_start return batch_dict['step_time'], play_time, update_time, total_time, a_losses, c_losses, entropies, kls, last_lr, lr_mul def prepare_dataset(self, batch_dict): rnn_masks = batch_dict.get('rnn_masks', None) obses = batch_dict['obses'] returns = batch_dict['returns'] values = batch_dict['values'] actions = batch_dict['actions'] neglogpacs = batch_dict['neglogpacs'] rnn_states = batch_dict.get('rnn_states', None) advantages = returns - values if self.normalize_value: values = self.value_mean_std(values) returns = self.value_mean_std(returns) advantages = torch.sum(advantages, axis=1) if self.normalize_advantage: if self.is_rnn: advantages = torch_ext.normalization_with_masks(advantages, rnn_masks) else: advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8) dataset_dict = {} dataset_dict['old_values'] = values dataset_dict['old_logp_actions'] = neglogpacs dataset_dict['advantages'] = advantages dataset_dict['returns'] = returns dataset_dict['actions'] = actions dataset_dict['obs'] = obses dataset_dict['rnn_states'] = rnn_states dataset_dict['rnn_masks'] = rnn_masks if self.use_action_masks: dataset_dict['action_masks'] = batch_dict['action_masks'] self.dataset.update_values_dict(dataset_dict) if self.has_central_value: dataset_dict = {} dataset_dict['old_values'] = values dataset_dict['advantages'] = advantages dataset_dict['returns'] = returns dataset_dict['actions'] = actions dataset_dict['obs'] = batch_dict['states'] dataset_dict['rnn_masks'] = rnn_masks self.central_value_net.update_dataset(dataset_dict) def train(self): self.init_tensors() self.mean_rewards = self.last_mean_rewards = -100500 start_time = time.time() total_time = 0 rep_count = 0 # self.frame = 0 # loading from checkpoint self.obs = self.env_reset() if self.multi_gpu: self.hvd.setup_algo(self) while True: epoch_num = self.update_epoch() step_time, play_time, update_time, sum_time, a_losses, c_losses, entropies, kls, last_lr, lr_mul = self.train_epoch() # cleaning memory to optimize space self.dataset.update_values_dict(None) if self.multi_gpu: self.hvd.sync_stats(self) total_time += sum_time self.frame += curr_frames total_time += sum_time if self.rank == 0: scaled_time = sum_time #self.num_agents * sum_time scaled_play_time = play_time #self.num_agents * play_time curr_frames = self.curr_frames frame = self.frame self.write_stats(total_time, epoch_num, step_time, play_time, update_time, a_losses, c_losses, entropies, kls, last_lr, lr_mul, frame, scaled_time, scaled_play_time, curr_frames) if self.has_soft_aug: self.writer.add_scalar('losses/aug_loss', np.mean(aug_losses), frame) self.algo_observer.after_print_stats(frame, epoch_num, total_time) if self.game_rewards.current_size > 0: mean_rewards = self.game_rewards.get_mean() mean_lengths = self.game_lengths.get_mean() self.mean_rewards = mean_rewards[0] for i in range(self.value_size): rewards_name = 'rewards' if i == 0 else 'rewards{0}'.format(i) self.writer.add_scalar(rewards_name + '/step'.format(i), mean_rewards[i], frame) self.writer.add_scalar(rewards_name + '/iter'.format(i), mean_rewards[i], epoch_num) self.writer.add_scalar(rewards_name + '/time'.format(i), mean_rewards[i], total_time) self.writer.add_scalar('episode_lengths/step', mean_lengths, frame) self.writer.add_scalar('episode_lengths/iter', mean_lengths, epoch_num) self.writer.add_scalar('episode_lengths/time', mean_lengths, total_time) if self.has_self_play_config: self.self_play_manager.update(self) # removed equal signs (i.e. "rew=") from the checkpoint name since it messes with hydra CLI parsing checkpoint_name = self.config['name'] + 'ep' + str(epoch_num) + 'rew' + str(mean_rewards) if self.save_freq > 0: if (epoch_num % self.save_freq == 0) and (mean_rewards <= self.last_mean_rewards): self.save(os.path.join(self.nn_dir, 'last_' + checkpoint_name)) if mean_rewards[0] > self.last_mean_rewards and epoch_num >= self.save_best_after: print('saving next best rewards: ', mean_rewards) self.last_mean_rewards = mean_rewards[0] self.save(os.path.join(self.nn_dir, self.config['name'])) if self.last_mean_rewards > self.config['score_to_win']: print('Network won!') self.save(os.path.join(self.nn_dir, checkpoint_name)) return self.last_mean_rewards, epoch_num if epoch_num > self.max_epochs: self.save(os.path.join(self.nn_dir, 'last_' + checkpoint_name)) print('MAX EPOCHS NUM!') return self.last_mean_rewards, epoch_num update_time = 0 if self.print_stats: fps_step = curr_frames / step_time fps_step_inference = curr_frames / scaled_play_time fps_total = curr_frames / scaled_time print(f'fps step: {fps_step:.1f} fps step and policy inference: {fps_step_inference:.1f} fps total: {fps_total:.1f}') class ContinuousA2CBase(A2CBase): def __init__(self, base_name, config): A2CBase.__init__(self, base_name, config) self.is_discrete = False action_space = self.env_info['action_space'] self.actions_num = action_space.shape[0] self.bounds_loss_coef = config.get('bounds_loss_coef', None) # todo introduce device instead of cuda() self.actions_low = torch.from_numpy(action_space.low.copy()).float().to(self.ppo_device) self.actions_high = torch.from_numpy(action_space.high.copy()).float().to(self.ppo_device) def preprocess_actions(self, actions): clamped_actions = torch.clamp(actions, -1.0, 1.0) rescaled_actions = rescale_actions(self.actions_low, self.actions_high, clamped_actions) if not self.is_tensor_obses: rescaled_actions = rescaled_actions.cpu().numpy() return rescaled_actions def init_tensors(self): A2CBase.init_tensors(self) self.update_list = ['actions', 'neglogpacs', 'values', 'mus', 'sigmas'] self.tensor_list = self.update_list + ['obses', 'states', 'dones'] def train_epoch(self): super().train_epoch() self.set_eval() play_time_start = time.time() with torch.no_grad(): if self.is_rnn: batch_dict = self.play_steps_rnn() else: batch_dict = self.play_steps() play_time_end = time.time() update_time_start = time.time() rnn_masks = batch_dict.get('rnn_masks', None) self.set_train() self.curr_frames = batch_dict.pop('played_frames') self.prepare_dataset(batch_dict) self.algo_observer.after_steps() if self.has_central_value: self.train_central_value() a_losses = [] c_losses = [] b_losses = [] entropies = [] kls = [] if self.is_rnn: frames_mask_ratio = rnn_masks.sum().item() / (rnn_masks.nelement()) print(frames_mask_ratio) for _ in range(0, self.mini_epochs_num): ep_kls = [] for i in range(len(self.dataset)): a_loss, c_loss, entropy, kl, last_lr, lr_mul, cmu, csigma, b_loss = self.train_actor_critic(self.dataset[i]) a_losses.append(a_loss) c_losses.append(c_loss) ep_kls.append(kl) entropies.append(entropy) if self.bounds_loss_coef is not None: b_losses.append(b_loss) self.dataset.update_mu_sigma(cmu, csigma) if self.schedule_type == 'legacy': if self.multi_gpu: kl = self.hvd.average_value(kl, 'ep_kls') self.last_lr, self.entropy_coef = self.scheduler.update(self.last_lr, self.entropy_coef, self.epoch_num, 0,kl.item()) self.update_lr(self.last_lr) av_kls = torch_ext.mean_list(ep_kls) if self.schedule_type == 'standard': if self.multi_gpu: av_kls = self.hvd.average_value(av_kls, 'ep_kls') self.last_lr, self.entropy_coef = self.scheduler.update(self.last_lr, self.entropy_coef, self.epoch_num, 0,av_kls.item()) self.update_lr(self.last_lr) kls.append(av_kls) if self.schedule_type == 'standard_epoch': if self.multi_gpu: av_kls = self.hvd.average_value(torch_ext.mean_list(kls), 'ep_kls') self.last_lr, self.entropy_coef = self.scheduler.update(self.last_lr, self.entropy_coef, self.epoch_num, 0,av_kls.item()) self.update_lr(self.last_lr) if self.has_phasic_policy_gradients: self.ppg_aux_loss.train_net(self) update_time_end = time.time() play_time = play_time_end - play_time_start update_time = update_time_end - update_time_start total_time = update_time_end - play_time_start return batch_dict['step_time'], play_time, update_time, total_time, a_losses, c_losses, b_losses, entropies, kls, last_lr, lr_mul def prepare_dataset(self, batch_dict): obses = batch_dict['obses'] returns = batch_dict['returns'] dones = batch_dict['dones'] values = batch_dict['values'] actions = batch_dict['actions'] neglogpacs = batch_dict['neglogpacs'] mus = batch_dict['mus'] sigmas = batch_dict['sigmas'] rnn_states = batch_dict.get('rnn_states', None) rnn_masks = batch_dict.get('rnn_masks', None) advantages = returns - values if self.normalize_value: values = self.value_mean_std(values) returns = self.value_mean_std(returns) advantages = torch.sum(advantages, axis=1) if self.normalize_advantage: if self.is_rnn: advantages = torch_ext.normalization_with_masks(advantages, rnn_masks) else: advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8) dataset_dict = {} dataset_dict['old_values'] = values dataset_dict['old_logp_actions'] = neglogpacs dataset_dict['advantages'] = advantages dataset_dict['returns'] = returns dataset_dict['actions'] = actions dataset_dict['obs'] = obses dataset_dict['rnn_states'] = rnn_states dataset_dict['rnn_masks'] = rnn_masks dataset_dict['mu'] = mus dataset_dict['sigma'] = sigmas self.dataset.update_values_dict(dataset_dict) if self.has_central_value: dataset_dict = {} dataset_dict['old_values'] = values dataset_dict['advantages'] = advantages dataset_dict['returns'] = returns dataset_dict['actions'] = actions dataset_dict['obs'] = batch_dict['states'] dataset_dict['rnn_masks'] = rnn_masks self.central_value_net.update_dataset(dataset_dict) def train(self): self.init_tensors() self.last_mean_rewards = -100500 start_time = time.time() total_time = 0 rep_count = 0 self.obs = self.env_reset() self.curr_frames = self.batch_size_envs if self.multi_gpu: self.hvd.setup_algo(self) self.snr_ppo = [] while True: epoch_num = self.update_epoch() step_time, play_time, update_time, sum_time, a_losses, c_losses, b_losses, entropies, kls, last_lr, lr_mul = self.train_epoch() total_time += sum_time frame = self.frame # cleaning memory to optimize space self.dataset.update_values_dict(None) if self.multi_gpu: self.hvd.sync_stats(self) if self.rank == 0: # do we need scaled_time? scaled_time = sum_time #self.num_agents * sum_time scaled_play_time = play_time #self.num_agents * play_time curr_frames = self.curr_frames self.frame += curr_frames self.write_stats(total_time, epoch_num, step_time, play_time, update_time, a_losses, c_losses, entropies, kls, last_lr, lr_mul, frame, scaled_time, scaled_play_time, curr_frames) if len(b_losses) > 0: self.writer.add_scalar('losses/bounds_loss', torch_ext.mean_list(b_losses).item(), frame) if self.has_soft_aug: self.writer.add_scalar('losses/aug_loss', np.mean(aug_losses), frame) mean_rewards = [0] mean_lengths = 0 self.writer.add_scalar('snr/pol_grad', np.mean(self.snr_ppo), frame) self.snr_ppo = [] if self.game_rewards.current_size > 0: mean_rewards = self.game_rewards.get_mean() mean_lengths = self.game_lengths.get_mean() self.mean_rewards = mean_rewards[0] for i in range(self.value_size): rewards_name = 'rewards' if i == 0 else 'rewards{0}'.format(i) self.writer.add_scalar(rewards_name + '/step'.format(i), mean_rewards[i], frame) self.writer.add_scalar(rewards_name + '/iter'.format(i), mean_rewards[i], epoch_num) self.writer.add_scalar(rewards_name + '/time'.format(i), mean_rewards[i], total_time) self.writer.add_scalar('episode_lengths/step', mean_lengths, frame) self.writer.add_scalar('episode_lengths/iter', mean_lengths, epoch_num) self.writer.add_scalar('episode_lengths/time', mean_lengths, total_time) if self.has_self_play_config: self.self_play_manager.update(self) checkpoint_name = self.config['name'] + 'ep' + str(epoch_num) + 'rew' + str(mean_rewards) if self.save_freq > 0: if (epoch_num % self.save_freq == 0) and (mean_rewards[0] <= self.last_mean_rewards): self.save(os.path.join(self.nn_dir, 'last_' + checkpoint_name)) if mean_rewards[0] > self.last_mean_rewards and epoch_num >= self.save_best_after: print('saving next best rewards: ', mean_rewards) self.last_mean_rewards = mean_rewards[0] self.save(os.path.join(self.nn_dir, self.config['name'])) if self.last_mean_rewards > self.config['score_to_win']: print('Network won!') self.save(os.path.join(self.nn_dir, checkpoint_name)) return self.last_mean_rewards, epoch_num if epoch_num > self.max_epochs: self.save(os.path.join(self.nn_dir, 'last_' + self.config['name'] + 'ep' + str(epoch_num) + 'rew' + str(mean_rewards))) print('MAX EPOCHS NUM!') return self.last_mean_rewards, epoch_num update_time = 0 if self.print_stats: fps_step = curr_frames / step_time fps_step_inference = curr_frames / scaled_play_time fps_total = curr_frames / scaled_time # print(f'fps step: {fps_step:.1f} fps step and policy inference: {fps_step_inference:.1f} fps total: {fps_total:.1f} mean reward: {mean_rewards[0]:.2f} mean lengths: {mean_lengths:.1f}') print(f'epoch: {epoch_num} fps step: {fps_step:.1f} fps total: {fps_total:.1f} mean reward: {mean_rewards[0]:.2f} mean lengths: {mean_lengths:.1f}')
51,685
Python
41.928571
208
0.585354
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/experiment.py
import copy import yaml class Experiment: def __init__(self, config, experiment_config): self.config = copy.deepcopy(config) self.best_config = copy.deepcopy(self.config) self.experiment_config = experiment_config self.best_results = -100500, 0 self.use_best_prev_result = self.experiment_config.get('use_best_prev_result', True) self.experiments = self.experiment_config['experiments'] self.last_exp_idx = self.experiment_config.get('start_exp', 0) self.sub_idx = self.experiment_config.get('start_sub_exp', 0) self.done = False self.results = {} self.create_config() def _set_parameter(self, config, path, value): keys = path.split('.') sub_conf = config for key in keys[:-1]: sub_conf = sub_conf[key] print('set:' + str(keys) + ':' + str(value)) sub_conf[keys[-1]] = value def set_results(self, rewards, epochs): self.results[(self.last_exp_idx, self.sub_idx)] = rewards, epochs if self.best_results[0] < rewards: self.best_results = rewards, epochs def create_config(self): if self.done: self.current_config = None return self.current_config = copy.deepcopy(self.config) self.current_config['config']['name'] += '_' + str(self.last_exp_idx) + '_' + str(self.sub_idx) print('Experiment name: ' + self.current_config['config']['name']) for key in self.experiments[self.last_exp_idx]['exp']: self._set_parameter(self.current_config, key['path'], key['value'][self.sub_idx]) with open('data.yml', 'w') as outfile: yaml.dump(self.current_config, outfile, default_flow_style=False) def get_next_config(self): config = self.current_config max_vals = len(self.experiments[0]['exp'][0]['value']) self.sub_idx += 1 if self.sub_idx >= max_vals: self.sub_idx = 0 self.last_exp_idx += 1 if self.last_exp_idx >= len(self.experiments): self.done = True else: self.last_exp_idx += 1 self.create_config() return config #def __iter__(self): # print('__iter__') # return self def __next__(self): print('__next__') res = self.get_next_config() if res is not None: yield res
2,457
Python
33.619718
103
0.564103
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/schedulers.py
class RLScheduler: def __init__(self): pass def update(self,current_lr, entropy_coef, epoch, frames, **kwargs): pass class IdentityScheduler(RLScheduler): def __init__(self): super().__init__() def update(self, current_lr, entropy_coef, epoch, frames, kl_dist, **kwargs): return current_lr, entropy_coef class AdaptiveScheduler(RLScheduler): def __init__(self, kl_threshold = 0.008): super().__init__() self.min_lr = 1e-6 self.max_lr = 1e-2 self.kl_threshold = kl_threshold def update(self, current_lr, entropy_coef, epoch, frames, kl_dist, **kwargs): lr = current_lr if kl_dist > (2.0 * self.kl_threshold): lr = max(current_lr / 1.5, self.min_lr) if kl_dist < (0.5 * self.kl_threshold): lr = min(current_lr * 1.5, self.max_lr) return lr, entropy_coef class LinearScheduler(RLScheduler): def __init__(self, start_lr, min_lr=1e-6, max_steps = 1000000, use_epochs=True, apply_to_entropy=False, **kwargs): super().__init__() self.start_lr = start_lr self.min_lr = min_lr self.max_steps = max_steps self.use_epochs = use_epochs self.apply_to_entropy = apply_to_entropy if apply_to_entropy: self.start_entropy_coef = kwargs.pop('start_entropy_coef', 0.01) self.min_entropy_coef = kwargs.pop('min_entropy_coef', 0.0001) def update(self, current_lr, entropy_coef, epoch, frames, kl_dist, **kwargs): if self.use_epochs: steps = epoch else: steps = frames mul = max(0, self.max_steps - steps)/self.max_steps lr = self.min_lr + (self.start_lr - self.min_lr) * mul if self.apply_to_entropy: entropy_coef = self.min_entropy_coef + (self.start_entropy_coef - self.min_entropy_coef) * mul return lr, entropy_coef
1,948
Python
33.803571
118
0.582136
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/wrappers.py
import numpy as np import os os.environ.setdefault('PATH', '') from collections import deque import gym from gym import spaces from copy import copy class InfoWrapper(gym.Wrapper): def __init__(self, env): gym.RewardWrapper.__init__(self, env) self.reward = 0 def reset(self, **kwargs): self.reward = 0 return self.env.reset(**kwargs) def step(self, action): observation, reward, done, info = self.env.step(action) self.reward += reward if done: info['scores'] = self.reward return observation, reward, done, info class NoopResetEnv(gym.Wrapper): def __init__(self, env, noop_max=30): """Sample initial states by taking random number of no-ops on reset. No-op is assumed to be action 0. """ gym.Wrapper.__init__(self, env) self.noop_max = noop_max self.override_num_noops = None self.noop_action = 0 assert env.unwrapped.get_action_meanings()[0] == 'NOOP' def reset(self, **kwargs): """ Do no-op action for a number of steps in [1, noop_max].""" self.env.reset(**kwargs) if self.override_num_noops is not None: noops = self.override_num_noops else: noops = self.unwrapped.np_random.randint(1, self.noop_max + 1) #pylint: disable=E1101 assert noops > 0 obs = None for _ in range(noops): obs, _, done, _ = self.env.step(self.noop_action) if done: obs = self.env.reset(**kwargs) return obs def step(self, ac): return self.env.step(ac) class FireResetEnv(gym.Wrapper): def __init__(self, env): """Take action on reset for environments that are fixed until firing.""" gym.Wrapper.__init__(self, env) assert env.unwrapped.get_action_meanings()[1] == 'FIRE' assert len(env.unwrapped.get_action_meanings()) >= 3 def reset(self, **kwargs): self.env.reset(**kwargs) obs, _, done, _ = self.env.step(1) if done: self.env.reset(**kwargs) obs, _, done, _ = self.env.step(2) if done: self.env.reset(**kwargs) return obs def step(self, ac): return self.env.step(ac) class EpisodicLifeEnv(gym.Wrapper): def __init__(self, env): """Make end-of-life == end-of-episode, but only reset on True game over. Done by DeepMind for the DQN and co. since it helps value estimation. """ gym.Wrapper.__init__(self, env) self.lives = 0 self.was_real_done = True def step(self, action): obs, reward, done, info = self.env.step(action) self.was_real_done = done # check current lives, make loss of life terminal, # then update lives to handle bonus lives lives = self.env.unwrapped.ale.lives() if lives < self.lives and lives > 0: # for Qbert sometimes we stay in lives == 0 condition for a few frames # so it's important to keep lives > 0, so that we only reset once # the environment advertises done. done = True self.lives = lives return obs, reward, done, info def reset(self, **kwargs): """Reset only when lives are exhausted. This way all states are still reachable even though lives are episodic, and the learner need not know about any of this behind-the-scenes. """ if self.was_real_done: obs = self.env.reset(**kwargs) else: # no-op step to advance from terminal/lost life state obs, _, _, _ = self.env.step(0) self.lives = self.env.unwrapped.ale.lives() return obs class EpisodeStackedEnv(gym.Wrapper): def __init__(self, env): gym.Wrapper.__init__(self, env) self.max_stacked_steps = 1000 self.current_steps=0 def step(self, action): obs, reward, done, info = self.env.step(action) if reward == 0: self.current_steps += 1 else: self.current_steps = 0 if self.current_steps == self.max_stacked_steps: self.current_steps = 0 print('max_stacked_steps!') done = True reward = -1 obs = self.env.reset() return obs, reward, done, info class MaxAndSkipEnv(gym.Wrapper): def __init__(self, env,skip=4, use_max = True): """Return only every `skip`-th frame""" gym.Wrapper.__init__(self, env) self.use_max = use_max # most recent raw observations (for max pooling across time steps) if self.use_max: self._obs_buffer = np.zeros((2,)+env.observation_space.shape, dtype=np.uint8) else: self._obs_buffer = np.zeros((2,)+env.observation_space.shape, dtype=np.float32) self._skip = skip def step(self, action): """Repeat action, sum reward, and max over last observations.""" total_reward = 0.0 done = None for i in range(self._skip): obs, reward, done, info = self.env.step(action) if self.use_max: if i == self._skip - 2: self._obs_buffer[0] = obs if i == self._skip - 1: self._obs_buffer[1] = obs else: self._obs_buffer[0] = obs total_reward += reward if done: break # Note that the observation on the done=True frame # doesn't matter if self.use_max: max_frame = self._obs_buffer.max(axis=0) else: max_frame = self._obs_buffer[0] return max_frame, total_reward, done, info def reset(self, **kwargs): return self.env.reset(**kwargs) class ClipRewardEnv(gym.RewardWrapper): def __init__(self, env): gym.RewardWrapper.__init__(self, env) def reward(self, reward): """Bin reward to {+1, 0, -1} by its sign.""" return np.sign(reward) class WarpFrame(gym.ObservationWrapper): def __init__(self, env, width=84, height=84, grayscale=True): """Warp frames to 84x84 as done in the Nature paper and later work.""" gym.ObservationWrapper.__init__(self, env) self.width = width self.height = height self.grayscale = grayscale if self.grayscale: self.observation_space = spaces.Box(low=0, high=255, shape=(self.height, self.width, 1), dtype=np.uint8) else: self.observation_space = spaces.Box(low=0, high=255, shape=(self.height, self.width, 3), dtype=np.uint8) def observation(self, frame): import cv2 if self.grayscale: frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_AREA) if self.grayscale: frame = np.expand_dims(frame, -1) return frame class FrameStack(gym.Wrapper): def __init__(self, env, k, flat = False): """ Stack k last frames. Returns lazy array, which is much more memory efficient. See Also -------- baselines.common.atari_wrappers.LazyFrames """ gym.Wrapper.__init__(self, env) self.k = k self.flat = flat self.frames = deque([], maxlen=k) observation_space = env.observation_space self.shp = shp = observation_space.shape #TODO: remove consts -1 and 1 if flat: self.observation_space = spaces.Box(low=-1, high=1, shape=(shp[:-1] + (shp[-1] * k,)), dtype=observation_space.dtype) else: if len(shp) == 1: self.observation_space = spaces.Box(low=-1, high=1, shape=(k, shp[0]), dtype=observation_space.dtype) else: self.observation_space = spaces.Box(low=0, high=255, shape=(shp[:-1] + (shp[-1] * k,)), dtype=observation_space.dtype) def reset(self): ob = self.env.reset() for _ in range(self.k): self.frames.append(ob) return self._get_ob() def step(self, action): ob, reward, done, info = self.env.step(action) self.frames.append(ob) return self._get_ob(), reward, done, info def _get_ob(self): assert len(self.frames) == self.k if self.flat: return np.squeeze(self.frames).flatten() else: if len(self.shp) == 1: res = np.concatenate([f[..., np.newaxis] for f in self.frames], axis=-1) #print('shape:', np.shape(res)) #print('shape:', np.shape(np.transpose(res))) return np.transpose(res) else: return np.concatenate(self.frames, axis=-1) #return LazyFrames(list(self.frames)) class BatchedFrameStack(gym.Wrapper): def __init__(self, env, k, transpose = False, flatten = False): gym.Wrapper.__init__(self, env) self.k = k self.frames = deque([], maxlen=k) self.shp = shp = env.observation_space.shape self.transpose = transpose self.flatten = flatten if transpose: assert(not flatten) self.observation_space = spaces.Box(low=0, high=1, shape=(shp[0], k), dtype=env.observation_space.dtype) else: if flatten: self.observation_space = spaces.Box(low=0, high=1, shape=(k *shp[0],), dtype=env.observation_space.dtype) else: self.observation_space = spaces.Box(low=0, high=1, shape=(k, shp[0]), dtype=env.observation_space.dtype) def reset(self): ob = self.env.reset() for _ in range(self.k): self.frames.append(ob) return self._get_ob() def step(self, action): ob, reward, done, info = self.env.step(action) self.frames.append(ob) return self._get_ob(), reward, done, info def _get_ob(self): assert len(self.frames) == self.k if self.transpose: frames = np.transpose(self.frames, (1, 2, 0)) else: if self.flatten: frames = np.array(self.frames) shape = np.shape(frames) frames = np.transpose(self.frames, (1, 0, 2)) frames = np.reshape(self.frames, (shape[1], shape[0] * shape[2])) else: frames = np.transpose(self.frames, (1, 0, 2)) return frames class BatchedFrameStackWithStates(gym.Wrapper): def __init__(self, env, k, transpose = False, flatten = False): gym.Wrapper.__init__(self, env) self.k = k self.obses = deque([], maxlen=k) self.states = deque([], maxlen=k) self.shp = shp = env.observation_space.shape self.state_shp = state_shp = env.state_space.shape self.transpose = transpose self.flatten = flatten if transpose: assert(not flatten) self.observation_space = spaces.Box(low=0, high=1, shape=(shp[0], k), dtype=env.observation_space.dtype) self.state_space = spaces.Box(low=0, high=1, shape=(state_shp[0], k), dtype=env.observation_space.dtype) else: if flatten: self.observation_space = spaces.Box(low=0, high=1, shape=(k*shp[0],), dtype=env.observation_space.dtype) self.state_space = spaces.Box(low=0, high=1, shape=(k*state_shp[0],), dtype=env.observation_space.dtype) else: self.observation_space = spaces.Box(low=0, high=1, shape=(k, shp[0]), dtype=env.observation_space.dtype) self.state_space = spaces.Box(low=0, high=1, shape=(k, state_shp[0]), dtype=env.observation_space.dtype) def reset(self): obs_dict = self.env.reset() ob = obs_dict["obs"] state = obs_dict["state"] for _ in range(self.k): self.obses.append(ob) self.states.append(state) return self._get_ob() def step(self, action): obs_dict, reward, done, info = self.env.step(action) ob = obs_dict["obs"] state = obs_dict["state"] self.obses.append(ob) self.states.append(state) return self._get_ob(), reward, done, info def _get_ob(self): assert len(self.obses) == self.k obses = self.process_data(self.obses) states = self.process_data(self.states) return {"obs": obses, "state" : states} def process_data(self, data): if len(np.shape(data)) < 3: return np.array(data) if self.transpose: obses = np.transpose(data, (1, 2, 0)) else: if self.flatten: obses = np.array(data) shape = np.shape(obses) obses = np.transpose(data, (1, 0, 2)) obses = np.reshape(data, (shape[1], shape[0] * shape[2])) else: obses = np.transpose(data, (1, 0, 2)) return obses class ProcgenStack(gym.Wrapper): def __init__(self, env, k = 2, greyscale=True): gym.Wrapper.__init__(self, env) self.k = k self.curr_frame = 0 self.frames = deque([], maxlen=k) self.greyscale=greyscale self.prev_frame = None shp = env.observation_space.shape if greyscale: shape = (shp[:-1] + (shp[-1] + k - 1,)) else: shape = (shp[:-1] + (shp[-1] * k,)) self.observation_space = spaces.Box(low=0, high=255, shape=shape, dtype=np.uint8) def reset(self): import cv2 frames = self.env.reset() self.frames.append(frames) if self.greyscale: self.prev_frame = np.expand_dims(cv2.cvtColor(frames, cv2.COLOR_RGB2GRAY), axis=-1) for _ in range(self.k-1): self.frames.append(self.prev_frame) else: for _ in range(self.k-1): self.frames.append(frames) return self._get_ob() def step(self, action): import cv2 frames, reward, done, info = self.env.step(action) if self.greyscale: self.frames[self.k-1] = self.prev_frame self.prev_frame = np.expand_dims(cv2.cvtColor(frames, cv2.COLOR_RGB2GRAY), axis=-1) self.frames.append(frames) return self._get_ob(), reward, done, info def _get_ob(self): assert len(self.frames) == self.k stacked_frames = np.concatenate(self.frames, axis=-1) return stacked_frames class ScaledFloatFrame(gym.ObservationWrapper): def __init__(self, env): gym.ObservationWrapper.