file_path
stringlengths
20
202
content
stringlengths
9
3.85M
size
int64
9
3.85M
lang
stringclasses
9 values
avg_line_length
float64
3.33
100
max_line_length
int64
8
993
alphanum_fraction
float64
0.26
0.93
shikimori/shikimori/config/locales/frontend/achievements.ru.yml
ru: frontend: achievements: title: gained: Открыто достижение lost: Потеряно достижение
116
YAML
15.714283
34
0.62069
shikimori/shikimori/config/locales/frontend/application.ru.yml
ru: frontend: application: sure_to_leave_page: |- Здесь написан и не сохранён какой-то комментарий! Точно покинуть страницу?
153
YAML
20.999997
57
0.640523
shikimori/shikimori/config/locales/frontend/statistics.en.yml
en: frontend: statistics: number: Number anime_with_score: <b>%{count}</b> anime scored <b>%{score}</b> anime_of_type: <b>%{count}</b> anime of type <b>%{type}</b> anime_in_year: '%{count} %{type} in %{year}' anime_with_rating_in_year: '%{count} %{rating} anime in %{year}' share: Share ratings_share: '%{percent}% share of %{rating} in %{year}' genres_share: '%{percent}% share of %{genre} in %{year}'
457
YAML
37.166664
70
0.56674
shikimori/shikimori/config/locales/frontend/user_rates.ru.yml
ru: frontend: user_rates: button: add_to_list: Добавить в список remove_from_my_list: Удалить из списка
132
YAML
17.999997
46
0.606061
shikimori/shikimori/config/locales/frontend/application.en.yml
en: frontend: application: sure_to_leave_page: |- You have not saved your comment! Are you sure you want to leave this page?
153
YAML
20.999997
49
0.614379
shikimori/shikimori/config/locales/frontend/dynamic_elements.en.yml
en: frontend: dynamic_elements: check_height: expand: expand shiki_editable: your_request_will_be_considered: >- Your request will be considered. Domo arigato. topic: load_comments: Load next %{comment_count} %{of_total_comments} %{comment_word} type_label: Topic of: of comment: one: comment few: comments many: comments new_message_added: one: '%{count} new message added' few: '%{count} new messages added' many: '%{count} new messages added' new_comment_added: one: '%{count} new comment added' few: '%{count} new comments added' many: '%{count} new comments added' comment: type_label: Comment marked_as_offtopic: Comment has been marked as offtopic multiple_marked_as_offtopic: Comments have been marked as offtopic marked_as_summary: Comment has been marked as summary not_marked_as_offtopic: Removed offtopic marking not_marked_as_summary: Removed summary marking dialog: type_label: Dialog message: type_label: Message review: type_label: Review authorized_action: register_to_complete_action: >- Please <a href="/users/sign_up">register</a> to complete this action. day_registered_action: action_will_be_available: >- Action will be available one day after <a href="/users/sign_up">registration</a>. week_registered_action: action_will_be_available: >- Action will be available one day after <a href="/users/sign_up">registration</a>. not_implemented_yet_action: This action is temporarily not available
1,816
YAML
28.786885
86
0.598568
shikimori/shikimori/config/locales/frontend/dynamic_elements.ru.yml
ru: frontend: dynamic_elements: check_height: expand: развернуть shiki_editable: your_request_will_be_considered: >- Твой запрос будет рассмотрен. Домо аригато. topic: load_comments: Загрузить ещё %{comment_count} %{of_total_comments} %{comment_word} type_label: Топик of: из comment: one: комментарий few: комментария many: комментариев new_message_added: one: Добавлено %{count} новое сообщение few: Добавлено %{count} новых сообщения many: Добавлено %{count} новых сообщений new_comment_added: one: Добавлен %{count} новый комментарий few: Добавлено %{count} новых комментария many: Добавлено %{count} новых комментариев comment: type_label: Комментарий marked_as_offtopic: Комментарий помечен оффтопиком multiple_marked_as_offtopic: Комментарии помечены оффтопиком marked_as_summary: Комментарий помечен отзывом not_marked_as_offtopic: Метка оффтопика снята not_marked_as_summary: Метка отзыва снята dialog: type_label: Диалог message: type_label: Сообщение review: type_label: Отзыв authorized_action: register_to_complete_action: >- Для этого действия тебе необходима <a href="/users/sign_up">регистрация</a> на сайте. day_registered_action: action_will_be_available: >- Действие станет доступно через сутки после <a href="/users/sign_up">регистрации</a>. week_registered_action: action_will_be_available: >- Действие станет доступно через неделю после <a href="/users/sign_up">регистрации</a>. not_implemented_yet_action: Это действие временно недоступно
1,864
YAML
29.57377
90
0.621781
cKohl10/TactileSim/exts/README.md
To add the contact extension to Isaac Sim: 1: Open the extensions window, *Window* > *Extensions* 2: Add the path to extenstions in the *Extension Search Paths* window in the form `/TactileSim/exts` 3: Open the extension from the toolbar at the top of the screen. To use the extension: 1: After creating a CSV list of sensor positions, radius, and paths as described in `/TactileSim/blender_scripts/sensor_bay_addon/README.md` 2: IMPORTANT: For a new robot, a contact sensor has to first be manually added to each link that will be covered. This allows the link to become the parent of a contact sensor. After manually adding the sensor once, it can be deleted and the robot can be saved.
714
Markdown
43.687497
150
0.7507
cKohl10/TactileSim/exts/contact_ext_test/Contact_Extension_Test_python/ContactSensorClass.py
# Tactile Contact Sensor Functions # Author: Carson Kohlbrenner # Date: 6/3/2024 from .AbstracSensorClass import AbstractSensorOperator import numpy as np import omni.kit.commands import omni.ui as ui from omni.isaac.sensor import _sensor from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.prims import is_prim_path_valid, get_prim_children from omni.isaac.ui.element_wrappers import CollapsableFrame from omni.isaac.ui.ui_utils import get_style, LABEL_WIDTH from pxr import Gf class ContactSensorOperator(AbstractSensorOperator): def __init__(self): super().__init__() self.parent_paths = [] # List of parent paths for each sensor self.sliders = [] # List of sliders for each sensor on the UI self.meters_per_unit = 1.00 # Unit conversion factor self.activated = False # Flag to determine if the sensors are active self.sensor_description = "Contact Sensors" # Description of the sensor type # Data structure to store sensor information class Sensor: def __init__(self, name, position, radius, parent_path): self.name = name self.position = position self.radius = radius self.parent_path = parent_path self.path = parent_path + "/tact_sensor_" + name def import_sensors_fn(self): """ Function that executes when the user clicks the 'Update' button Imports the sensor data from the CSV file and creates the sensors Expects the CSV file to have the following format: Sensor Name, X Offset, Y Offset, Z Offset, Radius, Parent Path """ self.activated = True self._cs = _sensor.acquire_contact_sensor_interface() # Remove all sensors already on the robot message = "Removing existing sensors...\n" self._status_report_field.set_text(message) self.remove_sensors() message += "Sensors successfully removed\n\n" self._status_report_field.set_text(message) #Change the text of the status report field to show the import status path = self.config_path message += "Importing sensor data from '" + path + "'...\n" self._status_report_field.set_text(message) #Import the sensor data from the CSV file try: names, positions, radii, parent_paths, data = self.import_csv(path) self.parent_paths = parent_paths self.remove_sensors() # Second call to ensure all sensors are removed after parent paths are updated message += "File opened successfully\n" # Output the data to the status report field # message += "\n\nSensor Data:\n" # for i in range(len(names)): # message += str(data[i]) + "\n" except: message += "Invalid file path or file format!" message += "\nPlease make sure the file has at least 2 sensors and is formatted correctly.\n" self._status_report_field.set_text(message) return self._status_report_field.set_text(message) # Determine the number of sensors and their positions num_sensors = len(data) self.sensors = {} sensor_count = 0 # Keep track of the number of sensors created successfully for i in range(num_sensors): # Create a contact sensor at the specified position # message += "\nCreating sensor " + str(i) + " at position " + str(positions[i]) + "...\n" # self._status_report_field.set_text(message) # Check if the parent path is valid if not is_prim_path_valid(parent_paths[i]): message += "Could not find parent path: " + parent_paths[i] + "\n" self._status_report_field.set_text(message) continue # Get the parent prim parent_prim = get_current_stage().GetPrimAtPath(parent_paths[i]) # Check if the appled link has a rigidbody component (Unknown if this is necessary) # if not parent_prim.HasAPI(UsdPhysics.RigidBodyAPI): # message += "Parent path does not have a rigidbody component: " + parent_paths[i] + "\n" # self._status_report_field.set_text(message) # continue # Create the sensor self.create_contact_sensor(parent_paths[i], positions[i], radii[i], names[i]) sensor_count = sensor_count + 1 message += "\nSuccessfully created " + str(sensor_count) + " sensors\n" self._status_report_field.set_text(message) # Populate the sensor readings frame with the new sensors self.update_sensor_readings_frame() def import_csv(self, path): """ Function that imports the sensor data from a CSV file CSV file should have the following format: Sensor Name, X Offset, Y Offset, Z Offset, Radius, Parent Path """ try: data = np.genfromtxt(path, delimiter=',', skip_header=1, dtype=str) # Save the first column as a list of names, the 2-4th columns as a list of positions, and the 5th column as a list of parent paths names = data[:, 0] # Convert the positions to a list of Gf.Vec3d objects positions = [] for i in range(len(data)): positions.append(Gf.Vec3d(float(data[i, 1]), float(data[i, 2]), float(data[i, 3]))) radii = [] for i in range(len(data)): radii.append(float(data[i, 4])) # Save the parent paths as a list of strings parent_paths = [] for i in range(len(data)): parent_paths.append(data[i, 5]) return names, positions, radii, parent_paths, data except: return None def create_contact_sensor(self, parent_path, position, radius, name): # Create the sensor at the specified position result, sensor = omni.kit.commands.execute( "IsaacSensorCreateContactSensor", path="/tact_sensor_" + name, parent=parent_path, min_threshold=0, max_threshold=1000000, color=(1, 0, 0, 1), radius=radius, sensor_period=1, translation=position, visualize=True, ) # Add the sensor to the list of sensors self.sensors[name] = self.Sensor(name, position, radius, parent_path) def remove_sensors(self): """ Function that removes all sensors from the robot """ if len(self.parent_paths) == 0: return for parent_path in self.parent_paths: # Find all prims under the parent path that contain "tact_sensor" in their name try: parent_prim = get_current_stage().GetPrimAtPath(parent_path) prims = get_prim_children(parent_prim) except: self._status_report_field.set_text("Unexpected path!\n") return #self._status_report_field.set_text("Found " + str(len(prims)) + " sensors to remove\n") # Remove all prims found for prim in prims: if "tact_sensor" in prim.GetName(): omni.kit.commands.execute('DeletePrims', paths=[parent_path + "/" + prim.GetName()]) def remove_sensors_fn(self): """ Function that executes when the user clicks the 'Remove Sensors' button Removes all sensors from the robot """ self.activated = False self.remove_sensors() self._status_report_field.set_text("All sensors removed\n\n\n If sensors remain, choose the correct configuration file and click 'Update'\n") # This function updates the sensor readings in the UI at every physics step def sensor_update(self, dt): #self._status_report_field.set_text("Updating sensor readings...\n") if len(self.sliders) > 0: slider_num = 0 for s in self.sensors.values(): #self._status_report_field.set_text("Updating sensor " + s.name + " at path " + s.path + "...\n") reading = self._cs.get_sensor_reading(s.path) if reading.is_valid: self.sliders[slider_num].model.set_value( float(reading.value) * self.meters_per_unit ) # readings are in kg⋅m⋅s−2, converting to Newtons else: self.sliders[slider_num].model.set_value(0) slider_num += 1 # contacts_raw = self._cs.get_body_contact_raw_data(self.leg_paths[0]) # if len(contacts_raw): # c = contacts_raw[0] # # print(c) def create_sensor_readings_frame(self): self.sensor_readings_frame = CollapsableFrame("Sensor Readings", collapsed=False) def update_sensor_readings_frame(self): # Color and style for the UI elements self.sliders = [] self.colors = [0xFFBBBBFF, 0xFFBBFFBB, 0xBBFFBBBB, 0xBBBBFFFF] style = {"background_color": 0xFF888888, "color": 0xFF333333, "secondary_color": self.colors[0]} #message = "There are " + str(len(self.sensors)) + " sensors\n" with self.sensor_readings_frame: # Vertical stack to hold the sensor readings in the frame with ui.VStack(style=get_style(), spacing=5, height=0): for s in self.sensors.values(): #message += "Creating reading bar for sensor " + s.name + "...\n" with ui.HStack(): ui.Label(s.name, width=LABEL_WIDTH, tooltip="Force in Newtons") # ui.Spacer(height=0, width=10) style["secondary_color"] = self.colors[0] self.sliders.append(ui.FloatDrag(min=0.0, max=15.0, step=0.001, style=style)) self.sliders[-1].enabled = False ui.Spacer(width=20)
10,168
Python
41.195021
149
0.586644
cKohl10/TactileSim/exts/contact_ext_test/Contact_Extension_Test_python/AbstracSensorClass.py
# Abstract Sensor Class # Author: Carson Kohlbrenner # Date: 6/3/2024 """ This class is an abstract class that defines the basic structure of a sensor. """ class AbstractSensorOperator: def __init__(self): self.sensors = {} self.config_path = "" self._status_report_field = None def import_sensors_fn(self): """ Function that executes when the user clicks the 'Update' button Imports the sensor data from the CSV file and creates the sensors """ pass def remove_sensors_fn(self): """ Function that removes all sensors from the robot """ pass def sensor_update(self, dt): """ Function that updates the sensor data """ pass def create_sensor_readings_frame(self): """ Function that creates the sensor readings frame """ pass def update_sensor_readings_frame(self): """ Function that updates the sensor readings """ pass
1,040
Python
22.65909
77
0.584615
cKohl10/TactileSim/exts/contact_ext_test/Contact_Extension_Test_python/extension.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import gc import omni import omni.kit.commands import omni.physx as _physx import omni.timeline import omni.ui as ui import omni.usd from omni.isaac.ui.element_wrappers import ScrollingWindow from omni.isaac.ui.menu import MenuItemDescription from omni.kit.menu.utils import add_menu_items, remove_menu_items from omni.usd import StageEventType from .global_variables import EXTENSION_DESCRIPTION, EXTENSION_TITLE from .ui_builder import UIBuilder """ This file serves as a basic template for the standard boilerplate operations that make a UI-based extension appear on the toolbar. This implementation is meant to cover most use-cases without modification. Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py Most users will be able to make their desired UI extension by interacting solely with UIBuilder. This class sets up standard useful callback functions in UIBuilder: on_menu_callback: Called when extension is opened on_timeline_event: Called when timeline is stopped, paused, or played on_physics_step: Called on every physics step on_stage_event: Called when stage is opened or closed cleanup: Called when resources such as physics subscriptions should be cleaned up build_ui: User function that creates the UI they want. """ class ContactExtension(omni.ext.IExt): def on_startup(self, ext_id: str): """Initialize extension and UI elements""" self.ext_id = ext_id self._usd_context = omni.usd.get_context() # Build Window self._window = ScrollingWindow( title=EXTENSION_TITLE, width=800, height=500, visible=False, dockPreference=ui.DockPreference.LEFT_BOTTOM ) self._window.set_visibility_changed_fn(self._on_window) action_registry = omni.kit.actions.core.get_action_registry() action_registry.register_action( ext_id, f"CreateUIExtension:{EXTENSION_TITLE}", self._menu_callback, description=f"Add {EXTENSION_TITLE} Extension to UI toolbar", ) self._menu_items = [ MenuItemDescription(name="Demo Test", onclick_action=(ext_id, f"CreateUIExtension:{EXTENSION_TITLE}")), ] add_menu_items(self._menu_items, EXTENSION_TITLE) # Filled in with User Functions self.ui_builder = UIBuilder(self._window) # Events self._usd_context = omni.usd.get_context() self._physxIFace = _physx.acquire_physx_interface() self._physx_subscription = None self._stage_event_sub = None self._timeline = omni.timeline.get_timeline_interface() def on_shutdown(self): self._models = {} remove_menu_items(self._menu_items, EXTENSION_TITLE) action_registry = omni.kit.actions.core.get_action_registry() action_registry.deregister_action(self.ext_id, f"CreateUIExtension:{EXTENSION_TITLE}") if self._window: self._window = None self.ui_builder.cleanup() gc.collect() def _on_window(self, visible): if self._window.visible: # Subscribe to Stage and Timeline Events self._usd_context = omni.usd.get_context() events = self._usd_context.get_stage_event_stream() self._stage_event_sub = events.create_subscription_to_pop(self._on_stage_event) stream = self._timeline.get_timeline_event_stream() self._timeline_event_sub = stream.create_subscription_to_pop(self._on_timeline_event) self._build_ui() else: self._usd_context = None self._stage_event_sub = None self._timeline_event_sub = None self.ui_builder.cleanup() def _build_ui(self): with self._window.frame: with ui.VStack(spacing=5, height=0): self._build_extension_ui() async def dock_window(): await omni.kit.app.get_app().next_update_async() def dock(space, name, location, pos=0.5): window = omni.ui.Workspace.get_window(name) if window and space: window.dock_in(space, location, pos) return window tgt = ui.Workspace.get_window("Viewport") dock(tgt, EXTENSION_TITLE, omni.ui.DockPosition.LEFT, 0.33) await omni.kit.app.get_app().next_update_async() self._task = asyncio.ensure_future(dock_window()) ################################################################# # Functions below this point call user functions ################################################################# def _menu_callback(self): self._window.visible = not self._window.visible self.ui_builder.on_menu_callback() def _on_timeline_event(self, event): if event.type == int(omni.timeline.TimelineEventType.PLAY): if not self._physx_subscription: self._physx_subscription = self._physxIFace.subscribe_physics_step_events(self._on_physics_step) elif event.type == int(omni.timeline.TimelineEventType.STOP): self._physx_subscription = None self.ui_builder.on_timeline_event(event) def _on_physics_step(self, step): self.ui_builder.on_physics_step(step) def _on_stage_event(self, event): if event.type == int(StageEventType.OPENED) or event.type == int(StageEventType.CLOSED): # stage was opened or closed, cleanup self._physx_subscription = None self.ui_builder.cleanup() self.ui_builder.on_stage_event(event) def _build_extension_ui(self): # Call user function for building UI self.ui_builder.build_ui() def _on_update(self, dt): if self._timeline.is_playing() and self.ui_builder.sliders: slider_num = 0 for s in self.ui_builder.sensors.values(): reading = self._cs.get_sensor_reading(s.path) if reading.is_valid: self.sliders[slider_num].model.set_value( float(reading.value) * self.meters_per_unit ) # readings are in kg⋅m⋅s−2, converting to Newtons else: self.sliders[slider_num].model.set_value(0) slider_num += 1 # contacts_raw = self._cs.get_body_contact_raw_data(self.leg_paths[0]) # if len(contacts_raw): # c = contacts_raw[0] # # print(c)
6,988
Python
37.401099
117
0.632227
cKohl10/TactileSim/exts/contact_ext_test/Contact_Extension_Test_python/contact_sensor_example.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import weakref import carb import omni import omni.kit.commands import omni.physx as _physx import omni.ui as ui from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.sensor import _sensor from omni.isaac.ui.menu import make_menu_item_description from omni.isaac.ui.ui_utils import LABEL_WIDTH, get_style, setup_ui_headers from omni.kit.menu.utils import MenuItemDescription, add_menu_items, remove_menu_items from pxr import Gf, UsdGeom EXTENSION_NAME = "Contact Sensor Example" class Contact_sensor_demo(omni.ext.IExt): def on_startup(self, ext_id: str): ext_manager = omni.kit.app.get_app().get_extension_manager() self._ext_id = ext_id self._extension_path = ext_manager.get_extension_path(ext_id) self._menu_items = [ MenuItemDescription( name="Sensors", sub_menu=[make_menu_item_description(ext_id, "Contact", lambda a=weakref.proxy(self): a.build_ui())], ) ] add_menu_items(self._menu_items, "Isaac Examples") self.meters_per_unit = 1.00 self._window = None def _on_stage_event(self, event): if event.type == int(omni.usd.StageEventType.CLOSED): self.on_closed() def build_ui(self): if self._window is None: self._cs = _sensor.acquire_contact_sensor_interface() self._timeline = omni.timeline.get_timeline_interface() self.sub = _physx.get_physx_interface().subscribe_physics_step_events(self._on_update) self.leg_paths = ["/Ant/Arm_{:02d}/Lower_Arm".format(i + 1) for i in range(4)] self.shoulder_joints = ["/Ant/Arm_{:02d}/Upper_Arm/shoulder_joint".format(i + 1) for i in range(4)] self.lower_joints = ["{}/lower_arm_joint".format(i) for i in self.leg_paths] self._sensor_handles = [0 for i in range(4)] self.sliders = None # self._window = ui.Window( # title="Contact Sensor Sample", width=300, height=200, dockPreference=ui.DockPreference.LEFT_BOTTOM # ) self.sliders = [] self.colors = [0xFFBBBBFF, 0xFFBBFFBB, 0xBBFFBBBB, 0xBBBBFFFF] style = {"background_color": 0xFF888888, "color": 0xFF333333, "secondary_color": self.colors[0]} self.plots = [] self.plot_vals = [] self._window = ui.Window( title=EXTENSION_NAME, width=600, height=0, visible=True, dockPreference=ui.DockPreference.LEFT_BOTTOM ) with self._window.frame: with ui.VStack(spacing=5, height=0): title = "Contact Sensor Example" doc_link = "https://docs.omniverse.nvidia.com/isaacsim/latest/features/sensors_simulation/isaac_sim_sensors_physics_based_contact.html" overview = "This Example shows how to Surface load sensors applied to a body. " overview += "It works by summing all forces applied on a given trigger shperical region intersected with the given body surface." overview += ( "\nPress PLAY to start the simulation, hold 'shift' and left click the model to drag it around" ) overview += "\n\nPress the 'Open in IDE' button to view the source code." setup_ui_headers(self._ext_id, __file__, title, doc_link, overview) frame = ui.CollapsableFrame( title="Sensor Readings", height=0, collapsed=False, style=get_style(), style_type_name_override="CollapsableFrame", horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) with frame: with ui.VStack(style=get_style(), spacing=5): for i in range(4): with ui.HStack(): ui.Label("Arm {}".format(i + 1), width=LABEL_WIDTH, tooltip="Force in Newtons") # ui.Spacer(height=0, width=10) style["secondary_color"] = self.colors[i] self.sliders.append(ui.FloatDrag(min=0.0, max=15.0, step=0.001, style=style)) self.sliders[-1].enabled = False ui.Spacer(width=20) asyncio.ensure_future(self.create_scenario()) self._window.visible = True def on_shutdown(self): self.on_closed() remove_menu_items(self._menu_items, "Isaac Examples") def on_closed(self): if self._window: self.sub = None self._timeline = None self._stage_event_subscription = None self._window = None def _on_update(self, dt): if self._timeline.is_playing() and self.sliders: for i in range(4): reading = self._cs.get_sensor_reading(self.leg_paths[i] + "/sensor") if reading.is_valid: self.sliders[i].model.set_value( float(reading.value) * self.meters_per_unit ) # readings are in kg⋅m⋅s−2, converting to Newtons else: self.sliders[i].model.set_value(0) # contacts_raw = self._cs.get_body_contact_raw_data(self.leg_paths[0]) # if len(contacts_raw): # c = contacts_raw[0] # # print(c) async def create_scenario(self): self._assets_root_path = get_assets_root_path() if self._assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") return # Add Contact Sensor await omni.usd.get_context().open_stage_async(self._assets_root_path + "/Isaac/Robots/Simple/ant.usd") await omni.kit.app.get_app().next_update_async() self.meters_per_unit = UsdGeom.GetStageMetersPerUnit(omni.usd.get_context().get_stage()) self.sensor_offsets = [Gf.Vec3d(40, 0, 0), Gf.Vec3d(40, 0, 0), Gf.Vec3d(40, 0, 0), Gf.Vec3d(40, 0, 0)] self.color = [(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1), (1, 1, 0, 1)] self.sensorGeoms = [] for i in range(4): result, sensor = omni.kit.commands.execute( "IsaacSensorCreateContactSensor", path="/sensor", parent=self.leg_paths[i], min_threshold=0, max_threshold=10000000, color=self.color[i], radius=0.12, sensor_period=-1, translation=self.sensor_offsets[i], visualize=True, ) self._events = omni.usd.get_context().get_stage_event_stream() self._stage_event_subscription = self._events.create_subscription_to_pop( self._on_stage_event, name="Contact Sensor Sample stage Watch" )
7,649
Python
43.219653
155
0.569225
cKohl10/TactileSim/exts/contact_ext_test/Contact_Extension_Test_python/ui_builder backup.py
# This software contains source code provided by NVIDIA Corporation. # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import numpy as np import omni.timeline import omni.ui as ui import omni.kit.commands import time import os import sys import carb from omni.isaac.core.articulations import Articulation from omni.isaac.core.objects.cuboid import FixedCuboid from omni.isaac.core.prims import XFormPrim from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import is_prim_path_valid, get_all_matching_child_prims, delete_prim, get_prim_children from omni.isaac.core.utils.stage import add_reference_to_stage, create_new_stage, get_current_stage from omni.isaac.core.world import World from omni.isaac.ui.element_wrappers import CollapsableFrame, StateButton, Button, TextBlock, StringField, DropDown from omni.isaac.ui.element_wrappers.core_connectors import LoadButton, ResetButton from omni.isaac.ui.ui_utils import get_style, LABEL_WIDTH from omni.usd import StageEventType from pxr import Sdf, UsdLux, Gf from omni.isaac.sensor import _sensor from omni.isaac.proximity_sensor import Sensor, register_sensor, clear_sensors from .scenario import ExampleScenario from pxr import UsdPhysics class UIBuilder: def __init__(self, window): # Window to hold the UI elements self.window = window # Frames are sub-windows that can contain multiple UI elements self.frames = [] # UI elements created using a UIElementWrapper instance self.wrapped_ui_elements = [] # Get access to the timeline to control stop/pause/play programmatically self._timeline = omni.timeline.get_timeline_interface() self.parent_paths = [] self.sensors = {} # Contact Parameters self.meters_per_unit = 1.00 version = sys.version executable = sys.executable print(f"Python version: {version}") print(f"Python executable location: {executable}") # Data structure to store sensor information class Sensor: def __init__(self, name, position, radius, parent_path): self.name = name self.position = position self.radius = radius self.parent_path = parent_path self.path = parent_path + "/tact_sensor_" + name ################################################################################### # The Functions Below Are Called Automatically By extension.py ################################################################################### def on_menu_callback(self): """Callback for when the UI is opened from the toolbar. This is called directly after build_ui(). """ pass def on_timeline_event(self, event): """Callback for Timeline events (Play, Pause, Stop) Args: event (omni.timeline.TimelineEventType): Event Type """ if event.type == int(omni.timeline.TimelineEventType.STOP): # When the user hits the stop button through the UI, they will inevitably discover edge cases where things break # For complete robustness, the user should resolve those edge cases here # In general, for extensions based off this template, there is no value to having the user click the play/stop # button instead of using the Load/Reset/Run buttons provided. #self._scenario_state_btn.reset() #self._scenario_state_btn.enabled = False pass def on_physics_step(self, step: float): """Callback for Physics Step. Physics steps only occur when the timeline is playing Args: step (float): Size of physics step """ self.contact_sensor_update(step) def on_stage_event(self, event): """Callback for Stage Events Args: event (omni.usd.StageEventType): Event Type """ if event.type == int(StageEventType.OPENED): # If the user opens a new stage, the extension should completely reset self._reset_extension() def cleanup(self): """ Called when the stage is closed or the extension is hot reloaded. Perform any necessary cleanup such as removing active callback functions Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called """ for ui_elem in self.wrapped_ui_elements: ui_elem.cleanup() ################################# Individual Frames ################################################## def create_status_report_frame(self): self._status_report_frame = CollapsableFrame("Status Report", collapsed=False) with self._status_report_frame: with ui.VStack(style=get_style(), spacing=5, height=0): self._status_report_field = TextBlock( "Last UI Event", num_lines=3, tooltip="Prints the latest change to this UI", include_copy_button=True, ) def update_sensor_readings_frame(self): # Color and style for the UI elements self.sliders = [] self.colors = [0xFFBBBBFF, 0xFFBBFFBB, 0xBBFFBBBB, 0xBBBBFFFF] style = {"background_color": 0xFF888888, "color": 0xFF333333, "secondary_color": self.colors[0]} #message = "There are " + str(len(self.sensors)) + " sensors\n" with self.sensor_readings_frame: # Vertical stack to hold the sensor readings in the frame with ui.VStack(style=get_style(), spacing=5, height=0): for s in self.sensors.values(): #message += "Creating reading bar for sensor " + s.name + "...\n" with ui.HStack(): ui.Label(s.name, width=LABEL_WIDTH, tooltip="Force in Newtons") # ui.Spacer(height=0, width=10) style["secondary_color"] = self.colors[0] self.sliders.append(ui.FloatDrag(min=0.0, max=15.0, step=0.001, style=style)) self.sliders[-1].enabled = False ui.Spacer(width=20) #self._status_report_field.set_text(message) def create_sensor_readings_frame(self): self.sensor_readings_frame = CollapsableFrame("Sensor Readings", collapsed=False) def create_import_sensors_frame(self): buttons_frame = CollapsableFrame("Import Sensors", collapsed=False) with buttons_frame: with ui.VStack(style=get_style(), spacing=5, height=0): string_field = StringField( "Import CSV File", default_value="TactileSim/sensor_configs", tooltip="Path to sensor positioning file", read_only=False, multiline_okay=False, on_value_changed_fn=self._on_string_field_value_changed_fn, use_folder_picker=True, #item_filter_fn=is_usd_or_python_path, ) self.wrapped_ui_elements.append(string_field) dropdown = DropDown( "Config Options", tooltip=" Select an option from the DropDown", populate_fn=self.dropdown_populate_fn, on_selection_fn=self._on_dropdown_item_selection, ) self.wrapped_ui_elements.append(dropdown) dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn button = Button( "Refresh Sensor Positions", "Update", tooltip="Reread the data from the specified file path to update sensors", on_click_fn=self.import_sensors_fn, ) self.wrapped_ui_elements.append(button) self._status_report_field = TextBlock( "Import Status", num_lines=10, tooltip="Outputs the status of the import process", include_copy_button=True, ) def build_ui(self): """ Build a custom UI tool to run your extension. This function will be called any time the UI window is closed and reopened. """ self._cs = _sensor.acquire_contact_sensor_interface() self.create_import_sensors_frame() self.create_sensor_readings_frame() #self.create_status_report_frame() ############################## Import Frame Functions ######################################## def dropdown_populate_fn(self): """ Function that populates the dropdown with options Returns all the files in the directory specified by the string field """ options = [] # Get the path from the string field path = self.wrapped_ui_elements[0].get_value() # Get all the files in the directory try: options = os.listdir(path) # Add an empty string to the beginning of the list options.insert(0, "") # Add a 'Go Back' option at the end of the list options.append("Go Back") except: options = [] return options def import_sensors_fn(self): """ Function that executes when the user clicks the 'Refresh Sensors' button """ # Remove all sensors already on the robot message = "Removing existing sensors...\n" self._status_report_field.set_text(message) #self.countdown(3, "Remove Sensors") self.remove_sensors("tactile_sensors") message += "Sensors successfully removed\n\n" self._status_report_field.set_text(message) #Change the text of the status report field to show the import status path = self.config_path message += "Importing sensor data from '" + path + "'...\n" self._status_report_field.set_text(message) #Import the sensor data from the CSV file try: names, positions, radii, parent_paths, data = self.import_csv(path) self.parent_paths = parent_paths self.remove_sensors("tactile_sensors") # Second call to ensure all sensors are removed after parent paths are updated message += "File opened successfully\n" # Output the data to the status report field # message += "\n\nSensor Data:\n" # for i in range(len(names)): # message += str(data[i]) + "\n" except: message += "Invalid file path or file format!" message += "\nPlease make sure the file has at least 2 sensors and is formatted correctly.\n" self._status_report_field.set_text(message) return self._status_report_field.set_text(message) # Determine the number of sensors and their positions num_sensors = len(data) self.sensors = {} sensor_count = 0 # Keep track of the number of sensors created successfully for i in range(num_sensors): # Create a contact sensor at the specified position # message += "\nCreating sensor " + str(i) + " at position " + str(positions[i]) + "...\n" # self._status_report_field.set_text(message) # Check if the parent path is valid if not is_prim_path_valid(parent_paths[i]): message += "Could not find parent path: " + parent_paths[i] + "\n" self._status_report_field.set_text(message) continue # Get the parent prim parent_prim = get_current_stage().GetPrimAtPath(parent_paths[i]) # Check if the appled link has a rigidbody component # if not parent_prim.HasAPI(UsdPhysics.RigidBodyAPI): # message += "Parent path does not have a rigidbody component: " + parent_paths[i] + "\n" # self._status_report_field.set_text(message) # continue # Create the sensor self.create_contact_sensor(parent_paths[i], positions[i], radii[i], names[i]) sensor_count = sensor_count + 1 message += "\nSuccessfully created " + str(sensor_count) + " sensors\n" self._status_report_field.set_text(message) # Populate the sensor readings frame with the new sensors #self.update_sensor_readings_frame() # This function breaks down the CSV file into its components. Make sure the CSV file is formatted correctly # # The CSV file should be formatted as follows: # - The first row should contain the names of the sensors # - The second row should contain the x, y, and z positions of the sensors # - The third row should contain the radii of the sensors # - The fourth row should contain the parent paths of the sensors # def import_csv(self, path): """ Function that imports data from a CSV file Args: path (str): The path to the CSV file """ try: data = np.genfromtxt(path, delimiter=',', skip_header=1, dtype=str) # Save the first column as a list of names, the 2-4th columns as a list of positions, and the 5th column as a list of parent paths names = data[:, 0] # Convert the positions to a list of Gf.Vec3d objects positions = [] for i in range(len(data)): positions.append(Gf.Vec3d(float(data[i, 1]), float(data[i, 2]), float(data[i, 3]))) radii = [] for i in range(len(data)): radii.append(float(data[i, 4])) # Save the parent paths as a list of strings parent_paths = [] for i in range(len(data)): parent_paths.append(data[i, 5]) return names, positions, radii, parent_paths, data except: return None def create_contact_sensor(self, parent_path, position, radius, name): result, sensor = omni.kit.commands.execute( "IsaacSensorCreateContactSensor", path="/tact_sensor_" + name, parent=parent_path, min_threshold=0, max_threshold=1000000, color=(1, 0, 0, 1), radius=radius, sensor_period=1, translation=position, visualize=True, ) # Add the sensor to the list of sensors self.sensors[name] = self.Sensor(name, position, radius, parent_path) def remove_sensors(self, sensor_label): """ Function that removes all sensors from the robot """ if len(self.parent_paths) == 0: return for parent_path in self.parent_paths: # Find all prims under the parent path that contain "tact_sensor" in their name try: parent_prim = get_current_stage().GetPrimAtPath(parent_path) prims = get_prim_children(parent_prim) except: self._status_report_field.set_text("Unexpected path!\n") return #self._status_report_field.set_text("Found " + str(len(prims)) + " sensors to remove\n") # Remove all prims found for prim in prims: if sensor_label in prim.GetName(): omni.kit.commands.execute('DeletePrims', paths=[parent_path + "/" + prim.GetName()]) def _on_string_field_value_changed_fn(self, value): """ Function that executes when the user changes the value of the string field Sets the value of the string field to what the user entered """ self.wrapped_ui_elements[0].set_value(value) # Update the dropdown with the new path self.wrapped_ui_elements[1].repopulate() def _on_dropdown_item_selection(self, item): """ Function that executes when the user selects an item from the dropdown Sets the value of the dropdown to the item the user selected """ # Go back if the user selects the empty string if item == "Go Back": # Get the path from the string field minus the last folder path = self.wrapped_ui_elements[0].get_value() parts = path.split("/") path = "/".join(parts[:-1]) self.wrapped_ui_elements[0].set_value(path) self.wrapped_ui_elements[1].repopulate() return if item == "": return self.config_path = self.wrapped_ui_elements[0].get_value() + "/" + item if self.config_path[-4:] != ".csv": # If the user selects a file that is not a CSV file, and it is a folder, update the string field with the new path self.wrapped_ui_elements[0].set_value(self.config_path) self.wrapped_ui_elements[1].repopulate() pass ###################################################################################### # Contact updates ###################################################################################### # This function updates the sensor readings in the UI at every physics step def contact_sensor_update(self, dt): #self._status_report_field.set_text("Updating sensor readings...\n") if len(self.sliders) > 0: slider_num = 0 for s in self.sensors.values(): reading = self._cs.get_sensor_reading(s.path) if reading.is_valid: self.sliders[slider_num].model.set_value( float(reading.value) * self.meters_per_unit ) # readings are in kg⋅m⋅s−2, converting to Newtons else: self.sliders[slider_num].model.set_value(0) slider_num += 1 # contacts_raw = self._cs.get_body_contact_raw_data(self.leg_paths[0]) # if len(contacts_raw): # c = contacts_raw[0] # # print(c) ###################################################################################### # Functions Below This Point Support The Provided Example And Can Be Deleted/Replaced ###################################################################################### def countdown(self, seconds, name=""): for i in range(seconds, 0, -1): #message += str(i) + "...\n" # self._status_report_field.set_text(message) print(name + " Countdown: " + str(i)) time.sleep(1) print("\n") return # def _on_init(self): # self._articulation = None # self._cuboid = None # self._scenario = ExampleScenario() # def _add_light_to_stage(self): # """ # A new stage does not have a light by default. This function creates a spherical light # """ # sphereLight = UsdLux.SphereLight.Define(get_current_stage(), Sdf.Path("/World/SphereLight")) # sphereLight.CreateRadiusAttr(2) # sphereLight.CreateIntensityAttr(100000) # XFormPrim(str(sphereLight.GetPath())).set_world_pose([6.5, 0, 12]) # def _setup_scene(self): # """ # This function is attached to the Load Button as the setup_scene_fn callback. # On pressing the Load Button, a new instance of World() is created and then this function is called. # The user should now load their assets onto the stage and add them to the World Scene. # In this example, a new stage is loaded explicitly, and all assets are reloaded. # If the user is relying on hot-reloading and does not want to reload assets every time, # they may perform a check here to see if their desired assets are already on the stage, # and avoid loading anything if they are. In this case, the user would still need to add # their assets to the World (which has low overhead). See commented code section in this function. # """ # # Load the UR10e # robot_prim_path = "/ur10e" # path_to_robot_usd = get_assets_root_path() + "/Isaac/Robots/UniversalRobots/ur10e/ur10e.usd" # # Do not reload assets when hot reloading. This should only be done while extension is under development. # # if not is_prim_path_valid(robot_prim_path): # # create_new_stage() # # add_reference_to_stage(path_to_robot_usd, robot_prim_path) # # else: # # print("Robot already on Stage") # create_new_stage() # self._add_light_to_stage() # add_reference_to_stage(path_to_robot_usd, robot_prim_path) # # Create a cuboid # self._cuboid = FixedCuboid( # "/Scenario/cuboid", position=np.array([0.3, 0.3, 0.5]), size=0.05, color=np.array([255, 0, 0]) # ) # self._articulation = Articulation(robot_prim_path) # # Add user-loaded objects to the World # world = World.instance() # world.scene.add(self._articulation) # world.scene.add(self._cuboid) # def _setup_scenario(self): # """ # This function is attached to the Load Button as the setup_post_load_fn callback. # The user may assume that their assets have been loaded by their setup_scene_fn callback, that # their objects are properly initialized, and that the timeline is paused on timestep 0. # In this example, a scenario is initialized which will move each robot joint one at a time in a loop while moving the # provided prim in a circle around the robot. # """ # self._reset_scenario() # # UI management # self._scenario_state_btn.reset() # self._scenario_state_btn.enabled = True # self._reset_btn.enabled = True # def _reset_scenario(self): # self._scenario.teardown_scenario() # self._scenario.setup_scenario(self._articulation, self._cuboid) # def _on_post_reset_btn(self): # """ # This function is attached to the Reset Button as the post_reset_fn callback. # The user may assume that their objects are properly initialized, and that the timeline is paused on timestep 0. # They may also assume that objects that were added to the World.Scene have been moved to their default positions. # I.e. the cube prim will move back to the position it was in when it was created in self._setup_scene(). # """ # self._reset_scenario() # # UI management # self._scenario_state_btn.reset() # self._scenario_state_btn.enabled = True # def _update_scenario(self, step: float): # """This function is attached to the Run Scenario StateButton. # This function was passed in as the physics_callback_fn argument. # This means that when the a_text "RUN" is pressed, a subscription is made to call this function on every physics step. # When the b_text "STOP" is pressed, the physics callback is removed. # Args: # step (float): The dt of the current physics step # """ # self._scenario.update_scenario(step) # def _on_run_scenario_a_text(self): # """ # This function is attached to the Run Scenario StateButton. # This function was passed in as the on_a_click_fn argument. # It is called when the StateButton is clicked while saying a_text "RUN". # This function simply plays the timeline, which means that physics steps will start happening. After the world is loaded or reset, # the timeline is paused, which means that no physics steps will occur until the user makes it play either programmatically or # through the left-hand UI toolbar. # """ # self._timeline.play() # def _on_run_scenario_b_text(self): # """ # This function is attached to the Run Scenario StateButton. # This function was passed in as the on_b_click_fn argument. # It is called when the StateButton is clicked while saying a_text "STOP" # Pausing the timeline on b_text is not strictly necessary for this example to run. # Clicking "STOP" will cancel the physics subscription that updates the scenario, which means that # the robot will stop getting new commands and the cube will stop updating without needing to # pause at all. The reason that the timeline is paused here is to prevent the robot being carried # forward by momentum for a few frames after the physics subscription is canceled. Pausing here makes # this example prettier, but if curious, the user should observe what happens when this line is removed. # """ # self._timeline.pause() def _reset_extension(self): """This is called when the user opens a new stage from self.on_stage_event(). All state should be reset. """ self._on_init() self._reset_ui() # def _reset_ui(self): # self._scenario_state_btn.reset() # self._scenario_state_btn.enabled = False # self._reset_btn.enabled = False
25,818
Python
41.187908
142
0.589395
cKohl10/TactileSim/exts/contact_ext_test/Contact_Extension_Test_python/ui_builder.py
# This software contains source code provided by NVIDIA Corporation. # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from .AbstracSensorClass import AbstractSensorOperator from .ContactSensorClass import ContactSensorOperator import numpy as np import omni.timeline import omni.ui as ui import omni.kit.commands import time import os import sys import carb from omni.isaac.core.utils.prims import is_prim_path_valid, get_all_matching_child_prims, delete_prim, get_prim_children from omni.isaac.core.utils.stage import add_reference_to_stage, create_new_stage, get_current_stage from omni.isaac.core.world import World from omni.isaac.ui.element_wrappers import CollapsableFrame, StateButton, Button, TextBlock, StringField, DropDown from omni.isaac.ui.ui_utils import get_style, LABEL_WIDTH from omni.usd import StageEventType from pxr import Sdf, UsdLux, Gf from omni.isaac.sensor import _sensor #from omni.isaac.proximity_sensor import Sensor, register_sensor, clear_sensors from .scenario import ExampleScenario from pxr import UsdPhysics class UIBuilder: def __init__(self, window): # Window to hold the UI elements self.window = window # Frames are sub-windows that can contain multiple UI elements self.frames = [] # UI elements created using a UIElementWrapper instance self.wrapped_ui_elements = [] # Get access to the timeline to control stop/pause/play programmatically self._timeline = omni.timeline.get_timeline_interface() # Create a list to hold all sensor operators self._sensor_operators = [] ############### Add Sensor Operators Here ################ self._sensor_operators.append(ContactSensorOperator()) # Add a contact sensor operator ######################################################### # Debugging # version = sys.version # executable = sys.executable # print(f"Python version: {version}") # print(f"Python executable location: {executable}") ################################################################################### # The Functions Below Are Called Automatically By extension.py ################################################################################### def on_menu_callback(self): """Callback for when the UI is opened from the toolbar. This is called directly after build_ui(). """ pass def on_timeline_event(self, event): """Callback for Timeline events (Play, Pause, Stop) Args: event (omni.timeline.TimelineEventType): Event Type """ if event.type == int(omni.timeline.TimelineEventType.STOP): # When the user hits the stop button through the UI, they will inevitably discover edge cases where things break # For complete robustness, the user should resolve those edge cases here # In general, for extensions based off this template, there is no value to having the user click the play/stop # button instead of using the Load/Reset/Run buttons provided. #self._scenario_state_btn.reset() #self._scenario_state_btn.enabled = False pass def on_physics_step(self, step: float): """Callback for Physics Step. Physics steps only occur when the timeline is playing Args: step (float): Size of physics step """ # Update the sensor readings for all added sensors for operator in self._sensor_operators: operator.sensor_update(step) def on_stage_event(self, event): """Callback for Stage Events Args: event (omni.usd.StageEventType): Event Type """ if event.type == int(StageEventType.OPENED): # If the user opens a new stage, the extension should completely reset self._reset_extension() def cleanup(self): """ Called when the stage is closed or the extension is hot reloaded. Perform any necessary cleanup such as removing active callback functions Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called """ for ui_elem in self.wrapped_ui_elements: ui_elem.cleanup() ################################# Individual Frames ################################################## def create_status_report_frame(self): self._status_report_frame = CollapsableFrame("Status Report", collapsed=False) with self._status_report_frame: with ui.VStack(style=get_style(), spacing=5, height=0): self._status_report_field = TextBlock( "Last UI Event", num_lines=3, tooltip="Prints the latest change to this UI", include_copy_button=True, ) #link the status report frame to the sensor operators to allow them to update the status report for operator in self._sensor_operators: operator._status_report_field = self._status_report_field def create_import_sensors_frame(self): buttons_frame = CollapsableFrame("Import Sensors", collapsed=False) with buttons_frame: with ui.VStack(style=get_style(), spacing=5, height=0): string_field = StringField( "Import CSV File", default_value="TactileSim/sensor_configs", tooltip="Path to sensor positioning file", read_only=False, multiline_okay=False, on_value_changed_fn=self._on_string_field_value_changed_fn, use_folder_picker=True, #item_filter_fn=is_usd_or_python_path, ) self.wrapped_ui_elements.append(string_field) dropdown = DropDown( "Config Options", tooltip=" Select an option from the DropDown", populate_fn=self.dropdown_populate_fn, on_selection_fn=self._on_dropdown_item_selection, ) self.wrapped_ui_elements.append(dropdown) dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn # Add a button to all supported sensor operators for operator in self._sensor_operators: button = Button( "Refresh " + operator.sensor_description, "Update", tooltip="Reread the data from the specified file path to update sensors", on_click_fn=operator.import_sensors_fn, ) self.wrapped_ui_elements.append(button) # Add a remove sensors button to all supported sensor operators for operator in self._sensor_operators: button = Button( "Remove " + operator.sensor_description, "Remove All", tooltip="Remove all sensors " + operator.sensor_description + " from the robot", on_click_fn=operator.remove_sensors_fn, ) self.wrapped_ui_elements.append(button) self._status_report_field = TextBlock( "Import Status", num_lines=10, tooltip="Outputs the status of the import process", include_copy_button=True, ) # Add the status report field to the sensor operators for operator in self._sensor_operators: operator._status_report_field = self._status_report_field def create_all_sensor_readings_frames(self): # Create a sensor readings frame for each sensor operator for operator in self._sensor_operators: operator.create_sensor_readings_frame() def build_ui(self): """ Build a custom UI tool to run your extension. This function will be called any time the UI window is closed and reopened. """ self.create_import_sensors_frame() self.create_all_sensor_readings_frames() ############################## Import Frame Functions ######################################## def dropdown_populate_fn(self): """ Function that populates the dropdown with options Returns all the files in the directory specified by the string field """ options = [] # Get the path from the string field path = self.wrapped_ui_elements[0].get_value() # Get all the files in the directory try: options = os.listdir(path) # Add an empty string to the beginning of the list options.insert(0, "") # Add a 'Go Back' option at the end of the list options.append("Go Back") except: options = [] return options def _on_string_field_value_changed_fn(self, value): """ Function that executes when the user changes the value of the string field Sets the value of the string field to what the user entered """ self.wrapped_ui_elements[0].set_value(value) # Update the dropdown with the new path self.wrapped_ui_elements[1].repopulate() def _on_dropdown_item_selection(self, item): """ Function that executes when the user selects an item from the dropdown Sets the value of the dropdown to the item the user selected """ # Go back if the user selects the empty string if item == "Go Back": # Get the path from the string field minus the last folder path = self.wrapped_ui_elements[0].get_value() parts = path.split("/") path = "/".join(parts[:-1]) self.wrapped_ui_elements[0].set_value(path) self.wrapped_ui_elements[1].repopulate() return if item == "": return self.config_path = self.wrapped_ui_elements[0].get_value() + "/" + item # Update the config path in the sensor operators for operator in self._sensor_operators: operator.config_path = self.config_path if self.config_path[-4:] != ".csv": # If the user selects a file that is not a CSV file, and it is a folder, update the string field with the new path self.wrapped_ui_elements[0].set_value(self.config_path) self.wrapped_ui_elements[1].repopulate() pass ###################################################################################### # Functions Below This Point Support The Provided Example And Can Be Deleted/Replaced ###################################################################################### def countdown(self, seconds, name=""): for i in range(seconds, 0, -1): #message += str(i) + "...\n" # self._status_report_field.set_text(message) print(name + " Countdown: " + str(i)) time.sleep(1) print("\n") return def _on_init(self): # Frames are sub-windows that can contain multiple UI elements self.frames = [] # UI elements created using a UIElementWrapper instance self.wrapped_ui_elements = [] # Get access to the timeline to control stop/pause/play programmatically self._timeline = omni.timeline.get_timeline_interface() # Create a list to hold all sensor operators self._sensor_operators = [] ############### Add Sensor Operators Here ################ self._sensor_operators.append(ContactSensorOperator()) # Add a contact sensor operator ######################################################### # Debugging # version = sys.version # executable = sys.executable # print(f"Python version: {version}") # print(f"Python executable location: {executable}") # def _add_light_to_stage(self): # """ # A new stage does not have a light by default. This function creates a spherical light # """ # sphereLight = UsdLux.SphereLight.Define(get_current_stage(), Sdf.Path("/World/SphereLight")) # sphereLight.CreateRadiusAttr(2) # sphereLight.CreateIntensityAttr(100000) # XFormPrim(str(sphereLight.GetPath())).set_world_pose([6.5, 0, 12]) # def _setup_scene(self): # """ # This function is attached to the Load Button as the setup_scene_fn callback. # On pressing the Load Button, a new instance of World() is created and then this function is called. # The user should now load their assets onto the stage and add them to the World Scene. # In this example, a new stage is loaded explicitly, and all assets are reloaded. # If the user is relying on hot-reloading and does not want to reload assets every time, # they may perform a check here to see if their desired assets are already on the stage, # and avoid loading anything if they are. In this case, the user would still need to add # their assets to the World (which has low overhead). See commented code section in this function. # """ # # Load the UR10e # robot_prim_path = "/ur10e" # path_to_robot_usd = get_assets_root_path() + "/Isaac/Robots/UniversalRobots/ur10e/ur10e.usd" # # Do not reload assets when hot reloading. This should only be done while extension is under development. # # if not is_prim_path_valid(robot_prim_path): # # create_new_stage() # # add_reference_to_stage(path_to_robot_usd, robot_prim_path) # # else: # # print("Robot already on Stage") # create_new_stage() # self._add_light_to_stage() # add_reference_to_stage(path_to_robot_usd, robot_prim_path) # # Create a cuboid # self._cuboid = FixedCuboid( # "/Scenario/cuboid", position=np.array([0.3, 0.3, 0.5]), size=0.05, color=np.array([255, 0, 0]) # ) # self._articulation = Articulation(robot_prim_path) # # Add user-loaded objects to the World # world = World.instance() # world.scene.add(self._articulation) # world.scene.add(self._cuboid) # def _setup_scenario(self): # """ # This function is attached to the Load Button as the setup_post_load_fn callback. # The user may assume that their assets have been loaded by their setup_scene_fn callback, that # their objects are properly initialized, and that the timeline is paused on timestep 0. # In this example, a scenario is initialized which will move each robot joint one at a time in a loop while moving the # provided prim in a circle around the robot. # """ # self._reset_scenario() # # UI management # self._scenario_state_btn.reset() # self._scenario_state_btn.enabled = True # self._reset_btn.enabled = True # def _reset_scenario(self): # self._scenario.teardown_scenario() # self._scenario.setup_scenario(self._articulation, self._cuboid) # def _on_post_reset_btn(self): # """ # This function is attached to the Reset Button as the post_reset_fn callback. # The user may assume that their objects are properly initialized, and that the timeline is paused on timestep 0. # They may also assume that objects that were added to the World.Scene have been moved to their default positions. # I.e. the cube prim will move back to the position it was in when it was created in self._setup_scene(). # """ # self._reset_scenario() # # UI management # self._scenario_state_btn.reset() # self._scenario_state_btn.enabled = True # def _update_scenario(self, step: float): # """This function is attached to the Run Scenario StateButton. # This function was passed in as the physics_callback_fn argument. # This means that when the a_text "RUN" is pressed, a subscription is made to call this function on every physics step. # When the b_text "STOP" is pressed, the physics callback is removed. # Args: # step (float): The dt of the current physics step # """ # self._scenario.update_scenario(step) # def _on_run_scenario_a_text(self): # """ # This function is attached to the Run Scenario StateButton. # This function was passed in as the on_a_click_fn argument. # It is called when the StateButton is clicked while saying a_text "RUN". # This function simply plays the timeline, which means that physics steps will start happening. After the world is loaded or reset, # the timeline is paused, which means that no physics steps will occur until the user makes it play either programmatically or # through the left-hand UI toolbar. # """ # self._timeline.play() # def _on_run_scenario_b_text(self): # """ # This function is attached to the Run Scenario StateButton. # This function was passed in as the on_b_click_fn argument. # It is called when the StateButton is clicked while saying a_text "STOP" # Pausing the timeline on b_text is not strictly necessary for this example to run. # Clicking "STOP" will cancel the physics subscription that updates the scenario, which means that # the robot will stop getting new commands and the cube will stop updating without needing to # pause at all. The reason that the timeline is paused here is to prevent the robot being carried # forward by momentum for a few frames after the physics subscription is canceled. Pausing here makes # this example prettier, but if curious, the user should observe what happens when this line is removed. # """ # self._timeline.pause() def _reset_extension(self): """This is called when the user opens a new stage from self.on_stage_event(). All state should be reset. """ self._on_init() self._reset_ui() def _reset_ui(self): """This function is called by _reset_extension() to reset the UI to its initial state. This function should not reset the state of the extension, only the UI. """ for frame in self.frames: frame.delete() self.frames = [] self.wrapped_ui_elements = [] self.build_ui()
19,266
Python
41.720621
140
0.598827
cKohl10/TactileSim/exts/contact_ext_test/docs/CHANGELOG.md
# Changelog ## [0.1.0] - 2024-05-17 ### Added - Initial version of Contact Extension Test Extension
103
Markdown
11.999999
53
0.679612
cKohl10/TactileSim/exts/Util_example/docs/CHANGELOG.md
# Changelog ## [0.1.0] - 2024-05-17 ### Added - Initial version of Example of utilities Extension
101
Markdown
11.749999
51
0.673267
cKohl10/TactileSim/blender_scripts/save_sensor_pos.py
# Save Sensor Position Script # Author: Carson Kohlbrenner # Date Created: 5/29/2024 # Last Modified: 5/29/2024 # Description: This exports all sensor locations in Blender into a CSV file that Isaac Sim can accept. # # Output CSV format: # SensorNum, X, Y, Z, radius, parent_path import bpy import bmesh # Get the active object obj = bpy.context.active_object # Ensure we are in the correct mode bpy.ops.object.mode_set(mode='OBJECT') # Get the geometry data mesh = obj.data # Create a BMesh to access vertex data bm = bmesh.new() bm.from_mesh(mesh) # Get the custom attribute (assuming it is a point cloud) positions = [v.co for v in bm.verts] # Write positions to a file output_file = "C:/path_to_your_file/instance_positions.txt" with open(output_file, 'w') as f: for pos in positions: f.write(f"{pos.x}, {pos.y}, {pos.z}\n") bm.free() print(f"Instance positions written to {output_file}")
915
Python
22.487179
102
0.713661
cKohl10/TactileSim/blender_scripts/verts2sensors.py
import csv import re from pxr import Usd, UsdGeom ######################################################## # Extract vertices from a USD file and save to a CSV file # All sensors positions are the vertices of the geometry in the USD file ######################################################## def remove_repeated_prims(path): parts = path.split('/') for i in range(len(parts) - 1, 0, -1): if parts[i] == parts[i - 1]: del parts[i] return '/'.join(parts) def extract_vertices(usd_file, csv_file): # Open the USD file stage = Usd.Stage.Open(usd_file) # Open the CSV file for writing with open(csv_file, 'w', newline='') as csvfile: csvwriter = csv.writer(csvfile) # Write the header row csvwriter.writerow(['SensorNum', 'X', 'Y', 'Z', 'parent_path']) vert_count = 1 # Iterate through all the prims in the stage for prim in stage.Traverse(): # Check if the prim is a geometry (has points) if prim.IsA(UsdGeom.PointBased): geom = UsdGeom.PointBased(prim) # Get the points (vertices) of the geometry points = geom.GetPointsAttr().Get() parent_path = prim.GetPath().pathString # Omit 'Root' from the parent path parent_path = parent_path.replace('/Root', '') # Remove any triple digit numbers from the parent path parent_path = re.sub(r'_\d{3,}', '', parent_path) # Blender splits the vertices into seperate objects, so we need to remove the repeated prims parent_path = remove_repeated_prims(parent_path) # Write each point to the CSV for point in points: csvwriter.writerow([vert_count, point[0], point[1], point[2], 0.1, parent_path]) vert_count += 1 print(f'Vertices extracted from {usd_file} and saved to {csv_file}') print(f'Vertex count: {vert_count - 1}') # Example usage usd_file = 'scenes/Ant Scene/robots/Ant_decimated.usd' csv_file = 'sensor_configs/ant_vertices.csv' extract_vertices(usd_file, csv_file)
2,233
Python
36.864406
108
0.552172
cKohl10/TactileSim/blender_scripts/sensor_bay_addon/README.md
Blender Tactile Sensor Addon Capabilities 1) Use weight painting to apply tactile sensors with configurable density. 2) Save the output as a CSV for reading into Isaac Sim Importing the Addon: Applying the Skin Geometry Node: Saving your Configurations
267
Markdown
19.615383
78
0.782772
cKohl10/TactileSim/blender_scripts/sensor_bay_addon/sensor_bay_addon.py
bl_info = { "name": "Tactile Sensor Bay", "author": "Carson Kohlbrenner", "version": (1, 0), "blender": (2, 80, 0), "location": "View3D > Add > Mesh > New Object", "description": "Paint on tactile sensors over a surface and save them for Isaac Sim", "warning": "", "doc_url": "https://github.com/cKohl10/TactileSim", "category": "", } import bpy import bmesh import csv import os import re from bpy.utils import resource_path from pathlib import Path from bpy_extras.io_utils import ExportHelper from bpy.props import StringProperty from bpy.types import Operator class SensorData: def __init__(self, pos, radius, parent): self.pos = pos self.radius = radius self.parent = parent def __str__(self): return f"Pos: {self.pos}, Radius: {self.radius}, Parent: {self.parent}" def __repr__(self): return str(self) def check_children_for_sensors(obj, parent_path): sensor_data = [] # Get the parent path from the root object parent_path = parent_path + "/" + obj.name is_sensor_attribtue_name = "is_sensor" pos_attribute_name = "sensor_pos" rad_attribute_name = "radii" default_radius = False # Loop through all of the children objects and search for GeometryNodes modifier for child in obj.children: pos_attribute_data = [] # Recursively check the children for sensors sensor_data = check_children_for_sensors(child, sensor_data, parent_path) # Loop through all of the children objects and search for GeometryNodes modifier #print(f"\nChecking object {child.name} under {parent_path}...") # Ensure the object has geometry nodes modifier if child.modifiers.get('Skin') is None: #print(f"{child.name} does not have a Skin modifier.") continue # Get the evaluated geometry depsgraph = bpy.context.evaluated_depsgraph_get() eval_obj = child.evaluated_get(depsgraph) mesh = eval_obj.to_mesh() # Check if the position data exists if pos_attribute_name not in mesh.attributes: #print(f"Attribute {attribute_name} not found in object {child.name}.") # for other_name in mesh.attributes: # print(f"Found attribute: {other_name}.") continue if is_sensor_attribtue_name not in mesh.attributes: #print(f"Attribute {is_sensor_attribtue_name} not found in object {child.name}.") continue if rad_attribute_name not in mesh.attributes: #Set a default radius value if the radii attribute is not found print(f"Attribute {rad_attribute_name} not found in object {child.name}. Setting default radius of 0.1.") default_radius = True # Get the attribute data pos_attribute_data = mesh.attributes[pos_attribute_name].data # Get the radii attribute data rad_attribute_data = [] if not default_radius: rad_attribute_data = mesh.attributes[rad_attribute_name].data is_sensor_data = mesh.attributes[is_sensor_attribtue_name].data # Get path to object parent_path = parent_path + "/" + child.name # Remove any triple digit numbers from the parent path parent_path = re.sub(r'\.\d{3,}', '', parent_path) # Add the attribute data to the sensor data list for i in range(len(pos_attribute_data)): if is_sensor_data[i].value: if default_radius: sensor_data.append(SensorData(pos_attribute_data[i].vector, 0.1, parent_path)) else: sensor_data.append(SensorData(pos_attribute_data[i].vector, rad_attribute_data[i].value, parent_path)) print(f"Found {len(pos_attribute_data)} sensor positions in object {child.name}.") # Clean up eval_obj.to_mesh_clear() return sensor_data def save_attribute_to_csv(context, file_path): # Get the object obj = context.object # Expand the ~ symbol into the path of the home directory #file_path = os.path.expanduser(file_path) # Make an array of all sensor positions,radii, and parent paths sensor_data = [] # Check the children for sensors sensor_data = check_children_for_sensors(obj, "") # Check if there are any sensor positions if len(sensor_data) == 0: print("No sensor positions found.") return # Save the attribute data to CSV with open(file_path, 'w', newline='') as csvfile: csv_writer = csv.writer(csvfile) csv_writer.writerow(['Index', 'X', 'Y', 'Z', 'Radius', 'Parent']) for i, element in enumerate(sensor_data): pos = element.pos csv_writer.writerow([i, pos.x, pos.y, pos.z, element.radius, element.parent]) # print(f"\nAttribute {attribute_name} saved to {file_path}") print(f"Sensor count: {len(sensor_data)}") class SensorSaveOperator(Operator, ExportHelper): """Saves the sensors in the scene""" bl_idname = "object.save_sensors_operator" bl_label = "Save Sensor Positions" filename_ext = ".csv" filter_glob: StringProperty( default="*.csv", options={'HIDDEN'}, maxlen=255, # Max internal buffer length, longer would be clamped. ) def execute(self, context): print("SensorSaveOperator.execute called\n") if self.filepath: # Check if filepath has been set save_attribute_to_csv(context, self.filepath) else: self.report({'WARNING'}, "No file selected") # Report a warning if no file was selected return {'CANCELLED'} return {'FINISHED'} def invoke(self, context, event): context.window_manager.fileselect_add(self) # Open file explorer return {'RUNNING_MODAL'} class SensorPanel(bpy.types.Panel): """Creates a Panel in the Object properties window""" bl_label = "Sensor Bay" bl_idname = "OBJECT_PT_SENSOR_BAY" bl_space_type = 'PROPERTIES' bl_region_type = 'WINDOW' bl_context = "object" def draw(self, context): layout = self.layout obj = context.object row = layout.row() row.label(text="Save sensors as CSV", icon='FILE_TICK') row = layout.row() row.label(text="Selected root prim: " + obj.name) row = layout.row() row.prop(obj, "name") row = layout.row() row.operator("object.save_sensors_operator") def register(): bpy.utils.register_class(SensorSaveOperator) bpy.utils.register_class(SensorPanel) def unregister(): bpy.utils.unregister_class(SensorSaveOperator) bpy.utils.unregister_class(SensorPanel) if __name__ == "__main__": register()
6,835
Python
31.865384
122
0.625018
makolon/hsr_isaac_tamp/README.md
# TAMP-HSR This repository implement PDDLStream for Toyota Human Support Robot (HSR) and offer parallel reinforcement learning environment on Isaac Sim. ## Getting Started ### Prerequisited - NVIDIA Docker - NVIDIA RTX GPU - NVIDIA Driver 515.xx https://github.com/makolon/hsr_isaac_tamp/assets/39409362/e7945ca0-e040-47cc-b73f-0cf99413d30d https://github.com/makolon/hsr_isaac_tamp/assets/39409362/0322855f-2aa6-46a2-963e-28bc1f77577c ### Installation 1. Clone the repository ``` $ git clone --recursive git@github.com/makolon/tamp-hsr.git ``` 2. Build docker image ``` $ cd tamp-hsr/docker/docker_hsr/ $ ./build.sh ``` 3. Run docker container ``` $ cd tamp-hsr/docker/docker_hsr/ $ ./run.sh ``` 4. Compile FastDownward ``` $ cd tamp-hsr/hsr_tamp/downward/ $ git submodule update --init --recursive $ python3 build.py $ cd ./builds/ $ ln -s release release32 ``` ## Usage ### Simulation #### PDDLStream only for 2d environment You can test PDDLStream on 2D pygame environment. ``` $ cd tamp-hsr/hsr_tamp/experiments/env_2d/ $ python3 tamp_planner.py ``` #### PDDLStream only for 3d environment You can test PDDLStream on 3D pybullet environment including cooking, holding block task. ``` $ cd tamp-hsr/hsr_tamp/experiments/env_3d/ $ python3 tamp_planner.py --problem <problem_name> ``` ### Real #### Execute plan on 2D environment 1. Enter to hsrb_mode ``` $ hsrb_mode ``` 2. Set up ROS configurations ``` $ cd tamp-hsr/hsr_ros/hsr_ws/ $ source devel/setup.bash ``` 3. Execute ROS scripts ``` $ roslaunch env_2d exec_tamp.launch --mode <feedforward/feedback> ``` #### Execute plan on 3D environment 1. Enter to hsrb_mode ``` $ hsrb_mode ``` 2. Set up ROS configurations ``` $ cd tamp-hsr/hsr_ros/hsr_ws/ $ source devel/setup.bash ``` 3. Launch gearbox assembling scipts ``` $ roslaunch env_3d exec_tamp.launch --mode <feedforward/feedback> ```` ## Setup IKfast ### Compile IKfast Build & run docker for openrave that contain IKfast scripts. ``` $ cd tamp-hsr/docker/docker_openrave/ $ ./build.sh $ ./run.sh ``` Then, execute ikfast scripts that can automatically create cpp IK solver and copy and plaste the appropriate scripts to <ik_solver>.cpp. ``` $ ./exec_openrave.sh ``` After that process, you can call IK solver in python script by executing the following commands. ``` $ cd tamp-hsr/hsr_tamp/experiments/env_3d/utils/pybullet_tools/ikfast/hsrb/ $ python3 setup.py ``` ### Create HSR Collada Model If you don't have hsr collada model, you have to run the following commands in docker_openrave container. \ Terminal 1. ``` $ cd /ikfast/ $ roscore ``` Terminal 2. ``` $ cd /ikfast $ export MYROBOT_NAME='hsrb4s' $ rosrun collada_urdf urdf_to_collada "$MYROBOT_NAME".urdf "$MYROBOT_NAME".dae ``` Then, you can see the generated HSR collada model using following commands. ``` $ openrave-robot.py "$MYROBOT_NAME".dae --info links $ openrave "$MYROBOT_NAME".dae ``` For more informations, please refer to the [following document](http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/doc/ikfast/ikfast_tutorial.html). ## Setup Motion Capture ### Prerequisited - Windows11 PC - Windows11 with ROS - OptiTrack ### Usage Check IP address of the HSR PC and own IP address. ``` ipconfig ``` Then, execute the following commands in the ROS executable terminal. ``` set ROS_HOSTNAME=<OWN IP ADDRESS> set ROS_IP=<OWN IP ADDRESS> set ROS_MASTER_URI=http://<HSR PC IP ADDRESS>:11311 C:\path\to\catkin_ws\devel\setup.bat cd C:\path\to\catkin_ws\src\mocap_msg\src && python MocapRosPublisher.py ```
3,514
Markdown
22.433333
154
0.72453
makolon/hsr_isaac_tamp/hsr_ros/README.md
# HSR-ROS
10
Markdown
4.499998
9
0.6
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/test/script/analyze_trajectory.py
import glob import argparse import numpy as np import matplotlib.pyplot as plt from scipy.spatial.transform import Rotation as R from mpl_toolkits.mplot3d import Axes3D from matplotlib.animation import FuncAnimation class AnalyzeTrajectory(object): def __init__(self, idx=0, mode='both', joint_index=None): # Load ee trajectory self.sim_ee_traj = np.load(f"log/simulation_ee_traj.npy", allow_pickle=True) self.measured_ee_traj = np.load(f"log/measured_ee_traj_{idx}.npy", allow_pickle=True) # Load joint trajectory self.sim_joint_traj = np.load(f"log/simulation_joint_traj.npy", allow_pickle=True) self.measured_joint_traj = np.load(f"log/measured_joint_traj_{idx}.npy", allow_pickle=True) # Length of ee/joint trajectory self.ee_traj_len = min(len(self.sim_ee_traj), len(self.measured_ee_traj)) self.jt_traj_len = min(len(self.sim_joint_traj), len(self.measured_joint_traj)) # Visualization settings self.fps = 8 self.num_joints = 8 self.mode = mode self.joint_index = joint_index self.joint_name = {'2': 'BaseRotation', '3': 'ArmLift', '4': 'ArmFlex', '5': 'ArmRoll', '6': 'WristFlex', '7': 'WristRoll'} if self.joint_index is None: self.vis_all = True else: self.vis_all = False def visualize_ee_3d_traj(self): # Visualize end effector trajectory animation_duration = self.ee_traj_len self.time_steps_ee_3d = np.linspace(0, animation_duration, animation_duration * self.fps) fig = plt.figure() self.ax_ee_3d = fig.add_subplot(111, projection='3d') self.ax_ee_3d.view_init(elev=45, azim=75) ani = FuncAnimation(fig, self.update_ee_3d_traj_animation, frames=animation_duration, interval=1000/self.fps) # Save fig ani.save(f"{self.mode}_end_effector_3d_trajectory.gif", writer='imagemagick', fps=10) ani.save(f"{self.mode}_end_effector_3d_trajectory.mp4", writer='ffmpeg', fps=10) def visualize_ee_2d_traj(self, dir='x'): # Visualize end effector trajectory animation_duration = self.ee_traj_len self.time_steps_ee_2d = np.linspace(0, animation_duration, animation_duration * self.fps) fig = plt.figure() self.ax_ee_2d = fig.add_subplot(1, 1, 1) ani = FuncAnimation(fig, self.update_ee_2d_traj_animation, frames=animation_duration, interval=1000/self.fps) # Save fig ani.save(f"{self.mode}_end_effector_2d_trajectory.gif", writer='imagemagick', fps=10) ani.save(f"{self.mode}_end_effector_2d_trajectory.mp4", writer='ffmpeg', fps=10) def visualize_joint_2d_traj(self): # Visualize each joint trajectory animation_duration = self.jt_traj_len self.time_steps_jt_2d = np.linspace(0, animation_duration, animation_duration * self.fps) if self.vis_all: fig, self.ax_jt = plt.subplots(self.num_joints, 1, sharex=True) ani = FuncAnimation(fig, self.update_all_joint_2d_traj_animation, frames=animation_duration, interval=1000/self.fps) else: fig = plt.figure() self.ax_jt = fig.add_subplot(1, 1, 1) ani = FuncAnimation(fig, self.update_joint_2d_traj_animation, frames=animation_duration, interval=1000/self.fps) # Save fig if self.vis_all: ani.save(f"{self.mode}_all_joint_2d_trajectory.gif", writer='imagemagick', fps=10) ani.save(f"{self.mode}_all_joint_2d_trajectory.mp4", writer='ffmpeg', fps=10) else: ani.save(f"{self.mode}_joint_{self.joint_index}_2d_trajectory.gif", writer='imagemagick', fps=10) ani.save(f"{self.mode}_joint_{self.joint_index}_2d_trajectory.mp4", writer='ffmpeg', fps=10) def update_ee_3d_traj_animation(self, i): self.ax_ee_3d.cla() self.ax_ee_3d.set_xlim(0.5, 1.5) self.ax_ee_3d.set_ylim(-1.0, 1.0) self.ax_ee_3d.set_zlim(0.0, 1.0) self.ax_ee_3d.set_xticks([0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5]) self.ax_ee_3d.set_yticks([-1.0, -0.75, -0.5, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0]) self.ax_ee_3d.set_xlabel("X") self.ax_ee_3d.set_ylabel("Y") self.ax_ee_3d.set_zlabel("Z") self.ax_ee_3d.set_title(f"Time: {self.time_steps_ee_3d[i]:.2f}s") if self.mode == 'simulation': ### Simulation position = self.sim_ee_traj[i][0] orientation = self.sim_ee_traj[i][1] rotation_matrix = R.from_quat(orientation).as_matrix() self.ax_ee_3d.scatter(*position, color='b', marker='*', s=3) axis_x_length, axis_y_length, axis_z_length = 0.075, 0.1, 0.05 x_axis = position + axis_x_length * rotation_matrix[:, 0] y_axis = position + axis_y_length * rotation_matrix[:, 1] z_axis = position + axis_z_length * rotation_matrix[:, 2] self.ax_ee_3d.plot([position[0], x_axis[0]], [position[1], x_axis[1]], [position[2], x_axis[2]], color='r', linewidth='3') self.ax_ee_3d.plot([position[0], y_axis[0]], [position[1], y_axis[1]], [position[2], y_axis[2]], color='g', linewidth='3') self.ax_ee_3d.plot([position[0], z_axis[0]], [position[1], z_axis[1]], [position[2], z_axis[2]], color='b', linewidth='3') traj = self.sim_ee_traj[:i+1, 0] x = [point[0] for point in traj] y = [point[1] for point in traj] z = [point[2] for point in traj] self.ax_ee_3d.plot(x, y, z, color='deepskyblue', linewidth=1, marker='*', markersize=2) elif self.mode == 'measured': ### Measured position = self.measured_ee_traj[i][0] orientation = self.measured_ee_traj[i][1] rotation_matrix = R.from_quat(orientation).as_matrix() self.ax_ee_3d.scatter(*position, color='g', marker='^', s=3) axis_x_length, axis_y_length, axis_z_length = 0.075, 0.1, 0.05 x_axis = position + axis_x_length * rotation_matrix[:, 0] y_axis = position + axis_y_length * rotation_matrix[:, 1] z_axis = position + axis_z_length * rotation_matrix[:, 2] self.ax_ee_3d.plot([position[0], x_axis[0]], [position[1], x_axis[1]], [position[2], x_axis[2]], color='r', linewidth='3') self.ax_ee_3d.plot([position[0], y_axis[0]], [position[1], y_axis[1]], [position[2], y_axis[2]], color='g', linewidth='3') self.ax_ee_3d.plot([position[0], z_axis[0]], [position[1], z_axis[1]], [position[2], z_axis[2]], color='b', linewidth='3') traj = self.measured_ee_traj[:i+1, 0] x = [point[0] for point in traj] y = [point[1] for point in traj] z = [point[2] for point in traj] self.ax_ee_3d.plot(x, y, z, color='limegreen', linewidth=1, marker='^', markersize=2) elif self.mode == 'both': ### Simulation position = self.sim_ee_traj[i][0] orientation = self.sim_ee_traj[i][1] rotation_matrix = R.from_quat(orientation).as_matrix() self.ax_ee_3d.scatter(*position, color='b', marker='*', s=3) axis_x_length, axis_y_length, axis_z_length = 0.075, 0.1, 0.05 x_axis = position + axis_x_length * rotation_matrix[:, 0] y_axis = position + axis_y_length * rotation_matrix[:, 1] z_axis = position + axis_z_length * rotation_matrix[:, 2] self.ax_ee_3d.plot([position[0], x_axis[0]], [position[1], x_axis[1]], [position[2], x_axis[2]], color='r', linewidth='3') self.ax_ee_3d.plot([position[0], y_axis[0]], [position[1], y_axis[1]], [position[2], y_axis[2]], color='g', linewidth='3') self.ax_ee_3d.plot([position[0], z_axis[0]], [position[1], z_axis[1]], [position[2], z_axis[2]], color='b', linewidth='3') traj = self.sim_ee_traj[:i+1, 0] x = [point[0] for point in traj] y = [point[1] for point in traj] z = [point[2] for point in traj] self.ax_ee_3d.plot(x, y, z, color='deepskyblue', linewidth=1, marker='*', markersize=2) ### Measured position = self.measured_ee_traj[i][0] orientation = self.measured_ee_traj[i][1] rotation_matrix = R.from_quat(orientation).as_matrix() self.ax_ee_3d.scatter(*position, color='g', marker='^', s=3) axis_x_length, axis_y_length, axis_z_length = 0.075, 0.1, 0.05 x_axis = position + axis_x_length * rotation_matrix[:, 0] y_axis = position + axis_y_length * rotation_matrix[:, 1] z_axis = position + axis_z_length * rotation_matrix[:, 2] self.ax_ee_3d.plot([position[0], x_axis[0]], [position[1], x_axis[1]], [position[2], x_axis[2]], color='r', linewidth='3') self.ax_ee_3d.plot([position[0], y_axis[0]], [position[1], y_axis[1]], [position[2], y_axis[2]], color='g', linewidth='3') self.ax_ee_3d.plot([position[0], z_axis[0]], [position[1], z_axis[1]], [position[2], z_axis[2]], color='b', linewidth='3') traj = self.measured_ee_traj[:i+1, 0] x = [point[0] for point in traj] y = [point[1] for point in traj] z = [point[2] for point in traj] self.ax_ee_3d.plot(x, y, z, color='limegreen', linewidth=1, marker='^', markersize=2) def update_ee_2d_traj_animation(self, i): self.ax_ee_2d.cla() self.ax_ee_2d.set_xlim(0, self.ee_traj_len) self.ax_ee_2d.set_ylim(0.0, 1.5) self.ax_ee_2d.set_xlabel("Time (s)") self.ax_ee_2d.set_ylabel("End Effector Value (rad)") self.ax_ee_2d.set_title(f"Joint Values over Time") self.sim_ee_traj.T self.measured_ee_traj.T ### Simulation / Measured for idx in self.joint_idxs: for joint_values in self.sim_ee_traj[idx*len(self.joint_idxs)]: self.ax_ee_2d.plot(self.time_steps_jt_2d[:i+1], joint_values[:i+1]) for joint_values in self.measured_joint_traj[idx*len(self.joint_idxs)]: self.ax_ee_2d.plot(self.time_steps_jt_2d[:i+1], joint_values[:i+1]) self.ax_ee_2d.legend(loc="upper left") def update_all_joint_2d_traj_animation(self, i): plot_length = self.jt_traj_len / self.fps for joint_index in range(self.num_joints): if joint_index == 0: min_range, max_range = 0.0, 1.5 self.ax_jt[joint_index].cla() self.ax_jt[joint_index].grid() self.ax_jt[joint_index].set_xlim(0, plot_length) self.ax_jt[joint_index].set_ylim(min_range, max_range) self.ax_jt[joint_index].set_ylabel("X Position (m)", fontsize=8) self.ax_jt[joint_index].set_title("Joint Values over Time", fontsize=14) elif joint_index == 1: min_range, max_range = -1.0, 1.0 self.ax_jt[joint_index].cla() self.ax_jt[joint_index].grid() self.ax_jt[joint_index].set_xlim(0, plot_length) self.ax_jt[joint_index].set_ylabel("Y Position (m)", fontsize=8) self.ax_jt[joint_index].set_ylim(min_range, max_range) elif joint_index == 2: min_range, max_range = -np.pi, np.pi y_label = f"{self.joint_name[str(joint_index)]} Value(rad)" self.ax_jt[joint_index].cla() self.ax_jt[joint_index].grid() self.ax_jt[joint_index].set_xlim(0, plot_length) self.ax_jt[joint_index].set_ylim(min_range, max_range) self.ax_jt[joint_index].set_ylabel(y_label, fontsize=8) elif joint_index == 3: min_range, max_range = -0.1, 0.5 y_label = f"{self.joint_name[str(joint_index)]} Value(m)" self.ax_jt[joint_index].cla() self.ax_jt[joint_index].grid() self.ax_jt[joint_index].set_xlim(0, plot_length) self.ax_jt[joint_index].set_ylim(min_range, max_range) self.ax_jt[joint_index].set_ylabel(y_label, fontsize=8) elif joint_index in (4, 5, 6): min_range, max_range = -np.pi, np.pi y_label = f"{self.joint_name[str(joint_index)]} Value(rad)" self.ax_jt[joint_index].cla() self.ax_jt[joint_index].grid() self.ax_jt[joint_index].set_xlim(0, plot_length) self.ax_jt[joint_index].set_ylim(min_range, max_range) self.ax_jt[joint_index].set_ylabel(y_label, fontsize=8) elif joint_index == 7: min_range, max_range = -np.pi, np.pi y_label = f"{self.joint_name[str(joint_index)]} Value(rad)" self.ax_jt[joint_index].cla() self.ax_jt[joint_index].grid() self.ax_jt[joint_index].set_xlim(0, plot_length) self.ax_jt[joint_index].set_ylim(min_range, max_range) self.ax_jt[joint_index].set_ylabel(y_label, fontsize=8) self.ax_jt[joint_index].set_xlabel("Time (s)", fontsize=12) ### Simulation traj = self.sim_joint_traj[:i, joint_index] self.ax_jt[joint_index].plot(self.time_steps_jt_2d[:i], traj, linestyle='dashed', label='simulation') ### Measured traj = self.measured_joint_traj[:i, joint_index] self.ax_jt[joint_index].plot(self.time_steps_jt_2d[:i], traj, linestyle='dashdot', label='measured') self.ax_jt[joint_index].legend(loc="upper right", fontsize=12) def update_joint_2d_traj_animation(self, i): plot_length = self.jt_traj_len / self.fps if self.joint_index == 0: min_range, max_range = 0.0, 1.5 self.ax_jt.cla() self.ax_jt.grid() self.ax_jt.set_xlim(0, plot_length) self.ax_jt.set_ylim(min_range, max_range) self.ax_jt.set_xlabel("Time (s)", fontsize=12) self.ax_jt.set_ylabel("X Position (m)", fontsize=12) self.ax_jt.set_title("Joint Values over Time", fontsize=14) elif self.joint_index == 1: min_range, max_range = -1.0, 1.0 self.ax_jt.cla() self.ax_jt.grid() self.ax_jt.set_xlim(0, plot_length) self.ax_jt.set_ylim(min_range, max_range) self.ax_jt.set_xlabel("Time (s)", fontsize=12) self.ax_jt.set_ylabel("Y Position Value (m)", fontsize=12) self.ax_jt.set_title("Joint Values over Time", fontsize=14) elif self.joint_index == 3: min_range, max_range = -0.1, 0.5 self.ax_jt.cla() self.ax_jt.grid() self.ax_jt.set_xlim(0, plot_length) self.ax_jt.set_ylim(min_range, max_range) self.ax_jt.set_xlabel("Time (s)", fontsize=12) self.ax_jt.set_ylabel("ArmLift Value (m)", fontsize=12) self.ax_jt.set_title("Joint Values over Time", fontsize=14) else: min_range, max_range = -np.pi, np.pi self.ax_jt.cla() self.ax_jt.grid() self.ax_jt.set_xlim(0, plot_length) self.ax_jt.set_ylim(min_range, max_range) self.ax_jt.set_xlabel("Time (s)", fontsize=12) self.ax_jt.set_ylabel(f"{self.joint_name[str(self.joint_index)]} Value(rad)", fontsize=12) self.ax_jt.set_title("Joint Values over Time", fontsize=14) ### Simulation traj = self.sim_joint_traj[:i, self.joint_index] self.ax_jt.plot(self.time_steps_jt_2d[:i], traj, linestyle='dashed', label='simulation') ### Measured traj = self.measured_joint_traj[:i, self.joint_index] self.ax_jt.plot(self.time_steps_jt_2d[:i], traj, linestyle='dashdot', label='measured') self.ax_jt.legend(loc="upper right", fontsize=12) class AnalyzeMultipleTrajectory(object): def __init__(self): self.file_names = glob.glob('log/*.npy', recursive=True) self.num_files = 1 # int(len(self.file_names) / 4) self.sim_ee_traj = [] self.measured_ee_traj = [] self.true_ee_traj = [] self.sim_joint_traj = [] self.measured_joint_traj = [] self.ee_traj_len = [] self.jt_traj_len = [] for idx in range(self.num_files): # Load ee trajectory self.sim_ee_traj.append(np.load(f"log/simulation_ee_traj.npy", allow_pickle=True)) self.measured_ee_traj.append(np.load(f"log/measured_ee_traj_{idx}.npy", allow_pickle=True)) self.true_ee_traj.append(np.load(f"log/true_ee_traj_{idx}.npy", allow_pickle=True)) # Load joint trajectory self.sim_joint_traj.append(np.load(f"log/simulation_joint_traj.npy", allow_pickle=True)) self.measured_joint_traj.append(np.load(f"log/measured_joint_traj_{idx}.npy", allow_pickle=True)) # Length of ee/joint trajectory self.ee_traj_len.append(min(len(self.sim_ee_traj[idx]), len(self.measured_ee_traj[idx]))) self.jt_traj_len.append(min(len(self.sim_joint_traj[idx]), len(self.measured_joint_traj[idx]))) # Visualization settings self.num_joints = 8 self.joint_name = {'2': 'BaseRotation', '3': 'ArmLift', '4': 'ArmFlex', '5': 'ArmRoll', '6': 'WristFlex', '7': 'WristRoll'} def plot_ee_traj(self, axis='xy'): all_in_one = False if all_in_one: if axis == 'xy': fig_xy, ax_xy = plt.subplots() ax_xy.set_xlim(0.5, 1.5) ax_xy.set_ylim(-1.0, 1.0) ax_xy.set_xlabel('X-axis Position (m)') ax_xy.set_ylabel('Y-axis Position (m)') elif axis == 'yz': fig_yz, ax_yz = plt.subplots() ax_yz.set_xlim(-1.0, 1.0) ax_yz.set_ylim(0.0, 1.0) ax_yz.set_xlabel('Y-axis Position (m)') ax_yz.set_ylabel('Z-axis Position (m)') elif axis == 'zx': fig_zx, ax_zx = plt.subplots() ax_zx.set_xlim(0.0, 1.0) ax_zx.set_ylim(0.5, 1.5) ax_zx.set_xlabel('Z-axis Position (m)') ax_zx.set_ylabel('X-axis Position (m)') for idx in range(self.num_files): for i in range(self.ee_traj_len[idx]): sim_traj = self.sim_ee_traj[idx][i] sim_x = sim_traj[0][0] sim_y = sim_traj[0][1] sim_z = sim_traj[0][2] measured_traj = self.measured_ee_traj[idx][i] measured_x = measured_traj[0][0] measured_y = measured_traj[0][1] measured_z = measured_traj[0][2] true_traj = self.true_ee_traj[idx][i] true_x = true_traj[0][0] true_y = true_traj[0][1] true_z = true_traj[0][2] if axis == 'xy': ax_xy.plot(sim_x, sim_y, marker='*', markersize=3, color='tomato', label='Simulation Trajectory') ax_xy.plot(measured_x, measured_y, marker='^', markersize=3, color='deepskyblue', label='Measured Trajectory') elif axis == 'yz': ax_yz.plot(sim_y, sim_z, marker='*', markersize=3, color='coral', label='Simulation Trajectory') ax_yz.plot(measured_y, measured_z, marker='^', markersize=3, color='goldenrod', label='Measured Trajectory') elif axis == 'zx': ax_zx.plot(sim_z, sim_x, marker='*', markersize=3, color='springgreen', label='Simulation Trajectory') ax_zx.plot(measured_z, measured_x, marker='^', markersize=3, color='lightseagreen', label='Measured Trajectory') if axis == 'xy': ax_xy.set_title('End Effector XY-axis Trajectory') plt.savefig('XY_traj.png') plt.close() elif axis == 'yz': ax_yz.set_title('End Effector YZ-axis Trajectory') plt.savefig('YZ_traj.png') plt.close() elif axis == 'zx': ax_zx.set_title('End Effector ZX-axis Trajectory') plt.savefig('ZX_traj.png') plt.close() else: for idx in range(self.num_files): if axis == 'xy': fig_xy, ax_xy = plt.subplots() ax_xy.set_xlim(0.5, 1.5) ax_xy.set_ylim(-1.0, 1.0) ax_xy.set_xlabel('X-axis Position (m)') ax_xy.set_ylabel('Y-axis Position (m)') elif axis == 'yz': fig_yz, ax_yz = plt.subplots() ax_yz.set_xlim(-1.0, 1.0) ax_yz.set_ylim(0.0, 1.0) ax_yz.set_xlabel('Y-axis Position (m)') ax_yz.set_ylabel('Z-axis Position (m)') elif axis == 'zx': fig_zx, ax_zx = plt.subplots() ax_zx.set_xlim(0.0, 1.0) ax_zx.set_ylim(0.5, 1.5) ax_zx.set_xlabel('Z-axis Position (m)') ax_zx.set_ylabel('X-axis Position (m)') for i in range(self.ee_traj_len[idx]): sim_traj = self.sim_ee_traj[idx][i] sim_x = sim_traj[0][0] sim_y = sim_traj[0][1] sim_z = sim_traj[0][2] measured_traj = self.measured_ee_traj[idx][i] measured_x = measured_traj[0][0] measured_y = measured_traj[0][1] measured_z = measured_traj[0][2] true_traj = self.true_ee_traj[idx][i] true_x = true_traj[0][0] true_y = true_traj[0][1] true_z = true_traj[0][2] if axis == 'xy': ax_xy.plot(sim_x, sim_y, marker='*', markersize=3, color='tomato', label='Simulation Trajectory') ax_xy.plot(measured_x, measured_y, marker='*', markersize=3, color='deepskyblue', label='Measured Trajectory') ax_xy.plot(true_x, true_y, marker='*', markersize=3, color='green', label='True Trajectory') elif axis == 'yz': ax_yz.plot(sim_y, sim_z, marker='*', markersize=3, color='coral', label='Simulation Trajectory') ax_yz.plot(measured_y, measured_z, marker='*', markersize=3, color='deepskyblue', label='Measured Trajectory') ax_yz.plot(true_y, true_z, marker='*', markersize=3, color='green', label='True Trajectory') elif axis == 'zx': ax_zx.plot(sim_z, sim_x, marker='*', markersize=3, color='springgreen', label='Simulation Trajectory') ax_zx.plot(measured_z, measured_x, marker='*', markersize=3, color='deepskyblue', label='Measured Trajectory') ax_zx.plot(true_z, true_x, marker='*', markersize=3, color='green', label='True Trajectory') if axis == 'xy': ax_xy.set_title('End Effector XY-axis Trajectory') plt.savefig('XY_traj.png') plt.close() elif axis == 'yz': ax_yz.set_title('End Effector YZ-axis Trajectory') plt.savefig('YZ_traj.png') plt.close() elif axis == 'zx': ax_zx.set_title('End Effector ZX-axis Trajectory') plt.savefig('ZX_traj.png') plt.close() def evaluate_ee_error_correlation(self, axis='yz'): all_in_one = False if all_in_one: if axis == 'xy': fig_xy, ax_xy = plt.subplots() ax_xy.set_xlim(-0.5, 0.5) ax_xy.set_ylim(-0.5, 0.5) ax_xy.set_xlabel('X-axis Error (m)') ax_xy.set_ylabel('Y-axis Error (m)') x_range = np.arange(-0.5, 0.5, 0.01) y_range = np.arange(-0.5, 0.5, 0.01) ax_xy.plot(x_range, y_range, color='tan', linestyle="--") elif axis == 'yz': fig_yz, ax_yz = plt.subplots() ax_yz.set_xlim(-0.5, 0.5) ax_yz.set_ylim(-0.5, 0.5) ax_yz.set_xlabel('Y-axis Error (m)') ax_yz.set_ylabel('Z-axis Error (m)') x_range = np.arange(-0.5, 0.5, 0.01) y_range = np.arange(-0.5, 0.5, 0.01) ax_yz.plot(x_range, y_range, color='tan', linestyle="--") elif axis == 'zx': fig_zx, ax_zx = plt.subplots() ax_zx.set_xlim(-0.5, 0.5) ax_zx.set_ylim(-0.5, 0.5) ax_zx.set_xlabel('Z-axis Error (m)') ax_zx.set_ylabel('X-axis Error (m)') x_range = np.arange(-0.5, 0.5, 0.01) y_range = np.arange(-0.5, 0.5, 0.01) ax_zx.plot(x_range, y_range, color='tan', linestyle="--") for idx in range(self.num_files): diff_l1_all = [] diff_l1_x = [] diff_l1_y = [] diff_l1_z = [] for i in range(self.ee_traj_len[idx]): sim_traj = self.sim_ee_traj[idx][i] sim_x = sim_traj[0][0] sim_y = sim_traj[0][1] sim_z = sim_traj[0][2] measured_traj = self.measured_ee_traj[idx][i] measured_x = measured_traj[0][0] measured_y = measured_traj[0][1] measured_z = measured_traj[0][2] l1_x = np.array([sim_x - measured_x]) l1_y = np.array([sim_y - measured_y]) l1_z = np.array([sim_z - measured_z]) l1_norm = l1_x + l1_y + l1_z diff_l1_x.append(l1_x) diff_l1_y.append(l1_y) diff_l1_z.append(l1_z) diff_l1_all.append(l1_norm) if axis == 'xy': ax_xy.plot(l1_x, l1_y, marker='x', markersize=3, color='teal', label='XY Error') elif axis == 'yz': ax_yz.plot(l1_y, l1_z, marker='x', markersize=3, color='coral', label='YZ Error') elif axis == 'zx': ax_zx.plot(l1_z, l1_x, marker='x', markersize=3, color='palevioletred', label='ZX Error') diff_l1_x = np.array(diff_l1_x) diff_l1_y = np.array(diff_l1_y) diff_l1_z = np.array(diff_l1_z) corr_mat = np.concatenate((diff_l1_x, diff_l1_y, diff_l1_z), axis=1) corr_mat = corr_mat.T corr_coef = np.corrcoef(corr_mat) print('corr_coef:', corr_coef) if axis == 'xy': coef = corr_coef[0][1] ax_xy.set_title(f'End Effector XY-axis Error Correlation: r={coef:.3f}') plt.savefig('XY_correlation.png') plt.close() elif axis == 'yz': coef = corr_coef[1][2] ax_yz.set_title(f'End Effector YZ-axis Error Correlation: r={coef:.3f}') plt.savefig('YZ_correlation.png') plt.close() elif axis == 'zx': coef = corr_coef[2][0] ax_zx.set_title(f'End Effector ZX-axis Error Correlation: r={coef:.3f}') plt.savefig('ZX_correlation.png') plt.close() else: for idx in range(self.num_files): if axis == 'xy': fig_xy, ax_xy = plt.subplots() ax_xy.set_xlim(-0.5, 0.5) ax_xy.set_ylim(-0.5, 0.5) ax_xy.set_xlabel('X-axis Error (m)') ax_xy.set_ylabel('Y-axis Error (m)') x_range = np.arange(-0.5, 0.5, 0.01) y_range = np.arange(-0.5, 0.5, 0.01) ax_xy.plot(x_range, y_range, color='tan', linestyle="--") elif axis == 'yz': fig_yz, ax_yz = plt.subplots() ax_yz.set_xlim(-0.5, 0.5) ax_yz.set_ylim(-0.5, 0.5) ax_yz.set_xlabel('Y-axis Error (m)') ax_yz.set_ylabel('Z-axis Error (m)') x_range = np.arange(-0.5, 0.5, 0.01) y_range = np.arange(-0.5, 0.5, 0.01) ax_yz.plot(x_range, y_range, color='tan', linestyle="--") elif axis == 'zx': fig_zx, ax_zx = plt.subplots() ax_zx.set_xlim(-0.5, 0.5) ax_zx.set_ylim(-0.5, 0.5) ax_zx.set_xlabel('Z-axis Error (m)') ax_zx.set_ylabel('X-axis Error (m)') x_range = np.arange(-0.5, 0.5, 0.01) y_range = np.arange(-0.5, 0.5, 0.01) ax_zx.plot(x_range, y_range, color='tan', linestyle="--") diff_l1_all = [] diff_l1_x = [] diff_l1_y = [] diff_l1_z = [] for i in range(self.ee_traj_len[idx]): sim_traj = self.sim_ee_traj[idx][i] sim_x = sim_traj[0][0] sim_y = sim_traj[0][1] sim_z = sim_traj[0][2] measured_traj = self.measured_ee_traj[idx][i] measured_x = measured_traj[0][0] measured_y = measured_traj[0][1] measured_z = measured_traj[0][2] l1_x = np.array([sim_x - measured_x]) l1_y = np.array([sim_y - measured_y]) l1_z = np.array([sim_z - measured_z]) l1_norm = l1_x + l1_y + l1_z diff_l1_x.append(l1_x) diff_l1_y.append(l1_y) diff_l1_z.append(l1_z) diff_l1_all.append(l1_norm) if axis == 'xy': ax_xy.plot(l1_x, l1_y, marker='x', markersize=3, color='teal', label='XY Error') elif axis == 'yz': ax_yz.plot(l1_y, l1_z, marker='x', markersize=3, color='coral', label='YZ Error') elif axis == 'zx': ax_zx.plot(l1_z, l1_x, marker='x', markersize=3, color='palevioletred', label='ZX Error') diff_l1_x = np.array(diff_l1_x) diff_l1_y = np.array(diff_l1_y) diff_l1_z = np.array(diff_l1_z) corr_mat = np.concatenate((diff_l1_x, diff_l1_y, diff_l1_z), axis=1) corr_mat = corr_mat.T corr_coef = np.corrcoef(corr_mat) print('corr_coef:', corr_coef) if axis == 'xy': coef = corr_coef[0][1] ax_xy.set_title(f'End Effector XY-axis Error Correlation: r={coef:.3f}') plt.savefig(f'XY_correlation_{idx}.png') plt.close() elif axis == 'yz': coef = corr_coef[1][2] ax_yz.set_title(f'End Effector YZ-axis Error Correlation: r={coef:.3f}') plt.savefig(f'YZ_correlation_{idx}.png') plt.close() elif axis == 'zx': coef = corr_coef[2][0] ax_zx.set_title(f'End Effector ZX-axis Error Correlation: r={coef:.3f}') plt.savefig(f'ZX_correlation_{idx}.png') plt.close() def evaluate_ee_error(self): mean_x_l2_all = [] mean_y_l2_all = [] mean_z_l2_all = [] mean_all_l2_all = [] std_x_l2_all = [] std_y_l2_all = [] std_z_l2_all = [] std_all_l2_all = [] max_x_l2_all = [] max_y_l2_all = [] max_z_l2_all = [] max_all_l2_all = [] for idx in range(self.num_files): diff_l2_all = [] diff_l2_x = [] diff_l2_y = [] diff_l2_z = [] for i in range(self.ee_traj_len[idx]): sim_traj = self.sim_ee_traj[idx][i] sim_x = sim_traj[0][0] sim_y = sim_traj[0][1] sim_z = sim_traj[0][2] measured_traj = self.measured_ee_traj[idx][i] measured_x = measured_traj[0][0] measured_y = measured_traj[0][1] measured_z = measured_traj[0][2] l2_x = np.sqrt(np.square(sim_x-measured_x)) l2_y = np.sqrt(np.square(sim_y-measured_y)) l2_z = np.sqrt(np.square(sim_z-measured_z)) l2_norm = np.sqrt(np.square(sim_x-measured_x)+np.square(sim_y-measured_y)+np.square(sim_z-measured_z)) diff_l2_x.append(l2_x) diff_l2_y.append(l2_y) diff_l2_z.append(l2_z) diff_l2_all.append(l2_norm) # Calculate mean mean_l2_x = np.mean(diff_l2_x) mean_l2_y = np.mean(diff_l2_y) mean_l2_z = np.mean(diff_l2_z) mean_l2_all = np.mean(diff_l2_all) mean_x_l2_all.append(mean_l2_x) mean_y_l2_all.append(mean_l2_y) mean_z_l2_all.append(mean_l2_z) mean_all_l2_all.append(mean_l2_all) # Calculate std std_l2_x = np.var(diff_l2_x) std_l2_y = np.var(diff_l2_y) std_l2_z = np.var(diff_l2_z) std_l2_all = np.var(diff_l2_all) std_x_l2_all.append(std_l2_x) std_y_l2_all.append(std_l2_y) std_z_l2_all.append(std_l2_z) std_all_l2_all.append(std_l2_all) # Calculate max max_l2_x = np.max(diff_l2_x) max_l2_y = np.max(diff_l2_y) max_l2_z = np.max(diff_l2_z) max_l2_all = np.max(diff_l2_all) print('Mean difference in direction X:', mean_l2_x) print('Mean difference in direction Y:', mean_l2_y) print('Mean difference in direction Z:', mean_l2_z) print('Mean difference: ', mean_l2_all) print('Std difference in direction X:', std_l2_x) print('Std difference in direction Y:', std_l2_y) print('Std difference in direction Z:', std_l2_y) print('Std difference:', std_l2_all) print('Max difference in direction X:', max_l2_x) print('Max difference in direction Y:', max_l2_y) print('Max difference in direction Z:', max_l2_z) print('Max difference:', max_l2_all) ### Visualize mean and std all_in_one = True # Visualize X direction if all_in_one: x_range = np.arange(1, self.num_files+1) y_range = mean_x_l2_all fig, ax = plt.subplots() ax.set_title('End-Effector Position Error') ax.set_xlim(0.5, self.num_files+0.5) ax.set_ylim(-0.05, 0.2) ax.set_xlabel('Number of Trials') ax.set_ylabel('Mean Error (m)') ax.grid() ax.errorbar(x_range, y_range, yerr=std_x_l2_all, fmt='-^', markersize=6, color='darkorange', markeredgecolor='darkorange', ecolor='darkorange', capsize=4, label='X position') # Visualize Y direction x_range = np.arange(1, self.num_files+1) y_range = mean_y_l2_all ax.errorbar(x_range, y_range, yerr=std_y_l2_all, fmt='-d', markersize=6, color='chocolate', markeredgecolor='chocolate', ecolor='chocolate', capsize=4, label='Y position') # Visualize Z direction x_range = np.arange(1, self.num_files+1) y_range = mean_z_l2_all ax.errorbar(x_range, y_range, yerr=std_z_l2_all, fmt='-o', markersize=6, color='olivedrab', markeredgecolor='olivedrab', ecolor='olivedrab', capsize=4, label='Z position') # Visualize All x_range = np.arange(1, self.num_files+1) y_range = mean_all_l2_all ax.errorbar(x_range, y_range, yerr=std_all_l2_all, fmt='-*', markersize=6, color='midnightblue', markeredgecolor='midnightblue', ecolor='midnightblue', capsize=4, label='XYZ position') ax.legend(loc="upper right") else: x_range = np.arange(1, self.num_files+1) y_range = mean_x_l2_all fig, ax = plt.subplots() ax.set_title('End Effector Mean Error in X Direction') ax.set_xlim(0.5, self.num_files+0.5) ax.set_ylim(-0.05, 0.2) ax.set_xlabel('Number of Trials') ax.set_ylabel('Mean Error (m)') ax.grid() ax.errorbar(x_range, y_range, yerr=std_x_l2_all, fmt='-^', markersize=6, color='darkorange', markeredgecolor='darkorange', ecolor='darkorange', capsize=4) plt.show() plt.close() # Visualize Y direction x_range = np.arange(1, self.num_files+1) y_range = mean_y_l2_all fig, ax = plt.subplots() ax.set_title('End Effector Mean Error in Y Direction') ax.set_xlim(0.5, self.num_files+0.5) ax.set_ylim(-0.05, 0.2) ax.set_xlabel('Number of Trials') ax.set_ylabel('Mean Error (m)') ax.grid() ax.errorbar(x_range, y_range, yerr=std_y_l2_all, fmt='-^', markersize=6, color='darkorange', markeredgecolor='darkorange', ecolor='darkorange', capsize=4) # Visualize Z direction x_range = np.arange(1, self.num_files+1) y_range = mean_z_l2_all fig, ax = plt.subplots() ax.set_title('End Effector Mean Error in Z Direction') ax.set_xlim(0.5, self.num_files+0.5) ax.set_ylim(-0.05, 0.2) ax.set_xlabel('Number of Trials') ax.set_ylabel('Mean Error (m)') ax.grid() ax.errorbar(x_range, y_range, yerr=std_z_l2_all, fmt='-^', markersize=6, color='darkorange', markeredgecolor='darkorange', ecolor='darkorange', capsize=4) plt.show() plt.close() # Visualize All x_range = np.arange(1, self.num_files+1) y_range = mean_all_l2_all fig, ax = plt.subplots() ax.set_title('End Effector Mean Error') ax.set_xlim(0.5, self.num_files+0.5) ax.set_ylim(-0.05, 0.2) ax.set_xlabel('Number of Trials') ax.set_ylabel('Mean Error (m)') ax.grid() ax.errorbar(x_range, y_range, yerr=std_all_l2_all, fmt='-^', markersize=6, color='darkorange', markeredgecolor='darkorange', ecolor='darkorange', capsize=4) plt.show() plt.savefig('mea_error.png') def evaluate_jt_error(self): mean_joint_all = [] std_joint_all = [] max_joint_all = [] for idx in range(self.num_files): mean_joint_each = [] std_joint_each = [] max_joint_each = [] for i in range(self.num_joints): diff_each_joints = [] for j in range(self.jt_traj_len[idx]): sim_joint = self.sim_joint_traj[idx][j, i] measured_joint = self.measured_joint_traj[idx][j, i] diff_joint = np.sqrt(np.square(sim_joint-measured_joint)) diff_each_joints.append(diff_joint) mean_joint = np.mean(diff_each_joints) std_joint = np.var(diff_each_joints) max_joint = np.max(diff_each_joints) print(f"Mean joint_{i} difference:", mean_joint) print(f"Std joint_{i} difference:", std_joint) print(f"Max joint_{i} difference:", max_joint) mean_joint_each.append(mean_joint) std_joint_each.append(std_joint) max_joint_each.append(max_joint) mean_joint_all.append(mean_joint_each) std_joint_all.append(std_joint_each) max_joint_all.append(max_joint_all) # Visualize results for i in range(self.num_joints): if i == 0: x_range = np.arange(1, self.num_files+1) y_range = np.array(mean_joint_all).T[i] fig, ax = plt.subplots() ax.set_title('X Position Error') ax.set_xlim(0.5, self.num_files+0.5) ax.set_ylim(-0.05, 0.15) ax.set_xlabel('Number of Trials') ax.set_ylabel('Position Error (m)') ax.grid() ax.errorbar(x_range, y_range, yerr=np.array(std_joint_all).T[i], fmt='-^', markersize=6, color='navy', markeredgecolor='navy', ecolor='navy', capsize=4, label='X Position Error') ax.legend(loc="upper right") plt.savefig('joint_x_error.png') plt.close() elif i == 1: x_range = np.arange(1, self.num_files+1) y_range = np.array(mean_joint_all).T[i] fig, ax = plt.subplots() ax.set_title('Y Position Error') ax.set_xlim(0.5, self.num_files+0.5) ax.set_ylim(-0.05, 0.15) ax.set_xlabel('Number of Trials') ax.set_ylabel('Position Error (m)') ax.grid() ax.errorbar(x_range, y_range, yerr=np.array(std_joint_all).T[i], fmt='-^', markersize=6, color='navy', markeredgecolor='navy', ecolor='navy', capsize=4, label='Y Position Error') ax.legend(loc="upper right") plt.savefig('joint_y_error.png') plt.close() elif i == 3: x_range = np.arange(1, self.num_files+1) y_range = np.array(mean_joint_all).T[i] fig, ax = plt.subplots() ax.set_title('ArmLift Joint Error') ax.set_xlim(0.5, self.num_files+0.5) ax.set_ylim(-0.05, 0.15) ax.set_xlabel('Number of Trials') ax.set_ylabel('Position Error (m)') ax.grid() ax.errorbar(x_range, y_range, yerr=np.array(std_joint_all).T[i], fmt='-^', markersize=6, color='navy', markeredgecolor='navy', ecolor='navy', capsize=4, label='ArmLift Position Error') ax.legend(loc="upper right") plt.savefig('joint_armlift_error.png') plt.close() else: x_range = np.arange(1, self.num_files+1) y_range = np.array(mean_joint_all).T[i] fig, ax = plt.subplots() ax.set_title(f'{self.joint_name[str(i)]} Position Error') ax.set_xlim(0.5, self.num_files+0.5) ax.set_ylim(-0.05, 0.15) ax.set_xlabel('Number of Trials') ax.set_ylabel('Position Error (rad)') ax.grid() ax.errorbar(x_range, y_range, yerr=np.array(std_joint_all).T[i], fmt='-^', markersize=6, color='navy', markeredgecolor='navy', ecolor='navy', capsize=4, label=f'{self.joint_name[str(i)]} Position Error') ax.legend(loc="upper right") plt.savefig(f'joint_{self.joint_name[str(i)].lower()}_error.png') plt.close() if __name__ == "__main__": parser = argparse.ArgumentParser('Visualize trajectory') parser.add_argument('--index', type=int, default=0, help='set index') parser.add_argument('--joint_index', type=int, default=None, help='set joint index') parser.add_argument('--mode', type=str, default='both', help='set visualization mode') parser.add_argument('--visualize', action='store_true', help='set visualization') args = parser.parse_args() if args.visualize: at = AnalyzeTrajectory(idx=args.index, mode=args.mode, joint_index=args.joint_index) at.visualize_ee_3d_traj() at.visualize_joint_2d_traj() else: at = AnalyzeMultipleTrajectory() at.evaluate_ee_error() at.evaluate_jt_error() at.evaluate_ee_error_correlation() at.plot_ee_traj()
45,050
Python
45.684974
136
0.508746
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/hsr_py_interface.py
#!/usr/bin/env/python3 import sys import rospy import hsrb_interface import numpy as np from controller_manager_msgs.srv import ListControllers class HSRPyInterface(object): def __init__(self, standalone=False): # Initialize ROS node if standalone: rospy.init_node('hsr_python_interface') # Check server status self.check_status() self.robot = hsrb_interface.Robot() self.omni_base = self.robot.get('omni_base') self.gripper = self.robot.get('gripper') self.whole_body = self.robot.get('whole_body') def initialize_arm(self): # Initialize arm position self.whole_body.move_to_go() def initialize_base(self): # Initialize base position self.omni_base.go_abs(0.0, 0.0, 0.0, 300.0) def set_task_pose(self, grasp_type='side'): # Set base to configuration position self.omni_base.go_abs(-0.80, 0.75, np.pi/2, 300.0) # Set arm to configuration pose self.whole_body.move_to_neutral() if grasp_type == 'side': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=-0.3, y=0.0, z=0.0, ej=0.0), ], ref_frame_id='hand_palm_link') elif grasp_type == 'top': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=-0.3, y=0.0, z=0.0, ej=-1.57), ], ref_frame_id='hand_palm_link') # Open gripper self.gripper.command(1.2) def fix_task_pose(self, diff_pose): diff_x_pose, diff_y_pose, diff_z_pose = diff_pose[0], diff_pose[1], diff_pose[2] if np.abs(diff_z_pose) < 0.1: diff_z_pose = -0.12 else: diff_z_pose = 0.0 self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=0.0, y=diff_y_pose, z=diff_z_pose) ], ref_frame_id='hand_palm_link') def check_status(self): # Make sure the controller is running rospy.wait_for_service('/hsrb/controller_manager/list_controllers') list_controllers = rospy.ServiceProxy('/hsrb/controller_manager/list_controllers', ListControllers) running = False while running is False: rospy.sleep(0.1) for c in list_controllers().controller: if c.name == 'arm_trajectory_controller' and c.state == 'running': running |= True if c.name == 'head_trajectory_controller' and c.state == 'running': running |= True if c.name == 'gripper_controller' and c.state == 'running': running |= True if c.name == 'omni_base_controller' and c.state == 'running': running |= True return running def close_gripper(self, force=0.5): self.gripper.apply_force(force) def open_gripper(self, width=1.0): self.gripper.command(width) def insert_object(self, ee_mode): if ee_mode == 'horizontal': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=-0.03, y=0.0, z=0.0), ], ref_frame_id='hand_palm_link') elif ee_mode == 'vertical': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=0.0, y=-0.03, z=0.0), ], ref_frame_id='hand_palm_link') def grasp_gear(self, diff_ee_pose, pick_offset=0.1): # Open gripper self.open_gripper(0.5) # Move to grasp self.whole_body.move_end_effector_by_line((0, 0, 1), -pick_offset) self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=diff_ee_pose[0], y=diff_ee_pose[1], ek=-np.pi/2 ), ], ref_frame_id='hand_palm_link') self.whole_body.move_end_effector_by_line((0, 0, 1), diff_ee_pose[2]+pick_offset) # Close gripper self.close_gripper(0.5) if __name__ == '__main__': hsr_py = HSRPyInterface() hsr_py.initialize_arm() hsr_py.initialize_base()
4,143
Python
33.823529
107
0.567946
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/tf_interface.py
#!/bin/env/python3 import tf import rospy import tf2_ros import numpy as np import tf2_geometry_msgs from tf2_msgs.msg import TFMessage from geometry_msgs.msg import TransformStamped from scipy.spatial.transform import Rotation as R class TfManager(object): def __init__(self, standalone=False): if standalone: rospy.init_node('tf_manager') # TF listener self.tfBuffer = tf2_ros.Buffer() self.listener = tf2_ros.TransformListener(self.tfBuffer) # Publisher self.tf_pub = rospy.Publisher('/tf', TFMessage, queue_size=1) def get_link_pose(self, link_name='hand_palm_link'): # Translate from map coordinate to arbitrary coordinate of robot. ee_pose = tf2_geometry_msgs.PoseStamped() ee_pose.header.frame_id = link_name ee_pose.header.stamp = rospy.Time(0) ee_pose.pose.orientation.w = 1.0 try: # Get transform at current time global_pose = self.tfBuffer.transform(ee_pose, 'map') except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException) as e: print(e) return None return global_pose def get_init_pose(self, mocap_poses): # Get red_shaft pose gearbox_x = mocap_poses['green_gear'].pose.position.x gearbox_y = mocap_poses['green_gear'].pose.position.y gearbox_z = mocap_poses['green_gear'].pose.position.z # Get current end effector pose current_ee_pose_x = mocap_poses['end_effector'].pose.position.x current_ee_pose_y = mocap_poses['end_effector'].pose.position.y current_ee_pose_z = mocap_poses['end_effector'].pose.position.z # Culculate difference pose diff_x_pose = current_ee_pose_x - gearbox_x diff_y_pose = current_ee_pose_y - gearbox_y diff_z_pose = current_ee_pose_z - gearbox_z init_base_pose = np.array([diff_x_pose, diff_y_pose, diff_z_pose]) return init_base_pose # Transform target_pose on end effector coordinate to map coordinate def transform_coordinate(self, target_pose): # Initialize vector and matrix trans_mat = np.zeros((4, 4)) qc_trans = np.zeros(4) # Initialize map coordination qc_trans[0] = target_pose[0] qc_trans[1] = target_pose[1] qc_trans[2] = target_pose[2] qc_trans[3] = 1.0 ee_pose = self.get_link_pose() if ee_pose is None: return # Initialize ee coordination translation = np.array([ ee_pose.pose.position.x, ee_pose.pose.position.y, ee_pose.pose.position.z ]) rot = np.array([ ee_pose.pose.orientation.x, ee_pose.pose.orientation.y, ee_pose.pose.orientation.z, ee_pose.pose.orientation.w ]) rot_mat = R.from_quat(rot).as_matrix() # Calculate translation trans_mat[3:, 3:] = 1.0 trans_mat[:3, 3] = translation trans_mat[:3, :3] = rot_mat qw_trans = trans_mat @ qc_trans qw_trans = qw_trans[:3] # Calculate rotation qw_rot = np.array([ ee_pose.pose.orientation.x, ee_pose.pose.orientation.y, ee_pose.pose.orientation.z, ee_pose.pose.orientation.w ]) return np.concatenate([qw_trans, qw_rot]) def publish_mocap_to_map(self, mocap_poses): tf_list = [] for rigid_name, mocap_pose in mocap_poses.items(): t = TransformStamped() t.header.frame_id = 'map' t.header.stamp = rospy.Time.now() t.child_frame_id = rigid_name t.transform.translation.x = mocap_pose.pose.position.x t.transform.translation.y = mocap_pose.pose.position.y t.transform.translation.z = mocap_pose.pose.position.z t.transform.rotation.x = mocap_pose.pose.rotation.x t.transform.rotation.y = mocap_pose.pose.rotation.y t.transform.rotation.z = mocap_pose.pose.rotation.z t.transform.rotation.w = mocap_pose.pose.rotation.w tf_list.append(t) tfm = TFMessage(tf_list) # Publish tf message self.tf_pub.publish(tfm) if __name__ == '__main__': tf_manager = TfManager(standalone=True) while not rospy.is_shutdown(): transform = tf_manager.get_link_pose('hand_palm_link') test_pose1 = np.array([-0.5, 0.0, 0.0]) # -0.5 to z direction on map test_pose1 = tf_manager.transform_coordinate(test_pose1) test_pose2 = np.array([0.0, 1.0, 0.0]) # -1.0 to x direction on map test_pose2 = tf_manager.transform_coordinate(test_pose2) test_pose3 = np.array([-0.3, -1.0, 0.0]) test_pose3 = tf_manager.transform_coordinate(test_pose3) ee_pose = tf_manager.get_link_pose() if ee_pose is None: continue test_pose4 = np.array([ ee_pose.pose.position.x, ee_pose.pose.position.y, ee_pose.pose.position.z ]) test_pose4 = tf_manager.transform_coordinate(test_pose4) test_pose5 = np.zeros(3) test_pose5 = tf_manager.transform_coordinate(test_pose5) print('test_1: ', test_pose1) print('test_2: ', test_pose2) print('test_3: ', test_pose3) print('test_4: ', test_pose4) print('test_5: ', test_pose5)