__init__(self, env) self.observation_space = gym.spaces.Box(low=0, high=1, shape=env.observation_space.shape, dtype=np.float32) def observation(self, observation): # careful! This undoes the memory optimization, use # with smaller replay buffers only. return np.array(observation).astype(np.float32) / 255.0 class LazyFrames(object): def __init__(self, frames): """This object ensures that common frames between the observations are only stored once. It exists purely to optimize memory usage which can be huge for DQN's 1M frames replay buffers. This object should only be converted to numpy array before being passed to the model. You'd not believe how complex the previous solution was.""" self._frames = frames self._out = None def _force(self): if self._out is None: self._out = np.concatenate(self._frames, axis=-1) self._frames = None return self._out def __array__(self, dtype=None): out = self._force() if dtype is not None: out = out.astype(dtype) return out def __len__(self): return len(self._force()) def __getitem__(self, i): return self._force()[i] class ReallyDoneWrapper(gym.Wrapper): def __init__(self, env): """ Make it work with video monitor to record whole game video isntead of one life """ self.old_env = env gym.Wrapper.__init__(self, env) self.lives = 0 self.was_real_done = True def step(self, action): old_lives = self.env.unwrapped.ale.lives() obs, reward, done, info = self.env.step(action) lives = self.env.unwrapped.ale.lives() if done: return obs, reward, done, info if old_lives > lives: print('lives:', lives) obs, _, done, _ = self.env.step(1) done = lives == 0 return obs, reward, done, info class AllowBacktracking(gym.Wrapper): """ Use deltas in max(X) as the reward, rather than deltas in X. This way, agents are not discouraged too heavily from exploring backwards if there is no way to advance head-on in the level. """ def __init__(self, env): super(AllowBacktracking, self).__init__(env) self._cur_x = 0 self._max_x = 0 def reset(self, **kwargs): # pylint: disable=E0202 self._cur_x = 0 self._max_x = 0 return self.env.reset(**kwargs) def step(self, action): # pylint: disable=E0202 obs, rew, done, info = self.env.step(action) self._cur_x += rew rew = max(0, self._cur_x - self._max_x) self._max_x = max(self._max_x, self._cur_x) return obs, rew, done, info def unwrap(env): if hasattr(env, "unwrapped"): return env.unwrapped elif hasattr(env, "env"): return unwrap(env.env) elif hasattr(env, "leg_env"): return unwrap(env.leg_env) else: return env class StickyActionEnv(gym.Wrapper): def __init__(self, env, p=0.25): super(StickyActionEnv, self).__init__(env) self.p = p self.last_action = 0 def reset(self): self.last_action = 0 return self.env.reset() def step(self, action): if self.unwrapped.np_random.uniform() < self.p: action = self.last_action self.last_action = action obs, reward, done, info = self.env.step(action) return obs, reward, done, info class MontezumaInfoWrapper(gym.Wrapper): def __init__(self, env, room_address): super(MontezumaInfoWrapper, self).__init__(env) self.room_address = room_address self.visited_rooms = set() def get_current_room(self): ram = unwrap(self.env).ale.getRAM() assert len(ram) == 128 return int(ram[self.room_address]) def step(self, action): obs, rew, done, info = self.env.step(action) self.visited_rooms.add(self.get_current_room()) if done: if 'scores' not in info: info['scores'] = {} info['scores'].update(visited_rooms=copy(self.visited_rooms)) self.visited_rooms.clear() return obs, rew, done, info def reset(self): return self.env.reset() class TimeLimit(gym.Wrapper): """ A little bit changed original openai's TimeLimit env. Main difference is that we always send true or false in infos['time_outs'] """ def __init__(self, env, max_episode_steps=None): super(TimeLimit, self).__init__(env) self.concat_infos = True self._max_episode_steps = max_episode_steps self._elapsed_steps = None def step(self, action): assert self._elapsed_steps is not None, "Cannot call env.step() before calling reset()" observation, reward, done, info = self.env.step(action) self._elapsed_steps += 1 info['time_outs'] = False if self._elapsed_steps >= self._max_episode_steps: info['time_outs'] = True done = True return observation, reward, done, info def reset(self, **kwargs): self._elapsed_steps = 0 return self.env.reset(**kwargs) class MaskVelocityWrapper(gym.ObservationWrapper): """ Gym environment observation wrapper used to mask velocity terms in observations. The intention is the make the MDP partially observatiable. """ def __init__(self, env, name): super(MaskVelocityWrapper, self).__init__(env) if name == "CartPole-v1": self.mask = np.array([1., 0., 1., 0.]) elif name == "Pendulum-v0": self.mask = np.array([1., 1., 0.]) elif name == "LunarLander-v2": self.mask = np.array([1., 1., 0., 0., 1., 0., 1., 1,]) elif name == "LunarLanderContinuous-v2": self.mask = np.array([1., 1., 0., 0., 1., 0., 1., 1,]) else: raise NotImplementedError def observation(self, observation): return observation * self.mask def make_atari(env_id, timelimit=True, noop_max=0, skip=4, sticky=False, directory=None): env = gym.make(env_id) if 'Montezuma' in env_id: env = MontezumaInfoWrapper(env, room_address=3 if 'Montezuma' in env_id else 1) env = StickyActionEnv(env) env = InfoWrapper(env) if directory != None: env = gym.wrappers.Monitor(env,directory=directory,force=True) if sticky: env = StickyActionEnv(env) if not timelimit: env = env.env #assert 'NoFrameskip' in env.spec.id if noop_max > 0: env = NoopResetEnv(env, noop_max=noop_max) env = MaxAndSkipEnv(env, skip=skip) #env = EpisodeStackedEnv(env) return env def wrap_deepmind(env, episode_life=False, clip_rewards=True, frame_stack=True, scale =False): """Configure environment for DeepMind-style Atari. """ if episode_life: env = EpisodicLifeEnv(env) if 'FIRE' in env.unwrapped.get_action_meanings(): env = FireResetEnv(env) env = WarpFrame(env) if scale: env = ScaledFloatFrame(env) if clip_rewards: env = ClipRewardEnv(env) if frame_stack: env = FrameStack(env, 4) return env def wrap_carracing(env, clip_rewards=True, frame_stack=True, scale=False): """Configure environment for DeepMind-style Atari. """ env = WarpFrame(env) if scale: env = ScaledFloatFrame(env) if clip_rewards: env = ClipRewardEnv(env) if frame_stack: env = FrameStack(env, 4) return env def make_car_racing(env_id, skip=4): env = make_atari(env_id, noop_max=0, skip=skip) return wrap_carracing(env, clip_rewards=False) def make_atari_deepmind(env_id, noop_max=30, skip=4, sticky=False, episode_life=True): env = make_atari(env_id, noop_max=noop_max, skip=skip, sticky=sticky) return wrap_deepmind(env, episode_life=episode_life, clip_rewards=False)
22,702
Python
33.927692
134
0.576337
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/rollouts.py
''' TODO: move play_steps here ''' class Rollout: def __init__(self, gamma): self.gamma = gamma def play_steps(self, env, max_steps_count = 1): pass class DiscretePpoRollout(Rollout): def __init__(self, gamma, lam): super(Rollout, self).__init__(gamma) self.lam = lam def play_steps(self, env, max_steps_count = 1): pass
382
Python
18.149999
51
0.578534
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/common_losses.py
from torch import nn import torch def critic_loss(value_preds_batch, values, curr_e_clip, return_batch, clip_value): if clip_value: value_pred_clipped = value_preds_batch + \ (values - value_preds_batch).clamp(-curr_e_clip, curr_e_clip) value_losses = (values - return_batch)**2 value_losses_clipped = (value_pred_clipped - return_batch)**2 c_loss = torch.max(value_losses, value_losses_clipped) else: c_loss = (return_batch - values)**2 return c_loss def actor_loss(old_action_log_probs_batch, action_log_probs, advantage, is_ppo, curr_e_clip): if is_ppo: ratio = torch.exp(old_action_log_probs_batch - action_log_probs) surr1 = advantage * ratio surr2 = advantage * torch.clamp(ratio, 1.0 - curr_e_clip, 1.0 + curr_e_clip) a_loss = torch.max(-surr1, -surr2) else: a_loss = (action_log_probs * advantage) return a_loss
1,020
Python
36.814813
93
0.583333
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/env_configurations.py
from rl_games.common import wrappers from rl_games.common import tr_helpers import rl_games.envs.test from rl_games.envs.brax import create_brax_env import gym from gym.wrappers import FlattenObservation, FilterObservation import numpy as np #FLEX_PATH = '/home/viktor/Documents/rl/FlexRobotics' FLEX_PATH = '/home/trrrrr/Documents/FlexRobotics-master' class HCRewardEnv(gym.RewardWrapper): def __init__(self, env): gym.RewardWrapper.__init__(self, env) def reward(self, reward): return np.max([-10, reward]) class DMControlReward(gym.RewardWrapper): def __init__(self, env): gym.RewardWrapper.__init__(self, env) self.num_stops = 0 self.max_stops = 1000 self.reward_threshold = 0.001 def reset(self, **kwargs): self.num_stops = 0 return self.env.reset(**kwargs) def step(self, action): observation, reward, done, info = self.env.step(action) if reward < self.reward_threshold: self.num_stops += 1 else: self.num_stops = max(0, self.num_stops-1) if self.num_stops > self.max_stops: #print('too many stops!') reward = -10 observation = self.reset() done = True return observation, self.reward(reward), done, info def reward(self, reward): return reward class DMControlObsWrapper(gym.ObservationWrapper): def __init__(self, env): gym.RewardWrapper.__init__(self, env) def observation(self, obs): return obs['observations'] def create_default_gym_env(**kwargs): frames = kwargs.pop('frames', 1) name = kwargs.pop('name') is_procgen = kwargs.pop('procgen', False) limit_steps = kwargs.pop('limit_steps', False) env = gym.make(name, **kwargs) if frames > 1: if is_procgen: env = wrappers.ProcgenStack(env, frames, True) else: env = wrappers.FrameStack(env, frames, False) if limit_steps: env = wrappers.LimitStepsWrapper(env) return env def create_goal_gym_env(**kwargs): frames = kwargs.pop('frames', 1) name = kwargs.pop('name') limit_steps = kwargs.pop('limit_steps', False) env = gym.make(name, **kwargs) env = FlattenObservation(FilterObservation(env, ['observation', 'desired_goal'])) if frames > 1: env = wrappers.FrameStack(env, frames, False) if limit_steps: env = wrappers.LimitStepsWrapper(env) return env def create_slime_gym_env(**kwargs): import slimevolleygym from rl_games.envs.slimevolley_selfplay import SlimeVolleySelfplay name = kwargs.pop('name') limit_steps = kwargs.pop('limit_steps', False) self_play = kwargs.pop('self_play', False) if self_play: env = SlimeVolleySelfplay(name, **kwargs) else: env = gym.make(name, **kwargs) return env def create_connect_four_env(**kwargs): from rl_games.envs.connect4_selfplay import ConnectFourSelfPlay name = kwargs.pop('name') limit_steps = kwargs.pop('limit_steps', False) self_play = kwargs.pop('self_play', False) if self_play: env = ConnectFourSelfPlay(name, **kwargs) else: env = gym.make(name, **kwargs) return env def create_atari_gym_env(**kwargs): #frames = kwargs.pop('frames', 1) name = kwargs.pop('name') skip = kwargs.pop('skip',4) episode_life = kwargs.pop('episode_life',True) env = wrappers.make_atari_deepmind(name, skip=skip,episode_life=episode_life) return env def create_dm_control_env(**kwargs): frames = kwargs.pop('frames', 1) name = 'dm2gym:'+ kwargs.pop('name') env = gym.make(name, environment_kwargs=kwargs) env = DMControlReward(env) env = DMControlObsWrapper(env) if frames > 1: env = wrappers.FrameStack(env, frames, False) return env def create_super_mario_env(name='SuperMarioBros-v1'): import gym from nes_py.wrappers import JoypadSpace from gym_super_mario_bros.actions import SIMPLE_MOVEMENT, COMPLEX_MOVEMENT import gym_super_mario_bros env = gym_super_mario_bros.make(name) env = JoypadSpace(env, SIMPLE_MOVEMENT) env = wrappers.MaxAndSkipEnv(env, skip=4) env = wrappers.wrap_deepmind(env, episode_life=False, clip_rewards=False, frame_stack=True, scale=True) return env def create_super_mario_env_stage1(name='SuperMarioBrosRandomStage1-v1'): import gym from nes_py.wrappers import JoypadSpace from gym_super_mario_bros.actions import SIMPLE_MOVEMENT, COMPLEX_MOVEMENT import gym_super_mario_bros stage_names = [ 'SuperMarioBros-1-1-v1', 'SuperMarioBros-1-2-v1', 'SuperMarioBros-1-3-v1', 'SuperMarioBros-1-4-v1', ] env = gym_super_mario_bros.make(stage_names[1]) env = JoypadSpace(env, SIMPLE_MOVEMENT) env = wrappers.MaxAndSkipEnv(env, skip=4) env = wrappers.wrap_deepmind(env, episode_life=False, clip_rewards=False, frame_stack=True, scale=True) #env = wrappers.AllowBacktracking(env) return env def create_quadrupped_env(): import gym import roboschool import quadruppedEnv return wrappers.FrameStack(wrappers.MaxAndSkipEnv(gym.make('QuadruppedWalk-v1'), 4, False), 2, True) def create_roboschool_env(name): import gym import roboschool return gym.make(name) def create_smac(name, **kwargs): from rl_games.envs.smac_env import SMACEnv frames = kwargs.pop('frames', 1) transpose = kwargs.pop('transpose', False) flatten = kwargs.pop('flatten', True) has_cv = kwargs.get('central_value', False) env = SMACEnv(name, **kwargs) if frames > 1: if has_cv: env = wrappers.BatchedFrameStackWithStates(env, frames, transpose=False, flatten=flatten) else: env = wrappers.BatchedFrameStack(env, frames, transpose=False, flatten=flatten) return env def create_smac_cnn(name, **kwargs): from rl_games.envs.smac_env import SMACEnv has_cv = kwargs.get('central_value', False) frames = kwargs.pop('frames', 4) transpose = kwargs.pop('transpose', False) env = SMACEnv(name, **kwargs) if has_cv: env = wrappers.BatchedFrameStackWithStates(env, frames, transpose=transpose) else: env = wrappers.BatchedFrameStack(env, frames, transpose=transpose) return env def create_test_env(name, **kwargs): import rl_games.envs.test env = gym.make(name, **kwargs) return env def create_minigrid_env(name, **kwargs): import gym_minigrid import gym_minigrid.wrappers state_bonus = kwargs.pop('state_bonus', False) action_bonus = kwargs.pop('action_bonus', False) fully_obs = kwargs.pop('fully_obs', False) env = gym.make(name, **kwargs) if state_bonus: env = gym_minigrid.wrappers.StateBonus(env) if action_bonus: env = gym_minigrid.wrappers.ActionBonus(env) if fully_obs: env = gym_minigrid.wrappers.RGBImgObsWrapper(env) else: env = gym_minigrid.wrappers.RGBImgPartialObsWrapper(env) # Get pixel observations env = gym_minigrid.wrappers.ImgObsWrapper(env) # Get rid of the 'mission' field print('minigird_env observation space shape:', env.observation_space) return env def create_multiwalker_env(**kwargs): from rl_games.envs.multiwalker import MultiWalker env = MultiWalker('', **kwargs) return env def create_diambra_env(**kwargs): from rl_games.envs.diambra.diambra import DiambraEnv env = DiambraEnv(**kwargs) return env def create_env(name, **kwargs): steps_limit = kwargs.pop('steps_limit', None) env = gym.make(name, **kwargs) if steps_limit is not None: env = wrappers.TimeLimit(env, steps_limit) return env configurations = { 'CartPole-v1' : { 'vecenv_type' : 'RAY', 'env_creator' : lambda **kwargs : gym.make('CartPole-v1'), }, 'CartPoleMaskedVelocity-v1' : { 'vecenv_type' : 'RAY', 'env_creator' : lambda **kwargs : wrappers.MaskVelocityWrapper(gym.make('CartPole-v1'), 'CartPole-v1'), }, 'MountainCarContinuous-v0' : { 'vecenv_type' : 'RAY', 'env_creator' : lambda **kwargs : gym.make('MountainCarContinuous-v0'), }, 'MountainCar-v0' : { 'vecenv_type' : 'RAY', 'env_creator' : lambda : gym.make('MountainCar-v0'), }, 'Acrobot-v1' : { 'env_creator' : lambda **kwargs : gym.make('Acrobot-v1'), 'vecenv_type' : 'RAY' }, 'Pendulum-v0' : { 'env_creator' : lambda **kwargs : gym.make('Pendulum-v0'), 'vecenv_type' : 'RAY' }, 'LunarLander-v2' : { 'env_creator' : lambda **kwargs : gym.make('LunarLander-v2'), 'vecenv_type' : 'RAY' }, 'PongNoFrameskip-v4' : { 'env_creator' : lambda **kwargs : wrappers.make_atari_deepmind('PongNoFrameskip-v4', skip=4), 'vecenv_type' : 'RAY' }, 'BreakoutNoFrameskip-v4' : { 'env_creator' : lambda **kwargs : wrappers.make_atari_deepmind('BreakoutNoFrameskip-v4', skip=4,sticky=False), 'vecenv_type' : 'RAY' }, 'MsPacmanNoFrameskip-v4' : { 'env_creator' : lambda **kwargs : wrappers.make_atari_deepmind('MsPacmanNoFrameskip-v4', skip=4), 'vecenv_type' : 'RAY' }, 'CarRacing-v0' : { 'env_creator' : lambda **kwargs : wrappers.make_car_racing('CarRacing-v0', skip=4), 'vecenv_type' : 'RAY' }, 'RoboschoolAnt-v1' : { 'env_creator' : lambda **kwargs : create_roboschool_env('RoboschoolAnt-v1'), 'vecenv_type' : 'RAY' }, 'SuperMarioBros-v1' : { 'env_creator' : lambda : create_super_mario_env(), 'vecenv_type' : 'RAY' }, 'SuperMarioBrosRandomStages-v1' : { 'env_creator' : lambda : create_super_mario_env('SuperMarioBrosRandomStages-v1'), 'vecenv_type' : 'RAY' }, 'SuperMarioBrosRandomStage1-v1' : { 'env_creator' : lambda **kwargs : create_super_mario_env_stage1('SuperMarioBrosRandomStage1-v1'), 'vecenv_type' : 'RAY' }, 'RoboschoolHalfCheetah-v1' : { 'env_creator' : lambda **kwargs : create_roboschool_env('RoboschoolHalfCheetah-v1'), 'vecenv_type' : 'RAY' }, 'RoboschoolHumanoid-v1' : { 'env_creator' : lambda : wrappers.FrameStack(create_roboschool_env('RoboschoolHumanoid-v1'), 1, True), 'vecenv_type' : 'RAY' }, 'LunarLanderContinuous-v2' : { 'env_creator' : lambda **kwargs : gym.make('LunarLanderContinuous-v2'), 'vecenv_type' : 'RAY' }, 'RoboschoolHumanoidFlagrun-v1' : { 'env_creator' : lambda **kwargs : wrappers.FrameStack(create_roboschool_env('RoboschoolHumanoidFlagrun-v1'), 1, True), 'vecenv_type' : 'RAY' }, 'BipedalWalker-v3' : { 'env_creator' : lambda **kwargs : create_env('BipedalWalker-v3', **kwargs), 'vecenv_type' : 'RAY' }, 'BipedalWalkerCnn-v3' : { 'env_creator' : lambda **kwargs : wrappers.FrameStack(HCRewardEnv(gym.make('BipedalWalker-v3')), 4, False), 'vecenv_type' : 'RAY' }, 'BipedalWalkerHardcore-v3' : { 'env_creator' : lambda **kwargs : gym.make('BipedalWalkerHardcore-v3'), 'vecenv_type' : 'RAY' }, 'ReacherPyBulletEnv-v0' : { 'env_creator' : lambda **kwargs : create_roboschool_env('ReacherPyBulletEnv-v0'), 'vecenv_type' : 'RAY' }, 'BipedalWalkerHardcoreCnn-v3' : { 'env_creator' : lambda : wrappers.FrameStack(gym.make('BipedalWalkerHardcore-v3'), 4, False), 'vecenv_type' : 'RAY' }, 'QuadruppedWalk-v1' : { 'env_creator' : lambda **kwargs : create_quadrupped_env(), 'vecenv_type' : 'RAY' }, 'FlexAnt' : { 'env_creator' : lambda **kwargs : create_flex(FLEX_PATH + '/demo/gym/cfg/ant.yaml'), 'vecenv_type' : 'ISAAC' }, 'FlexHumanoid' : { 'env_creator' : lambda **kwargs : create_flex(FLEX_PATH + '/demo/gym/cfg/humanoid.yaml'), 'vecenv_type' : 'ISAAC' }, 'FlexHumanoidHard' : { 'env_creator' : lambda **kwargs : create_flex(FLEX_PATH + '/demo/gym/cfg/humanoid_hard.yaml'), 'vecenv_type' : 'ISAAC' }, 'smac' : { 'env_creator' : lambda **kwargs : create_smac(**kwargs), 'vecenv_type' : 'RAY_SMAC' }, 'smac_cnn' : { 'env_creator' : lambda **kwargs : create_smac_cnn(**kwargs), 'vecenv_type' : 'RAY_SMAC' }, 'dm_control' : { 'env_creator' : lambda **kwargs : create_dm_control_env(**kwargs), 'vecenv_type' : 'RAY' }, 'openai_gym' : { 'env_creator' : lambda **kwargs : create_default_gym_env(**kwargs), 'vecenv_type' : 'RAY' }, 'openai_robot_gym' : { 'env_creator' : lambda **kwargs : create_goal_gym_env(**kwargs), 'vecenv_type' : 'RAY' }, 'atari_gym' : { 'env_creator' : lambda **kwargs : create_atari_gym_env(**kwargs), 'vecenv_type' : 'RAY' }, 'slime_gym' : { 'env_creator' : lambda **kwargs : create_slime_gym_env(**kwargs), 'vecenv_type' : 'RAY' }, 'test_env' : { 'env_creator' : lambda **kwargs : create_test_env(kwargs.pop('name'), **kwargs), 'vecenv_type' : 'RAY' }, 'minigrid_env' : { 'env_creator' : lambda **kwargs : create_minigrid_env(kwargs.pop('name'), **kwargs), 'vecenv_type' : 'RAY' }, 'connect4_env' : { 'env_creator' : lambda **kwargs : create_connect_four_env(**kwargs), 'vecenv_type' : 'RAY' }, 'multiwalker_env' : { 'env_creator' : lambda **kwargs : create_multiwalker_env(**kwargs), 'vecenv_type' : 'RAY' }, 'diambra': { 'env_creator': lambda **kwargs: create_diambra_env(**kwargs), 'vecenv_type': 'RAY' }, 'brax' : { 'env_creator': lambda **kwargs: create_brax_env(**kwargs), 'vecenv_type': 'BRAX' }, } def get_env_info(env): result_shapes = {} result_shapes['observation_space'] = env.observation_space result_shapes['action_space'] = env.action_space result_shapes['agents'] = 1 result_shapes['value_size'] = 1 if hasattr(env, "get_number_of_agents"): result_shapes['agents'] = env.get_number_of_agents() ''' if isinstance(result_shapes['observation_space'], gym.spaces.dict.Dict): result_shapes['observation_space'] = observation_space['observations'] if isinstance(result_shapes['observation_space'], dict): result_shapes['observation_space'] = observation_space['observations'] result_shapes['state_space'] = observation_space['states'] ''' if hasattr(env, "value_size"): result_shapes['value_size'] = env.value_size print(result_shapes) return result_shapes def get_obs_and_action_spaces_from_config(config): env_config = config.get('env_config', {}) env = configurations[config['env_name']]['env_creator'](**env_config) result_shapes = get_env_info(env) env.close() return result_shapes def register(name, config): configurations[name] = config
15,163
Python
33
127
0.617028
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/experience.py
import numpy as np import random import gym import torch from rl_games.common.segment_tree import SumSegmentTree, MinSegmentTree import torch from rl_games.algos_torch.torch_ext import numpy_to_torch_dtype_dict class ReplayBuffer(object): def __init__(self, size, ob_space): """Create Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. """ self._obses = np.zeros((size,) + ob_space.shape, dtype=ob_space.dtype) self._next_obses = np.zeros((size,) + ob_space.shape, dtype=ob_space.dtype) self._rewards = np.zeros(size) self._actions = np.zeros(size, dtype=np.int32) self._dones = np.zeros(size, dtype=np.bool) self._maxsize = size self._next_idx = 0 self._curr_size = 0 def __len__(self): return self._curr_size def add(self, obs_t, action, reward, obs_tp1, done): self._curr_size = min(self._curr_size + 1, self._maxsize ) self._obses[self._next_idx] = obs_t self._next_obses[self._next_idx] = obs_tp1 self._rewards[self._next_idx] = reward self._actions[self._next_idx] = action self._dones[self._next_idx] = done self._next_idx = (self._next_idx + 1) % self._maxsize def _get(self, idx): return self._obses[idx], self._actions[idx], self._rewards[idx], self._next_obses[idx], self._dones[idx] def _encode_sample(self, idxes): batch_size = len(idxes) obses_t, actions, rewards, obses_tp1, dones = [None] * batch_size, [None] * batch_size, [None] * batch_size, [None] * batch_size, [None] * batch_size it = 0 for i in idxes: data = self._get(i) obs_t, action, reward, obs_tp1, done = data obses_t[it] = np.array(obs_t, copy=False) actions[it] = np.array(action, copy=False) rewards[it] = reward obses_tp1[it] = np.array(obs_tp1, copy=False) dones[it] = done it = it + 1 return np.array(obses_t), np.array(actions), np.array(rewards), np.array(obses_tp1), np.array(dones) def sample(self, batch_size): """Sample a batch of experiences. Parameters ---------- batch_size: int How many transitions to sample. Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch rew_batch: np.array rewards received as results of executing act_batch next_obs_batch: np.array next set of observations seen after executing act_batch done_mask: np.array done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. """ idxes = [random.randint(0, self._curr_size - 1) for _ in range(batch_size)] return self._encode_sample(idxes) class PrioritizedReplayBuffer(ReplayBuffer): def __init__(self, size, alpha, ob_space): """Create Prioritized Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. alpha: float how much prioritization is used (0 - no prioritization, 1 - full prioritization) See Also -------- ReplayBuffer.__init__ """ super(PrioritizedReplayBuffer, self).__init__(size, ob_space) assert alpha >= 0 self._alpha = alpha it_capacity = 1 while it_capacity < size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 def add(self, *args, **kwargs): """See ReplayBuffer.store_effect""" idx = self._next_idx super().add(*args, **kwargs) self._it_sum[idx] = self._max_priority ** self._alpha self._it_min[idx] = self._max_priority ** self._alpha def _sample_proportional(self, batch_size): res = [] p_total = self._it_sum.sum(0, self._curr_size - 1) every_range_len = p_total / batch_size for i in range(batch_size): mass = random.random() * every_range_len + i * every_range_len idx = self._it_sum.find_prefixsum_idx(mass) res.append(idx) return res def sample(self, batch_size, beta): """Sample a batch of experiences. compared to ReplayBuffer.sample it also returns importance weights and idxes of sampled experiences. Parameters ---------- batch_size: int How many transitions to sample. beta: float To what degree to use importance weights (0 - no corrections, 1 - full correction) Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch rew_batch: np.array rewards received as results of executing act_batch next_obs_batch: np.array next set of observations seen after executing act_batch done_mask: np.array done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. weights: np.array Array of shape (batch_size,) and dtype np.float32 denoting importance weight of each sampled transition idxes: np.array Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences """ assert beta > 0 idxes = self._sample_proportional(batch_size) weights = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * self._curr_size) ** (-beta) for idx in idxes: p_sample = self._it_sum[idx] / self._it_sum.sum() weight = (p_sample * self._curr_size) ** (-beta) weights.append(weight / max_weight) weights = np.array(weights) encoded_sample = self._encode_sample(idxes) return tuple(list(encoded_sample) + [weights, idxes]) def update_priorities(self, idxes, priorities): """Update priorities of sampled transitions. sets priority of transition at index idxes[i] in buffer to priorities[i]. Parameters ---------- idxes: [int] List of idxes of sampled transitions priorities: [float] List of updated priorities corresponding to transitions at the sampled idxes denoted by variable `idxes`. """ assert len(idxes) == len(priorities) for idx, priority in zip(idxes, priorities): assert priority > 0 assert 0 <= idx < self._curr_size self._it_sum[idx] = priority ** self._alpha self._it_min[idx] = priority ** self._alpha self._max_priority = max(self._max_priority, priority) class VectorizedReplayBuffer: def __init__(self, obs_shape, action_shape, capacity, device): """Create Vectorized Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. See Also -------- ReplayBuffer.