5,495
Python
32.512195
109
0.592903
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/mocap_interface.py
#!/bin/env/python3 import rospy import numpy as np from geometry_msgs.msg import PoseStamped from scipy.spatial.transform import Rotation as R class MocapInterface(object): def __init__(self, standalone=False): if standalone: rospy.init_node('mocap_interface') # Mocap list self.rigid_body_list = ( "base", "blue_gear", "green_gear", "red_gear", "yellow_shaft", "red_shaft", "end_effector" ) # Mocap to map self.translation = np.array([0.0, 0.0, 0.0]) self.rotation = np.array([ [0.0, 0.0, 1.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0] ]) # Rigid body pose dictionary self.rigid_posestamped = { name: PoseStamped() for name in self.rigid_body_list } # Subscriber self._mocap_sub = [ rospy.Subscriber('/mocap_pose_topic/{0}_pose'.format(self.rigid_body_list[i]), PoseStamped, self._mocap_cb, callback_args=i) for i in range(len(self.rigid_body_list)) ] def _mocap_cb(self, mocap_data, id): converted_pose = self.convert_mocap_to_map(mocap_data) mocap_data.header.frame_id = 'map' mocap_data.pose.position.x = converted_pose[0] mocap_data.pose.position.y = converted_pose[1] mocap_data.pose.position.z = converted_pose[2] mocap_data.pose.orientation.x = converted_pose[3] mocap_data.pose.orientation.y = converted_pose[4] mocap_data.pose.orientation.z = converted_pose[5] mocap_data.pose.orientation.w = converted_pose[6] self.rigid_posestamped[self.rigid_body_list[id]] = mocap_data def get_pose(self, name): return self.rigid_posestamped[name] def get_poses(self): return self.rigid_posestamped def convert_mocap_to_map(self, mocap_data): # Initialize vector and matrix trans_mat = np.zeros((4, 4)) qc_trans = np.zeros(4) qc_rot = np.zeros(4) # Calculate translation qc_trans[0] = mocap_data.pose.position.x qc_trans[1] = mocap_data.pose.position.y qc_trans[2] = mocap_data.pose.position.z qc_trans[3] = 1.0 trans_mat[3:, 3:] = 1.0 trans_mat[:3, 3] = self.translation trans_mat[:3, :3] = self.rotation qw_trans = trans_mat @ qc_trans qw_trans = qw_trans[:3] # Calculate rotation qc_rot[0] = mocap_data.pose.orientation.x qc_rot[1] = mocap_data.pose.orientation.y qc_rot[2] = mocap_data.pose.orientation.z qc_rot[3] = mocap_data.pose.orientation.w qc_rot_mat = R.from_quat(qc_rot).as_matrix() qw_rot_mat = self.rotation @ qc_rot_mat qw_rot = R.from_matrix(qw_rot_mat).as_quat() return np.concatenate([qw_trans, qw_rot]) if __name__ == '__main__': mocap_interface = MocapInterface(standalone=True) while not rospy.is_shutdown(): # Test each rigid body base_pose = mocap_interface.get_pose('base') print('base_pose: ', base_pose) blue_gear_pose = mocap_interface.get_pose('blue_gear') print('blue_gear_pose: ', blue_gear_pose) green_gear_pose = mocap_interface.get_pose('green_gear') print('green_gear_pose: ', green_gear_pose) red_gear_pose = mocap_interface.get_pose('red_gear') print('red_gear_pose: ', red_gear_pose) yellow_shaft_pose = mocap_interface.get_pose('yellow_shaft') print('yellow_shaft_pose: ', yellow_shaft_pose) red_shaft_pose = mocap_interface.get_pose('red_shaft') print('red_shaft_pose: ', red_shaft_pose) end_effector_pose = mocap_interface.get_pose('end_effector') print('end_effector_pose: ', end_effector_pose) # Test all rigid bodies rigid_poses = mocap_interface.get_poses() print('rigid_poses: ', rigid_poses['blue_gear'])
4,000
Python
33.791304
136
0.5855
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/force_sensor_interface.py
import sys import math import rospy from geometry_msgs.msg import WrenchStamped class ForceSensorInterface(object): def __init__(self, standalone=False): if standalone: rospy.init_node('force_torque_sensor_interface') self._force_data_x = 0.0 self._force_data_y = 0.0 self._force_data_z = 0.0 # Subscribe force torque sensor data from HSRB self._wrist_wrench_sub = rospy.Subscriber( '/hsrb/wrist_wrench/raw', WrenchStamped, self._ft_sensor_callback ) # Wait for connection try: rospy.wait_for_message('/hsrb/wrist_wrench/raw', WrenchStamped, timeout=10.0) except Exception as e: rospy.logerr(e) sys.exit(1) def _ft_sensor_callback(self, data): self._force_data_x = data.wrench.force.x self._force_data_y = data.wrench.force.y self._force_data_z = data.wrench.force.z def initialize_ft(self): self._force_data_x = 0.0 self._force_data_y = 0.0 self._force_data_z = 0.0 def get_current_force(self): return [self._force_data_x, self._force_data_y, self._force_data_z] def compute_difference(self, pre_data_list, post_data_list, calc_type='l1'): if (len(pre_data_list) != len(post_data_list)): raise ValueError('Argument lists differ in length') # Calcurate square sum of difference if calc_type == 'l1': l1_sums = sum([b - a for (a, b) in zip(pre_data_list, post_data_list)]) return l1_sums elif calc_type == 'l2': l2_sums = sum([math.pow(b - a, 2) for (a, b) in zip(pre_data_list, post_data_list)]) return math.sqrt(l2_sums) if __name__ == '__main__': ft_interface = ForceSensorInterface(standalone=True) rate = rospy.Rate(50) while not rospy.is_shutdown(): prev_ft_data = ft_interface.get_current_force() input('wait_for_user') curr_ft_data = ft_interface.get_current_force() force_difference = ft_interface.compute_difference(prev_ft_data, curr_ft_data) weight = round(force_difference / 9.81 * 1000, 1) print('weight:', weight) rate.sleep()
2,244
Python
32.014705
96
0.595365
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/planner/cross_entropy_method.py
import numpy as np from planner import Planner class CrossEntropyMethod(Planner): def __init__(self): super().__init__() def compute_path(self): pass
176
Python
16.699998
34
0.630682
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/planner/planner.py
import numpy as np class Planner(object): def __init__(self): pass @staticmethod def compute_path(self): raise NotImplementedError("Implement compute_path")
187
Python
17.799998
59
0.652406
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/planner/linear_interpolation.py
import numpy as np from .planner import Planner class LinearInterpolationPlanner(Planner): def __init__(self): super().__init__() def compute_path(self, op_pose, num_steps=10): # Compute linear interpolation path assert num_steps > 1, "Too short to create waypoints" traj_x = np.linspace(0.0, op_pose[0], num_steps) traj_y = np.linspace(0.0, op_pose[1], num_steps) traj_z = np.linspace(0.0, op_pose[2], num_steps) trajectory = np.dstack((traj_x, traj_y, traj_z)) return trajectory
557
Python
29.999998
61
0.621185
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/planner/spline_interpolation.py
import numpy as np from planner import Planner class SplineInterpolationPlanner(Planner): def __init__(self, offset): super().__init__() # Set parameters self.offset = offset def compute_path(self, op_pose, num_steps=10): # Compute linear interpolation path assert num_steps > 1, "Too short to create waypoints" traj_x = np.linspace(0.0, op_pose[0], num_steps) traj_y = np.linspace(0.0, op_pose[1], num_steps) traj_z = np.linspace(0.0, op_pose[2], num_steps) trajectory = np.dstack((traj_x, traj_y, traj_z)) return trajectory
619
Python
28.523808
61
0.615509
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/feedback/demo.py
#!/usr/bin/env/python3 import tf import sys import rospy import moveit_commander import numpy as np from scipy.spatial.transform import Rotation as R # TODO: fix sys.path.append('/root/tamp-hsr/hsr_tamp/experiments/env_2d/') sys.path.append('..') from tamp_planner import TAMPPlanner from hsr_py_interface import HSRPyInterface from post_process import PlanModifier from mocap_interface import MocapInterface from tf_interface import TfManager from geometry_msgs.msg import Pose from controller_manager_msgs.srv import ListControllers class ExecutePlan(object): def __init__(self, grasp_type='side'): # Initialize moveit moveit_commander.roscpp_initialize(sys.argv) # Initialize ROS node rospy.init_node('execute_tamp_plan') # Feedback rate self.rate = rospy.Rate(10) # Threshold self.move_threshold = 0.05 self.pick_threshold = 0.05 self.place_threshold = 0.04 # 0.038 self.stack_threshold = 0.04 # 0.038 # Core module self.tamp_planner = TAMPPlanner() self.hsr_py = HSRPyInterface() self.path_modifier = PlanModifier() self.mocap_interface = MocapInterface() self.tf_manager = TfManager() # Initialize Robot self.initialize_robot(grasp_type) def initialize_robot(self, grasp_type='side'): self.check_status() # Set moveit commander self.robot = moveit_commander.RobotCommander() self.arm = moveit_commander.MoveGroupCommander('arm', wait_for_servers=0.0) self.base = moveit_commander.MoveGroupCommander('base', wait_for_servers=0.0) self.gripper = moveit_commander.MoveGroupCommander('gripper', wait_for_servers=0.0) self.whole_body = moveit_commander.MoveGroupCommander('whole_body', wait_for_servers=0.0) # Set planning parameters self.set_planning_parameter() # Set arm to configuration position self.hsr_py.initialize_arm() # Set base to configuration position self.hsr_py.initialize_base() # Move to neutral self.hsr_py.set_task_pose(grasp_type) def set_planning_parameter(self): # Planning parameters self.whole_body.allow_replanning(True) self.whole_body.set_planning_time(3) self.whole_body.set_pose_reference_frame('map') # Scene parameters self.scene = moveit_commander.PlanningSceneInterface() self.scene.remove_world_object() def check_status(self): # Make sure the controller is running rospy.wait_for_service('/hsrb/controller_manager/list_controllers') list_controllers = rospy.ServiceProxy('/hsrb/controller_manager/list_controllers', ListControllers) running = False while running is False: rospy.sleep(0.1) for c in list_controllers().controller: if c.name == 'arm_trajectory_controller' and c.state == 'running': running |= True if c.name == 'head_trajectory_controller' and c.state == 'running': running |= True if c.name == 'gripper_controller' and c.state == 'running': running |= True if c.name == 'omni_base_controller' and c.state == 'running': running |= True return running def plan(self): # Run TAMP plan, _, _ = self.tamp_planner.plan() return plan def process(self, action_name, args): # Get rigid body poses from mocap mocap_poses = self.mocap_interface.get_poses() # Modify plan action_name, modified_action, ee_mode = self.path_modifier.post_process(action_name, args, mocap_poses) return modified_action, ee_mode def check_ee_mode(self): # Get end effector pose ee_pose = self.whole_body.get_current_pose() ee_rot = np.array([ ee_pose.pose.orientation.x, ee_pose.pose.orientation.y, ee_pose.pose.orientation.z, ee_pose.pose.orientation.w ]) ee_euler = R.from_quat(ee_rot).as_euler('xyz') # Check whether end effector is vertical to ground plane, or horizontal if -0.8 < ee_euler[1] and 0.8 > ee_euler[1]: ee_mode = 'vertical' elif -2.0 < ee_euler[1] and -1.0 > ee_euler[1]: ee_mode = 'horizontal' return ee_mode def create_trajectory(self, diff_pose, num_steps=2): # Temporally linear interpolation assert num_steps > 1, "Too shot to create waypoints" traj_x = np.linspace(0.0, diff_pose[0], num_steps) traj_y = np.linspace(0.0, diff_pose[1], num_steps) traj_z = np.linspace(0.0, diff_pose[2], num_steps) trajectory = np.dstack((traj_x, traj_y, traj_z)) return trajectory def set_target_pose(self, trajectory, move_mode='outward', ee_mode='horizontal'): if move_mode == 'outward': # Extract full trajectory diff_ee_traj = trajectory[0] goal_way_points = [] for i in range(1, len(diff_ee_traj)): # Transform difference pose on end effector frame to map frame target_map_pose = self.tf_manager.transform_coordinate(diff_ee_traj[i]) if ee_mode == 'horizontal': goal_pose = Pose() goal_pose.position.x = target_map_pose[0] goal_pose.position.y = target_map_pose[1] goal_pose.position.z = target_map_pose[2] goal_pose.orientation.x = 0.5 goal_pose.orientation.y = 0.5 goal_pose.orientation.z = 0.5 goal_pose.orientation.w = -0.5 goal_way_points.append(goal_pose) elif ee_mode == 'vertical': goal_pose = Pose() goal_pose.position.x = target_map_pose[0] goal_pose.position.y = target_map_pose[1] goal_pose.position.z = target_map_pose[2] goal_pose.orientation.x = 0.0 goal_pose.orientation.y = 0.707106781 goal_pose.orientation.z = 0.707106781 goal_pose.orientation.w = 0.0 goal_way_points.append(goal_pose) return goal_way_points elif move_mode == 'return': # Extract full trajectory diff_ee_traj = trajectory[0] goal_way_points = [] for i in range(1, len(diff_ee_traj)): # Transform difference pose on end effector frame to map frame target_map_pose = self.tf_manager.transform_coordinate(diff_ee_traj[i]) if ee_mode == 'horizontal': goal_pose = Pose() goal_pose.position.x = diff_ee_traj[i][0] goal_pose.position.y = diff_ee_traj[i][1] - 0.12 # TODO: modify goal_pose.position.z = diff_ee_traj[i][2] goal_pose.orientation.x = 0.5 goal_pose.orientation.y = 0.5 goal_pose.orientation.z = 0.5 goal_pose.orientation.w = -0.5 goal_way_points.append(goal_pose) elif ee_mode == 'vertical': goal_pose = Pose() goal_pose.position.x = diff_ee_traj[i][0] goal_pose.position.y = diff_ee_traj[i][1] - 0.12 # TODO: modify goal_pose.position.z = diff_ee_traj[i][2] - 0.2 # TODO: modify goal_pose.orientation.x = 0.0 goal_pose.orientation.y = 0.707106781 goal_pose.orientation.z = 0.707106781 goal_pose.orientation.w = 0.0 goal_way_points.append(goal_pose) return goal_way_points def modify_pose(self, diff_ee_pose, ee_mode): if ee_mode == 'horizontal': return (diff_ee_pose[0], diff_ee_pose[1], diff_ee_pose[2]) elif ee_mode == 'vertical': return (-diff_ee_pose[1], diff_ee_pose[0], diff_ee_pose[2]) def execute(self): plan = self.plan() if plan is None: return None for i, (action_name, args) in enumerate(plan): print('action_name:', action_name) if action_name == 'move': (_, diff_ee_pose), _ = self.process(action_name, args) # Set end effector mode ee_mode = self.check_ee_mode() # Move to next pose diff_ee_pose = self.modify_pose(diff_ee_pose, ee_mode) target_traj = self.create_trajectory(diff_ee_pose) goal_pose = self.set_target_pose(target_traj, ee_mode=ee_mode) (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) elif action_name == 'pick': finish = False (init_ee_pose, _), _ = self.process(action_name, args) while not finish: (_, diff_ee_pose), ee_mode = self.process(action_name, args) if ee_mode == 'horizontal': # Crete trajectory target_traj = self.create_trajectory(diff_ee_pose) goal_pose = self.set_target_pose(target_traj, ee_mode=ee_mode) # Move and plan to grasp pose (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) if np.sum(np.absolute(diff_ee_pose)) < self.pick_threshold: finish = True # Grasp object self.hsr_py.close_gripper() # Move to terminal pose target_traj = self.create_trajectory(init_ee_pose) goal_pose = self.set_target_pose(target_traj, move_mode='return') (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) elif ee_mode == 'vertical': finish = True # Move to target object & grasp object self.hsr_py.grasp_gear(diff_ee_pose) target_traj = self.create_trajectory(init_ee_pose) goal_pose = self.set_target_pose(target_traj, move_mode='return', ee_mode='vertical') (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) # Sleep up to rate self.rate.sleep() elif action_name == 'place': finish = False (init_ee_pose, _), _ = self.process(action_name, args) while not finish: (_, diff_ee_pose), ee_mode = self.process(action_name, args) # Crete trajectory target_traj = self.create_trajectory(diff_ee_pose) goal_pose = self.set_target_pose(target_traj, ee_mode=ee_mode) # Move and plan to place pose (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) print('difference (place):', np.sum(np.absolute(diff_ee_pose))) if np.sum(np.absolute(diff_ee_pose)) < self.place_threshold: finish = True # Sleep until stable rospy.sleep(1.0) # Put down end effector self.hsr_py.insert_object(ee_mode) # Release object self.hsr_py.open_gripper() # Move to terminal pose target_traj = self.create_trajectory(init_ee_pose) goal_pose = self.set_target_pose(target_traj, move_mode='return') (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) # Sleep up to rate self.rate.sleep() elif action_name == 'stack': finish = False (init_ee_pose, _), _ = self.process(action_name, args) while not finish: (_, diff_ee_pose), ee_mode = self.process(action_name, args) # Crete trajectory diff_ee_pose = self.modify_pose(diff_ee_pose, ee_mode) target_traj = self.create_trajectory(diff_ee_pose) goal_pose = self.set_target_pose(target_traj, ee_mode=ee_mode) # Move and plan to stack pose (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) print('diff_ee_pose (stack):', diff_ee_pose) if np.sum(np.absolute(diff_ee_pose)) < self.stack_threshold: finish = True # Sleep until stable rospy.sleep(1.0) # Put down end effector self.hsr_py.insert_object(ee_mode) # Release object self.hsr_py.open_gripper() # Move to terminal pose target_traj = self.create_trajectory(init_ee_pose) goal_pose = self.set_target_pose(target_traj, move_mode='return') (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) # Sleep up to rate self.rate.sleep() else: continue if __name__ == '__main__': exec_plan = ExecutePlan() exec_plan.execute()
14,549
Python
39.304709
114
0.530552
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/feedback/post_process.py
#!/usr/bin/env/python3 import numpy as np class PlanModifier(object): def __init__(self, x_offset=0.0, y_offset=-0.065, z_offset=-0.04): self.mocap_x_offset = x_offset self.mocap_y_offset = y_offset self.mocap_z_offset = z_offset self.left_hole_x = -0.10 self.left_hole_y = -0.18 self.left_hole_z = 0.125 # 0.135 # 0.125 # 0.12 self.right_hole_x = 0.095 self.right_hole_y = -0.18 self.right_hole_z = 0.142 # 0.15 # 0.145 # 0.14 self.x_scale = 0.0 # 0.0~0.1 self.y_scale = 0.065 # 0.0~0.1 self.z_scale = 0.0 # 0.0~0.0 self.ee_mode = 'horizontal' self.block_rigid_map = { 'A' : 'red_shaft', 'B' : 'green_gear', 'C' : 'yellow_shaft', 'D' : 'blue_gear' } def post_process(self, action_name, args, mocap_poses, grasp_type='side'): """ Modify plan using sensor data. Args: plan (list): plan is trajectory of the tamp. robot_pose (list): robot_pose consists of base_pose, end_effector_pose, gripper. rigid_poses (dict): rigid_pose consists of captured rigid body poses Returns: commands (list): commands is modified plan """ ee_pose = mocap_poses['end_effector'] if grasp_type == 'side': if action_name == 'move': robot, init_robot_pose, way_point, term_robot_pose = args # Modify end effector position from mocap marker attached position if self.ee_mode == 'horizontal': ee_pose_x = ee_pose.pose.position.x + self.mocap_x_offset ee_pose_y = ee_pose.pose.position.y - self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_z_offset elif self.ee_mode == 'vertical': ee_pose_x = ee_pose.pose.position.x - self.mocap_z_offset ee_pose_y = ee_pose.pose.position.y - self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_x_offset # Get end effector orientation ee_ori_x = ee_pose.pose.orientation.x ee_ori_y = ee_pose.pose.orientation.y ee_ori_z = ee_pose.pose.orientation.z ee_ori_w = ee_pose.pose.orientation.w # Initial pose init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z, ee_ori_x, ee_ori_y, ee_ori_z, ee_ori_w ], dtype=np.float64) # Calculate difference from target pose in configuration space diff_ee_pose = np.array([ self.x_scale * 0.0, self.y_scale * (term_robot_pose[0] - init_robot_pose[0]), self.z_scale * (term_robot_pose[1] - init_robot_pose[1]) ], dtype=np.float64) new_command = (action_name, [init_ee_pose, diff_ee_pose], self.ee_mode) elif action_name == 'pick': robot, block, init_block_pose, grasp_diff_pose, term_robot_pose = args # Set pick hyperparameters if block == 'A': ee_x_offset = 0.03 ee_y_offset = 0.0 ee_z_offset = 0.04 self.ee_mode = 'horizontal' elif block == 'B': ee_x_offset = -0.05 ee_y_offset = 0.0 ee_z_offset = 0.11 self.ee_mode = 'vertical' elif block == 'C': ee_x_offset = 0.03 ee_y_offset = 0.0 ee_z_offset = 0.04 self.ee_mode = 'horizontal' elif block == 'D': ee_x_offset = -0.05 ee_y_offset = 0.0 ee_z_offset = 0.13 self.ee_mode = 'vertical' # Modify end effector position from mocap marker attached position if self.ee_mode == 'horizontal': ee_pose_x = ee_pose.pose.position.x + self.mocap_x_offset ee_pose_y = ee_pose.pose.position.y - self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_z_offset elif self.ee_mode == 'vertical': ee_pose_x = ee_pose.pose.position.x - self.mocap_z_offset ee_pose_y = ee_pose.pose.position.y - self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_x_offset # Get end effector orientation ee_ori_x = ee_pose.pose.orientation.x ee_ori_y = ee_pose.pose.orientation.y ee_ori_z = ee_pose.pose.orientation.z ee_ori_w = ee_pose.pose.orientation.w # Initial pose init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z, ee_ori_x, ee_ori_y, ee_ori_z, ee_ori_w ], dtype=np.float64) # Map symbolic block name to real block name rigid_name = self.block_rigid_map[block] rigid_pose = mocap_poses[rigid_name] # Calculate grasp pose in configuration space rigid_pose_x = rigid_pose.pose.position.x rigid_pose_y = rigid_pose.pose.position.y rigid_pose_z = rigid_pose.pose.position.z diff_ee_pose = np.array([ rigid_pose_z - ee_pose_z - ee_x_offset, rigid_pose_x - ee_pose_x - ee_y_offset, rigid_pose_y - ee_pose_y - ee_z_offset, ], dtype=np.float64) new_command = (action_name, [init_ee_pose, diff_ee_pose], self.ee_mode) elif action_name == 'place': robot, block, init_block_pose, grasp_diff_pose, term_robot_pose = args # Get hole pose base_pose = mocap_poses['base'] # Modify hole position from mocap marker if block == 'A': hole_pose_x = base_pose.pose.position.x + self.left_hole_x hole_pose_y = base_pose.pose.position.y + self.left_hole_y hole_pose_z = base_pose.pose.position.z + self.left_hole_z self.ee_mode = 'horizontal' elif block == 'B': hole_pose_x = base_pose.pose.position.x + self.left_hole_x hole_pose_y = base_pose.pose.position.y + self.left_hole_y hole_pose_z = base_pose.pose.position.z + self.left_hole_z self.ee_mode = 'vertical' elif block == 'C': hole_pose_x = base_pose.pose.position.x + self.right_hole_x hole_pose_y = base_pose.pose.position.y + self.right_hole_y hole_pose_z = base_pose.pose.position.z + self.right_hole_z self.ee_mode = 'horizontal' elif block == 'D': hole_pose_x = base_pose.pose.position.x + self.right_hole_x hole_pose_y = base_pose.pose.position.y + self.right_hole_y hole_pose_z = base_pose.pose.position.z + self.right_hole_z self.ee_mode = 'vertical' # Modify end effector position from mocap marker attached position if self.ee_mode == 'horizontal': ee_pose_x = ee_pose.pose.position.x + self.mocap_x_offset ee_pose_y = ee_pose.pose.position.y - self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_z_offset elif self.ee_mode == 'vertical': ee_pose_x = ee_pose.pose.position.x - self.mocap_z_offset ee_pose_y = ee_pose.pose.position.y - self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_x_offset # Get end effector orientation ee_ori_x = ee_pose.pose.orientation.x ee_ori_y = ee_pose.pose.orientation.y ee_ori_z = ee_pose.pose.orientation.z ee_ori_w = ee_pose.pose.orientation.w # Initial pose init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z, ee_ori_x, ee_ori_y, ee_ori_z, ee_ori_w ], dtype=np.float64) # Map symbolic block name to real block name rigid_name = self.block_rigid_map[block] rigid_pose = mocap_poses[rigid_name] # Calculate place pose in configuration space rigid_pose_x = rigid_pose.pose.position.x rigid_pose_y = rigid_pose.pose.position.y rigid_pose_z = rigid_pose.pose.position.z diff_ee_pose = np.array([ hole_pose_z - rigid_pose_z, hole_pose_x - rigid_pose_x, hole_pose_y - rigid_pose_y, ], dtype=np.float64) new_command = (action_name, [init_ee_pose, diff_ee_pose], self.ee_mode) elif action_name == 'stack': robot, u_block, u_pose, grasp_diff_pose, \ term_robot_pose, l_block, l_pose = args # Get hole pose base_pose = mocap_poses['base'] # Modify hole position from mocap marker if u_block == 'A': hole_pose_x = base_pose.pose.position.x + self.left_hole_x hole_pose_y = base_pose.pose.position.y + self.left_hole_y hole_pose_z = base_pose.pose.position.z + self.left_hole_z - 0.01 # TODO: modify self.ee_mode = 'horizontal' elif u_block == 'B': hole_pose_x = base_pose.pose.position.x + self.left_hole_x + 0.0175 # TODO: modify hole_pose_y = base_pose.pose.position.y + self.left_hole_y hole_pose_z = base_pose.pose.position.z + self.left_hole_z - 0.015 # TODO: modify self.ee_mode = 'vertical' elif u_block == 'C': hole_pose_x = base_pose.pose.position.x + self.right_hole_x hole_pose_y = base_pose.pose.position.y + self.right_hole_y hole_pose_z = base_pose.pose.position.z + self.right_hole_z - 0.01 # TODO: modify self.ee_mode = 'horizontal' elif u_block == 'D': hole_pose_x = base_pose.pose.position.x + self.right_hole_x + 0.0175 # TODO: modify hole_pose_y = base_pose.pose.position.y + self.right_hole_y hole_pose_z = base_pose.pose.position.z + self.right_hole_z - 0.015 # TODO: modify self.ee_mode = 'vertical' # Modify end effector position from mocap marker attached position if self.ee_mode == 'horizontal': ee_pose_x = ee_pose.pose.position.x + self.mocap_x_offset ee_pose_y = ee_pose.pose.position.y - self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_z_offset elif self.ee_mode == 'vertical': ee_pose_x = ee_pose.pose.position.x - self.mocap_z_offset ee_pose_y = ee_pose.pose.position.y - self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_x_offset # Get end effector orientation ee_ori_x = ee_pose.pose.orientation.x ee_ori_y = ee_pose.pose.orientation.y ee_ori_z = ee_pose.pose.orientation.z ee_ori_w = ee_pose.pose.orientation.w # Initial pose init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z, ee_ori_x, ee_ori_y, ee_ori_z, ee_ori_w ], dtype=np.float64) # Map symbolic block name to real block name u_rigid_name = self.block_rigid_map[u_block] l_rigid_name = self.block_rigid_map[l_block] u_rigid_pose = mocap_poses[u_rigid_name] l_rigid_pose = mocap_poses[l_rigid_name] # Calculate stack pose in configuration space rigid_pose_x = u_rigid_pose.pose.position.x rigid_pose_y = u_rigid_pose.pose.position.y rigid_pose_z = u_rigid_pose.pose.position.z diff_ee_pose = np.array([ hole_pose_z - rigid_pose_z, hole_pose_x - rigid_pose_x, hole_pose_y - rigid_pose_y, ], dtype=np.float64) new_command = (action_name, [init_ee_pose, diff_ee_pose], self.ee_mode) else: pass elif grasp_type == 'top': ee_pose_x = ee_pose.pose.position.x + self.mocap_x_offset ee_pose_y = ee_pose.pose.position.y + self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_z_offset if action_name == 'move': robot, init_robot_pose, way_point, term_robot_pose = args # Calculate grasp pose in configuration space init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z ]) diff_ee_pose = np.array([ self.x_scale * 0.0, self.y_scale * (term_robot_pose[0] - init_robot_pose[0]), self.z_scale * (term_robot_pose[1] - init_robot_pose[1]) ]) term_ee_pose = init_ee_pose + diff_ee_pose new_command = (action_name, [init_ee_pose, diff_ee_pose, term_ee_pose]) elif action_name == 'pick': robot, block, init_block_pose, grasp_diff_pose, term_robot_pose = args # Map symbolic block name to real block name rigid_name = self.block_rigid_map[block] rigid_pose = mocap_poses[rigid_name] # Get curent end effector pose init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z ]) # Calculate grasp pose in configuration space rigid_pose_x = rigid_pose.pose.position.x rigid_pose_y = rigid_pose.pose.position.y rigid_pose_z = rigid_pose.pose.position.z diff_ee_pose = np.array([ ee_pose_y - rigid_pose_y, ee_pose_x - rigid_pose_x, ee_pose_z - rigid_pose_z ]) # Get terminal end effector pose as reverse of diff_ee_pose term_ee_pose = -diff_ee_pose new_command = (action_name, [init_ee_pose, diff_ee_pose, term_ee_pose]) elif action_name == 'place': robot, block, init_block_pose, grasp_diff_pose, term_robot_pose = args # Get hole pose base_pose = mocap_poses['base'] if block == 'A' or block == 'B': hole_pose_x = base_pose.pose.position.x + self.left_hole_x hole_pose_y = base_pose.pose.position.y + self.left_hole_y hole_pose_z = base_pose.pose.position.z + self.left_hole_z elif block == 'C' or block == 'D': hole_pose_x = base_pose.pose.position.x + self.right_hole_x hole_pose_y = base_pose.pose.position.y + self.right_hole_y hole_pose_z = base_pose.pose.position.z + self.right_hole_z # Get curent end effector pose init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z ]) # Calculate place pose in configuration space diff_ee_pose = np.array([ ee_pose_y - hole_pose_y, ee_pose_x - hole_pose_x, ee_pose_z - hole_pose_z ]) # Get terminal end effector pose as reverse of diff_ee_pose term_ee_pose = -diff_ee_pose new_command = (action_name, [init_ee_pose, diff_ee_pose, term_ee_pose]) elif action_name == 'stack': robot, u_block, u_pose, grasp_diff_pose, \ term_robot_pose, l_block, l_pose = args # Map symbolic block name to real block name u_rigid_name = self.block_rigid_map[u_block] l_rigid_name = self.block_rigid_map[l_block] u_rigid_pose = mocap_poses[u_rigid_name] l_rigid_pose = mocap_poses[l_rigid_name] # Get hole pose base_pose = mocap_poses['base'] if u_block == 'A' or u_block == 'B': hole_pose_x = base_pose.pose.position.x + self.left_hole_x hole_pose_y = base_pose.pose.position.y + self.left_hole_y hole_pose_z = base_pose.pose.position.z + self.left_hole_z elif u_block == 'C' or u_block == 'D': hole_pose_x = base_pose.pose.position.x + self.right_hole_x hole_pose_y = base_pose.pose.position.y + self.right_hole_y hole_pose_z = base_pose.pose.position.z + self.right_hole_z # Get curent end effector pose init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z ]) # Calculate stack pose in configuration space diff_ee_pose = np.array([ ee_pose_y - hole_pose_y, ee_pose_x - hole_pose_x, ee_pose_z - hole_pose_z ]) # Get terminal end effector pose as reverse of diff_ee_pose term_ee_pose = -diff_ee_pose new_command = (action_name, [init_ee_pose, diff_ee_pose, term_ee_pose]) else: pass return new_command
18,528
Python
44.192683
103
0.489259
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/feedforward/execute_plan.py
#!/usr/bin/env/python3 import sys import rospy import hsrb_interface import numpy as np from scipy.spatial.transform import Rotation as R # TODO: fix sys.path.append('/root/tamp-hsr/hsr_tamp/experiments/env_2d/') sys.path.append('..') from tamp_planner import TAMPPlanner from post_process import PlanModifier from mocap_interface import MocapInterface from tf_interface import TfManager from controller_manager_msgs.srv import ListControllers class ExecutePlan(object): def __init__(self, grasp_type='side'): # Initialize ROS node rospy.init_node('execute_tamp_plan') # Core module self.tamp_planner = TAMPPlanner() self.path_modifier = PlanModifier() self.mocap_interface = MocapInterface() self.tf_manager = TfManager() # Initialize Robot self.initialize_robot(grasp_type) def initialize_robot(self, grasp_type='side'): self.check_status() # Get hsr python interface self.robot = hsrb_interface.Robot() self.omni_base = self.robot.get('omni_base') self.gripper = self.robot.get('gripper') self.whole_body = self.robot.get('whole_body') # Initialize arm position self.whole_body.move_to_go() # Initialize base position self.omni_base.go_abs(0.0, 0.0, 0.0, 300.0) # Set base to configuration position self.omni_base.go_abs(-0.8, 0.80, np.pi/2, 300.0) # Set arm to neutral self.whole_body.move_to_neutral() # Set hsr to configuration pose if grasp_type == 'side': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=-0.25, y=0.0, z=0.0, ej=0.0), ], ref_frame_id='hand_palm_link') # Fix base position using mocap data gearbox_poses = self.mocap_interface.get_poses() initial_pose = self.tf_manager.get_init_pose(gearbox_poses) diff_x_pose, diff_y_pose, diff_z_pose = initial_pose[1], initial_pose[0], initial_pose[2] self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=0.0, y=-diff_y_pose, z=0.0) ], ref_frame_id='hand_palm_link') elif grasp_type == 'top': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=-0.25, y=0.0, z=0.0, ej=-np.pi/2), ], ref_frame_id='hand_palm_link') # Fix base position using mocap data gearbox_poses = self.mocap_interface.get_poses() initial_pose = self.tf_manager.get_init_pose(gearbox_poses) diff_x_pose, diff_y_pose, diff_z_pose = initial_pose[0], initial_pose[1], initial_pose[2] self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=-diff_x_pose, y=-diff_y_pose, z=0.0) ], ref_frame_id='hand_palm_link') # Open gripper self.gripper.command(1.2) def check_status(self): # Make sure the controller is running rospy.wait_for_service('/hsrb/controller_manager/list_controllers') list_controllers = rospy.ServiceProxy('/hsrb/controller_manager/list_controllers', ListControllers) running = False while running is False: rospy.sleep(0.1) for c in list_controllers().controller: if c.name == 'arm_trajectory_controller' and c.state == 'running': running |= True if c.name == 'head_trajectory_controller' and c.state == 'running': running |= True if c.name == 'gripper_controller' and c.state == 'running': running |= True if c.name == 'omni_base_controller' and c.state == 'running': running |= True return running def plan(self): # Run TAMP plan, _, _ = self.tamp_planner.plan() return plan def process(self, action_name, args, grasp_type='side'): # Get rigid body poses from mocap mocap_poses = self.mocap_interface.get_poses() # Modify plan action_name, modified_action, ee_mode = self.path_modifier.post_process(action_name, args, mocap_poses, grasp_type) return action_name, modified_action, ee_mode def check_ee_mode(self): # Get end effector pose ee_pose = self.whole_body.get_end_effector_pose() ee_rot = np.array([ ee_pose.ori.x, ee_pose.ori.y, ee_pose.ori.z, ee_pose.ori.w ]) ee_euler = R.from_quat(ee_rot).as_euler('xyz') # Check whether end effector is vertical to ground plane, or horizontal if -0.8 < ee_euler[1] and 0.8 > ee_euler[1]: ee_mode = 'vertical' elif -2.0 < ee_euler[1] and -1.0 > ee_euler[1]: ee_mode = 'horizontal' return ee_mode def execute(self, grasp_type='side'): plan = self.plan() if plan is None: return None for i, (action_name, args) in enumerate(plan): # Post process TAMP commands to hsr executable actions action_name, diff_ee_pose, ee_mode = self.process(action_name, args, grasp_type) if action_name == 'move': # Set end effector mode ee_mode = self.check_ee_mode() # Move to next pose if ee_mode == 'horizontal': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=diff_ee_pose[0], y=diff_ee_pose[1], z=diff_ee_pose[2] ), ], ref_frame_id='hand_palm_link') elif ee_mode == 'vertical': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=-diff_ee_pose[1], y=diff_ee_pose[0], z=diff_ee_pose[2] ), ], ref_frame_id='hand_palm_link') elif action_name == 'pick': # Set impedance self.whole_body.impedance_config = 'compliance_hard' # Move to grasp pose if ee_mode == 'horizontal': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=diff_ee_pose[0], y=diff_ee_pose[1], ), ], ref_frame_id='hand_palm_link') elif ee_mode == 'vertical': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=diff_ee_pose[0], y=diff_ee_pose[1], ek=-np.pi/2 ), ], ref_frame_id='hand_palm_link') self.whole_body.move_end_effector_by_line((0, 0, 1), diff_ee_pose[2]) # Grasp object self.gripper.apply_force(0.8) # Move to terminal pose if ee_mode == 'horizontal': self.whole_body.move_end_effector_by_line((1, 0, 0), -diff_ee_pose[0]) elif ee_mode == 'vertical': self.whole_body.move_end_effector_by_line((0, 1, 0), -diff_ee_pose[0]) # Remove impedance self.whole_body.impedance_config = None elif action_name == 'place': # Set impedance self.whole_body.impedance_config = 'compliance_hard' # Move to grasp pose if ee_mode == 'horizontal': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( y=diff_ee_pose[1], z=diff_ee_pose[2], ), ], ref_frame_id='hand_palm_link') self.whole_body.move_end_effector_by_line((1, 0, 0), diff_ee_pose[0]) elif ee_mode == 'vertical': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=-diff_ee_pose[1], z=diff_ee_pose[2], ), ], ref_frame_id='hand_palm_link') self.whole_body.move_end_effector_by_line((0, 1, 0), diff_ee_pose[0]) # Release object self.gripper.command(0.5) # Move to terminal pose if ee_mode == 'horizontal': self.whole_body.move_end_effector_by_line((1, 0, 0), -diff_ee_pose[0]) self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( y=-diff_ee_pose[1], z=-diff_ee_pose[2]-0.15, ), ], ref_frame_id='hand_palm_link') elif ee_mode == 'vertical': self.whole_body.move_end_effector_by_line((0, 1, 0), -diff_ee_pose[0]) self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=diff_ee_pose[1], z=-diff_ee_pose[2]-0.15, ek=np.pi/2 ), ], ref_frame_id='hand_palm_link') # Remove impedance self.whole_body.impedance_config = None elif action_name == 'stack': # Set impedance self.whole_body.impedance_config = 'compliance_hard' # Move to grasp pose if ee_mode == 'horizontal': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( y=diff_ee_pose[1], z=diff_ee_pose[2], ), ], ref_frame_id='hand_palm_link') self.whole_body.move_end_effector_by_line((0, 1, 0), diff_ee_pose[0]) elif ee_mode == 'vertical': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=-diff_ee_pose[1], z=diff_ee_pose[2], ), ], ref_frame_id='hand_palm_link') self.whole_body.move_end_effector_by_line((0, 1, 0), diff_ee_pose[0]) # Release object self.gripper.command(1.2) # Move to terminal pose if ee_mode == 'horizontal': self.whole_body.move_end_effector_by_line((1, 0, 0), -diff_ee_pose[0]) self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( y=-diff_ee_pose[1], z=-diff_ee_pose[2]-0.15, ), ], ref_frame_id='hand_palm_link') elif ee_mode == 'vertical': self.whole_body.move_end_effector_by_line((0, 1, 0), -diff_ee_pose[0]) self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=diff_ee_pose[1], z=-diff_ee_pose[2]-0.15, ek=np.pi/2 ), ], ref_frame_id='hand_palm_link') # Remove impedance self.whole_body.impedance_config = None else: continue if __name__ == '__main__': exec_plan = ExecutePlan() exec_plan.execute()
12,041
Python
38.611842
123
0.487584
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/controller/ik_solver.py
import os import sys import glob import random import numpy as np from scipy.spatial.transform import Rotation as R from .utils import multiply, invert, all_between, compute_forward_kinematics, \ compute_inverse_kinematics, select_solution, USE_ALL, USE_CURRENT from .hsrb_utils import get_link_pose, get_joint_positions, get_custom_limits BASE_FRAME = 'base_footprint' TORSO_JOINT = 'torso_lift_joint' ROTATION_JOINT = 'joint_rz' LIFT_JOINT = 'arm_lift_joint' HSR_TOOL_FRAMES = {'arm': 'hand_palm_link'} IK_FRAME = {'arm': 'hand_palm_link'} def get_ik_lib(): lib_path = os.environ['PYTHONPATH'].split(':')[1] # TODO: modify ik_lib_path = glob.glob(os.path.join(lib_path, '**/hsrb'), recursive=True) return ik_lib_path[0] ##################################### def get_tool_pose(arm): sys.path.append(get_ik_lib()) from ikArm import armFK arm_fk = {'arm': armFK} ik_joints = ['world_joint', 'arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] conf = get_joint_positions(ik_joints) assert len(conf) == 8 base_from_tool = compute_forward_kinematics(arm_fk[arm], conf) world_from_base = get_link_pose(BASE_FRAME) return multiply(world_from_base, base_from_tool) ##################################### def get_ik_generator(arm, ik_pose, custom_limits={}): sys.path.append(get_ik_lib()) from ikArm import armIK arm_ik = {'arm': armIK} base_joints = ['odom_x', 'odom_y', 'odom_t'] arm_joints = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] min_limits, max_limits = get_custom_limits(base_joints, arm_joints, custom_limits) arm_rot = R.from_quat(ik_pose[1]).as_euler('xyz')[0] sampled_limits = [(arm_rot-np.pi, arm_rot-np.pi), (0.0, 0.34)] while True: sampled_values = [random.uniform(*limits) for limits in sampled_limits] confs = compute_inverse_kinematics(arm_ik[arm], ik_pose, sampled_values) solutions = [q for q in confs if all_between(min_limits, q, max_limits)] yield solutions if all(lower == upper for lower, upper in sampled_limits): break def get_tool_from_ik(arm): world_from_tool = get_link_pose(HSR_TOOL_FRAMES[arm]) world_from_ik = get_link_pose(IK_FRAME[arm]) return multiply(invert(world_from_tool), world_from_ik) def sample_tool_ik(arm, tool_pose, nearby_conf=USE_CURRENT, max_attempts=100, **kwargs): generator = get_ik_generator(arm, tool_pose, **kwargs) whole_body_joints = ['world_joint', 'arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] for _ in range(max_attempts): try: solutions = next(generator) if solutions: return select_solution(whole_body_joints, solutions, nearby_conf=nearby_conf) except StopIteration: break return None def hsr_inverse_kinematics(arm, gripper_pose, custom_limits={}, **kwargs): base_arm_conf = sample_tool_ik(arm, gripper_pose, custom_limits=custom_limits, **kwargs) if base_arm_conf is None: return None return base_arm_conf if __name__ == '__main__': # test forward kinematics fk_pose = get_tool_pose('arm') print('fk_pose:', fk_pose) # test inverse kinematics import numpy as np pos_x = 0.0 pos_y = 0.0 pos_z = 0.6 foward = (0.70710678, 0.0, 0.70710678, 0.0) back = (0.0, -0.70710678, 0.0, 0.70710678) right = (0.5, -0.5, 0.5, 0.5) left = (0.5, 0.5, 0.5, -0.5) pose = ((pos_x, pos_y, pos_z), foward) print('pose:', pose) ik_pose = hsr_inverse_kinematics('arm', pose) print('ik_pose:', ik_pose) # test inverse kinematics generator import time for i in range(100): start = time.time() pose_x = 2.5 pose_y = 2.0 pose_z = 0.6 tool_pose = ((pose_x, pose_y, pose_z), (0.707107, 0.0, 0.707107, 0.0)) generator = get_ik_generator('arm', tool_pose) solutions = next(generator) print(solutions) print('Loop Hz:', 1/(time.time()-start))
4,179
Python
33.545454
111
0.615219
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/controller/hsrb_utils.py
import rospy import numpy as np import hsrb_interface from scipy.spatial.transform import Rotation as R robot = hsrb_interface.Robot() base = robot.get('omni_base') gripper = robot.get('gripper') whole_body = robot.get('whole_body') def get_link_pose(link): tf_pose = whole_body._tf2_buffer.lookup_transform('map', link, rospy.Time(0)) link_pose = ((tf_pose.transform.translation.x, tf_pose.transform.translation.y, tf_pose.transform.translation.z), (tf_pose.transform.rotation.x, tf_pose.transform.rotation.y, tf_pose.transform.rotation.z, tf_pose.transform.rotation.w)) return link_pose def get_joint_limits(joint): if joint == 'odom_x': limit = (-10.0, 10.0) elif joint == 'odom_y': limit = (-10.0, 10.0) elif joint == 'odom_t': limit = (-10.0, 10.0) else: limit = whole_body.joint_limits[joint] return limit def get_custom_limits(base_joints, arm_joints, custom_limits={}): joint_limits = [] for joint in base_joints: if joint in custom_limits: joint_limits.append(custom_limits[joint]) else: joint_limits.append(get_joint_limits(joint)) for joint in arm_joints: if joint in custom_limits: joint_limits.append(custom_limits[joint]) else: joint_limits.append(get_joint_limits(joint)) return zip(*joint_limits) def get_distance(p1, p2, **kwargs): assert len(p1) == len(p2) diff = np.array(p2) - np.array(p1) return np.linalg.norm(diff, ord=2) def get_joint_position(joint): if joint == 'world_joint': joint_position = base.pose else: joint_position = whole_body.joint_positions[joint] return joint_position def get_joint_positions(jonits): joint_positions = [] for joint in jonits: if joint == 'world_joint': base_pose = base._tf2_buffer.lookup_transform('map', 'base_footprint', rospy.Time(0)) joint_positions.append(base_pose.transform.translation.x) joint_positions.append(base_pose.transform.translation.y) base_quat = np.array([base_pose.transform.rotation.x, base_pose.transform.rotation.y, base_pose.transform.rotation.z, base_pose.transform.rotation.w]) base_rz = R.from_quat(base_quat).as_euler('xyz')[2] joint_positions.append(base_rz) else: joint_positions.append(whole_body.joint_positions[joint]) return joint_positions if __name__ == '__main__': # Test get_link_pose base_link_pose = get_link_pose('base_footprint') print('base_link_pose:', base_link_pose) hand_palm_link_pose = get_link_pose('hand_palm_link') print('hand_palm_link_pose:', hand_palm_link_pose) # Test get_custom_limits base_joints = ['odom_x', 'odom_y', 'odom_t'] arm_joints = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] custom_limits = get_custom_limits(base_joints, arm_joints) print('custom_limits:', custom_limits) # Test get_joint_limits for b_joint in base_joints: joint_limit = get_joint_limits(b_joint) print('joint_limit:', joint_limit) for a_joint in arm_joints: joint_limit = get_joint_limits(a_joint) print('joint_limit:', joint_limit) # Test get_joint_position ik_joints = ['world_joint', 'arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] for joint in ik_joints: joint_position = get_joint_position(joint) print('joint_position:', joint_position) # Test get_joint_positions joint_positions = get_joint_positions(ik_joints) print('joint_positions:', joint_positions)
3,904
Python
35.495327
97
0.615523
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/controller/ik_controller.py
import rospy import numpy as np from .controller import Controller from .ik_solver import get_tool_pose, get_ik_generator, hsr_inverse_kinematics from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint class IKController(Controller): def __init__(self): super(IKController, self).__init__() # Publisher self.arm_pub = rospy.Publisher('/hsrb/arm_trajectory_controller/command', JointTrajectory, queue_size=10) self.base_pub = rospy.Publisher('/hsrb/omni_base_controller/command', JointTrajectory, queue_size=10) # Wait for publisher has built while self.base_pub.get_num_connections() == 0: rospy.sleep(0.1) while self.arm_pub.get_num_connections() == 0: rospy.sleep(0.1) def set_pose(self, base_pose, joint_pose): base_traj = JointTrajectory() arm_traj = JointTrajectory() base_traj.joint_names = ['odom_x', 'odom_y', 'odom_t'] arm_traj.joint_names = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] # Set base trajectory assert len(base_pose) == 3, "Does not match the size of base pose" base_p = JointTrajectoryPoint() base_p.positions = base_pose base_p.velocities = np.zeros(len(base_pose)) base_p.time_from_start = rospy.Duration(1) base_traj.points = [base_p] # Set arm trajectory assert len(joint_pose) == 5, "Does not match the size of base pose" arm_p = JointTrajectoryPoint() arm_p.positions = joint_pose arm_p.velocities = np.zeros(len(joint_pose)) arm_p.time_from_start = rospy.Duration(1) arm_traj.points = [arm_p] return base_traj, arm_traj def control(self, pose): # Inverse kinematics ik_pose = hsr_inverse_kinematics('arm', pose) # pose must be contain (pos, quat) if ik_pose is None: return else: base_pose, arm_pose = ik_pose[:3], ik_pose[3:] # Set target pose base_traj, arm_traj = self.set_pose(base_pose, arm_pose) # Publish target pose self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) if __name__ == '__main__': ik_controller = IKController() rate = rospy.Rate(50) pose_x = 0.0 pose_y = 0.0 pose_z = 0.5 foward = (0.70710678, 0.0, 0.70710678, 0.0) back = (0.0, -0.70710678, 0.0, 0.70710678) right = (0.5, -0.5, 0.5, 0.5) left = (0.5, 0.5, 0.5, -0.5) while not rospy.is_shutdown(): # Test forward kinematics fk_pose = get_tool_pose('arm') # Test inverse kinematics tool_pose = ((pose_x, pose_y, pose_z), foward) ik_controller.control(tool_pose) # Sleep rate.sleep()
2,848
Python
32.517647
113
0.596559
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/controller/controller.py
import rospy import numpy as np class Controller(object): def __init__(self): pass def set_pose(self): raise NotImplementedError("Implement set_pose method") def control(self): raise NotImplementedError("Implement control method")
271
Python
18.42857
62
0.671587
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/controller/utils.py
import random import numpy as np import pybullet as p from collections import namedtuple from scipy.spatial.transform import Rotation as R from .hsrb_utils import get_joint_limits, get_joint_position, get_joint_positions, get_distance IKFastInfo = namedtuple('IKFastInfo', ['module_name', 'base_link', 'ee_link', 'free_joints']) USE_ALL = False USE_CURRENT = None ############ Mathematics def invert(pose): point, quat = pose return p.invertTransform(point, quat) # TODO: modify def multiply(*poses): pose = poses[0] for next_pose in poses[1:]: pose = p.multiplyTransforms(pose[0], pose[1], *next_pose) # TODO: modify return pose ############## def all_between(lower_limits, values, upper_limits): assert len(lower_limits) == len(values) assert len(values) == len(upper_limits) return np.less_equal(lower_limits, values).all() and \ np.less_equal(values, upper_limits).all() def compute_forward_kinematics(fk_fn, conf): pose = fk_fn(list(conf)) pos, rot = pose quat = R.from_matrix(rot).as_quat() return pos, quat def compute_inverse_kinematics(ik_fn, pose, sampled=[]): pos, quat = pose[0], pose[1] rot = R.from_quat(quat).as_matrix().tolist() if len(sampled) == 0: solutions = ik_fn(list(rot), list(pos)) else: solutions = ik_fn(list(rot), list(pos), list(sampled)) if solutions is None: return [] return solutions def get_ik_limits(joint, limits=USE_ALL): if limits is USE_ALL: return get_joint_limits(joint) elif limits is USE_CURRENT: value = get_joint_position(joint) return value, value return limits def select_solution(joints, solutions, nearby_conf=USE_ALL, **kwargs): if not solutions: return None if nearby_conf is USE_ALL: return random.choice(solutions) if nearby_conf is USE_CURRENT: nearby_conf = get_joint_positions(joints) return min(solutions, key=lambda conf: get_distance(nearby_conf, conf, **kwargs))
2,034
Python
26.133333
95
0.656834
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/hsr_interface.py
#!/usr/bin/env/python3 import rospy import hsrb_interface import numpy as np from scipy.spatial.transform import Rotation as R from controller_manager_msgs.srv import ListControllers from control_msgs.msg import JointTrajectoryControllerState class HSRInterface(object): def __init__(self, standalone=False): # Initialize ROS node if standalone: rospy.init_node('hsr_interface') # Check server status self.check_status() self.robot = hsrb_interface.Robot() self.omni_base = self.robot.get('omni_base') self.gripper = self.robot.get('gripper') self.whole_body = self.robot.get('whole_body') self.base_sub = rospy.Subscriber('/hsrb/omni_base_controller/state', JointTrajectoryControllerState, self.base_callback) self.arm_sub = rospy.Subscriber('/hsrb/arm_trajectory_controller/state', JointTrajectoryControllerState, self.arm_callback) self.base_pos, self.base_vel, self.base_acc = None, None, None self.arm_pos, self.arm_vel, self.arm_acc = None, None, None self.base_joints = ['joint_x', 'joint_y', 'joint_rz'] self.arm_joints = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] self.joint_ids_to_name = {'joint_x': 0, 'joint_y': 1, 'joint_rz': 2, 'arm_lift_joint': 0, 'arm_flex_joint': 1, 'arm_roll_joint': 2, 'wrist_flex_joint': 3, 'wrist_roll_joint': 4} def initialize_arm(self): # Initialize arm position self.whole_body.move_to_go() # Set TAMP pose self.whole_body.move_to_joint_positions({ 'arm_lift_joint': 0.1, 'arm_flex_joint': -np.pi/2, 'arm_roll_joint': 0.0, 'wrist_flex_joint': 0.0, 'wrist_roll_joint': 0.0, }) def initialize_base(self): # Initialize base position self.omni_base.go_abs(0.0, 0.0, 0.0, 300.0) def set_task_pose(self, grasp_type='side'): # Set base to configuration position self.omni_base.go_abs(-0.80, 0.75, np.pi/2, 300.0) # Set arm to configuration pose self.whole_body.move_to_neutral() if grasp_type == 'side': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=-0.3, y=0.0, z=0.0, ej=0.0), ], ref_frame_id='hand_palm_link') elif grasp_type == 'top': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=-0.3, y=0.0, z=0.0, ej=-1.57), ], ref_frame_id='hand_palm_link') # Open gripper self.gripper.command(1.2) def fix_task_pose(self, diff_pose): diff_x_pose, diff_y_pose, diff_z_pose = diff_pose[0], diff_pose[1], diff_pose[2] if np.abs(diff_z_pose) < 0.1: diff_z_pose = -0.12 else: diff_z_pose = 0.0 self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=0.0, y=diff_y_pose, z=diff_z_pose) ], ref_frame_id='hand_palm_link') def check_status(self): # Make sure the controller is running rospy.wait_for_service('/hsrb/controller_manager/list_controllers') list_controllers = rospy.ServiceProxy('/hsrb/controller_manager/list_controllers', ListControllers) running = False while running is False: rospy.sleep(0.1) for c in list_controllers().controller: if c.name == 'arm_trajectory_controller' and c.state == 'running': running |= True if c.name == 'head_trajectory_controller' and c.state == 'running': running |= True if c.name == 'gripper_controller' and c.state == 'running': running |= True if c.name == 'omni_base_controller' and c.state == 'running': running |= True return running def close_gripper(self, force=0.5): self.gripper.apply_force(force) def open_gripper(self, width=1.0): self.gripper.command(width) def insert_object(self, ee_mode): if ee_mode == 'horizontal': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=-0.03, y=0.0, z=0.0), ], ref_frame_id='hand_palm_link') elif ee_mode == 'vertical': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=0.0, y=-0.03, z=0.0), ], ref_frame_id='hand_palm_link') def grasp_gear(self, diff_ee_pose, pick_offset=0.1): # Open gripper self.open_gripper(0.5) # Move to grasp self.whole_body.move_end_effector_by_line((0, 0, 1), -pick_offset) self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=diff_ee_pose[0], y=diff_ee_pose[1], ek=-np.pi/2 ), ], ref_frame_id='hand_palm_link') self.whole_body.move_end_effector_by_line((0, 0, 1), diff_ee_pose[2]+pick_offset) # Close gripper self.close_gripper(0.5) def get_link_pose(self, link): tf_pose = self.whole_body._tf2_buffer.lookup_transform('map', link, rospy.Time(0)) link_pose = [[tf_pose.transform.translation.x, tf_pose.transform.translation.y, tf_pose.transform.translation.z], [tf_pose.transform.rotation.x, tf_pose.transform.rotation.y, tf_pose.transform.rotation.z, tf_pose.transform.rotation.w]] return link_pose def get_joint_limits(self, joint): if joint == 'odom_x': limit = (-10.0, 10.0) elif joint == 'odom_y': limit = (-10.0, 10.0) elif joint == 'odom_t': limit = (-10.0, 10.0) else: limit = self.whole_body.joint_limits[joint] return limit def get_custom_limits(self, base_joints, arm_joints, custom_limits={}): joint_limits = [] for joint in base_joints: if joint in custom_limits: joint_limits.append(custom_limits[joint]) else: joint_limits.append(self.get_joint_limits(joint)) for joint in arm_joints: if joint in custom_limits: joint_limits.append(custom_limits[joint]) else: joint_limits.append(self.get_joint_limits(joint)) return zip(*joint_limits) def get_distance(self, p1, p2, **kwargs): assert len(p1) == len(p2) diff = np.array(p2) - np.array(p1) return np.linalg.norm(diff, ord=2) def get_joint_position(self, joint, group=None): if group == 'base': joint_position = self.base_pos[self.joint_ids_to_name[joint]] elif group == 'arm': joint_position = self.arm_pos[self.joint_ids_to_name[joint]] else: raise ValueError(joint) return joint_position def get_joint_positions(self, group=None): joint_positions = [] if group == 'base': for base_joint in self.base_joints: base_pos = self.get_joint_position(base_joint, 'base') joint_positions.append(base_pos) elif group == 'arm': for arm_joint in self.arm_joints: arm_pos = self.get_joint_position(arm_joint, 'arm') joint_positions.append(arm_pos) else: for base_joint in self.base_joints: base_pos = self.get_joint_position(base_joint, 'base') joint_positions.append(base_pos) for arm_joint in self.arm_joints: arm_pos = self.get_joint_position(arm_joint, 'arm') joint_positions.append(arm_pos) return joint_positions def get_joint_velocity(self, joint, group=None): if group == 'base': joint_velocity = self.base_vel[self.joint_ids_to_name[joint]] elif group == 'arm': joint_velocity = self.arm_vel[self.joint_ids_to_name[joint]] else: raise ValueError(joint) return joint_velocity def get_joint_velocities(self, group=None): joint_velocities = [] if group == 'base': for base_joint in self.base_joints: joint_vel = self.get_joint_velocity(base_joint, 'base') joint_velocities.append(joint_vel) elif group == 'arm': for arm_joint in self.arm_joints: joint_vel = self.get_joint_velocity(arm_joint, 'arm') joint_velocities.append(joint_vel) else: for base_joint in self.base_joints: joint_vel = self.get_joint_velocity(base_joint, 'base') joint_velocities.append(joint_vel) for arm_joint in self.arm_joints: joint_vel = self.get_joint_velocity(arm_joint, 'arm') joint_velocities.append(joint_vel) return joint_velocities def get_joint_acceleration(self, joint, group=None): if group == 'base': joint_acceleration = self.base_acc[self.joint_ids_to_name[joint]] elif group == 'arm': joint_acceleration = self.arm_acc[self.joint_ids_to_name[joint]] else: raise ValueError(joint) return joint_acceleration def get_joint_accelerations(self, group=None): joint_acceralataions = [] if group == 'base': for base_joint in self.base_joints: joint_acc = self.get_joint_acceleration(base_joint, 'base') joint_acceralataions.append(joint_acc) elif group == 'arm': for arm_joint in self.arm_joints: joint_acc = self.get_joint_acceleration(arm_joint, 'arm') joint_acceralataions.append(joint_acc) else: for base_joint in self.base_joints: joint_acc = self.get_joint_acceleration(base_joint, 'base') joint_acceralataions.append(joint_acc) for arm_joint in self.arm_joints: joint_acc = self.get_joint_acceleration(arm_joint, 'arm') joint_acceralataions.append(joint_acc) return joint_acceralataions def base_callback(self, data): self.base_pos = data.actual.positions self.base_vel = data.actual.velocities self.base_acc = data.actual.accelerations def arm_callback(self, data): self.arm_pos = data.actual.positions self.arm_vel = data.actual.velocities self.arm_acc = data.actual.accelerations if __name__ == '__main__': hsr_interface = HSRInterface() hsr_interface.initialize_arm() hsr_interface.initialize_base() print('positions:', hsr_interface.get_joint_positions()) print('velocities:', hsr_interface.get_joint_velocities())