__init__ """ self.device = device self.obses = torch.empty((capacity, *obs_shape), dtype=torch.float32, device=self.device) self.next_obses = torch.empty((capacity, *obs_shape), dtype=torch.float32, device=self.device) self.actions = torch.empty((capacity, *action_shape), dtype=torch.float32, device=self.device) self.rewards = torch.empty((capacity, 1), dtype=torch.float32, device=self.device) self.dones = torch.empty((capacity, 1), dtype=torch.bool, device=self.device) self.capacity = capacity self.idx = 0 self.full = False def add(self, obs, action, reward, next_obs, done): num_observations = obs.shape[0] remaining_capacity = min(self.capacity - self.idx, num_observations) overflow = num_observations - remaining_capacity if remaining_capacity < num_observations: self.obses[0: overflow] = obs[-overflow:] self.actions[0: overflow] = action[-overflow:] self.rewards[0: overflow] = reward[-overflow:] self.next_obses[0: overflow] = next_obs[-overflow:] self.dones[0: overflow] = done[-overflow:] self.full = True self.obses[self.idx: self.idx + remaining_capacity] = obs[:remaining_capacity] self.actions[self.idx: self.idx + remaining_capacity] = action[:remaining_capacity] self.rewards[self.idx: self.idx + remaining_capacity] = reward[:remaining_capacity] self.next_obses[self.idx: self.idx + remaining_capacity] = next_obs[:remaining_capacity] self.dones[self.idx: self.idx + remaining_capacity] = done[:remaining_capacity] self.idx = (self.idx + num_observations) % self.capacity self.full = self.full or self.idx == 0 def sample(self, batch_size): """Sample a batch of experiences. Parameters ---------- batch_size: int How many transitions to sample. Returns ------- obses: torch tensor batch of observations actions: torch tensor batch of actions executed given obs rewards: torch tensor rewards received as results of executing act_batch next_obses: torch tensor next set of observations seen after executing act_batch not_dones: torch tensor inverse of whether the episode ended at this tuple of (observation, action) or not not_dones_no_max: torch tensor inverse of whether the episode ended at this tuple of (observation, action) or not, specifically exlcuding maximum episode steps """ idxs = torch.randint(0, self.capacity if self.full else self.idx, (batch_size,), device=self.device) obses = self.obses[idxs] actions = self.actions[idxs] rewards = self.rewards[idxs] next_obses = self.next_obses[idxs] dones = self.dones[idxs] return obses, actions, rewards, next_obses, dones class ExperienceBuffer: ''' More generalized than replay buffers. Implemented for on-policy algos ''' def __init__(self, env_info, algo_info, device, aux_tensor_dict=None): self.env_info = env_info self.algo_info = algo_info self.device = device self.num_agents = env_info.get('agents', 1) self.action_space = env_info['action_space'] self.num_actors = algo_info['num_actors'] self.horizon_length = algo_info['horizon_length'] self.has_central_value = algo_info['has_central_value'] self.use_action_masks = algo_info.get('use_action_masks', False) batch_size = self.num_actors * self.num_agents self.is_discrete = False self.is_multi_discrete = False self.is_continuous = False self.obs_base_shape = (self.horizon_length, self.num_agents * self.num_actors) self.state_base_shape = (self.horizon_length, self.num_actors) if type(self.action_space) is gym.spaces.Discrete: self.actions_shape = () self.actions_num = self.action_space.n self.is_discrete = True if type(self.action_space) is gym.spaces.Tuple: self.actions_shape = (len(self.action_space),) self.actions_num = [action.n for action in self.action_space] self.is_multi_discrete = True if type(self.action_space) is gym.spaces.Box: self.actions_shape = (self.action_space.shape[0],) self.actions_num = self.action_space.shape[0] self.is_continuous = True self.tensor_dict = {} self._init_from_env_info(self.env_info) self.aux_tensor_dict = aux_tensor_dict if self.aux_tensor_dict is not None: self._init_from_aux_dict(self.aux_tensor_dict) def _init_from_env_info(self, env_info): obs_base_shape = self.obs_base_shape state_base_shape = self.state_base_shape self.tensor_dict['obses'] = self._create_tensor_from_space(env_info['observation_space'], obs_base_shape) if self.has_central_value: self.tensor_dict['states'] = self._create_tensor_from_space(env_info['state_space'], state_base_shape) val_space = gym.spaces.Box(low=0, high=1,shape=(env_info.get('value_size',1),)) self.tensor_dict['rewards'] = self._create_tensor_from_space(val_space, obs_base_shape) self.tensor_dict['values'] = self._create_tensor_from_space(val_space, obs_base_shape) self.tensor_dict['neglogpacs'] = self._create_tensor_from_space(gym.spaces.Box(low=0, high=1,shape=(), dtype=np.float32), obs_base_shape) self.tensor_dict['dones'] = self._create_tensor_from_space(gym.spaces.Box(low=0, high=1,shape=(), dtype=np.uint8), obs_base_shape) if self.is_discrete or self.is_multi_discrete: self.tensor_dict['actions'] = self._create_tensor_from_space(gym.spaces.Box(low=0, high=1,shape=self.actions_shape, dtype=np.long), obs_base_shape) if self.use_action_masks: self.tensor_dict['action_masks'] = self._create_tensor_from_space(gym.spaces.Box(low=0, high=1,shape=self.actions_shape + (np.sum(self.actions_num),), dtype=np.bool), obs_base_shape) if self.is_continuous: self.tensor_dict['actions'] = self._create_tensor_from_space(gym.spaces.Box(low=0, high=1,shape=self.actions_shape, dtype=np.float32), obs_base_shape) self.tensor_dict['mus'] = self._create_tensor_from_space(gym.spaces.Box(low=0, high=1,shape=self.actions_shape, dtype=np.float32), obs_base_shape) self.tensor_dict['sigmas'] = self._create_tensor_from_space(gym.spaces.Box(low=0, high=1,shape=self.actions_shape, dtype=np.float32), obs_base_shape) def _init_from_aux_dict(self, tensor_dict): obs_base_shape = self.obs_base_shape for k,v in tensor_dict.items(): self.tensor_dict[k] = self._create_tensor_from_space(gym.spaces.Box(low=0, high=1,shape=(v), dtype=np.float32), obs_base_shape) def _create_tensor_from_space(self, space, base_shape): if type(space) is gym.spaces.Box: dtype = numpy_to_torch_dtype_dict[space.dtype] return torch.zeros(base_shape + space.shape, dtype= dtype, device = self.device) if type(space) is gym.spaces.Discrete: dtype = numpy_to_torch_dtype_dict[space.dtype] return torch.zeros(base_shape, dtype= dtype, device = self.device) if type(space) is gym.spaces.Tuple: ''' assuming that tuple is only Discrete tuple ''' dtype = numpy_to_torch_dtype_dict[space.dtype] tuple_len = len(space) return torch.zeros(base_shape +(tuple_len,), dtype= dtype, device = self.device) if type(space) is gym.spaces.Dict: t_dict = {} for k,v in space.spaces.items(): t_dict[k] = self._create_tensor_from_space(v, base_shape) return t_dict def update_data(self, name, index, val): if type(val) is dict: for k,v in val.items(): self.tensor_dict[name][k][index,:] = v else: self.tensor_dict[name][index,:] = val def update_data_rnn(self, name, indices,play_mask, val): if type(val) is dict: for k,v in val: self.tensor_dict[name][k][indices,play_mask] = v else: self.tensor_dict[name][indices,play_mask] = val def get_transformed(self, transform_op): res_dict = {} for k, v in self.tensor_dict.items(): if type(v) is dict: transformed_dict = {} for kd,vd in v.items(): transformed_dict[kd] = transform_op(vd) res_dict[k] = transformed_dict else: res_dict[k] = transform_op(v) return res_dict def get_transformed_list(self, transform_op, tensor_list): res_dict = {} for k in tensor_list: v = self.tensor_dict.get(k) if v is None: continue if type(v) is dict: transformed_dict = {} for kd,vd in v.items(): transformed_dict[kd] = transform_op(vd) res_dict[k] = transformed_dict else: res_dict[k] = transform_op(v) return res_dict
17,184
Python
40.211031
194
0.589967
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/segment_tree.py
import operator class SegmentTree(object): def __init__(self, capacity, operation, neutral_element): """Build a Segment Tree data structure. https://en.wikipedia.org/wiki/Segment_tree Can be used as regular array, but with two important differences: a) setting item's value is slightly slower. It is O(lg capacity) instead of O(1). b) user has access to an efficient ( O(log segment size) ) `reduce` operation which reduces `operation` over a contiguous subsequence of items in the array. Paramters --------- capacity: int Total size of the array - must be a power of two. operation: lambda obj, obj -> obj and operation for combining elements (eg. sum, max) must form a mathematical group together with the set of possible values for array elements (i.e. be associative) neutral_element: obj neutral element for the operation above. eg. float('-inf') for max and 0 for sum. """ assert capacity > 0 and capacity & (capacity - 1) == 0, "capacity must be positive and a power of 2." self._capacity = capacity self._value = [neutral_element for _ in range(2 * capacity)] self._operation = operation def _reduce_helper(self, start, end, node, node_start, node_end): if start == node_start and end == node_end: return self._value[node] mid = (node_start + node_end) // 2 if end <= mid: return self._reduce_helper(start, end, 2 * node, node_start, mid) else: if mid + 1 <= start: return self._reduce_helper(start, end, 2 * node + 1, mid + 1, node_end) else: return self._operation( self._reduce_helper(start, mid, 2 * node, node_start, mid), self._reduce_helper(mid + 1, end, 2 * node + 1, mid + 1, node_end) ) def reduce(self, start=0, end=None): """Returns result of applying `self.operation` to a contiguous subsequence of the array. self.operation(arr[start], operation(arr[start+1], operation(... arr[end]))) Parameters ---------- start: int beginning of the subsequence end: int end of the subsequences Returns ------- reduced: obj result of reducing self.operation over the specified range of array elements. """ if end is None: end = self._capacity if end < 0: end += self._capacity end -= 1 return self._reduce_helper(start, end, 1, 0, self._capacity - 1) def __setitem__(self, idx, val): # index of the leaf idx += self._capacity self._value[idx] = val idx //= 2 while idx >= 1: self._value[idx] = self._operation( self._value[2 * idx], self._value[2 * idx + 1] ) idx //= 2 def __getitem__(self, idx): assert 0 <= idx < self._capacity return self._value[self._capacity + idx] class SumSegmentTree(SegmentTree): def __init__(self, capacity): super(SumSegmentTree, self).__init__( capacity=capacity, operation=operator.add, neutral_element=0.0 ) def sum(self, start=0, end=None): """Returns arr[start] + ... + arr[end]""" return super(SumSegmentTree, self).reduce(start, end) def find_prefixsum_idx(self, prefixsum): """Find the highest index `i` in the array such that sum(arr[0] + arr[1] + ... + arr[i - i]) <= prefixsum if array values are probabilities, this function allows to sample indexes according to the discrete probability efficiently. Parameters ---------- perfixsum: float upperbound on the sum of array prefix Returns ------- idx: int highest index satisfying the prefixsum constraint """ assert 0 <= prefixsum <= self.sum() + 1e-5 idx = 1 while idx < self._capacity: # while non-leaf if self._value[2 * idx] > prefixsum: idx = 2 * idx else: prefixsum -= self._value[2 * idx] idx = 2 * idx + 1 return idx - self._capacity class MinSegmentTree(SegmentTree): def __init__(self, capacity): super(MinSegmentTree, self).__init__( capacity=capacity, operation=min, neutral_element=float('inf') ) def min(self, start=0, end=None): """Returns min(arr[start], ..., arr[end])""" return super(MinSegmentTree, self).reduce(start, end)
4,888
Python
35.214815
109
0.541121
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/datasets.py
import torch import copy from torch.utils.data import Dataset class PPODataset(Dataset): def __init__(self, batch_size, minibatch_size, is_discrete, is_rnn, device, seq_len): self.is_rnn = is_rnn self.seq_len = seq_len self.batch_size = batch_size self.minibatch_size = minibatch_size self.device = device self.length = self.batch_size // self.minibatch_size self.is_discrete = is_discrete self.is_continuous = not is_discrete total_games = self.batch_size // self.seq_len self.num_games_batch = self.minibatch_size // self.seq_len self.game_indexes = torch.arange(total_games, dtype=torch.long, device=self.device) self.flat_indexes = torch.arange(total_games * self.seq_len, dtype=torch.long, device=self.device).reshape(total_games, self.seq_len) self.special_names = ['rnn_states'] def update_values_dict(self, values_dict): self.values_dict = values_dict def update_mu_sigma(self, mu, sigma): start = self.last_range[0] end = self.last_range[1] self.values_dict['mu'][start:end] = mu self.values_dict['sigma'][start:end] = sigma def __len__(self): return self.length def _get_item_rnn(self, idx): gstart = idx * self.num_games_batch gend = (idx + 1) * self.num_games_batch start = gstart * self.seq_len end = gend * self.seq_len self.last_range = (start, end) input_dict = {} for k,v in self.values_dict.items(): if k not in self.special_names: if v is dict: v_dict = { kd:vd[start:end] for kd, vd in v.items() } input_dict[k] = v_dict else: input_dict[k] = v[start:end] rnn_states = self.values_dict['rnn_states'] input_dict['rnn_states'] = [s[:,gstart:gend,:] for s in rnn_states] return input_dict def _get_item(self, idx): start = idx * self.minibatch_size end = (idx + 1) * self.minibatch_size self.last_range = (start, end) input_dict = {} for k,v in self.values_dict.items(): if k not in self.special_names and v is not None: if type(v) is dict: v_dict = { kd:vd[start:end] for kd, vd in v.items() } input_dict[k] = v_dict else: input_dict[k] = v[start:end] return input_dict def __getitem__(self, idx): if self.is_rnn: sample = self._get_item_rnn(idx) else: sample = self._get_item(idx) return sample class DatasetList(Dataset): def __init__(self): self.dataset_list = [] def __len__(self): return self.dataset_list[0].length * len(self.dataset_list) def add_dataset(self, dataset): self.dataset_list.append(copy.deepcopy(dataset)) def clear(self): self.dataset_list = [] def __getitem__(self, idx): ds_len = len(self.dataset_list) ds_idx = idx % ds_len in_idx = idx // ds_len return self.dataset_list[ds_idx].__getitem__(in_idx)
3,260
Python
33.326315
141
0.553067
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/player.py
import time import gym import numpy as np import torch from rl_games.common import env_configurations class BasePlayer(object): def __init__(self, config): self.config = config self.env_name = self.config['env_name'] self.env_config = self.config.get('env_config', {}) self.env_info = self.config.get('env_info') if self.env_info is None: self.env = self.create_env() self.env_info = env_configurations.get_env_info(self.env) self.value_size = self.env_info.get('value_size', 1) self.action_space = self.env_info['action_space'] self.num_agents = self.env_info['agents'] self.observation_space = self.env_info['observation_space'] if isinstance(self.observation_space, gym.spaces.Dict): self.obs_shape = {} for k, v in self.observation_space.spaces.items(): self.obs_shape[k] = v.shape else: self.obs_shape = self.observation_space.shape self.is_tensor_obses = False self.states = None self.player_config = self.config.get('player', {}) self.use_cuda = True self.batch_size = 1 self.has_batch_dimension = False self.has_central_value = self.config.get('central_value_config') is not None self.device_name = self.player_config.get('device_name', 'cuda') self.render_env = self.player_config.get('render', False) self.games_num = self.player_config.get('games_num', 2000) self.is_determenistic = self.player_config.get('determenistic', True) self.n_game_life = self.player_config.get('n_game_life', 1) self.print_stats = self.player_config.get('print_stats', True) self.render_sleep = self.player_config.get('render_sleep', 0.002) self.max_steps = 108000 // 4 self.device = torch.device(self.device_name) def _preproc_obs(self, obs_batch): if type(obs_batch) is dict: for k, v in obs_batch.items(): obs_batch[k] = self._preproc_obs(v) else: if obs_batch.dtype == torch.uint8: obs_batch = obs_batch.float() / 255.0 if self.normalize_input: obs_batch = self.running_mean_std(obs_batch) return obs_batch def env_step(self, env, actions): if not self.is_tensor_obses: actions = actions.cpu().numpy() obs, rewards, dones, infos = env.step(actions) if hasattr(obs, 'dtype') and obs.dtype == np.float64: obs = np.float32(obs) if self.value_size > 1: rewards = rewards[0] if self.is_tensor_obses: return self.obs_to_torch(obs), rewards.cpu(), dones.cpu(), infos else: if np.isscalar(dones): rewards = np.expand_dims(np.asarray(rewards), 0) dones = np.expand_dims(np.asarray(dones), 0) return self.obs_to_torch(obs), torch.from_numpy(rewards), torch.from_numpy(dones), infos def obs_to_torch(self, obs): if isinstance(obs, dict): if 'obs' in obs: obs = obs['obs'] if isinstance(obs, dict): upd_obs = {} for key, value in obs.items(): upd_obs[key] = self._obs_to_tensors_internal(value, False) else: upd_obs = self.cast_obs(obs) else: upd_obs = self.cast_obs(obs) return upd_obs def _obs_to_tensors_internal(self, obs, cast_to_dict=True): if isinstance(obs, dict): upd_obs = {} for key, value in obs.items(): upd_obs[key] = self._obs_to_tensors_internal(value, False) else: upd_obs = self.cast_obs(obs) return upd_obs def cast_obs(self, obs): if isinstance(obs, torch.Tensor): self.is_tensor_obses = True elif isinstance(obs, np.ndarray): assert(self.observation_space.dtype != np.int8) if self.observation_space.dtype == np.uint8: obs = torch.ByteTensor(obs).to(self.device) else: obs = torch.FloatTensor(obs).to(self.device) return obs def preprocess_actions(self, actions): if not self.is_tensor_obses: actions = actions.cpu().numpy() return actions def env_reset(self, env): obs = env.reset() return self.obs_to_torch(obs) def restore(self, fn): raise NotImplementedError('restore') def get_weights(self): weights = {} weights['model'] = self.model.state_dict() if self.normalize_input: weights['running_mean_std'] = self.running_mean_std.state_dict() return weights def set_weights(self, weights): self.model.load_state_dict(weights['model']) if self.normalize_input: self.running_mean_std.load_state_dict(weights['running_mean_std']) def create_env(self): return env_configurations.configurations[self.env_name]['env_creator'](**self.env_config) def get_action(self, obs, is_determenistic=False): raise NotImplementedError('step') def get_masked_action(self, obs, mask, is_determenistic=False): raise NotImplementedError('step') def reset(self): raise NotImplementedError('raise') def init_rnn(self): if self.is_rnn: rnn_states = self.model.get_default_rnn_state() self.states = [torch.zeros((s.size()[0], self.batch_size, s.size( )[2]), dtype=torch.float32).to(self.device) for s in rnn_states] def run(self): n_games = self.games_num render = self.render_env n_game_life = self.n_game_life is_determenistic = self.is_determenistic sum_rewards = 0 sum_steps = 0 sum_game_res = 0 n_games = n_games * n_game_life games_played = 0 has_masks = False has_masks_func = getattr(self.env, "has_action_mask", None) is not None op_agent = getattr(self.env, "create_agent", None) if op_agent: agent_inited = True #print('setting agent weights for selfplay') # self.env.create_agent(self.env.config) # self.env.set_weights(range(8),self.get_weights()) if has_masks_func: has_masks = self.env.has_action_mask() need_init_rnn = self.is_rnn for _ in range(n_games): if games_played >= n_games: break obses = self.env_reset(self.env) batch_size = 1 batch_size = self.get_batch_size(obses, batch_size) if need_init_rnn: self.init_rnn() need_init_rnn = False cr = torch.zeros(batch_size, dtype=torch.float32) steps = torch.zeros(batch_size, dtype=torch.float32) print_game_res = False for n in range(self.max_steps): if has_masks: masks = self.env.get_action_mask() action = self.get_masked_action( obses, masks, is_determenistic) else: action = self.get_action(obses, is_determenistic) obses, r, done, info = self.env_step(self.env, action) cr += r steps += 1 if render: self.env.render(mode='human') time.sleep(self.render_sleep) all_done_indices = done.nonzero(as_tuple=False) done_indices = all_done_indices[::self.num_agents] done_count = len(done_indices) games_played += done_count if done_count > 0: if self.is_rnn: for s in self.states: s[:, all_done_indices, :] = s[:, all_done_indices, :] * 0.0 cur_rewards = cr[done_indices].sum().item() cur_steps = steps[done_indices].sum().item() cr = cr * (1.0 - done.float()) steps = steps * (1.0 - done.float()) sum_rewards += cur_rewards sum_steps += cur_steps game_res = 0.0 if isinstance(info, dict): if 'battle_won' in info: print_game_res = True game_res = info.get('battle_won', 0.5) if 'scores' in info: print_game_res = True game_res = info.get('scores', 0.5) if self.print_stats: if print_game_res: print('reward:', cur_rewards/done_count, 'steps:', cur_steps/done_count, 'w:', game_res) else: print('reward:', cur_rewards/done_count, 'steps:', cur_steps/done_count) sum_game_res += game_res if batch_size//self.num_agents == 1 or games_played >= n_games: break print(sum_rewards) if print_game_res: print('av reward:', sum_rewards / games_played * n_game_life, 'av steps:', sum_steps / games_played * n_game_life, 'winrate:', sum_game_res / games_played * n_game_life) else: print('av reward:', sum_rewards / games_played * n_game_life, 'av steps:', sum_steps / games_played * n_game_life) def get_batch_size(self, obses, batch_size): obs_shape = self.obs_shape if type(self.obs_shape) is dict: if 'obs' in obses: obses = obses['obs'] keys_view = self.obs_shape.keys() keys_iterator = iter(keys_view) first_key = next(keys_iterator) obs_shape = self.obs_shape[first_key] obses = obses[first_key] if len(obses.size()) > len(obs_shape): batch_size = obses.size()[0] self.has_batch_dimension = True self.batch_size = batch_size return batch_size
10,359
Python
37.37037
100
0.529009
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/categorical.py
import numpy as np class CategoricalQ: def __init__(self, n_atoms, v_min, v_max): self.n_atoms = n_atoms self.v_min = v_min self.v_max = v_max self.delta_z = (v_max - v_min) / (n_atoms - 1) def distr_projection(self, next_distr, rewards, dones, gamma): """ Perform distribution projection aka Catergorical Algorithm from the "A Distributional Perspective on RL" paper """ proj_distr = np.zeros_like(next_distr, dtype=np.float32) n_atoms = self.n_atoms v_min = self.v_min v_max = self.v_max delta_z = self.delta_z for atom in range(n_atoms): z = rewards + (v_min + atom * delta_z) * gamma tz_j = np.clip(z, v_min, v_max) b_j = (tz_j - v_min) / delta_z l = np.floor(b_j).astype(np.int64) u = np.ceil(b_j).astype(np.int64) eq_mask = u == l proj_distr[eq_mask, l[eq_mask]] += next_distr[eq_mask, atom] ne_mask = u != l proj_distr[ne_mask, l[ne_mask]] += next_distr[ne_mask, atom] * (u - b_j)[ne_mask] proj_distr[ne_mask, u[ne_mask]] += next_distr[ne_mask, atom] * (b_j - l)[ne_mask] if dones.any(): proj_distr[dones] = 0.0 tz_j = np.clip(rewards[dones], v_min, v_max) b_j = (tz_j - v_min) / delta_z l = np.floor(b_j).astype(np.int64) u = np.ceil(b_j).astype(np.int64) eq_mask = u == l eq_dones = dones.copy() eq_dones[dones] = eq_mask if eq_dones.any(): proj_distr[eq_dones, l[eq_mask]] = 1.0 ne_mask = u != l ne_dones = dones.copy() ne_dones[dones] = ne_mask if ne_dones.any(): proj_distr[ne_dones, l[ne_mask]] = (u - b_j)[ne_mask] proj_distr[ne_dones, u[ne_mask]] = (b_j - l)[ne_mask] return proj_distr
1,977
Python
37.784313
93
0.49216
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/divergence.py
import torch import torch.distributions as dist def d_kl_discrete(p, q): # p = target, q = online # categorical distribution parametrized by logits logits_diff = p - q p_probs = torch.exp(p) d_kl = (p_probs * logits_diff).sum(-1) return d_kl def d_kl_discrete_list(p, q): d_kl = 0 for pi, qi in zip(p,q): d_kl += d_kl_discrete(pi, qi) return d_kl def d_kl_normal(p, q): # p = target, q = online p_mean, p_sigma = p q_mean, q_sigma = q mean_diff = ((q_mean - p_mean) / q_sigma).pow(2) var_ratio = (p_sigma / q_sigma).pow(2) d_kl = 0.5 * (var_ratio + mean_diff - 1 - var_ratio.log()) return d_kl.sum(-1)
680
Python
22.482758
62
0.570588
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/algo_observer.py
from rl_games.algos_torch import torch_ext import torch import numpy as np class AlgoObserver: def __init__(self): pass def before_init(self, base_name, config, experiment_name): pass def after_init(self, algo): pass def process_infos(self, infos, done_indices): pass def after_steps(self): pass def after_print_stats(self, frame, epoch_num, total_time): pass class DefaultAlgoObserver(AlgoObserver): def __init__(self): pass def after_init(self, algo): self.algo = algo self.game_scores = torch_ext.AverageMeter(1, self.algo.games_to_track).to(self.algo.ppo_device) self.writer = self.algo.writer def process_infos(self, infos, done_indices): if not infos: return if not isinstance(infos, dict) and len(infos) > 0 and isinstance(infos[0], dict): done_indices = done_indices.cpu() for ind in done_indices: ind = ind.item() if len(infos) <= ind//self.algo.num_agents: continue info = infos[ind//self.algo.num_agents] game_res = None if 'battle_won' in info: game_res = info['battle_won'] if 'scores' in info: game_res = info['scores'] if game_res is not None: self.game_scores.update(torch.from_numpy(np.asarray([game_res])).to(self.algo.ppo_device)) def after_clear_stats(self): self.game_scores.clear() def after_print_stats(self, frame, epoch_num, total_time): if self.game_scores.current_size > 0 and self.writer is not None: mean_scores = self.game_scores.get_mean() self.writer.add_scalar('scores/mean', mean_scores, frame) self.writer.add_scalar('scores/iter', mean_scores, epoch_num) self.writer.add_scalar('scores/time', mean_scores, total_time)
2,001
Python
31.290322
110
0.578211
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/ivecenv.py
class IVecEnv: def step(self, actions): raise NotImplementedError def reset(self): raise NotImplementedError def has_action_masks(self): return False def get_number_of_agents(self): return 1 def get_env_info(self): pass def set_train_info(self, env_frames, *args, **kwargs): """ Send the information in the direction algo->environment. Most common use case: tell the environment how far along we are in the training process. This is useful for implementing curriculums and things such as that. """ pass def get_env_state(self): """ Return serializable environment state to be saved to checkpoint. Can be used for stateful training sessions, i.e. with adaptive curriculums. """ return None def set_env_state(self, env_state): pass
905
Python
25.647058
111
0.624309
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/vecenv.py
import ray from rl_games.common.ivecenv import IVecEnv from rl_games.common.env_configurations import configurations from rl_games.common.tr_helpers import dicts_to_dict_with_arrays import numpy as np import gym from time import sleep class RayWorker: def __init__(self, config_name, config): self.env = configurations[config_name]['env_creator'](**config) #self.obs = self.env.reset() def step(self, action): next_state, reward, is_done, info = self.env.step(action) if np.isscalar(is_done): episode_done = is_done else: episode_done = is_done.all() if episode_done: next_state = self.reset() if isinstance(next_state, dict): for k,v in next_state.items(): if isinstance(v, dict): for dk,dv in v.items(): if dv.dtype == np.float64: v[dk] = dv.astype(np.float32) else: if v.dtype == np.float64: next_state[k] = v.astype(np.float32) else: if next_state.dtype == np.float64: next_state = next_state.astype(np.float32) return next_state, reward, is_done, info def render(self): self.env.render() def reset(self): self.obs = self.env.reset() return self.obs def get_action_mask(self): return self.env.get_action_mask() def get_number_of_agents(self): if hasattr(self.env, 'get_number_of_agents'): return self.env.get_number_of_agents() else: return 1 def set_weights(self, weights): self.env.update_weights(weights) def can_concat_infos(self): if hasattr(self.env, 'concat_infos'): return self.env.concat_infos else: return False def get_env_info(self): info = {} observation_space = self.env.observation_space #if isinstance(observation_space, gym.spaces.dict.Dict): # observation_space = observation_space['observations'] info['action_space'] = self.env.action_space info['observation_space'] = observation_space info['state_space'] = None info['use_global_observations'] = False info['agents'] = self.get_number_of_agents() info['value_size'] = 1 if hasattr(self.env, 'use_central_value'): info['use_global_observations'] = self.env.use_central_value if hasattr(self.env, 'value_size'): info['value_size'] = self.env.value_size if hasattr(self.env, 'state_space'): info['state_space'] = self.env.state_space return info class RayVecEnv(IVecEnv): def __init__(self, config_name, num_actors, **kwargs): self.config_name = config_name self.num_actors = num_actors self.use_torch = False self.remote_worker = ray.remote(RayWorker) self.workers = [self.remote_worker.remote(self.config_name, kwargs) for i in range(self.num_actors)] res = self.workers[0].get_number_of_agents.remote() self.num_agents = ray.get(res) res = self.workers[0].get_env_info.remote() env_info = ray.get(res) res = self.workers[0].can_concat_infos.remote() can_concat_infos = ray.get(res) self.use_global_obs = env_info['use_global_observations'] self.concat_infos = can_concat_infos self.obs_type_dict = type(env_info.get('observation_space')) is gym.spaces.Dict self.state_type_dict = type(env_info.get('state_space')) is gym.spaces.Dict if self.num_agents == 1: self.concat_func = np.stack else: self.concat_func = np.concatenate def step(self, actions): newobs, newstates, newrewards, newdones, newinfos = [], [], [], [], [] res_obs = [] if self.num_agents == 1: for (action, worker) in zip(actions, self.workers): res_obs.append(worker.step.remote(action)) else: for num, worker in enumerate(self.workers): res_obs.append(worker.step.remote(actions[self.num_agents * num: self.num_agents * num + self.num_agents])) all_res = ray.get(res_obs) for res in all_res: cobs, crewards, cdones, cinfos = res if self.use_global_obs: newobs.append(cobs["obs"]) newstates.append(cobs["state"]) else: newobs.append(cobs) newrewards.append(crewards) newdones.append(cdones) newinfos.append(cinfos) if self.obs_type_dict: ret_obs = dicts_to_dict_with_arrays(newobs, self.num_agents == 1) else: ret_obs = self.concat_func(newobs) if self.use_global_obs: newobsdict = {} newobsdict["obs"] = ret_obs if self.state_type_dict: newobsdict["states"] = dicts_to_dict_with_arrays(newstates, True) else: newobsdict["states"] = np.stack(newstates) ret_obs = newobsdict if self.concat_infos: newinfos = dicts_to_dict_with_arrays(newinfos, False) return ret_obs, self.concat_func(newrewards), self.concat_func(newdones), newinfos def get_env_info(self): res = self.workers[0].get_env_info.remote() return ray.get(res) def set_weights(self, indices, weights): res = [] for ind in indices: res.append(self.workers[ind].set_weights.remote(weights)) ray.get(res) def has_action_masks(self): return True def get_action_masks(self): mask = [worker.get_action_mask.remote() for worker in self.workers] return np.asarray(ray.get(mask), dtype=np.int32) def reset(self): res_obs = [worker.reset.remote() for worker in self.workers] newobs, newstates = [],[] for res in res_obs: cobs = ray.get(res) if self.use_global_obs: newobs.append(cobs["obs"]) newstates.append(cobs["state"]) else: newobs.append(cobs) if self.obs_type_dict: ret_obs = dicts_to_dict_with_arrays(newobs, self.num_agents == 1) else: ret_obs = self.concat_func(newobs) if self.use_global_obs: newobsdict = {} newobsdict["obs"] = ret_obs if self.state_type_dict: newobsdict["states"] = dicts_to_dict_with_arrays(newstates, True) else: newobsdict["states"] = np.stack(newstates) ret_obs = newobsdict return ret_obs # todo rename multi-agent class RayVecSMACEnv(IVecEnv): def __init__(self, config_name, num_actors, **kwargs): self.config_name = config_name self.num_actors = num_actors self.remote_worker = ray.remote(RayWorker) self.workers = [self.remote_worker.remote(self.config_name, kwargs) for i in range(self.num_actors)] res = self.workers[0].get_number_of_agents.remote() self.num_agents = ray.get(res) res = self.workers[0].get_env_info.remote() env_info = ray.get(res) self.use_global_obs = env_info['use_global_observations'] def get_env_info(self): res = self.workers[0].get_env_info.remote() return ray.get(res) def get_number_of_agents(self): return self.num_agents def step(self, actions): newobs, newstates, newrewards, newdones, newinfos = [], [], [], [], [] newobsdict = {} res_obs, res_state = [], [] for num, worker in enumerate(self.workers): res_obs.append(worker.step.remote(actions[self.num_agents * num: self.num_agents * num + self.num_agents])) for res in res_obs: cobs, crewards, cdones, cinfos = ray.get(res) if self.use_global_obs: newobs.append(cobs["obs"]) newstates.append(cobs["state"]) else: newobs.append(cobs) newrewards.append(crewards) newdones.append(cdones) newinfos.append(cinfos) if self.use_global_obs: newobsdict["obs"] = np.concatenate(newobs, axis=0) newobsdict["states"] = np.asarray(newstates) ret_obs = newobsdict else: ret_obs = np.concatenate(newobs, axis=0) return ret_obs, np.concatenate(newrewards, axis=0), np.concatenate(newdones, axis=0), newinfos def has_action_masks(self): return True def get_action_masks(self): mask = [worker.get_action_mask.remote() for worker in self.workers] masks = ray.get(mask) return np.concatenate(masks, axis=0) def reset(self): res_obs = [worker.reset.remote() for worker in self.workers] if self.use_global_obs: newobs, newstates = [],[] for res in res_obs: cobs = ray.get(res) if self.use_global_obs: newobs.append(cobs["obs"]) newstates.append(cobs["state"]) else: newobs.append(cobs) newobsdict = {} newobsdict["obs"] = np.concatenate(newobs, axis=0) newobsdict["states"] = np.asarray(newstates) ret_obs = newobsdict else: ret_obs = ray.get(res_obs) ret_obs = np.concatenate(ret_obs, axis=0) return ret_obs vecenv_config = {} def register(config_name, func): vecenv_config[config_name] = func def create_vec_env(config_name, num_actors, **kwargs): vec_env_name = configurations[config_name]['vecenv_type'] return vecenv_config[vec_env_name](config_name, num_actors, **kwargs) register('RAY', lambda config_name, num_actors, **kwargs: RayVecEnv(config_name, num_actors, **kwargs)) register('RAY_SMAC', lambda config_name, num_actors, **kwargs: RayVecSMACEnv(config_name, num_actors, **kwargs)) from rl_games.envs.brax import BraxEnv register('BRAX', lambda config_name, num_actors, **kwargs: BraxEnv(config_name, num_actors, **kwargs))
10,351
Python
34.696552
123
0.571539
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/tr_helpers.py
import numpy as np from collections import defaultdict class LinearValueProcessor: def __init__(self, start_eps, end_eps, end_eps_frames): self.start_eps = start_eps self.end_eps = end_eps self.end_eps_frames = end_eps_frames def __call__(self, frame): if frame >= self.end_eps_frames: return self.end_eps df = frame / self.end_eps_frames return df * self.end_eps + (1.0 - df) * self.start_eps class DefaultRewardsShaper: def __init__(self, scale_value = 1, shift_value = 0, min_val=-np.inf, max_val=np.inf, is_torch=True): self.scale_value = scale_value self.shift_value = shift_value self.min_val = min_val self.max_val = max_val self.is_torch = is_torch def __call__(self, reward): reward = reward + self.shift_value reward = reward * self.scale_value if self.is_torch: import torch reward = torch.clamp(reward, self.min_val, self.max_val) else: reward = np.clip(reward, self.min_val, self.max_val) return reward def dicts_to_dict_with_arrays(dicts, add_batch_dim = True): def stack(v): if len(np.shape(v)) == 1: return np.array(v) else: return np.stack(v) def concatenate(v): if len(np.shape(v)) == 1: return np.array(v) else: return np.concatenate(v) dicts_len = len(dicts) if(dicts_len <= 1): return dicts res = defaultdict(list) { res[key].append(sub[key]) for sub in dicts for key in sub } if add_batch_dim: concat_func = stack else: concat_func = concatenate res = {k : concat_func(v) for k,v in res.items()} return res def unsqueeze_obs(obs): if type(obs) is dict: for k,v in obs.items(): obs[k] = unsqueeze_obs(v) else: obs = obs.unsqueeze(0) return obs def flatten_first_two_dims(arr): if arr.ndim > 2: return arr.reshape(-1, *arr.shape[-(arr.ndim-2):]) else: return arr.reshape(-1) def free_mem(): import ctypes ctypes.CDLL('libc.so.6').malloc_trim(0)
2,203
Python
26.898734
105
0.568316
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/object_factory.py
class ObjectFactory: def __init__(self): self._builders = {} def register_builder(self, name, builder): self._builders[name] = builder def set_builders(self, builders): self._builders = builders def create(self, name, **kwargs): builder = self._builders.get(name) if not builder: raise ValueError(name) return builder(**kwargs)
414
Python
26.666665
46
0.584541
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/transforms/soft_augmentation.py
from rl_games.common.transforms import transforms import torch class SoftAugmentation(): def __init__(self, **kwargs): self.transform_config = kwargs.pop('transform') self.aug_coef = kwargs.pop('aug_coef', 0.001) print('aug coef:', self.aug_coef) self.name = self.transform_config['name'] #TODO: remove hardcode self.transform = transforms.ImageDatasetTransform(**self.transform_config) def get_coef(self): return self.aug_coef def get_loss(self, p_dict, model, input_dict, loss_type = 'both'): ''' loss_type: 'critic', 'policy', 'both' ''' if self.transform: input_dict = self.transform(input_dict) loss = 0 q_dict = model(input_dict) if loss_type == 'policy' or loss_type == 'both': p_dict['logits'] = p_dict['logits'].detach() loss = model.kl(p_dict, q_dict) if loss_type == 'critic' or loss_type == 'both': p_value = p_dict['value'].detach() q_value = q_dict['value'] loss = loss + (0.5 * (p_value - q_value)**2).sum(dim=-1) return loss
1,165
Python
34.333332
82
0.559657
RoboticExplorationLab/CGAC/externals/rl_games/rl_games/common/transforms/transforms.py
import torch from torch import nn class DatasetTransform(nn.Module): def __init__(self): super().__init__() def forward(self, dataset): return dataset class ImageDatasetTransform(DatasetTransform): def __init__(self, **kwargs): super().__init__() import kornia self.transform = torch.nn.Sequential( nn.ReplicationPad2d(4), kornia.augmentation.RandomCrop((84,84)) #kornia.augmentation.RandomErasing(p=0.2), #kornia.augmentation.RandomAffine(degrees=0, translate=(2.0/84,2.0/84), p=1), #kornia.augmentation.RandomCrop((84,84)) ) def forward(self, dataset): dataset['obs'] = self.transform(dataset['obs']) return dataset
746
Python
27.730768
85
0.619303
RoboticExplorationLab/CGAC/cgac/main.py
import sys, os import argparse import datetime import time import numpy as np import itertools project_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) sys.path.append(project_dir) parser = argparse.ArgumentParser(description='PyTorch Soft Actor-Critic Args') parser.add_argument('--env-name', default="SNUHumanoidEnv", choices=["AntEnv", "HumanoidEnv", "SNUHumanoidEnv", "CartPoleSwingUpEnv", "CheetahEnv", "HopperEnv", "AllegroHand"]) parser.add_argument('--policy', default="Gaussian", help='Policy Type: Gaussian | Deterministic (default: Gaussian)') parser.add_argument('--gamma', type=float, default=0.99, metavar='G', help='discount factor for reward (default: 0.99)') parser.add_argument('--tau_value', type=float, default=0.005, metavar='G', help='target smoothing coefficient(τ) (default: 0.005)') parser.add_argument('--tau_policy', type=float, default=0.001) parser.add_argument('--lr', type=float, default=0.002) parser.add_argument('--final_lr', type=float, default=1e-4) parser.add_argument('--alpha', type=float, default=0.1, metavar='G', help='Temperature parameter α determines the relative importance of the entropy term against the reward (default: 0.2)') parser.add_argument('--alpha_final', type=float, default=2e-5) parser.add_argument('--no_automatic_entropy_tuning', action="store_true", help='Automaically adjust α (default: False)') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--batch_size_update', type=int, default=8192*2) parser.add_argument('--num_actors', type=int, default=4096) parser.add_argument('--num_steps', type=int, default=500000001) parser.add_argument('--critic_hidden', nargs='+', type=int, default=[512, 512, 256]) parser.add_argument('--actor_hidden', nargs='+', type=int, default=[512, 256]) parser.add_argument('--critic_act', type=str, default='elu', choices=['elu', 'tanh', 'relu']) parser.add_argument('--actor_act', type=str, default='elu', choices=['elu', 'tanh', 'relu']) parser.add_argument('--num_critic_updates', type=int, default=2) parser.add_argument('--val_horizon', type=int, default=32) parser.add_argument('--num_steps_buffer', type=int, default=32) parser.add_argument('--betas', nargs='+', type=float, default=[0.9, 0.999]) parser.add_argument('--lam', type=float, default=0.95) parser.add_argument('--no_const_std', action='store_true') parser.add_argument('--grad_norm', type=float, default=20) parser.add_argument('--actor_grad_norm', type=float, default=4) parser.add_argument('--clip_actor_gn', action='store_true') parser.add_argument('--max_updates', type=int, default=20000) parser.add_argument('--lr_schedule', type=str, default='linear', choices=['linear', 'decay', 'constant']) parser.add_argument('--alpha_schedule', type=str, default='linear', choices=['linear', 'decay', 'constant']) parser.add_argument('--final_targ_ent_coeff', type=float, default=3.5) parser.add_argument('--init_targ_ent_coeff', type=float, default=0.2) parser.add_argument('--peak_expected_reward', type=float, default=7.5) parser.add_argument('--init_expected_reward', type=float, default=1.5) parser.add_argument('--critic_method', type=str, default='gae-return', choices=['gae-return', 'td-lambda', 'one-step']) parser.add_argument('--episode_length', type=int, default=1000) parser.add_argument('--no_stochastic_init', action='store_true') parser.add_argument('--policy_clip', action='store_true') parser.add_argument('--cuda', action="store_true") parser.add_argument('--target_update_interval', type=int, default=1, metavar='N', help='Value target update per no. of updates per step (default: 1)') parser.add_argument('--id', type=str, default='0') parser.add_argument('--desc', type=str, default='') parser.add_argument('--final', action='store_true') parser.add_argument('--start_steps', type=int, default=80000, metavar='N', help='Steps sampling random actions (default: 10000)') parser.add_argument('--replay_size', type=int, default=1000000) parser.add_argument('--test', action="store_true") parser.add_argument('--eval', type=bool, default=True, help='Evaluates a policy a policy every 10 episode (default: True)') parser.add_argument('--on_policy_update', action='store_true') parser.add_argument('--reduction_rate_updates', type=int, default=8000) # parser.add_argument('--num_steps_buffer', type=int, default=32) parser.add_argument('--max_updates_alpha', type=int, default=8000) parser.add_argument('--decay_steps', type=int, default=2000) parser.add_argument('--lr_update_freq', type=int, default=1000) parser.add_argument('--lr_decay_rate', type=float, default=0.75) args = parser.parse_args() args.automatic_entropy_tuning = not args.no_automatic_entropy_tuning args.batch_size = args.num_actors args.critic_lr = args.lr args.actor_lr = args.lr args.alpha_lr = args.lr*10 args.alpha_init = args.alpha*4 # args.alpha_final = args.alpha/4 args.max_rand_resets = args.batch_size//args.episode_length args.horizon_shrink_steps = 12000/args.num_steps_buffer args.const_std = not args.no_const_std args.no_grad_train = not args.grad_train args.stochastic_init = not args.no_stochastic_init device_str = "cuda:0" if args.cuda else "cpu" device = args.device = device_str if args.env_name=='AllegroHand': rl_games_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '../../rl_games/')) sys.path.append(rl_games_dir) import isaacgym import isaacgymenvs import torch env = isaacgymenvs.make( args.seed, args.env_name, args.batch_size, device_str, device_str, graphics_device_id=0, headless=True) env.actions = torch.zeros((env.num_envs, env.num_actions), device=device, dtype=torch.float) args.episode_length = 600 args.max_rand_resets = 0 else: import dflex as df import envs import torch from utils.common import * if args.env_name == "HumanoidEnv": args.MM_caching_frequency = 48 elif args.env_name == "SNUHumanoidEnv": args.MM_caching_frequency = 8 elif args.env_name == "AntEnv": args.MM_caching_frequency = 16 seeding(args.seed) env_fn = getattr(envs, args.env_name) env = env_fn(num_envs = args.batch_size, \ device = args.device, \ render = False, \ seed = args.seed, \ episode_length=args.episode_length, \ stochastic_init = args.stochastic_init, \ MM_caching_frequency = args.MM_caching_frequency, \ no_grad=args.no_grad_train) from cgac.cgac import CGAC from torch.utils.tensorboard import SummaryWriter from replay_memory import VectorizedReplayBufferIsaacSAC from utils_cgac import * from utils.common import * seeding(args.seed) memory_cgac = VectorizedReplayBufferIsaacSAC(env.obs_space.shape, env.act_space.shape, args.batch_size, args.num_steps_buffer, args.device, gamma=args.gamma, lam=args.lam, horizon=args.val_horizon, critic_method=args.critic_method) agent = CGAC(env.obs_space.shape[0], env.act_space, args, memory_cgac, env) if not args.test: save_dir = f'runs/hp/{args.env_name}/RL_final/tauval{args.tau_value}pi{args.tau_policy}_{args.actor_act}{args.actor_hidden}_\ {args.critic_act}{args.critic_hidden}_actors{args.num_actors}bszup{args.batch_size_update}_alphaautolin{int(args.final_targ_ent_coeff)}_\ {args.alpha}fin{args.alpha_final}_criticups{args.num_critic_updates}_bufs{args.num_steps_buffer}h{args.val_horizon}_seed{args.seed}_\ piclip{args.policy_clip}_{args.desc}' print('save_dir : ', save_dir) writer = SummaryWriter(save_dir) if args.env_name=='AllegroHand': RL_update_func = agent.update_parameters_and_collect_buffer_RL_isaac else: RL_update_func = agent.update_parameters_and_collect_buffer_RL # Training Loop total_numsteps = 0 updates = 0 total_updates = 0 num_episodes = 0 episode_steps = np.zeros(args.num_actors) episode_rewards = torch.zeros(args.num_actors).to(device) total_episode_reward_hist = [] episode_len_hist = [] agent.times = [] last = time.time() start_time = time.time() for i_episode in itertools.count(1): critic_1_grad_state_loss = None critic_1_loss, critic_2_loss, policy_loss, ent_loss, alpha, log_pi, min_qf_pi, next_values, \ qf_loss_batch, actor_grad_norm, critic_grad_norm, = RL_update_func(memory_cgac, args.batch_size, updates) if not args.test and not args.final: writer.add_scalar('loss/critic_1', critic_1_loss, updates) writer.add_scalar('loss/critic_2', critic_2_loss, updates) writer.add_scalar('loss/policy', policy_loss, updates) writer.add_scalar('loss/entropy_loss', ent_loss, updates) writer.add_scalar('loss/log_pi', log_pi, updates) writer.add_scalar('loss/min_qf_pi', min_qf_pi, updates) writer.add_scalar('entropy_temprature/alpha', alpha, updates) writer.add_scalar('entropy_temprature/actor_grad_norm', actor_grad_norm, updates) writer.add_scalar('entropy_temprature/critic_grad_norm', critic_grad_norm, updates) writer.add_scalar('losses/val_targ_max', next_values.max().item(), updates) writer.add_scalar('losses/val_targ_mean', next_values.mean().item(), updates) writer.add_scalar('losses/val_targ_min', next_values.min().item(), updates) writer.add_scalar('losses/loss_qf_max', qf_loss_batch.max().item(), updates) writer.add_scalar('losses/loss_qf_mean', qf_loss_batch.mean().item(), updates) writer.add_scalar('losses/loss_qf_min', qf_loss_batch.min().item(), updates) writer.add_scalar('losses/loss_qf_median', qf_loss_batch.median().item(), updates) writer.add_scalar('entropy_temprature/num_nans', agent.num_nans, updates) writer.add_scalar('agent_rewards/rew1', agent.episode_rewards[0], i_episode) writer.add_scalar('agent_rewards/rew10', agent.episode_rewards[10], i_episode) writer.add_scalar('agent_rewards/rew100', agent.episode_rewards[20], i_episode) writer.add_scalar('agent_rewards/rew1k', agent.episode_rewards[40], i_episode) writer.add_scalar('agent_rewards/eplenavg', agent.env_train.progress_buf.clone().float().mean().item(), i_episode) writer.add_scalar('agent_done_stats/done_len', agent.len_dones, i_episode) writer.add_scalar('agent_done_stats/queue_len', agent.len_queue, i_episode) writer.add_scalar('agent_done_stats/env_thres', agent.env_thres, i_episode) writer.add_scalar('agent_done_stats/memory_cgac_horizon', memory_cgac.h, i_episode) writer.add_scalar('agent_done_stats/sum_episode_wts', (1-agent.episode_wts).sum(), i_episode) writer.add_scalar('agent_done_stats/agent_curr_rew', agent.reward_batch_curr, i_episode) updates += 1 total_updates += args.num_critic_updates total_numsteps = updates*args.batch_size if total_numsteps > args.num_steps: break if i_episode%100 == 0: time_taken = time.time() - last last = time.time() total_time = time.time() - start_time if len(agent.total_episode_reward_hist)>0: num_test_avg = 100 if not args.test: writer.add_scalar('reward/train', np.array(agent.total_episode_reward_hist[-num_test_avg:]).mean(), i_episode) writer.add_scalar('reward/train_recent', agent.total_episode_reward_hist[-1], i_episode) writer.add_scalar('reward/ep_len', np.array(agent.episode_len_hist[-num_test_avg:]).mean(), i_episode) writer.add_scalar('reward/rew_eplen', np.array(agent.total_episode_reward_hist[-num_test_avg:]).mean()/np.array(agent.episode_len_hist[-num_test_avg:]).mean(), i_episode) writer.add_scalar('reward/train_agent', np.array(agent.total_episode_reward_hist[-num_test_avg:]).mean(), i_episode) writer.add_scalar('reward/ep_len_agent', np.array(agent.episode_len_hist[-num_test_avg:]).mean(), i_episode) writer.add_scalar('reward/rew_eplen_agent', np.array(agent.total_episode_reward_hist[-num_test_avg:]).mean()/np.array(agent.episode_len_hist[-num_test_avg:]).mean(), i_episode) writer.add_scalar('reward/train_time', np.array(agent.total_episode_reward_hist[-num_test_avg:]).mean(), total_time) writer.add_scalar('reward/ep_len_time', np.array(agent.episode_len_hist[-num_test_avg:]).mean(), total_time) writer.add_scalar('reward/train_steps', np.array(agent.total_episode_reward_hist[-num_test_avg:]).mean(), total_numsteps) writer.add_scalar('reward/ep_len_steps', np.array(agent.episode_len_hist[-num_test_avg:]).mean(), total_numsteps) # writer.add_scalar('variance/snr_q', agent.snr_q, total_numsteps) # writer.add_scalar('variance/snr_q_iter', agent.snr_q, i_episode) # writer.add_scalar('variance/ppo_snr', agent.ppo_snr, total_numsteps) # writer.add_scalar('variance/ppo_snr_iter', agent.ppo_snr, i_episode) # writer.add_scalar('variance/ppo_snr_adv', agent.ppo_snr_adv, total_numsteps) # writer.add_scalar('variance/ppo_snr_adv_iter', agent.ppo_snr_adv, i_episode) print(f"iters: {i_episode}, total numsteps: {total_numsteps}, num ep: {agent.num_episodes}, episode steps: {np.array(agent.episode_len_hist[-num_test_avg:]).mean()}, reward: {np.array(agent.total_episode_reward_hist[-num_test_avg:]).mean()}, progress_buf: {env.progress_buf.min()}, time: {time_taken}, lr: {agent.lr}, num_nans: {agent.num_nans}") else: print(f"iters: {i_episode}, total numsteps: {total_numsteps}, num ep: {agent.num_episodes}, progress_buf: {env.progress_buf.min()}, time: {time_taken}, lr: {agent.lr}, num_nans: {agent.num_nans}") print(agent.alpha) env.close()
13,888
Python
57.851695
358
0.682316
RoboticExplorationLab/CGAC/cgac/replay_memory.py
import random import numpy as np import torch import ipdb class VectorizedReplayBufferIsaacSAC: def __init__(self, obs_shape, action_shape, batch_size, num_steps, device, gamma=0.99, lam=0.95, horizon=200000, critic_method='td-lambda'):# """Create Vectorized Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. See Also -------- ReplayBuffer.__init__ """ self.device = device self.out_device = device self.batch_size = batch_size self.num_steps = num_steps self.critic_method = critic_method capacity = batch_size*num_steps self.lam = lam self.gamma = gamma self.h = min(horizon, num_steps) self.minhorizon = 1 self.actions = torch.empty((num_steps, batch_size, *action_shape), dtype=torch.float32, device=self.device) self.rewards = torch.empty((num_steps, batch_size, 1), dtype=torch.float32, device=self.device) self.masks = torch.empty((num_steps, batch_size, 1), dtype=torch.float32, device=self.device) self.term_masks = torch.empty((num_steps, batch_size, 1), dtype=torch.float32, device=self.device) self.next_values = torch.empty((num_steps, batch_size, 1), dtype=torch.float32, device=self.device) self.next_state_log_pi = torch.empty((num_steps, batch_size, 1), dtype=torch.float32, device=self.device) self.states = torch.empty((num_steps, batch_size, *obs_shape), dtype=torch.float32, device=self.device) self.episode_wts = torch.empty((num_steps, batch_size, 1), dtype=torch.float32, device=self.device) self.val_cur = torch.empty((num_steps, batch_size, 1), dtype=torch.float32, device=self.device) self.gamma_k = torch.ones((num_steps, batch_size, 1), dtype=torch.float32, device=self.device) self.sigmar = torch.zeros((num_steps, batch_size, 1), dtype=torch.float32, device=self.device) self.Vt_new = torch.zeros((num_steps, batch_size, 1), dtype=torch.float32, device=self.device) self.lam_t = torch.ones((num_steps, batch_size, 1), dtype=torch.float32, device=self.device) self.Vt_out = torch.zeros((num_steps, batch_size, 1), dtype=torch.float32, device=self.device) self.mask_t = torch.ones((num_steps, batch_size, 1), dtype=torch.float32, device=self.device) self.sigmaG = torch.zeros((num_steps, batch_size, 1), dtype=torch.float32, device=self.device) self.G_prev = torch.zeros((num_steps, batch_size, 1), dtype=torch.float32, device=self.device) self.gamma_lam_k = torch.zeros((num_steps, batch_size, 1), dtype=torch.float32, device=self.device) self.sample_start_idxs = torch.zeros((batch_size,), dtype=torch.float32, device=self.device) self.num_episodes_passed = torch.zeros((batch_size,), dtype=torch.float32, device=self.device) self.capacity = capacity self.idx = 0 self.full = False @torch.no_grad() def add(self, states, actions, rewards, next_q_value, masks, term_masks, next_state_log_pi, alpha, episode_wts, updates): num_observations = self.batch_size if self.idx >= self.num_steps: self.full = True self.idx = 0 self.actions[self.idx, :] = actions self.states[self.idx, :] = states self.rewards[self.idx, :] = rewards self.masks[self.idx, :] = masks self.term_masks[self.idx, :] = term_masks self.next_values[self.idx, :] = next_q_value self.next_state_log_pi[self.idx, :] = next_state_log_pi self.episode_wts[self.idx, :] = episode_wts self.alpha = alpha self.compute_target_values() self.idx += 1 @torch.no_grad() def sample(self, batch_size): """Sample a batch of experiences. Parameters ---------- batch_size: int How many transitions to sample. Returns ------- obses: torch tensor batch of observations actions: torch tensor batch of actions executed given obs rewards: torch tensor rewards received as results of executing act_batch next_obses: torch tensor next set of observations seen after executing act_batch not_dones: torch tensor inverse of whether the episode ended at this tuple of (observation, action) or not not_dones_no_max: torch tensor inverse of whether the episode ended at this tuple of (observation, action) or not, specifically exlcuding maximum episode steps """ idxs_steps = torch.randint(0, self.num_steps if self.full else self.idx, (batch_size,), device=self.device) idxs_bsz = torch.randint(0, self.batch_size, (batch_size,), device=self.device) states = self.states[idxs_steps, idxs_bsz] actions = self.actions[idxs_steps, idxs_bsz] rewards = self.rewards[idxs_steps, idxs_bsz] masks = self.masks[idxs_steps, idxs_bsz] target_val = self.Vt_out[idxs_steps, idxs_bsz] episode_wts = self.episode_wts[idxs_steps, idxs_bsz] return states, actions, rewards, target_val, masks, episode_wts def __len__(self): return self.idx @torch.no_grad() def compute_target_values(self): if self.critic_method == 'one-step': self.Vt_out[self.idx] = self.rewards[self.idx] + self.gamma * self.next_values[self.idx] * self.masks[self.idx] elif self.critic_method == 'td-lambda': if self.full: if self.idx>=self.h-1: start_idx = self.idx - self.h + 1 else: start_idx = 0 end_idx = self.idx - self.h + 1 mask = self.masks[self.idx] self.sigmar[end_idx:] = self.sigmar[end_idx:] + self.gamma_k[end_idx:]*self.rewards[self.idx].unsqueeze(0) G_new = self.sigmar[end_idx:] + self.gamma*self.gamma_k[end_idx:]*(self.next_values[self.idx]*mask).unsqueeze(0) self.G_prev[end_idx:] = G_new.clone().detach() self.gamma_k[end_idx:] = self.gamma*self.gamma_k[end_idx:] Vt_new = (1-self.lam)*self.sigmaG[end_idx:] + self.lam_t[end_idx:]*G_new self.sigmaG[end_idx:] = self.sigmaG[end_idx:] + self.lam_t[end_idx:]*G_new self.lam_t[end_idx:] = self.lam_t[end_idx:]*self.lam self.Vt_out[end_idx:] = self.Vt_out[end_idx:]*(1-self.mask_t[end_idx:]) + Vt_new*self.mask_t[end_idx:] self.mask_t[end_idx:] = self.mask_t[end_idx:]*(self.grad_masks[self.idx].unsqueeze(0)) if self.idx>0: mask = self.masks[self.idx] self.sigmar[start_idx:self.idx] = self.sigmar[start_idx:self.idx] + self.gamma_k[start_idx:self.idx]*self.rewards[self.idx].unsqueeze(0) G_new = self.sigmar[start_idx:self.idx] + self.gamma*self.gamma_k[start_idx:self.idx]*(self.next_values[self.idx]*mask).unsqueeze(0) self.G_prev[start_idx:self.idx] = G_new.clone().detach() self.gamma_k[start_idx:self.idx] = self.gamma*self.gamma_k[start_idx:self.idx] Vt_new = (1-self.lam)*self.sigmaG[start_idx:self.idx] + self.lam_t[start_idx:self.idx]*G_new self.sigmaG[start_idx:self.idx] = self.sigmaG[start_idx:self.idx] + self.lam_t[start_idx:self.idx]*G_new self.lam_t[start_idx:self.idx] = self.lam_t[start_idx:self.idx]*self.lam self.Vt_out[start_idx:self.idx] = self.Vt_out[start_idx:self.idx]*(1-self.mask_t[start_idx:self.idx]) + Vt_new*self.mask_t[start_idx:self.idx] self.mask_t[start_idx:self.idx] = self.mask_t[start_idx:self.idx]*(self.grad_masks[self.idx].unsqueeze(0)) else: if self.idx > 0: mask = self.masks[self.idx] self.sigmar[:self.idx] = self.sigmar[:self.idx] + self.gamma_k[:self.idx]*self.rewards[self.idx].unsqueeze(0) G_new = self.sigmar[:self.idx] + self.gamma*self.gamma_k[:self.idx]*(self.next_values[self.idx]*mask).unsqueeze(0) self.G_prev[:self.idx] = G_new.clone().detach() self.gamma_k[:self.idx] = self.gamma*self.gamma_k[:self.idx] Vt_new = (1-self.lam)*self.sigmaG[:self.idx] + self.lam_t[:self.idx]*G_new self.sigmaG[:self.idx] = self.sigmaG[:self.idx] + self.lam_t[:self.idx]*G_new self.lam_t[:self.idx] = self.lam_t[:self.idx]*self.lam self.Vt_out[:self.idx] = self.Vt_out[:self.idx]*(1-self.mask_t[:self.idx]) + Vt_new*self.mask_t[:self.idx] self.mask_t[:self.idx]= self.mask_t[:self.idx]*(self.grad_masks[self.idx].unsqueeze(0)) ## Initializing for self.idx mask = self.masks[self.idx] self.sigmar[self.idx] = self.rewards[self.idx].clone() G_new = self.sigmar[self.idx] + self.gamma*self.next_values[self.idx]*mask self.G_prev[self.idx] = G_new.clone().detach() self.gamma_k[self.idx] = self.gamma self.sigmaG[self.idx] = G_new.clone().detach() Vt_new = G_new self.lam_t[self.idx] = self.lam self.Vt_out[self.idx] = Vt_new self.mask_t[self.idx] = self.grad_masks[self.idx].clone().detach() elif self.critic_method == 'gae-return': if self.full: # If the buffer is full, compute the start and end indices for the horizon to compute the gae-return # After exceeding the buffer length, the experiences wrap around to the beginning of the buffer if self.idx >= self.h-1: start_idx = self.idx - self.h + 1 else: # Accounting for the wrap around of the buffer. We want to update end_idx:end and start_idx:self.idx start_idx = 0 end_idx = self.idx - self.h + 1 mask = self.masks[self.idx] delta_gamma_k = self.gamma_lam_k[end_idx:] * (self.rewards[self.idx] - self.next_values[self.idx-1] + self.gamma * self.next_values[self.idx] * mask).unsqueeze(0) self.Vt_out[end_idx:] = self.Vt_out[end_idx:] + delta_gamma_k * self.mask_t[end_idx:] self.gamma_lam_k[end_idx:] = self.gamma_lam_k[end_idx:] * self.gamma * self.lam self.mask_t[end_idx:] = self.mask_t[end_idx:] * self.term_masks[self.idx].unsqueeze(0) if self.idx > 0: mask = self.masks[self.idx] delta_gamma_k = self.gamma_lam_k[start_idx:self.idx] * (self.rewards[self.idx] - self.next_values[self.idx-1] + self.gamma * self.next_values[self.idx] * mask).unsqueeze(0) self.Vt_out[start_idx:self.idx] = self.Vt_out[start_idx:self.idx] + delta_gamma_k * self.mask_t[start_idx:self.idx] self.gamma_lam_k[start_idx:self.idx] = self.gamma_lam_k[start_idx:self.idx] * self.gamma * self.lam self.mask_t[start_idx:self.idx] = self.mask_t[start_idx:self.idx] * self.term_masks[self.idx].unsqueeze(0) else: # If the buffer is not full, only need to update start_idx:self.idx start_idx = max(0, self.idx - self.h + 1) mask = self.masks[self.idx] delta_gamma_k = self.gamma_lam_k[start_idx:self.idx] * (self.rewards[self.idx] - self.next_values[self.idx-1] + self.gamma * self.next_values[self.idx] * mask).unsqueeze(0) self.Vt_out[start_idx:self.idx] = self.Vt_out[start_idx:self.idx] + delta_gamma_k * self.mask_t[start_idx:self.idx] self.gamma_lam_k[start_idx:self.idx] = self.gamma_lam_k[start_idx:self.idx] * self.gamma * self.lam self.mask_t[start_idx:self.idx] = self.mask_t[start_idx:self.idx] * self.term_masks[self.idx].unsqueeze(0) # Update Vt_out, gamma_lam_k, and mask_t for the current timestep mask = self.masks[self.idx] delta_gamma_k = self.rewards[self.idx] + self.gamma * self.next_values[self.idx] * mask self.Vt_out[self.idx] = delta_gamma_k self.gamma_lam_k[self.idx] = self.gamma * self.lam self.mask_t[self.idx] = self.term_masks[self.idx].clone().detach() else: raise NotImplementedError