11,059
Python
38.784173
131
0.570757
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/mocap_interface.py
#!/bin/env/python3 import rospy import numpy as np from ros_numpy import numpify from geometry_msgs.msg import PoseStamped from scipy.spatial.transform import Rotation as R class MocapInterface(object): def __init__(self, standalone=False): if standalone: rospy.init_node('mocap_interface') # Mocap list self.rigid_body_list = ( "base", "gear1", "gear2", "gear3", "shaft1", "shaft2", "end_effector" ) # Mocap to map self.translation = np.array([0.0, 0.0, 0.0]) self.rotation = np.array([ [0.0, 0.0, 1.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0] ]) # Rigid body pose dictionary self.rigid_posestamped = { name: PoseStamped() for name in self.rigid_body_list } # Subscriber self._mocap_sub = [ rospy.Subscriber('/mocap_pose_topic/{0}_pose'.format(self.rigid_body_list[i]), PoseStamped, self._mocap_cb, callback_args=i) for i in range(len(self.rigid_body_list)) ] def _mocap_cb(self, mocap_data, id): converted_pose = self.convert_mocap_to_map(mocap_data) mocap_data.header.frame_id = 'map' mocap_data.pose.position.x = converted_pose[0] mocap_data.pose.position.y = converted_pose[1] mocap_data.pose.position.z = converted_pose[2] mocap_data.pose.orientation.x = converted_pose[3] mocap_data.pose.orientation.y = converted_pose[4] mocap_data.pose.orientation.z = converted_pose[5] mocap_data.pose.orientation.w = converted_pose[6] self.rigid_posestamped[self.rigid_body_list[id]] = mocap_data def get_pose(self, name): pos = numpify(self.rigid_posestamped[name].pose.position) orn = numpify(self.rigid_posestamped[name].pose.orientation) return [pos, orn] def get_poses(self): rigid_poses = {} for name, pose_stamped in self.rigid_posestamped.items(): pos = numpify(pose_stamped.pose.position) orn = numpify(pose_stamped.pose.orientation) rigid_poses[name] = [pos, orn] return rigid_poses def convert_mocap_to_map(self, mocap_data): # Initialize vector and matrix trans_mat = np.zeros((4, 4)) qc_trans = np.zeros(4) qc_rot = np.zeros(4) # Calculate translation qc_trans[0] = mocap_data.pose.position.x qc_trans[1] = mocap_data.pose.position.y qc_trans[2] = mocap_data.pose.position.z qc_trans[3] = 1.0 trans_mat[3:, 3:] = 1.0 trans_mat[:3, 3] = self.translation trans_mat[:3, :3] = self.rotation qw_trans = trans_mat @ qc_trans qw_trans = qw_trans[:3] # Calculate rotation qc_rot[0] = mocap_data.pose.orientation.x qc_rot[1] = mocap_data.pose.orientation.y qc_rot[2] = mocap_data.pose.orientation.z qc_rot[3] = mocap_data.pose.orientation.w qc_rot_mat = R.from_quat(qc_rot).as_matrix() qw_rot_mat = self.rotation @ qc_rot_mat qw_rot = R.from_matrix(qw_rot_mat).as_quat() return np.concatenate([qw_trans, qw_rot]) if __name__ == '__main__': mocap_interface = MocapInterface(standalone=True) while not rospy.is_shutdown(): # Test each rigid body base_pose = mocap_interface.get_pose('base') print('base_pose: ', base_pose) green_gear_pose = mocap_interface.get_pose('gear1') print('green_gear_pose: ', green_gear_pose) blue_gear_pose = mocap_interface.get_pose('gear2') print('blue_gear_pose: ', blue_gear_pose) red_gear_pose = mocap_interface.get_pose('gear3') print('red_gear_pose: ', red_gear_pose) red_shaft_pose = mocap_interface.get_pose('shaft1') print('red_shaft_pose: ', red_shaft_pose) yellow_shaft_pose = mocap_interface.get_pose('shaft2') print('yellow_shaft_pose: ', yellow_shaft_pose) end_effector_pose = mocap_interface.get_pose('end_effector') print('end_effector_pose: ', end_effector_pose) # Test all rigid bodies rigid_poses = mocap_interface.get_poses() print('rigid_poses: ', rigid_poses['gear1'])
4,331
Python
34.219512
136
0.587162
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/feedback/test_plan.py
#!/usr/bin/env/python3 import sys import rospy import numpy as np from scipy.spatial.transform import Rotation as R # TODO: fix sys.path.append('/root/tamp-hsr/hsr_tamp/experiments/env_3d/') sys.path.append('..') from tamp_planner import TAMPPlanner from hsr_interface import HSRInterface from force_sensor_interface import ForceSensorInterface from post_process import PlanModifier from mocap_interface import MocapInterface from tf_interface import TfManager from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint class ExecutePlan(object): def __init__(self): # Initialize ROS node rospy.init_node('execute_tamp_plan') # Feedback rate self.control_freq = 3 self.rate = rospy.Rate(self.control_freq) # Threshold self.move_threshold = 0.05 self.pick_threshold = 0.05 self.place_threshold = 0.04 self.stack_threshold = 0.032 self.weight_threshold = 500 # Core module self.tamp_planner = TAMPPlanner() self.hsr_interface = HSRInterface() self.tf_manager = TfManager() self.path_modifier = PlanModifier() self.mocap_interface = MocapInterface() self.ft_interface = ForceSensorInterface() # Publisher self.arm_pub = rospy.Publisher('/hsrb/arm_trajectory_controller/command', JointTrajectory, queue_size=10) self.base_pub = rospy.Publisher('/hsrb/omni_base_controller/command', JointTrajectory, queue_size=10) # Initialize Robot self.initialize_robot() # Initialize TAMP self.initialize_tamp() # Reset dataset self.reset_dataset() def reset_dataset(self): self.measured_ee_traj = [] self.measured_joint_traj = [] def initialize_robot(self): self.check_status() # Set gripper to configuration position self.hsr_interface.open_gripper() # Set arm to configuration position self.hsr_interface.initialize_arm() # Set base to configuration position self.hsr_interface.initialize_base() def initialize_tamp(self): # Get object poses object_poses = self.mocap_interface.get_poses() # Get robot poses self.robot_joints = ['joint_x', 'joint_y', 'joint_rz', 'arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] robot_poses = self.hsr_interface.get_joint_positions() # Initialize tamp simulator observations = (robot_poses, object_poses) self.tamp_planner.initialize(observations) def set_base_pose(self, base_pose): base_traj = JointTrajectory() base_traj.joint_names = ['odom_x', 'odom_y', 'odom_t'] # Set base trajectory assert len(base_pose) == 3, "Does not match the size of base pose" base_p = JointTrajectoryPoint() base_p.positions = base_pose base_p.velocities = np.zeros(len(base_pose)) base_p.time_from_start = rospy.Duration(1) base_traj.points = [base_p] return base_traj def set_arm_pose(self, arm_pose): arm_traj = JointTrajectory() arm_traj.joint_names = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] # Set arm trajectory assert len(arm_pose) == 5, "Does not match the size of base pose" arm_p = JointTrajectoryPoint() arm_p.positions = arm_pose arm_p.velocities = np.zeros(len(arm_pose)) arm_p.time_from_start = rospy.Duration(1) arm_traj.points = [arm_p] return arm_traj def check_status(self): # Wait for publisher has built while self.base_pub.get_num_connections() == 0: rospy.sleep(0.1) while self.arm_pub.get_num_connections() == 0: rospy.sleep(0.1) def plan(self): # Run TAMP plan, _, _ = self.tamp_planner.plan() return plan def process(self, action_name, args): # Modify plan action_name, modified_action = self.path_modifier.post_process(action_name, args) return action_name, modified_action def calculate_base_command(self, target_pose): curr_pose = self.hsr_interface.get_joint_positions(group='base') curr_vel = self.hsr_interface.get_joint_velocities(group='base') delta_pose = np.array(target_pose) - np.array(curr_pose) kp = 1.0 D = 1.0 kd = 2 * np.sqrt(kp) * D command = kp * delta_pose + kd * curr_vel command += np.array(curr_pose) return command def calculate_arm_command(self, target_pose): curr_pose = self.hsr_interface.get_joint_positions(group='arm') curr_vel = self.hsr_interface.get_joint_velocities(group='arm') delta_pose = np.array(target_pose) - np.array(curr_pose) kp = 1.0 D = 1.0 kd = 2 * np.sqrt(kp) * D command = kp * delta_pose + kd * curr_vel command += np.array(curr_pose) return command def execute(self): plan = self.plan() if plan is None: return None for i, (action_name, args) in enumerate(plan): # Post process TAMP commands to hsr executable actions action_name, modified_action = self.process(action_name, args) if action_name == 'move_base': for target_pose in modified_action: target_base_pose = self.calculate_base_command(target_pose[:3]) base_traj = self.set_base_pose(target_base_pose) self.base_pub.publish(base_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() elif action_name == 'pick': pick_traj, return_traj = modified_action for target_pose in pick_traj: # pick target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() # rospy.sleep(5.0) # self.hsr_interface.close_gripper() for target_pose in return_traj: # return target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() elif action_name == 'place': place_traj = modified_action for target_pose in place_traj: # place target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() elif action_name == 'insert': insert_traj, depart_traj, return_traj = modified_action for target_pose in insert_traj: # insert target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() # rospy.sleep(5.0) # self.hsr_interface.open_gripper() for target_pose in depart_traj: # depart target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() for target_pose in return_traj: # return target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() else: continue self.save_traj() def save_traj(self): np.save(f'measured_ee_traj', self.measured_ee_traj) np.save(f'measured_joint_traj', self.measured_joint_traj) if __name__ == '__main__': exec_plan = ExecutePlan() exec_plan.execute()
12,401
Python
38.496815
113
0.569148
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/feedback/post_process.py
#!/usr/bin/env/python3 import numpy as np class PlanModifier(object): def __init__(self): self.block_rigid_map = { 'A' : 'red_shaft', 'B' : 'green_gear', 'C' : 'yellow_shaft', 'D' : 'blue_gear', 'E' : 'red_gear' } def post_process(self, action_name, args): """ Modify plan using sensor data. Args: plan (list): plan is trajectory of the tamp. robot_pose (list): robot_pose consists of base_pose, end_effector_pose, gripper. rigid_poses (dict): rigid_pose consists of captured rigid body poses Returns: commands (list): commands is modified plan """ if action_name == 'move_base': # Parse TAMP returns start_pose, end_pose, traj = args base_traj = [] for commands in traj.commands: for path in commands.path: base_traj.append(path.values) new_command = (action_name, base_traj) elif action_name == 'pick': arm, block, init_block_pose, grasp_pose, term_robot_pose, traj = args [traj_pick] = traj.commands pick_traj = [] for path in traj_pick.path: pick_traj.append(path.values) return_traj = [] for path in traj_pick.reverse().path: return_traj.append(path.values) new_command = (action_name, (pick_traj, return_traj)) elif action_name == 'place': arm, block1, block2, init_block_pose, grasp_pose, term_robot_pose, traj = args [traj_place] = traj.commands place_traj = [] for path in traj_place.path: place_traj.append(path.values) new_command = (action_name, (place_traj)) elif action_name == 'insert': arm, block1, block2, block_pose1, block_pose2, grasp_pose, _, _, traj = args [traj_insert, traj_depart, traj_return] = traj.commands insert_traj = [] for path in traj_insert.path: insert_traj.append(path.values) depart_traj = [] for path in traj_depart.path: depart_traj.append(path.values) return_traj = [] for path in traj_return.reverse().path: return_traj.append(path.values) new_command = (action_name, (insert_traj, depart_traj, return_traj)) else: pass return new_command
2,576
Python
30.426829
92
0.522904
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/rl_policy/rl_agent.py
#!/usr/bin/env python3 import gym import copy import torch import numpy as np from rl_games.algos_torch import model_builder, torch_ext def rescale_actions(low, high, action): d = (high - low) / 2.0 m = (high + low) / 2.0 scaled_action = action * d + m return scaled_action class ResidualRL(object): def __init__(self, params): builder = model_builder.ModelBuilder() self.network = builder.load(params) self.states = None self.batch_size = 1 self.config = params['config'] self.clip_actions = self.config['clip_actions'] self.normalize_input = self.config['normalize_input'] self.normalize_value = self.config['normalize_value'] self.device = 'cuda' self.num_actions = self.config['num_actions'] self.num_observations = self.config['num_observations'] self.action_space = gym.spaces.Box(np.ones(self.num_actions) * -1.0, np.ones(self.num_actions) * 1.0) self.actions_num = self.action_space.shape[0] self.actions_low = torch.from_numpy(self.action_space.low.copy()).float().to(self.device) self.actions_high = torch.from_numpy(self.action_space.high.copy()).float().to(self.device) self.mask = [False] self.observation_space = gym.spaces.Box(np.ones(self.num_observations) * -np.Inf, np.ones(self.num_observations) * np.Inf) obs_shape = self.observation_space.shape config = { 'actions_num' : self.actions_num, 'input_shape' : obs_shape, 'num_seqs' : self.config['num_actors'], 'value_size': self.config.get('value_size', 1), 'normalize_value': self.normalize_value, 'normalize_input': self.normalize_input, } self.model = self.network.build(config) self.model.to(self.device) self.model.eval() self.is_rnn = self.model.is_rnn() def get_action(self, obs, is_determenistic=True): obs = self.unsqueeze_obs(obs) obs = self.preprocess_obs(obs) input_dict = { 'is_train': False, 'prev_actions': None, 'obs' : obs, 'rnn_states' : self.states } with torch.no_grad(): res_dict = self.model(input_dict) mu = res_dict['mus'] action = res_dict['actions'] self.states = res_dict['rnn_states'] if is_determenistic: current_action = mu else: current_action = action if self.clip_actions: return rescale_actions(self.actions_low, self.actions_high, torch.clamp(current_action, -1.0, 1.0)) else: return current_action def unsqueeze_obs(self, obs): if type(obs) is dict: for k, v in obs.items(): obs[k] = self.unsqueeze_obs(v) else: if len(obs.size()) > 1 or obs.size()[0] > 1: obs = obs.unsqueeze(0) return obs def preprocess_obs(self, obs): if type(obs) is dict: obs = copy.copy(obs) for k, v in obs.items(): if v.dtype == torch.uint8: obs[k] = v.float() / 255.0 else: obs[k] = v.float() else: if obs.dtype == torch.uint8: obs = obs.float() / 255.0 return obs def restore(self, fn): checkpoint = torch_ext.load_checkpoint(fn) self.model.load_state_dict(checkpoint['model']) if self.normalize_input and 'running_mean_std' in checkpoint: self.model.running_mean_std.load_state_dict(checkpoint['running_mean_std']) def init_rnn(self): if self.is_rnn: rnn_states = self.model.get_default_rnn_state() self.states = [torch.zeros((s.size()[0], self.batch_size, s.size()[2]), dtype=torch.float32).to(self.device) for s in rnn_states] def reset(self): self.init_rnn()
4,007
Python
34.157894
130
0.564512
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/rl_policy/execute_plan.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #!/usr/bin/env/python3 import os import sys import yaml import rospy import torch import numpy as np from typing import Union from scipy.spatial.transform import Rotation as R # TODO: fix sys.path.append('/root/tamp-hsr/hsr_tamp/experiments/env_3d/') sys.path.append('..') from tamp_planner import TAMPPlanner from hsr_interface import HSRInterface from force_sensor_interface import ForceSensorInterface from post_process import PlanModifier from mocap_interface import MocapInterface from tf_interface import TfManager from rl_agent import ResidualRL sys.path.append('/root/tamp-hsr/') from hsr_rl.utils.hydra_cfg.reformat import omegaconf_to_dict from hsr_rl.tasks.utils.pinoc_utils import HSRIKSolver from hsr_rl.tasks.utils.ik_utils import DifferentialInverseKinematicsCfg, DifferentialInverseKinematics from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint def load_config(policy_name: str = 'pick'): file_name = os.path.join('.', 'config', policy_name + '_config.yaml') with open(file_name, 'r') as f: config = yaml.load(f, Loader=yaml.SafeLoader) return config def norm_diff_pos(p1: torch.Tensor, p2: torch.Tensor) -> torch.Tensor: # Calculate norm diff_norm = torch.norm(p1 - p2, p=2, dim=-1) return diff_norm def norm_diff_xy(p1: torch.Tensor, p2: torch.Tensor) -> torch.Tensor: # Calculate norm diff_norm = torch.norm(p1[:2] - p2[:2], p=2, dim=-1) return diff_norm def norm_diff_rot(q1: torch.Tensor, q2: torch.Tensor) -> torch.Tensor: # Calculate norm diff_norm1 = torch.norm(q1 - q2, p=2, dim=-1) diff_norm2 = torch.norm(q2 - q1, p=2, dim=-1) diff_norm = torch.min(diff_norm1, diff_norm2) return diff_norm def normalize(x, eps: float = 1e-9): return x / x.norm(p=2, dim=-1).clamp(min=eps, max=None).unsqueeze(-1) def quaternion_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: aw, ax, ay, az = torch.unbind(a, -1) bw, bx, by, bz = torch.unbind(b, -1) ow = aw * bw - ax * bx - ay * by - az * bz ox = aw * bx + ax * bw + ay * bz - az * by oy = aw * by - ax * bz + ay * bw + az * bx oz = aw * bz + ax * by - ay * bx + az * bw return torch.stack((ow, ox, oy, oz), -1) def calc_diff_pos(p1, p2): return p1 - p2 def calc_diff_rot(q1, q2): q1 = normalize(q1) q2 = normalize(q2) scaling = torch.tensor([1, -1, -1, -1], device=q1.device) q1_inv = q1 * scaling q_diff = quaternion_multiply(q2, q1_inv) return q_diff class ExecutePlan(object): def __init__(self, standalone=False): # Initialize ROS node rospy.init_node('execute_tamp_plan') # Feedback rate self.control_freq = 3.0 self.rate = rospy.Rate(self.control_freq) self._device = 'cuda' self._command_type = 'position_rel' self._pd_control = False self._dt = torch.tensor(1.0, device=self._device) self._clip_obs = torch.tensor(5.0, device=self._device) # Core module self.tamp_planner = TAMPPlanner() self.hsr_interface = HSRInterface() self.tf_manager = TfManager() self.path_modifier = PlanModifier() self.mocap_interface = MocapInterface() self.ft_interface = ForceSensorInterface() self.hsr_ik_utils = HSRIKSolver() # Publisher self.arm_pub = rospy.Publisher('/hsrb/arm_trajectory_controller/command', JointTrajectory, queue_size=10) self.base_pub = rospy.Publisher('/hsrb/omni_base_controller/command', JointTrajectory, queue_size=10) pick_yaml = load_config('pick') place_yaml = load_config('place') insert_yaml = load_config('insert') pick_policy_cfg = omegaconf_to_dict(pick_yaml) place_policy_cfg = omegaconf_to_dict(place_yaml) insert_policy_cfg = omegaconf_to_dict(insert_yaml) # Skill based residual policy agents self.pick_agent = ResidualRL(pick_policy_cfg.get("params")) self.place_agent = ResidualRL(place_policy_cfg.get("params")) self.insert_agent = ResidualRL(insert_policy_cfg.get("params")) # Restore learned params self.pick_agent.restore(pick_policy_cfg["params"]["load_path"]) self.place_agent.restore(place_policy_cfg["params"]["load_path"]) self.insert_agent.restore(insert_policy_cfg["params"]["load_path"]) # Get action scales for each skills self.pick_action_scale = torch.tensor(pick_policy_cfg["params"]["config"]["action_scale"], device=self._device) self.place_action_scale = torch.tensor(place_policy_cfg["params"]["config"]["action_scale"], device=self._device) self.insert_action_scale = torch.tensor(insert_policy_cfg["params"]["config"]["action_scale"], device=self._device) # Set ik controller self.ik_controller = self.set_ik_controller() # Initialize Robot self.initialize_robot() # Initialize TAMP self.initialize_tamp() def initialize_robot(self): self.check_status() # Set gripper to configuration position self.hsr_interface.open_gripper() # Set arm to configuration position self.hsr_interface.initialize_arm() # Set base to configuration position self.hsr_interface.initialize_base() def initialize_tamp(self): # Get object poses object_poses = self.mocap_interface.get_poses() # Get robot poses robot_poses = self.hsr_interface.get_joint_positions() # Initialize tamp simulator observations = (robot_poses, object_poses) self.tamp_planner.initialize(observations) ######################### #### ROS utils #### ######################### def set_base_pose(self, base_pose): base_traj = JointTrajectory() base_traj.joint_names = ['odom_x', 'odom_y', 'odom_t'] # Set base trajectory assert len(base_pose) == 3, "Does not match the size of base pose" base_p = JointTrajectoryPoint() base_p.positions = base_pose base_p.velocities = np.zeros(len(base_pose)) # TODO: modify velocity base_p.time_from_start = rospy.Duration(1) base_traj.points = [base_p] return base_traj def set_arm_pose(self, arm_pose): arm_traj = JointTrajectory() arm_traj.joint_names = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] # Set arm trajectory assert len(arm_pose) == 5, "Does not match the size of base pose" arm_p = JointTrajectoryPoint() arm_p.positions = arm_pose arm_p.velocities = np.zeros(len(arm_pose)) # TODO: modify velocity arm_p.time_from_start = rospy.Duration(1) arm_traj.points = [arm_p] return arm_traj def check_status(self): # Wait for publisher has built while self.base_pub.get_num_connections() == 0: rospy.sleep(0.1) while self.arm_pub.get_num_connections() == 0: rospy.sleep(0.1) ########################## #### TAMP utils #### ########################## def plan(self): # Run TAMP plan, _, _ = self.tamp_planner.plan() return plan def process(self, action_name, args): # Get object names object_names = self.tamp_planner.tamp_problem.body_names # Modify plan action_name, object_name, modified_action = self.path_modifier.post_process(action_name, object_names, args) return action_name, object_name, modified_action ######################### #### RL utils #### ######################### def get_pick_observation(self, obj_name, pick_pose, target_obj_pose) -> torch.Tensor: # Get joint pose joint_pose = self.hsr_interface.get_joint_positions(group='arm') # Get end effector and target object pose ee_pos, ee_rot = self.hsr_interface.get_link_pose('hand_palm_link') obj_pos, obj_rot = self.mocap_interface.get_pose(obj_name) # Calculate target end effector and object pose target_ee_pos, target_ee_rot = pick_pose[0], pick_pose[1] target_obj_pos, target_obj_rot = target_obj_pose[0], target_obj_pose[1] # To Tensor joint_pose = torch.tensor(joint_pose) ee_pos, ee_rot = torch.tensor(ee_pos), torch.tensor(ee_rot) # TODO: -torch.tensor(ee_rot) obj_pos, obj_rot = torch.tensor(obj_pos), torch.tensor(obj_rot) target_ee_pos, target_ee_rot = torch.tensor(target_ee_pos), torch.tensor(target_ee_rot) target_obj_pos, target_obj_rot = torch.tensor(target_obj_pos), torch.tensor(target_obj_rot) diff_ee_pos = calc_diff_pos(ee_pos, target_ee_pos) # difference ee_pos and pick_pos diff_ee_rot = calc_diff_rot(ee_rot, target_ee_rot) # difference ee_rot and pick_rot diff_obj_pos = calc_diff_pos(obj_pos, target_obj_pos) # difference obj_pos and target_pos diff_obj_rot = calc_diff_rot(obj_rot, target_obj_rot) # difference obj_rot and target_rot obs = torch.cat((joint_pose, diff_ee_pos, diff_ee_rot, diff_obj_pos, diff_obj_rot)) obs = self._process_data(obs) return obs def get_place_observation(self, obj_name, target_obj_pose) -> torch.Tensor: # Get joint pose joint_pose = self.hsr_interface.get_joint_positions(group='arm') # Get end effector and target object pose ee_pos, ee_rot = self.hsr_interface.get_link_pose('hand_palm_link') obj_pos, obj_rot = self.mocap_interface.get_pose(obj_name) # Calculate target pose from base pose target_obj_pos, target_obj_rot = target_obj_pose[0], target_obj_pose[1] # To Tensor joint_pose = torch.tensor(joint_pose) ee_pos, ee_rot = torch.tensor(ee_pos), torch.tensor(ee_rot) # TODO: -torch.tensor(ee_rot) obj_pos, obj_rot = torch.tensor(obj_pos), torch.tensor(obj_rot) target_obj_pos, target_obj_rot = torch.tensor(target_obj_pos), torch.tensor(target_obj_rot) diff_ee_pos = calc_diff_pos(ee_pos, obj_pos) # difference ee_pos and obj_pos diff_ee_rot = calc_diff_rot(ee_rot, obj_rot) # difference ee_rot and obj_rot diff_obj_pos = calc_diff_pos(obj_pos, target_obj_pos) # difference obj_pos and target_pos diff_obj_rot = calc_diff_rot(obj_rot, target_obj_rot) # difference obj_rot and target_rot obs = torch.cat((joint_pose, diff_ee_pos, diff_ee_rot, diff_obj_pos, diff_obj_rot)) obs = self._process_data(obs) return obs def get_insert_observation(self, obj_name, target_obj_pose) -> torch.Tensor: # Get joint pose joint_pose = self.hsr_interface.get_joint_positions(group='arm') # Get end effector and target object pose ee_pos, ee_rot = self.hsr_interface.get_link_pose('hand_palm_link') obj_pos, obj_rot = self.mocap_interface.get_pose(obj_name) # Calculate target pose from base pose target_obj_pos, target_obj_rot = target_obj_pose[0], target_obj_pose[1] # To Tensor joint_pose = torch.tensor(joint_pose) ee_pos, ee_rot = torch.tensor(ee_pos), torch.tensor(ee_rot) # TODO: -torch.tensor(ee_rot) obj_pos, obj_rot = torch.tensor(obj_pos), torch.tensor(obj_rot) target_obj_pos, target_obj_rot = torch.tensor(target_obj_pos), torch.tensor(target_obj_rot) diff_ee_pos = calc_diff_pos(ee_pos, obj_pos) # difference ee_pos and obj_pos diff_ee_rot = calc_diff_rot(ee_rot, obj_rot) # difference ee_rot and obj_rot diff_obj_pos = calc_diff_pos(obj_pos, target_obj_pos) # difference obj_pos and target_pos diff_obj_rot = calc_diff_rot(obj_rot, target_obj_rot) # difference obj_rot and target_rot obs = torch.cat((joint_pose, diff_ee_pos, diff_ee_rot, diff_obj_pos, diff_obj_rot)) obs = self._process_data(obs) return obs def _process_data(self, obs: torch.Tensor) -> torch.Tensor: # To device obs = obs.to(self._device) # To torch.float32 obs = obs.to(torch.float32) # Clamp observation obs = torch.clamp(obs, -self._clip_obs, self._clip_obs).to(self._device).clone() return obs def check_pick_status(self, obj_name): obj_pos, obj_rot = self.mocap_interface.get_pose(obj_name) ee_pos, ee_rot = self.hsr_interface.get_link_pose('hand_palm_link') obj_pos, obj_rot = torch.tensor(obj_pos), torch.tensor(obj_rot) ee_pos, ee_rot = torch.tensor(ee_pos), torch.tensor(ee_rot) # Calculate norm distance pos_dist = norm_diff_pos(ee_pos, obj_pos) print('pick distance:', pos_dist) pick_success = torch.where( pos_dist < torch.tensor([0.1]), torch.ones((1,)), torch.zeros((1,)) ) return True def check_place_status(self, obj_name, target_obj_pose): obj_pos, obj_rot = self.mocap_interface.get_pose(obj_name) target_pos, target_rot = target_obj_pose[0], target_obj_pose[1] obj_pos, obj_rot = torch.tensor(obj_pos), torch.tensor(obj_rot) target_pos, target_rot = torch.tensor(target_pos), torch.tensor(target_rot) # Calculate norm distance pos_dist = norm_diff_pos(obj_pos, target_pos) print('place distance:', pos_dist) place_success = torch.where( pos_dist < torch.tensor([0.03]), torch.ones((1,)), torch.zeros((1,)) ) return True def check_insert_status(self, obj_name, target_obj_pose): obj_pos, obj_rot = self.mocap_interface.get_pose(obj_name) target_pos, target_rot = target_obj_pose[0], target_obj_pose[1] obj_pos, obj_rot = torch.tensor(obj_pos), torch.tensor(obj_rot) target_pos, target_rot = torch.tensor(target_pos), torch.tensor(target_rot) # Calculate norm distance pos_dist = norm_diff_pos(obj_pos, target_pos) print('insert distance:', pos_dist) insert_success = torch.where( pos_dist < torch.tensor([0.02]), torch.ones((1,)), torch.zeros((1,)) ) return insert_success ########################## #### Real Robot utils #### ########################## def set_ik_controller(self): ik_control_cfg = DifferentialInverseKinematicsCfg( command_type=self._command_type, ik_method="dls", position_offset=(0.0, 0.0, 0.0), rotation_offset=(1.0, 0.0, 0.0, 0.0), ) return DifferentialInverseKinematics(ik_control_cfg, 1, self._device) def calculate_base_command(self, target_pose): curr_pose = self.hsr_interface.get_joint_positions(group='base') curr_vel = self.hsr_interface.get_joint_velocities(group='base') diff_pose = np.array(target_pose) - np.array(curr_pose) diff_vel = np.array(curr_vel) kp = 1.25 kd = 0.1 command = kp * diff_pose + kd * diff_vel command += np.array(curr_pose) return command def calculate_arm_command(self, target_pose): curr_pose = self.hsr_interface.get_joint_positions(group='arm') curr_vel = self.hsr_interface.get_joint_velocities(group='arm') diff_pose = np.array(target_pose) - np.array(curr_pose) diff_vel = np.array(curr_vel) kp = 1.25 kd = 0.1 command = kp * diff_pose + kd * diff_vel command += np.array(curr_pose) return command def execute(self): plan = self.plan() if plan is None: return None for i, (action_name, args) in enumerate(plan): # Post process TAMP commands to hsr executable actions action_name, object_name, modified_action = self.process(action_name, args) if action_name == 'move_base': for target_pose in modified_action: if self._pd_control: target_base_pose = self.calculate_base_command(target_pose[:3]) else: target_base_pose = target_pose[:3] base_traj = self.set_base_pose(target_base_pose) self.base_pub.publish(base_traj) self.rate.sleep() elif action_name == 'pick': finish = False pick_traj, return_traj = modified_action for target_pose in pick_traj: if self._pd_control: target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) else: target_base_pose = target_pose[:3] target_arm_pose = target_pose[3:] # Get observation obs = self.get_pick_observation(object_name, pick_pose, target_obj_pose) # Residual action with torch.no_grad(): actions = self.pick_agent.get_action(obs) # Multiply target 6D pose and residual 6D pose ik_action = self._dt * self.pick_action_scale * actions.to(self._device) # (dx, dy, dz) self.ik_controller.set_command(ik_action) # Calculate robot jacobian ee_pos, ee_rot = self.hsr_interface.get_link_pose('hand_palm_link') joint_positions = np.array(self.hsr_interface.get_joint_positions()) robot_jacobian = self.hsr_ik_utils.get_jacobian(joint_positions) # To tensor and device ee_pos = torch.tensor(ee_pos, dtype=torch.float32, device=self._device).view(1, 3) ee_rot = -torch.tensor(ee_rot, dtype=torch.float32, device=self._device).view(1, 4) robot_jacobian = torch.tensor(robot_jacobian, dtype=torch.float32, device=self._device).view(1, -1, 8) # Calcurate delta pose delta_pose = self.ik_controller.compute_delta(ee_pos, ee_rot, robot_jacobian) delta_pose = torch.squeeze(delta_pose, dim=0) delta_pose = delta_pose.to('cpu').detach().numpy().copy() # 8 dim # Add delta pose to reference trajectory target_base_pose += delta_pose[:3] target_arm_pose += delta_pose[3:] # Set target pose base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) # Publish command self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() rospy.sleep(2.0) self.hsr_interface.close_gripper() for target_pose in return_traj: # return if self._pd_control: target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) else: target_base_pose = target_pose[:3] target_arm_pose = target_pose[3:] base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() elif action_name == 'place': finish = False place_traj = modified_action for target_pose in place_traj: if self._pd_control: target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) else: target_base_pose = target_pose[:3] target_arm_pose = target_pose[3:] # Get observation obs = self.get_place_observation(object_name, target_obj_pose) # Residual action with torch.no_grad(): actions = self.place_agent.get_action(obs) # Multiply target 6D pose and residual 6D pose ik_action = self._dt * self.place_action_scale * actions.to(self._device) # (dx, dy, dz) self.ik_controller.set_command(ik_action) # Calculate robot jacobian ee_pos, ee_rot = self.hsr_interface.get_link_pose('hand_palm_link') joint_positions = np.array(self.hsr_interface.get_joint_positions()) robot_jacobian = self.hsr_ik_utils.get_jacobian(joint_positions) # To tensor and device ee_pos = torch.tensor(ee_pos, dtype=torch.float32, device=self._device).view(1, 3) ee_rot = -torch.tensor(ee_rot, dtype=torch.float32, device=self._device).view(1, 4) robot_jacobian = torch.tensor(robot_jacobian, dtype=torch.float32, device=self._device).view(1, -1, 8) # Calcurate delta pose delta_pose = self.ik_controller.compute_delta(ee_pos, ee_rot, robot_jacobian) delta_pose = torch.squeeze(delta_pose, dim=0) delta_pose = delta_pose.to('cpu').detach().numpy().copy() # 8 dim # Add delta pose to reference trajectory target_base_pose += delta_pose[:3] target_arm_pose += delta_pose[3:] # Set target pose base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) # Publish command self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() elif action_name == 'insert': finish = False loop_count = 0 insert_traj, depart_traj, return_traj = modified_action while not finish: # insert target_pose = insert_traj[loop_count] if self._pd_control: target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) else: target_base_pose = target_pose[:3] target_arm_pose = target_pose[3:] # Get observation obs = self.get_insert_observation(object_name, target_obj_pose) # Residual action with torch.no_grad(): actions = self.insert_agent.get_action(obs) # Multiply target 6D pose and residual 6D pose ik_action = self._dt * self.insert_action_scale * actions.to(self._device) # (dx, dy, dz) self.ik_controller.set_command(ik_action) # Calculate robot jacobian ee_pos, ee_rot = self.hsr_interface.get_link_pose('hand_palm_link') joint_positions = np.array(self.hsr_interface.get_joint_positions()) robot_jacobian = self.hsr_ik_utils.get_jacobian(joint_positions) # To tensor and device ee_pos = torch.tensor(ee_pos, dtype=torch.float32, device=self._device).view(1, 3) ee_rot = -torch.tensor(ee_rot, dtype=torch.float32, device=self._device).view(1, 4) robot_jacobian = torch.tensor(robot_jacobian, dtype=torch.float32, device=self._device).view(1, -1, 8) # Calcurate delta pose delta_pose = self.ik_controller.compute_delta(ee_pos, ee_rot, robot_jacobian) delta_pose = torch.squeeze(delta_pose, dim=0) delta_pose = delta_pose.to('cpu').detach().numpy().copy() # 8 dim # Add delta pose to reference trajectory target_base_pose += delta_pose[:3] target_arm_pose += delta_pose[3:] # Set target pose base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) prev_ft_data = self.ft_interface.get_current_force() # Publish command self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() loop_count += 1 if loop_count >= len(insert_traj): loop_count = len(insert_traj)-1 current_ft_data = self.ft_interface.get_current_force() force_difference = self.ft_interface.compute_difference(prev_ft_data, current_ft_data) weight = round(force_difference / 9.81 * 1000, 1) finish = bool(self.check_insert_status(object_name)) finish |= True if weight > 500 else False rospy.sleep(2.0) self.hsr_interface.open_gripper() for target_pose in depart_traj: # depart if self._pd_control: target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) else: target_base_pose = target_pose[:3] target_arm_pose = target_pose[3:] base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() for target_pose in return_traj: # return if self._pd_control: target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) else: target_base_pose = target_pose[:3] target_arm_pose = target_pose[3:] base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() else: continue if __name__ == '__main__': exec_plan = ExecutePlan() exec_plan.execute()
28,687
Python
41.188235
123
0.578799
makolon/hsr_isaac_tamp/hsr_rl/README.md
# HSR-RL
9
Markdown
3.999998
8
0.555555
makolon/hsr_isaac_tamp/hsr_rl/tasks/example/hsr_place.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from hsr_rl.tasks.base.rl_task import RLTask from hsr_rl.robots.articulations.hsr import HSR from hsr_rl.robots.articulations.views.hsr_view import HSRView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.prims.rigid_prim_view import RigidPrimView from omni.isaac.core.prims.geometry_prim_view import GeometryPrimView from omni.isaac.core.articulations.articulation_view import ArticulationView from omni.isaac.core.utils.torch.transformations import * from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.utils.stage import print_stage_prim_paths from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.core.objects import DynamicSphere, DynamicCuboid, FixedCuboid from omni.isaac.sensor import _sensor import re import torch from pxr import Usd, UsdGeom class HSRExamplePlaceTask(RLTask): def __init__( self, name, sim_config, env, ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._device = self._cfg["sim_device"] self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._dt = torch.tensor(self._task_cfg["sim"]["dt"] * self._task_cfg["env"]["controlFrequencyInv"], device=self._device) self._num_observations = self._task_cfg["env"]["num_observations"] self._num_actions = self._task_cfg["env"]["num_actions"] self._num_props = self._task_cfg["env"]["numProps"] self._table_height = 0.2 self._table_width = 0.65 self._table_depth = 1.2 self._table_size = 1.0 self._prop_size = 0.04 self._hsr_position = torch.tensor([0.0, 0.0, 0.03], device=self._device) self._hsr_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) self._table_position = torch.tensor([1.5, 0.0, self._table_height/2], device=self._device) self._table_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) self._prop_position = torch.tensor([1.3, 0.0, self._table_height+self._prop_size/2], device=self._device) self._prop_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) self._action_speed_scale = self._task_cfg["env"]["actionSpeedScale"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] # Start at 'home' positions self.torso_start = torch.tensor([0.1], device=self._device) self.base_start = torch.tensor([0.0, 0.0, 0.0], device=self._device) self.arm_start = torch.tensor([0.1, -1.570796, 0.0, -0.392699, 0.0], device=self._device) self.gripper_proximal_start = torch.tensor([0.75, 0.75], device=self._device) self.initial_dof_positions = torch.tensor([0.0, 0.0, 0.0, 0.1, 0.1, -1.570796, 0.0, 0.0, 0.0, -0.392699, 0.0, 0.75, 0.75, 0.0, 0.0], device=self._device) # Joint & body names self._torso_joint_name = ["torso_lift_joint"] self._base_joint_names = ["joint_x", "joint_y", "joint_rz"] self._arm_names = ["arm_lift_joint", "arm_flex_joint", "arm_roll_joint", "wrist_flex_joint", "wrist_roll_joint"] self._gripper_proximal_names = ["hand_l_proximal_joint", "hand_r_proximal_joint"] # Values are set in post_reset after model is loaded self.torso_dof_idx = [] self.base_dof_idxs = [] self.arm_dof_idxs = [] self.gripper_proximal_dof_idxs = [] # Dof joint position limits self.torso_dof_lower = [] self.torso_dof_upper = [] self.base_dof_lower = [] self.base_dof_upper = [] self.arm_dof_lower = [] self.arm_dof_upper = [] self.gripper_p_dof_lower = [] self.gripper_p_dof_upper = [] # Add contact sensor self._contact_sensor_interface = _sensor.acquire_contact_sensor_interface() self.is_collided = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.is_success = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) RLTask.__init__(self, name, env) return def set_up_scene(self, scene) -> None: self.add_hsr() self.add_prop() self.add_table() # Set up scene super().set_up_scene(scene) # Add robot to scene self._robots = HSRView(prim_paths_expr="/World/envs/.*/hsrb", name="hsrb_view") scene.add(self._robots) scene.add(self._robots._hands) scene.add(self._robots._lfingers) scene.add(self._robots._rfingers) scene.add(self._robots._fingertip_centered) # Add prop to scene self._props = RigidPrimView(prim_paths_expr="/World/envs/.*/prop", name="prop_view", reset_xform_properties=False) scene.add(self._props) def add_hsr(self): hsrb = HSR(prim_path=self.default_zero_env_path + "/hsrb", name="hsrb", translation=self._hsr_position, orientation=self._hsr_rotation) self._sim_config.apply_articulation_settings("hsrb", get_prim_at_path(hsrb.prim_path), self._sim_config.parse_actor_config("hsrb")) def add_prop(self): prop = DynamicCuboid(prim_path=self.default_zero_env_path + "/prop", name="prop", translation=self._prop_position, orientation=self._prop_rotation, size=self._prop_size, color=torch.tensor([0.2, 0.4, 0.6]), mass=0.1, density=100.0) self._sim_config.apply_articulation_settings("prop", get_prim_at_path(prop.prim_path), self._sim_config.parse_actor_config("prop")) def add_table(self): table = FixedCuboid(prim_path=self.default_zero_env_path + "/table", name="table", translation=self._table_position, orientation=self._table_rotation, size=self._table_size, color=torch.tensor([0.75, 0.75, 0.75]), scale=torch.tensor([self._table_width, self._table_depth, self._table_height])) self._sim_config.apply_articulation_settings("table", get_prim_at_path(table.prim_path), self._sim_config.parse_actor_config("table")) def get_observations(self): # Get prop positions and orientations prop_positions, prop_orientations = self._props.get_world_poses(clone=False) prop_positions = prop_positions[:, 0:3] - self._env_pos # Get prop velocities prop_velocities = self._props.get_velocities(clone=False) prop_linvels = prop_velocities[:, 0:3] prop_angvels = prop_velocities[:, 3:6] # Get end effector positions and orientations end_effector_positions, end_effector_orientations = self._robots._fingertip_centered.get_world_poses(clone=False) end_effector_positions = end_effector_positions[:, 0:3] - self._env_pos # Get end effector velocities end_effector_velocities = self._robots._fingertip_centered.get_velocities(clone=False) end_effector_linvels = end_effector_velocities[:, 0:3] end_effector_angvels = end_effector_velocities[:, 3:6] self.prop_positions = prop_positions self.prop_linvels = prop_linvels dof_pos = self._robots.get_joint_positions(clone=False) dof_vel = self._robots.get_joint_velocities(clone=False) self.obs_buf[..., 0:8] = dof_pos[..., self.actuated_dof_indices] self.obs_buf[..., 8:16] = dof_vel[..., self.actuated_dof_indices] self.obs_buf[..., 16:19] = end_effector_positions self.obs_buf[..., 19:23] = end_effector_orientations self.obs_buf[..., 23:26] = end_effector_linvels self.obs_buf[..., 26:29] = end_effector_angvels self.obs_buf[..., 29:32] = prop_positions self.obs_buf[..., 32:36] = prop_orientations observations = { self._robots.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) # Update position targets from actions self.dof_position_targets[..., self.actuated_dof_indices] += self._dt * self._action_speed_scale * actions.to(self.device) self.dof_position_targets[:] = tensor_clamp( self.dof_position_targets, self.robot_dof_lower_limits, self.robot_dof_upper_limits ) # Modify torso joint positions dof_pos = self._robots.get_joint_positions() arm_pos = dof_pos[:, self.arm_dof_idxs] scaled_arm_lift_pos = arm_pos[:, 0] / self.arm_dof_upper[0] scaled_torso_lift_pos = scaled_arm_lift_pos * self.torso_dof_upper[0] self.dof_position_targets[:, self.torso_dof_idx] = scaled_torso_lift_pos.unsqueeze(dim=1) # reset position targets for reset envs self.dof_position_targets[reset_env_ids] = self.initial_dof_positions self._robots.set_joint_positions(self.dof_position_targets) def reset_idx(self, env_ids): num_resets = len(env_ids) env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) min_d = -0.01 # min horizontal dist from origin max_d = 0.01 # max horizontal dist from origin min_height = 0.01 max_height = 0.02 dists = torch_rand_float(min_d, max_d, (num_resets, 1), self._device) dirs = torch_random_dir_2((num_resets, 1), self._device) hpos = dists * dirs # Prop pos / rot, velocities self.prop_pos = self.initial_prop_pos.clone() self.prop_rot = self.initial_prop_rot.clone() # position self.prop_pos[env_ids_64, 0:2] += hpos[..., 0:2] self.prop_pos[env_ids_64, 2] += torch_rand_float(min_height, max_height, (num_resets, 1), self._device).squeeze() # rotation self.prop_rot[env_ids_64, 0] = 1 self.prop_rot[env_ids_64, 1:] = 0 # reset root state for props in selected envs self._props.set_world_poses(self.prop_pos[env_ids_64], self.prop_rot[env_ids_64], indices=env_ids_32) # reset root state for robots in selected envs self._robots.set_world_poses(self.initial_robot_pos[env_ids_64], self.initial_robot_rot[env_ids_64], indices=env_ids_32) # reset DOF states for robots in selected envs self._robots.set_joint_positions(self.initial_dof_positions, indices=env_ids_32) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 self.extras[env_ids] = 0 self.is_collided[env_ids] = 0 def post_reset(self): self.set_dof_idxs() self.set_dof_limits() self.set_default_state() # reset prop pos / rot, and velocities self.initial_robot_pos, self.initial_robot_rot = self._robots.get_world_poses() self.initial_robot_velocities = self._robots.get_velocities() # reset prop pos / rot, and velocities self.initial_prop_pos, self.initial_prop_rot = self._props.get_world_poses() self.initial_prop_velocities = self._props.get_velocities() def calculate_metrics(self) -> None: # Distance from hand to the box dist_hand = torch.norm(self.obs_buf[..., 29:32] - self.obs_buf[..., 16:19], p=2, dim=-1) # Distance from left gripper to the box lfinger_pos, _ = self._robots._lfingers.get_world_poses(clone=False) lfinger_pos -= self._env_pos dist_lf = torch.norm(self.obs_buf[..., 29:32] - lfinger_pos, p=2, dim=-1) # Distance from right gripper to the box rfinger_pos, _ = self._robots._rfingers.get_world_poses(clone=False) rfinger_pos -= self._env_pos dist_rf = torch.norm(self.obs_buf[..., 29:32] - rfinger_pos, p=2, dim=-1) dist_reward = 1.0 - torch.tanh(10.0 * (dist_hand + dist_lf + dist_rf) / 3) self.rew_buf[:] = dist_reward # In this policy, episode length is constant across all envs is_last_step = (self.progress_buf[0] == self._max_episode_length - 1) if is_last_step: # Check if nut is picked up and above table lift_success = self._check_lift_success(height_threashold=0.24) self.rew_buf[:] += lift_success * self._task_cfg['rl']['success_bonus'] self.extras['successes'] = torch.mean(lift_success.float()) def is_done(self) -> None: # prop height index is 31, NOTE: modify according to observation self.reset_buf = torch.where( self.obs_buf[:, 31] <= self._table_height, torch.ones_like(self.reset_buf), self.reset_buf ) self.reset_buf = torch.where( self.progress_buf[:] >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf ) def post_physics_step(self): """Step buffers. Refresh tensors. Compute observations and reward. Reset environments.""" self.progress_buf[:] += 1 if self._env._world.is_playing(): # In this policy, episode length is constant is_last_step = (self.progress_buf[0] == self._max_episode_length - 1) if is_last_step: self._close_gripper(sim_steps=self._task_cfg['env']['num_gripper_close_sim_steps']) self._lift_gripper(sim_steps=self._task_cfg['env']['num_gripper_lift_sim_steps']) self.get_observations() self.get_states() self.calculate_metrics() self.is_done() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def set_dof_idxs(self): [self.torso_dof_idx.append(self._robots.get_dof_index(name)) for name in self._torso_joint_name] [self.base_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._base_joint_names] [self.arm_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._arm_names] [self.gripper_proximal_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._gripper_proximal_names] # Movable joints self.actuated_dof_indices = torch.LongTensor(self.base_dof_idxs+self.arm_dof_idxs).to(self._device) # torch.LongTensor([0, 1, 2, 3, 5, 7, 9, 10]).to(self._device) def set_dof_limits(self): # dof position limits # (num_envs, num_dofs, 2) dof_limits = self._robots.get_dof_limits() dof_limits_lower = dof_limits[0, :, 0].to(self._device) dof_limits_upper = dof_limits[0, :, 1].to(self._device) # Set relevant joint position limit values self.torso_dof_lower = dof_limits_lower[self.torso_dof_idx] self.torso_dof_upper = dof_limits_upper[self.torso_dof_idx] self.base_dof_lower = dof_limits_lower[self.base_dof_idxs] self.base_dof_upper = dof_limits_upper[self.base_dof_idxs] self.arm_dof_lower = dof_limits_lower[self.arm_dof_idxs] self.arm_dof_upper = dof_limits_upper[self.arm_dof_idxs] self.gripper_p_dof_lower = dof_limits_lower[self.gripper_proximal_dof_idxs] self.gripper_p_dof_upper = dof_limits_upper[self.gripper_proximal_dof_idxs] self.robot_dof_lower_limits, self.robot_dof_upper_limits = torch.t(dof_limits[0].to(device=self._device)) def set_default_state(self): # Set default joint state joint_states = self._robots.get_joints_default_state() jt_pos = joint_states.positions jt_pos[:, self.torso_dof_idx] = self.torso_start jt_pos[:, self.base_dof_idxs] = self.base_start jt_pos[:, self.arm_dof_idxs] = self.arm_start jt_pos[:, self.gripper_proximal_dof_idxs] = self.gripper_proximal_start jt_vel = joint_states.velocities jt_vel[:, self.torso_dof_idx] = torch.zeros_like(self.torso_start, device=self._device) jt_vel[:, self.base_dof_idxs] = torch.zeros_like(self.base_start, device=self._device) jt_vel[:, self.arm_dof_idxs] = torch.zeros_like(self.arm_start, device=self._device) jt_vel[:, self.gripper_proximal_dof_idxs] = torch.zeros_like(self.gripper_proximal_start, device=self._device) self._robots.set_joints_default_state(positions=jt_pos, velocities=jt_vel) # Initialize target positions self.dof_position_targets = jt_pos def _get_keypoint_dist(self): # end effector pose indices are 0:3, and prop pose indices are 13:16 keypoint_dist = torch.sum(torch.norm(self.obs_buf[:, 0:3] - self.obs_buf[:, 13:16], p=2, dim=-1), dim=-1) return keypoint_dist def _close_gripper(self, sim_steps=10): gripper_dof_pos = torch.tensor([-1.75, -1.75], device=self._device) # Step sim for _ in range(sim_steps): self._robots.set_joint_velocity_targets(gripper_dof_pos, joint_indices=self.gripper_proximal_dof_idxs) SimulationContext.step(self._env._world, render=True) def _lift_gripper(self, sim_steps=10): lift_dof_pos = torch.tensor([0.0, 0.0, 0.0, 0.1, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], device=self._device) # Step sim for _ in range(sim_steps): self._robots.set_joint_velocity_targets(lift_dof_pos) SimulationContext.step(self._env._world, render=True) def _check_lift_success(self, height_threashold): lift_success = torch.where( self.prop_pos[:, 2] > height_threashold, torch.ones((self.num_envs,), device=self._device), torch.zeros((self.num_envs,), device=self._device)) return lift_success def _check_robot_collisions(self): # Check if the robot collided with an object for obst_prim in self._tables._prim_paths: match = re.search(r'\d+', obst_prim) env_id = int(match.group()) raw_readings = self._contact_sensor_interface.get_contact_sensor_raw_data(obst_prim + "/Contact_Sensor") if raw_readings.shape[0]: for reading in raw_readings: if "hsrb" in str(self._contact_sensor_interface.decode_body_name(reading["body1"])): self.is_collided[env_id] = True if "hsrb" in str(self._contact_sensor_interface.decode_body_name(reading["body0"])): self.is_collided[env_id] = True collide_penalty = torch.where( self.is_collided == True, torch.ones((self.num_envs,), device=self._device), torch.zeros((self.num_envs,), device=self._device)) return collide_penalty
20,725
Python
45.68018
170
0.623836