12,832
Python
58.688372
193
0.584165
RoboticExplorationLab/CGAC/cgac/cgac.py
import os import torch import torch.nn.functional as F from torch.optim import Adam from utils_cgac import * from model import GaussianPolicy, QNetwork, DeterministicPolicy import gc import ipdb from torch.nn.utils.clip_grad import clip_grad_norm_ import numpy as np import time from torch.distributions import Normal class CGAC(object): def __init__(self, num_inputs, action_space, args, memory_cgac, env=None): self.gamma = args.gamma self.tau = args.tau_value self.alpha = args.alpha self.args = args if self.args.on_policy_update: self.env_train = env if args.env_name!='AllegroHand': self.env_train.clear_grad() self.env_train.reset() self.state_batch = self.env_train.obs_buf self.policy_type = args.policy self.target_update_interval = args.target_update_interval self.automatic_entropy_tuning = args.automatic_entropy_tuning self.lr = args.actor_lr self.device = torch.device("cuda" if args.cuda else "cpu") self.rms_obs = RunningMeanStd((num_inputs,)).to(self.device) self.val_running_median = 1. self.act_running_median = 1. self.state_running_median = 1. self.memory_cgac = memory_cgac self.critic = QNetwork(num_inputs, action_space.shape[0], args.critic_hidden, args).to(device=self.device) self.critic_optim = Adam(self.critic.parameters(), lr=args.critic_lr, betas = args.betas) self.critic_target = QNetwork(num_inputs, action_space.shape[0], args.critic_hidden, args).to(self.device) hard_update(self.critic_target, self.critic) self.episode_steps = np.zeros(args.batch_size) self.episode_rewards = torch.zeros(args.batch_size).to(self.device) self.total_episode_reward_hist = [] self.episode_len_hist = [] self.num_episodes = 0 self.total_numsteps = 0 self.episode_wts = torch.ones(args.batch_size, 1).to(self.device) self.queue_ids = set([]) self.num_nans = 0 self.rewards_moving_avg = 0.0 self.targ_ent_coeff = 1.0 self.mean_ratio = 100 self.ep_lens = torch.zeros_like(self.env_train.progress_buf) + 10 self.obs_dict = {} if self.policy_type == "Gaussian": # Target Entropy = −dim(A) (e.g. , -6 for HalfCheetah-v2) as given in the paper if self.automatic_entropy_tuning is True: self.target_entropy = -torch.prod(torch.Tensor(action_space.shape).to(self.device)).item() self.log_alpha = torch.zeros(1, requires_grad=True, device=self.device) self.log_alpha.data[0] = np.log(self.alpha) self.alpha_optim = Adam([self.log_alpha], lr=args.alpha_lr) self.policy = GaussianPolicy(num_inputs, action_space.shape[0], args.actor_hidden, args, action_space, const_std=args.const_std).to(self.device) self.policy_optim = Adam(self.policy.parameters(), lr=args.actor_lr, betas = args.betas) self.policy_avg = GaussianPolicy(num_inputs, action_space.shape[0], args.actor_hidden, args, action_space, const_std=args.const_std).to(self.device) hard_update(self.policy_avg, self.policy) else: self.alpha = 0 self.automatic_entropy_tuning = False self.policy = DeterministicPolicy(num_inputs, action_space.shape[0], args.actor_hidden, action_space).to(self.device) self.policy_optim = Adam(self.policy.parameters(), lr=args.actor_lr) def select_action(self, state, evaluate=False): if evaluate is False: action, _, _ = self.policy.sample(state) else: _, _, action = self.policy.sample(state) return action.detach() def compute_loss(self, out, targ): """ Computes the loss for the critic network. Hinge loss for TD error with hinge at 4*median. """ diff = torch.abs(out - targ) median = diff.median(dim=0)[0].detach().clone().unsqueeze(0) mask = (diff < 4*median).float() cost = torch.square(out - targ)*(mask) + diff*8*median*(1-mask) cost = torch.mean(cost) return cost def update_parameters_and_collect_buffer_RL(self, memory, batch_size, updates): ### Learning rate schedule for the actor and critic networks ### if self.args.lr_schedule == 'linear': final_lr = self.args.final_lr actor_lr = max((final_lr - self.args.actor_lr) * float((updates) / self.args.max_updates) + self.args.actor_lr, final_lr) for param_group in self.policy_optim.param_groups: param_group['lr'] = actor_lr self.lr = actor_lr critic_lr = max((final_lr - self.args.critic_lr) * float((updates) / self.args.max_updates) + self.args.critic_lr, final_lr) for param_group in self.critic_optim.param_groups: param_group['lr'] = critic_lr elif self.args.lr_schedule == 'step': final_lr = self.args.final_lr exp = updates//self.args.lr_update_freq actor_lr = max(self.args.actor_lr * (self.args.lr_decay_rate**exp), final_lr) for param_group in self.policy_optim.param_groups: param_group['lr'] = actor_lr self.lr = actor_lr critic_lr = max(self.args.critic_lr * (self.args.lr_decay_rate**exp), final_lr) for param_group in self.critic_optim.param_groups: param_group['lr'] = critic_lr else: self.lr = self.args.actor_lr ### Schedule for alpha or target entropy for policy ### if self.args.alpha_schedule == 'linear': if self.automatic_entropy_tuning: self.targ_ent_coeff = (self.args.final_targ_ent_coeff - self.args.init_targ_ent_coeff)*(self.rewards_moving_avg - self.args.init_expected_reward)/\ (self.args.peak_expected_reward - self.args.init_expected_reward) + self.args.init_targ_ent_coeff else: self.alpha = max((self.args.alpha_final - self.args.alpha_init) * float((updates) / self.args.max_updates_alpha) + self.args.alpha_init, self.args.alpha_final) elif self.args.alpha_schedule == 'decay': if updates % self.args.decay_steps == 0: self.alpha = max(self.args.alpha_init/(2**(updates/self.args.decay_steps)), self.args.alpha_final) ### Update Obs statistics and get obs ### self.rms_obs.update(self.env_train.obs_buf.detach().clone()) obs_batch = self.rms_obs(self.env_train.obs_buf) ### Sample actions and execute it in the environment ### with torch.no_grad(): action, _, _ = self.policy_avg.sample(obs_batch) action_batch = action with torch.no_grad(): next_obs_batch, reward_batch, done_batch, info = self.env_train.step(action_batch, force_done_ids) next_obs_batch = self.rms_obs(next_obs_batch) mask_batch = (1-done_batch.unsqueeze(-1)).float() done_env_ids = done_batch.nonzero(as_tuple = False).squeeze(-1).cpu().numpy() ### Update reward statistics ### self.episode_steps += 1 self.total_numsteps += self.args.batch_size self.episode_rewards += reward_batch reward_batch = reward_batch.unsqueeze(-1) self.reward_batch_curr = (reward_batch.clone().detach()*self.episode_wts).sum()/self.episode_wts.sum() self.rewards_moving_avg = 0.95*self.rewards_moving_avg + 0.05*self.reward_batch_curr ### Handling Env Terminations ### if len(done_env_ids) > 0: self.total_episode_reward_hist += self.episode_rewards[done_env_ids].cpu().numpy().tolist() self.episode_len_hist += self.episode_steps[done_env_ids].tolist() self.episode_rewards[done_env_ids] = 0 self.episode_steps[done_env_ids] = 0 self.num_episodes += len(done_env_ids) inv_mask = torch.logical_or( torch.logical_or( torch.isnan(info['obs_before_reset'][done_env_ids]).sum(dim=-1) > 0, torch.isinf(info['obs_before_reset'][done_env_ids]).sum(dim=-1) > 0), (torch.abs(info['obs_before_reset'][done_env_ids]) > 1e6).sum(dim=-1) > 0 ) self.num_nans += inv_mask.float().sum() eplen_mask = self.env_train.progress_buf_mask[done_env_ids] == self.env_train.episode_length if eplen_mask.float().sum() >0: eplen_done_ids = done_env_ids[eplen_mask.cpu().numpy()] inv_mask = torch.logical_or( torch.logical_or( torch.isnan(info['obs_before_reset'][eplen_done_ids]).sum(dim=-1) > 0, torch.isinf(info['obs_before_reset'][eplen_done_ids]).sum(dim=-1) > 0), (torch.abs(info['obs_before_reset'][eplen_done_ids]) > 1e6).sum(dim=-1) > 0 ) valid_mask = torch.logical_not(inv_mask) val_done_ids = eplen_done_ids[valid_mask.cpu().numpy()] if len(val_done_ids)>0: mask_batch[val_done_ids] = 1. next_obs_batch[val_done_ids] = self.rms_obs(info['obs_before_reset'][val_done_ids]) ### Compute next state Q values ### with torch.no_grad(): next_state_action1, next_state_log_pi, _ = self.policy_avg.sample(next_obs_batch.detach(), 1) qf1_next_target1, qf2_next_target1 = self.critic_target(next_obs_batch, next_state_action1) min_qf_next = torch.min(qf1_next_target1, qf2_next_target1) term_mask = mask_batch.clone().detach() ### Update replay buffer ### self.memory_cgac.add(obs_batch, action_batch, reward_batch, min_qf_next.detach().clone(), mask_batch, term_mask, next_state_log_pi.detach().clone(), self.alpha, self.episode_wts.clone().detach(), updates) ### Prevent suddent collapse and reset of too many envs - This can skew the distribution ### ### This is done by keeping a count of finished episodes and performing resets at a specific rate ### ### The finished episodes until they are reset are ignored for training ### env_thres_stop = self.env_thres = (self.args.batch_size)/(self.env_train.ep_lens[:200].float().mean()+1e-8) env_thres_start = max((self.args.batch_size)/(self.env_train.ep_lens.float().mean()+1e-8), 1) self.len_dones = len(done_env_ids) force_done_ids = None done_env_ids_resets = list(set(done_env_ids).difference(self.queue_ids)) if len(done_env_ids_resets) > int(env_thres_stop) + 1: env_thres_int = int(env_thres_stop) + 1 self.episode_wts[done_env_ids_resets[env_thres_int:]] = 0 self.queue_ids.update(list(done_env_ids_resets[env_thres_int:])) if len(done_env_ids_resets) < int(env_thres_start): env_thres_int = int(env_thres_start) num_resets = min(env_thres_int-len(done_env_ids_resets), len(self.queue_ids)+self.args.max_rand_resets) num_rand_resets = max(min(num_resets - len(self.queue_ids), self.args.max_rand_resets),0) nids = min(env_thres_int-len(done_env_ids_resets), len(self.queue_ids)) queue_ids = list(self.queue_ids) if num_rand_resets>0: rand_reset_ids = list(np.random.randint(self.args.batch_size, size=(num_rand_resets,))) reset_ids = rand_reset_ids + queue_ids self.memory_cgac.mask_t[:, rand_reset_ids] *= 0 else: reset_ids = queue_ids[:nids] self.episode_wts[reset_ids] = 1 force_done_ids = torch.tensor(reset_ids).long() self.queue_ids = set(queue_ids[nids:]).difference(reset_ids) self.env_train.reset(force_done_ids, eplenupdate=False) self.episode_rewards[force_done_ids] = 0 self.episode_steps[force_done_ids] = 0 self.len_queue = len(self.queue_ids) ### Update critic parameters if num_critic_updates > 1 ### for i in range(self.args.num_critic_updates-1): self.update_parameters_with_RL(updates, critic_update_only=True) updates += 1 ### Update critic params, actor params and alpha ### return self.update_parameters_with_RL(updates) def update_parameters_with_RL(self, updates, critic_update_only=False): obs_batch_new, action_batch, reward_batch, next_q_value, mask_batch, episode_wts = self.memory_cgac.sample(self.args.batch_size_update) episode_wts = episode_wts/episode_wts.mean() qf1, qf2 = self.critic(obs_batch_new, action_batch) # Two Q-functions to mitigate positive bias in the policy improvement step ### CRITIC UPDATE ### ### Computing hinge TD errors. episode_wts are used to ignore transitions ### qf1_loss = self.compute_loss(qf1*episode_wts, next_q_value*episode_wts) # JQ = 𝔼(st,at)~D[0.5(Q1(st,at) - r(st,at) - γ(𝔼st+1~p[V(st+1)]))^2] qf2_loss = self.compute_loss(qf2*episode_wts, next_q_value*episode_wts) # JQ = 𝔼(st,at)~D[0.5(Q1(st,at) - r(st,at) - γ(𝔼st+1~p[V(st+1)]))^2] qf_loss = qf1_loss + qf2_loss qf1_loss_batch = (qf1*episode_wts - next_q_value*episode_wts)**2 qf2_loss_batch = (qf2*episode_wts - next_q_value*episode_wts)**2 qf_loss_batch = qf1_loss_batch + qf2_loss_batch qf_loss_full = qf_loss self.critic_optim.zero_grad() qf_loss_full.backward() critic_grad_norm = clip_grad_norm_(self.critic.parameters(), self.args.grad_norm) self.critic_optim.step() ### Update actor and alpha if critic_update_only is not True ### if not critic_update_only: ### ACTOR UPDATE ### pi, log_pi, _, x_t = self.policy.sample(obs_batch_new.detach().clone(), with_xt=True) qf1_pi, qf2_pi = self.critic(obs_batch_new.detach().clone(), pi) min_qf_pi = torch.min(qf1_pi,qf2_pi)*episode_wts if self.args.clip_actor_gn: qpi_grad = torch.autograd.grad(min_qf_pi.mean(), pi, retain_graph=True)[0] ratio = (qpi_grad.abs().max(dim=0)[0]/qpi_grad.abs().median(dim=0)[0]).mean() self.mean_ratio = 0.95*self.mean_ratio + 0.05*ratio if ratio > self.mean_ratio*2: qpi_grad = torch.clamp(qpi_grad, min=torch.quantile(qpi_grad, 0.5, dim=0), max=torch.quantile(qpi_grad, 0.95, dim=0)).detach().clone() policy_loss = (self.alpha * log_pi*episode_wts).mean() - (qpi_grad*pi).sum()# # Jπ = 𝔼st∼D,εt∼N[α * logπ(f(εt;st)|st) − Q(st,f(εt;st))] else: policy_loss = ((self.alpha * log_pi*episode_wts) - min_qf_pi).mean() # pol_grad = torch.autograd.grad(policy_loss, pi, retain_graph=True)[0] # self.snr_q = (pol_grad.mean(dim=0).abs()/pol_grad.std(dim=0)).mean() self.policy_optim.zero_grad() policy_loss.backward() actor_grad_norm = self.policy.layers[3].weight.grad.norm().item() self.policy_optim.step() ### ALPHA UPDATE ### if self.automatic_entropy_tuning: alpha_loss = -(self.log_alpha * (log_pi*episode_wts + self.targ_ent_coeff*self.target_entropy).detach()).mean() self.alpha_optim.zero_grad() alpha_loss.backward() self.alpha_optim.step() self.alpha = min(self.log_alpha.exp().detach().item(), self.alpha) self.log_alpha.data[0] = np.log(self.alpha) alpha_tlogs = self.alpha # For TensorboardX logs else: alpha_loss = torch.tensor(0.).to(self.device) alpha_tlogs = torch.tensor(self.alpha) # For TensorboardX logs ### Update target network and policy avg network ### if updates % self.target_update_interval == 0: soft_update(self.critic_target, self.critic, self.args.tau_value) soft_update(self.policy_avg, self.policy, self.args.tau_policy) return qf1_loss.item(), qf2_loss.item(), policy_loss.item(), alpha_loss.item(), alpha_tlogs, log_pi.mean().item(), min_qf_pi.mean().item(), next_q_value.detach().cpu(), \ qf_loss_batch.detach().cpu(), actor_grad_norm, critic_grad_norm return None def update_parameters_and_collect_buffer_RL_isaac(self, memory, batch_size, updates): ### Learning rate schedule for the actor and critic networks ### if self.args.lr_schedule == 'linear': final_lr = self.args.final_lr actor_lr = max((final_lr - self.args.actor_lr) * float((updates) / self.args.max_updates) + self.args.actor_lr, final_lr) for param_group in self.policy_optim.param_groups: param_group['lr'] = actor_lr self.lr = actor_lr critic_lr = max((final_lr - self.args.critic_lr) * float((updates) / self.args.max_updates) + self.args.critic_lr, final_lr) for param_group in self.critic_optim.param_groups: param_group['lr'] = critic_lr elif self.args.lr_schedule == 'step': final_lr = self.args.final_lr exp = updates//self.args.lr_update_freq actor_lr = max(self.args.actor_lr * (self.args.lr_decay_rate**exp), final_lr) for param_group in self.policy_optim.param_groups: param_group['lr'] = actor_lr self.lr = actor_lr critic_lr = max(self.args.critic_lr * (self.args.lr_decay_rate**exp), final_lr) for param_group in self.critic_optim.param_groups: param_group['lr'] = critic_lr else: self.lr = self.args.actor_lr ### Schedule for alpha or target entropy for policy ### if self.args.alpha_schedule == 'linear': if self.automatic_entropy_tuning: self.targ_ent_coeff = max((self.args.final_targ_ent_coeff - self.args.init_targ_ent_coeff)*(self.rewards_moving_avg - self.args.init_expected_reward)/\ (self.args.peak_expected_reward - self.args.init_expected_reward) + self.args.init_targ_ent_coeff, -0.4)#, self.targ_ent_coeff)#self.args.final_targ_ent_coeff) # if self.rewards_moving_avg > self.args.peak_expected_reward: # self.alpha = min(self.alpha, 1e-5) else: self.alpha = max((self.args.alpha_final - self.args.alpha_init) * float((updates) / self.args.max_updates_alpha) + self.args.alpha_init, self.args.alpha_final) elif self.args.alpha_schedule == 'decay': if updates % self.args.decay_steps == 0: self.alpha = max(self.args.alpha_init/(2**(updates/self.args.decay_steps)), self.args.alpha_final) ### Update Obs statistics and get obs ### obs_dict, dones = self._env_reset_done() obs_buf = obs_dict['obs'] self.rms_obs.update(obs_buf) obs_batch = self.rms_obs(obs_buf) ### Sample actions and execute it in the environment ### with torch.no_grad(): action, _, _ = self.policy_avg.sample(obs_batch) action_batch = action next_obs_batch, reward_batch, done_batch, info = self.env_train.step(action_batch) next_obs_batch = next_obs_batch['obs'] next_obs_batch = self.rms_obs(next_obs_batch) mask_batch = (1-done_batch.unsqueeze(-1)).float() done_env_ids = done_batch.nonzero(as_tuple = False).squeeze(-1).cpu().numpy() term_mask = mask_batch.clone() ### Update reward statistics ### self.episode_steps += 1 self.total_numsteps += self.args.batch_size self.episode_rewards += reward_batch.detach().clone() reward_batch = reward_batch.unsqueeze(-1) self.reward_batch_curr = (reward_batch.clone().detach()*self.episode_wts).sum()/self.episode_wts.sum() self.rewards_moving_avg = 0.95*self.rewards_moving_avg + 0.05*self.reward_batch_curr ### Handling Env Terminations if len(done_env_ids) > 0: self.total_episode_reward_hist += self.episode_rewards[done_env_ids].cpu().numpy().tolist() self.episode_len_hist += self.episode_steps[done_env_ids].tolist() self.episode_rewards[done_env_ids] = 0 self.episode_steps[done_env_ids] = 0 self.num_episodes += len(done_env_ids) inv_mask = torch.logical_or( torch.logical_or( torch.isnan(next_obs_batch[done_env_ids]).sum(dim=-1) > 0, torch.isinf(next_obs_batch[done_env_ids]).sum(dim=-1) > 0), (torch.abs(next_obs_batch[done_env_ids]) > 1e6).sum(dim=-1) > 0 ) self.num_nans += inv_mask.float().sum() self.ep_lens = torch.cat([self.env_train.progress_buf[done_env_ids].clone(), self.ep_lens], dim=0)[:200] eplen_mask = self.env_train.progress_buf[done_env_ids] == self.env_train.max_episode_length # Need to check if eplen_mask.float().sum() >0: eplen_done_ids = done_env_ids[eplen_mask.cpu().numpy()] inv_mask = torch.logical_or( torch.logical_or( torch.isnan(next_obs_batch[eplen_done_ids]).sum(dim=-1) > 0, torch.isinf(next_obs_batch[eplen_done_ids]).sum(dim=-1) > 0), (torch.abs(next_obs_batch[eplen_done_ids]) > 1e6).sum(dim=-1) > 0 ) valid_mask = torch.logical_not(inv_mask) val_done_ids = eplen_done_ids[valid_mask.cpu().numpy()] if len(val_done_ids)>0: mask_batch[val_done_ids] = 1. ### Compute next state Q values ### with torch.no_grad(): next_state_action1, next_state_log_pi, _ = self.policy_avg.sample(next_obs_batch.detach(), 1) qf1_next_target1, qf2_next_target1 = self.critic_target(next_obs_batch, next_state_action1) min_qf_next = torch.min(qf1_next_target1, qf2_next_target1) ### Update replay buffer ### self.memory_cgac.add(obs_batch, action_batch, reward_batch, min_qf_next.detach().clone(), mask_batch, term_mask, next_state_log_pi.detach().clone(), self.alpha, self.episode_wts.clone().detach(), updates) ### Prevent suddent collapse and reset of too many envs - This can skew the distribution ### ### This is done by keeping a count of finished episodes and performing resets at a specific rate ### ### The finished episodes until they are reset are ignored for training ### env_thres_stop = self.env_thres = (self.args.batch_size)/(self.ep_lens[:200].float().mean()+1e-8) env_thres_start = (self.args.batch_size)/(self.ep_lens.float().mean()+1e-8) self.len_dones = len(done_env_ids) done_env_ids_resets = list(set(done_env_ids).difference(self.queue_ids)) force_done_ids = None if len(done_env_ids_resets) > int(env_thres_stop) + 1: env_thres_int = int(env_thres_stop) + 1 self.episode_wts[done_env_ids_resets[env_thres_int:]] = 0 self.queue_ids.update(list(done_env_ids_resets[env_thres_int:])) if len(done_env_ids_resets) < int(env_thres_start): env_thres_int = int(env_thres_start) num_resets = min(env_thres_int-len(done_env_ids_resets), len(self.queue_ids)+self.args.max_rand_resets) num_rand_resets = max(min(num_resets - len(self.queue_ids), self.args.max_rand_resets),0) nids = min(env_thres_int-len(done_env_ids_resets), len(self.queue_ids)) queue_ids = list(self.queue_ids) if num_rand_resets>0: rand_reset_ids = list(np.random.randint(self.args.batch_size, size=(num_rand_resets,))) reset_ids = rand_reset_ids + queue_ids self.memory_cgac.mask_t[:, rand_reset_ids] *= 0 else: reset_ids = queue_ids[:nids] if len(reset_ids) > 0: self.episode_wts[reset_ids] = 1 force_done_ids = torch.tensor(reset_ids).long() self.queue_ids = set(queue_ids[nids:]).difference(reset_ids) self.env_train.reset_idx(force_done_ids, force_done_ids) self.episode_rewards[force_done_ids] = 0 self.episode_steps[force_done_ids] = 0 self.len_queue = len(self.queue_ids) ### Update critic parameters if num_critic_updates > 1 ### for i in range(self.args.num_critic_updates-1): self.update_parameters_with_RL_isaac(updates, critic_update_only=True) updates += 1 ### Update critic params, actor params and alpha ### return self.update_parameters_with_RL_isaac(updates) def update_parameters_with_RL_isaac(self, updates, critic_update_only=False): obs_batch_new, action_batch, reward_batch, next_q_value, mask_batch, episode_wts = self.memory_cgac.sample(self.args.batch_size_update) episode_wts = episode_wts/episode_wts.mean() qf1, qf2 = self.critic(obs_batch_new, action_batch) # Two Q-functions to mitigate positive bias in the policy improvement step ### CRITIC UPDATE ### ### Computing hinge TD errors. episode_wts are used to ignore transitions ### qf1_loss = self.compute_loss(qf1*episode_wts, next_q_value*episode_wts) qf2_loss = self.compute_loss(qf2*episode_wts, next_q_value*episode_wts) qf_loss = qf1_loss + qf2_loss qf1_loss_batch = (qf1*episode_wts - next_q_value*episode_wts)**2 qf2_loss_batch = (qf2*episode_wts - next_q_value*episode_wts)**2 qf_loss_batch = qf1_loss_batch + qf2_loss_batch qf_loss_full = qf_loss self.critic_optim.zero_grad() qf_loss_full.backward() critic_grad_norm = clip_grad_norm_(self.critic.parameters(), self.args.grad_norm) self.critic_optim.step() ### Update actor and alpha if critic_update_only is not True ### if not critic_update_only: ### ACTOR UPDATE ### pi, log_pi, _ = self.policy.sample(obs_batch_new.detach().clone()) qf1_pi, qf2_pi = self.critic(obs_batch_new.detach().clone(), pi) min_qf_pi = torch.min(qf1_pi,qf2_pi)*episode_wts if self.args.clip_actor_gn: qpi_grad = torch.autograd.grad(min_qf_pi.mean(), pi, retain_graph=True)[0] ratio = (qpi_grad.abs().max(dim=0)[0]/qpi_grad.abs().median(dim=0)[0]).mean() self.mean_ratio = 0.95*self.mean_ratio + 0.05*ratio if ratio > self.mean_ratio*2: qpi_grad = torch.clamp(qpi_grad, min=torch.quantile(qpi_grad, 0.5, dim=0), max=torch.quantile(qpi_grad, 0.95, dim=0)).detach().clone() policy_loss = (self.alpha * log_pi*episode_wts).mean() - (qpi_grad*pi).sum()# # Jπ = 𝔼st∼D,εt∼N[α * logπ(f(εt;st)|st) − Q(st,f(εt;st))] else: policy_loss = ((self.alpha * log_pi*episode_wts) - min_qf_pi).mean() self.policy_optim.zero_grad() policy_loss.backward() actor_grad_norm = self.policy.layers[3].weight.grad.norm().item() self.policy_optim.step() ### ALPHA UPDATE ### if self.automatic_entropy_tuning: alpha_loss = -(self.log_alpha * (log_pi*episode_wts + self.targ_ent_coeff*self.target_entropy).detach()).mean() self.alpha_optim.zero_grad() alpha_loss.backward() self.alpha_optim.step() self.alpha = min(self.log_alpha.exp().detach().item(), self.alpha) self.log_alpha.data[0] = np.log(self.alpha) alpha_tlogs = self.alpha # For TensorboardX logs else: alpha_loss = torch.tensor(0.).to(self.device) alpha_tlogs = torch.tensor(self.alpha) # For TensorboardX logs ### Update target network and policy avg network ### if updates % self.target_update_interval == 0: soft_update(self.critic_target, self.critic, self.args.tau_value) soft_update(self.policy_avg, self.policy, self.args.tau_policy) return qf1_loss.item(), qf2_loss.item(), policy_loss.item(), alpha_loss.item(), alpha_tlogs, log_pi.mean().item(), min_qf_pi.mean().item(), next_q_value.detach().cpu(), \ qf_loss_batch.detach().cpu(), actor_grad_norm, critic_grad_norm return None def _env_reset_done(self): """Reset the environment. Returns: Observation dictionary, indices of environments being reset """ done_env_ids = self.env_train.reset_buf.nonzero(as_tuple=False).flatten() goal_env_ids = self.env_train.reset_goal_buf.nonzero(as_tuple=False).squeeze(-1) # if only goals need reset, then call set API if len(goal_env_ids) > 0 and len(done_env_ids) == 0: self.env_train.reset_target_pose(goal_env_ids, apply_reset=True) # if goals need reset in addition to other envs, call set API in reset() elif len(goal_env_ids) > 0: self.env_train.reset_target_pose(goal_env_ids) if len(done_env_ids) > 0: self.env_train.reset_idx(done_env_ids, goal_env_ids) if len(goal_env_ids) > 0 or len(done_env_ids) > 0: self.env_train.compute_observations() self.obs_dict["obs"] = torch.clamp(self.env_train.obs_buf, -self.env_train.clip_obs, self.env_train.clip_obs).to(self.env_train.rl_device) return self.obs_dict, done_env_ids # Save model parameters def save_checkpoint(self, env_name, suffix="", ckpt_path=None): if not os.path.exists('checkpoints/'): os.makedirs('checkpoints/') if ckpt_path is None: ckpt_path = "checkpoints/cgac_checkpoint_{}_{}".format(env_name, suffix) print('Saving models to {}'.format(ckpt_path)) torch.save({'policy_state_dict': self.policy.state_dict(), 'critic_state_dict': self.critic.state_dict(), 'critic_target_state_dict': self.critic_target.state_dict(), 'critic_optimizer_state_dict': self.critic_optim.state_dict(), 'policy_optimizer_state_dict': self.policy_optim.state_dict()}, ckpt_path) # Load model parameters def load_checkpoint(self, ckpt_path, evaluate=False): print('Loading models from {}'.format(ckpt_path)) if ckpt_path is not None: checkpoint = torch.load(ckpt_path) self.policy.load_state_dict(checkpoint['policy_state_dict']) self.critic.load_state_dict(checkpoint['critic_state_dict']) self.critic_target.load_state_dict(checkpoint['critic_target_state_dict']) self.critic_optim.load_state_dict(checkpoint['critic_optimizer_state_dict']) self.policy_optim.load_state_dict(checkpoint['policy_optimizer_state_dict']) if evaluate: self.policy.eval() self.critic.eval() self.critic_target.eval() else: self.policy.train() self.critic.train() self.critic_target.train()
31,804
Python
52.543771
212
0.590272
RoboticExplorationLab/CGAC/cgac/utils_cgac.py
import math import torch import torch.nn as nn import numpy as np def create_log_gaussian(mean, log_std, t): """Creates a log probability for a Gaussian distribution.""" quadratic = -((0.5 * (t - mean) / (log_std.exp())).pow(2)) l = mean.shape log_z = log_std z = l[-1] * math.log(2 * math.pi) log_p = quadratic.sum(dim=-1) - log_z.sum(dim=-1) - 0.5 * z return log_p def logsumexp(inputs, dim=None, keepdim=False): """Numerically stable logsumexp.""" if dim is None: inputs = inputs.view(-1) dim = 0 s, _ = torch.max(inputs, dim=dim, keepdim=True) outputs = s + (inputs - s).exp().sum(dim=dim, keepdim=True).log() if not keepdim: outputs = outputs.squeeze(dim) return outputs def soft_update(target, source, tau): for target_param, param in zip(target.parameters(), source.parameters()): target_param.data.copy_(target_param.data * (1.0 - tau) + param.data * tau) def hard_update(target, source): for target_param, param in zip(target.parameters(), source.parameters()): target_param.data.copy_(param.data) def rand_sample(act_space, bsz): return torch.rand((bsz,act_space.shape[0]))*(act_space.high-act_space.low) + act_space.low def grad_norm(params): """Computes the norm of gradients for a group of parameters.""" grad_norm = 0. for p in params: if p.grad is not None: grad_norm += torch.sum(p.grad ** 2) return torch.sqrt(grad_norm) class dotdict(dict): """dot.notation access to dictionary attributes""" __getattr__ = dict.get __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ ''' updates statistic from a full data ''' class RunningMeanStd(nn.Module): def __init__(self, insize, epsilon=1e-05, per_channel=False, norm_only=False): super(RunningMeanStd, self).__init__() print('RunningMeanStd: ', insize) self.insize = insize self.epsilon = epsilon self.norm_only = norm_only self.per_channel = per_channel if per_channel: if len(self.insize) == 3: self.axis = [0,2,3] if len(self.insize) == 2: self.axis = [0,2] if len(self.insize) == 1: self.axis = [0] in_size = self.insize[0] else: self.axis = [0] in_size = insize self.register_buffer("running_mean", torch.zeros(in_size, dtype = torch.float64)) self.register_buffer("running_var", torch.ones(in_size, dtype = torch.float64)) self.register_buffer("count", torch.ones((), dtype = torch.float64)) def _update_mean_var_count_from_moments(self, mean, var, count, batch_mean, batch_var, batch_count): delta = batch_mean - mean tot_count = count + batch_count new_mean = mean + delta * batch_count / tot_count m_a = var * count m_b = batch_var * batch_count M2 = m_a + m_b + delta**2 * count * batch_count / tot_count new_var = M2 / tot_count new_count = tot_count return new_mean, new_var, new_count def update(self, input): mean = input.mean(self.axis) # along channel axis var = input.var(self.axis) self.running_mean, self.running_var, self.count = self._update_mean_var_count_from_moments(self.running_mean, self.running_var, self.count, mean, var, input.size()[0] ) def forward(self, input, unnorm=False): # change shape if self.per_channel: if len(self.insize) == 3: current_mean = self.running_mean.detach().view([1, self.insize[0], 1, 1]).expand_as(input) current_var = self.running_var.detach().view([1, self.insize[0], 1, 1]).expand_as(input) if len(self.insize) == 2: current_mean = self.running_mean.detach().view([1, self.insize[0], 1]).expand_as(input) current_var = self.running_var.detach().view([1, self.insize[0], 1]).expand_as(input) if len(self.insize) == 1: current_mean = self.running_mean.detach().view([1, self.insize[0]]).expand_as(input) current_var = self.running_var.detach().view([1, self.insize[0]]).expand_as(input) else: current_mean = self.running_mean.detach() current_var = self.running_var.detach() # get output if unnorm: y = torch.clamp(input, min=-5.0, max=5.0) y = torch.sqrt(current_var.float() + self.epsilon)*y + current_mean.float() else: if self.norm_only: y = input/ torch.sqrt(current_var.float() + self.epsilon) else: y = (input - current_mean.float()) / torch.sqrt(current_var.float() + self.epsilon) y = torch.clamp(y, min=-5.0, max=5.0) return y ''' updates statistic from a full data ''' class RunningGradMag(nn.Module): def __init__(self, insize, epsilon=1e-05, per_channel=False, norm_only=False, const=1): super(RunningGradMag, self).__init__() print('RunningGradMag: ', insize) self.insize = insize self.epsilon = epsilon self.const = const self.norm_only = norm_only self.per_channel = per_channel if per_channel: if len(self.insize) == 3: self.axis = [0,2,3] if len(self.insize) == 2: self.axis = [0,2] if len(self.insize) == 1: self.axis = [0] in_size = self.insize[0] else: self.axis = [0] in_size = insize self.register_buffer("running_absmean", torch.ones(in_size, dtype = torch.float64)) self.register_buffer("count", torch.ones((), dtype = torch.float64)) def _update_mean_var_count_from_moments(self, mean, count, batch_mean, batch_count): delta = batch_mean - mean tot_count = count + batch_count new_mean = mean + delta * batch_count / tot_count new_count = tot_count return new_mean, new_count def update(self, input): mean = input.abs().mean(self.axis) # along channel axis self.running_absmean, self.count = self._update_mean_var_count_from_moments(self.running_absmean, self.count, mean, input.size()[0] ) def forward(self, input, unnorm=False): # change shape if self.per_channel: if len(self.insize) == 3: current_mean = self.running_absmean.detach().view([1, self.insize[0], 1, 1]).expand_as(input) if len(self.insize) == 2: current_mean = self.running_absmean.detach().view([1, self.insize[0], 1]).expand_as(input) if len(self.insize) == 1: current_mean = self.running_absmean.detach().view([1, self.insize[0]]).expand_as(input) else: current_mean = self.running_absmean.detach() # get output if unnorm: y = input/self.const#(current_mean.float()) else: y = input*self.const#(current_mean.float()) return y class RunningMeanStdObs(nn.Module): def __init__(self, insize, epsilon=1e-05, per_channel=False, norm_only=False): assert(insize is dict) super(RunningMeanStdObs, self).__init__() self.running_mean_std = nn.ModuleDict({ k : RunningMeanStd(v, epsilon, per_channel, norm_only) for k,v in insize.items() }) def forward(self, input, unnorm=False): res = {k : self.running_mean_std(v, unnorm) for k,v in input.items()} return res class DummyRMS(nn.Module): def __init__(self, insize, epsilon=1e-05, per_channel=False, norm_only=False): super(DummyRMS, self).__init__() print('DummyRMS: ', insize) self.insize = insize self.epsilon = epsilon def forward(self, input, unnorm=False): return input def update(self, input): return None
8,104
Python
37.051643
152
0.572804
RoboticExplorationLab/CGAC/cgac/model.py
import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Normal LOG_SIG_MAX = 2 LOG_SIG_MIN = -5 epsilon = 1e-6 activations_dict = {'elu': nn.ELU(), 'relu': nn.ReLU(), 'tanh': nn.Tanh()} # Initialize Policy weights def weights_init_(m): if isinstance(m, nn.Linear): torch.nn.init.xavier_uniform_(m.weight, gain=1) torch.nn.init.constant_(m.bias, 0) class QNetwork(nn.Module): def __init__(self, num_inputs, num_actions, hidden_dim, args): super(QNetwork, self).__init__() if isinstance(hidden_dim, int): hidden_dim = [hidden_dim, hidden_dim] layer_sizes = [num_inputs + num_actions,]+hidden_dim activation = activations_dict[args.critic_act] # Q1 architecture layers1 = [] for i in range(len(layer_sizes)-1): layers1.append(nn.Linear(layer_sizes[i], layer_sizes[i+1])) layers1.append(activation) layers1.append(nn.Identity()) self.layers1 = nn.Sequential(*layers1) self.layer_out1 = nn.Linear(layer_sizes[-1], 1) # Q2 architecture layers2 = [] for i in range(len(layer_sizes)-1): layers2.append(nn.Linear(layer_sizes[i], layer_sizes[i+1])) layers2.append(activation) layers2.append(nn.Identity()) self.layers2 = nn.Sequential(*layers2) self.layer_out2 = nn.Linear(layer_sizes[-1], 1) self.apply(weights_init_) def forward(self, state, action): xu = torch.cat([state, action], 1) x1 = self.layers1(xu) x1 = self.layer_out1(x1) x2 = self.layers2(xu) x2 = self.layer_out2(x2) return x1, x2 class GaussianPolicy(nn.Module): def __init__(self, num_inputs, num_actions, hidden_dim, args, action_space=None, const_std=False): super(GaussianPolicy, self).__init__() if isinstance(hidden_dim, int): hidden_dim = [hidden_dim, hidden_dim] layer_sizes = [num_inputs,]+hidden_dim activation = activations_dict[args.actor_act] layers = [] for i in range(len(layer_sizes)-1): layers.append(nn.Linear(layer_sizes[i], layer_sizes[i+1])) layers.append(activation) layers.append(nn.Identity()) self.layers = nn.Sequential(*layers) self.mean_linear = nn.Linear(layer_sizes[-1], num_actions) self.const_std = const_std if const_std: logstd = -1.0#'actor_logstd_init' self.logstd = torch.nn.Parameter(torch.ones(num_actions, dtype=torch.float32) * logstd) else: self.log_std_linear = nn.Linear(layer_sizes[-1], num_actions) self.apply(weights_init_) # action rescaling if action_space is None: self.action_scale = torch.tensor(1.) self.action_bias = torch.tensor(0.) else: self.action_scale = torch.FloatTensor( (action_space.high - action_space.low) / 2.) self.action_bias = torch.FloatTensor( (action_space.high + action_space.low) / 2.) def forward(self, state): x = self.layers(state) mean = self.mean_linear(x) if self.const_std: log_std = self.logstd else: log_std = self.log_std_linear(x) log_std = torch.clamp(log_std, min=LOG_SIG_MIN, max=LOG_SIG_MAX) return mean, log_std def log_prob(self, state, action, x_t): mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) y_t = (action - self.action_bias)/self.action_scale log_prob = normal.log_prob(x_t) log_prob -= torch.log(self.action_scale * (1 - y_t.pow(2)) + epsilon) log_prob = log_prob.sum(1, keepdim=True) return log_prob def sample(self, state, netid=1, with_xt=False): mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) x_t = normal.rsample() # for reparameterization trick (mean + std * N(0,1)) y_t = torch.tanh(x_t) action = y_t * self.action_scale + self.action_bias log_prob = normal.log_prob(x_t) # Enforcing Action Bound log_prob -= torch.log(self.action_scale * (1 - y_t.pow(2)) + epsilon) log_prob = log_prob.sum(1, keepdim=True) mean = torch.tanh(mean) * self.action_scale + self.action_bias if with_xt: return action, log_prob, mean, x_t else: return action, log_prob, mean def to(self, device): self.action_scale = self.action_scale.to(device) self.action_bias = self.action_bias.to(device) return super(GaussianPolicy, self).to(device) class DeterministicPolicy(nn.Module): def __init__(self, num_inputs, num_actions, hidden_dim, action_space=None): super(DeterministicPolicy, self).__init__() if isinstance(hidden_dim, int): hidden_dim = [hidden_dim, hidden_dim] layer_sizes = [num_inputs,]+hidden_dim layers = [] for i in range(len(layer_sizes)-1): layers.append(nn.Linear(layer_sizes[i], layer_sizes[i+1])) layers.append(nn.ReLU()) self.layers = nn.Sequential(*layers) self.mean = nn.Linear(layer_sizes[-1], num_actions) self.noise = torch.Tensor(num_actions) self.apply(weights_init_) # action rescaling if action_space is None: self.action_scale = 1. self.action_bias = 0. else: self.action_scale = torch.FloatTensor( (action_space.high - action_space.low) / 2.) self.action_bias = torch.FloatTensor( (action_space.high + action_space.low) / 2.) def forward(self, state): x = self.layers(state) mean = torch.tanh(self.mean(x)) * self.action_scale + self.action_bias return mean def sample(self, state): mean = self.forward(state) noise = self.noise.normal_(0., std=0.1) noise = noise.clamp(-0.25, 0.25) action = mean + noise return action, torch.tensor(0.), mean def to(self, device): self.action_scale = self.action_scale.to(device) self.action_bias = self.action_bias.to(device) self.noise = self.noise.to(device) return super(DeterministicPolicy, self).to(device)
6,511
Python
34.9779
102
0.58071
shikimori/shikimori/CONTRIBUTING.md
* [Fork](https://help.github.com/articles/fork-a-repo) the project on GitHub. * Make your feature addition or bug fix in a feature branch. (Include a description of your changes) * Push your feature branch to GitHub. * Send a [Pull Request](https://help.github.com/articles/using-pull-requests). After opening your pull request, ensure all tests pass on Circle CI. If a test fails and you believe it is unrelated to your change, leave a comment on the pull request explaining why.
482
Markdown
67.99999
184
0.76971
shikimori/shikimori/README.md
[![RSpec CI](https://github.com/shikimori/shikimori/actions/workflows/rspec.yml/badge.svg?branch=master)](https://github.com/shikimori/shikimori/actions/workflows/rspec.yml) ## Contributing Feel free to open tickets or send pull requests with improvements. Thanks in advance for your help! Please follow the [contribution guidelines](https://github.com/shikimori/shikimori/blob/master/CONTRIBUTING.md). ## Requirements OSX or Linux PostgreSQL >= 10.0, Ruby >= 2.6, NodeJS >= 10.0, Elasticsearch 6.x (7.0 not supported), Memcached, Redis ## Issues Board (Agile Season) https://agileseason.com/#/shared/board/098d2e36dff32f296d7815cf943ac8eb ## Requirements ### Checkout all projects ```sh git clone git@github.com:shikimori/shikimori.git git clone git@github.com:shikimori/neko-achievements.git cd neko-achievements mix local.hex --force mix deps.get cd .. git clone git@github.com:shikimori/camo-server.git cd camo-server yarn cd .. git clone git@github.com:shikimori/faye-server.git cd faye-server yarn cd .. cd shikimori ``` ### Install `yarn`, `tmux` and `overmind` via Homebrew (OSX) ```sh brew install yarn tmux overmind ``` In linux you have to install them another way. ### Install dependent gems and npm packages ```sh yarn install bundle install ``` ## PostgreSQL ### DB ```sh psql -d postgres ``` ```sql create user shikimori_development; create user shikimori_test; alter user shikimori_development createdb; alter user shikimori_test createdb; alter user shikimori_development with superuser; alter user shikimori_test with superuser; ``` ### Create databases Make sure `en_US.UTF-8` database collation is set [https://gist.github.com/ffmike/877447#gistcomment-2851598](https://gist.github.com/morr/9507173acfd504837a7feb4485a5f669) Or you manually initialize new database with command ```sh initdb --pgdata=/usr/local/var/postgres-16 -E 'UTF-8' --lc-collate='en_US.UTF-8' --lc-ctype='en_US.UTF-8' ``` Or initdb for apple M1 ```sh initdb --pgdata=/usr/local/var/postgresql@16 -E 'UTF-8' --lc-collate='en_US.UTF-8' --lc-ctype='en_US.UTF-8' ``` Create rails databases ```sh rails db:create ``` ## Local Run Everything you need to run is listed in [Procfile](https://github.com/shikimori/shikimori/blob/master/Procfile). Shikimori uses [Overmind](https://github.com/DarthSim/overmind) to execute `Procfile`. ### Restore from a backup ```sh rails db:drop && rails db:create unzip -d db/ db/dump.sql.zip psql -U shikimori_development -d shikimori_development -f db/dump.sql rm db/dump.sql RAILS_ENV=test rails db:schema:load # migrate dump to latest schema rails db:migrate ``` ### Start rails server ```sh rails server ``` ### Start related services ```sh overmind start ``` ### Start some of related services ```sh OVERMIND_PROCESSES=camo,faye overmind start ``` ## Elasticsearch In rails console: ``` Elasticsearch::RebuildIndexes.new.perform ``` ## Elasticsearch fix on OSX https://github.com/Homebrew/homebrew-core/issues/100260#issuecomment-1137067501 ``` I've finally made it work, but I'm not sure this is the right call: I've edited the service plist at /usr/local/Cellar/elasticsearch@6/6.8.23/homebrew.mxcl.elasticsearch@6.plist: <key>ProgramArguments</key> <array> <string>/usr/local/opt/elasticsearch@6/bin/elasticsearch</string> </array> <key>EnvironmentVariables</key> <dict> + <key>JAVA_HOME</key> + <string>'/usr/libexec/java_home -v 17'</string> </dict> I had to edit the plist in the Cellar folder instead of the one in ~/Library/LaunchAgents because brew services is overwriting it at every start. ``` ## Update neko rules ```sh rails neko:update ``` ## Other ### Make a backup ```sh pg_dump -c shikimori_development > db/dump.sql ``` ### Autorun rspec & rubocop ```sh guard ``` ### Record apipie docs ```sh APIPIE_RECORD=all rspec spec/controllers/api/** ``` ### Add new video hosting ```ruby # app/services/video_extractor/player_url_extractor.rb ``` ### Run locally in production mode ```sh RAILS_ENV=production rails assets:precompile && IS_LOCAL_RUN=true RAILS_ENV=production rails server ``` ### Webpack debugger https://nodejs.org/en/docs/inspector/ Install the Chrome Extension NIM (Node Inspector Manager): https://chrome.google.com/webstore/detail/nim-node-inspector-manage/gnhhdgbaldcilmgcpfddgdbkhjohddkj ```sh RAILS_ENV=development NODE_ENV=development NODE_PATH=node_modules node --inspect-brk node_modules/.bin/webpack-dev-server --progress --color --config config/webpack/development.js ``` ### Shakapacker debugger https://nodejs.org/en/docs/inspector/ Install the Chrome Extension NIM (Node Inspector Manager): https://chrome.google.com/webstore/detail/nim-node-inspector-manage/gnhhdgbaldcilmgcpfddgdbkhjohddkj ```sh ./bin/shakapacker-dev-server --debug-shakapacker ``` ### Webpack visualizer https://chrisbateman.github.io/webpack-visualizer/ ### Dependabot ``` @dependabot ignore this dependency ``` ## [Sandboxes](/doc/sandboxes.md)
4,968
Markdown
24.482051
179
0.741143
shikimori/shikimori/config/i18n.yml
--- translations: - file: "app/packs/javascripts/i18n/translations.json" patterns: - '*.activerecord.attributes.user_rate.*' - '*.activerecord.attributes.collection_link.*' - '*.activerecord.attributes.external_link.url' - '*.activerecord.attributes.user_rate.statuses.anime.*' - '*.activerecord.attributes.user_rate.statuses.manga.*' - '*.frontend.*'
394
YAML
34.909088
62
0.659898
shikimori/shikimori/config/cable.yml
development: adapter: async test: adapter: test production: adapter: redis url: <%= ENV.fetch("REDIS_URL") { "redis://localhost:6379/1" } %> channel_prefix: shikimori_production
190
YAML
16.363635
67
0.684211
shikimori/shikimori/config/appsignal.yml
default: &defaults # Your push api key, it is possible to set this dynamically using ERB: # push_api_key: "<%= ENV['APPSIGNAL_PUSH_API_KEY'] %>" push_api_key: '3b66a159-85bd-43dc-acc4-b43750364cdc' # Your app's name name: 'App' # Actions that should not be monitored by AppSignal # ignore_actions: # - ApplicationController#isup # Errors that should not be recorded by AppSignal # For more information see our docs: # https://docs.appsignal.com/ruby/configuration/ignore-errors.html ignore_errors: - AbstractController::ActionNotFound - ActionController::InvalidAuthenticityToken - ActionController::ParameterMissing - ActionController::RoutingError - ActionController::UnknownFormat - ActionController::UnknownHttpMethod - ActionController::BadRequest - ActionDispatch::RemoteIp::IpSpoofAttackError - ActiveRecord::PreparedStatementCacheExpired - ActiveRecord::RecordNotFound - CanCan::AccessDenied - I18n::InvalidLocale - Unicorn::ClientShutdown - AgeRestricted - MismatchedEntries - InvalidEpisodesError - CopyrightedResource - Net::SMTPServerBusy - Net::SMTPFatalError - Interrupt - Apipie::ParamMissing - InvalidIdError - InvalidParameterError - EmptyContentError - MalParser::RecordNotFound - Errors::NotIdentifiedByImageMagickError - Sidekiq::Shutdown - Terrapin::ExitStatusError # See http://docs.appsignal.com/ruby/configuration/options.html for # all configuration options. # Configuration per environment, leave out an environment or set active # to false to not push metrics for that environment. beta: <<: *defaults active: false development: <<: *defaults active: false production: <<: *defaults active: true
1,784
YAML
27.790322
72
0.727018
shikimori/shikimori/config/database.yml
development: &defaults adapter: postgresql encoding: utf8 database: <%= ENV['POSTGRES_DEV_DB'] %> username: <%= ENV['POSTGRES_DEV_USER'] %> password: <%= ENV['POSTGRES_DEV_PASSWORD'].presence %> host: <%= ENV['POSTGRES_DEV_HOST'] %> pool: 100 timeout: 5000 encoding: utf8 collation: ru_RU.UTF-8 ctype: ru_RU.UTF-8 template: template0 production: <<: *defaults test: <<: *defaults database: <%= ENV['POSTGRES_TEST_DB'] %><%=ENV['TEST_ENV_NUMBER'] %> username: <%= ENV['POSTGRES_TEST_USER'] %> password: <%= ENV['POSTGRES_TEST_PASSWORD'].presence %> host: <%= ENV['POSTGRES_TEST_HOST'] %>
625
YAML
25.083332
70
0.632
shikimori/shikimori/config/chewy.yml
# config/chewy.yml # separate environment configs development: &development host: 'localhost:9200' prefix: 'shikimori_development' test: host: 'localhost:9200' prefix: 'shikimori_test' production: host: 'localhost:9200' prefix: <%=ENV['USER'] != 'morr' ? 'shikimori_production' : 'shikimori_development' %>
319
YAML
25.666665
88
0.714734
shikimori/shikimori/config/sidekiq.yml
:concurrency: 5 :pidfile: tmp/pids/sidekiq.pid staging: :concurrency: 5 production: :concurrency: 80 :queues: - [high_priority, 8] - [critical, 10] - [push_notifications, 2] - [default, 5] - [episode_notifications, 5] - [cpu_intensive, 5] - [slow_parsers, 5] - [torrents_parsers, 5] - [mal_parsers, 3] - [anime365_parsers, 3] - [webm_thumbnails, 5] - [history_jobs, 5] - [scores_jobs, 4] - [low_priority, 1] - [cleanup_jobs, 1] - [mailers, 5] - [imports, 4] - [achievements, 6] - [chewy, 10] - [dangerous_actions, 8] :limits: cpu_intensive: 2 slow_parsers: 2 torrents_parsers: 1 webm_thumbnails: 1 history_jobs: 1 scores_jobs: 40 cleanup_jobs: 1 mal_parsers: 40 anime365_parsers: 3 push_notifications: 5 imports: 2 achievements: 50 episode_notifications: 1 dangerous_actions: 1
854
YAML
17.191489
30
0.633489
shikimori/shikimori/config/secrets.yml
# Be sure to restart your server when you modify this file. # Your secret key is used for verifying the integrity of signed cookies. # If you change this key, all old signed cookies will become invalid! # Make sure the secret is at least 30 characters and all random, # no regular words or you'll be exposed to dictionary attacks. # You can use `rails secret` to generate a secure secret key. # Make sure the secrets in this file are kept private # if you're sharing your code publicly. # Do not keep production secrets in the repository, # instead read values from the environment. development: &defaults secret_key_base: fd4e8a95884930c25ebfc3020c53b1f4c128912e33c677f7a5139axx0c01b2ef5de41496e446abd4733ad2a3f51404c712acca297d967d651bddfcfd1c1f55aa devise: :secret_key: 2345678fg67fydg9843uitfgr9udfg8ui3ed89fiyucdv8uifgre80tfhgjv9oaf1324346dtyusfjkdsf8sd976732yhjkkednsc78sgcjhb7wyubhjdf867234ingp :pepper: 8d33d1cb74746054xx09e1bccfc63a82fc9aa251cbe03e3d813985040a88cd37c63c35a6af657f9bb30719f243cee977ff0a431d628657e5e44046e178c3096a recaptcha: :v2: :site_key: 6Le4Q58UAAAAAPykYvE5itXM04NSOsYeQUXzowWM :secret_key: 6Le4Q58UAAAAAJ0ylh5Zx3GRIJMtfQoZSqNeVpwt :v3: :site_key: 6LePQ58UAAAAAJ7HyOCd3Y9VtF5Co8I_2kyQJW9y :secret_key: 6LePQ58UAAAAALIpZbycjL-IZZtsp6ZtNg_PFi39 oauth: :facebook: :app_id: 337441442986680 :app_secret: 6750e33a1997602a019e30cdcd79ea13 :app_permissions: "" :vkontakte: :app_id: 2722473 :app_secret: G48K2YtxMajMo67ExE7a :app_permissions: "" :twitter: :secret_key: U8CPcoMCerH9Dqct3sG1XDqBd47XJAroMSuf8Eucjl9YLM49ci :consumer_key: JEukEItluUpRTJB7Tvd9uU9Sb mailgun: :login: xxxxxxxxxxxxxxxxxx :password: xxxxxxxxxxxxxxxxxxxxxxxx s3: connection: :server: s3-eu-west-1.amazonaws.com :access_key_id: xxxxxxxxxxxxxxxxxxxx :secret_access_key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx :use_ssl: true # :persistent: true bucket: d.shikimori.org max_file_size: 10485760 acl: public-read access_key_id: xxxxxxxxxxxxxxxxxxxx secret_access_key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx gcm: :token: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx1 api: :anime_videos: :token: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx camo: :host: localhost:5566 :port: 5566 :key: abc :endpoint_path: '/' faye: :host: localhost:9292 :port: 9292 :endpoint_path: '/' :token: xxxxxxxxxxxxxxxxxxxx # https://proxy6.net/user/proxy proxy: :url: <%= ENV['PROXY_URL'] %> :login: <%= ENV['PROXY_LOGIN'] %> :password: <%= ENV['PROXY_PASSWORD'] %> :vkontakte: # https://oauth.vk.com/authorize?client_id=2427019&scope=video,offline&redirect_uri=http://api.vk.com/blank.html&display=page&response_type=token :user_access_token: <%= ENV['VK_USER_ACCESS_TOKEN'] %> vimeo: :app_access_token: <%= ENV['VIMEO_APP_ACCESS_TOKEN'] %> turnstile: :site_key: <%= ENV['TURNSTILE_SITE_KEY'] %> :secret_key: <%= ENV['TURNSTILE_SECRET_KEY'] %> yandex_metrika: :oauth_token: <%= ENV['YANDEX_METRIKA_OAUTH_TOKEN'] %> test: <<: *defaults vkontakte: :user_access_token: USER_ACCESS_TOKEN_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx vimeo: :app_access_token: USER_ACCESS_TOKEN_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx production: <<: *defaults
3,454
YAML
35.755319
149
0.739722
shikimori/shikimori/config/honeybadger.yml
--- # For more options, see https://docs.honeybadger.io/lib/ruby/gem-reference/configuration api_key: 'hbp_tObQMWZaPeNe3kVaGAUZVUc8BAscDg3WQff7' # The environment your app is running in. env: "<%= Rails.env %>" # The absolute path to your project folder. root: "<%= Rails.root.to_s %>" # Honeybadger won't report errors in these environments. development_environments: - test - development - cucumber exceptions: ignore: - AbstractController::ActionNotFound - ActionController::InvalidAuthenticityToken - ActionController::ParameterMissing - ActionController::RoutingError - ActionController::UnknownFormat - ActionController::UnknownHttpMethod - ActionController::BadRequest - ActionDispatch::RemoteIp::IpSpoofAttackError - ActiveRecord::PreparedStatementCacheExpired - ActiveRecord::RecordNotFound - CanCan::AccessDenied - I18n::InvalidLocale - Unicorn::ClientShutdown - AgeRestricted - RknBanned - MismatchedEntries - InvalidEpisodesError - CopyrightedResource - Net::SMTPServerBusy - Net::SMTPFatalError - Interrupt - Apipie::ParamMissing - InvalidIdError - InvalidParameterError - EmptyContentError - MalParser::RecordNotFound - Errors::NotIdentifiedByImageMagickError - Sidekiq::Shutdown - Terrapin::ExitStatusError # By default, Honeybadger won't report errors in the development_environments. # You can override this by explicitly setting report_data to true or false. # report_data: true # The current Git revision of your project. Defaults to the last commit hash. # revision: null # Enable verbose debug logging (useful for troubleshooting). debug: false
1,692
YAML
27.694915
88
0.74409
shikimori/shikimori/config/storage.yml
test: service: Disk root: <%= Rails.root.join("tmp/storage") %> local: service: Disk root: <%= Rails.root.join("storage") %> # Use rails credentials:edit to set the AWS secrets (as aws:access_key_id|secret_access_key) # amazon: # service: S3 # access_key_id: <%= Rails.application.credentials.dig(:aws, :access_key_id) %> # secret_access_key: <%= Rails.application.credentials.dig(:aws, :secret_access_key) %> # region: us-east-1 # bucket: your_own_bucket # Remember not to checkin your GCS keyfile to a repository # google: # service: GCS # project: your_project # credentials: <%= Rails.root.join("path/to/gcs.keyfile") %> # bucket: your_own_bucket # Use rails credentials:edit to set the Azure Storage secret (as azure_storage:storage_access_key) # microsoft: # service: AzureStorage # storage_account_name: your_account_name # storage_access_key: <%= Rails.application.credentials.dig(:azure_storage, :storage_access_key) %> # container: your_container_name # mirror: # service: Mirror # primary: local # mirrors: [ amazon, google, microsoft ]
1,093
YAML
30.257142
101
0.693504
shikimori/shikimori/config/locales/services.en.yml