makolon/hsr_isaac_tamp/hsr_rl/tasks/example/hsr_cabinet.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from hsr_rl.tasks.base.rl_task import RLTask from hsr_rl.robots.articulations.hsr import HSR from hsr_rl.robots.articulations.cabinet import Cabinet from hsr_rl.robots.articulations.views.hsr_view import HSRView from hsr_rl.robots.articulations.views.cabinet_view import CabinetView from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.prims.rigid_prim_view import RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.transformations import * from omni.isaac.core.utils.torch.rotations import * from omni.isaac.cloner import Cloner import math import torch import numpy as np from pxr import Usd, UsdGeom # Whole Body example task with holonomic robot base class HSRExampleCabinetTask(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self.action_scale = self._task_cfg["env"]["actionScale"] self.start_position_noise = self._task_cfg["env"]["startPositionNoise"] self.start_rotation_noise = self._task_cfg["env"]["startRotationNoise"] self.num_props = self._task_cfg["env"]["numProps"] self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self.dist_reward_scale = self._task_cfg["env"]["distRewardScale"] self.rot_reward_scale = self._task_cfg["env"]["rotRewardScale"] self.around_handle_reward_scale = self._task_cfg["env"]["aroundHandleRewardScale"] self.open_reward_scale = self._task_cfg["env"]["openRewardScale"] self.finger_dist_reward_scale = self._task_cfg["env"]["fingerDistRewardScale"] self.action_penalty_scale = self._task_cfg["env"]["actionPenaltyScale"] self.finger_close_reward_scale = self._task_cfg["env"]["fingerCloseRewardScale"] self.distX_offset = 0.04 self.dt = 1/60. self._num_observations = 35 self._num_actions = 15 RLTask.__init__(self, name, env) self.hsr_position = torch.tensor([1.5, 0.0, 0.03]) self.hsr_rotation = torch.tensor([0.0, 0.0, 0.0, 1.0]) return def set_up_scene(self, scene) -> None: self.add_hsr() self.add_cabinet() if self.num_props > 0: self.add_props() # Set up scene super().set_up_scene(scene) # Add robot to scene self._robots = HSRView(prim_paths_expr="/World/envs/.*/hsrb", name="hsrb_view") self._cabinets = CabinetView(prim_paths_expr="/World/envs/.*/cabinet", name="cabinet_view") scene.add(self._robots) scene.add(self._robots._hands) scene.add(self._robots._lfingers) scene.add(self._robots._rfingers) scene.add(self._robots._fingertip_centered) scene.add(self._cabinets) scene.add(self._cabinets._drawers) if self.num_props > 0: self._props = RigidPrimView(prim_paths_expr="/World/envs/.*/prop/.*", name="prop_view", reset_xform_properties=False) scene.add(self._props) self.init_data() return def add_hsr(self): hsrb = HSR(prim_path=self.default_zero_env_path + "/hsrb", name="hsrb", translation=self.hsr_position, orientation=self.hsr_rotation) self._sim_config.apply_articulation_settings("hsrb", get_prim_at_path(hsrb.prim_path), self._sim_config.parse_actor_config("hsrb")) def add_cabinet(self): cabinet = Cabinet(self.default_zero_env_path + "/cabinet", name="cabinet") self._sim_config.apply_articulation_settings("cabinet", get_prim_at_path(cabinet.prim_path), self._sim_config.parse_actor_config("cabinet")) def add_props(self): prop_cloner = Cloner() drawer_pos = torch.tensor([0.0515, 0.0, 0.7172]) prop_color = torch.tensor([0.2, 0.4, 0.6]) props_per_row = int(math.ceil(math.sqrt(self.num_props))) prop_size = 0.04 prop_spacing = 0.09 xmin = -0.5 * prop_spacing * (props_per_row - 1) zmin = -0.5 * prop_spacing * (props_per_row - 1) prop_count = 0 prop_pos = [] for j in range(props_per_row): prop_up = zmin + j * prop_spacing for k in range(props_per_row): if prop_count >= self.num_props: break propx = xmin + k * prop_spacing prop_pos.append([propx, prop_up, 0.0]) prop_count += 1 prop = DynamicCuboid( prim_path=self.default_zero_env_path + "/prop/prop_0", name="prop", color=prop_color, size=prop_size, density=100.0 ) self._sim_config.apply_articulation_settings("prop", get_prim_at_path(prop.prim_path), self._sim_config.parse_actor_config("prop")) prop_paths = [f"{self.default_zero_env_path}/prop/prop_{j}" for j in range(self.num_props)] prop_cloner.clone( source_prim_path=self.default_zero_env_path + "/prop/prop_0", prim_paths=prop_paths, positions=np.array(prop_pos)+drawer_pos.numpy(), replicate_physics=False ) def init_data(self) -> None: def get_env_local_pose(env_pos, xformable, device): """Compute pose in env-local coordinates""" world_transform = xformable.ComputeLocalToWorldTransform(0) world_pos = world_transform.ExtractTranslation() world_quat = world_transform.ExtractRotationQuat() px = world_pos[0] - env_pos[0] py = world_pos[1] - env_pos[1] pz = world_pos[2] - env_pos[2] qx = world_quat.imaginary[0] qy = world_quat.imaginary[1] qz = world_quat.imaginary[2] qw = world_quat.real return torch.tensor([px, py, pz, qw, qx, qy, qz], device=device, dtype=torch.float) stage = get_current_stage() hand_pose = get_env_local_pose(self._env_pos[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/hsrb/hand_palm_link")), self._device) lfinger_pose = get_env_local_pose( self._env_pos[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/hsrb/hand_l_proximal_link")), self._device ) rfinger_pose = get_env_local_pose( self._env_pos[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/hsrb/hand_r_proximal_link")), self._device ) finger_pose = torch.zeros(7, device=self._device) finger_pose[0:3] = (lfinger_pose[0:3] + rfinger_pose[0:3]) / 2.0 finger_pose[3:7] = lfinger_pose[3:7] hand_pose_inv_rot, hand_pose_inv_pos = (tf_inverse(hand_pose[3:7], hand_pose[0:3])) grasp_pose_axis = 1 hsr_local_grasp_pose_rot, hsr_local_pose_pos = tf_combine(hand_pose_inv_rot, hand_pose_inv_pos, finger_pose[3:7], finger_pose[0:3]) hsr_local_pose_pos += torch.tensor([0, 0.04, 0], device=self._device) self.hsr_local_grasp_pos = hsr_local_pose_pos.repeat((self._num_envs, 1)) self.hsr_local_grasp_rot = hsr_local_grasp_pose_rot.repeat((self._num_envs, 1)) drawer_local_grasp_pose = torch.tensor([0.3, 0.01, 0.0, 1.0, 0.0, 0.0, 0.0], device=self._device) self.drawer_local_grasp_pos = drawer_local_grasp_pose[0:3].repeat((self._num_envs, 1)) self.drawer_local_grasp_rot = drawer_local_grasp_pose[3:7].repeat((self._num_envs, 1)) self.gripper_forward_axis = torch.tensor([0, 0, 1], device=self._device, dtype=torch.float).repeat((self._num_envs, 1)) self.drawer_inward_axis = torch.tensor([-1, 0, 0], device=self._device, dtype=torch.float).repeat((self._num_envs, 1)) self.gripper_up_axis = torch.tensor([0, 1, 0], device=self._device, dtype=torch.float).repeat((self._num_envs, 1)) self.drawer_up_axis = torch.tensor([0, 0, 1], device=self._device, dtype=torch.float).repeat((self._num_envs, 1)) self.hsr_default_dof_pos = torch.tensor( [0.0, 0.0, 0.0, 0.1, 0.1, -1.570796, 0.0, 0.0, 0.0, -0.392699, 0.0, 0.75, 0.75, 0.0, 0.0], device=self._device ) self.actions = torch.zeros((self._num_envs, self.num_actions), device=self._device) def get_observations(self): hand_pos, hand_rot = self._robots._hands.get_world_poses(clone=False) drawer_pos, drawer_rot = self._cabinets._drawers.get_world_poses(clone=False) hsr_dof_pos = self._robots.get_joint_positions(clone=False) hsr_dof_vel = self._robots.get_joint_velocities(clone=False) self.cabinet_dof_pos = self._cabinets.get_joint_positions(clone=False) self.cabinet_dof_vel = self._cabinets.get_joint_velocities(clone=False) self.hsr_dof_pos = hsr_dof_pos self.hsr_grasp_rot, self.hsr_grasp_pos, self.drawer_grasp_rot, self.drawer_grasp_pos = self.compute_grasp_transforms( hand_rot, hand_pos, self.hsr_local_grasp_rot, self.hsr_local_grasp_pos, drawer_rot, drawer_pos, self.drawer_local_grasp_rot, self.drawer_local_grasp_pos, ) self.hsr_lfinger_pos, self.hsr_lfinger_rot = self._robots._lfingers.get_world_poses(clone=False) self.hsr_rfinger_pos, self.hsr_rfinger_rot = self._robots._lfingers.get_world_poses(clone=False) dof_pos_scaled = ( 2.0 * (hsr_dof_pos - self.hsr_dof_lower_limits) / (self.hsr_dof_upper_limits - self.hsr_dof_lower_limits) - 1.0 ) to_target = self.drawer_grasp_pos - self.hsr_grasp_pos self.obs_buf = torch.cat( ( dof_pos_scaled, hsr_dof_vel * self.dof_vel_scale, to_target, self.cabinet_dof_pos[:, 3].unsqueeze(-1), self.cabinet_dof_vel[:, 3].unsqueeze(-1), ), dim=-1, ) observations = { self._robots.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) self.actions = actions.clone().to(self._device) targets = self.hsr_dof_targets + self.hsr_dof_speed_scales * self.dt * self.actions * self.action_scale self.hsr_dof_targets[:] = tensor_clamp(targets, self.hsr_dof_lower_limits, self.hsr_dof_upper_limits) env_ids_int32 = torch.arange(self._robots.count, dtype=torch.int32, device=self._device) self._robots.set_joint_positions(self.hsr_dof_targets, indices=env_ids_int32) def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) num_indices = len(indices) # reset hsr pos = tensor_clamp( self.hsr_default_dof_pos.unsqueeze(0) + 0.25 * (torch.rand((len(env_ids), self.num_hsr_dofs), device=self._device) - 0.5), self.hsr_dof_lower_limits, self.hsr_dof_upper_limits, ) dof_pos = torch.zeros((num_indices, self._robots.num_dof), device=self._device) dof_vel = torch.zeros((num_indices, self._robots.num_dof), device=self._device) dof_pos[:, :] = pos self.hsr_dof_targets[env_ids, :] = pos self.hsr_dof_pos[env_ids, :] = pos # reset cabinet self._cabinets.set_joint_positions(torch.zeros_like(self._cabinets.get_joint_positions(clone=False)[env_ids]), indices=indices) self._cabinets.set_joint_velocities(torch.zeros_like(self._cabinets.get_joint_velocities(clone=False)[env_ids]), indices=indices) # reset props if self.num_props > 0: self._props.set_world_poses( self.default_prop_pos[self.prop_indices[env_ids].flatten()], self.default_prop_rot[self.prop_indices[env_ids].flatten()], self.prop_indices[env_ids].flatten().to(torch.int32) ) self._robots.set_joint_position_targets(self.hsr_dof_targets[env_ids], indices=indices) self._robots.set_joint_positions(dof_pos, indices=indices) self._robots.set_joint_velocities(dof_vel, indices=indices) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): self.num_hsr_dofs = self._robots.num_dof self.hsr_dof_pos = torch.zeros((self.num_envs, self.num_hsr_dofs), device=self._device) dof_limits = self._robots.get_dof_limits() self.hsr_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device) self.hsr_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device) self.hsr_dof_speed_scales = torch.ones_like(self.hsr_dof_lower_limits) self.hsr_dof_speed_scales[self._robots.gripper_indices] = 0.1 self.hsr_dof_targets = torch.zeros( (self._num_envs, self.num_hsr_dofs), dtype=torch.float, device=self._device ) if self.num_props > 0: self.default_prop_pos, self.default_prop_rot = self._props.get_world_poses() self.prop_indices = torch.arange(self._num_envs * self.num_props, device=self._device).view( self._num_envs, self.num_props ) # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: self.rew_buf[:] = self.compute_hsr_reward( self.reset_buf, self.progress_buf, self.actions, self.cabinet_dof_pos, self.hsr_grasp_pos, self.drawer_grasp_pos, self.hsr_grasp_rot, self.drawer_grasp_rot, self.hsr_lfinger_pos, self.hsr_rfinger_pos, self.gripper_forward_axis, self.drawer_inward_axis, self.gripper_up_axis, self.drawer_up_axis, self._num_envs, self.dist_reward_scale, self.rot_reward_scale, self.around_handle_reward_scale, self.open_reward_scale, self.finger_dist_reward_scale, self.action_penalty_scale, self.distX_offset, self._max_episode_length, self.hsr_dof_pos, self.finger_close_reward_scale, ) def is_done(self) -> None: # reset if drawer is open or max length reached self.reset_buf = torch.where(self.cabinet_dof_pos[:, 3] > 0.39, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf) def compute_grasp_transforms( self, hand_rot, hand_pos, hsr_local_grasp_rot, hsr_local_grasp_pos, drawer_rot, drawer_pos, drawer_local_grasp_rot, drawer_local_grasp_pos, ): global_hsr_rot, global_hsr_pos = tf_combine( hand_rot, hand_pos, hsr_local_grasp_rot, hsr_local_grasp_pos ) global_drawer_rot, global_drawer_pos = tf_combine( drawer_rot, drawer_pos, drawer_local_grasp_rot, drawer_local_grasp_pos ) return global_hsr_rot, global_hsr_pos, global_drawer_rot, global_drawer_pos def compute_hsr_reward( self, reset_buf, progress_buf, actions, cabinet_dof_pos, hsr_grasp_pos, drawer_grasp_pos, hsr_grasp_rot, drawer_grasp_rot, hsr_lfinger_pos, hsr_rfinger_pos, gripper_forward_axis, drawer_inward_axis, gripper_up_axis, drawer_up_axis, num_envs, dist_reward_scale, rot_reward_scale, around_handle_reward_scale, open_reward_scale, finger_dist_reward_scale, action_penalty_scale, distX_offset, max_episode_length, joint_positions, finger_close_reward_scale ): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, int, float, float, float, float, float, float, float, float, Tensor) -> Tuple[Tensor, Tensor] # distance from hand to the drawer d = torch.norm(hsr_grasp_pos - drawer_grasp_pos, p=2, dim=-1) dist_reward = 1.0 / (1.0 + d ** 2) dist_reward *= dist_reward dist_reward = torch.where(d <= 0.02, dist_reward * 2, dist_reward) axis1 = tf_vector(hsr_grasp_rot, gripper_forward_axis) axis2 = tf_vector(drawer_grasp_rot, drawer_inward_axis) axis3 = tf_vector(hsr_grasp_rot, gripper_up_axis) axis4 = tf_vector(drawer_grasp_rot, drawer_up_axis) dot1 = torch.bmm(axis1.view(num_envs, 1, 3), axis2.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) # alignment of forward axis for gripper dot2 = torch.bmm(axis3.view(num_envs, 1, 3), axis4.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) # alignment of up axis for gripper # reward for matching the orientation of the hand to the drawer (fingers wrapped) rot_reward = 0.5 * (torch.sign(dot1) * dot1 ** 2 + torch.sign(dot2) * dot2 ** 2) # bonus if left finger is above the drawer handle and right below around_handle_reward = torch.zeros_like(rot_reward) around_handle_reward = torch.where(hsr_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2], torch.where(hsr_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2], around_handle_reward + 0.5, around_handle_reward), around_handle_reward) # reward for distance of each finger from the drawer finger_dist_reward = torch.zeros_like(rot_reward) lfinger_dist = torch.abs(hsr_lfinger_pos[:, 2] - drawer_grasp_pos[:, 2]) rfinger_dist = torch.abs(hsr_rfinger_pos[:, 2] - drawer_grasp_pos[:, 2]) finger_dist_reward = torch.where(hsr_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2], torch.where(hsr_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2], (0.04 - lfinger_dist) + (0.04 - rfinger_dist), finger_dist_reward), finger_dist_reward) finger_close_reward = torch.zeros_like(rot_reward) finger_close_reward = torch.where(d <=0.03, (0.04 - joint_positions[:, 7]) + (0.04 - joint_positions[:, 8]), finger_close_reward) # regularization on the actions (summed for each environment) action_penalty = torch.sum(actions ** 2, dim=-1) # how far the cabinet has been opened out open_reward = cabinet_dof_pos[:, 3] * around_handle_reward + cabinet_dof_pos[:, 3] # drawer_top_joint rewards = dist_reward_scale * dist_reward + rot_reward_scale * rot_reward \ + around_handle_reward_scale * around_handle_reward + open_reward_scale * open_reward \ + finger_dist_reward_scale * finger_dist_reward - action_penalty_scale * action_penalty + finger_close_reward * finger_close_reward_scale # bonus for opening drawer properly rewards = torch.where(cabinet_dof_pos[:, 3] > 0.01, rewards + 0.5, rewards) rewards = torch.where(cabinet_dof_pos[:, 3] > 0.2, rewards + around_handle_reward, rewards) rewards = torch.where(cabinet_dof_pos[:, 3] > 0.39, rewards + (2.0 * around_handle_reward), rewards) return rewards
21,223
Python
47.346241
222
0.625077
makolon/hsr_isaac_tamp/hsr_rl/tasks/example/hsr_reach.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import torch from hsr_rl.tasks.base.rl_task import RLTask from hsr_rl.robots.articulations.hsr import HSR from hsr_rl.robots.articulations.views.hsr_view import HSRView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.prims.rigid_prim_view import RigidPrimView from omni.isaac.core.utils.torch.maths import tensor_clamp, torch_rand_float, torch_random_dir_2 from omni.isaac.core.objects import DynamicSphere # Whole Body example task with holonomic robot base class HSRExampleReachTask(RLTask): def __init__( self, name, sim_config, env ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._device = self._cfg["sim_device"] self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._dt = torch.tensor(self._sim_config.task_config["sim"]["dt"] * self._sim_config.task_config["env"]["controlFrequencyInv"], device=self._device) self._num_observations = self._task_cfg["env"]["num_observations"] self._num_actions = self._task_cfg["env"]["num_actions"] self._hsr_position = torch.tensor([0.0, 0.0, 0.01], device=self._device) # ball properties self._ball_position = torch.tensor([1.5, 0.0, 0.045], device=self._device) self._ball_radius = torch.tensor([0.05], device=self._device) self._action_speed_scale = self._task_cfg["env"]["actionSpeedScale"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] # Start at 'home' positions self.torso_start = torch.tensor([0.1], device=self._device) self.base_start = torch.tensor([0.0, 0.0, 0.0], device=self._device) self.arm_start = torch.tensor([0.1, -1.570796, 0.0, -0.392699, 0], device=self._device) self.gripper_proximal_start = torch.tensor([0.75, 0.75], device=self._device) # Opened gripper by default # joint & body names self._torso_joint_name = ["torso_lift_joint"] self._base_joint_names = ["joint_x", "joint_y", "joint_rz"] self._arm_names = ["arm_lift_joint", "arm_flex_joint", "arm_roll_joint", "wrist_flex_joint", "wrist_roll_joint"] self._gripper_proximal_names = ["hand_l_proximal_joint", "hand_r_proximal_joint"] # values are set in post_reset after model is loaded self.torso_dof_idx = [] self.base_dof_idxs = [] self.arm_dof_idxs = [] self.gripper_proximal_dof_idxs = [] # dof joint position limits self.torso_dof_lower = [] self.torso_dof_upper = [] self.base_dof_lower = [] self.base_dof_upper = [] self.arm_dof_lower = [] self.arm_dof_upper = [] self.gripper_p_dof_lower = [] self.gripper_p_dof_upper = [] RLTask.__init__(self, name, env) return def set_up_scene(self, scene) -> None: self.add_hsr() self.add_ball() # Set up scene super().set_up_scene(scene) # Add robot to scene self._robots = HSRView(prim_paths_expr="/World/envs/.*/hsrb", name="hsrb_view") # ArticulationView(prim_paths_expr="/World/envs/.*/hsrb", name="hsrb_view", reset_xform_properties=False) scene.add(self._robots) scene.add(self._robots._hands) scene.add(self._robots._lfingers) scene.add(self._robots._rfingers) scene.add(self._robots._fingertip_centered) # Add ball to scene self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/Ball/ball", name="ball_view", reset_xform_properties=False) scene.add(self._balls) return def add_hsr(self): hsrb = HSR(prim_path=self.default_zero_env_path + "/hsrb", name="hsrb", translation=self._hsr_position) self._sim_config.apply_articulation_settings("hsrb", get_prim_at_path(hsrb.prim_path), self._sim_config.parse_actor_config("hsrb")) def add_ball(self): ball = DynamicSphere( prim_path=self.default_zero_env_path + "/Ball/ball", translation=self._ball_position, name="ball_0", radius=0.05, color=torch.tensor([0.2, 0.4, 0.6]), ) self._sim_config.apply_articulation_settings("ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball")) def get_observations(self): # Get ball positions and orientations ball_positions, ball_orientations = self._balls.get_world_poses(clone=False) ball_positions = ball_positions[:, 0:3] - self._env_pos # Get ball velocities ball_velocities = self._balls.get_velocities(clone=False) ball_linvels = ball_velocities[:, 0:3] ball_angvels = ball_velocities[:, 3:6] # Get end effector positions and orientations end_effector_positions, end_effector_orientations = self._robots._fingertip_centered.get_world_poses(clone=False) end_effector_positions = end_effector_positions[:, 0:3] - self._env_pos # Get end effector velocities end_effector_velocities = self._robots._fingertip_centered.get_velocities(clone=False) end_effector_linvels = end_effector_velocities[:, 0:3] end_effector_angvels = end_effector_velocities[:, 3:6] dof_pos = self._robots.get_joint_positions(clone=False) dof_vel = self._robots.get_joint_velocities(clone=False) self.obs_buf[..., 0:8] = dof_pos[..., self.actuated_dof_indices] self.obs_buf[..., 8:16] = dof_vel[..., self.actuated_dof_indices] self.obs_buf[..., 16:19] = end_effector_positions self.obs_buf[..., 19:22] = end_effector_linvels self.obs_buf[..., 22:25] = ball_positions self.obs_buf[..., 25:28] = ball_linvels self.ball_positions = ball_positions self.ball_linvels = ball_linvels observations = { "hsr_reach": { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) # update position targets from actions self.dof_position_targets[..., self.actuated_dof_indices] += self._dt * self._action_speed_scale * actions.to(self.device) self.dof_position_targets[:] = tensor_clamp( self.dof_position_targets, self.robot_dof_lower_limits, self.robot_dof_upper_limits ) dof_pos = self._robots.get_joint_positions() arm_pos = dof_pos[:, self.arm_dof_idxs] scaled_arm_lift_pos = arm_pos[:, 0] / self.arm_dof_upper[0] scaled_torso_lift_pos = scaled_arm_lift_pos * self.torso_dof_upper[0] self.dof_position_targets[:, self.torso_dof_idx] = scaled_torso_lift_pos.unsqueeze(dim=1) # reset position targets for reset envs self.dof_position_targets[reset_env_ids] = 0 self._robots.set_joint_positions(self.dof_position_targets) def reset_idx(self, env_ids): num_resets = len(env_ids) env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) min_d = 0.001 # min horizontal dist from origin max_d = 0.4 # max horizontal dist from origin min_height = 0.0 max_height = 0.2 min_horizontal_speed = 0 max_horizontal_speed = 2 dists = torch_rand_float(min_d, max_d, (num_resets, 1), self._device) dirs = torch_random_dir_2((num_resets, 1), self._device) hpos = dists * dirs speedscales = (dists - min_d) / (max_d - min_d) hspeeds = torch_rand_float(min_horizontal_speed, max_horizontal_speed, (num_resets, 1), self._device) hvels = -speedscales * hspeeds * dirs vspeeds = -torch_rand_float(5.0, 5.0, (num_resets, 1), self._device).squeeze() ball_pos = self.initial_ball_pos.clone() ball_rot = self.initial_ball_rot.clone() # position ball_pos[env_ids_64, 0:2] += hpos[..., 0:2] ball_pos[env_ids_64, 2] += torch_rand_float(min_height, max_height, (num_resets, 1), self._device).squeeze() # rotation ball_rot[env_ids_64, 0] = 1 ball_rot[env_ids_64, 1:] = 0 ball_velocities = self.initial_ball_velocities.clone() # linear ball_velocities[env_ids_64, 0:2] = hvels[..., 0:2] ball_velocities[env_ids_64, 2] = vspeeds # angular ball_velocities[env_ids_64, 3:6] = 0 # reset root state for bbots and balls in selected envs self._balls.set_world_poses(ball_pos[env_ids_64], ball_rot[env_ids_64], indices=env_ids_32) self._balls.set_velocities(ball_velocities[env_ids_64], indices=env_ids_32) # reset root pose and velocity self._robots.set_world_poses(self.initial_robot_pos[env_ids_64].clone(), self.initial_robot_rot[env_ids_64].clone(), indices=env_ids_32) self._robots.set_velocities(self.initial_robot_velocities[env_ids_64].clone(), indices=env_ids_32) # reset DOF states for bbots in selected envs self._robots.set_joint_positions(self.initial_dof_positions[env_ids_64].clone(), indices=env_ids_32) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 self.extras[env_ids] = 0 def post_reset(self): self.set_dof_idxs() self.set_dof_limits() self.set_default_state() dof_limits = self._robots.get_dof_limits() self.robot_dof_lower_limits, self.robot_dof_upper_limits = torch.t(dof_limits[0].to(device=self._device)) # reset ball pos / rot, and velocities self.initial_dof_positions = self._robots.get_joint_positions() self.initial_robot_pos, self.initial_robot_rot = self._robots.get_world_poses() self.initial_robot_velocities = self._robots.get_velocities() self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses() self.initial_ball_velocities = self._balls.get_velocities() self.dof_position_targets = self._robots.get_joints_default_state().positions self.actuated_dof_indices = torch.LongTensor([0, 1, 2, 3, 5, 7, 9, 10]).to(self._device) def calculate_metrics(self) -> None: # Distance from hand to the ball dist = torch.norm(self.obs_buf[..., 22:25] - self.obs_buf[..., 16:19], p=2, dim=-1) dist_reward = 1.0 / (1.0 + dist ** 2) dist_reward *= dist_reward dist_reward = torch.where(dist <= 0.02, dist_reward * 2, dist_reward) self.rew_buf[:] = dist_reward def is_done(self) -> None: reset = torch.where( self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf ) reset = torch.where(self.ball_positions[..., 2] < self._ball_radius * 1.5, torch.ones_like(self.reset_buf), reset) self.reset_buf[:] = reset def set_dof_idxs(self): [self.torso_dof_idx.append(self._robots.get_dof_index(name)) for name in self._torso_joint_name] [self.base_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._base_joint_names] [self.arm_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._arm_names] [self.gripper_proximal_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._gripper_proximal_names] def set_dof_limits(self): # dof position limits # (num_envs, num_dofs, 2) dof_limits = self._robots.get_dof_limits() dof_limits_lower = dof_limits[0, :, 0].to(self._device) dof_limits_upper = dof_limits[0, :, 1].to(self._device) # Set relevant joint position limit values self.torso_dof_lower = dof_limits_lower[self.torso_dof_idx] self.torso_dof_upper = dof_limits_upper[self.torso_dof_idx] self.base_dof_lower = dof_limits_lower[self.base_dof_idxs] self.base_dof_upper = dof_limits_upper[self.base_dof_idxs] self.arm_dof_lower = dof_limits_lower[self.arm_dof_idxs] self.arm_dof_upper = dof_limits_upper[self.arm_dof_idxs] self.gripper_p_dof_lower = dof_limits_lower[self.gripper_proximal_dof_idxs] self.gripper_p_dof_upper = dof_limits_upper[self.gripper_proximal_dof_idxs] def set_default_state(self): # Set default joint state joint_states = self._robots.get_joints_default_state() jt_pos = joint_states.positions jt_pos[:, self.torso_dof_idx] = self.torso_start jt_pos[:, self.base_dof_idxs] = self.base_start jt_pos[:, self.arm_dof_idxs] = self.arm_start jt_pos[:, self.gripper_proximal_dof_idxs] = self.gripper_proximal_start jt_vel = joint_states.velocities jt_vel[:, self.torso_dof_idx] = torch.zeros_like(self.torso_start, device=self._device) jt_vel[:, self.base_dof_idxs] = torch.zeros_like(self.base_start, device=self._device) jt_vel[:, self.arm_dof_idxs] = torch.zeros_like(self.arm_start, device=self._device) jt_vel[:, self.gripper_proximal_dof_idxs] = torch.zeros_like(self.gripper_proximal_start, device=self._device) self._robots.set_joints_default_state(positions=jt_pos, velocities=jt_vel)
15,063
Python
45.637771
193
0.642701
makolon/hsr_isaac_tamp/hsr_rl/tasks/base/hsr_task.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import carb import hydra import torch from hsr_rl.robots.articulations.hsr import HSR from hsr_rl.robots.articulations.views.hsr_view import HSRView from hsr_rl.tasks.base.rl_task import RLTask from hsr_rl.tasks.utils.ik_utils import DifferentialInverseKinematics, DifferentialInverseKinematicsCfg from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.rotations import quat_diff_rad, quat_mul, normalize from omni.isaac.core.objects import FixedCuboid from omni.isaac.core.simulation_context import SimulationContext from omni.physx.scripts import utils, physicsUtils class HSRBaseTask(RLTask): def __init__( self, name, sim_config, env ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._device = self._cfg["sim_device"] self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] # Get dt for integrating velocity commands and checking limit violations self._dt = torch.tensor(self._sim_config.task_config["sim"]["dt"] * self._sim_config.task_config["env"]["controlFrequencyInv"], device=self._device) # Set environment properties self._table_height = self._task_cfg["env"]["table_height"] self._table_width = self._task_cfg["env"]["table_width"] self._table_depth = self._task_cfg["env"]["table_depth"] # Set physics parameters for gripper self._gripper_mass = self._sim_config.task_config["sim"]["gripper"]["mass"] self._gripper_density = self._sim_config.task_config["sim"]["gripper"]["density"] self._gripper_static_friction = self._sim_config.task_config["sim"]["gripper"]["static_friction"] self._gripper_dynamic_friction = self._sim_config.task_config["sim"]["gripper"]["dynamic_friction"] self._gripper_restitution = self._sim_config.task_config["sim"]["gripper"]["restitution"] # Choose num_obs and num_actions based on task. self._num_observations = self._task_cfg["env"]["num_observations"] self._num_actions = self._task_cfg["env"]["num_actions"] # Set inverse kinematics configurations self._action_type = self._task_cfg["env"]["action_type"] self._target_space = self._task_cfg["env"]["target_space"] # Set up environment from loaded demonstration self._hsr_position = torch.tensor([0.0, 0.0, 0.01], device=self._device) self._hsr_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) self._table_position = torch.tensor([1.2, -0.2, self._table_height/2], device=self._device) self._table_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) # Dof joint gains self.joint_kps = torch.tensor([1e9, 1e9, 5.7296e10, 1e9, 1e9, 5.7296e10, 5.7296e10, 5.7296e10, 5.7296e10, 5.7296e10, 5.7296e10, 2.8648e4, 2.8648e4, 5.7296e10, 5.7296e10], device=self._device) self.joint_kds = torch.tensor([1.4, 1.4, 80.2141, 1.4, 0.0, 80.2141, 0.0, 80.2141, 0.0, 80.2141, 80.2141, 17.1887, 17.1887, 17.1887, 17.1887], device=self._device) # Dof joint friction coefficients self.joint_friction_coefficients = torch.tensor([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], device=self._device) # Joint & body names self._torso_joint_name = ["torso_lift_joint"] self._base_joint_names = ["joint_x", "joint_y", "joint_rz"] self._arm_names = ["arm_lift_joint", "arm_flex_joint", "arm_roll_joint", "wrist_flex_joint", "wrist_roll_joint"] self._gripper_proximal_names = ["hand_l_proximal_joint", "hand_r_proximal_joint"] # Values are set in post_reset after model is loaded self.torso_dof_idx = [] self.base_dof_idxs = [] self.arm_dof_idxs = [] self.gripper_proximal_dof_idxs = [] # Dof joint position limits self.torso_dof_lower = [] self.torso_dof_upper = [] self.base_dof_lower = [] self.base_dof_upper = [] self.arm_dof_lower = [] self.arm_dof_upper = [] self.gripper_proximal_dof_lower = [] self.gripper_proximal_dof_upper = [] # Gripper settings self.gripper_close = torch.zeros(self._num_envs, device=self._device, dtype=torch.bool) self.gripper_open = torch.zeros(self._num_envs, device=self._device, dtype=torch.bool) self.gripper_hold = torch.zeros(self._num_envs, device=self._device, dtype=torch.bool) # Load ik controller self.ik_controller = self.set_ik_controller() RLTask.__init__(self, name, env) return def set_up_environment(self) -> None: raise NotImplementedError def set_up_scene(self, scene) -> None: # Create gripper materials self.create_gripper_material() # Import before environment parallelization self.add_hsr() self.add_table() # Set up scene super().set_up_scene(scene, replicate_physics=False) # Add robot to scene self._robots = HSRView(prim_paths_expr="/World/envs/.*/hsrb", name="hsrb_view") scene.add(self._robots) scene.add(self._robots._hands) scene.add(self._robots._lfingers) scene.add(self._robots._rfingers) scene.add(self._robots._fingertip_centered) def add_hsr(self): # Add HSR hsrb = HSR(prim_path=self.default_zero_env_path + "/hsrb", name="hsrb", translation=self._hsr_position, orientation=self._hsr_rotation) self._sim_config.apply_articulation_settings("hsrb", get_prim_at_path(hsrb.prim_path), self._sim_config.parse_actor_config("hsrb")) def add_table(self): # Add table table = FixedCuboid(prim_path=self.default_zero_env_path + "/table", name="table", translation=self._table_position, orientation=self._table_rotation, size=self._table_size, color=torch.tensor([0.75, 0.75, 0.75]), scale=torch.tensor([self._table_width, self._table_depth, self._table_height])) self._sim_config.apply_articulation_settings("table", get_prim_at_path(table.prim_path), self._sim_config.parse_actor_config("table")) def create_gripper_material(self): self._stage = get_current_stage() self.gripperPhysicsMaterialPath = "/World/Physics_Materials/GripperMaterial" utils.addRigidBodyMaterial( self._stage, self.gripperPhysicsMaterialPath, density=self._gripper_density, staticFriction=self._gripper_static_friction, dynamicFriction=self._gripper_dynamic_friction, restitution=self._gripper_restitution ) def get_observations(self): raise NotImplementedError() def pre_physics_step(self, actions) -> None: raise NotImplementedError() def reset_idx(self, env_ids): raise NotImplementedError() def post_reset(self): raise NotImplementedError() def calculate_metrics(self) -> None: raise NotImplementedError() def is_done(self) -> None: raise NotImplementedError() def post_physics_step(self): raise NotImplementedError() def load_dataset(self): raise NotImplementedError() def set_dof_idxs(self): [self.torso_dof_idx.append(self._robots.get_dof_index(name)) for name in self._torso_joint_name] [self.base_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._base_joint_names] [self.arm_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._arm_names] [self.gripper_proximal_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._gripper_proximal_names] # Movable joints self.actuated_dof_indices = torch.LongTensor(self.base_dof_idxs+self.arm_dof_idxs+self.gripper_proximal_dof_idxs).to(self._device) # torch.LongTensor([0, 1, 2, 3, 5, 7, 9, 10, 11, 12]).to(self._device) self.movable_dof_indices = torch.LongTensor(self.base_dof_idxs+self.arm_dof_idxs).to(self._device) # torch.LongTensor([0, 1, 2, 3, 5, 7, 9, 10]).to(self._device) def set_dof_limits(self): # dof position limits # (num_envs, num_dofs, 2) dof_limits = self._robots.get_dof_limits() dof_limits_lower = dof_limits[0, :, 0].to(self._device) dof_limits_upper = dof_limits[0, :, 1].to(self._device) # Set relevant joint position limit values self.torso_dof_lower = dof_limits_lower[self.torso_dof_idx] self.torso_dof_upper = dof_limits_upper[self.torso_dof_idx] self.base_dof_lower = dof_limits_lower[self.base_dof_idxs] self.base_dof_upper = dof_limits_upper[self.base_dof_idxs] self.arm_dof_lower = dof_limits_lower[self.arm_dof_idxs] self.arm_dof_upper = dof_limits_upper[self.arm_dof_idxs] self.gripper_proximal_dof_lower = dof_limits_lower[self.gripper_proximal_dof_idxs] self.gripper_proximal_dof_upper = dof_limits_upper[self.gripper_proximal_dof_idxs] self.robot_dof_lower_limits, self.robot_dof_upper_limits = torch.t(dof_limits[0].to(device=self._device)) def set_default_state(self): # Start at 'home' positions self.torso_start = self.initial_dof_positions[:, self.torso_dof_idx] self.base_start = self.initial_dof_positions[:, self.base_dof_idxs] self.arm_start = self.initial_dof_positions[:, self.arm_dof_idxs] self.gripper_proximal_start = self.initial_dof_positions[:, self.gripper_proximal_dof_idxs] # Set default joint state joint_states = self._robots.get_joints_default_state() jt_pos = joint_states.positions jt_pos[:, self.torso_dof_idx] = self.torso_start.float() jt_pos[:, self.base_dof_idxs] = self.base_start.float() jt_pos[:, self.arm_dof_idxs] = self.arm_start.float() jt_pos[:, self.gripper_proximal_dof_idxs] = self.gripper_proximal_start.float() jt_vel = joint_states.velocities jt_vel[:, self.torso_dof_idx] = torch.zeros_like(self.torso_start, device=self._device, dtype=torch.float) jt_vel[:, self.base_dof_idxs] = torch.zeros_like(self.base_start, device=self._device, dtype=torch.float) jt_vel[:, self.arm_dof_idxs] = torch.zeros_like(self.arm_start, device=self._device, dtype=torch.float) jt_vel[:, self.gripper_proximal_dof_idxs] = torch.zeros_like(self.gripper_proximal_start, device=self._device, dtype=torch.float) self._robots.set_joints_default_state(positions=jt_pos, velocities=jt_vel) # Initialize target positions self.dof_position_targets = jt_pos def set_joint_gains(self): self._robots.set_gains(kps=self.joint_kps, kds=self.joint_kds) def set_joint_frictions(self): self._robots.set_friction_coefficients(self.joint_friction_coefficients) def _close_gripper(self, env_ids, sim_steps=1): env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) gripper_dof_pos = torch.tensor([-50., -50.], device=self._device) # Step sim for _ in range(sim_steps): self._robots.set_joint_efforts(gripper_dof_pos, indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) SimulationContext.step(self._env._world, render=True) self.dof_position_targets[env_ids_64[:, None], self.gripper_proximal_dof_idxs] = self._robots.get_joint_positions(indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) self.gripper_hold[env_ids_64] = True def _open_gripper(self, env_ids, sim_steps=1): env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) gripper_dof_effort = torch.tensor([0., 0.], device=self._device) self._robots.set_joint_efforts(gripper_dof_effort, indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) gripper_dof_pos = torch.tensor([0.5, 0.5], device=self._device) # Step sim for _ in range(sim_steps): self._robots.set_joint_position_targets(gripper_dof_pos, indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) SimulationContext.step(self._env._world, render=True) self.dof_position_targets[env_ids_64[:, None], self.gripper_proximal_dof_idxs] = self._robots.get_joint_positions(indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) self.gripper_hold[env_ids_64] = False def _hold_gripper(self, env_ids): env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) gripper_dof_pos = torch.tensor([-30., -30.], device=self._device) self._robots.set_joint_efforts(gripper_dof_pos, indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) self.dof_position_targets[env_ids_64[:, None], self.gripper_proximal_dof_idxs] = self._robots.get_joint_positions(indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) def set_ik_controller(self): command_type = "pose_rel" if self._action_type == 'relative' else "pose_abs" ik_control_cfg = DifferentialInverseKinematicsCfg( command_type=command_type, ik_method="dls", position_offset=(0.0, 0.0, 0.0), rotation_offset=(1.0, 0.0, 0.0, 0.0), ) return DifferentialInverseKinematics(ik_control_cfg, self._num_envs, self._device) def enable_gravity(self): """Enable gravity.""" gravity = [0.0, 0.0, -9.81] self._env._world._physics_sim_view.set_gravity(carb.Float3(gravity[0], gravity[1], gravity[2])) def disable_gravity(self): """Disable gravity.""" gravity = [0.0, 0.0, 0.0] self._env._world._physics_sim_view.set_gravity(carb.Float3(gravity[0], gravity[1], gravity[2])) @torch.jit.script def norm_diff_pos(p1: torch.Tensor, p2: torch.Tensor) -> torch.Tensor: # Calculate norm diff_norm = torch.norm(p1 - p2, p=2, dim=-1) return diff_norm @torch.jit.script def norm_diff_rot(q1: torch.Tensor, q2: torch.Tensor) -> torch.Tensor: # Calculate norm diff_norm1 = torch.norm(q1 - q2, p=2, dim=-1) diff_norm2 = torch.norm(q2 - q1, p=2, dim=-1) diff_norm = torch.min(diff_norm1, diff_norm2) return diff_norm @torch.jit.script def quaternion_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: aw, ax, ay, az = torch.unbind(a, -1) bw, bx, by, bz = torch.unbind(b, -1) ow = aw * bw - ax * bx - ay * by - az * bz ox = aw * bx + ax * bw + ay * bz - az * by oy = aw * by - ax * bz + ay * bw + az * bx oz = aw * bz + ax * by - ay * bx + az * bw return torch.stack((ow, ox, oy, oz), -1) @torch.jit.script def calc_diff_pos(p1, p2): return p1 - p2 @torch.jit.script def calc_diff_rot(q1, q2): # Normalize the input quaternions q1 = normalize(q1) q2 = normalize(q2) # Calculate the quaternion product between q2 and the inverse of q1 scaling = torch.tensor([1, -1, -1, -1], device=q1.device) q1_inv = q1 * scaling q_diff = quaternion_multiply(q2, q1_inv) return q_diff
17,085
Python
44.684492
209
0.650454
makolon/hsr_isaac_tamp/hsr_rl/tasks/utils/robot_utils.py
import random import numpy as np import pybullet as p from collections import namedtuple from scipy.spatial.transform import Rotation as R IKFastInfo = namedtuple('IKFastInfo', ['module_name', 'base_link', 'ee_link', 'free_joints']) USE_ALL = False USE_CURRENT = True ############ Mathematics def invert(pose): point, quat = pose return p.invertTransform(point, quat) # TODO: modify def multiply(*poses): pose = poses[0] for next_pose in poses[1:]: pose = p.multiplyTransforms(pose[0], pose[1], *next_pose) # TODO: modify return pose ############## def get_distance(p1, p2, **kwargs): assert len(p1) == len(p2) diff = np.array(p2) - np.array(p1) return np.linalg.norm(diff, ord=2) def all_between(lower_limits, values, upper_limits): assert len(lower_limits) == len(values) assert len(values) == len(upper_limits) return np.less_equal(lower_limits, values).all() and \ np.less_equal(values, upper_limits).all() def compute_forward_kinematics(fk_fn, conf): pose = fk_fn(list(conf)) pos, rot = pose quat = R.from_matrix(rot).as_quat() return pos, quat def compute_inverse_kinematics(ik_fn, pose, sampled=[]): pos, quat = pose[0], pose[1] rot = R.from_quat(quat).as_matrix().tolist() if len(sampled) == 0: solutions = ik_fn(list(rot), list(pos)) else: solutions = ik_fn(list(rot), list(pos), list(sampled)) if solutions is None: return [] return solutions def select_solution(joints, solutions, curr_joints, nearby_conf=USE_ALL, **kwargs): if not solutions: return None if nearby_conf is USE_ALL: return random.choice(solutions) if nearby_conf is USE_CURRENT: nearby_conf = curr_joints return min(solutions, key=lambda conf: get_distance(nearby_conf, conf, **kwargs))
1,849
Python
26.205882
93
0.646836
makolon/hsr_isaac_tamp/hsr_rl/tasks/utils/array_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES, ETH Zurich, and University of Toronto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Utilities for working with different array backends.""" import numpy as np import torch from typing import Optional, Sequence, Union import warp as wp __all__ = ["TENSOR_TYPES", "TENSOR_TYPE_CONVERSIONS", "convert_to_torch"] TENSOR_TYPES = { "numpy": np.ndarray, "torch": torch.Tensor, "warp": wp.array, } """A dictionary containing the types for each backend. The keys are the name of the backend ("numpy", "torch", "warp") and the values are the corresponding type (``np.ndarray``, ``torch.Tensor``, ``wp.array``). """ TENSOR_TYPE_CONVERSIONS = { "numpy": {wp.array: lambda x: x.numpy(), torch.Tensor: lambda x: x.detach().cpu().numpy()}, "torch": {wp.array: lambda x: wp.torch.to_torch(x), np.ndarray: lambda x: torch.from_numpy(x)}, "warp": {np.array: lambda x: wp.array(x), torch.Tensor: lambda x: wp.torch.from_torch(x)}, } """A nested dictionary containing the conversion functions for each backend. The keys of the outer dictionary are the name of target backend ("numpy", "torch", "warp"). The keys of the inner dictionary are the source backend (``np.ndarray``, ``torch.Tensor``, ``wp.array``). """ def convert_to_torch( array: Sequence[float], dtype: torch.dtype = None, device: Optional[Union[torch.device, str]] = None, ) -> torch.Tensor: """Converts a given array into a torch tensor. The function tries to convert the array to a torch tensor. If the array is a numpy/warp arrays, or python list/tuples, it is converted to a torch tensor. If the array is already a torch tensor, it is returned directly. If ``device`` is :obj:`None`, then the function deduces the current device of the data. For numpy arrays, this defaults to "cpu", for torch tensors it is "cpu" or "cuda", and for warp arrays it is "cuda". Args: array (Sequence[float]): The input array. It can be a numpy array, warp array, python list/tuple, or torch tensor. dtype (torch.dtype, optional): Target data-type for the tensor. device (Optional[Union[torch.device, str]], optional): The target device for the tensor. Defaults to None. Returns: torch.Tensor: The converted array as torch tensor. """ # Convert array to tensor if isinstance(array, torch.Tensor): tensor = array elif isinstance(array, np.ndarray): tensor = torch.from_numpy(array) elif isinstance(array, wp.array): tensor = wp.to_torch(array) else: tensor = torch.Tensor(array) # Convert tensor to the right device if device is not None and str(tensor.device) != str(device): tensor = tensor.to(device) # Convert dtype of tensor if requested if dtype is not None and tensor.dtype != dtype: tensor = tensor.type(dtype) return tensor
2,943
Python
37.233766
122
0.678899
makolon/hsr_isaac_tamp/hsr_rl/tasks/utils/math_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES, ETH Zurich, and University of Toronto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Provides utilities for math operations. Some of these are imported from the module `omni.isaac.core.utils.torch` for convenience. """ import numpy as np import torch import torch.nn.functional from typing import Optional, Sequence, Tuple, Union from omni.isaac.core.utils.torch.maths import normalize, scale_transform, unscale_transform from omni.isaac.core.utils.torch.rotations import ( quat_apply, quat_conjugate, quat_from_angle_axis, quat_mul, quat_rotate, quat_rotate_inverse, ) __all__ = [ # General "wrap_to_pi", "saturate", "copysign", # General-Isaac Sim "normalize", "scale_transform", "unscale_transform", # Rotation "matrix_from_quat", "quat_inv", "quat_from_euler_xyz", "quat_apply_yaw", "quat_box_minus", "euler_xyz_from_quat", "axis_angle_from_quat", # Rotation-Isaac Sim "quat_apply", "quat_from_angle_axis", "quat_mul", "quat_conjugate", "quat_rotate", "quat_rotate_inverse", # Transformations "combine_frame_transforms", "subtract_frame_transforms", "compute_pose_error", "apply_delta_pose", # Sampling "default_orientation", "random_orientation", "random_yaw_orientation", "sample_triangle", "sample_uniform", ] """ General """ @torch.jit.script def wrap_to_pi(angles: torch.Tensor) -> torch.Tensor: """Wraps input angles (in radians) to the range [-pi, pi]. Args: angles (torch.Tensor): Input angles. Returns: torch.Tensor: Angles in the range [-pi, pi]. """ angles %= 2 * np.pi angles -= 2 * np.pi * (angles > np.pi) return angles @torch.jit.script def saturate(x: torch.Tensor, lower: torch.Tensor, upper: torch.Tensor) -> torch.Tensor: """Clamps a given input tensor to (lower, upper). It uses pytorch broadcasting functionality to deal with batched input. Args: x: Input tensor of shape (N, dims). lower: The minimum value of the tensor. Shape (dims,) upper: The maximum value of the tensor. Shape (dims,) Returns: Clamped transform of the tensor. Shape (N, dims) """ return torch.max(torch.min(x, upper), lower) @torch.jit.script def copysign(mag: float, other: torch.Tensor) -> torch.Tensor: """Create a new floating-point tensor with the magnitude of input and the sign of other, element-wise. Note: The implementation follows from `torch.copysign`. The function allows a scalar magnitude. Args: mag (float): The magnitude scalar. other (torch.Tensor): The tensor containing values whose signbits are applied to magnitude. Returns: torch.Tensor: The output tensor. """ mag = torch.tensor(mag, device=other.device, dtype=torch.float).repeat(other.shape[0]) return torch.abs(mag) * torch.sign(other) """ Rotation """ @torch.jit.script def matrix_from_quat(quaternions: torch.Tensor) -> torch.Tensor: """Convert rotations given as quaternions to rotation matrices. Args: quaternions: quaternions with real part first, as tensor of shape (..., 4). Returns: Rotation matrices as tensor of shape (..., 3, 3). Reference: Based on PyTorch3D (https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L41-L70) """ r, i, j, k = torch.unbind(quaternions, -1) # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`. two_s = 2.0 / (quaternions * quaternions).sum(-1) o = torch.stack( ( 1 - two_s * (j * j + k * k), two_s * (i * j - k * r), two_s * (i * k + j * r), two_s * (i * j + k * r), 1 - two_s * (i * i + k * k), two_s * (j * k - i * r), two_s * (i * k - j * r), two_s * (j * k + i * r), 1 - two_s * (i * i + j * j), ), -1, ) return o.reshape(quaternions.shape[:-1] + (3, 3)) def convert_quat( quat: Union[torch.tensor, Sequence[float]], to: Optional[str] = "xyzw" ) -> Union[torch.tensor, np.ndarray]: """Converts quaternion from one convention to another. The convention to convert TO is specified as an optional argument. If to == 'xyzw', then the input is in 'wxyz' format, and vice-versa. Args: quat (Union[torch.tensor, Sequence[float]]): Input quaternion of shape (..., 4). to (Optional[str], optional): Convention to convert quaternion to.. Defaults to "xyzw". Raises: ValueError: Invalid input argument `to`, i.e. not "xyzw" or "wxyz". ValueError: Invalid shape of input `quat`, i.e. not (..., 4,). Returns: Union[torch.tensor, np.ndarray]: The converted quaternion in specified convention. """ # convert to numpy (sanity check) if not isinstance(quat, torch.Tensor): quat = np.asarray(quat) # check input is correct if quat.shape[-1] != 4: msg = f"convert_quat(): Expected input quaternion shape mismatch: {quat.shape} != (..., 4)." raise ValueError(msg) # convert to specified quaternion type if to == "xyzw": return quat[..., [1, 2, 3, 0]] elif to == "wxyz": return quat[..., [3, 0, 1, 2]] else: raise ValueError("convert_quat(): Choose a valid `to` argument (xyzw or wxyz).") @torch.jit.script def quat_inv(q: torch.Tensor) -> torch.Tensor: """Compute the inverse of a quaternion. Args: q (torch.Tensor): The input quaternion (w, x, y, z). Returns: torch.Tensor: The inverse quaternion (w, x, y, z). """ return normalize(quat_conjugate(q)) @torch.jit.script def quat_from_euler_xyz(roll: torch.Tensor, pitch: torch.Tensor, yaw: torch.Tensor) -> torch.Tensor: """Convert rotations given as Euler angles in radians to Quaternions. Note: The euler angles are assumed in XYZ convention. Args: roll: Rotation around x-axis (in radians). Shape: [N,] pitch: Rotation around y-axis (in radians). Shape: [N,] yaw: Rotation around z-axis (in radians). Shape: [N,] Returns: torch.Tensor: Quaternion with real part in the start. Shape: [N, 4,] """ cy = torch.cos(yaw * 0.5) sy = torch.sin(yaw * 0.5) cr = torch.cos(roll * 0.5) sr = torch.sin(roll * 0.5) cp = torch.cos(pitch * 0.5) sp = torch.sin(pitch * 0.5) # compute quaternion qw = cy * cr * cp + sy * sr * sp qx = cy * sr * cp - sy * cr * sp qy = cy * cr * sp + sy * sr * cp qz = sy * cr * cp - cy * sr * sp return torch.stack([qw, qx, qy, qz], dim=-1) @torch.jit.script def euler_xyz_from_quat(quat: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Convert rotations given as quaternions to Euler angles in radians. Note: The euler angles are assumed in XYZ convention. Reference: https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles Args: quat: Quaternion with real part in the start. Shape: [N, 4,] Returns: Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: A tuple containing roll-pitch-yaw. """ q_w, q_x, q_y, q_z = quat[:, 0], quat[:, 1], quat[:, 2], quat[:, 3] # roll (x-axis rotation) sin_roll = 2.0 * (q_w * q_x + q_y * q_z) cos_roll = 1 - 2 * (q_x * q_x + q_y * q_y) roll = torch.atan2(sin_roll, cos_roll) # pitch (y-axis rotation) sin_pitch = 2.0 * (q_w * q_y - q_z * q_x) pitch = torch.where(torch.abs(sin_pitch) >= 1, copysign(np.pi / 2.0, sin_pitch), torch.asin(sin_pitch)) # yaw (z-axis rotation) sin_yaw = 2.0 * (q_w * q_z + q_x * q_y) cos_yaw = 1 - 2 * (q_y * q_y + q_z * q_z) yaw = torch.atan2(sin_yaw, cos_yaw) return roll % (2 * np.pi), pitch % (2 * np.pi), yaw % (2 * np.pi) @torch.jit.script def quat_apply_yaw(quat: torch.Tensor, vec: torch.Tensor) -> torch.Tensor: """Rotate a vector only around the yaw-direction. Args: quat (torch.Tensor): Input orientation to extract yaw from. vec (torch.Tensor): Input vector. Returns: torch.Tensor: Rotated vector. """ quat_yaw = quat.clone().view(-1, 4) quat_yaw[:, 1:3] = 0.0 # set x, y components as zero quat_yaw = normalize(quat_yaw) return quat_apply(quat_yaw, vec) @torch.jit.script def quat_box_minus(q1: torch.Tensor, q2: torch.Tensor) -> torch.Tensor: """Implements box-minus operator (quaternion difference). Args: q1 (torch.Tensor): A (N, 4) tensor for quaternion (x, y, z, w) q2 (torch.Tensor): A (N, 4) tensor for quaternion (x, y, z, w) Returns: torch.Tensor: q1 box-minus q2 Reference: https://docs.leggedrobotics.com/kindr/cheatsheet_latest.pdf """ quat_diff = quat_mul(q1, quat_conjugate(q2)) # q1 * q2^-1 re = quat_diff[:, 0] # real part, q = [w, x, y, z] = [re, im] im = quat_diff[:, 1:] # imaginary part norm_im = torch.norm(im, dim=1) scale = 2.0 * torch.where(norm_im > 1.0e-7, torch.atan(norm_im / re) / norm_im, torch.sign(re)) return scale.unsqueeze(-1) * im @torch.jit.script def axis_angle_from_quat(quat: torch.Tensor, eps: float = 1.0e-6) -> torch.Tensor: """Convert rotations given as quaternions to axis/angle. Args: quat (torch.Tensor): quaternions with real part first, as tensor of shape (..., 4). eps (float): The tolerance for Taylor approximation. Defaults to 1.0e-6. Returns: torch.Tensor: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anti-clockwise in radians around the vector's direction. Reference: Based on PyTorch3D (https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L526-L554) """ # Modified to take in quat as [q_w, q_x, q_y, q_z] # Quaternion is [q_w, q_x, q_y, q_z] = [cos(theta/2), n_x * sin(theta/2), n_y * sin(theta/2), n_z * sin(theta/2)] # Axis-angle is [a_x, a_y, a_z] = [theta * n_x, theta * n_y, theta * n_z] # Thus, axis-angle is [q_x, q_y, q_z] / (sin(theta/2) / theta) # When theta = 0, (sin(theta/2) / theta) is undefined # However, as theta --> 0, we can use the Taylor approximation 1/2 - theta^2 / 48 quat = quat * (1.0 - 2.0 * (quat[..., 0:1] < 0.0)) mag = torch.linalg.norm(quat[..., 1:], dim=1) half_angle = torch.atan2(mag, quat[..., 0]) angle = 2.0 * half_angle # check whether to apply Taylor approximation sin_half_angles_over_angles = torch.where( torch.abs(angle.abs()) > eps, torch.sin(half_angle) / angle, 0.5 - angle * angle / 48 ) return quat[..., 1:4] / sin_half_angles_over_angles.unsqueeze(-1) """ Transformations """ @torch.jit.script def combine_frame_transforms( t01: torch.Tensor, q01: torch.Tensor, t12: torch.Tensor = None, q12: torch.Tensor = None ) -> Tuple[torch.Tensor, torch.Tensor]: r"""Combine transformations between two reference frames into a stationary frame. It performs the following transformation operation: :math:`T_{02} = T_{01} \times T_{12}`, where :math:`T_{AB}` is the homogeneous transformation matrix from frame A to B. Args: t01 (torch.Tensor): Position of frame 1 w.r.t. frame 0. q01 (torch.Tensor): Quaternion orientation of frame 1 w.r.t. frame 0. t12 (torch.Tensor): Position of frame 2 w.r.t. frame 1. q12 (torch.Tensor): Quaternion orientation of frame 2 w.r.t. frame 1. Returns: Tuple[torch.Tensor, torch.Tensor]: A tuple containing the position and orientation of frame 2 w.r.t. frame 0. """ # compute orientation if q12 is not None: q02 = quat_mul(q01, q12) else: q02 = q01 # compute translation if t12 is not None: t02 = t01 + quat_apply(q01, t12) else: t02 = t01 return t02, q02 @torch.jit.script def subtract_frame_transforms( t01: torch.Tensor, q01: torch.Tensor, t02: torch.Tensor, q02: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: r"""Subtract transformations between two reference frames into a stationary frame. It performs the following transformation operation: :math:`T_{12} = T_{01}^{-1} \times T_{02}`, where :math:`T_{AB}` is the homogeneous transformation matrix from frame A to B. Args: t01 (torch.Tensor): Position of frame 1 w.r.t. frame 0. q01 (torch.Tensor): Quaternion orientation of frame 1 w.r.t. frame 0 in (w, x, y, z). t02 (torch.Tensor): Position of frame 2 w.r.t. frame 0. q02 (torch.Tensor): Quaternion orientation of frame 2 w.r.t. frame 0 in (w, x, y, z). Returns: Tuple[torch.Tensor, torch.Tensor]: A tuple containing the position and orientation of frame 2 w.r.t. frame 1. """ # compute orientation q10 = quat_inv(q01) q12 = quat_mul(q10, q02) # compute translation t12 = quat_apply(q10, t02 - t01) return t12, q12 @torch.jit.script def compute_pose_error(t01: torch.Tensor, q01: torch.Tensor, t02: torch.Tensor, q02: torch.Tensor, rot_error_type: str): """Compute the position and orientation error between source and target frames. Args: t01 (torch.Tensor): Position of source frame. q01 (torch.Tensor): Quaternion orientation of source frame. t02 (torch.Tensor): Position of target frame. q02 (torch.Tensor): Quaternion orientation of target frame. rot_error_type (str): The rotation error type to return: "quat", "axis_angle". Returns: Tuple[torch.Tensor, torch.Tensor]: A tuple containing position and orientation error. """ # Compute quaternion error (i.e., difference quaternion) # Reference: https://personal.utdallas.edu/~sxb027100/dock/quaternion.html # q_current_norm = q_current * q_current_conj source_quat_norm = quat_mul(q01, quat_conjugate(q01))[:, 0] # q_current_inv = q_current_conj / q_current_norm source_quat_inv = quat_conjugate(q01) / source_quat_norm.unsqueeze(-1) # q_error = q_target * q_current_inv quat_error = quat_mul(q02, source_quat_inv) # Compute position error pos_error = t02 - t01 # return error based on specified type if rot_error_type == "quat": return pos_error, quat_error elif rot_error_type == "axis_angle": # Convert to axis-angle error axis_angle_error = axis_angle_from_quat(quat_error) return pos_error, axis_angle_error else: raise ValueError(f"Unsupported orientation error type: {rot_error_type}. Valid: 'quat', 'axis_angle'.") @torch.jit.script def apply_delta_pose( source_pos: torch.Tensor, source_rot, delta_pose: torch.Tensor, eps: float = 1.0e-6 ) -> Tuple[torch.Tensor, torch.Tensor]: """Applies delta pose transformation on source pose. The first three elements of `delta_pose` are interpreted as cartesian position displacement. The remaining three elements of `delta_pose` are interpreted as orientation displacement in the angle-axis format. Args: frame_pos (torch.Tensor): Position of source frame. Shape: [N, 3] frame_rot (torch.Tensor): Quaternion orientation of source frame in (w, x, y,z). delta_pose (torch.Tensor): Position and orientation displacements. Shape [N, 6]. eps (float): The tolerance to consider orientation displacement as zero. Returns: torch.Tensor: A tuple containing the displaced position and orientation frames. Shape: ([N, 3], [N, 4]) """ # number of poses given num_poses = source_pos.shape[0] device = source_pos.device # interpret delta_pose[:, 0:3] as target position displacements target_pos = source_pos + delta_pose[:, 0:3] # interpret delta_pose[:, 3:6] as target rotation displacements rot_actions = delta_pose[:, 3:6] angle = torch.linalg.vector_norm(rot_actions, dim=1) axis = rot_actions / angle.unsqueeze(-1) # change from axis-angle to quat convention identity_quat = torch.tensor([1.0, 0.0, 0.0, 0.0], device=device).repeat(num_poses, 1) rot_delta_quat = torch.where( angle.unsqueeze(-1).repeat(1, 4) > eps, quat_from_angle_axis(angle, axis), identity_quat ) # TODO: Check if this is the correct order for this multiplication. target_rot = quat_mul(rot_delta_quat, source_rot) return target_pos, target_rot """ Sampling """ @torch.jit.script def default_orientation(num: int, device: str) -> torch.Tensor: """Returns identity rotation transform. Args: num (int): The number of rotations to sample. device (str): Device to create tensor on. Returns: torch.Tensor: Identity quaternion (w, x, y, z). """ quat = torch.zeros((num, 4), dtype=torch.float, device=device) quat[..., 0] = 1.0 return quat @torch.jit.script def random_orientation(num: int, device: str) -> torch.Tensor: """Returns sampled rotation in 3D as quaternion. Reference: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.random.html Args: num (int): The number of rotations to sample. device (str): Device to create tensor on. Returns: torch.Tensor: Sampled quaternion (w, x, y, z). """ # sample random orientation from normal distribution quat = torch.randn((num, 4), dtype=torch.float, device=device) # normalize the quaternion return torch.nn.functional.normalize(quat, p=2.0, dim=-1, eps=1e-12) @torch.jit.script def random_yaw_orientation(num: int, device: str) -> torch.Tensor: """Returns sampled rotation around z-axis. Args: num (int): The number of rotations to sample. device (str): Device to create tensor on. Returns: torch.Tensor: Sampled quaternion (w, x, y, z). """ roll = torch.zeros(num, dtype=torch.float, device=device) pitch = torch.zeros(num, dtype=torch.float, device=device) yaw = 2 * np.pi * torch.rand(num, dtype=torch.float, device=device) return quat_from_euler_xyz(roll, pitch, yaw) def sample_triangle(lower: float, upper: float, size: Union[int, Tuple[int, ...]], device: str) -> torch.Tensor: """Randomly samples tensor from a triangular distribution. Args: lower (float): The lower range of the sampled tensor. upper (float): The upper range of the sampled tensor. size (Union[int, Tuple[int, ...]]): The shape of the tensor. device (str): Device to create tensor on. Returns: torch.Tensor: Sampled tensor of shape :obj:`size`. """ # convert to tuple if isinstance(size, int): size = (size,) # create random tensor in the range [-1, 1] r = 2 * torch.rand(*size, device=device) - 1 # convert to triangular distribution r = torch.where(r < 0.0, -torch.sqrt(-r), torch.sqrt(r)) # rescale back to [0, 1] r = (r + 1.0) / 2.0 # rescale to range [lower, upper] return (upper - lower) * r + lower def sample_uniform( lower: Union[torch.Tensor, float], upper: Union[torch.Tensor, float], size: Union[int, Tuple[int, ...]], device: str ) -> torch.Tensor: """Sample uniformly within a range. Args: lower (Union[torch.Tensor, float]): Lower bound of uniform range. upper (Union[torch.Tensor, float]): Upper bound of uniform range. size (Union[int, Tuple[int, ...]]): The shape of the tensor. device (str): Device to create tensor on. Returns: torch.Tensor: Sampled tensor of shape :obj:`size`. """ # convert to tuple if isinstance(size, int): size = (size,) # return tensor return torch.rand(*size, device=device) * (upper - lower) + lower def sample_cylinder( radius: float, h_range: Tuple[float, float], size: Union[int, Tuple[int, ...]], device: str ) -> torch.Tensor: """Sample 3D points uniformly on a cylinder's surface. The cylinder is centered at the origin and aligned with the z-axis. The height of the cylinder is sampled uniformly from the range :obj:`h_range`, while the radius is fixed to :obj:`radius`. The sampled points are returned as a tensor of shape :obj:`(*size, 3)`, i.e. the last dimension contains the x, y, and z coordinates of the sampled points. Args: radius (float): The radius of the cylinder. h_range (Tuple[float, float]): The minimum and maximum height of the cylinder. size (Union[int, Tuple[int, ...]]): The shape of the tensor. device (str): Device to create tensor on. Returns: torch.Tensor: Sampled tensor of shape :obj:`(*size, 3)`. """ # sample angles angles = (torch.rand(size, device=device) * 2 - 1) * np.pi h_min, h_max = h_range # add shape if isinstance(size, int): size = (size, 3) else: size += (3,) # allocate a tensor xyz = torch.zeros(size, device=device) xyz[..., 0] = radius * torch.cos(angles) xyz[..., 1] = radius * torch.sin(angles) xyz[..., 2].uniform_(h_min, h_max) # return positions return xyz
21,379
Python
33.153355
139
0.627391