en: list_compare_service: group_by_key: both: In both lists user_only: "In %{nickname}'s list only" user_rate_status: planned: planned dropped: dropped messages/create_notification: nickname_changed: >- Your friend %{old_nickname} changed nickname to %{new_nickname}. user_registered_message: >- Welcome! [url=%{faq_url}]Here[/url] you'll find the answers to most frequently asked questions. You can import anime and manga lists from [url=http://myanimelist.net]myanimelist.net[/url] in your [url=/%{settings_path}/edit/account]profile settings[/url]. You can change your nickname there as well. Before you start posting on the forum we recommend you get familiar with our [url=%{site_rules_url}]site rules[/url]. If you have any questions or suggestions feel free to post them on the forum - we'll try to help you. moderatable_banned: without_reason: >- Your [entry=%{topic_id}]%{entry_name}[/entry] was moved to offtopic reason: >- because of [quote=%{approver_nickname}]%{reason}[/quote] bad_email_message: >- Our mail delivery service couldn't deliver mail to your email %{email}. You have either specified not existing email in profile settings or marked one of our delivered mails as spam. We recommend that you change your email in profile settings, or else you won't be able to restore your account if you forget you password. omniauth_service: new_user: New user bb_codes/tags/replies_tag: reply: 'Reply: ' replies: 'Replies: ' bb_codes/tags/contest_status_tag: started: started finished: finished bb_codes/tags/contest_round_status_tag: started: started finished: finished messages/generate_body: profile_comment: >- Left a comment in your <a class='b-link' href='%{profile_url}'>profile</a>. friend_request: add: Add @{f:her|m:him} to your friend list as well? added: Has added you to @{f:her|m:him} friend list. quoted_by_user: >- You have been <a class="b-link" href="%{comment_url}">mentioned</a> %{linked_name} anons: '%{linked_name} anime announced' ongoing: '%{linked_name} anime airing' episode: '%{linked_name} episode %{episode} released' released: '%{linked_name} anime released' subscription_commented: New messages %{linked_name} warned: target: >- You have been warned for posting a %{target_type_name} %{linked_name}. missing: >- You have been warned for posting a %{target_type_name} (<em>removed</em>). Reason: "%{reason}". other: >- You have been warned. Reason: "%{reason}". banned: target: >- You have been banned for %{duration} for posting a %{target_type_name} %{linked_name}. missing: >- You have been banned for %{duration} for posting a %{target_type_name} (<em>removed</em>). Reason: "%{reason}". other: >- You have been banned for %{duration}. Reason: "%{reason}". club_request: Invitation to join the club [club]%{club_id}[/club]. version_accepted: >- Your [version=%{version_id}]content change[/version] for [%{item_type}]%{item_id}[/%{item_type}] was accepted. version_rejected: >- Your [version=%{version_id}]content change[/version] for [%{item_type}]%{item_id}[/%{item_type}] was rejected. version_rejected_with_reason: >- Your [version=%{version_id}]content change[/version] for [%{item_type}]%{item_id}[/%{item_type}] was rejected because of [quote=%{moderator}]%{reason}[/quote] messages/mention_source: simple_mention: nil: <em>deleted</em> topic: &default_simple_mention <a href="%{url}"%{bubble}>%{name}</a> profile: *default_simple_mention review: *default_simple_mention critique: *default_simple_mention article: *default_simple_mention collection: *default_simple_mention text_mention: nil: in <em>deleted</em>. topic: in topic <a href="%{url}"%{bubble}>%{name}</a>. profile: in <a href="%{url}"%{bubble}>%{name}</a>'s profile. review: in review for <a href="%{url}"%{bubble}>%{name}</a>. messages/check_spam_abuse: ban_text: >- You are banned for spam. Send a word to %{email} in case if you are innocent. users/check_hacked: lock_text: >- This account was used to spam on the site. Account access has been blocked. To recover access, use the password recovery page. %{recovery_url} In order to avoid such situations in the future, we recommend that you do not use simple passwords like "123", "qwerty", "anime", "naruto", etc. moderations/banhammer: ban_reason: '[url=%{url}]site rule #3[/url]'
4,892
YAML
36.068182
101
0.632461
shikimori/shikimori/config/locales/value_objects.en.yml
en: titles/season_title: anime: &anime_season_titles catalog: season: winter: Winter %{year} spring: Spring %{year} summer: Summer %{year} fall: Fall %{year} year: '%{year} year' decade: '%{decade}0s' ancient: Older short: season : winter: Winter Season spring: Spring Season summer: Summer Season fall: Fall Season year: '%{year} year' full: season: winter: Winter %{year} Anime spring: Spring %{year} Anime summer: Summer %{year} Anime fall: Fall %{year} Anime year: Anime %{year} manga: &manga_season_titles <<: *anime_season_titles full: season: winter: Winter %{year} Manga spring: Spring %{year} Manga summer: Summer %{year} Manga fall: Fall %{year} Manga year: Manga %{year} ranobe: <<: *manga_season_titles titles/status_title: anime: &anime_status_titles anons: Planned ongoing: Airing released: Released latest: Aired recently manga: &manga_status_titles <<: &anime_status_titles ongoing: Publishing latest: Published recently ranobe: <<: *manga_status_titles
1,323
YAML
24.960784
38
0.538171
shikimori/shikimori/config/locales/decorators.ru.yml
ru: db_entry_decorator: &db_entry_decorator no_description: Нет описания ani_manga_decorator: &ani_manga_decorator <<: *db_entry_decorator time_ago_format: '%s назад' anime_decorator: <<: *ani_manga_decorator anime_video_preview_decorator: score: excellent: отлично good: хорошо okay: нормально character_decorator: <<: *db_entry_decorator job_title: character: Персонаж anime: Персонаж аниме anime_manga: Персонаж аниме и манги anime_manga_ranobe: Персонаж аниме, манги и ранобэ anime_ranobe: Персонаж аниме и ранобэ manga: Персонаж манги manga_ranobe: Персонаж манги и ранобэ ranobe: Персонаж ранобэ contest_decorator: <<: *db_entry_decorator club_decorator: <<: *db_entry_decorator manga_decorator: <<: *ani_manga_decorator person_decorator: &person_decorator <<: *db_entry_decorator job_title: producer: Режиссёр аниме mangaka: Автор манги composer: Композитор vocalist: Вокалист seyu: Сэйю anime_manga_projects_participant: Участник аниме и манга проектов # anime_manga_ranobe_projects_participant: Участник аниме, манга и ранобэ проектов anime_projects_participant: Участник аниме проектов # anime_ranobe_projects_participant: Участник аниме и ранобэ проектов manga_projects_participant: Участник манга проектов # manga_ranobe_projects_participant: Участник манга и ранобэ проектов # ranobe_projects_participant: Участник ранобэ проектов _projects_participant: '' seyu_decorator: <<: *person_decorator collection_decorator: <<: *db_entry_decorator user_decorator: &user_decorator always_online: всегда на сайте always_online_bot: всегда на сайте (бот) online: сейчас на сайте offline: 'в сети: %{time_ago}%{ago}' ago: назад registration_formats: full: '%e %B %Y г.' month_year: '%d %B %Y г.' year: '%Y г.' user_history_decorator: actions: add: Добавлено в список delete: Удалено из списка complete_with_score: '%{status_name} и оценено на <b>%{score}</b>' episodes: completed_movie: Просмотрен фильм completed_anime: Просмотрены все эпизоды completed_novel: Прочитана новелла completed_manga: Прочитана манга reset_anime: Сброшено число эпизодов reset_manga: Сброшено число томов и глав rate: cancelled: Отменена оценка changed: Изменена оценка c <b>%{prior_score}</b> на <b>%{score}</b> rated: Оценено на <b>%{score}</b> import: anime: Импортировано аниме - %{records} manga: Импортирована манга - %{records} registration: Регистрация на сайте anime_history_clear: Очистка истории аниме manga_history_clear: Очистка истории манги time_ago: '%{time_ago} назад' watched_one_episode: '%{watched} %{number}%{suffix} %{division}' watched_two_episodes: '%{watched} %{number_first}%{suffix} и %{number_second}%{suffix} %{division}' watched_three_episodes: '%{watched} %{number_first}%{suffix}, %{number_second}%{suffix} и %{number_third}%{suffix} %{division}' watched_episodes_range: '%{watched} с %{number_first}%{suffix_first} по %{number_last}%{suffix_last} %{division}' watched_first_episodes: '%{watched} %{number}%{suffix} %{division}' user_profile_decorator: <<: *user_decorator version_decorator: field_name: screenshots_upload: Загрузка кадров screenshots_delete: Удаление кадров screenshots_reposition: Порядок кадров poster_upload: Загрузка постера poster_delete: Удаление постера video_upload: Загрузка видео video_delete: Удаление видео role_add: Добавление роли role_remove: Удаление роли
3,807
YAML
36.333333
131
0.669031
shikimori/shikimori/config/locales/phrases.en.yml
en: actions: accept: Accept actions: Actions add: Add apply: Apply cancel: Cancel confirm: This action is irreversible. Are you sure? confirm_delete: Confirm deletion confirm_sync: Confirm sync confirm_simple: Are you sure? cancel_delete: Cancel deletion create: Create delete: Delete delete_all: Delete All edit: Edit ignore: Ignore markers: summary: add: Add summary mark remove: Remove summary mark confirm_add: Add summary mark? confirm_remove: Remove summary mark? offtopic: add: Add offtopic mark remove: Remove offtopic mark confirm_add: Add offtopic mark? confirm_remove: Remove offtopic mark? review: convert_to_comment: Convert review into comment? comment: convert_to_review: Convert comment into review? moderate: Moderate moderation: non_strict_moderation: This comment must be moderated only in case of laws violence abuse: Abuse laws_abuse: Russian law abuse ban: Ban hide_to_spoiler: Hide to spoiler not_offtopic: It's not offtopic not_summary: It's not summary not_review: It's not review offtopic: It's offtopic spoiler: It's spoiler summary: It's summary review: It's review explain: abuse: Please describe (optional) spoiler: Please describe (optional) edition: Edition increment: Increment (+) preview: Preview quote: Quote reject: Reject reply: Reply rollback: Rollback (-) save_apply: Save & Apply start: Start stop: Stop take: Take upload: Upload upload_image: Upload image write: Write by: id: By ID aired_on: By release date date_added: By date added date_updated: By date updated kind: By type name: In alphabetical order chapters: By number of chapters episodes: By number of episodes volumes: By number of volumes popularity: By popularity ranked: By rank random: By random ranked_random: By random ranked_shiki: By Shikimori ranking score: By score status: By status answers: 'no': 'no' 'yes': 'yes' about_site: About site anime_industry: Anime industry anime_list: Anime List anime_title: Anime title back: back back_to_page: Back to page calendar: Calendar changes_not_saved: Changes not saved! changes_saved: Changes saved character_name: Character name club_name: Club name collection_name: Collection name collapse: collapse cosplay: Cosplay deleted: anime: Deleted anime character: Deleted character manga: Deleted manga critique: Deleted critique video: Deleted video anime_video: Deleted video user: Deleted user error: error female: female forum: Forum gallery: Gallery goto: Goto imageboard_art: Imageboard art in_clubs: In Clubs in_collections: In Collections in_english: In English in_favorites: In favorites in_japanese: In Japanese in_russian: In Russian information: Information loading: Loading... previous_value: Previous value markers: abuse: abuse new: new offtopic: offtopic spoiler: spoiler convert_review: review summary: summary mail: Mail male: male manga_list: Manga List manga_title: Manga title mangaka: Mangaka moderators_only: For moderators only news: News no_synopsis: No synopsis no_comments: No comments no_collections: No collections no_critiques: No critiques no_summaries: No summaries no_topics: No topics no_reviews: No reviews nothing_found: Nothing found nothing_here: Nothing here notifications: Notifications of: of for: for page: Page %{page} page_not_found: Page not found pagination: back: Back next: Next person: Person person_name: Person name producer: Director ranobe_title: Light Novel title settings: Settings seyu: Seiyu share: Share search: search: Search... title: Search by title... name: Search by name... text: Search by text... shikimori: Shikimori source: Source sponsors: Sponsors this: anime: this anime manga: this manga this_action_cant_be_undone: This action can't be undone! tournament_bracket: Tournament bracket total: Total username: User name under_development: Under development page_under_development: This page is not completed and is under development yes_i_confirm: Yes, I confirm date_field: Date navigation: Navigation form_errors: Errors 'yes': 'Yes' 'no': 'No' is_deleted: Deleted facebook: 'Meta Platforms**, as well as its social network Facebook* : ** recognized as an extremist organization, its activities are banned in Russia. * banned in Russia' facebook_html: 'Meta Platforms**, as well as its social network Facebook*:<br>** recognized as an extremist organization, its activities are banned in Russia.<br>* banned in Russia'
4,991
YAML
25.983784
183
0.685634
shikimori/shikimori/config/locales/helpers.en.yml
en: anime_helper: minute: min. hour: zero: hours one: hour other: hours
100
YAML
11.624999
18
0.52
shikimori/shikimori/config/locales/services.ru.yml
ru: list_compare_service: group_by_key: both: В обоих списках user_only: Только в списке %{nickname} user_rate_status: planned: в планах dropped: брошено messages/create_notification: nickname_changed: >- @{f:Твоя|m:Твой} @{f:подруга|m:друг} %{old_nickname} @{f:изменила|m:изменил} никнейм на %{new_nickname}. user_registered_message: >- Добро пожаловать. [url=%{faq_url}]Здесь[/url] находятся ответы на наиболее часто задаваемые вопросы. Импортировать список аниме и манги из [url=http://myanimelist.net]myanimelist.net[/url] можно в [url=/%{settings_path}/edit/account]настройках профиля[/url]. Там же можно изменить свой никнейм. Перед публикацией на форуме рекомендуем ознакомиться с [url=%{site_rules_url}]правилами сайта[/url]. Если возникнут вопросы или пожелания - пиши на форуме, мы постараемся тебе ответить. moderatable_banned: without_reason: >- Твоя [entry=%{topic_id}]%{entry_name}[/entry] перенесена в оффтоп reason: >- по причине [quote=%{approver_nickname}]%{reason}[/quote] bad_email_message: >- Наш почтовый сервис не смог доставить письмо на твою почту %{email}. Ты либо @{f:указала|m:указал} несуществующий почтовый ящик, либо когда-то @{f:пометила|m:пометил} одно из наших писем как спам. Рекомендуем сменить электронный адрес в настройках профиля, иначе при утрате пароля ты не сможешь восстановить пароль от аккаунта. omniauth_service: new_user: Новый пользователь bb_codes/tags/replies_tag: reply: 'Ответ: ' replies: 'Ответы: ' bb_codes/tags/contest_status_tag: started: начат finished: завершён bb_codes/tags/contest_round_status_tag: started: начат finished: завершён messages/generate_body: profile_comment: >- @{f:Написала|m:Написал} что-то в твоём <a class='b-link' href='%{profile_url}'>профиле</a>. friend_request: add: Добавить @{f:её|m:его} в твой список друзей в ответ? added: "@{f:Добавила|m:Добавил} тебя в список друзей." quoted_by_user: >- @{f:Написала|m:Написал} <a class="b-link" href="%{comment_url}">что-то</a> тебе %{linked_name} anons: Анонсировано аниме %{linked_name} ongoing: Начат показ аниме %{linked_name} episode: Вышел %{episode} эпизод аниме %{linked_name} released: Завершён показ аниме %{linked_name} subscription_commented: Новые сообщения %{linked_name} warned: target: >- Тебе вынесено предупреждение за %{target_type_name} %{linked_name}. missing: >- Тебе вынесено предупреждение за %{target_type_name} (<em>удалён</em>). Причина: "%{reason}". other: >- Тебе вынесено предупреждение. Причина: "%{reason}". banned: target: >- Ты @{f:забанена|m:забанен} на %{duration} за %{target_type_name} %{linked_name}. missing: >- Ты @{f:забанена|m:забанен} на %{duration} за %{target_type_name} (<em>удалён</em>). Причина: "%{reason}". other: >- Ты @{f:забанена|m:забанен} на %{duration}. Причина: "%{reason}". club_request: Приглашение на вступление в клуб [club]%{club_id}[/club]. version_accepted: >- Твоя [version=%{version_id}]правка[/version] для [%{item_type}]%{item_id}[/%{item_type}] принята. version_rejected: >- Твоя [version=%{version_id}]правка[/version] для [%{item_type}]%{item_id}[/%{item_type}] отклонена. version_rejected_with_reason: >- Твоя [version=%{version_id}]правка[/version] для [%{item_type}]%{item_id}[/%{item_type}] отклонена по причине: [quote=%{moderator}]%{reason}[/quote] messages/mention_source: simple_mention: nil: <em>удалено</em> topic: &default_simple_mention <a href="%{url}"%{bubble}>%{name}</a> profile: *default_simple_mention review: *default_simple_mention critique: *default_simple_mention article: *default_simple_mention collection: *default_simple_mention text_mention: nil: в <em>удалено</em>. topic: в топике <a href="%{url}"%{bubble}>%{name}</a>. profile: в профиле пользователя <a href="%{url}"%{bubble}>%{name}</a>. review: в отзыве к <a href="%{url}"%{bubble}>%{name}</a>. messages/check_spam_abuse: ban_text: >- Ты @{f:забанена|m:забанен} за спам. Напиши на %{email}, если ты @{f:невиновна|m:невиновен}. users/check_hacked: lock_text: >- С этого аккаунта на сайте рассылается спам. Доступ к аккаунту забанен. Для восстановления доступа воспользуйтесь страницей восстановления пароля. %{recovery_url} Чтобы в дальнейшем избежать подобных ситуаций, рекомендуем не использовать простые пароли вроде "123", "qwerty", "anime", "naruto" и т.п. moderations/banhammer: ban_reason: п.3 [url=%{url}]правил сайта[/url]
4,947
YAML
36.484848
96
0.639377
shikimori/shikimori/config/locales/verbs.en.yml
en: verbs: watched_episodes: zero: watched one: watched other: watched read_volumes: zero: read one: read other: read read_chapters: zero: read one: read other: read added_by: zero: added by one: added by other: added by wrote: zero: wrote one: wrote other: wrote
376
YAML
15.391304
21
0.526596
shikimori/shikimori/config/locales/inflections.en.yml
en: inflections: years_old: zero: yo one: yo other: yo datetime: second: zero: seconds one: second other: seconds minute: zero: minutes one: minute other: minutes hour: zero: hours one: hour other: hours day: zero: days one: day other: days week: zero: weeks one: week other: weeks month: zero: months one: month other: months year: zero: years one: year other: years ordinal: studio: one: publisher few: publishers ranobe: zero: light novels one: light novel other: light novels inflections: user_signed_in: signed_in: signed in not_signed_in: not signed in
875
YAML
15.846154
36
0.482286
shikimori/shikimori/config/locales/devise.en.yml
# Additional translations at https://github.com/plataformatec/devise/wiki/I18n en: devise: confirmations: confirmed: "Your email address has been successfully confirmed." send_instructions: "You will receive an email with instructions for how to confirm your email address in a few minutes." send_paranoid_instructions: "If your email address exists in our database, you will receive an email with instructions for how to confirm your email address in a few minutes." failure: already_authenticated: "You are already signed in." inactive: "Your account is not activated yet." invalid: "Invalid %{authentication_keys} or password." locked: "Your account is locked." last_attempt: "You have one more attempt before your account is locked." not_found_in_database: "Invalid %{authentication_keys} or password." timeout: "Your session expired. Please sign in again to continue." unauthenticated: "You need to sign in or sign up before continuing." unconfirmed: "You have to confirm your email address before continuing." mailer: confirmation_instructions: subject: "Confirmation instructions" reset_password_instructions: subject: "Reset password instructions" unlock_instructions: subject: "Unlock instructions" email_changed: subject: "Email Changed" password_change: subject: "Password Changed" omniauth_callbacks: register: "Successfully registered from %{kind} account." failure: "Could not authenticate you from %{kind} because \"%{reason}\"." success: "Successfully authenticated from %{kind} account." passwords: no_token: "You can't access this page without coming from a password reset email. If you do come from a password reset email, please make sure you used the full URL provided." send_instructions: "You will receive an email with instructions on how to reset your password in a few minutes." send_paranoid_instructions: "If your email address exists in our database, you will receive a password recovery link at your email address in a few minutes." updated: "Your password has been changed successfully. You are now signed in." updated_not_active: "Your password has been changed successfully." registrations: destroyed: "Bye! Your account has been successfully cancelled. We hope to see you again soon." signed_up: "Welcome! You have signed up successfully." signed_up_but_inactive: "You have signed up successfully. However, we could not sign you in because your account is not yet activated." signed_up_but_locked: "You have signed up successfully. However, we could not sign you in because your account is locked." signed_up_but_unconfirmed: "A message with a confirmation link has been sent to your email address. Please follow the link to activate your account." update_needs_confirmation: "You updated your account successfully, but we need to verify your new email address. Please check your email and follow the confirm link to confirm your new email address." updated: "Your account has been updated successfully." sessions: signed_in: "Signed in successfully." signed_out: "Signed out successfully." already_signed_out: "Signed out successfully." user: already_signed_out: :devise.sessions.signed_out signed_in: :devise.sessions.signed_in signed_out: :devise.sessions.signed_out unlocks: send_instructions: "You will receive an email with instructions for how to unlock your account in a few minutes." send_paranoid_instructions: "If your account exists, you will receive an email with instructions for how to unlock it in a few minutes." unlocked: "Your account has been unlocked successfully. Please sign in to continue." errors: messages: already_confirmed: "was already confirmed, please try signing in" confirmation_period_expired: "needs to be confirmed within %{period}, please request a new one" expired: "has expired, please request a new one" not_found: "not found" not_locked: "was not locked" not_saved: one: "1 error prohibited this %{resource} from being saved:" other: "%{count} errors prohibited this %{resource} from being saved:"
4,356
YAML
61.242856
206
0.719467
shikimori/shikimori/config/locales/achievements.en.yml
en: achievements: group: common: Common genre: By Genres franchise: By Franchises author: By Authors neko_name: action: Action animelist: Anime List comedy: Comedy dementia_psychological: Dementia / Psychological drama: Drama fantasy: Fantasy fujoshi: Fujoshi gar: GAR historical: Historical horror_thriller: Horror / Thriller josei: Josei kids: For Kids kuudere: Kuudere longshounen: Long Title mahou_shoujo: Mahou Shoujo mecha: Mecha military: Military moe: Moe music: Music mystery: Mystery oldfag: Classic oniichan: Forbidden love otaku: Art historian police: Police romance: Romance scifi: Sci-Fi seinen: Seinen shortie: Short film slice_of_life: Slice of Life sovietanime: \"Our"\ anime stop_motion: Stop Motion space: Space sports: Sport supernatural: Supernatural test: Unknown achievement tsundere: Tsundere yandere: Yandere yuuri: Yuri genki: Genki world_masterpiece_theater: World Masterpiece Theater hint: default: '%{neko_name} level %{level}' animelist: '%{threshold} anime watched'
1,287
YAML
23.76923
58
0.616939
shikimori/shikimori/config/locales/roles.en.yml
en: role: 2nd Key Animation: 2nd Key Animation ADR Director: ADR Director Animation Check: Animation Check Animation Director: Animation Director Art Director: Art Director Art: Art Assistant Animation Director: Assistant Animation Director Assistant Director: Assistant Director Assistant Engineer: Assistant Engineer Assistant Producer: Assistant Producer Assistant Production Coordinat: Assistant Production Coordinat Associate Casting Director: Associate Casting Director Associate Producer: Associate Producer Background Art: Background Art Brazilian: Seiyu (BR) Casting Director: Casting Director Character Design: Character Design Chief Animation Director: Chief Animation Director Chief Producer: Chief Producer Co-Director: Co-Director Co-Producer: Co-Producer Color Design: Color Design Color Setting: Color Setting Creator: Creator Dialogue Editing: Dialogue Editing Digital Paint: Digital Paint Director of Photography: Director of Photography Director: Director Editing: Editing English: Seiyu (EN) Episode Director: Episode Director Executive Producer: Executive Producer French: Seiyu (FR) German: Seiyu (DE) Hebrew: Seiyu (IL) Hungarian: Seiyu (HU) In-Between Animation: In-Between Animation Inserted Song Performance: Inserted Song Performance Italian: Seiyu (IT) Japanese: Seiyu Key Animation: Key Animation Korean: Seiyu (KR) Layout: Layout Mandarin: Seiyu (CH) Mechanical Design: Mechanical Design Music: Music Online Editing Supervision: Online Editing Supervision Online Editor: Online Editor Original Character Design: Original Character Design Original Creator: Original Creator Planning Producer: Planning Producer Planning: Planning Portuguese (BR): Seiyu (BR) Post-Production Assistant: Post-Production Assistant Principle Drawing: Principle Drawing Producer: Producer Production Assistant: Production Assistant Production Coordination: Production Coordination Production Manager: Production Manager Publicity: Publicity Re-Recording Mixing: Re-Recording Mixing Recording Assistant: Recording Assistant Recording Engineer: Recording Engineer Recording: Recording Screenplay: Screenplay Script: Script Series Composition: Series Composition Series Production Director: Series Production Director Setting Manager: Setting Manager Setting: Setting Sound Director: Sound Director Sound Effects: Sound Effects Sound Manager: Sound Manager Sound Supervisor: Sound Supervisor Spanish: Seiyu (ES) Special Effects: Special Effects Spotting: Spotting Story & Art: Story & Art Story: Story Storyboard: Storyboard Theme Song Arrangement: Theme Song Arrangement Theme Song Composition: Theme Song Composition Theme Song Lyrics: Theme Song Lyrics Theme Song Performance: Theme Song Performance
3,045
YAML
34.011494
66
0.743842
shikimori/shikimori/config/locales/verbs.ru.yml
ru: verbs: watched_episodes: one: просмотрен few: просмотрены many: просмотрено read_volumes: one: прочитан few: прочитаны many: прочитано read_chapters: one: прочитана few: прочитаны many: прочитано added_by: one: '@{f:добавила|m:добавил}' few: добавили many: добавили wrote: one: '@{f:написала|m:написал}' few: написали many: написали
449
YAML
18.565217
36
0.57461
shikimori/shikimori/config/locales/value_objects.ru.yml
ru: titles/season_title: anime: &anime_season_titles catalog: season: winter: Зима %{year} spring: Весна %{year} summer: Лето %{year} fall: Осень %{year} year: '%{year} год' decade: '%{decade}0-е годы' ancient: Более старые short: season: winter: Зимний сезон spring: Весенний сезон summer: Летний сезон fall: Осенний сезон year: '%{year} год' full: season: winter: Зимний сезон %{year} года spring: Весенний сезон %{year} года summer: Летний сезон %{year} года fall: Осенний сезон %{year} года year: Аниме %{year} года manga: &manga_season_titles <<: *anime_season_titles full: season: winter: Зимний сезон %{year} года spring: Весенний сезон %{year} года summer: Летний сезон %{year} года fall: Осенний сезон %{year} года year: Манга %{year} года ranobe: <<: *manga_season_titles titles/status_title: anime: &anime_status_titles anons: Анонсы ongoing: Онгоинги released: Вышедшее latest: Недавно вышедшее manga: &manga_status_titles <<: &anime_status_titles ongoing: Выходящее ranobe: <<: *manga_status_titles ongoing: Онгоинги
1,383
YAML
26.137254
45
0.550253
shikimori/shikimori/config/locales/roles.ru.yml