makolon/hsr_isaac_tamp/hsr_rl/tasks/utils/dict_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES, ETH Zurich, and University of Toronto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Utilities for working with dictionaries.""" import collections.abc import importlib import inspect from typing import Any, Callable, Dict, Iterable, Mapping from hsr_rl.tasks.utils.array_utils import TENSOR_TYPE_CONVERSIONS, TENSOR_TYPES __all__ = ["class_to_dict", "update_class_from_dict", "convert_dict_to_backend", "update_dict", "print_dict"] """ Dictionary <-> Class operations. """ def class_to_dict(obj: object) -> Dict[str, Any]: """Convert an object into dictionary recursively. Note: Ignores all names starting with "__" (i.e. built-in methods). Args: obj (object): An instance of a class to convert. Raises: ValueError: When input argument is not an object. Returns: Dict[str, Any]: Converted dictionary mapping. """ # check that input data is class instance if not hasattr(obj, "__class__"): raise ValueError(f"Expected a class instance. Received: {type(obj)}.") # convert object to dictionary if isinstance(obj, dict): obj_dict = obj else: obj_dict = obj.__dict__ # convert to dictionary data = dict() for key, value in obj_dict.items(): # disregard builtin attributes if key.startswith("__"): continue # check if attribute is callable -- function if callable(value): data[key] = f"{value.__module__}:{value.__name__}" # check if attribute is a dictionary elif hasattr(value, "__dict__") or isinstance(value, dict): data[key] = class_to_dict(value) else: data[key] = value return data def update_class_from_dict(obj, data: Dict[str, Any], _ns: str = "") -> None: """Reads a dictionary and sets object variables recursively. This function performs in-place update of the class member attributes. Args: obj (object): An instance of a class to update. data (Dict[str, Any]): Input dictionary to update from. _ns (str): Namespace of the current object. This is useful for nested configuration classes or dictionaries. Defaults to "". Raises: TypeError: When input is not a dictionary. ValueError: When dictionary has a value that does not match default config type. KeyError: When dictionary has a key that does not exist in the default config type. """ for key, value in data.items(): # key_ns is the full namespace of the key key_ns = _ns + "/" + key # check if key is present in the object if hasattr(obj, key): obj_mem = getattr(obj, key) if isinstance(obj_mem, Mapping): # Note: We don't handle two-level nested dictionaries. Just use configclass if this is needed. # iterate over the dictionary to look for callable values for k, v in obj_mem.items(): if callable(v): value[k] = _string_to_callable(value[k]) setattr(obj, key, value) elif isinstance(value, Mapping): # recursively call if it is a dictionary update_class_from_dict(obj_mem, value, _ns=key_ns) elif isinstance(value, Iterable) and not isinstance(value, str): # check length of value to be safe if len(obj_mem) != len(value) and obj_mem is not None: raise ValueError( f"[Config]: Incorrect length under namespace: {key_ns}. Expected: {len(obj_mem)}, Received: {len(value)}." ) # set value setattr(obj, key, value) elif callable(obj_mem): # update function name value = _string_to_callable(value) setattr(obj, key, value) elif isinstance(value, type(obj_mem)): # check that they are type-safe setattr(obj, key, value) else: raise ValueError( f"[Config]: Incorrect type under namespace: {key_ns}. Expected: {type(obj_mem)}, Received: {type(value)}." ) else: raise KeyError(f"[Config]: Key not found under namespace: {key_ns}.") """ Dictionary operations. """ def convert_dict_to_backend( data: dict, backend: str = "numpy", array_types: Iterable[str] = ("numpy", "torch", "warp") ) -> dict: """Convert all arrays or tensors in a dictionary to a given backend. This function iterates over the dictionary, converts all arrays or tensors with the given types to the desired backend, and stores them in a new dictionary. It also works with nested dictionaries. Currently supported backends are "numpy", "torch", and "warp". Note: This function only converts arrays or tensors. Other types of data are left unchanged. Mutable types (e.g. lists) are referenced by the new dictionary, so they are not copied. Args: data (dict): An input dict containing array or tensor data as values. backend(str): The backend ("numpy", "torch", "warp") to which arrays in this dict should be converted. Defaults to "numpy". array_types(Iterable[str]): A list containing the types of arrays that should be converted to the desired backend. Defaults to ("numpy", "torch", "warp"). Raises: ValueError: If the specified ``backend`` or ``array_types`` are unknown, i.e. not in the list of supported backends ("numpy", "torch", "warp"). Returns: dict: The updated dict with the data converted to the desired backend. """ # THINK: Should we also support converting to a specific device, e.g. "cuda:0"? # Check the backend is valid. if backend not in TENSOR_TYPE_CONVERSIONS: raise ValueError(f"Unknown backend '{backend}'. Supported backends are 'numpy', 'torch', and 'warp'.") # Define the conversion functions for each backend. tensor_type_conversions = TENSOR_TYPE_CONVERSIONS[backend] # Parse the array types and convert them to the corresponding types: "numpy" -> np.ndarray, etc. parsed_types = list() for t in array_types: # Check type is valid. if t not in TENSOR_TYPES: raise ValueError(f"Unknown array type: '{t}'. Supported array types are 'numpy', 'torch', and 'warp'.") # Exclude types that match the backend, since we do not need to convert these. if t == backend: continue # Convert the string types to the corresponding types. parsed_types.append(TENSOR_TYPES[t]) # Convert the data to the desired backend. output_dict = dict() for key, value in data.items(): # Obtain the data type of the current value. data_type = type(value) # -- arrays if data_type in parsed_types: # check if we have a known conversion. if data_type not in tensor_type_conversions: raise ValueError(f"No registered conversion for data type: {data_type} to {backend}!") # convert the data to the desired backend. output_dict[key] = tensor_type_conversions[data_type](value) # -- nested dictionaries elif isinstance(data[key], dict): output_dict[key] = convert_dict_to_backend(value) # -- everything else else: output_dict[key] = value return output_dict def update_dict(orig_dict: dict, new_dict: collections.abc.Mapping) -> dict: """Updates existing dictionary with values from a new dictionary. This function mimics the dict.update() function. However, it works for nested dictionaries as well. Reference: https://stackoverflow.com/questions/3232943/update-value-of-a-nested-dictionary-of-varying-depth Args: orig_dict (dict): The original dictionary to insert items to. new_dict (collections.abc.Mapping): The new dictionary to insert items from. Returns: dict: The updated dictionary. """ for keyname, value in new_dict.items(): if isinstance(value, collections.abc.Mapping): orig_dict[keyname] = update_dict(orig_dict.get(keyname, {}), value) else: orig_dict[keyname] = value return orig_dict def print_dict(val, nesting: int = -4, start: bool = True): """Outputs a nested dictionary.""" if type(val) == dict: if not start: print("") nesting += 4 for k in val: print(nesting * " ", end="") print(k, end=": ") print_dict(val[k], nesting, start=False) else: # deal with functions in print statements if callable(val) and val.__name__ == "<lambda>": print("lambda", inspect.getsourcelines(val)[0][0].strip().split("lambda")[1].strip()[:-1]) elif callable(val): print(f"{val.__module__}:{val.__name__}") else: print(val) """ Private helper functions. """ def _string_to_callable(name: str) -> Callable: """Resolves the module and function names to return the function. Args: name (str): The function name. The format should be 'module:attribute_name'. Raises: ValueError: When the resolved attribute is not a function. ValueError: _description_ Returns: Callable: The function loaded from the module. """ try: mod_name, attr_name = name.split(":") mod = importlib.import_module(mod_name) callable_object = getattr(mod, attr_name) # check if attribute is callable if callable(callable_object): return callable_object else: raise ValueError(f"The imported object is not callable: '{name}'") except AttributeError as e: msg = ( "While updating the config from a dictionary, we could not interpret the entry" "as a callable object. The format of input should be 'module:attribute_name'\n" f"While processing input '{name}', received the error:\n {e}." ) raise ValueError(msg)
10,319
Python
37.364312
130
0.612462
makolon/hsr_isaac_tamp/hsr_rl/tasks/utils/pinoc_utils.py
from __future__ import print_function import os import numpy as np import pinocchio as pin from scipy.spatial.transform import Rotation as R def get_se3_err(pos_first, quat_first, pos_second, quat_second): # Retruns 6 dimensional log.SE3 error between two poses expressed as position and quaternion rotation rot_first = R.from_quat(np.array([quat_first[1],quat_first[2],quat_first[3],quat_first[0]])).as_matrix() # Quaternion in scalar last format!!! rot_second = R.from_quat(np.array([quat_second[1],quat_second[2],quat_second[3],quat_second[0]])).as_matrix() # Quaternion in scalar last format!!! oMfirst = pin.SE3(rot_first, pos_first) oMsecond = pin.SE3(rot_second, pos_second) firstMsecond = oMfirst.actInv(oMsecond) return pin.log(firstMsecond).vector # log gives us a spatial vector (exp co-ords) class HSRIKSolver(object): def __init__( self, include_torso: bool = False, # Use torso in th IK solution include_base: bool = True, # Use base in th IK solution max_rot_vel: float = 1.0472 ) -> None: # Settings self.damp = 1e-10 self._include_torso = include_torso self._include_base = include_base self.max_rot_vel = max_rot_vel # Load urdf # TODO: fix urdf_file = "/root/tamp-hsr/hsr_rl/models/urdf/hsrb_description/hsrb4s.urdf" self.model = pin.buildModelFromUrdf(urdf_file) # Choose joints name_end_effector = "hand_palm_link" jointsOfInterest = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] # Add torso joints if self._include_torso: jointsOfInterest = ['torso_lift_joint'] + jointsOfInterest # Add base joints if self._include_base: jointsOfInterest = ['joint_x', 'joint_y', 'joint_rz'] + jointsOfInterest remove_ids = list() for jnt in jointsOfInterest: if self.model.existJointName(jnt): remove_ids.append(self.model.getJointId(jnt)) else: print('[IK WARNING]: joint ' + str(jnt) + ' does not belong to the model!') jointIdsToExclude = np.delete(np.arange(0, self.model.njoints), remove_ids) # Lock extra joints except joint 0 (root) reference_configuration=pin.neutral(self.model) if not self._include_torso: reference_configuration[4] = 0.1 # lock torso_lift_joint at 0.1 self.model = pin.buildReducedModel(self.model, jointIdsToExclude[1:].tolist(), reference_configuration=reference_configuration) assert (len(self.model.joints)==(len(jointsOfInterest)+1)), "[IK Error]: Joints != nDoFs" self.model_data = self.model.createData() # Define Joint-Limits self.joint_pos_min = np.array([-2.617, -1.919, -1.919, -1.919]) self.joint_pos_max = np.array([+0.0, +3.665, +1.221, +3.665]) if self._include_torso: self.joint_pos_min = np.hstack((np.array([+0.0]), self.joint_pos_min)) self.joint_pos_max = np.hstack((np.array([+0.69]), self.joint_pos_max)) if self._include_base: self.joint_pos_min = np.hstack((np.array([-10.0, -10.0, -10.0]), self.joint_pos_min)) self.joint_pos_max = np.hstack((np.array([+10.0, +10.0, +10.0]), self.joint_pos_max)) self.joint_pos_mid = (self.joint_pos_max + self.joint_pos_min) / 2.0 # Get End Effector Frame ID self.id_EE = self.model.getFrameId(name_end_effector) def get_jacobian(self, curr_conf): # Compute Jacobian J = pin.computeFrameJacobian(self.model, self.model_data, curr_conf, self.id_EE) return J def solve_fk_hsr(self, curr_joints): pin.framesForwardKinematics(self.model, self.model_data, curr_joints) oMf = self.model_data.oMf[self.id_EE] ee_pos = oMf.translation ee_quat = pin.Quaternion(oMf.rotation) return ee_pos, np.array([ee_quat.w, ee_quat.x, ee_quat.y, ee_quat.z]) def solve_ik_pos_hsr(self, des_pos, des_quat, curr_joints=None, n_trials=7, dt=0.1, pos_threshold=0.05, angle_threshold=15.*np.pi/180, verbose=True): # Get IK positions for hsr robot damp = 1e-10 success = False if des_quat is not None: # quaternion to rot matrix des_rot = R.from_quat(np.array([des_quat[1], des_quat[2], des_quat[3], des_quat[0]])).as_matrix() # Quaternion in scalar last format!!! oMdes = pin.SE3(des_rot, des_pos) else: # 3D position error only des_rot = None if curr_joints is None: q = np.random.uniform(self.joint_pos_min, self.joint_pos_max) for n in range(n_trials): for i in range(800): pin.framesForwardKinematics(self.model, self.model_data, q) oMf = self.model_data.oMf[self.id_EE] if des_rot is None: oMdes = pin.SE3(oMf.rotation, des_pos) # Set rotation equal to current rotation to exclude this error dMf = oMdes.actInv(oMf) err = pin.log(dMf).vector if (np.linalg.norm(err[0:3]) < pos_threshold) and (np.linalg.norm(err[3:6]) < angle_threshold): success = True break J = pin.computeFrameJacobian(self.model, self.model_data, q, self.id_EE) if des_rot is None: J = J[:3, :] # Only pos errors err = err[:3] v = - J.T.dot(np.linalg.solve(J.dot(J.T) + damp * np.eye(6), err)) q = pin.integrate(self.model, q, v*dt) # Clip q to within joint limits q = np.clip(q, self.joint_pos_min, self.joint_pos_max) if verbose: if not i % 100: print('Trial %d: iter %d: error = %s' % (n+1, i, err.T)) i += 1 if success: best_q = np.array(q) else: # Save current solution best_q = np.array(q) # Reset q to random configuration q = np.random.uniform(self.joint_pos_min, self.joint_pos_max) if verbose: if success: print("[[[[IK: Convergence achieved!]]]") else: print("[Warning: the IK iterative algorithm has not reached convergence to the desired precision]") return success, best_q if __name__ == '__main__': hsr_ik_solver = HSRIKSolver() success, best_q = hsr_ik_solver.solve_ik_pos_hsr(np.array([0.5, 0.1, 0.3]), np.array([0., 0., 0., 1.0])) print('best_q: ', best_q)
6,825
Python
39.630952
153
0.57348
makolon/hsr_isaac_tamp/hsr_rl/tasks/utils/annotation_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES, ETH Zurich, and University of Toronto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Wrapper around the Python 3.7 onwards `dataclasses` module.""" from copy import deepcopy from dataclasses import Field, dataclass, field from typing import Any, Callable, ClassVar, Dict from hsr_rl.tasks.utils.dict_utils import class_to_dict, update_class_from_dict # List of all methods provided by sub-module. __all__ = ["configclass"] """ Wrapper around dataclass. """ def __dataclass_transform__(): """Add annotations decorator for PyLance.""" return lambda a: a @__dataclass_transform__() def configclass(cls, **kwargs): """Wrapper around `dataclass` functionality to add extra checks and utilities. As of Python3.8, the standard dataclasses have two main issues which makes them non-generic for configuration use-cases. These include: 1. Requiring a type annotation for all its members. 2. Requiring explicit usage of :meth:`field(default_factory=...)` to reinitialize mutable variables. This function wraps around :class:`dataclass` utility to deal with the above two issues. Usage: .. code-block:: python from dataclasses import MISSING from omni.isaac.orbit.utils.configclass import configclass @configclass class ViewerCfg: eye: list = [7.5, 7.5, 7.5] # field missing on purpose lookat: list = field(default_factory=[0.0, 0.0, 0.0]) @configclass class EnvCfg: num_envs: int = MISSING episode_length: int = 2000 viewer: ViewerCfg = ViewerCfg() # create configuration instance env_cfg = EnvCfg(num_envs=24) # print information print(env_cfg.to_dict()) Reference: https://docs.python.org/3/library/dataclasses.html#dataclasses.Field """ # add type annotations _add_annotation_types(cls) # add field factory _process_mutable_types(cls) # copy mutable members setattr(cls, "__post_init__", _custom_post_init) # add helper functions for dictionary conversion setattr(cls, "to_dict", _class_to_dict) setattr(cls, "from_dict", _update_class_from_dict) # wrap around dataclass cls = dataclass(cls, **kwargs) # return wrapped class return cls """ Dictionary <-> Class operations. These are redefined here to add new docstrings. """ def _class_to_dict(obj: object) -> Dict[str, Any]: """Convert an object into dictionary recursively. Returns: Dict[str, Any]: Converted dictionary mapping. """ return class_to_dict(obj) def _update_class_from_dict(obj, data: Dict[str, Any]) -> None: """Reads a dictionary and sets object variables recursively. This function performs in-place update of the class member attributes. Args: data (Dict[str, Any]): Input (nested) dictionary to update from. Raises: TypeError: When input is not a dictionary. ValueError: When dictionary has a value that does not match default config type. KeyError: When dictionary has a key that does not exist in the default config type. """ return update_class_from_dict(obj, data, _ns="") """ Private helper functions. """ def _add_annotation_types(cls): """Add annotations to all elements in the dataclass. By definition in Python, a field is defined as a class variable that has a type annotation. In case type annotations are not provided, dataclass ignores those members when :func:`__dict__()` is called. This function adds these annotations to the class variable to prevent any issues in case the user forgets to specify the type annotation. This makes the following a feasible operation: @dataclass class State: pos = (0.0, 0.0, 0.0) ^^ If the function is NOT used, the following type-error is returned: TypeError: 'pos' is a field but has no type annotation """ # Note: Do not change this line. `cls.__dict__.get("__annotations__", {})` is different from `cls.__annotations__` because of inheritance. cls.__annotations__ = cls.__dict__.get("__annotations__", {}) # cls.__annotations__ = dict() for key in dir(cls): # skip dunder members if key.startswith("__"): continue # skip class functions if key in ["from_dict", "to_dict"]: continue # add type annotations for members that are not functions var = getattr(cls, key) if not isinstance(var, type): if key not in cls.__annotations__: cls.__annotations__[key] = type(var) def _process_mutable_types(cls): """Initialize all mutable elements through :obj:`dataclasses.Field` to avoid unnecessary complaints. By default, dataclass requires usage of :obj:`field(default_factory=...)` to reinitialize mutable objects every time a new class instance is created. If a member has a mutable type and it is created without specifying the `field(default_factory=...)`, then Python throws an error requiring the usage of `default_factory`. Additionally, Python only explicitly checks for field specification when the type is a list, set or dict. This misses the use-case where the type is class itself. Thus, the code silently carries a bug with it which can lead to undesirable effects. This function deals with this issue This makes the following a feasible operation: @dataclass class State: pos: list = [0.0, 0.0, 0.0] ^^ If the function is NOT used, the following value-error is returned: ValueError: mutable default <class 'list'> for field pos is not allowed: use default_factory """ def _return_f(f: Any) -> Callable[[], Any]: """Returns default function for creating mutable/immutable variables.""" def _wrap(): if isinstance(f, Field): return f.default_factory else: return f return _wrap for key in dir(cls): # skip dunder members if key.startswith("__"): continue # skip class functions if key in ["from_dict", "to_dict"]: continue # do not create field for class variables if key in cls.__annotations__: origin = getattr(cls.__annotations__[key], "__origin__", None) if origin is ClassVar: continue # define explicit field for data members f = getattr(cls, key) if not isinstance(f, type): f = field(default_factory=_return_f(f)) setattr(cls, key, f) def _custom_post_init(obj): """Deepcopy all elements to avoid shared memory issues for mutable objects in dataclasses initialization. This function is called explicitly instead of as a part of :func:`_process_mutable_types()` to prevent mapping proxy type i.e. a read only proxy for mapping objects. The error is thrown when using hierarchical data-classes for configuration. """ for key in dir(obj): # skip dunder members if key.startswith("__"): continue # duplicate data members var = getattr(obj, key) if not callable(var): setattr(obj, key, deepcopy(var))
7,468
Python
32.644144
142
0.64301
makolon/hsr_isaac_tamp/hsr_rl/tasks/utils/ik_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES, ETH Zurich, and University of Toronto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import torch from dataclasses import MISSING from typing import Dict, Optional, Tuple from hsr_rl.tasks.utils.annotation_utils import configclass from hsr_rl.tasks.utils.transform_utils import ( apply_delta_pose, combine_frame_transforms, compute_pose_error, quat_apply, quat_inv ) @configclass class DifferentialInverseKinematicsCfg: """Configuration for inverse differential kinematics controller.""" command_type: str = MISSING """Type of command: "position_abs", "position_rel", "pose_abs", "pose_rel".""" ik_method: str = MISSING """Method for computing inverse of Jacobian: "pinv", "svd", "trans", "dls".""" ik_params: Optional[Dict[str, float]] = None """Parameters for the inverse-kinematics method. (default: obj:`None`). - Moore-Penrose pseudo-inverse ("pinv"): - "k_val": Scaling of computed delta-dof positions (default: 1.0). - Adaptive Singular Value Decomposition ("svd"): - "k_val": Scaling of computed delta-dof positions (default: 1.0). - "min_singular_value": Single values less than this are suppressed to zero (default: 1e-5). - Jacobian transpose ("trans"): - "k_val": Scaling of computed delta-dof positions (default: 1.0). - Damped Moore-Penrose pseudo-inverse ("dls"): - "lambda_val": Damping coefficient (default: 0.1). """ position_offset: Tuple[float, float, float] = (0.0, 0.0, 0.0) """Position offset from parent body to end-effector frame in parent body frame.""" rotation_offset: Tuple[float, float, float, float] = (1.0, 0.0, 0.0, 0.0) """Rotational offset from parent body to end-effector frame in parent body frame.""" position_command_scale: Tuple[float, float, float] = (1.0, 1.0, 1.0) """Scaling of the position command received. Used only in relative mode.""" rotation_command_scale: Tuple[float, float, float] = (1.0, 1.0, 1.0) """Scaling of the rotation command received. Used only in relative mode.""" class DifferentialInverseKinematics: """Inverse differential kinematics controller. This controller uses the Jacobian mapping from joint-space velocities to end-effector velocities to compute the delta-change in the joint-space that moves the robot closer to a desired end-effector position. To deal with singularity in Jacobian, the following methods are supported for computing inverse of the Jacobian: - "pinv": Moore-Penrose pseudo-inverse - "svd": Adaptive singular-value decomposition (SVD) - "trans": Transpose of matrix - "dls": Damped version of Moore-Penrose pseudo-inverse (also called Levenberg-Marquardt) Note: We use the quaternions in the convention: [w, x, y, z]. Reference: [1] https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2017/RD_HS2017script.pdf [2] https://www.cs.cmu.edu/~15464-s13/lectures/lecture6/iksurvey.pdf """ _DEFAULT_IK_PARAMS = { "pinv": {"k_val": 1.0}, "svd": {"k_val": 1.0, "min_singular_value": 1e-5}, "trans": {"k_val": 1.0}, "dls": {"lambda_val": 0.1}, } """Default parameters for different inverse kinematics approaches.""" def __init__(self, cfg: DifferentialInverseKinematicsCfg, num_robots: int, device: str): """Initialize the controller. Args: cfg (DifferentialInverseKinematicsCfg): The configuration for the controller. num_robots (int): The number of robots to control. device (str): The device to use for computations. Raises: ValueError: When configured IK-method is not supported. ValueError: When configured command type is not supported. """ # store inputs self.cfg = cfg self.num_robots = num_robots self._device = device # check valid input if self.cfg.ik_method not in ["pinv", "svd", "trans", "dls"]: raise ValueError(f"Unsupported inverse-kinematics method: {self.cfg.ik_method}.") if self.cfg.command_type not in ["position_abs", "position_rel", "pose_abs", "pose_rel"]: raise ValueError(f"Unsupported inverse-kinematics command: {self.cfg.command_type}.") # update parameters for IK-method self._ik_params = self._DEFAULT_IK_PARAMS[self.cfg.ik_method].copy() if self.cfg.ik_params is not None: self._ik_params.update(self.cfg.ik_params) # end-effector offsets # -- position tool_child_link_pos = torch.tensor(self.cfg.position_offset, device=self._device) self._tool_child_link_pos = tool_child_link_pos.repeat(self.num_robots, 1) # -- orientation tool_child_link_rot = torch.tensor(self.cfg.rotation_offset, device=self._device) self._tool_child_link_rot = tool_child_link_rot.repeat(self.num_robots, 1) # transform from tool -> parent frame self._tool_parent_link_rot = quat_inv(self._tool_child_link_rot) self._tool_parent_link_pos = -quat_apply(self._tool_parent_link_rot, self._tool_child_link_pos) # scaling of command self._position_command_scale = torch.diag(torch.tensor(self.cfg.position_command_scale, device=self._device)) self._rotation_command_scale = torch.diag(torch.tensor(self.cfg.rotation_command_scale, device=self._device)) # create buffers self.desired_ee_pos = torch.zeros(self.num_robots, 3, device=self._device) self.desired_ee_rot = torch.zeros(self.num_robots, 4, device=self._device) # -- input command self._command = torch.zeros(self.num_robots, self.num_actions, device=self._device) """ Properties. """ @property def num_actions(self) -> int: """Dimension of the action space of controller.""" if "position" in self.cfg.command_type: return 3 elif self.cfg.command_type == "pose_rel": return 6 elif self.cfg.command_type == "pose_abs": return 7 else: raise ValueError(f"Invalid control command: {self.cfg.command_type}.") """ Operations. """ def initialize(self): """Initialize the internals.""" pass def reset_idx(self, robot_ids: torch.Tensor = None): """Reset the internals.""" pass def set_command(self, command: torch.Tensor): """Set target end-effector pose command.""" # check input size if command.shape != (self.num_robots, self.num_actions): raise ValueError( f"Invalid command shape '{command.shape}'. Expected: '{(self.num_robots, self.num_actions)}'." ) # store command self._command[:] = command def compute( self, current_ee_pos: torch.Tensor, current_ee_rot: torch.Tensor, jacobian: torch.Tensor, joint_positions: torch.Tensor, ) -> torch.Tensor: """Performs inference with the controller. Returns: torch.Tensor: The target joint positions commands. """ # compute the desired end-effector pose if "position_rel" in self.cfg.command_type: # scale command self._command @= self._position_command_scale # compute targets self.desired_ee_pos = current_ee_pos + self._command self.desired_ee_rot = current_ee_rot elif "position_abs" in self.cfg.command_type: # compute targets self.desired_ee_pos = self._command self.desired_ee_rot = current_ee_rot elif "pose_rel" in self.cfg.command_type: # scale command self._command[:, 0:3] @= self._position_command_scale self._command[:, 3:6] @= self._rotation_command_scale # compute targets self.desired_ee_pos, self.desired_ee_rot = apply_delta_pose(current_ee_pos, current_ee_rot, self._command) elif "pose_abs" in self.cfg.command_type: # compute targets self.desired_ee_pos = self._command[:, 0:3] self.desired_ee_rot = self._command[:, 3:7] else: raise ValueError(f"Invalid control command: {self.cfg.command_type}.") # transform from ee -> parent # TODO: Make this optional to reduce overhead? desired_parent_pos, desired_parent_rot = combine_frame_transforms( self.desired_ee_pos, self.desired_ee_rot, self._tool_parent_link_pos, self._tool_parent_link_rot ) # transform from ee -> parent # TODO: Make this optional to reduce overhead? current_parent_pos, current_parent_rot = combine_frame_transforms( current_ee_pos, current_ee_rot, self._tool_parent_link_pos, self._tool_parent_link_rot ) # compute pose error between current and desired position_error, axis_angle_error = compute_pose_error( current_parent_pos, current_parent_rot, desired_parent_pos, desired_parent_rot, rot_error_type="axis_angle" ) # compute the delta in joint-space if "position" in self.cfg.command_type: jacobian_pos = jacobian[:, 0:3] delta_joint_positions = self._compute_delta_dof_pos(delta_pose=position_error, jacobian=jacobian_pos) else: pose_error = torch.cat((position_error, axis_angle_error), dim=1) delta_joint_positions = self._compute_delta_dof_pos(delta_pose=pose_error, jacobian=jacobian) # return the desired joint positions return joint_positions + delta_joint_positions def compute_delta( self, current_ee_pos: torch.Tensor, current_ee_rot: torch.Tensor, jacobian: torch.Tensor, ) -> torch.Tensor: """Performs inference with the controller. Returns: torch.Tensor: The target joint positions commands. """ # compute the desired end-effector pose if "position_rel" in self.cfg.command_type: # scale command self._command @= self._position_command_scale # compute targets self.desired_ee_pos = current_ee_pos + self._command self.desired_ee_rot = current_ee_rot elif "position_abs" in self.cfg.command_type: # compute targets self.desired_ee_pos = self._command self.desired_ee_rot = current_ee_rot elif "pose_rel" in self.cfg.command_type: # scale command self._command[:, 0:3] @= self._position_command_scale self._command[:, 3:6] @= self._rotation_command_scale # compute targets self.desired_ee_pos, self.desired_ee_rot = apply_delta_pose(current_ee_pos, current_ee_rot, self._command) elif "pose_abs" in self.cfg.command_type: # compute targets self.desired_ee_pos = self._command[:, 0:3] self.desired_ee_rot = self._command[:, 3:7] else: raise ValueError(f"Invalid control command: {self.cfg.command_type}.") # transform from ee -> parent # TODO: Make this optional to reduce overhead? desired_parent_pos, desired_parent_rot = combine_frame_transforms( self.desired_ee_pos, self.desired_ee_rot, self._tool_parent_link_pos, self._tool_parent_link_rot ) # transform from ee -> parent # TODO: Make this optional to reduce overhead? current_parent_pos, current_parent_rot = combine_frame_transforms( current_ee_pos, current_ee_rot, self._tool_parent_link_pos, self._tool_parent_link_rot ) # compute pose error between current and desired position_error, axis_angle_error = compute_pose_error( current_parent_pos, current_parent_rot, desired_parent_pos, desired_parent_rot, rot_error_type="axis_angle" ) # compute the delta in joint-space if "position" in self.cfg.command_type: jacobian_pos = jacobian[:, 0:3] delta_joint_positions = self._compute_delta_dof_pos(delta_pose=position_error, jacobian=jacobian_pos) else: pose_error = torch.cat((position_error, axis_angle_error), dim=1) delta_joint_positions = self._compute_delta_dof_pos(delta_pose=pose_error, jacobian=jacobian) # return the desired joint positions return delta_joint_positions """ Helper functions. """ def _compute_delta_dof_pos(self, delta_pose: torch.Tensor, jacobian: torch.Tensor) -> torch.Tensor: """Computes the change in dos-position that yields the desired change in pose. The method uses the Jacobian mapping from joint-space velocities to end-effector velocities to compute the delta-change in the joint-space that moves the robot closer to a desired end-effector position. Args: delta_pose (torch.Tensor): The desired delta pose in shape [N, 3 or 6]. jacobian (torch.Tensor): The geometric jacobian matrix in shape [N, 3 or 6, num-dof] Returns: torch.Tensor: The desired delta in joint space. """ if self.cfg.ik_method == "pinv": # Jacobian pseudo-inverse # parameters k_val = self._ik_params["k_val"] # computation jacobian_pinv = torch.linalg.pinv(jacobian) delta_dof_pos = k_val * jacobian_pinv @ delta_pose.unsqueeze(-1) delta_dof_pos = delta_dof_pos.squeeze(-1) elif self.cfg.ik_method == "svd": # adaptive SVD # parameters k_val = self._ik_params["k_val"] min_singular_value = self._ik_params["min_singular_value"] # computation # U: 6xd, S: dxd, V: d x num-dof U, S, Vh = torch.linalg.svd(jacobian) S_inv = 1.0 / S S_inv = torch.where(S > min_singular_value, S_inv, torch.zeros_like(S_inv)) jacobian_pinv = ( torch.transpose(Vh, dim0=1, dim1=2)[:, :, :6] @ torch.diag_embed(S_inv) @ torch.transpose(U, dim0=1, dim1=2) ) delta_dof_pos = k_val * jacobian_pinv @ delta_pose.unsqueeze(-1) delta_dof_pos = delta_dof_pos.squeeze(-1) elif self.cfg.ik_method == "trans": # Jacobian transpose # parameters k_val = self._ik_params["k_val"] # computation jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2) delta_dof_pos = k_val * jacobian_T @ delta_pose.unsqueeze(-1) delta_dof_pos = delta_dof_pos.squeeze(-1) elif self.cfg.ik_method == "dls": # damped least squares # parameters lambda_val = self._ik_params["lambda_val"] # computation jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2) lambda_matrix = (lambda_val**2) * torch.eye(n=jacobian.shape[1], device=self._device) delta_dof_pos = jacobian_T @ torch.inverse(jacobian @ jacobian_T + lambda_matrix) @ delta_pose.unsqueeze(-1) delta_dof_pos = delta_dof_pos.squeeze(-1) else: raise ValueError(f"Unsupported inverse-kinematics method: {self.cfg.ik_method}") return delta_dof_pos
15,553
Python
39.824147
153
0.618852
makolon/hsr_isaac_tamp/hsr_rl/tasks/utils/scene_utils.py
import os import torch import numpy as np from typing import Optional from pxr import Gf from omni.isaac.core.prims.rigid_prim import RigidPrim from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.prims.geometry_prim import GeometryPrim from omni.physx.scripts import utils from pxr import UsdGeom from hsr_rl.utils.files import get_usd_path from omni.isaac.core.utils.prims import get_prim_at_path, is_prim_path_valid from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.core.utils.torch.rotations import euler_angles_to_quats def spawn_obstacle(name, prim_path, device): object_translation = torch.tensor([1.7, 0.0, 0.055], device=device) object_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=device) # Spawn object model from usd path object_usd_path = os.path.join(get_usd_path(), 'gearbox', name, name+'.usd') add_reference_to_stage(object_usd_path, prim_path+"/obstacle/"+name) obst_prim = XFormPrim( prim_path=prim_path+"/obstacle/"+name, translation=object_translation, orientation=object_orientation ) return obst_prim def spawn_dynamic_object(name, prim_path, object_translation, object_orientation): # Spawn object model from usd path object_usd_path = os.path.join(get_usd_path(), 'gearbox_dynamic', name, name+'.usd') add_reference_to_stage(object_usd_path, prim_path+"/"+name) obj_prim = XFormPrim( prim_path=prim_path+"/"+name, translation=object_translation, orientation=object_orientation ) return obj_prim def spawn_static_object(name, prim_path, object_translation, object_orientation): # Spawn object model from usd path object_usd_path = os.path.join(get_usd_path(), 'gearbox_static', name, name+'.usd') add_reference_to_stage(object_usd_path, prim_path+"/"+name) obj_prim = XFormPrim( prim_path=prim_path+"/"+name, translation=object_translation, orientation=object_orientation ) return obj_prim def setup_gearbox_scene(env_ids, indices, obstacles, obstacles_state, grasp_objs, grasp_objs_state, device): # Place all grasp objects on the tabular obstacle (without overlaps) for idx, _ in enumerate(obstacles): obst_position = obstacles_state[idx][env_ids, :3] obst_orientation = obstacles_state[idx][env_ids, 3:] obstacles[idx].set_world_poses(positions=obst_position, orientations=obst_orientation, indices=indices) for idx, _ in enumerate(grasp_objs): grasp_obj_position = grasp_objs_state[idx][env_ids, :3] grsap_obj_orientation = grasp_objs_state[idx][env_ids, 3:] grasp_objs[idx].set_world_poses(positions=grasp_obj_position, orientations=grsap_obj_orientation, indices=indices) # Pick one object to be the grasp object and compute its grasp: goal_obj_index = np.random.randint(len(grasp_objs)) return grasp_objs[goal_obj_index] class DynamicObject(RigidPrim, GeometryPrim): """Creates and adds a prim to stage from USD reference path, and wraps the prim with RigidPrim and GeometryPrim to provide access to APIs for rigid body attributes, physics materials and collisions. Please note that this class assumes the object has only a single mesh prim defining its geometry. Args: usd_path (str): USD reference path the Prim refers to. prim_path (str): prim path of the Prim to encapsulate or create. mesh_path (str): prim path of the underlying mesh Prim. name (str, optional): shortname to be used as a key by Scene class. Note: needs to be unique if the object is added to the Scene. Defaults to "dynamic_object". position (Optional[np.ndarray], optional): position in the world frame of the prim. Shape is (3, ). Defaults to None, which means left unchanged. translation (Optional[np.ndarray], optional): translation in the local frame of the prim (with respect to its parent prim). Shape is (3, ). Defaults to None, which means left unchanged. orientation (Optional[np.ndarray], optional): quaternion orientation in the world/local frame of the prim (depends if translation or position is specified). Quaternion is scalar-first (w, x, y, z). Shape is (4, ). Defaults to None, which means left unchanged. scale (Optional[np.ndarray], optional): local scale to be applied to the prim's dimensions. Shape is (3, ). Defaults to None, which means left unchanged. visible (bool, optional): set to false for an invisible prim in the stage while rendering. Defaults to True. mass (Optional[float], optional): mass in kg. Defaults to None. linear_velocity (Optional[np.ndarray], optional): linear velocity in the world frame. Defaults to None. angular_velocity (Optional[np.ndarray], optional): angular velocity in the world frame. Defaults to None. """ def __init__( self, usd_path: str, prim_path: str, mesh_path: str, name: str = "dynamic_object", position: Optional[np.ndarray] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, scale: Optional[np.ndarray] = None, visible: bool = True, mass: Optional[float] = None, linear_velocity: Optional[np.ndarray] = None, angular_velocity: Optional[np.ndarray] = None, ) -> None: if is_prim_path_valid(mesh_path): prim = get_prim_at_path(mesh_path) if not prim.IsA(UsdGeom.Mesh): raise Exception("The prim at path {} cannot be parsed as a Mesh object".format(mesh_path)) self.usd_path = usd_path add_reference_to_stage(usd_path=usd_path, prim_path=prim_path) GeometryPrim.__init__( self, prim_path=mesh_path, name=name, translation=translation, orientation=orientation, visible=visible, collision=True, ) self.set_collision_approximation("convexHull") RigidPrim.__init__( self, prim_path=prim_path, name=name, position=position, translation=translation, orientation=orientation, scale=scale, visible=visible, mass=mass, linear_velocity=linear_velocity, angular_velocity=angular_velocity, )
7,020
Python
44.296774
121
0.618946
makolon/hsr_isaac_tamp/hsr_rl/cfg/task/HSRExampleReach.yaml
# used to create the object name: HSRExampleReach physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 5.0 resetDist: 1.0 maxEffort: 400.0 controlFrequencyInv: 2 # 60 Hz maxEpisodeLength: 600 actionSpeedScale: 1 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 startPositionNoise: 0.0 startRotationNoise: 0.0 numProps: 4 aggregateMode: 3 actionScale: 7.5 dofVelocityScale: 0.1 distRewardScale: 2.0 rotRewardScale: 0.5 aroundHandleRewardScale: 10.0 openRewardScale: 7.5 fingerDistRewardScale: 100.0 actionPenaltyScale: 0.01 fingerCloseRewardScale: 10.0 gamma: 0.999 horizon: 600 # Move group to be used move_group: "whole_body" # String. Can be arm_left or arm_right use_gripper: True randomize_robot_on_reset: False # Set custom state and action space limits max_rot_vel: 0.5236 # 1.0472 # in radians (default is 60 degrees per second) max_base_xy_vel: 0.1 # metres per second max_base_rz_vel: 0.5236 # metres per second # Hybrid action space num_actions: 8 # base and arm # Observation space num_observations: 28 sim: dt: 0.0083 # 1/120 s action_base_scale: 0.05 action_arm_scale: 0.05 action_gripper_scale: 0.05 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: True disable_contact_processing: False enable_cameras: False # set to True if you use camera sensors in the environment default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 contact_offset: 0.005 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 33554432 gpu_found_lost_pairs_capacity: 17060160 # 524288 gpu_found_lost_aggregate_pairs_capacity: 17060160 # 262144 gpu_total_aggregate_pairs_capacity: 1048576 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 33554432 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 # sim asset configs here hsrb: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1.0 # per-shape contact_offset: 0.02 rest_offset: 0.001 ball: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: 1 max_depenetration_velocity: 1000.0 # per-shape contact_offset: 0.005 rest_offset: 0.0
3,593
YAML
26.646154
82
0.697189
makolon/hsr_isaac_tamp/hsr_rl/scripts/demo_rlgames.py
from hsr_rl.utils.hydra_cfg.hydra_utils import * from hsr_rl.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from hsr_rl.utils.task_utils import initialize_task from hsr_rl.envs.isaac_env_rlgames import IsaacEnvRlgames from hsr_rl.scripts.train_rlgames import RLGTrainer import hydra from omegaconf import DictConfig import datetime import os import torch class RLGDemo(RLGTrainer): def __init__(self, cfg, cfg_dict): RLGTrainer.__init__(self, cfg, cfg_dict) self.cfg.test = True @hydra.main(config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") headless = cfg.headless render = not headless sim_app_cfg_path = cfg.sim_app_cfg_path env = IsaacEnvRlgames(headless=headless, render=render, sim_app_cfg_path=sim_app_cfg_path) # ensure checkpoints can be specified as relative paths from hsr_rl.utils.config_utils.path_utils import retrieve_checkpoint_path if cfg.checkpoint: cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint) if cfg.checkpoint is None: quit() cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict['seed'] = cfg.seed task = initialize_task(cfg_dict, env) if cfg.wandb_activate: # Make sure to install WandB if you actually use this. import wandb run_name = f"{cfg.wandb_name}_{time_str}" wandb.init( project=cfg.wandb_project, group=cfg.wandb_group, entity=cfg.wandb_entity, config=cfg_dict, sync_tensorboard=True, id=run_name, resume="allow", monitor_gym=True, ) rlg_trainer = RLGDemo(cfg, cfg_dict) rlg_trainer.launch_rlg_hydra(env) rlg_trainer.run() env.close() if cfg.wandb_activate: wandb.finish() if __name__ == '__main__': parse_hydra_configs()
2,169
Python
28.726027
94
0.658368
makolon/hsr_isaac_tamp/hsr_rl/scripts/test_rlgames.py
import os import sys import yaml import time import torch import hydra import numpy as np from omegaconf import DictConfig from hsr_rl.utils.hydra_cfg.hydra_utils import * from hsr_rl.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from hsr_rl.utils.task_utils import initialize_task from hsr_rl.envs.isaac_env_rlgames import IsaacEnvRlgames # TODO: modify sys.path.append('/root/hsr_isaac_tamp/hsr_tamp/experiments/env_3d/') sys.path.append('/root/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/rl_policy/') sys.path.append('..') from tamp_planner import TAMPPlanner from post_process import PlanModifier from rl_agent import ResidualRL def load_config(task_name='HSRExample', policy_name='Pick', algo_name='PPO'): skill_name = task_name + policy_name + algo_name + '.yaml' file_name = os.path.join('/root/hsr_isaac_tamp/hsr_rl/cfg/train', skill_name) with open(file_name, 'r') as f: config = yaml.load(f, Loader=yaml.SafeLoader) return config class ExecutePlan(object): def __init__(self): self.tamp_planner = TAMPPlanner() self.path_modifier = PlanModifier() # Load policy self.load_policy() def load_policy(self): # Load policies pick_yaml = load_config('Pick') place_yaml = load_config('Place') insert_yaml = load_config('Insert') # Load configs pick_policy_cfg = omegaconf_to_dict(pick_yaml) place_policy_cfg = omegaconf_to_dict(place_yaml) insert_policy_cfg = omegaconf_to_dict(insert_yaml) # Set action scale self.pick_action_scale = torch.tensor(pick_policy_cfg["params"]["config"]["action_scale"], device='cuda:0') self.place_action_scale = torch.tensor(place_policy_cfg["params"]["config"]["action_scale"], device='cuda:0') self.insert_action_scale = torch.tensor(insert_policy_cfg["params"]["config"]["action_scale"], device='cuda:0') # Skill based residual policy agents self.pick_agent = ResidualRL(pick_policy_cfg.get('params')) self.place_agent = ResidualRL(place_policy_cfg.get('params')) self.insert_agent = ResidualRL(insert_policy_cfg.get('params')) # Restore learned params self.pick_agent.restore(pick_policy_cfg["params"]["load_path"]) self.place_agent.restore(place_policy_cfg["params"]["load_path"]) self.insert_agent.restore(insert_policy_cfg["params"]["load_path"]) def get_object_poses(self): # Add parts object_poses = {} for object_name, parts in self.env._task._parts.items(): object_pos, object_rot = parts.get_world_poses(clone=False) object_pos = object_pos.squeeze(dim=0).to('cpu').detach().numpy().copy() object_rot = object_rot.squeeze(dim=0).to('cpu').detach().numpy().copy() object_poses[object_name] = (object_pos, object_rot) return object_poses def get_robot_poses(self): # Get robot poses robot_poses = self.env._task._robots.get_joint_positions( joint_indices=self.env._task.movable_dof_indices, clone=False) # To cpu robot_poses = robot_poses.squeeze(dim=0).to('cpu').detach().numpy().copy() return robot_poses def initialize_tamp(self): object_poses = self.get_object_poses() robot_poses = self.get_robot_poses() observations = (robot_poses, object_poses) # Initialize problem self.tamp_planner.initialize(observations) def calculate_base_command(self, target_base_pos, pd_control=False): # PD control curr_base_pos = self.env._task._robots.get_joint_positions( joint_indices=self.env._task.base_dof_idxs, clone=False).squeeze(dim=0) curr_base_vel = self.env._task._robots.get_joint_velocities( joint_indices=self.env._task.base_dof_idxs, clone=False).squeeze(dim=0) # To gpu target_base_pos = torch.tensor(target_base_pos, device='cuda:0') # Calculate pd commands diff_pos = target_base_pos - curr_base_pos diff_vel = diff_pos * self.dt kp, kd = torch.tensor([0.1], device='cuda:0'), torch.tensor([0.01], device='cuda:0') command = kp * diff_pos + kd * diff_vel command += curr_base_pos if pd_control: return command else: return target_base_pos def calculate_arm_command(self, target_arm_pos, pd_control=False): # PD control curr_arm_pos = self.env._task._robots.get_joint_positions( joint_indices=self.env._task.arm_dof_idxs, clone=False).squeeze(dim=0) curr_arm_vel = self.env._task._robots.get_joint_velocities( joint_indices=self.env._task.arm_dof_idxs, clone=False).squeeze(dim=0) # To gpu target_arm_pos = torch.tensor(target_arm_pos, device='cuda:0') # Calculate pd commands diff_pos = target_arm_pos - curr_arm_pos diff_vel = diff_pos * self.dt kp, kd = torch.tensor([0.1], device='cuda:0'), torch.tensor([0.01], device='cuda:0') command = kp * diff_pos + kd * diff_vel command += curr_arm_pos if pd_control: return command else: return target_arm_pos def plan(self): # Run TAMP plan, _, _ = self.tamp_planner.plan() return plan def augment_plan(self, plan): # Replay_trajectory return self.tamp_planner.execute(plan) def process(self, action_name, args): # Get object names object_names = self.tamp_planner.tamp_problem.body_names # Modify plan action_name, object_name, modified_action = self.path_modifier.post_process(action_name, object_names, args) return action_name, object_name, modified_action def execute(self, sim_cfg): # IsaacEnv settings rank = int(os.getenv("LOCAL_RANK", "0")) sim_cfg.task_name = 'HSRExample' sim_cfg.device_id = rank sim_cfg.rl_device = f'cuda:{rank}' enable_viewport = "enable_cameras" in sim_cfg.task.sim and sim_cfg.task.sim.enable_cameras self.dt = sim_cfg.task.sim.dt * sim_cfg.task.env.controlFrequencyInv self.env = IsaacEnvRlgames(headless=False, sim_device=sim_cfg.device_id, enable_livestream=sim_cfg.enable_livestream, enable_viewport=enable_viewport) # Parse hydra config to dict cfg_dict = omegaconf_to_dict(sim_cfg) print_dict(cfg_dict) # Sets seed, if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed sim_cfg.seed = set_seed(sim_cfg.seed, torch_deterministic=sim_cfg.torch_deterministic) cfg_dict['seed'] = sim_cfg.seed initialize_task(cfg_dict, self.env) # Initialize TAMP self.initialize_tamp() # Execute planning plan = self.plan() if plan is None: return None # Augment plan pick_metadata, place_metadata, insert_metadata = self.augment_plan(plan) # For metadata pick_cnt, place_cnt, insert_cnt = 0, 0, 0 # Execute trajectory while self.env._simulation_app.is_running(): if self.env._world.is_playing(): if self.env._world.current_time_step_index == 0: self.env._world.reset(soft=True) # Disable all physics properties for parts_name in self.env._task._parts.keys(): self.env._task.disable_physics(parts_name) for i, (action_name, args) in enumerate(plan): action_name, object_name, modified_action = self.process(action_name, args) # Move_base action if action_name == 'move_base': for target_pose in modified_action: target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.env._task._robots.get_joint_positions( joint_indices=self.env._task.arm_dof_idxs, clone=False).squeeze(dim=0) action = torch.cat((target_base_pose, target_arm_pose), dim=0).to(torch.float32) # Step simulation self.env._task.pre_physics_step(action) self.env._world.step(render=True) self.env.sim_frame_count += 1 self.env._task.post_physics_step(action_name) # Pick action elif action_name == 'pick': pick_traj, return_traj = modified_action # Enable physics properties self.env._task.enable_physics(object_name) # Get target poses from pick_metadata target_ee_pose = pick_metadata['target_robot_pose'][pick_cnt] target_parts_pose = pick_metadata['target_object_pose'][pick_cnt] # Execute pick trajectory for target_pose in pick_traj: # pick target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) # Get observation obs = self.env._task.get_pick_observations(target_ee_pose, target_parts_pose, object_name) # Residual action with torch.no_grad(): actions = self.pick_agent.get_action(obs) # Multiply target 6D pose and residual 6D pose ik_action = self.dt * self.pick_action_scale * actions.to('cuda:0') # (dx, dy, dz) delta_pose = self.env._task.get_delta_pose(ik_action).squeeze(dim=0) # Add delta pose to reference trajectory target_base_pose += delta_pose[:3] target_arm_pose += delta_pose[3:] action = torch.cat((target_base_pose, target_arm_pose), dim=0).to(torch.float32) # Step simulation self.env._task.pre_physics_step(action) self.env._world.step(render=True) self.env.sim_frame_count += 1 self.env._task.post_physics_step(action_name, object_name=object_name, target_ee_pose=target_ee_pose, target_parts_pose=target_parts_pose) # Simulate close gripper steps self.env._task._close_gripper() for target_pose in return_traj: # return target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) action = torch.cat((target_base_pose, target_arm_pose), dim=0).to(torch.float32) # Step simulation self.env._task.pre_physics_step(action) self.env._world.step(render=True) self.env.sim_frame_count += 1 self.env._task.post_physics_step(action_name, object_name=object_name, target_ee_pose=target_ee_pose, target_parts_pose=target_parts_pose) # Check pick success pick_success = self.env._task._check_pick_success(object_name).squeeze(dim=0) print('pick_scucess:', pick_success) # Add pick count pick_cnt += 1 # Place action elif action_name == 'place': place_traj = modified_action # Get target poses from place_metadata target_ee_pose = place_metadata['target_robot_pose'][place_cnt] target_parts_pose = place_metadata['target_object_pose'][place_cnt] # Execute place trajectory for target_pose in place_traj: # place target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) # Get observation obs = self.env._task.get_place_observations(target_parts_pose, object_name) # Residual action with torch.no_grad(): actions = self.place_agent.get_action(obs) # Multiply target 6D pose and residual 6D pose ik_action = self.dt * self.place_action_scale * actions.to('cuda:0') # (dx, dy, dz) delta_pose = self.env._task.get_delta_pose(ik_action).squeeze(dim=0) # Add delta pose to reference trajectory target_base_pose += delta_pose[:3] target_arm_pose += delta_pose[3:] action = torch.cat((target_base_pose, target_arm_pose), dim=0).to(torch.float32) # Step simulation self.env._task.pre_physics_step(action) self.env._world.step(render=True) self.env.sim_frame_count += 1 self.env._task.post_physics_step(action_name, object_name=object_name, target_parts_pose=target_parts_pose) # Check place success place_success = self.env._task._check_place_success(target_parts_pose, object_name).squeeze(dim=0) print('place_success:', place_success) # Add place count place_cnt += 1 # Insert action elif action_name == 'insert': insert_traj, depart_traj, return_traj = modified_action # Get target poses from insert_metadata target_ee_pose = insert_metadata['target_robot_pose'][insert_cnt] target_parts_pose = insert_metadata['target_object_pose'][insert_cnt] # Execute insert trajectory for target_pose in insert_traj: # insert # Add anchor if place_success: self.env._task.add_anchor(object_name) target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) # Get observation obs = self.env._task.get_insert_observations(target_parts_pose, object_name) # Residual action with torch.no_grad(): actions = self.insert_agent.get_action(obs) # Multiply target 6D pose and residual 6D pose ik_action = self.dt * self.insert_action_scale * actions.to('cuda:0') # (dx, dy, dz) delta_pose = self.env._task.get_delta_pose(ik_action).squeeze(dim=0) # Add delta pose to reference trajectory target_base_pose += delta_pose[:3] target_arm_pose += delta_pose[3:] action = torch.cat((target_base_pose, target_arm_pose), dim=0).to(torch.float32) # Step simulation self.env._task.pre_physics_step(action) self.env._world.step(render=True) self.env.sim_frame_count += 1 self.env._task.post_physics_step(action_name, object_name=object_name, target_parts_pose=target_parts_pose) # Remove anchor self.env._task.remove_anchor() # Simulate open gripper steps self.env._task._open_gripper() for target_pose in depart_traj: # depart target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) action = torch.cat((target_base_pose, target_arm_pose), dim=0).to(torch.float32) # Step simulation self.env._task.pre_physics_step(action) self.env._world.step(render=True) self.env.sim_frame_count += 1 self.env._task.post_physics_step(action_name, object_name=object_name, target_parts_pose=target_parts_pose) # Sleep time.sleep(self.dt) for target_pose in return_traj: # return target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) action = torch.cat((target_base_pose, target_arm_pose), dim=0).to(torch.float32) # Step simulation self.env._task.pre_physics_step(action) self.env._world.step(render=True) self.env.sim_frame_count += 1 self.env._task.post_physics_step(action_name, object_name=object_name, target_parts_pose=target_parts_pose) # Check insert success insert_success = self.env._task._check_insert_success(target_parts_pose, object_name).squeeze(dim=0) print('insert_success:', insert_success) # Disable physics properties if insert_success: self.env._task.disable_physics(object_name) # Add insert count insert_cnt += 1 else: self.env._world.step(render=True) self.env._simulation_app.close() @hydra.main(config_name="config", config_path="../cfg") def main(cfg: DictConfig): exec_plan = ExecutePlan() exec_plan.execute(cfg) if __name__ == '__main__': main()
18,952
Python
44.560096
158
0.534033
makolon/hsr_isaac_tamp/hsr_rl/scripts/replay_dataset.py
import os import torch import hydra import numpy as np from omegaconf import DictConfig from hsr_rl.utils.hydra_cfg.hydra_utils import * from hsr_rl.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from hsr_rl.utils.task_utils import initialize_task from hsr_rl.utils.dataset_utils import load_dataset, load_skill_dataset from hsr_rl.envs.isaac_env_rlgames import IsaacEnvRlgames @hydra.main(config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): headless = cfg.headless render = not headless rank = int(os.getenv("LOCAL_RANK", "0")) if cfg.multi_gpu: cfg.device_id = rank cfg.rl_device = f'cuda:{rank}' enable_viewport = "enable_cameras" in cfg.task.sim and cfg.task.sim.enable_cameras env = IsaacEnvRlgames(headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream, enable_viewport=enable_viewport) cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) action_replay = load_skill_dataset(cfg_dict['num_envs'], 'pick') # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict['seed'] = cfg.seed task = initialize_task(cfg_dict, env) while env._simulation_app.is_running(): if env._world.is_playing(): if env._world.current_time_step_index == 0: env._world.reset(soft=True) if env.sim_frame_count >= len(action_replay): actions = torch.tensor([np.random.uniform(env.action_space.low, env.action_space.high) for _ in range(env.num_envs)], dtype=torch.float, device=task.rl_device) else: actions = torch.tensor([action_replay[env.sim_frame_count] for _ in range(env.num_envs)], device=task.rl_device) env._task.pre_physics_step(actions) env._world.step(render=render) env.sim_frame_count += 1 env._task.post_physics_step() else: env._world.step(render=render) env._simulation_app.close() if __name__ == '__main__': parse_hydra_configs()
2,191
Python
39.592592
175
0.670014
makolon/hsr_isaac_tamp/hsr_rl/models/urdf/hsrb_description/hsrb_meshes/CHANGELOG.rst
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Changelog for package hsrb_meshes ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1.0.0 (2020-08-24) ------------------- * Initial commit * Contributors: Nobuyuki Matsuno, Takashi Yamamoto, Yasukata Yokochi, Yuka Hashiguchi
245
reStructuredText
26.33333
85
0.506122
makolon/hsr_isaac_tamp/hsr_rl/models/urdf/hsrb_description/hsrb_meshes/README.md
hsrb_meshes ============ Toyota HSR - 3D mesh files <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/4.0/">Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License</a>.