ru: role: 2nd Key Animation: Второстепен. анимация ADR Director: Режиссёр перевода Animation Check: Контроль анимации Animation Director: Режиссёр анимации Art Director: Арт-директор Art: Рисовка Assistant Animation Director: Помощник режиссёра анимации Assistant Director: Помощник режиссёра Assistant Engineer: Инженер-ассистент Assistant Producer: Ассистент продюсера Assistant Production Coordinat: Координация работ Associate Casting Director: Помощник директора по кастингу Associate Producer: Помощник продюсера Background Art: Фоновая рисовка Brazilian: Сэйю (BR) Casting Director: Директор по кастингу Character Design: Дизайн персонажей Chief Animation Director: Главный аниматор Chief Producer: Главный продюсер Co-Director: Второй режиссёр Co-Producer: Второй продюсер Color Design: Дизайн цвета Color Setting: Настройка цвета Creator: Автор Dialogue Editing: Редактор диалогов Digital Paint: Компьютерная рисовка Director of Photography: Оператор-постановщик Director: Режиссёр Editing: Монтаж English: Сэйю (EN) Episode Director: Режиссёр эпизодов Executive Producer: Исполнительн. продюсер French: Сэйю (FR) German: Сэйю (DE) Hebrew: Сэйю (IL) Hungarian: Сэйю (HU) In-Between Animation: Промежуточ. анимация Inserted Song Performance: Музыкальное сопровождение Italian: Сэйю (IT) Japanese: Сэйю Key Animation: Ключевая анимация Korean: Сэйю (KR) Layout: Вёрстка Mandarin: Сэйю (CH) Mechanical Design: Дизайн макетов Music: Музыка Online Editing Supervision: Надзор за редакторами Online Editor: Редактор Original Character Design: Оригинал. дизайн персонажей Original Creator: Автор оригинала Planning Producer: Продюсер планирования Planning: Планирование Portuguese (BR): Португальский (BR) Post-Production Assistant: Пост-продакшн Principle Drawing: Принцип рисовки Producer: Продюсер Production Assistant: Ассистент по производству Production Coordination: Координация работы Production Manager: Менеджер по производству Publicity: Реклама Re-Recording Mixing: Микширование звука Recording Assistant: Помощник звукооператора Recording Engineer: Звукооператор Recording: Звукооператор Screenplay: Сценарий Script: Сценарий Series Composition: Компоновка серий Series Production Director: Директор по производству Setting Manager: Менеджер по настройке Setting: Настройка Sound Director: Звукорежиссёр Sound Effects: Звуковые эффекты Sound Manager: Звукорежиссёр Sound Supervisor: Звукорежиссёр Spanish: Сэйю (ES) Special Effects: Спецэффекты Spotting: Корректировка Story & Art: Сюжет и иллюстрации Story: Сюжет Storyboard: Раскадровка Theme Song Arrangement: Аранжировка гл. муз. темы Theme Song Composition: Композитор гл. муз. темы Theme Song Lyrics: Лирика гл. муз. темы Theme Song Performance: Исполнение гл. муз. темы
3,080
YAML
34.413793
62
0.744805
shikimori/shikimori/config/locales/decorators.en.yml
en: db_entry_decorator: &db_entry_decorator no_description: No description ani_manga_decorator: &ani_manga_decorator <<: *db_entry_decorator time_ago_format: '%s ago' anime_decorator: <<: *ani_manga_decorator anime_video_preview_decorator: score: excellent: excellent good: good okay: okay character_decorator: <<: *db_entry_decorator job_title: character: Character anime: Anime character anime_manga: Anime & Manga Character anime_manga_ranobe: Anime & Manga & Light Novel character anime_ranobe: Anime & Light Novel character manga: Manga character manga_ranobe: Manga & Light Novel character ranobe: Light Novel character contest_decorator: <<: *db_entry_decorator club_decorator: <<: *db_entry_decorator manga_decorator: <<: *ani_manga_decorator person_decorator: &person_decorator <<: *db_entry_decorator job_title: producer: Producer mangaka: Mangaka composer: Composer seyu: Seiyu vocalist: Vocalist anime_manga_projects_participant: Anime & Manga projects participant # anime_manga_ranobe_projects_participant: Anime, Manga & Light novel projects participant anime_projects_participant: Anime projects participant # anime_ranobe_projects_participant: Anime & Light novel projects participant manga_projects_participant: Manga projects participant # manga_ranobe_projects_participant: Manga & Light novel projects participant # ranobe_projects_participant: Light novel projects participant _projects_participant: '' seyu_decorator: <<: *person_decorator collection_decorator: <<: *db_entry_decorator user_decorator: &user_decorator always_online: always online always_online_bot: always online (bot) online: online offline: last online %{time_ago}%{ago} ago: ago registration_formats: full: '%B %e, %Y' month_year: '%B %Y' year: '%Y' user_history_decorator: actions: add: Added to list delete: Removed from list complete_with_score: '%{status_name} and rated <b>%{score}</b>' episodes: completed_movie: Watched movie completed_anime: Watched all episodes completed_novel: Read novel completed_manga: Read manga reset_anime: Reset episodes count reset_manga: Reset volumes and chapters count rate: cancelled: Score removed changed: Score changed from <b>%{prior_score}</b> to <b>%{score}</b> rated: Rated <b>%{score}</b> import: anime: Anime imported - %{records} manga: Manga imported - %{records} registration: Registration anime_history_clear: Anime history cleared manga_history_clear: Manga history cleared time_ago: '%{time_ago} ago' watched_one_episode: '%{watched} %{division} %{number}' watched_two_episodes: '%{watched} %{number_first} and %{number_second} %{division}' watched_three_episodes: '%{watched} %{number_first}, %{number_second} and %{number_third} %{division}' watched_episodes_range: '%{watched} %{division} %{number_first}-%{number_last}' watched_first_episodes: '%{watched} %{number} %{division}' user_profile_decorator: <<: *user_decorator version_decorator: field_name: screenshots_upload: Screenshots upload screenshots_delete: Screenshots delete screenshots_reposition: Screenshots order poster_upload: Poster upload poster_delete: Poster delete video_upload: Video upload video_delete: Video delete role_add: Role add role_remove: Role remove
3,684
YAML
35.127451
106
0.66721
shikimori/shikimori/config/locales/datetime.en.yml
en: date: formats: &date_formats full: '%d.%m.%Y %H:%M' human: '%B %e, %Y' human_short: '%b %e, %Y' human_day_month: '%B %e' human_month_year: '%B %Y' short: '%d.%m.%Y' day_month_human: '%B %e' month_year_human: '%B %Y' ongoing: '%A, %B %e, %Y' ongoing_short: '%A, %B %e, %Y' time: formats: <<: *date_formats #momentjs: '%Y-%m-%d %H:%M:%S' datetime: intervals: today: today yesterday: yesterday during_week: during this week week: one week ago two_weeks: two weeks ago three_weeks: three weeks ago month: one month ago two_months: two months ago three_months: three months ago four_months: four months ago five_months: five months ago half_year: half a year ago year: one year ago two_years: two years ago many_years: a long time ago release_dates: date: '%{date}' for_date: for %{date} in_years: in %{from_date}-%{to_date} since_date: since %{date} since_till_date: '%{from_date} to %{to_date}' till_date: till %{date} parts: second: zero: seconds one: second other: seconds minute: zero: minutes one: minute other: minutes hour: zero: hours one: hour other: hours day: zero: days one: day other: days week: zero: weeks one: week other: weeks month: zero: months one: month other: months year: zero: years one: year other: years
1,668
YAML
21.253333
51
0.506595
shikimori/shikimori/config/locales/achievements.ru.yml
ru: achievements: group: common: Общие genre: Жанровые franchise: Франшизы author: Авторы neko_name: action: Боевик animelist: Список аниме comedy: Комедия dementia_psychological: Безумие / Психологическое drama: Драма fantasy: Фэнтези fujoshi: Фудзёси gar: ГАР historical: Историческое horror_thriller: Хоррор / Триллер josei: Дзёсей kids: Детское kuudere: Кудере longshounen: Длиннотайтлы mahou_shoujo: Махо-сёдзё mecha: Меха military: Военное moe: Моэ music: Музыка mystery: Детектив oldfag: Классика oniichan: Запретная любовь otaku: Искусствовед police: Полиция romance: Романтика scifi: Фантастика seinen: Сейнен shortie: Короткометражки slice_of_life: Повседневность sovietanime: Наши в аниме stop_motion: Покадровая анимация space: Космос sports: Спорт supernatural: Сверхъестественное test: Неизвестное достижение tsundere: Цундере yandere: Яндере yuuri: Юри genki: Генки world_masterpiece_theater: Театр Мировых Шедевров hint: default: '%{neko_name} %{level}-го уровня' animelist: '%{threshold} просмотренных аниме'
1,316
YAML
24.326923
55
0.634498
shikimori/shikimori/config/locales/views.yml
ru: animes: page: kind: &video_kinds raw: оригинал subtitles: субтитры fandub: озвучка unknown: озвучка new: kind: <<: *video_kinds edit: kind: <<: *video_kinds
241
YAML
15.133332
27
0.481328
shikimori/shikimori/config/locales/devise.ru.yml
# Русский перевод для https://github.com/plataformatec/devise/tree/v4.3.0 # Другие переводы на http://github.com/plataformatec/devise/wiki/I18n ru: devise: confirmations: confirmed: "Твой аккаунт подтверждён." send_instructions: "В течение нескольких минут ты получишь письмо с инструкцией по подтверждению аккаунта." send_paranoid_instructions: "Если твоя почта есть в базе сайта, то в течение нескольких минут ты получишь письмо с инструкцией по подтверждению аккаунта." failure: already_authenticated: "Ты уже в системе." inactive: "Твой аккаунт ещё не подтверждён." invalid: "Неверный пароль или: %{authentication_keys}." locked: "Твой аккаунт заблокирован." last_attempt: "У тебя осталась ещё одна попытка ввести пароль до блокировки." not_found_in_database: "Неверный пароль или: %{authentication_keys}." timeout: "Твой сеанс закончился. Войди в систему снова." unauthenticated: "Тебе необходимо войти в систему или зарегистрироваться." unconfirmed: "Тебе нужно подтвердить твой аккаунт." mailer: confirmation_instructions: subject: "Инструкция по подтверждению аккаунта" reset_password_instructions: subject: "Инструкция по восстановлению пароля" unlock_instructions: subject: "Инструкция по разблокировке аккаунта" email_changed: subject: "Почта была изменена" password_change: subject: "Пароль был изменён" omniauth_callbacks: register: 'Успешная регистрация через аккаунт %{kind}.' failure: "Ты не можешь войти в систему с аккаунтом из %{kind}, так как \"%{reason}\"." success: "Вход в систему выполнен с аккаунтом из %{kind}." passwords: no_token: "Эта страница доступна только при переходе по ссылке для сброса пароля. Если вы перешли по ссылке из письма, убедитесь, что вы использовали полный URL." send_instructions: "В течение нескольких минут ты получишь письмо с инструкцией по восстановлению пароля." send_paranoid_instructions: "Если твоя почта есть в базе сайта, то в течение нескольких минут ты получишь письмо с инструкцией по восстановлению пароля." updated: "Твой пароль изменён" updated_not_active: "Пароль изменён" registrations: destroyed: "Скатертью дорога! Твой аккаунт удалён." signed_up: "Добро пожаловать! Регистрация завершена." signed_up_but_inactive: "Вы зарегистрировались. Тем не менее, вы не можете войти, потому что ваш аккаунт ещё не подтверждён." signed_up_but_locked: "Вы зарегистрировались. Тем не менее, вы не можете войти, потому что ваш аккаунт забанен." signed_up_but_unconfirmed: "В течение нескольких минут ты получишь письмо с инструкцией по подтверждению аккаунта." update_needs_confirmation: "Твой аккаунт обновлён, но необходимо подтвердить твою новую почту. Проверь свою почту и нажми на ссылку \"Подтвердить\", чтобы завершить обновление." updated: "Твой аккаунт изменён" sessions: signed_in: "Вход на сайт выполнен" signed_out: "Выход из сайта выполнен" already_signed_out: "Выход из сайта выполнен" unlocks: send_instructions: "В течение нескольких минут ты получишь письмо с инструкцией по разблокировке аккаунта." send_paranoid_instructions: "Если твой аккаунт существует, то в течение нескольких минут ты получишь письмо с инструкцией по его разблокировке." unlocked: "Ваш аккаунт разблокирован. Теперь вы авторизованы." user: already_signed_out: :devise.sessions.signed_out signed_in: :devise.sessions.signed_in signed_out: :devise.sessions.signed_out errors: messages: already_confirmed: "уже подтверждена. Пожалуйста, попробуй войти на сайт" confirmation_period_expired: "должен быть подтверждён в течении %{period}, запроси подтверждение ещё раз" expired: "устарела. Запроси новую" not_found: "не найден" not_locked: "не заблокирован" not_saved: one: "%{resource}: сохранение не удалось из-за %{count} ошибки" few: "%{resource}: сохранение не удалось из-за %{count} ошибок" many: "%{resource}: сохранение не удалось из-за %{count} ошибок" other: "%{resource}: сохранение не удалось из-за %{count} ошибки"
4,267
YAML
58.277777
183
0.718069
shikimori/shikimori/config/locales/datetime.ru.yml
ru: date: formats: &date_formats full: '%H:%M %d.%m.%Y' human: '%e %B %Y' human_short: '%e %b %Y' human_day_month: '%e %B' human_month_year: '%B %Y' short: '%d.%m.%Y' day_month_human: '%e %B' month_year_human: '%B %Y' ongoing: '%A, %e %B %Y' ongoing_short: '%A, %e %B' time: formats: <<: *date_formats #momentjs: '%Y-%m-%d %H:%M:%S' datetime: intervals: today: сегодня yesterday: вчера during_week: в течение недели week: неделя назад two_weeks: две недели назад three_weeks: три недели назад month: месяц назад two_months: два месяца назад three_months: три месяца назад four_months: четыре месяца назад five_months: пять месяцев назад half_year: более полугода назад year: год назад two_years: два года назад many_years: совсем давно release_dates: date: '%{date} г.' for_date: на %{date} г. in_years: в %{from_date}-%{to_date} гг. since_date: с %{date} г. since_till_date: с %{from_date} г. по %{to_date} г. till_date: до %{date} г. parts: second: one: секунда few: секунды many: секунд other: секунды minute: one: минута few: минуты many: минут other: минуты hour: one: час few: часа many: часов other: часа day: one: день few: дня many: дней other: дня week: one: неделя few: недели many: недель other: недели month: one: месяц few: месяца many: месяцев other: месяца year: one: год few: года many: лет other: года
1,814
YAML
21.134146
57
0.503308
shikimori/shikimori/config/locales/mailers.ru.yml
ru: shiki_mailer: private_message_email: subject: Личное сообщение body: |- %{nickname}, у тебя 1 новое сообщение на %{site_link} от пользователя %{from_nickname}. Прочитать можно тут: %{private_message_link} Отписаться от уведомлений можно по ссылке: %{unsubscribe_link} reset_password_instructions: subject: Инструкция по сбросу пароля body: |- Привет! Кто-то задействовал процедуру сброса пароля для твоего аккаунта на %{site_link}. Твой логин - %{nickname}. Изменить пароль можно, перейдя по ссылке: %{reset_password_link} Если тебе пришло несколько писем о восстановлении пароля, то переходить на страницу сброса пароля нужно обязательно по ссылке из самого последнего письма. Если ты не запрашивал(-а) сброс пароля, то просто проигнорируй это письмо. Твой пароль не будет изменён до тех пор, пока ты не перейдёшь по указанной выше ссылке.
976
YAML
32.689654
162
0.683402
shikimori/shikimori/config/locales/simple_form.en.yml
en: simple_form: yes: Yes no: No required: text: 'required' mark: '*' # You can uncomment the line below if you need to overwrite the whole required html. # When using html, text and mark won't be used. # html: '<abbr title="required">*</abbr>' error_notification: default_message: "Please critique the problems below:" # Labels and hints examples # labels: # defaults: # password: 'Password' # user: # new: # email: 'E-mail to sign in.' # edit: # email: 'E-mail.' # hints: # defaults: # username: 'User name to sign in.' # password: 'No special characters, please.' labels: user: nickname: Login (nickname) anime_video: author_name: Author (dubbing, subtitles) anime_video_author_id: Author (dubbing, subtitles) placeholders: topic: title: Topic title options: topic: type: Topic: Topic Topics::NewsTopic: News topic user: sex: male: male female: female hints: user: nickname: Case sensitive password: Case sensitive email: Case sensitive user_preferences: apply_user_styles: >- Other site users can define their own styles (change the appearance of the site) for the pages of their profile and clubs. If you disable this setting, you will always see standard site style. favorites_in_profile: >- Changing it will break your default profile layout. <br>You may want to change it if you have custom styles in profile. version: reason: &optional Optional anime: &anime_hints description_ru_source: *optional description_en_source: *optional episodes: It must be "0" for ongoings with an unknown total number of episodes more_info: >- Text imported from MAL is not displayed until the marker <code class="b-code_inline">[MAL]</code> is removed from the text manga: <<: *anime_hints volumes: It must be "0" for ongoings with an unknown total number of volumes chapters: It must be "0" for ongoings with an unknown total number of chapters anime_video: author_name: >- Формат записи: Название_проекта/студии (Ник_даббера1 & Ник_даббера2) list_import: list: Import supports Shikimori JSON and MyAnimeList XML lists (15mb max) club: is_censored: Required option for clubs with "adult" images and texts is_private: Club content is only visible to club members and moderators is_non_thematic: Non thematic clubs are not displayed on anime and manga pages is_shadowbanned: Hides the club from everyone except its members club_page: parent_page_id: Inside which page the page is displayed magic_submit: devise: sessions: new: &sign_in submit: Sign in disable_with: Signing in&#133; users: registrations: new: submit: Register disable_with: Registering&#133; passwords: new: submit: Send instructions disable_with: Sending instructions&#133; sessions: new: <<: *sign_in dashboards: show: <<: *sign_in club_invite: &send submit: Send disable_with: Sending&#133; comment: &comment submit: Send disable_with: Posting&#133; message: <<: *comment anime_video_report: index: <<: *send list_import: submit: Import disable_with: Importing&#133; default: submit: Save retry: Try saving once again disable_with: Saving&#133; new: submit: Create retry: Try again edit: submit: Save feedback: <<: *comment
4,093
YAML
24.116564
90
0.571463
shikimori/shikimori/config/locales/mailers.en.yml
en: shiki_mailer: private_message_email: subject: Private message body: |- %{nickname}, you have 1 new message on %{site_link} from %{from_nickname}. Read the message: %{private_message_link} To unsubscribe from notification emails click here: %{unsubscribe_link} reset_password_instructions: subject: Reset password instructions body: |- Hi! We have received a request to reset your account password on %{site_link}. Your account login is %{nickname}. To reset you password click this link: %{reset_password_link} If you didn't make a request to reset your password just ignore this message. Your password will not change until you click the link above.
777
YAML
27.814814
85
0.65251
shikimori/shikimori/config/locales/simple_form.ru.yml
ru: simple_form: yes: Да no: Нет required: text: 'Обязательное поле' mark: '*' # You can uncomment the line below if you need to overwrite the whole required html. # When using html, text and mark won't be used. # html: '<abbr title="required">*</abbr>' error_notification: default_message: "Пожалуйста, исправьте следующие ошибки:" # Labels and hints examples # labels: # defaults: # password: 'Password' # user: # new: # email: 'E-mail to sign in.' # edit: # email: 'E-mail.' # hints: # defaults: # username: 'User name to sign in.' # password: 'No special characters, please.' labels: user: nickname: Логин (никнейм) anime_video: author_name: Автор (озвучки, субтитров) anime_video_author_id: Автор (озвучки, субтитров) placeholders: topic: title: Название топика options: topic: type: Topic: Топик Topics::NewsTopic: Новостной топик user: sex: male: муж. female: жен. hints: user: nickname: Чувствителен к регистру password: Чувствителен к регистру email: >- Чувствителен к регистру<br> Письма на<span class="b-tag narrow">@mail.ru</span><span class="b-tag narrow">@inbox.ru</span><span class="b-tag narrow">@list.ru</span><span class="b-tag narrow">@bk.ru</span> могут попадать в спам, проверяй в этой папке тоже. user_preferences: apply_user_styles: >- Другие пользователи сайта могут задавать собственные стили (изменять внешний вид сайта) для страниц своего профиля и клубов.<br>Отключив эту настройку, вы всегда будете видеть стандартный стиль сайта. favorites_in_profile: >- Изменение этой настройки поломает стандартную вёрстку профиля. <br>Можно менять, если у тебя собственные стили в профиле. version: reason: &optional Не обязательно anime: &anime_hints description_ru_source: *optional description_en_source: *optional episodes: Для онгоингов с неизвестным числом эпизодов ставь "0" more_info: >- Импортированные с MAL тексты не отображаются, пока из текста не удалён маркер <code class="b-code_inline">[MAL]</code> manga: <<: *anime_hints volumes: Для онгоингов с неизвестным числом томов ставь "0" chapters: Для онгоингов с неизвестным числом глав ставь "0" anime_video: author_name: >- Формат записи: Название_проекта/студии (Ник_даббера1 & Ник_даббера2) list_import: list: Поддерживает Shikimori JSON и MyAnimeList XML списки (до 15mb) club: is_censored: Обязательная настройка для клубов со "взрослыми" картинками и текстами is_private: Содержимое клуба видно только участникам клуба и модераторам is_non_thematic: Не тематические клубы не отображаются на страницах аниме и манги is_shadowbanned: Скрывает клуб для всех, кроме его участников club_page: parent_page_id: Внутри какой страницы отображается страница magic_submit: devise: sessions: new: &sign_in submit: Войти disable_with: Вход&#133; users: registrations: new: submit: Зарегистрироваться disable_with: Регистрация&#133; passwords: new: submit: Отправить инструкцию disable_with: Отправляем инструкцию&#133; sessions: new: <<: *sign_in dashboards: dynamic: <<: *sign_in club_invite: &send submit: Отправить disable_with: Отправка&#133; comment: &comment submit: Написать disable_with: Отправка&#133; message: <<: *comment anime_video_report: index: <<: *send list_import: submit: Импортировать disable_with: Импорт&#133; default: submit: Сохранить retry: Попробовать ещё раз disable_with: Сохранение&#133; new: submit: Создать edit: submit: Сохранить feedback: <<: *comment helpers: submit: user: &user_buttons create: Сохранить update: Сохранить user_preferences: <<: *user_buttons topic: <<: *user_buttons critique: <<: *user_buttons
4,607
YAML
27.269938
186
0.585196
shikimori/shikimori/config/locales/frontend/edit_field.ru.yml
ru: frontend: synonyms: &synonyms nothing_here: Нет названий name: Название licensors: <<: *synonyms coub_tags: <<: *synonyms fansubbers: <<: *synonyms fandubbers: <<: *synonyms desynced: nothing_here: Нет поля name: Название поля options: nothing_here: Нет настроек name: Настройка
373
YAML
17.699999
32
0.571046
shikimori/shikimori/config/locales/frontend/about.ru.yml
ru: frontend: about: views: Просмотры visits: Посещения unique_visitors: Уникальные посетители comments_per_day: Комментариев за день new_users_per_day: Новых пользователей за день
217
YAML
23.22222
52
0.682028
shikimori/shikimori/config/locales/frontend/search.ru.yml
ru: frontend: search: nothing_found: Ничего не найдено. mode: index: Текущая страница anime: Аниме manga: Манга ranobe: Ранобэ character: Персонаж person: Человек
229
YAML
18.166665
39
0.563319
shikimori/shikimori/config/locales/frontend/collections.en.yml
en: frontend: collections: kind: anime: Anime manga: Manga ranobe: Light Novel and Novel character: Characters person: People group_name: Group name disabled_add_group_hint: >- To add a new group, fill in the blank group name json_warning: >- Do not edit this if you are not sure what you are doing! Inserting invalid data will break the page. autocomplete: anime: Anime title manga: Manga title ranobe: Light Novel title character: Character name person: Person name
608
YAML
26.681817
64
0.601974
shikimori/shikimori/config/locales/frontend/pages.en.yml
en: frontend: pages: # p-animes.coffee p_animes: hentai: Hentai / Roskomnadzor licensed: Licensed in Russia no_data: No data watch_online: Watch Online # p-contests p_contests: # p-contests/_form.coffee candidate: one: '%{count} candidate' few: '%{count} candidates' many: '%{count} candidates' other: '%{count} candidates' # p-profiles p_profiles: # p-profiles/ban.coffee page_is_reloading: Page is reloading... # p-profiles/show.coffee hour: one: hour few: hours many: hours day: one: day few: days many: days label: full: >- %{hours} %{hourWord} since %{fromDate} till %{toDate} (%{days} %{dayWord}) short: >- %{hours} %{hourWord} on %{date} # p-user_rates p_user_rates: # p-user_rates/index.coffee insufficient_data: Insufficient data error_occurred: Error occurred changes_saved: Changes saved rewatch: one: rewatch few: rewatches many: rewatches reread: one: re-read few: re-reads many: re-reads # p-recommendations-index.coffee p_recommendations_index: dont_recommend_franchise: Don't recommend this franchise any more
1,465
YAML
23.847457
73
0.517406
shikimori/shikimori/config/locales/frontend/collections.ru.yml
ru: frontend: collections: kind: anime: Аниме manga: Манга ranobe: Ранобэ и новеллы character: Персонажи person: Люди group_name: Название группы disabled_add_group_hint: >- Для добавления следующей группы заполните пустое название группы json_warning: >- Не редактируй это, если не уверен(-а) в том, что делаешь! Вставка неправильных данных сломает работу страницы. autocomplete: anime: Название аниме manga: Название манги ranobe: Название ранобэ character: Имя персонажа person: Имя человека
635
YAML
27.90909
72
0.626772
shikimori/shikimori/config/locales/frontend/statistics.ru.yml
ru: frontend: statistics: number: Количество anime_with_score: <b>%{count}</b> аниме с оценкой <b>%{score}</b> anime_of_type: <b>%{count}</b> аниме типа <b>%{type}</b> anime_in_year: '%{count} %{type} за %{year} год' anime_with_rating_in_year: '%{count} аниме у %{rating} за %{year} год' share: Процент ratings_share: '%{percent}% у %{rating} за %{year} год' genres_share: '%{percent}% у %{genre} за %{year} год'
467
YAML
37.999997
76
0.569593
shikimori/shikimori/config/locales/frontend/achievements.en.yml
en: frontend: achievements: title: gained: Achievement Gained lost: Achievement Lost
113
YAML
15.285712
34
0.610619
shikimori/shikimori/config/locales/frontend/pages.ru.yml
ru: frontend: pages: # p-animes.coffee p_animes: hentai: Хентай / Роскомнадзор licensed: Лицензировано в РФ no_data: Нет данных watch_online: Смотреть онлайн # p-contests p_contests: # p-contests/_form.coffee candidate: one: '%{count} участник' few: '%{count} участника' many: '%{count} участников' other: '%{count} участников' # p-profiles p_profiles: # p_profiles/ban.coffee page_is_reloading: Перезагрузка страницы... # p-profiles/show.coffee hour: one: час few: часа many: часов day: one: день few: дня many: дней label: full: >- %{hours} %{hourWord} с %{fromDate} по %{toDate} (%{days} %{dayWord}) short: >- %{hours} %{hourWord} %{date} # p_user-rates p_user_rates: # p_user-rates/index.coffee insufficient_data: Недостаточно данных error_occurred: Произошла ошибка changes_saved: Изменения сохранены rewatch: one: повторный просмотр few: повторных просмотра many: повторных просмотров reread: one: повторное прочтение few: повторных прочтения many: повторных прочтений # p-recommendations-index.coffee p_recommendations_index: dont_recommend_franchise: Больше не рекомендовать эту франшизу
1,535
YAML
25.033898
70
0.540065
shikimori/shikimori/config/locales/frontend/search.en.yml
en: frontend: search: nothing_found: Nothing found. mode: index: This page anime: Anime manga: Manga ranobe: Light novel character: Character person: Person
223
YAML
17.666665
35
0.55157
shikimori/shikimori/config/locales/frontend/external_links.ru.yml
ru: frontend: external_links: nothing_here: Нет ссылок groups: links: Ссылки watch_online: Онлайн-просмотр warn: youtube: Ссылка на официальный канал, где выложены серии для онлайн-просмотра watch_online: Ссылка на плейлист/страницу с плеером/официальный канал с онлайн-просмотром
337
YAML
29.72727
97
0.682493
shikimori/shikimori/config/locales/frontend/about.en.yml
en: frontend: about: views: Views visits: Visits unique_visitors: Unique visitors comments_per_day: Comments per day new_users_per_day: New users per day
190
YAML
20.22222
42
0.636842
shikimori/shikimori/config/locales/frontend/shiki_editor.en.yml
en: frontend: shiki_editor: not_available: Commenting will be available one day after registering text_cant_be_blank: Text can't be blank file: file bold: Bold italic: Italic underline: Underlined strike: Strikethrough color: Color undo: Undo last change redo: Redo last change spoiler: Spoiler spoiler_inline: Spoiler code_inline: Code link: Link smiley: Smiley shiki_link: Shiki link image: Image by link upload: Images upload spoiler_block: Spoiler block code_block: Code block bullet_list: List headline: Headline blockquote: Quote prompt: image_url: Image URL link_url: Link URL spoiler_label: Spoiler label preview: Preview source: Source code huge_content_mode: Text is too large. The visual editor will fail and has therefore been disabled. huge_content_pasted: Text is too large. The visual editor will fail and therefore paste has been cancelled. normal_content_mode: The visual editor is available again unsaved_content: label: The editor has unsaved draft. Restore it? draft: Draft 'yes': Yes 'no': No colors: yellow: Yellow orange: Orange red: Red pink: Pink violet: Violet blue: Blue green: Green brown: Brown gray: Gray black: Black headlines: header_1: '# Large header' header_2: '## Medium header' header_3: '### Small header' headline: '#### Headline' midheadline: '##### Subheadline'
1,677
YAML
27.931034
113
0.60167
shikimori/shikimori/config/locales/frontend/images.ru.yml
ru: frontend: images: delete: Удалить confirm: Подтвердить cancel: Отменить
100
YAML
13.42857
26
0.61