452
Markdown
63.714277
397
0.723451
makolon/hsr_isaac_tamp/hsr_rl/utils/wandb_utils.py
import numpy as np import wandb class wandbLogger: def __init__(self, exp_config, run_name, group_name, disabled=False): if disabled: mode="disabled" else: mode=None wandb.init(project="xyz", entity="irosa-ias", group=group_name, id=run_name, config=exp_config, reinit=True, resume="allow", settings=wandb.Settings(start_method="fork"), mode=mode) def run_log_wandb(self,success_rate, J, R, E, avg_episode_length, q_loss): wandb.log({"success_rate": success_rate, "J": J, "R": R, "entropy": E, "avg_episode_length": avg_episode_length, "q_loss": q_loss}) def vid_log_wandb(self,img_dataset): np_video = np.expand_dims(np.moveaxis(img_dataset[0][0],-1,0), axis=0) for tup in img_dataset: np_video = np.vstack((np_video, np.expand_dims(np.moveaxis(tup[0],-1,0), axis=0))) wandb.log({"video": wandb.Video(np_video, fps=60, format="gif")})
1,008
Python
47.047617
103
0.58631
makolon/hsr_isaac_tamp/hsr_rl/utils/files.py
import hsr_rl from pathlib import Path # get paths def get_root_path(): path = Path(hsr_rl.__path__[0]).resolve() / '..' / '..' return path def get_urdf_path(): path = get_root_path() / 'urdf' return path def get_urdf_path(): path = Path(hsr_rl.__path__[0]).resolve()/ 'models' / 'urdf' return path def get_usd_path(): path = Path(hsr_rl.__path__[0]).resolve()/ 'models' / 'usd' return path def get_cfg_path(): path = path = Path(hsr_rl.__path__[0]).resolve()/ 'cfg' return
523
Python
18.407407
64
0.571702
makolon/hsr_isaac_tamp/hsr_rl/utils/dataset_utils.py
import os import json import math import numpy as np from scipy.spatial.transform import Rotation as R def load_dataset(problem_name, action_type='absolute', target_space='joint'): dataset_dir = os.path.join('/root/hsr_isaac_tamp/hsr_tamp/experiments/env_3d/dataset', problem_name, 'full') # Trajectory and metadata directory per skill traj_dir = os.path.join(dataset_dir, 'trajectory') meta_dir = os.path.join(dataset_dir, 'metadata') # Calculate number of files num_traj_files = sum(os.path.isfile(os.path.join(traj_dir, name)) for name in os.listdir(traj_dir)) num_meta_files = sum(os.path.isfile(os.path.join(meta_dir, name)) for name in os.listdir(meta_dir)) # Get trajectory dataset_list = [] for i in range(num_traj_files): data_name = 'trajectory_' + str(i) + '.json' dataset_path = os.path.join(traj_dir, data_name) with open(dataset_path, 'rb') as f: dataset = json.load(f) dataset_list.append(dataset) # Get metadata metadata_list = [] for i in range(num_meta_files): metadata_name = 'metadata_' + str(i) + '.json' metadata_path = os.path.join(meta_dir, metadata_name) with open(metadata_path, 'rb') as f: metadata = json.load(f) metadata_list.append(metadata) action_dataset, _ = post_process(dataset_list, action_type, target_space) metadata = parse_metadata(metadata_list) return action_dataset, metadata def load_skill_dataset(problem_name, skill_name, action_type='absolute', target_space='joint'): dataset_dir = os.path.join('/root/hsr_isaac_tamp/hsr_tamp/experiments/env_3d/dataset', problem_name, skill_name) # Trajectory and metadata directory per skill traj_dir = os.path.join(dataset_dir, 'trajectory') meta_dir = os.path.join(dataset_dir, 'metadata') # Calculate number of files num_traj_files = sum(os.path.isfile(os.path.join(traj_dir, name)) for name in os.listdir(traj_dir)) num_meta_files = sum(os.path.isfile(os.path.join(meta_dir, name)) for name in os.listdir(meta_dir)) # Get trajectory dataset_list = [] for i in range(num_traj_files): data_name = 'trajectory_' + str(i) + '.json' dataset_path = os.path.join(traj_dir, data_name) with open(dataset_path, 'rb') as f: dataset = json.load(f) dataset_list.append(dataset) # Get metadata metadata_list = [] for i in range(num_meta_files): metadata_name = 'metadata_' + str(i) + '.json' metadata_path = os.path.join(meta_dir, metadata_name) with open(metadata_path, 'rb') as f: metadata = json.load(f) metadata_list.append(metadata) action_dataset, _ = post_skill_process(dataset_list, action_type, target_space) metadata = parse_skill_metadata(metadata_list) return action_dataset, metadata def post_process(dataset, action_type='absolute', target_space='joint'): action_dataset = [] object_dataset = [] for data in dataset: # Get data for robot robot_poses = data['robot_pose'] # 10 joints gripper_poses = data['gripper_pose'] # 2 joints ee_poses = data['ee_pose'] # 7 dimensions diff_robot_poses = data['diff_robot_pose'] # 10 joints diff_gripper_poses = data['diff_gripper_pose'] # 2 joints diff_ee_poses = data['diff_ee_pose'] # 7 dimensions # Prepare action_dataset robot_traj = [] if target_space == 'joint': if action_type == 'relative': for drp in diff_robot_poses: robot_traj.append(drp) # 10 dimensions elif action_type == 'absolute': for rp in robot_poses: robot_traj.append(rp) # 10 dimensions elif target_space == 'task': if action_type == 'relative': for dep, dgp in zip(diff_ee_poses, diff_gripper_poses): action = dep + dgp robot_traj.append(action) # 8 dimensions elif action_type == 'absolute': for ep, gp in zip(ee_poses, gripper_poses): action = ep[0] + transpose(ep[1]) + gp robot_traj.append(action) # 9 dimensions # Get data for object object_poses = data['object_pose'] # Prepare object_dataset object_traj = [] for op in object_poses: object_traj.append(op) action_dataset.append(robot_traj) object_dataset.append(object_traj) return action_dataset, object_dataset def post_skill_process(dataset, action_type='absolute', target_space='joint'): action_dataset = [] object_dataset = [] for action_name, data in dataset: # Get data for robot robot_poses = data['robot_pose'] # 10 joints gripper_poses = data['gripper_pose'] # 2 joints ee_poses = data['ee_pose'] # 7 dimensions diff_robot_poses = data['diff_robot_pose'] # 10 joints diff_gripper_poses = data['diff_gripper_pose'] # 2 joints diff_ee_poses = data['diff_ee_pose'] # 7 dimensions # Prepare action_dataset robot_traj = [] if target_space == 'joint': if action_type == 'relative': for drp in diff_robot_poses: robot_traj.append(drp) # 10 dimensions elif action_type == 'absolute': for rp in robot_poses: robot_traj.append(rp) # 10 dimensions elif target_space == 'task': if action_type == 'relative': for dep, dgp in zip(diff_ee_poses, diff_gripper_poses): action = dep + dgp robot_traj.append(action) # 8 dimensions elif action_type == 'absolute': for ep, gp in zip(ee_poses, gripper_poses): action = ep[0] + transpose(ep[1]) + gp robot_traj.append(action) # 9 dimensions # Get data for object object_poses = data['object_pose'] # Prepare object_dataset object_traj = [] for op in object_poses: object_traj.append(op) action_dataset.append([action_name, robot_traj]) object_dataset.append([action_name, object_traj]) return action_dataset, object_dataset def parse_metadata(metadataset): env_info = {'initial_robot_pose': [], 'initial_object_pose': [], 'goal_robot_pose': [], 'goal_object_pose': [], 'target_object_name': [], 'skill_name': []} for metadata in metadataset: # Get target objects target_object_name = metadata['target_object_name'] env_info['target_object_name'].append(target_object_name) # Get data for object / Prepare object_dataset object_init_poses = metadata['object_init_pose'] env_info['initial_object_pose'].append(object_init_poses) object_goal_poses = metadata['object_goal_pose'] env_info['goal_object_pose'].append(object_goal_poses) # Get initial pose of robot / Prepare action_datase robot_init_poses = metadata['robot_init_pose'] # 10 joints env_info['initial_robot_pose'].append(robot_init_poses) robot_goal_poses = metadata['robot_goal_pose'] # 10 joints env_info['goal_robot_pose'].append(robot_goal_poses) env_info['skill_name'].append(metadata['skill_name']) return env_info def parse_skill_metadata(metadataset): env_info = {'initial_robot_pose': [], 'initial_object_pose': [], 'goal_robot_pose': [], 'goal_object_pose': [], 'target_robot_pose': [], 'target_object_name': [], 'fixed_object_name': []} for metadata in metadataset: # Get target objects target_object_name = metadata['target_object_name'] env_info['target_object_name'].append(target_object_name) # Get fixed objects fixed_object_name = metadata['fixed_object_name'] env_info['fixed_object_name'].append(fixed_object_name) # Get data for object / Prepare object_dataset object_init_poses = metadata['object_init_pose'] env_info['initial_object_pose'].append(object_init_poses) object_goal_poses = metadata['object_goal_pose'] env_info['goal_object_pose'].append(object_goal_poses) # Get initial pose of robot / Prepare action_datase robot_init_poses = metadata['robot_init_pose'] # 10 joints env_info['initial_robot_pose'].append(np.array(robot_init_poses)) robot_goal_poses = metadata['robot_goal_pose'] # 10 joints env_info['goal_robot_pose'].append(np.array(robot_goal_poses)) robot_target_poses = metadata['robot_target_pose'] # 7 dim env_info['target_robot_pose'].append(np.array(robot_target_poses)) return env_info def transpose(quat): x, y, z, w = quat return [w, x, y, z] def calculate_delta_theta(delta_quat): # Transform quaternion to rotation matrix rotation_matrix = np.zeros((3, 3)) x, y, z, w = delta_quat rotation_matrix[0, 0] = 1 - 2 * (y**2 + z**2) rotation_matrix[0, 1] = 2 * (x*y - z*w) rotation_matrix[0, 2] = 2 * (x*z + y*w) rotation_matrix[1, 0] = 2 * (x*y + z*w) rotation_matrix[1, 1] = 1 - 2 * (x**2 + z**2) rotation_matrix[1, 2] = 2 * (y*z - x*w) rotation_matrix[2, 0] = 2 * (x*z - y*w) rotation_matrix[2, 1] = 2 * (y*z + x*w) rotation_matrix[2, 2] = 1 - 2 * (x**2 + y**2) # Transform rotation matrix to euler angle roll = math.atan2(rotation_matrix[2, 1], rotation_matrix[2, 2]) pitch = math.atan2(-rotation_matrix[2, 0], math.sqrt(rotation_matrix[2, 1]**2 + rotation_matrix[2, 2]**2)) yaw = math.atan2(rotation_matrix[1, 0], rotation_matrix[0, 0]) # Reults of euler angle delta_euler = [roll, pitch, yaw] return delta_euler
10,014
Python
37.817829
116
0.596964
makolon/hsr_isaac_tamp/hsr_rl/utils/usd_utils/create_parent_xforms.py
from omniisaacgymenvs.utils.usd_utils.create_instanceable_assets import create_parent_xforms create_parent_xforms( asset_usd_path='/root/tamp-hsr/hsr_rl/models/usd/hsrb4s/hsrb4s.usd', source_prim_path='/hsrb', save_as_path='/root/tamp-hsr/hsr_rl/models/usd/hsrb4s/hsrb4s_xforms.usd' )
297
Python
41.571423
92
0.757576
makolon/hsr_isaac_tamp/hsr_rl/utils/usd_utils/create_instanceable_usd.py
from omniisaacgymenvs.utils.usd_utils.create_instanceable_assets import convert_asset_instanceable convert_asset_instanceable( asset_usd_path='/root/tamp-hsr/hsr_rl/models/usd/ver3/gear1.usd', source_prim_path='/gear1', save_as_path='/root/tamp-hsr/hsr_rl/models/usd/gearbox/gear1.usd' )
302
Python
36.874995
98
0.758278
makolon/hsr_isaac_tamp/hsr_rl/utils/usd_utils/convert_urdf.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES, ETH Zurich, and University of Toronto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Utility to convert a URDF into USD format. Unified Robot Description Format (URDF) is an XML file format used in ROS to describe all elements of a robot. For more information, see: http://wiki.ros.org/urdf This script uses the URDF importer extension from Isaac Sim (``omni.isaac.urdf_importer``) to convert a URDF asset into USD format. It is designed as a convenience script for command-line use. For more information on the URDF importer, see the documentation for the extension: https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/ext_omni_isaac_urdf.html positional arguments: input The path to the input URDF file. output The path to store the USD file. optional arguments: -h, --help show this help message and exit --headless Force display off at all times. (default: False) --merge_joints, -m Consolidate links that are connected by fixed joints. (default: False) --fix_base, -f Fix the base to where it is imported. (default: False) --gym, -g Make the asset instanceable for efficient cloning. (default: False) """ """Launch Isaac Sim Simulator first.""" import argparse import contextlib # omni-isaac from omni.isaac.kit import SimulationApp # add argparse arguments parser = argparse.ArgumentParser("Utility to convert a URDF into USD format.") parser.add_argument("input", type=str, help="The path to the input URDF file.") parser.add_argument("output", type=str, help="The path to store the USD file.") parser.add_argument("--headless", action="store_true", default=False, help="Force display off at all times.") parser.add_argument( "--merge_joints", "-m", action="store_true", default=False, help="Consolidate links that are connected by fixed joints.", ) parser.add_argument( "--fix_base", "-f", action="store_true", default=False, help="Fix the base to where it is imported." ) parser.add_argument( "--gym", "-g", action="store_true", default=False, help="Make the asset instanceable for efficient cloning." ) args_cli = parser.parse_args() # launch omniverse app config = {"headless": args_cli.headless} simulation_app = SimulationApp(config) """Rest everything follows.""" import os import carb import omni.isaac.core.utils.stage as stage_utils import omni.kit.commands from omni.isaac.core.simulation_context import SimulationContext import io import omni.client import omni.isaac.core.utils.nucleus as nucleus_utils # check nucleus connection if nucleus_utils.get_assets_root_path() is None: msg = ( "Unable to perform Nucleus login on Omniverse. Assets root path is not set.\n" "\tPlease check: https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html#omniverse-nucleus" ) carb.log_error(msg) raise RuntimeError(msg) ISAAC_NUCLEUS_DIR = f"{nucleus_utils.get_assets_root_path()}/Isaac" """Path to the `Isaac` directory on the NVIDIA Nucleus Server.""" ISAAC_ORBIT_NUCLEUS_DIR = f"{nucleus_utils.get_assets_root_path()}/Isaac/Samples/Orbit" """Path to the `Isaac/Samples/Orbit` directory on the NVIDIA Nucleus Server.""" def check_file_path(path: str) -> int: """Checks if a file exists on the Nucleus Server or locally. Args: path (str): The path to the file. Returns: int: The status of the file. Possible values are: :obj:`0` if the file does not exist :obj:`1` if the file exists locally, or :obj:`2` if the file exists on the Nucleus Server. """ if os.path.isfile(path): return 1 elif omni.client.stat(path)[0] == omni.client.Result.OK: return 2 else: return 0 def read_file(path: str) -> io.BytesIO: """Reads a file from the Nucleus Server or locally. Args: path (str): The path to the file. Raises: FileNotFoundError: When the file not found locally or on Nucleus Server. Returns: io.BytesIO: The content of the file. """ # check file status file_status = check_file_path(path) if file_status == 1: with open(path, "rb") as f: return io.BytesIO(f.read()) elif file_status == 2: file_content = omni.client.read_file(path)[2] return io.BytesIO(memoryview(file_content).tobytes()) else: raise FileNotFoundError(f"Unable to find the file: {path}") _DRIVE_TYPE = { "none": 0, "position": 1, "velocity": 2, } """Mapping from drive name to URDF importer drive number.""" _NORMALS_DIVISION = { "catmullClark": 0, "loop": 1, "bilinear": 2, "none": 3, } """Mapping from normals division name to URDF importer normals division number.""" def main(): # check valid file path urdf_path = args_cli.input if not os.path.isabs(urdf_path): urdf_path = os.path.abspath(urdf_path) if not check_file_path(urdf_path): raise ValueError(f"Invalid file path: {urdf_path}") # create destination path dest_path = args_cli.output if not os.path.isabs(dest_path): dest_path = os.path.abspath(dest_path) if os.path.exists(dest_path): carb.log_warn(f"Destination file already exists: {dest_path}. Overwriting...") if not os.path.exists(os.path.dirname(dest_path)): os.makedirs(os.path.dirname(dest_path)) # Import URDF config _, urdf_config = omni.kit.commands.execute("URDFCreateImportConfig") # Set URDF config # -- stage settings -- dont need to change these. urdf_config.set_distance_scale(1.0) urdf_config.set_up_vector(0, 0, 1) urdf_config.set_create_physics_scene(False) urdf_config.set_make_default_prim(True) # -- instancing settings urdf_config.set_make_instanceable(args_cli.gym) urdf_config.set_instanceable_usd_path("instanceable_meshes.usd") # -- asset settings urdf_config.set_density(0.0) urdf_config.set_import_inertia_tensor(True) urdf_config.set_convex_decomp(False) urdf_config.set_subdivision_scheme(_NORMALS_DIVISION["bilinear"]) # -- physics settings urdf_config.set_fix_base(args_cli.fix_base) urdf_config.set_self_collision(False) urdf_config.set_merge_fixed_joints(args_cli.merge_joints) # -- drive settings # note: we set these to none because we want to use the default drive settings. urdf_config.set_default_drive_type(_DRIVE_TYPE["position"]) urdf_config.set_default_drive_strength(0.0)# (1e7) urdf_config.set_default_position_drive_damping(1e5) # Print info print("-" * 80) print("-" * 80) print(f"Input URDF file: {urdf_path}") print(f"Saving USD file: {dest_path}") print("URDF importer config:") for key in dir(urdf_config): if not key.startswith("__"): try: # get attribute attr = getattr(urdf_config, key) # check if attribute is a function if callable(attr): continue # print attribute print(f"\t{key}: {attr}") except TypeError: # this is only the case for subdivison scheme pass print("-" * 80) print("-" * 80) # Import URDF file omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=urdf_path, import_config=urdf_config, dest_path=dest_path ) # Simulate scene (if not headless) if not args_cli.headless: # Open the stage with USD stage_utils.open_stage(dest_path) # Load kit helper sim = SimulationContext() # stage_utils.add_reference_to_stage(dest_path, "/Robot") # Reinitialize the simulation # Run simulation with contextlib.suppress(KeyboardInterrupt): while True: # perform step sim.step() if __name__ == "__main__": # Run cloning example main() # Close the simulator simulation_app.close()
8,064
Python
33.029536
117
0.660838
makolon/hsr_isaac_tamp/hsr_rl/robots/articulations/hsr.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import torch import carb import numpy as np from typing import Optional from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import add_reference_to_stage from hsr_rl.tasks.utils.usd_utils import set_drive from hsr_rl.utils.files import get_usd_path from pxr import PhysxSchema class HSR(Robot): def __init__( self, prim_path: str, name: Optional[str] = "hsrb", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: self._usd_path = usd_path self._name = name if self._usd_path is None: self._usd_path = (get_usd_path() / 'hsrb4s' / 'hsrb4s.usd').as_posix() add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=translation, orientation=orientation, articulation_controller=None, ) dof_paths = [ "base_footprint/joint_x", "link_x/joint_y", "link_y/joint_rz", "base_link/arm_lift_joint", "arm_lift_link/arm_flex_joint", "arm_flex_link/arm_roll_joint", "arm_roll_link/wrist_flex_joint", "wrist_flex_link/wrist_roll_joint", "hand_palm_link/hand_l_proximal_joint", "hand_palm_link/hand_r_proximal_joint" ] drive_type = ["linear", "linear", "angular", "linear", "angular", "angular", "angular", "angular", "angular", "angular"] default_dof_pos = [0.0] * 10 stiffness = [1e9] * 8 + [500] * 2 # (base, arm, gripper) damping = [1.4] * 8 + [0.3] * 2 # (base, arm, gripper) max_force = [5e6] * 3 + [10000.0] * 5 + [360*np.pi/180] * 2 # (base, arm, gripper) max_velocity = [5e6] * 3 + [10000.0] * 5 + [math.degrees(2.175)] * 2 # (base, arm, gripper) for i, dof in enumerate(dof_paths): set_drive( prim_path=f"{self.prim_path}/{dof}", drive_type=drive_type[i], target_type="position", target_value=default_dof_pos[i], stiffness=stiffness[i], damping=damping[i], max_force=max_force[i] ) PhysxSchema.PhysxJointAPI(get_prim_at_path(f"{self.prim_path}/{dof}")).CreateMaxJointVelocityAttr().Set(max_velocity[i]) additional_dof_paths = [ "base_link/torso_lift_joint", "torso_lift_link/head_pan_joint", "head_pan_link/head_tilt_joint", "hand_l_mimic_distal_link/hand_l_distal_joint", "hand_r_mimic_distal_link/hand_r_distal_joint", ] drive_type = ["linear", "angular", "angular", "angular", "angular"] default_dof_pos = [0.0, 0.0, 0.0, 0.0, 0.0] stiffness = [1e9, 1e9, 1e9, 1e9, 1e9] damping = [0.0, 0.0, 0.0, 0.0, 0.0] max_force = [10000.0, 10000.0, 10000.0, 10000.0, 10000.0] max_velocity = [10000.0, 10000.0, 10000.0, 10000.0, 10000.0] for i, dof in enumerate(additional_dof_paths): set_drive( prim_path=f"{self.prim_path}/{dof}", drive_type=drive_type[i], target_type="position", target_value=default_dof_pos[i], stiffness=stiffness[i], damping=damping[i], max_force=max_force[i] ) PhysxSchema.PhysxJointAPI(get_prim_at_path(f"{self.prim_path}/{dof}")).CreateMaxJointVelocityAttr().Set(max_velocity[i])
5,348
Python
40.465116
132
0.620793
makolon/hsr_isaac_tamp/hsr_rl/robots/articulations/views/hsr_view.py
from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class HSRView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "HSRView", ) -> None: """[summary] """ super().__init__( prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False ) self._hands = RigidPrimView(prim_paths_expr="/World/envs/.*/hsrb/wrist_roll_link", name="hands_view", reset_xform_properties=False) self._lfingers = RigidPrimView(prim_paths_expr="/World/envs/.*/hsrb/hand_l_distal_link", name="lfingers_view", reset_xform_properties=False) self._rfingers = RigidPrimView(prim_paths_expr="/World/envs/.*/hsrb/hand_r_distal_link", name="rfingers_view", reset_xform_properties=False) self._fingertip_centered = RigidPrimView(prim_paths_expr="/World/envs/.*/hsrb/hand_palm_link", name="fingertips_view", reset_xform_properties=False) def initialize(self, physics_sim_view): super().initialize(physics_sim_view) self._gripper_indices = [self.get_dof_index("hand_l_proximal_joint"), self.get_dof_index("hand_r_proximal_joint")] @property def gripper_indices(self): return self._gripper_indices
1,360
Python
39.029411
156
0.660294
makolon/hsr_isaac_tamp/docker/docker_openrave/wrapper.xml
<robot file="hsrb4s.dae"> <Manipulator name="hsrb"> <base>base_footprint</base> <effector>hand_palm_link</effector> </Manipulator> </robot>
152
XML
20.85714
39
0.671053
makolon/hsr_isaac_tamp/docker/docker_openrave/ros_package/hsrb_description/README.rst
Overview ++++++++ This package manages the HSR-B robot model. Gazebo simulator configurations are also included.。 Folder structure +++++++++++++++++ - **launch** Contains a launch file for performing confirmation (visualization) of a robot model. - **urdf** The xacro files that include common macros are directly under this directory. Each part is separated into folders named ${PARTNAME}_${VERSION}. When a major change such as a model revision is caused by hardware repairs, the version is increased by one and a new folder is created. Basically, the version is attached to the part name and is of the form of v0, v1, v2, etc. - **robots** The URDF description file of the entire robot configured using the URDF of each part is placed in this directory. There are multiple robot models depending on the version of various hardware parts. xacro file variables +++++++++++++++++++++ - **personal_name** A namespace to set to allow one gazebo world to display several HSRs.     personal_name contains the value that is set as an argument in namespace when the launch file is started. The default value is "". - **robot_name** The model name used as the topic name or the service name of the robot. The default is "hsrb".   The model name assigned here and the model name actually used are not necessarily the same. LICENSE ++++++++++++ This software is released under the BSD 3-Clause Clear License, see LICENSE.txt.
1,476
reStructuredText
28.539999
140
0.71748
makolon/hsr_isaac_tamp/docker/docker_openrave/ros_package/hsrb_description/package.xml
<package> <name>hsrb_description</name> <version>1.0.0</version> <description>HSRのロボット定義ファイル</description> <maintainer email="xr-hsr-support@mail.toyota.co.jp">HSR Support</maintainer> <license>BSD 3-clause Clear License</license> <url type="website">None</url> <author>Akiyoshi Ochiai</author> <author>Hiromichi Nakashima</author> <author>Kazuhito Tanaka</author> <author>Kazuto Murase</author> <author>Keisuke Takeshita</author> <author>Koji Terada</author> <author>Koki Kataoka</author> <author>Minori Higuchi</author> <author>Satoru Onoda</author> <author>Takafumi Mizuno</author> <author>Takuya Ikeda</author> <author>Tamaki Nishino</author> <author>Yoshimi Iyoda</author> <author>Yusuke Ota</author> <author>Yuto Mori</author> <buildtool_depend>catkin</buildtool_depend> <build_depend>xacro</build_depend> <build_depend>rosbash</build_depend> <build_depend>hsrb_meshes</build_depend> <run_depend>xacro</run_depend> <run_depend>rviz</run_depend> <run_depend>hsrb_meshes</run_depend> <test_depend>liburdfdom-tools</test_depend> <test_depend>urdfdom_py</test_depend> <test_depend>robot_state_publisher</test_depend> <test_depend>joint_state_publisher</test_depend> <test_depend>roslaunch</test_depend> </package>
1,289
XML
28.999999
79
0.730799
makolon/hsr_isaac_tamp/docker/docker_openrave/ros_package/hsrb_description/test/test_urdf.py
#!/usr/bin/env python # vim: fileencoding=utf-8 : # Copyright (c) 2016 TOYOTA MOTOR CORPORATION # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of Toyota Motor Corporation nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import glob import os import subprocess import tempfile from nose.tools import eq_, ok_ try: import xml.etree.cElementTree as etree except Exception: import xml.etree.ElementTree as etree PACKAGE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) ROBOTS_DIR = os.path.join(PACKAGE_DIR, "robots") URDF_DIR = os.path.join(PACKAGE_DIR, "urdf") def test_generator_robot_urdf(): def test_robot_urdf(path): u"""XACROで変換した後に、URDFとして正しく読めるかを確認するテスト""" with tempfile.NamedTemporaryFile() as f: args = ['rosrun', 'xacro', 'xacro', '--inorder', source] eq_(subprocess.call(args, stdout=f), 0) args = ['check_urdf', f.name] subprocess.check_output(args) matched = glob.glob(ROBOTS_DIR + "/*.urdf.xacro") sources = [os.path.abspath(path) for path in matched] for source in sources: yield test_robot_urdf, source def test_generator_integrity(): def check_integrity(source): args = ['rosrun', 'xacro', 'xacro', '--inorder', source] urdf = subprocess.check_output(args) root = etree.fromstring(urdf) links = [] for link in root.findall('link'): name = link.get('name') ok_(name is not None, "link({0})".format(name)) links.append(name) joints = [] for joint in root.findall('joint'): name = joint.get('name') ok_(name is not None, "joint({0})".format(name)) joints.append(name) parent = joint.find('parent') ok_(parent.get('link') in links, "joint({0})".format(name)) child = joint.find('child') ok_(child.get('link') in links, "joint({0})".format(name)) for trans in root.findall('transmission'): name = trans.get('name') joint = trans.find('joint') ok_(joint.get('name') in joints, "transmission({0})".format(name)) for gazebo in root.findall('gazebo'): ref = gazebo.get('reference') if ref is None: # When reference is None, <gazebo> tag is added to <robot>. continue ok_(ref in links + joints, "Unresolvable reference '{0}':\n{1}".format( ref, etree.tostring(gazebo))) matched = glob.glob(ROBOTS_DIR + "/*.urdf.xacro") sources = [os.path.abspath(path) for path in matched] for source in sources: yield check_integrity, source
4,092
Python
38.737864
78
0.660557
makolon/hsr_isaac_tamp/docker/docker_openrave/ros_package/hsrb_parts_description/package.xml
<package> <name>hsrb_parts_description</name> <version>0.21.0</version> <description>HSRのロボット定義共通ファイル</description> <maintainer email="keisuke_takeshita@mail.toyota.co.jp">Keisuke Takeshita</maintainer> <license>TMC</license> <url type="website">None</url> <author>Tamaki Nishino</author> <author>Akiyoshi Ochiai</author> <buildtool_depend>catkin</buildtool_depend> <build_depend>xacro</build_depend> <build_depend>rosbash</build_depend> <run_depend>xacro</run_depend> <test_depend>liburdfdom-tools</test_depend> <test_depend>urdfdom_py</test_depend> </package>
598
XML
22.959999
88
0.730769
makolon/hsr_isaac_tamp/docker/docker_openrave/output/hsrb/ikfast.h
// -*- coding: utf-8 -*- // Copyright (C) 2012-2014 Rosen Diankov <rosen.diankov@gmail.com> // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** \brief Header file for all ikfast c++ files/shared objects. The ikfast inverse kinematics compiler is part of OpenRAVE. The file is divided into two sections: - <b>Common</b> - the abstract classes section that all ikfast share regardless of their settings - <b>Library Specific</b> - the library-specific definitions, which depends on the precision/settings that the library was compiled with The defines are as follows, they are also used for the ikfast C++ class: - IKFAST_HEADER_COMMON - common classes - IKFAST_HAS_LIBRARY - if defined, will include library-specific functions. by default this is off - IKFAST_CLIBRARY - Define this linking statically or dynamically to get correct visibility. - IKFAST_NO_MAIN - Remove the ``main`` function, usually used with IKFAST_CLIBRARY - IKFAST_ASSERT - Define in order to get a custom assert called when NaNs, divides by zero, and other invalid conditions are detected. - IKFAST_REAL - Use to force a custom real number type for IkReal. - IKFAST_NAMESPACE - Enclose all functions and classes in this namespace, the ``main`` function is excluded. */ #include <vector> #include <list> #include <stdexcept> #include <cmath> #ifndef IKFAST_HEADER_COMMON #define IKFAST_HEADER_COMMON /// should be the same as ikfast.__version__ /// if 0x10000000 bit is set, then the iksolver assumes 6D transforms are done without the manipulator offset taken into account (allows to reuse IK when manipulator offset changes) #define IKFAST_VERSION 0x10000048 namespace ikfast { /// \brief holds the solution for a single dof template <typename T> class IkSingleDOFSolutionBase { public: IkSingleDOFSolutionBase() : fmul(0), foffset(0), freeind(-1), maxsolutions(1) { indices[0] = indices[1] = indices[2] = indices[3] = indices[4] = -1; } T fmul, foffset; ///< joint value is fmul*sol[freeind]+foffset signed char freeind; ///< if >= 0, mimics another joint unsigned char jointtype; ///< joint type, 0x01 is revolute, 0x11 is slider unsigned char maxsolutions; ///< max possible indices, 0 if controlled by free index or a free joint itself unsigned char indices[5]; ///< unique index of the solution used to keep track on what part it came from. sometimes a solution can be repeated for different indices. store at least another repeated root }; /// \brief The discrete solutions are returned in this structure. /// /// Sometimes the joint axes of the robot can align allowing an infinite number of solutions. /// Stores all these solutions in the form of free variables that the user has to set when querying the solution. Its prototype is: template <typename T> class IkSolutionBase { public: virtual ~IkSolutionBase() { } /// \brief gets a concrete solution /// /// \param[out] solution the result /// \param[in] freevalues values for the free parameters \se GetFree virtual void GetSolution(T* solution, const T* freevalues) const = 0; /// \brief std::vector version of \ref GetSolution virtual void GetSolution(std::vector<T>& solution, const std::vector<T>& freevalues) const { solution.resize(GetDOF()); GetSolution(&solution.at(0), freevalues.size() > 0 ? &freevalues.at(0) : NULL); } /// \brief Gets the indices of the configuration space that have to be preset before a full solution can be returned /// /// 0 always points to the first value accepted by the ik function. /// \return vector of indices indicating the free parameters virtual const std::vector<int>& GetFree() const = 0; /// \brief the dof of the solution virtual const int GetDOF() const = 0; }; /// \brief manages all the solutions template <typename T> class IkSolutionListBase { public: virtual ~IkSolutionListBase() { } /// \brief add one solution and return its index for later retrieval /// /// \param vinfos Solution data for each degree of freedom of the manipulator /// \param vfree If the solution represents an infinite space, holds free parameters of the solution that users can freely set. The indices are of the configuration that the IK solver accepts rather than the entire robot, ie 0 points to the first value accepted. virtual size_t AddSolution(const std::vector<IkSingleDOFSolutionBase<T> >& vinfos, const std::vector<int>& vfree) = 0; /// \brief returns the solution pointer virtual const IkSolutionBase<T>& GetSolution(size_t index) const = 0; /// \brief returns the number of solutions stored virtual size_t GetNumSolutions() const = 0; /// \brief clears all current solutions, note that any memory addresses returned from \ref GetSolution will be invalidated. virtual void Clear() = 0; }; /// \brief holds function pointers for all the exported functions of ikfast template <typename T> class IkFastFunctions { public: IkFastFunctions() : _ComputeIk(NULL), _ComputeIk2(NULL), _ComputeFk(NULL), _GetNumFreeParameters(NULL), _GetFreeParameters(NULL), _GetNumJoints(NULL), _GetIkRealSize(NULL), _GetIkFastVersion(NULL), _GetIkType(NULL), _GetKinematicsHash(NULL) { } virtual ~IkFastFunctions() { } typedef bool (*ComputeIkFn)(const T*, const T*, const T*, IkSolutionListBase<T>&); ComputeIkFn _ComputeIk; typedef bool (*ComputeIk2Fn)(const T*, const T*, const T*, IkSolutionListBase<T>&, void*); ComputeIk2Fn _ComputeIk2; typedef void (*ComputeFkFn)(const T*, T*, T*); ComputeFkFn _ComputeFk; typedef int (*GetNumFreeParametersFn)(); GetNumFreeParametersFn _GetNumFreeParameters; typedef int* (*GetFreeParametersFn)(); GetFreeParametersFn _GetFreeParameters; typedef int (*GetNumJointsFn)(); GetNumJointsFn _GetNumJoints; typedef int (*GetIkRealSizeFn)(); GetIkRealSizeFn _GetIkRealSize; typedef const char* (*GetIkFastVersionFn)(); GetIkFastVersionFn _GetIkFastVersion; typedef int (*GetIkTypeFn)(); GetIkTypeFn _GetIkType; typedef const char* (*GetKinematicsHashFn)(); GetKinematicsHashFn _GetKinematicsHash; }; // Implementations of the abstract classes, user doesn't need to use them /// \brief Default implementation of \ref IkSolutionBase template <typename T> class IkSolution : public IkSolutionBase<T> { public: IkSolution(const std::vector<IkSingleDOFSolutionBase<T> >& vinfos, const std::vector<int>& vfree) { _vbasesol = vinfos; _vfree = vfree; } virtual void GetSolution(T* solution, const T* freevalues) const { for(std::size_t i = 0; i < _vbasesol.size(); ++i) { if( _vbasesol[i].freeind < 0 ) solution[i] = _vbasesol[i].foffset; else { solution[i] = freevalues[_vbasesol[i].freeind]*_vbasesol[i].fmul + _vbasesol[i].foffset; if( solution[i] > T(3.14159265358979) ) { solution[i] -= T(6.28318530717959); } else if( solution[i] < T(-3.14159265358979) ) { solution[i] += T(6.28318530717959); } } } } virtual void GetSolution(std::vector<T>& solution, const std::vector<T>& freevalues) const { solution.resize(GetDOF()); GetSolution(&solution.at(0), freevalues.size() > 0 ? &freevalues.at(0) : NULL); } virtual const std::vector<int>& GetFree() const { return _vfree; } virtual const int GetDOF() const { return static_cast<int>(_vbasesol.size()); } virtual void Validate() const { for(size_t i = 0; i < _vbasesol.size(); ++i) { if( _vbasesol[i].maxsolutions == (unsigned char)-1) { throw std::runtime_error("max solutions for joint not initialized"); } if( _vbasesol[i].maxsolutions > 0 ) { if( _vbasesol[i].indices[0] >= _vbasesol[i].maxsolutions ) { throw std::runtime_error("index >= max solutions for joint"); } if( _vbasesol[i].indices[1] != (unsigned char)-1 && _vbasesol[i].indices[1] >= _vbasesol[i].maxsolutions ) { throw std::runtime_error("2nd index >= max solutions for joint"); } } if( !std::isfinite(_vbasesol[i].foffset) ) { throw std::runtime_error("foffset was not finite"); } } } virtual void GetSolutionIndices(std::vector<unsigned int>& v) const { v.resize(0); v.push_back(0); for(int i = (int)_vbasesol.size()-1; i >= 0; --i) { if( _vbasesol[i].maxsolutions != (unsigned char)-1 && _vbasesol[i].maxsolutions > 1 ) { for(size_t j = 0; j < v.size(); ++j) { v[j] *= _vbasesol[i].maxsolutions; } size_t orgsize=v.size(); if( _vbasesol[i].indices[1] != (unsigned char)-1 ) { for(size_t j = 0; j < orgsize; ++j) { v.push_back(v[j]+_vbasesol[i].indices[1]); } } if( _vbasesol[i].indices[0] != (unsigned char)-1 ) { for(size_t j = 0; j < orgsize; ++j) { v[j] += _vbasesol[i].indices[0]; } } } } } std::vector< IkSingleDOFSolutionBase<T> > _vbasesol; ///< solution and their offsets if joints are mimiced std::vector<int> _vfree; }; /// \brief Default implementation of \ref IkSolutionListBase template <typename T> class IkSolutionList : public IkSolutionListBase<T> { public: virtual size_t AddSolution(const std::vector<IkSingleDOFSolutionBase<T> >& vinfos, const std::vector<int>& vfree) { size_t index = _listsolutions.size(); _listsolutions.push_back(IkSolution<T>(vinfos,vfree)); return index; } virtual const IkSolutionBase<T>& GetSolution(size_t index) const { if( index >= _listsolutions.size() ) { throw std::runtime_error("GetSolution index is invalid"); } typename std::list< IkSolution<T> >::const_iterator it = _listsolutions.begin(); std::advance(it,index); return *it; } virtual size_t GetNumSolutions() const { return _listsolutions.size(); } virtual void Clear() { _listsolutions.clear(); } protected: std::list< IkSolution<T> > _listsolutions; }; } #endif // OPENRAVE_IKFAST_HEADER // The following code is dependent on the C++ library linking with. #ifdef IKFAST_HAS_LIBRARY // defined when creating a shared object/dll #ifdef IKFAST_CLIBRARY #ifdef _MSC_VER #define IKFAST_API extern "C" __declspec(dllexport) #else #define IKFAST_API extern "C" #endif #else #define IKFAST_API #endif #ifdef IKFAST_NAMESPACE namespace IKFAST_NAMESPACE { #endif #ifdef IKFAST_REAL typedef IKFAST_REAL IkReal; #else typedef double IkReal; #endif /** \brief Computes all IK solutions given a end effector coordinates and the free joints. - ``eetrans`` - 3 translation values. For iktype **TranslationXYOrientation3D**, the z-axis is the orientation. - ``eerot`` - For **Transform6D** it is 9 values for the 3x3 rotation matrix. - For **Direction3D**, **Ray4D**, and **TranslationDirection5D**, the first 3 values represent the target direction. - For **TranslationXAxisAngle4D**, **TranslationYAxisAngle4D**, and **TranslationZAxisAngle4D** the first value represents the angle. - For **TranslationLocalGlobal6D**, the diagonal elements ([0],[4],[8]) are the local translation inside the end effector coordinate system. */ IKFAST_API bool ComputeIk(const IkReal* eetrans, const IkReal* eerot, const IkReal* pfree, ikfast::IkSolutionListBase<IkReal>& solutions); /** \brief Similar to ComputeIk except takes OpenRAVE boost::shared_ptr<RobotBase::Manipulator>* */ IKFAST_API bool ComputeIk2(const IkReal* eetrans, const IkReal* eerot, const IkReal* pfree, ikfast::IkSolutionListBase<IkReal>& solutions, void* pOpenRAVEManip); /// \brief Computes the end effector coordinates given the joint values. This function is used to double check ik. IKFAST_API void ComputeFk(const IkReal* joints, IkReal* eetrans, IkReal* eerot); /// \brief returns the number of free parameters users has to set apriori IKFAST_API int GetNumFreeParameters(); /// \brief the indices of the free parameters indexed by the chain joints IKFAST_API int* GetFreeParameters(); /// \brief the total number of indices of the chain IKFAST_API int GetNumJoints(); /// \brief the size in bytes of the configured number type IKFAST_API int GetIkRealSize(); /// \brief the ikfast version used to generate this file IKFAST_API const char* GetIkFastVersion(); /// \brief the ik type ID IKFAST_API int GetIkType(); /// \brief a hash of all the chain values used for double checking that the correct IK is used. IKFAST_API const char* GetKinematicsHash(); #ifdef IKFAST_NAMESPACE } #endif #endif // IKFAST_HAS_LIBRARY
13,643
C
39.01173
266
0.667155
makolon/hsr_isaac_tamp/docker/docker_openrave/output/hsrb/ikfast0x10000049.Transform6D.0_1_4_5_6_7_f2_3.cpp
/// autogenerated analytical inverse kinematics code from ikfast program part of OpenRAVE /// \author Rosen Diankov /// /// Licensed under the Apache License, Version 2.0 (the "License"); /// you may not use this file except in compliance with the License. /// You may obtain a copy of the License at /// http://www.apache.org/licenses/LICENSE-2.0 /// /// Unless required by applicable law or agreed to in writing, software /// distributed under the License is distributed on an "AS IS" BASIS, /// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. /// See the License for the specific language governing permissions and /// limitations under the License. /// /// ikfast version 0x10000049 generated on 2023-05-14 01:55:20.712870 /// To compile with gcc: /// gcc -lstdc++ ik.cpp /// To compile without any main function as a shared object (might need -llapack): /// gcc -fPIC -lstdc++ -DIKFAST_NO_MAIN -DIKFAST_CLIBRARY -shared -Wl,-soname,libik.so -o libik.so ik.cpp #define IKFAST_HAS_LIBRARY #include "ikfast.h" // found inside share/openrave-X.Y/python/ikfast.h using namespace ikfast; // check if the included ikfast version matches what this file was compiled with #define IKFAST_COMPILE_ASSERT(x) extern int __dummy[(int)x] IKFAST_COMPILE_ASSERT(IKFAST_VERSION==0x10000049); #include <cmath> #include <vector> #include <limits> #include <algorithm> #include <complex> #ifndef IKFAST_ASSERT #include <stdexcept> #include <sstream> #include <iostream> #ifdef _MSC_VER #ifndef __PRETTY_FUNCTION__ #define __PRETTY_FUNCTION__ __FUNCDNAME__ #endif #endif #ifndef __PRETTY_FUNCTION__ #define __PRETTY_FUNCTION__ __func__ #endif #define IKFAST_ASSERT(b) { if( !(b) ) { std::stringstream ss; ss << "ikfast exception: " << __FILE__ << ":" << __LINE__ << ": " <<__PRETTY_FUNCTION__ << ": Assertion '" << #b << "' failed"; throw std::runtime_error(ss.str()); } } #endif #if defined(_MSC_VER) #define IKFAST_ALIGNED16(x) __declspec(align(16)) x #else #define IKFAST_ALIGNED16(x) x __attribute((aligned(16))) #endif #define IK2PI ((IkReal)6.28318530717959) #define IKPI ((IkReal)3.14159265358979) #define IKPI_2 ((IkReal)1.57079632679490) #ifdef _MSC_VER #ifndef isnan #define isnan _isnan #endif #ifndef isinf #define isinf _isinf #endif //#ifndef isfinite //#define isfinite _isfinite //#endif #endif // _MSC_VER // lapack routines extern "C" { void dgetrf_ (const int* m, const int* n, double* a, const int* lda, int* ipiv, int* info); void zgetrf_ (const int* m, const int* n, std::complex<double>* a, const int* lda, int* ipiv, int* info); void dgetri_(const int* n, const double* a, const int* lda, int* ipiv, double* work, const int* lwork, int* info); void dgesv_ (const int* n, const int* nrhs, double* a, const int* lda, int* ipiv, double* b, const int* ldb, int* info); void dgetrs_(const char *trans, const int *n, const int *nrhs, double *a, const int *lda, int *ipiv, double *b, const int *ldb, int *info); void dgeev_(const char *jobvl, const char *jobvr, const int *n, double *a, const int *lda, double *wr, double *wi,double *vl, const int *ldvl, double *vr, const int *ldvr, double *work, const int *lwork, int *info); } using namespace std; // necessary to get std math routines #ifdef IKFAST_NAMESPACE namespace IKFAST_NAMESPACE { #endif inline float IKabs(float f) { return fabsf(f); } inline double IKabs(double f) { return fabs(f); } inline float IKsqr(float f) { return f*f; } inline double IKsqr(double f) { return f*f; } inline float IKlog(float f) { return logf(f); } inline double IKlog(double f) { return log(f); } // allows asin and acos to exceed 1. has to be smaller than thresholds used for branch conds and evaluation #ifndef IKFAST_SINCOS_THRESH #define IKFAST_SINCOS_THRESH ((IkReal)1e-7) #endif // used to check input to atan2 for degenerate cases. has to be smaller than thresholds used for branch conds and evaluation #ifndef IKFAST_ATAN2_MAGTHRESH #define IKFAST_ATAN2_MAGTHRESH ((IkReal)1e-7) #endif // minimum distance of separate solutions #ifndef IKFAST_SOLUTION_THRESH #define IKFAST_SOLUTION_THRESH ((IkReal)1e-6) #endif // there are checkpoints in ikfast that are evaluated to make sure they are 0. This threshold speicfies by how much they can deviate #ifndef IKFAST_EVALCOND_THRESH #define IKFAST_EVALCOND_THRESH ((IkReal)0.00001) #endif inline float IKasin(float f) { IKFAST_ASSERT( f > -1-IKFAST_SINCOS_THRESH && f < 1+IKFAST_SINCOS_THRESH ); // any more error implies something is wrong with the solver if( f <= -1 ) return float(-IKPI_2); else if( f >= 1 ) return float(IKPI_2); return asinf(f); } inline double IKasin(double f) { IKFAST_ASSERT( f > -1-IKFAST_SINCOS_THRESH && f < 1+IKFAST_SINCOS_THRESH ); // any more error implies something is wrong with the solver if( f <= -1 ) return -IKPI_2; else if( f >= 1 ) return IKPI_2; return asin(f); } // return positive value in [0,y) inline float IKfmod(float x, float y) { while(x < 0) { x += y; } return fmodf(x,y); } // return positive value in [0,y) inline double IKfmod(double x, double y) { while(x < 0) { x += y; } return fmod(x,y); } inline float IKacos(float f) { IKFAST_ASSERT( f > -1-IKFAST_SINCOS_THRESH && f < 1+IKFAST_SINCOS_THRESH ); // any more error implies something is wrong with the solver if( f <= -1 ) return float(IKPI); else if( f >= 1 ) return float(0); return acosf(f); } inline double IKacos(double f) { IKFAST_ASSERT( f > -1-IKFAST_SINCOS_THRESH && f < 1+IKFAST_SINCOS_THRESH ); // any more error implies something is wrong with the solver if( f <= -1 ) return IKPI; else if( f >= 1 ) return 0; return acos(f); } inline float IKsin(float f) { return sinf(f); } inline double IKsin(double f) { return sin(f); } inline float IKcos(float f) { return cosf(f); } inline double IKcos(double f) { return cos(f); } inline float IKtan(float f) { return tanf(f); } inline double IKtan(double f) { return tan(f); } inline float IKsqrt(float f) { if( f <= 0.0f ) return 0.0f; return sqrtf(f); } inline double IKsqrt(double f) { if( f <= 0.0 ) return 0.0; return sqrt(f); } inline float IKatan2Simple(float fy, float fx) { return atan2f(fy,fx); } inline float IKatan2(float fy, float fx) { if( isnan(fy) ) { IKFAST_ASSERT(!isnan(fx)); // if both are nan, probably wrong value will be returned return float(IKPI_2); } else if( isnan(fx) ) { return 0; } return atan2f(fy,fx); } inline double IKatan2Simple(double fy, double fx) { return atan2(fy,fx); } inline double IKatan2(double fy, double fx) { if( isnan(fy) ) { IKFAST_ASSERT(!isnan(fx)); // if both are nan, probably wrong value will be returned return IKPI_2; } else if( isnan(fx) ) { return 0; } return atan2(fy,fx); } template <typename T> struct CheckValue { T value; bool valid; }; template <typename T> inline CheckValue<T> IKatan2WithCheck(T fy, T fx, T epsilon) { CheckValue<T> ret; ret.valid = false; ret.value = 0; if( !isnan(fy) && !isnan(fx) ) { if( IKabs(fy) >= IKFAST_ATAN2_MAGTHRESH || IKabs(fx) > IKFAST_ATAN2_MAGTHRESH ) { ret.value = IKatan2Simple(fy,fx); ret.valid = true; } } return ret; } inline float IKsign(float f) { if( f > 0 ) { return float(1); } else if( f < 0 ) { return float(-1); } return 0; } inline double IKsign(double f) { if( f > 0 ) { return 1.0; } else if( f < 0 ) { return -1.0; } return 0; } template <typename T> inline CheckValue<T> IKPowWithIntegerCheck(T f, int n) { CheckValue<T> ret; ret.valid = true; if( n == 0 ) { ret.value = 1.0; return ret; } else if( n == 1 ) { ret.value = f; return ret; } else if( n < 0 ) { if( f == 0 ) { ret.valid = false; ret.value = (T)1.0e30; return ret; } if( n == -1 ) { ret.value = T(1.0)/f; return ret; } } int num = n > 0 ? n : -n; if( num == 2 ) { ret.value = f*f; } else if( num == 3 ) { ret.value = f*f*f; } else { ret.value = 1.0; while(num>0) { if( num & 1 ) { ret.value *= f; } num >>= 1; f *= f; } } if( n < 0 ) { ret.value = T(1.0)/ret.value; } return ret; } /// solves the forward kinematics equations. /// \param pfree is an array specifying the free joints of the chain. IKFAST_API void ComputeFk(const IkReal* j, IkReal* eetrans, IkReal* eerot) { IkReal x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,x37,x38; x0=IKcos(j[2]); x1=IKcos(j[4]); x2=IKcos(j[5]); x3=IKsin(j[2]); x4=IKsin(j[5]); x5=IKsin(j[7]); x6=IKcos(j[6]); x7=IKcos(j[7]); x8=IKsin(j[6]); x9=IKsin(j[4]); x10=((0.1405)*x9); x11=((0.012)*x9); x12=((1.0)*x2); x13=((0.1405)*x4); x14=((0.1405)*x2); x15=((1.0)*x6); x16=((1.0)*x9); x17=((0.012)*x6); x18=((0.012)*x4); x19=((0.012)*x2); x20=(x0*x6); x21=(x3*x8); x22=(x1*x6); x23=(x1*x3); x24=(x0*x1); x25=(x0*x8); x26=(x0*x4); x27=(x1*x8); x28=(x3*x9); x29=(x4*x9); x30=((1.0)*x3*x4); x31=(x16*x25); x32=(x16*x21); x33=((((-1.0)*x30))+((x2*x24))); x34=(((x2*x23))+x26); x35=((((1.0)*x23*x4))+(((-1.0)*x0*x12))); x36=((((1.0)*x24*x4))+((x12*x3))); x37=(((x12*x6*x9))+(((1.0)*x27))); x38=(x33*x6); eerot[0]=(((x7*((x31+(((-1.0)*x15*x33))))))+((x36*x5))); eerot[1]=(((x5*(((((-1.0)*x31))+x38))))+((x36*x7))); eerot[2]=(((x8*(((((-1.0)*x12*x24))+x30))))+(((-1.0)*x0*x15*x9))); IkReal x39=((1.0)*x24); eetrans[0]=((((-0.078)*x3))+((x8*(((((-1.0)*x14*x39))+((x13*x3))))))+(((-0.345)*x0*x9))+((x5*(((((-1.0)*x19*x3))+(((-1.0)*x18*x39))))))+(((-1.0)*x10*x20))+(((0.141)*x0))+(((0.005)*x24))+((x7*((((x17*x33))+(((-1.0)*x11*x25))))))+j[0]); eerot[3]=(((x35*x5))+((x7*((x32+(((-1.0)*x15*x34))))))); eerot[4]=(((x35*x7))+((x5*(((((-1.0)*x32))+((x34*x6))))))); eerot[5]=((((-1.0)*x15*x28))+((x8*(((((-1.0)*x12*x23))+(((-1.0)*x26))))))); IkReal x40=((1.0)*x23); eetrans[1]=((((-0.345)*x28))+(((0.078)*x0))+(((-1.0)*x10*x3*x6))+((x5*((((x0*x19))+(((-1.0)*x18*x40))))))+((x7*((((x17*x34))+(((-1.0)*x11*x21))))))+(((0.141)*x3))+(((0.005)*x23))+j[1]+((x8*(((((-1.0)*x0*x13))+(((-1.0)*x14*x40))))))); eerot[6]=(((x29*x5))+(((-1.0)*x37*x7))); eerot[7]=(((x29*x7))+((x37*x5))); eerot[8]=((((-1.0)*x12*x8*x9))+x22); eetrans[2]=((0.34)+(((0.345)*x1))+(((0.1405)*x22))+(((0.005)*x9))+(((-1.0)*x10*x2*x8))+(((-1.0)*x11*x4*x5))+j[3]+((x7*(((((0.012)*x27))+((x11*x2*x6))))))); } IKFAST_API int GetNumFreeParameters() { return 2; } IKFAST_API int* GetFreeParameters() { static int freeparams[] = {2, 3}; return freeparams; } IKFAST_API int GetNumJoints() { return 8; } IKFAST_API int GetIkRealSize() { return sizeof(IkReal); } IKFAST_API int GetIkType() { return 0x67000001; } class IKSolver { public: IkReal j0,cj0,sj0,htj0,j0mul,j1,cj1,sj1,htj1,j1mul,j4,cj4,sj4,htj4,j4mul,j5,cj5,sj5,htj5,j5mul,j6,cj6,sj6,htj6,j6mul,j7,cj7,sj7,htj7,j7mul,j2,cj2,sj2,htj2,j3,cj3,sj3,htj3,new_r00,r00,rxp0_0,new_r01,r01,rxp0_1,new_r02,r02,rxp0_2,new_r10,r10,rxp1_0,new_r11,r11,rxp1_1,new_r12,r12,rxp1_2,new_r20,r20,rxp2_0,new_r21,r21,rxp2_1,new_r22,r22,rxp2_2,new_px,px,npx,new_py,py,npy,new_pz,pz,npz,pp; unsigned char _ij0[2], _nj0,_ij1[2], _nj1,_ij4[2], _nj4,_ij5[2], _nj5,_ij6[2], _nj6,_ij7[2], _nj7,_ij2[2], _nj2,_ij3[2], _nj3; IkReal j100, cj100, sj100; unsigned char _ij100[2], _nj100; bool ComputeIk(const IkReal* eetrans, const IkReal* eerot, const IkReal* pfree, IkSolutionListBase<IkReal>& solutions) { j0=numeric_limits<IkReal>::quiet_NaN(); _ij0[0] = -1; _ij0[1] = -1; _nj0 = -1; j1=numeric_limits<IkReal>::quiet_NaN(); _ij1[0] = -1; _ij1[1] = -1; _nj1 = -1; j4=numeric_limits<IkReal>::quiet_NaN(); _ij4[0] = -1; _ij4[1] = -1; _nj4 = -1; j5=numeric_limits<IkReal>::quiet_NaN(); _ij5[0] = -1; _ij5[1] = -1; _nj5 = -1; j6=numeric_limits<IkReal>::quiet_NaN(); _ij6[0] = -1; _ij6[1] = -1; _nj6 = -1; j7=numeric_limits<IkReal>::quiet_NaN(); _ij7[0] = -1; _ij7[1] = -1; _nj7 = -1; _ij2[0] = -1; _ij2[1] = -1; _nj2 = 0; _ij3[0] = -1; _ij3[1] = -1; _nj3 = 0; for(int dummyiter = 0; dummyiter < 1; ++dummyiter) { solutions.Clear(); j2=pfree[0]; cj2=cos(pfree[0]); sj2=sin(pfree[0]), htj2=tan(pfree[0]*0.5); j3=pfree[1]; cj3=cos(pfree[1]); sj3=sin(pfree[1]), htj3=tan(pfree[1]*0.5); r00 = eerot[0*3+0]; r01 = eerot[0*3+1]; r02 = eerot[0*3+2]; r10 = eerot[1*3+0]; r11 = eerot[1*3+1]; r12 = eerot[1*3+2]; r20 = eerot[2*3+0]; r21 = eerot[2*3+1]; r22 = eerot[2*3+2]; px = eetrans[0]; py = eetrans[1]; pz = eetrans[2]; new_r00=r20; new_r01=r21; new_r02=((-1.0)*r22); new_px=((((-0.012)*r20))+(((0.1405)*r22))+(((-1.0)*pz))); new_r10=((-1.0)*r10); new_r11=((-1.0)*r11); new_r12=r12; new_py=((((-0.1405)*r12))+(((0.012)*r10))+py); new_r20=((-1.0)*r00); new_r21=((-1.0)*r01); new_r22=r02; new_pz=((((-0.1405)*r02))+(((0.012)*r00))+px); r00 = new_r00; r01 = new_r01; r02 = new_r02; r10 = new_r10; r11 = new_r11; r12 = new_r12; r20 = new_r20; r21 = new_r21; r22 = new_r22; px = new_px; py = new_py; pz = new_pz; IkReal x41=((1.0)*px); IkReal x42=((1.0)*pz); IkReal x43=((1.0)*py); pp=((px*px)+(py*py)+(pz*pz)); npx=(((px*r00))+((py*r10))+((pz*r20))); npy=(((px*r01))+((py*r11))+((pz*r21))); npz=(((px*r02))+((py*r12))+((pz*r22))); rxp0_0=((((-1.0)*r20*x43))+((pz*r10))); rxp0_1=(((px*r20))+(((-1.0)*r00*x42))); rxp0_2=((((-1.0)*r10*x41))+((py*r00))); rxp1_0=((((-1.0)*r21*x43))+((pz*r11))); rxp1_1=(((px*r21))+(((-1.0)*r01*x42))); rxp1_2=((((-1.0)*r11*x41))+((py*r01))); rxp2_0=((((-1.0)*r22*x43))+((pz*r12))); rxp2_1=((((-1.0)*r02*x42))+((px*r22))); rxp2_2=((((-1.0)*r12*x41))+((py*r02))); { IkReal j4array[2], cj4array[2], sj4array[2]; bool j4valid[2]={false}; _nj4 = 2; if( (((0.985403764752504)+(((2.89824636691913)*j3))+(((2.89824636691913)*px)))) < -1-IKFAST_SINCOS_THRESH || (((0.985403764752504)+(((2.89824636691913)*j3))+(((2.89824636691913)*px)))) > 1+IKFAST_SINCOS_THRESH ) continue; IkReal x44=IKasin(((0.985403764752504)+(((2.89824636691913)*j3))+(((2.89824636691913)*px)))); j4array[0]=((-1.5563045877294)+(((-1.0)*x44))); sj4array[0]=IKsin(j4array[0]); cj4array[0]=IKcos(j4array[0]); j4array[1]=((1.5852880658604)+x44); sj4array[1]=IKsin(j4array[1]); cj4array[1]=IKcos(j4array[1]); if( j4array[0] > IKPI ) { j4array[0]-=IK2PI; } else if( j4array[0] < -IKPI ) { j4array[0]+=IK2PI; } j4valid[0] = true; if( j4array[1] > IKPI ) { j4array[1]-=IK2PI; } else if( j4array[1] < -IKPI ) { j4array[1]+=IK2PI; } j4valid[1] = true; for(int ij4 = 0; ij4 < 2; ++ij4) { if( !j4valid[ij4] ) { continue; } _ij4[0] = ij4; _ij4[1] = -1; for(int iij4 = ij4+1; iij4 < 2; ++iij4) { if( j4valid[iij4] && IKabs(cj4array[ij4]-cj4array[iij4]) < IKFAST_SOLUTION_THRESH && IKabs(sj4array[ij4]-sj4array[iij4]) < IKFAST_SOLUTION_THRESH ) { j4valid[iij4]=false; _ij4[1] = iij4; break; } } j4 = j4array[ij4]; cj4 = cj4array[ij4]; sj4 = sj4array[ij4]; { IkReal j0array[1], cj0array[1], sj0array[1]; bool j0valid[1]={false}; _nj0 = 1; j0array[0]=((((0.078)*sj2))+(((0.345)*cj2*sj4))+pz+(((-0.005)*cj2*cj4))+(((-0.141)*cj2))); sj0array[0]=IKsin(j0array[0]); cj0array[0]=IKcos(j0array[0]); j0valid[0] = true; for(int ij0 = 0; ij0 < 1; ++ij0) { if( !j0valid[ij0] ) { continue; } _ij0[0] = ij0; _ij0[1] = -1; for(int iij0 = ij0+1; iij0 < 1; ++iij0) { if( j0valid[iij0] && IKabs(cj0array[ij0]-cj0array[iij0]) < IKFAST_SOLUTION_THRESH && IKabs(sj0array[ij0]-sj0array[iij0]) < IKFAST_SOLUTION_THRESH ) { j0valid[iij0]=false; _ij0[1] = iij0; break; } } j0 = j0array[ij0]; cj0 = cj0array[ij0]; sj0 = sj0array[ij0]; { IkReal j1array[1], cj1array[1], sj1array[1]; bool j1valid[1]={false}; _nj1 = 1; j1array[0]=((((-0.005)*cj4*sj2))+(((-0.141)*sj2))+py+(((-0.078)*cj2))+(((0.345)*sj2*sj4))); sj1array[0]=IKsin(j1array[0]); cj1array[0]=IKcos(j1array[0]); j1valid[0] = true; for(int ij1 = 0; ij1 < 1; ++ij1) { if( !j1valid[ij1] ) { continue; } _ij1[0] = ij1; _ij1[1] = -1; for(int iij1 = ij1+1; iij1 < 1; ++iij1) { if( j1valid[iij1] && IKabs(cj1array[ij1]-cj1array[iij1]) < IKFAST_SOLUTION_THRESH && IKabs(sj1array[ij1]-sj1array[iij1]) < IKFAST_SOLUTION_THRESH ) { j1valid[iij1]=false; _ij1[1] = iij1; break; } } j1 = j1array[ij1]; cj1 = cj1array[ij1]; sj1 = sj1array[ij1]; rotationfunction0(solutions); } } } } } } } return solutions.GetNumSolutions()>0; } inline void rotationfunction0(IkSolutionListBase<IkReal>& solutions) { for(int rotationiter = 0; rotationiter < 1; ++rotationiter) { IkReal x45=(cj4*sj2); IkReal x46=((1.0)*sj2); IkReal x47=(cj2*cj4); IkReal x48=((1.0)*sj4); IkReal x49=((1.0)*cj4); new_r00=(((r20*x47))+(((-1.0)*r00*x48))+((r10*x45))); new_r01=((((-1.0)*r01*x48))+((r11*x45))+((r21*x47))); new_r02=((((-1.0)*r02*x48))+((r22*x47))+((r12*x45))); new_r10=((((-1.0)*r20*x46))+((cj2*r10))); new_r11=((((-1.0)*r21*x46))+((cj2*r11))); new_r12=(((cj2*r12))+(((-1.0)*r22*x46))); new_r20=((((-1.0)*cj2*r20*x48))+(((-1.0)*r10*sj4*x46))+(((-1.0)*r00*x49))); new_r21=((((-1.0)*r01*x49))+(((-1.0)*cj2*r21*x48))+(((-1.0)*r11*sj4*x46))); new_r22=((((-1.0)*r12*sj4*x46))+(((-1.0)*r02*x49))+(((-1.0)*cj2*r22*x48))); { IkReal j6array[2], cj6array[2], sj6array[2]; bool j6valid[2]={false}; _nj6 = 2; cj6array[0]=new_r22; if( cj6array[0] >= -1-IKFAST_SINCOS_THRESH && cj6array[0] <= 1+IKFAST_SINCOS_THRESH ) { j6valid[0] = j6valid[1] = true; j6array[0] = IKacos(cj6array[0]); sj6array[0] = IKsin(j6array[0]); cj6array[1] = cj6array[0]; j6array[1] = -j6array[0]; sj6array[1] = -sj6array[0]; } else if( isnan(cj6array[0]) ) { // probably any value will work j6valid[0] = true; cj6array[0] = 1; sj6array[0] = 0; j6array[0] = 0; } for(int ij6 = 0; ij6 < 2; ++ij6) { if( !j6valid[ij6] ) { continue; } _ij6[0] = ij6; _ij6[1] = -1; for(int iij6 = ij6+1; iij6 < 2; ++iij6) { if( j6valid[iij6] && IKabs(cj6array[ij6]-cj6array[iij6]) < IKFAST_SOLUTION_THRESH && IKabs(sj6array[ij6]-sj6array[iij6]) < IKFAST_SOLUTION_THRESH ) { j6valid[iij6]=false; _ij6[1] = iij6; break; } } j6 = j6array[ij6]; cj6 = cj6array[ij6]; sj6 = sj6array[ij6]; { IkReal j7eval[3]; j7eval[0]=sj6; j7eval[1]=IKsign(sj6); j7eval[2]=((IKabs(new_r20))+(IKabs(new_r21))); if( IKabs(j7eval[0]) < 0.0000010000000000 || IKabs(j7eval[1]) < 0.0000010000000000 || IKabs(j7eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[3]; j5eval[0]=sj6; j5eval[1]=((IKabs(new_r12))+(IKabs(new_r02))); j5eval[2]=IKsign(sj6); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[2]; j5eval[0]=new_r12; j5eval[1]=sj6; if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 ) { { IkReal evalcond[5]; bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(j6))), 6.28318530717959))); evalcond[1]=new_r02; evalcond[2]=new_r12; evalcond[3]=new_r21; evalcond[4]=new_r20; if( IKabs(evalcond[0]) < 0.0000050000000000 && IKabs(evalcond[1]) < 0.0000050000000000 && IKabs(evalcond[2]) < 0.0000050000000000 && IKabs(evalcond[3]) < 0.0000050000000000 && IKabs(evalcond[4]) < 0.0000050000000000 ) { bgotonextstatement=false; IkReal j7mul = 1; j7=0; j5mul=-1.0; if( IKabs(((-1.0)*new_r01)) < IKFAST_ATAN2_MAGTHRESH && IKabs(new_r00) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*new_r01))+IKsqr(new_r00)-1) <= IKFAST_SINCOS_THRESH ) continue; j5=IKatan2(((-1.0)*new_r01), new_r00); { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].fmul = j5mul; vinfos[5].freeind = 0; vinfos[5].maxsolutions = 0; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].fmul = j7mul; vinfos[7].freeind = 0; vinfos[7].maxsolutions = 0; std::vector<int> vfree(1); vfree[0] = 7; solutions.AddSolution(vinfos,vfree); } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(((-3.14159265358979)+j6)))), 6.28318530717959))); evalcond[1]=new_r02; evalcond[2]=new_r12; evalcond[3]=new_r21; evalcond[4]=new_r20; if( IKabs(evalcond[0]) < 0.0000050000000000 && IKabs(evalcond[1]) < 0.0000050000000000 && IKabs(evalcond[2]) < 0.0000050000000000 && IKabs(evalcond[3]) < 0.0000050000000000 && IKabs(evalcond[4]) < 0.0000050000000000 ) { bgotonextstatement=false; IkReal j7mul = 1; j7=0; j5mul=1.0; if( IKabs(((-1.0)*new_r01)) < IKFAST_ATAN2_MAGTHRESH && IKabs(((-1.0)*new_r00)) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*new_r01))+IKsqr(((-1.0)*new_r00))-1) <= IKFAST_SINCOS_THRESH ) continue; j5=IKatan2(((-1.0)*new_r01), ((-1.0)*new_r00)); { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].fmul = j5mul; vinfos[5].freeind = 0; vinfos[5].maxsolutions = 0; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].fmul = j7mul; vinfos[7].freeind = 0; vinfos[7].maxsolutions = 0; std::vector<int> vfree(1); vfree[0] = 7; solutions.AddSolution(vinfos,vfree); } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r20))+(IKabs(new_r21))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; new_r21=0; new_r20=0; new_r02=0; new_r12=0; IkReal x50=new_r22*new_r22; IkReal x51=((16.0)*new_r10); IkReal x52=((16.0)*new_r01); IkReal x53=((16.0)*new_r22); IkReal x54=((8.0)*new_r11); IkReal x55=((8.0)*new_r00); IkReal x56=(x50*x51); IkReal x57=(x50*x52); j5eval[0]=((IKabs((x51+(((-1.0)*x56)))))+(IKabs(((((16.0)*new_r00))+(((-32.0)*new_r00*x50))+((new_r11*x53)))))+(IKabs((x56+(((-1.0)*x51)))))+(IKabs((((new_r22*x54))+(((-1.0)*x55)))))+(IKabs(((((16.0)*new_r11*x50))+(((-32.0)*new_r11))+((new_r00*x53)))))+(IKabs((x52+(((-1.0)*x57)))))+(IKabs((x57+(((-1.0)*x52)))))+(IKabs((((new_r22*x55))+(((-1.0)*x50*x54)))))); if( IKabs(j5eval[0]) < 0.0000000010000000 ) { continue; // no branches [j5, j7] } else { IkReal op[4+1], zeror[4]; int numroots; IkReal j5evalpoly[1]; IkReal x58=new_r22*new_r22; IkReal x59=((16.0)*new_r10); IkReal x60=(new_r11*new_r22); IkReal x61=(x58*x59); IkReal x62=((((8.0)*x60))+(((-8.0)*new_r00))); op[0]=x62; op[1]=(x59+(((-1.0)*x61))); op[2]=((((16.0)*x60))+(((16.0)*new_r00))+(((-32.0)*new_r00*x58))); op[3]=(x61+(((-1.0)*x59))); op[4]=x62; polyroots4(op,zeror,numroots); IkReal j5array[4], cj5array[4], sj5array[4], tempj5array[1]; int numsolutions = 0; for(int ij5 = 0; ij5 < numroots; ++ij5) { IkReal htj5 = zeror[ij5]; tempj5array[0]=((2.0)*(atan(htj5))); for(int kj5 = 0; kj5 < 1; ++kj5) { j5array[numsolutions] = tempj5array[kj5]; if( j5array[numsolutions] > IKPI ) { j5array[numsolutions]-=IK2PI; } else if( j5array[numsolutions] < -IKPI ) { j5array[numsolutions]+=IK2PI; } sj5array[numsolutions] = IKsin(j5array[numsolutions]); cj5array[numsolutions] = IKcos(j5array[numsolutions]); numsolutions++; } } bool j5valid[4]={true,true,true,true}; _nj5 = 4; for(int ij5 = 0; ij5 < numsolutions; ++ij5) { if( !j5valid[ij5] ) { continue; } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; htj5 = IKtan(j5/2); IkReal x63=((16.0)*new_r01); IkReal x64=new_r22*new_r22; IkReal x65=(new_r00*new_r22); IkReal x66=((8.0)*x65); IkReal x67=(new_r11*x64); IkReal x68=(x63*x64); IkReal x69=((8.0)*x67); j5evalpoly[0]=(((htj5*((x68+(((-1.0)*x63))))))+(((htj5*htj5*htj5*htj5)*((x66+(((-1.0)*x69))))))+(((htj5*htj5*htj5)*((x63+(((-1.0)*x68))))))+(((htj5*htj5)*(((((16.0)*x65))+(((16.0)*x67))+(((-32.0)*new_r11))))))+x66+(((-1.0)*x69))); if( IKabs(j5evalpoly[0]) > 0.0000000010000000 ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < numsolutions; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } { IkReal j7eval[3]; new_r21=0; new_r20=0; new_r02=0; new_r12=0; IkReal x70=cj5*cj5; IkReal x71=(cj5*new_r22); IkReal x72=((-1.0)+(((-1.0)*x70*(new_r22*new_r22)))+x70); j7eval[0]=x72; j7eval[1]=((IKabs((((new_r01*x71))+((new_r00*sj5)))))+(IKabs((((new_r01*sj5))+(((-1.0)*new_r00*x71)))))); j7eval[2]=IKsign(x72); if( IKabs(j7eval[0]) < 0.0000010000000000 || IKabs(j7eval[1]) < 0.0000010000000000 || IKabs(j7eval[2]) < 0.0000010000000000 ) { { IkReal j7eval[1]; new_r21=0; new_r20=0; new_r02=0; new_r12=0; j7eval[0]=new_r22; if( IKabs(j7eval[0]) < 0.0000010000000000 ) { { IkReal j7eval[1]; new_r21=0; new_r20=0; new_r02=0; new_r12=0; j7eval[0]=sj5; if( IKabs(j7eval[0]) < 0.0000010000000000 ) { { IkReal evalcond[1]; bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(j5))), 6.28318530717959))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; if( IKabs(new_r10) < IKFAST_ATAN2_MAGTHRESH && IKabs(new_r11) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(new_r10)+IKsqr(new_r11)-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2(new_r10, new_r11); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[4]; IkReal x73=IKsin(j7); IkReal x74=IKcos(j7); evalcond[0]=x73; evalcond[1]=((-1.0)*x74); evalcond[2]=(x73+(((-1.0)*new_r10))); evalcond[3]=(x74+(((-1.0)*new_r11))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(((-3.14159265358979)+j5)))), 6.28318530717959))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; if( IKabs(((-1.0)*new_r10)) < IKFAST_ATAN2_MAGTHRESH && IKabs(((-1.0)*new_r11)) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*new_r10))+IKsqr(((-1.0)*new_r11))-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2(((-1.0)*new_r10), ((-1.0)*new_r11)); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[4]; IkReal x75=IKsin(j7); IkReal x76=IKcos(j7); evalcond[0]=x75; evalcond[1]=(x75+new_r10); evalcond[2]=(x76+new_r11); evalcond[3]=((-1.0)*x76); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { CheckValue<IkReal> x77=IKPowWithIntegerCheck(((1.0)+(((-1.0)*(new_r22*new_r22)))),-1); if(!x77.valid){ continue; } if((x77.value) < -0.00001) continue; IkReal gconst18=((-1.0)*(IKsqrt(x77.value))); evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(((-1.0)+(IKsign(sj5)))))+(IKabs((cj5+(((-1.0)*gconst18)))))), 6.28318530717959))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j7eval[1]; new_r21=0; new_r20=0; new_r02=0; new_r12=0; if((((1.0)+(((-1.0)*(gconst18*gconst18))))) < -0.00001) continue; sj5=IKsqrt(((1.0)+(((-1.0)*(gconst18*gconst18))))); cj5=gconst18; if( (gconst18) < -1-IKFAST_SINCOS_THRESH || (gconst18) > 1+IKFAST_SINCOS_THRESH ) continue; j5=IKacos(gconst18); CheckValue<IkReal> x78=IKPowWithIntegerCheck(((1.0)+(((-1.0)*(new_r22*new_r22)))),-1); if(!x78.valid){ continue; } if((x78.value) < -0.00001) continue; IkReal gconst18=((-1.0)*(IKsqrt(x78.value))); j7eval[0]=((IKabs(new_r11))+(IKabs(new_r10))); if( IKabs(j7eval[0]) < 0.0000010000000000 ) { { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; if((((1.0)+(((-1.0)*(gconst18*gconst18))))) < -0.00001) continue; CheckValue<IkReal> x79=IKPowWithIntegerCheck(gconst18,-1); if(!x79.valid){ continue; } if( IKabs((((gconst18*new_r10))+(((-1.0)*new_r00*(IKsqrt(((1.0)+(((-1.0)*(gconst18*gconst18)))))))))) < IKFAST_ATAN2_MAGTHRESH && IKabs((new_r11*(x79.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr((((gconst18*new_r10))+(((-1.0)*new_r00*(IKsqrt(((1.0)+(((-1.0)*(gconst18*gconst18))))))))))+IKsqr((new_r11*(x79.value)))-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2((((gconst18*new_r10))+(((-1.0)*new_r00*(IKsqrt(((1.0)+(((-1.0)*(gconst18*gconst18))))))))), (new_r11*(x79.value))); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[8]; IkReal x80=IKcos(j7); IkReal x81=IKsin(j7); IkReal x82=((1.0)*gconst18); if((((1.0)+(((-1.0)*gconst18*x82)))) < -0.00001) continue; IkReal x83=IKsqrt(((1.0)+(((-1.0)*gconst18*x82)))); evalcond[0]=x81; evalcond[1]=((-1.0)*x80); evalcond[2]=((((-1.0)*x80*x82))+new_r11); evalcond[3]=((((-1.0)*x81*x82))+new_r10); evalcond[4]=(((x80*x83))+new_r01); evalcond[5]=(((x81*x83))+new_r00); evalcond[6]=(((new_r00*x83))+x81+(((-1.0)*new_r10*x82))); evalcond[7]=((((-1.0)*new_r11*x82))+((new_r01*x83))+x80); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } else { { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; CheckValue<IkReal> x84=IKPowWithIntegerCheck(IKsign(gconst18),-1); if(!x84.valid){ continue; } CheckValue<IkReal> x85 = IKatan2WithCheck(IkReal(new_r10),IkReal(new_r11),IKFAST_ATAN2_MAGTHRESH); if(!x85.valid){ continue; } j7array[0]=((-1.5707963267949)+(((1.5707963267949)*(x84.value)))+(x85.value)); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[8]; IkReal x86=IKcos(j7); IkReal x87=IKsin(j7); IkReal x88=((1.0)*gconst18); if((((1.0)+(((-1.0)*gconst18*x88)))) < -0.00001) continue; IkReal x89=IKsqrt(((1.0)+(((-1.0)*gconst18*x88)))); evalcond[0]=x87; evalcond[1]=((-1.0)*x86); evalcond[2]=((((-1.0)*x86*x88))+new_r11); evalcond[3]=((((-1.0)*x87*x88))+new_r10); evalcond[4]=(((x86*x89))+new_r01); evalcond[5]=(new_r00+((x87*x89))); evalcond[6]=(((new_r00*x89))+x87+(((-1.0)*new_r10*x88))); evalcond[7]=((((-1.0)*new_r11*x88))+((new_r01*x89))+x86); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { CheckValue<IkReal> x90=IKPowWithIntegerCheck(((1.0)+(((-1.0)*(new_r22*new_r22)))),-1); if(!x90.valid){ continue; } if((x90.value) < -0.00001) continue; IkReal gconst18=((-1.0)*(IKsqrt(x90.value))); evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs((cj5+(((-1.0)*gconst18)))))+(IKabs(((1.0)+(IKsign(sj5)))))), 6.28318530717959))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j7eval[1]; new_r21=0; new_r20=0; new_r02=0; new_r12=0; if((((1.0)+(((-1.0)*(gconst18*gconst18))))) < -0.00001) continue; sj5=((-1.0)*(IKsqrt(((1.0)+(((-1.0)*(gconst18*gconst18))))))); cj5=gconst18; if( (gconst18) < -1-IKFAST_SINCOS_THRESH || (gconst18) > 1+IKFAST_SINCOS_THRESH ) continue; j5=((-1.0)*(IKacos(gconst18))); CheckValue<IkReal> x91=IKPowWithIntegerCheck(((1.0)+(((-1.0)*(new_r22*new_r22)))),-1); if(!x91.valid){ continue; } if((x91.value) < -0.00001) continue; IkReal gconst18=((-1.0)*(IKsqrt(x91.value))); j7eval[0]=((IKabs(new_r11))+(IKabs(new_r10))); if( IKabs(j7eval[0]) < 0.0000010000000000 ) { { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; if((((1.0)+(((-1.0)*(gconst18*gconst18))))) < -0.00001) continue; CheckValue<IkReal> x92=IKPowWithIntegerCheck(gconst18,-1); if(!x92.valid){ continue; } if( IKabs((((gconst18*new_r10))+((new_r00*(IKsqrt(((1.0)+(((-1.0)*(gconst18*gconst18)))))))))) < IKFAST_ATAN2_MAGTHRESH && IKabs((new_r11*(x92.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr((((gconst18*new_r10))+((new_r00*(IKsqrt(((1.0)+(((-1.0)*(gconst18*gconst18))))))))))+IKsqr((new_r11*(x92.value)))-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2((((gconst18*new_r10))+((new_r00*(IKsqrt(((1.0)+(((-1.0)*(gconst18*gconst18))))))))), (new_r11*(x92.value))); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[8]; IkReal x93=IKcos(j7); IkReal x94=IKsin(j7); IkReal x95=((1.0)*gconst18); if((((1.0)+(((-1.0)*gconst18*x95)))) < -0.00001) continue; IkReal x96=IKsqrt(((1.0)+(((-1.0)*gconst18*x95)))); IkReal x97=((1.0)*x96); evalcond[0]=x94; evalcond[1]=((-1.0)*x93); evalcond[2]=(new_r11+(((-1.0)*x93*x95))); evalcond[3]=((((-1.0)*x94*x95))+new_r10); evalcond[4]=(new_r01+(((-1.0)*x93*x97))); evalcond[5]=((((-1.0)*x94*x97))+new_r00); evalcond[6]=((((-1.0)*new_r10*x95))+x94+(((-1.0)*new_r00*x97))); evalcond[7]=((((-1.0)*new_r11*x95))+(((-1.0)*new_r01*x97))+x93); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } else { { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; CheckValue<IkReal> x98=IKPowWithIntegerCheck(IKsign(gconst18),-1); if(!x98.valid){ continue; } CheckValue<IkReal> x99 = IKatan2WithCheck(IkReal(new_r10),IkReal(new_r11),IKFAST_ATAN2_MAGTHRESH); if(!x99.valid){ continue; } j7array[0]=((-1.5707963267949)+(((1.5707963267949)*(x98.value)))+(x99.value)); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[8]; IkReal x100=IKcos(j7); IkReal x101=IKsin(j7); IkReal x102=((1.0)*gconst18); if((((1.0)+(((-1.0)*gconst18*x102)))) < -0.00001) continue; IkReal x103=IKsqrt(((1.0)+(((-1.0)*gconst18*x102)))); IkReal x104=((1.0)*x103); evalcond[0]=x101; evalcond[1]=((-1.0)*x100); evalcond[2]=((((-1.0)*x100*x102))+new_r11); evalcond[3]=((((-1.0)*x101*x102))+new_r10); evalcond[4]=((((-1.0)*x100*x104))+new_r01); evalcond[5]=((((-1.0)*x101*x104))+new_r00); evalcond[6]=((((-1.0)*new_r00*x104))+(((-1.0)*new_r10*x102))+x101); evalcond[7]=((((-1.0)*new_r11*x102))+(((-1.0)*new_r01*x104))+x100); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { CheckValue<IkReal> x105=IKPowWithIntegerCheck(((1.0)+(((-1.0)*(new_r22*new_r22)))),-1); if(!x105.valid){ continue; } if((x105.value) < -0.00001) continue; IkReal gconst19=IKsqrt(x105.value); evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(((-1.0)+(IKsign(sj5)))))+(IKabs((cj5+(((-1.0)*gconst19)))))), 6.28318530717959))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j7eval[1]; new_r21=0; new_r20=0; new_r02=0; new_r12=0; if((((1.0)+(((-1.0)*(gconst19*gconst19))))) < -0.00001) continue; sj5=IKsqrt(((1.0)+(((-1.0)*(gconst19*gconst19))))); cj5=gconst19; if( (gconst19) < -1-IKFAST_SINCOS_THRESH || (gconst19) > 1+IKFAST_SINCOS_THRESH ) continue; j5=IKacos(gconst19); CheckValue<IkReal> x106=IKPowWithIntegerCheck(((1.0)+(((-1.0)*(new_r22*new_r22)))),-1); if(!x106.valid){ continue; } if((x106.value) < -0.00001) continue; IkReal gconst19=IKsqrt(x106.value); j7eval[0]=((IKabs(new_r11))+(IKabs(new_r10))); if( IKabs(j7eval[0]) < 0.0000010000000000 ) { { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; if((((1.0)+(((-1.0)*(gconst19*gconst19))))) < -0.00001) continue; CheckValue<IkReal> x107=IKPowWithIntegerCheck(gconst19,-1); if(!x107.valid){ continue; } if( IKabs((((gconst19*new_r10))+(((-1.0)*new_r00*(IKsqrt(((1.0)+(((-1.0)*(gconst19*gconst19)))))))))) < IKFAST_ATAN2_MAGTHRESH && IKabs((new_r11*(x107.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr((((gconst19*new_r10))+(((-1.0)*new_r00*(IKsqrt(((1.0)+(((-1.0)*(gconst19*gconst19))))))))))+IKsqr((new_r11*(x107.value)))-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2((((gconst19*new_r10))+(((-1.0)*new_r00*(IKsqrt(((1.0)+(((-1.0)*(gconst19*gconst19))))))))), (new_r11*(x107.value))); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[8]; IkReal x108=IKcos(j7); IkReal x109=IKsin(j7); IkReal x110=((1.0)*gconst19); if((((1.0)+(((-1.0)*gconst19*x110)))) < -0.00001) continue; IkReal x111=IKsqrt(((1.0)+(((-1.0)*gconst19*x110)))); evalcond[0]=x109; evalcond[1]=((-1.0)*x108); evalcond[2]=((((-1.0)*x108*x110))+new_r11); evalcond[3]=((((-1.0)*x109*x110))+new_r10); evalcond[4]=(((x108*x111))+new_r01); evalcond[5]=(((x109*x111))+new_r00); evalcond[6]=((((-1.0)*new_r10*x110))+x109+((new_r00*x111))); evalcond[7]=((((-1.0)*new_r11*x110))+x108+((new_r01*x111))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } else { { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; CheckValue<IkReal> x112=IKPowWithIntegerCheck(IKsign(gconst19),-1); if(!x112.valid){ continue; } CheckValue<IkReal> x113 = IKatan2WithCheck(IkReal(new_r10),IkReal(new_r11),IKFAST_ATAN2_MAGTHRESH); if(!x113.valid){ continue; } j7array[0]=((-1.5707963267949)+(((1.5707963267949)*(x112.value)))+(x113.value)); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[8]; IkReal x114=IKcos(j7); IkReal x115=IKsin(j7); IkReal x116=((1.0)*gconst19); if((((1.0)+(((-1.0)*gconst19*x116)))) < -0.00001) continue; IkReal x117=IKsqrt(((1.0)+(((-1.0)*gconst19*x116)))); evalcond[0]=x115; evalcond[1]=((-1.0)*x114); evalcond[2]=((((-1.0)*x114*x116))+new_r11); evalcond[3]=((((-1.0)*x115*x116))+new_r10); evalcond[4]=(((x114*x117))+new_r01); evalcond[5]=(new_r00+((x115*x117))); evalcond[6]=((((-1.0)*new_r10*x116))+x115+((new_r00*x117))); evalcond[7]=((((-1.0)*new_r11*x116))+x114+((new_r01*x117))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { CheckValue<IkReal> x118=IKPowWithIntegerCheck(((1.0)+(((-1.0)*(new_r22*new_r22)))),-1); if(!x118.valid){ continue; } if((x118.value) < -0.00001) continue; IkReal gconst19=IKsqrt(x118.value); evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(((1.0)+(IKsign(sj5)))))+(IKabs((cj5+(((-1.0)*gconst19)))))), 6.28318530717959))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j7eval[1]; new_r21=0; new_r20=0; new_r02=0; new_r12=0; if((((1.0)+(((-1.0)*(gconst19*gconst19))))) < -0.00001) continue; sj5=((-1.0)*(IKsqrt(((1.0)+(((-1.0)*(gconst19*gconst19))))))); cj5=gconst19; if( (gconst19) < -1-IKFAST_SINCOS_THRESH || (gconst19) > 1+IKFAST_SINCOS_THRESH ) continue; j5=((-1.0)*(IKacos(gconst19))); CheckValue<IkReal> x119=IKPowWithIntegerCheck(((1.0)+(((-1.0)*(new_r22*new_r22)))),-1); if(!x119.valid){ continue; } if((x119.value) < -0.00001) continue; IkReal gconst19=IKsqrt(x119.value); j7eval[0]=((IKabs(new_r11))+(IKabs(new_r10))); if( IKabs(j7eval[0]) < 0.0000010000000000 ) { { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; if((((1.0)+(((-1.0)*(gconst19*gconst19))))) < -0.00001) continue; CheckValue<IkReal> x120=IKPowWithIntegerCheck(gconst19,-1); if(!x120.valid){ continue; } if( IKabs((((new_r00*(IKsqrt(((1.0)+(((-1.0)*(gconst19*gconst19))))))))+((gconst19*new_r10)))) < IKFAST_ATAN2_MAGTHRESH && IKabs((new_r11*(x120.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr((((new_r00*(IKsqrt(((1.0)+(((-1.0)*(gconst19*gconst19))))))))+((gconst19*new_r10))))+IKsqr((new_r11*(x120.value)))-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2((((new_r00*(IKsqrt(((1.0)+(((-1.0)*(gconst19*gconst19))))))))+((gconst19*new_r10))), (new_r11*(x120.value))); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[8]; IkReal x121=IKcos(j7); IkReal x122=IKsin(j7); IkReal x123=((1.0)*gconst19); if((((1.0)+(((-1.0)*gconst19*x123)))) < -0.00001) continue; IkReal x124=IKsqrt(((1.0)+(((-1.0)*gconst19*x123)))); IkReal x125=((1.0)*x124); evalcond[0]=x122; evalcond[1]=((-1.0)*x121); evalcond[2]=((((-1.0)*x121*x123))+new_r11); evalcond[3]=(new_r10+(((-1.0)*x122*x123))); evalcond[4]=((((-1.0)*x121*x125))+new_r01); evalcond[5]=(new_r00+(((-1.0)*x122*x125))); evalcond[6]=((((-1.0)*new_r10*x123))+(((-1.0)*new_r00*x125))+x122); evalcond[7]=((((-1.0)*new_r01*x125))+x121+(((-1.0)*new_r11*x123))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } else { { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; CheckValue<IkReal> x126=IKPowWithIntegerCheck(IKsign(gconst19),-1); if(!x126.valid){ continue; } CheckValue<IkReal> x127 = IKatan2WithCheck(IkReal(new_r10),IkReal(new_r11),IKFAST_ATAN2_MAGTHRESH); if(!x127.valid){ continue; } j7array[0]=((-1.5707963267949)+(((1.5707963267949)*(x126.value)))+(x127.value)); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[8]; IkReal x128=IKcos(j7); IkReal x129=IKsin(j7); IkReal x130=((1.0)*gconst19); if((((1.0)+(((-1.0)*gconst19*x130)))) < -0.00001) continue; IkReal x131=IKsqrt(((1.0)+(((-1.0)*gconst19*x130)))); IkReal x132=((1.0)*x131); evalcond[0]=x129; evalcond[1]=((-1.0)*x128); evalcond[2]=((((-1.0)*x128*x130))+new_r11); evalcond[3]=((((-1.0)*x129*x130))+new_r10); evalcond[4]=((((-1.0)*x128*x132))+new_r01); evalcond[5]=((((-1.0)*x129*x132))+new_r00); evalcond[6]=((((-1.0)*new_r10*x130))+(((-1.0)*new_r00*x132))+x129); evalcond[7]=((((-1.0)*new_r11*x130))+(((-1.0)*new_r01*x132))+x128); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { if( 1 ) { bgotonextstatement=false; continue; // branch miss [j7] } } while(0); if( bgotonextstatement ) { } } } } } } } } } else { { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; IkReal x133=(new_r00*sj5); CheckValue<IkReal> x134=IKPowWithIntegerCheck(sj5,-1); if(!x134.valid){ continue; } if( IKabs((((cj5*new_r10))+(((-1.0)*x133)))) < IKFAST_ATAN2_MAGTHRESH && IKabs(((x134.value)*(((((-1.0)*new_r10*new_r22*(cj5*cj5)))+((cj5*new_r22*x133))+(((-1.0)*new_r01)))))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr((((cj5*new_r10))+(((-1.0)*x133))))+IKsqr(((x134.value)*(((((-1.0)*new_r10*new_r22*(cj5*cj5)))+((cj5*new_r22*x133))+(((-1.0)*new_r01))))))-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2((((cj5*new_r10))+(((-1.0)*x133))), ((x134.value)*(((((-1.0)*new_r10*new_r22*(cj5*cj5)))+((cj5*new_r22*x133))+(((-1.0)*new_r01)))))); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[10]; IkReal x135=IKsin(j7); IkReal x136=IKcos(j7); IkReal x137=(new_r10*sj5); IkReal x138=((1.0)*cj5); IkReal x139=(cj5*new_r01); IkReal x140=(new_r11*sj5); IkReal x141=(cj5*new_r00); IkReal x142=((1.0)*new_r22); IkReal x143=(new_r22*x135); IkReal x144=(sj5*x136); evalcond[0]=((((-1.0)*new_r10*x138))+((new_r00*sj5))+x135); evalcond[1]=((((-1.0)*new_r11*x138))+((new_r01*sj5))+x136); evalcond[2]=(x140+x143+x139); evalcond[3]=(((new_r22*x139))+x135+((new_r22*x140))); evalcond[4]=(((cj5*x143))+x144+new_r01); evalcond[5]=(x141+x137+(((-1.0)*x136*x142))); evalcond[6]=(((sj5*x135))+(((-1.0)*new_r22*x136*x138))+new_r00); evalcond[7]=((((-1.0)*x136*x138))+new_r11+((sj5*x143))); evalcond[8]=(((new_r22*x137))+((new_r22*x141))+(((-1.0)*x136))); evalcond[9]=((((-1.0)*x135*x138))+(((-1.0)*x142*x144))+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[8]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[9]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; IkReal x145=((1.0)*new_r01); CheckValue<IkReal> x146=IKPowWithIntegerCheck(new_r22,-1); if(!x146.valid){ continue; } if( IKabs(((x146.value)*(((((-1.0)*new_r11*sj5))+(((-1.0)*cj5*x145)))))) < IKFAST_ATAN2_MAGTHRESH && IKabs((((cj5*new_r11))+(((-1.0)*sj5*x145)))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((x146.value)*(((((-1.0)*new_r11*sj5))+(((-1.0)*cj5*x145))))))+IKsqr((((cj5*new_r11))+(((-1.0)*sj5*x145))))-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2(((x146.value)*(((((-1.0)*new_r11*sj5))+(((-1.0)*cj5*x145))))), (((cj5*new_r11))+(((-1.0)*sj5*x145)))); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[10]; IkReal x147=IKsin(j7); IkReal x148=IKcos(j7); IkReal x149=(new_r10*sj5); IkReal x150=((1.0)*cj5); IkReal x151=(cj5*new_r01); IkReal x152=(new_r11*sj5); IkReal x153=(cj5*new_r00); IkReal x154=((1.0)*new_r22); IkReal x155=(new_r22*x147); IkReal x156=(sj5*x148); evalcond[0]=(((new_r00*sj5))+x147+(((-1.0)*new_r10*x150))); evalcond[1]=(((new_r01*sj5))+x148+(((-1.0)*new_r11*x150))); evalcond[2]=(x155+x152+x151); evalcond[3]=(x147+((new_r22*x151))+((new_r22*x152))); evalcond[4]=(x156+new_r01+((cj5*x155))); evalcond[5]=(x153+x149+(((-1.0)*x148*x154))); evalcond[6]=((((-1.0)*new_r22*x148*x150))+new_r00+((sj5*x147))); evalcond[7]=(((sj5*x155))+(((-1.0)*x148*x150))+new_r11); evalcond[8]=(((new_r22*x153))+((new_r22*x149))+(((-1.0)*x148))); evalcond[9]=((((-1.0)*x154*x156))+(((-1.0)*x147*x150))+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[8]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[9]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; IkReal x157=cj5*cj5; IkReal x158=(cj5*new_r22); CheckValue<IkReal> x159=IKPowWithIntegerCheck(IKsign(((-1.0)+x157+(((-1.0)*x157*(new_r22*new_r22))))),-1); if(!x159.valid){ continue; } CheckValue<IkReal> x160 = IKatan2WithCheck(IkReal((((new_r01*x158))+((new_r00*sj5)))),IkReal((((new_r01*sj5))+(((-1.0)*new_r00*x158)))),IKFAST_ATAN2_MAGTHRESH); if(!x160.valid){ continue; } j7array[0]=((-1.5707963267949)+(((1.5707963267949)*(x159.value)))+(x160.value)); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[10]; IkReal x161=IKsin(j7); IkReal x162=IKcos(j7); IkReal x163=(new_r10*sj5); IkReal x164=((1.0)*cj5); IkReal x165=(cj5*new_r01); IkReal x166=(new_r11*sj5); IkReal x167=(cj5*new_r00); IkReal x168=((1.0)*new_r22); IkReal x169=(new_r22*x161); IkReal x170=(sj5*x162); evalcond[0]=(((new_r00*sj5))+(((-1.0)*new_r10*x164))+x161); evalcond[1]=(((new_r01*sj5))+(((-1.0)*new_r11*x164))+x162); evalcond[2]=(x169+x166+x165); evalcond[3]=(x161+((new_r22*x165))+((new_r22*x166))); evalcond[4]=(((cj5*x169))+x170+new_r01); evalcond[5]=(x163+x167+(((-1.0)*x162*x168))); evalcond[6]=(new_r00+((sj5*x161))+(((-1.0)*new_r22*x162*x164))); evalcond[7]=((((-1.0)*x162*x164))+new_r11+((sj5*x169))); evalcond[8]=((((-1.0)*x162))+((new_r22*x163))+((new_r22*x167))); evalcond[9]=((((-1.0)*x161*x164))+(((-1.0)*x168*x170))+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[8]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[9]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { if( 1 ) { bgotonextstatement=false; continue; // branch miss [j5, j7] } } while(0); if( bgotonextstatement ) { } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x172=IKPowWithIntegerCheck(sj6,-1); if(!x172.valid){ continue; } IkReal x171=x172.value; CheckValue<IkReal> x173=IKPowWithIntegerCheck(new_r12,-1); if(!x173.valid){ continue; } if( IKabs((x171*(x173.value)*(((-1.0)+(new_r02*new_r02)+(cj6*cj6))))) < IKFAST_ATAN2_MAGTHRESH && IKabs(((-1.0)*new_r02*x171)) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr((x171*(x173.value)*(((-1.0)+(new_r02*new_r02)+(cj6*cj6)))))+IKsqr(((-1.0)*new_r02*x171))-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2((x171*(x173.value)*(((-1.0)+(new_r02*new_r02)+(cj6*cj6)))), ((-1.0)*new_r02*x171)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x174=IKcos(j5); IkReal x175=IKsin(j5); IkReal x176=(sj6*x175); IkReal x177=(new_r12*x175); IkReal x178=(new_r02*x174); IkReal x179=(sj6*x174); evalcond[0]=(x179+new_r02); evalcond[1]=(x176+new_r12); evalcond[2]=((((-1.0)*new_r02*x175))+((new_r12*x174))); evalcond[3]=(sj6+x178+x177); evalcond[4]=(((cj6*x177))+((cj6*x178))+((new_r22*sj6))); evalcond[5]=((((-1.0)*new_r00*x179))+(((-1.0)*new_r10*x176))+((cj6*new_r20))); evalcond[6]=((((-1.0)*new_r11*x176))+(((-1.0)*new_r01*x179))+((cj6*new_r21))); evalcond[7]=((-1.0)+(((-1.0)*sj6*x178))+(((-1.0)*new_r12*x176))+((cj6*new_r22))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { IkReal j7eval[3]; j7eval[0]=sj6; j7eval[1]=IKsign(sj6); j7eval[2]=((IKabs(new_r20))+(IKabs(new_r21))); if( IKabs(j7eval[0]) < 0.0000010000000000 || IKabs(j7eval[1]) < 0.0000010000000000 || IKabs(j7eval[2]) < 0.0000010000000000 ) { { IkReal j7eval[1]; j7eval[0]=sj6; if( IKabs(j7eval[0]) < 0.0000010000000000 ) { { IkReal j7eval[2]; j7eval[0]=sj6; j7eval[1]=sj5; if( IKabs(j7eval[0]) < 0.0000010000000000 || IKabs(j7eval[1]) < 0.0000010000000000 ) { { IkReal evalcond[5]; bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(j6))), 6.28318530717959))); evalcond[1]=new_r02; evalcond[2]=new_r12; evalcond[3]=new_r21; evalcond[4]=new_r20; if( IKabs(evalcond[0]) < 0.0000050000000000 && IKabs(evalcond[1]) < 0.0000050000000000 && IKabs(evalcond[2]) < 0.0000050000000000 && IKabs(evalcond[3]) < 0.0000050000000000 && IKabs(evalcond[4]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; IkReal x180=((1.0)*new_r01); if( IKabs(((((-1.0)*cj5*x180))+(((-1.0)*new_r00*sj5)))) < IKFAST_ATAN2_MAGTHRESH && IKabs((((cj5*new_r00))+(((-1.0)*sj5*x180)))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((((-1.0)*cj5*x180))+(((-1.0)*new_r00*sj5))))+IKsqr((((cj5*new_r00))+(((-1.0)*sj5*x180))))-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2(((((-1.0)*cj5*x180))+(((-1.0)*new_r00*sj5))), (((cj5*new_r00))+(((-1.0)*sj5*x180)))); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[8]; IkReal x181=IKsin(j7); IkReal x182=IKcos(j7); IkReal x183=((1.0)*cj5); IkReal x184=(sj5*x181); IkReal x185=((1.0)*x182); IkReal x186=(x182*x183); evalcond[0]=(((new_r11*sj5))+((cj5*new_r01))+x181); evalcond[1]=(((new_r00*sj5))+x181+(((-1.0)*new_r10*x183))); evalcond[2]=(((new_r01*sj5))+x182+(((-1.0)*new_r11*x183))); evalcond[3]=(((cj5*x181))+new_r01+((sj5*x182))); evalcond[4]=(((new_r10*sj5))+(((-1.0)*x185))+((cj5*new_r00))); evalcond[5]=((((-1.0)*x186))+x184+new_r00); evalcond[6]=((((-1.0)*x186))+x184+new_r11); evalcond[7]=((((-1.0)*sj5*x185))+new_r10+(((-1.0)*x181*x183))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(((-3.14159265358979)+j6)))), 6.28318530717959))); evalcond[1]=new_r02; evalcond[2]=new_r12; evalcond[3]=new_r21; evalcond[4]=new_r20; if( IKabs(evalcond[0]) < 0.0000050000000000 && IKabs(evalcond[1]) < 0.0000050000000000 && IKabs(evalcond[2]) < 0.0000050000000000 && IKabs(evalcond[3]) < 0.0000050000000000 && IKabs(evalcond[4]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; IkReal x187=((1.0)*new_r00); if( IKabs((((cj5*new_r01))+(((-1.0)*sj5*x187)))) < IKFAST_ATAN2_MAGTHRESH && IKabs(((((-1.0)*new_r01*sj5))+(((-1.0)*cj5*x187)))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr((((cj5*new_r01))+(((-1.0)*sj5*x187))))+IKsqr(((((-1.0)*new_r01*sj5))+(((-1.0)*cj5*x187))))-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2((((cj5*new_r01))+(((-1.0)*sj5*x187))), ((((-1.0)*new_r01*sj5))+(((-1.0)*cj5*x187)))); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[8]; IkReal x188=IKcos(j7); IkReal x189=IKsin(j7); IkReal x190=((1.0)*cj5); IkReal x191=(sj5*x188); IkReal x192=(cj5*x188); IkReal x193=((1.0)*x189); IkReal x194=(x189*x190); evalcond[0]=(((new_r10*sj5))+((cj5*new_r00))+x188); evalcond[1]=(((new_r00*sj5))+x189+(((-1.0)*new_r10*x190))); evalcond[2]=(((new_r01*sj5))+x188+(((-1.0)*new_r11*x190))); evalcond[3]=(((new_r11*sj5))+((cj5*new_r01))+(((-1.0)*x193))); evalcond[4]=(x192+new_r00+((sj5*x189))); evalcond[5]=((((-1.0)*x194))+x191+new_r01); evalcond[6]=((((-1.0)*x194))+x191+new_r10); evalcond[7]=((((-1.0)*x188*x190))+(((-1.0)*sj5*x193))+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(j5))), 6.28318530717959))); evalcond[1]=new_r12; if( IKabs(evalcond[0]) < 0.0000050000000000 && IKabs(evalcond[1]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; if( IKabs(new_r10) < IKFAST_ATAN2_MAGTHRESH && IKabs(new_r11) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(new_r10)+IKsqr(new_r11)-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2(new_r10, new_r11); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[8]; IkReal x195=IKsin(j7); IkReal x196=IKcos(j7); IkReal x197=((1.0)*x196); evalcond[0]=(((sj6*x195))+new_r21); evalcond[1]=(x195+(((-1.0)*new_r10))); evalcond[2]=(x196+(((-1.0)*new_r11))); evalcond[3]=(((cj6*x195))+new_r01); evalcond[4]=((((-1.0)*sj6*x197))+new_r20); evalcond[5]=((((-1.0)*cj6*x197))+new_r00); evalcond[6]=(x195+((cj6*new_r01))+((new_r21*sj6))); evalcond[7]=(((new_r20*sj6))+(((-1.0)*x197))+((cj6*new_r00))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(((-3.14159265358979)+j5)))), 6.28318530717959))); evalcond[1]=new_r12; if( IKabs(evalcond[0]) < 0.0000050000000000 && IKabs(evalcond[1]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; if( IKabs(((-1.0)*new_r10)) < IKFAST_ATAN2_MAGTHRESH && IKabs(((-1.0)*new_r11)) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*new_r10))+IKsqr(((-1.0)*new_r11))-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2(((-1.0)*new_r10), ((-1.0)*new_r11)); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[8]; IkReal x198=IKsin(j7); IkReal x199=IKcos(j7); IkReal x200=((1.0)*cj6); IkReal x201=((1.0)*x199); evalcond[0]=(x198+new_r10); evalcond[1]=(x199+new_r11); evalcond[2]=(((sj6*x198))+new_r21); evalcond[3]=((((-1.0)*sj6*x201))+new_r20); evalcond[4]=(((cj6*x198))+(((-1.0)*new_r01))); evalcond[5]=((((-1.0)*x199*x200))+(((-1.0)*new_r00))); evalcond[6]=(x198+((new_r21*sj6))+(((-1.0)*new_r01*x200))); evalcond[7]=((((-1.0)*new_r00*x200))+((new_r20*sj6))+(((-1.0)*x201))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r20))+(IKabs(new_r21))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j7eval[1]; new_r21=0; new_r20=0; new_r02=0; new_r12=0; j7eval[0]=1.0; if( IKabs(j7eval[0]) < 0.0000000100000000 ) { continue; // no branches [j7] } else { IkReal op[2+1], zeror[2]; int numroots; op[0]=-1.0; op[1]=0; op[2]=1.0; polyroots2(op,zeror,numroots); IkReal j7array[2], cj7array[2], sj7array[2], tempj7array[1]; int numsolutions = 0; for(int ij7 = 0; ij7 < numroots; ++ij7) { IkReal htj7 = zeror[ij7]; tempj7array[0]=((2.0)*(atan(htj7))); for(int kj7 = 0; kj7 < 1; ++kj7) { j7array[numsolutions] = tempj7array[kj7]; if( j7array[numsolutions] > IKPI ) { j7array[numsolutions]-=IK2PI; } else if( j7array[numsolutions] < -IKPI ) { j7array[numsolutions]+=IK2PI; } sj7array[numsolutions] = IKsin(j7array[numsolutions]); cj7array[numsolutions] = IKcos(j7array[numsolutions]); numsolutions++; } } bool j7valid[2]={true,true}; _nj7 = 2; for(int ij7 = 0; ij7 < numsolutions; ++ij7) { if( !j7valid[ij7] ) { continue; } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; htj7 = IKtan(j7/2); _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < numsolutions; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { if( 1 ) { bgotonextstatement=false; continue; // branch miss [j7] } } while(0); if( bgotonextstatement ) { } } } } } } } } else { { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; CheckValue<IkReal> x203=IKPowWithIntegerCheck(sj6,-1); if(!x203.valid){ continue; } IkReal x202=x203.value; CheckValue<IkReal> x204=IKPowWithIntegerCheck(sj5,-1); if(!x204.valid){ continue; } if( IKabs(((-1.0)*new_r21*x202)) < IKFAST_ATAN2_MAGTHRESH && IKabs((x202*(x204.value)*((((cj5*cj6*new_r21))+(((-1.0)*new_r01*sj6)))))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*new_r21*x202))+IKsqr((x202*(x204.value)*((((cj5*cj6*new_r21))+(((-1.0)*new_r01*sj6))))))-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2(((-1.0)*new_r21*x202), (x202*(x204.value)*((((cj5*cj6*new_r21))+(((-1.0)*new_r01*sj6)))))); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[12]; IkReal x205=IKsin(j7); IkReal x206=IKcos(j7); IkReal x207=(new_r10*sj5); IkReal x208=((1.0)*cj5); IkReal x209=(cj5*new_r01); IkReal x210=(cj5*cj6); IkReal x211=(new_r11*sj5); IkReal x212=(cj6*x205); IkReal x213=(sj5*x206); IkReal x214=((1.0)*x206); evalcond[0]=(new_r21+((sj6*x205))); evalcond[1]=((((-1.0)*sj6*x214))+new_r20); evalcond[2]=(((new_r00*sj5))+x205+(((-1.0)*new_r10*x208))); evalcond[3]=(((new_r01*sj5))+x206+(((-1.0)*new_r11*x208))); evalcond[4]=(x211+x212+x209); evalcond[5]=(((x205*x210))+x213+new_r01); evalcond[6]=((((-1.0)*cj6*x214))+((cj5*new_r00))+x207); evalcond[7]=((((-1.0)*cj6*x206*x208))+new_r00+((sj5*x205))); evalcond[8]=(((sj5*x212))+(((-1.0)*x206*x208))+new_r11); evalcond[9]=((((-1.0)*cj6*x213))+(((-1.0)*x205*x208))+new_r10); evalcond[10]=(((cj6*x209))+((cj6*x211))+x205+((new_r21*sj6))); evalcond[11]=(((cj6*x207))+((new_r20*sj6))+((new_r00*x210))+(((-1.0)*x214))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[8]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[9]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[10]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[11]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; CheckValue<IkReal> x215=IKPowWithIntegerCheck(sj6,-1); if(!x215.valid){ continue; } if( IKabs(((-1.0)*new_r21*(x215.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(((((-1.0)*new_r01*sj5))+((cj5*new_r11)))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*new_r21*(x215.value)))+IKsqr(((((-1.0)*new_r01*sj5))+((cj5*new_r11))))-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2(((-1.0)*new_r21*(x215.value)), ((((-1.0)*new_r01*sj5))+((cj5*new_r11)))); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[12]; IkReal x216=IKsin(j7); IkReal x217=IKcos(j7); IkReal x218=(new_r10*sj5); IkReal x219=((1.0)*cj5); IkReal x220=(cj5*new_r01); IkReal x221=(cj5*cj6); IkReal x222=(new_r11*sj5); IkReal x223=(cj6*x216); IkReal x224=(sj5*x217); IkReal x225=((1.0)*x217); evalcond[0]=(((sj6*x216))+new_r21); evalcond[1]=(new_r20+(((-1.0)*sj6*x225))); evalcond[2]=(((new_r00*sj5))+(((-1.0)*new_r10*x219))+x216); evalcond[3]=((((-1.0)*new_r11*x219))+((new_r01*sj5))+x217); evalcond[4]=(x220+x223+x222); evalcond[5]=(((x216*x221))+x224+new_r01); evalcond[6]=(((cj5*new_r00))+x218+(((-1.0)*cj6*x225))); evalcond[7]=(((sj5*x216))+(((-1.0)*cj6*x217*x219))+new_r00); evalcond[8]=((((-1.0)*x217*x219))+((sj5*x223))+new_r11); evalcond[9]=((((-1.0)*cj6*x224))+new_r10+(((-1.0)*x216*x219))); evalcond[10]=(((cj6*x222))+((cj6*x220))+x216+((new_r21*sj6))); evalcond[11]=(((new_r00*x221))+((new_r20*sj6))+((cj6*x218))+(((-1.0)*x225))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[8]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[9]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[10]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[11]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; CheckValue<IkReal> x226=IKPowWithIntegerCheck(IKsign(sj6),-1); if(!x226.valid){ continue; } CheckValue<IkReal> x227 = IKatan2WithCheck(IkReal(((-1.0)*new_r21)),IkReal(new_r20),IKFAST_ATAN2_MAGTHRESH); if(!x227.valid){ continue; } j7array[0]=((-1.5707963267949)+(((1.5707963267949)*(x226.value)))+(x227.value)); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[12]; IkReal x228=IKsin(j7); IkReal x229=IKcos(j7); IkReal x230=(new_r10*sj5); IkReal x231=((1.0)*cj5); IkReal x232=(cj5*new_r01); IkReal x233=(cj5*cj6); IkReal x234=(new_r11*sj5); IkReal x235=(cj6*x228); IkReal x236=(sj5*x229); IkReal x237=((1.0)*x229); evalcond[0]=(((sj6*x228))+new_r21); evalcond[1]=((((-1.0)*sj6*x237))+new_r20); evalcond[2]=(((new_r00*sj5))+x228+(((-1.0)*new_r10*x231))); evalcond[3]=(((new_r01*sj5))+x229+(((-1.0)*new_r11*x231))); evalcond[4]=(x232+x234+x235); evalcond[5]=(((x228*x233))+x236+new_r01); evalcond[6]=(((cj5*new_r00))+x230+(((-1.0)*cj6*x237))); evalcond[7]=(((sj5*x228))+new_r00+(((-1.0)*cj6*x229*x231))); evalcond[8]=(new_r11+(((-1.0)*x229*x231))+((sj5*x235))); evalcond[9]=(new_r10+(((-1.0)*x228*x231))+(((-1.0)*cj6*x236))); evalcond[10]=(((cj6*x232))+((cj6*x234))+x228+((new_r21*sj6))); evalcond[11]=(((cj6*x230))+((new_r20*sj6))+((new_r00*x233))+(((-1.0)*x237))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[8]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[9]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[10]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[11]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x238=IKPowWithIntegerCheck(IKsign(sj6),-1); if(!x238.valid){ continue; } CheckValue<IkReal> x239 = IKatan2WithCheck(IkReal(((-1.0)*new_r12)),IkReal(((-1.0)*new_r02)),IKFAST_ATAN2_MAGTHRESH); if(!x239.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x238.value)))+(x239.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x240=IKcos(j5); IkReal x241=IKsin(j5); IkReal x242=(sj6*x241); IkReal x243=(new_r12*x241); IkReal x244=(new_r02*x240); IkReal x245=(sj6*x240); evalcond[0]=(x245+new_r02); evalcond[1]=(x242+new_r12); evalcond[2]=(((new_r12*x240))+(((-1.0)*new_r02*x241))); evalcond[3]=(sj6+x243+x244); evalcond[4]=(((new_r22*sj6))+((cj6*x243))+((cj6*x244))); evalcond[5]=((((-1.0)*new_r00*x245))+(((-1.0)*new_r10*x242))+((cj6*new_r20))); evalcond[6]=((((-1.0)*new_r01*x245))+(((-1.0)*new_r11*x242))+((cj6*new_r21))); evalcond[7]=((-1.0)+(((-1.0)*sj6*x244))+(((-1.0)*new_r12*x242))+((cj6*new_r22))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { IkReal j7eval[3]; j7eval[0]=sj6; j7eval[1]=IKsign(sj6); j7eval[2]=((IKabs(new_r20))+(IKabs(new_r21))); if( IKabs(j7eval[0]) < 0.0000010000000000 || IKabs(j7eval[1]) < 0.0000010000000000 || IKabs(j7eval[2]) < 0.0000010000000000 ) { { IkReal j7eval[1]; j7eval[0]=sj6; if( IKabs(j7eval[0]) < 0.0000010000000000 ) { { IkReal j7eval[2]; j7eval[0]=sj6; j7eval[1]=sj5; if( IKabs(j7eval[0]) < 0.0000010000000000 || IKabs(j7eval[1]) < 0.0000010000000000 ) { { IkReal evalcond[5]; bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(j6))), 6.28318530717959))); evalcond[1]=new_r02; evalcond[2]=new_r12; evalcond[3]=new_r21; evalcond[4]=new_r20; if( IKabs(evalcond[0]) < 0.0000050000000000 && IKabs(evalcond[1]) < 0.0000050000000000 && IKabs(evalcond[2]) < 0.0000050000000000 && IKabs(evalcond[3]) < 0.0000050000000000 && IKabs(evalcond[4]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; IkReal x246=((1.0)*new_r01); if( IKabs(((((-1.0)*cj5*x246))+(((-1.0)*new_r00*sj5)))) < IKFAST_ATAN2_MAGTHRESH && IKabs((((cj5*new_r00))+(((-1.0)*sj5*x246)))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((((-1.0)*cj5*x246))+(((-1.0)*new_r00*sj5))))+IKsqr((((cj5*new_r00))+(((-1.0)*sj5*x246))))-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2(((((-1.0)*cj5*x246))+(((-1.0)*new_r00*sj5))), (((cj5*new_r00))+(((-1.0)*sj5*x246)))); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[8]; IkReal x247=IKsin(j7); IkReal x248=IKcos(j7); IkReal x249=((1.0)*cj5); IkReal x250=(sj5*x247); IkReal x251=((1.0)*x248); IkReal x252=(x248*x249); evalcond[0]=(((new_r11*sj5))+((cj5*new_r01))+x247); evalcond[1]=(((new_r00*sj5))+x247+(((-1.0)*new_r10*x249))); evalcond[2]=(((new_r01*sj5))+x248+(((-1.0)*new_r11*x249))); evalcond[3]=(((sj5*x248))+((cj5*x247))+new_r01); evalcond[4]=(((new_r10*sj5))+((cj5*new_r00))+(((-1.0)*x251))); evalcond[5]=(x250+new_r00+(((-1.0)*x252))); evalcond[6]=(x250+new_r11+(((-1.0)*x252))); evalcond[7]=((((-1.0)*sj5*x251))+new_r10+(((-1.0)*x247*x249))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(((-3.14159265358979)+j6)))), 6.28318530717959))); evalcond[1]=new_r02; evalcond[2]=new_r12; evalcond[3]=new_r21; evalcond[4]=new_r20; if( IKabs(evalcond[0]) < 0.0000050000000000 && IKabs(evalcond[1]) < 0.0000050000000000 && IKabs(evalcond[2]) < 0.0000050000000000 && IKabs(evalcond[3]) < 0.0000050000000000 && IKabs(evalcond[4]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; IkReal x253=((1.0)*new_r00); if( IKabs((((cj5*new_r01))+(((-1.0)*sj5*x253)))) < IKFAST_ATAN2_MAGTHRESH && IKabs(((((-1.0)*cj5*x253))+(((-1.0)*new_r01*sj5)))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr((((cj5*new_r01))+(((-1.0)*sj5*x253))))+IKsqr(((((-1.0)*cj5*x253))+(((-1.0)*new_r01*sj5))))-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2((((cj5*new_r01))+(((-1.0)*sj5*x253))), ((((-1.0)*cj5*x253))+(((-1.0)*new_r01*sj5)))); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[8]; IkReal x254=IKcos(j7); IkReal x255=IKsin(j7); IkReal x256=((1.0)*cj5); IkReal x257=(sj5*x254); IkReal x258=(cj5*x254); IkReal x259=((1.0)*x255); IkReal x260=(x255*x256); evalcond[0]=(((new_r10*sj5))+((cj5*new_r00))+x254); evalcond[1]=((((-1.0)*new_r10*x256))+((new_r00*sj5))+x255); evalcond[2]=((((-1.0)*new_r11*x256))+((new_r01*sj5))+x254); evalcond[3]=(((new_r11*sj5))+((cj5*new_r01))+(((-1.0)*x259))); evalcond[4]=(x258+((sj5*x255))+new_r00); evalcond[5]=(x257+new_r01+(((-1.0)*x260))); evalcond[6]=(x257+new_r10+(((-1.0)*x260))); evalcond[7]=((((-1.0)*x254*x256))+(((-1.0)*sj5*x259))+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(j5))), 6.28318530717959))); evalcond[1]=new_r12; if( IKabs(evalcond[0]) < 0.0000050000000000 && IKabs(evalcond[1]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; if( IKabs(new_r10) < IKFAST_ATAN2_MAGTHRESH && IKabs(new_r11) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(new_r10)+IKsqr(new_r11)-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2(new_r10, new_r11); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[8]; IkReal x261=IKsin(j7); IkReal x262=IKcos(j7); IkReal x263=((1.0)*x262); evalcond[0]=(((sj6*x261))+new_r21); evalcond[1]=(x261+(((-1.0)*new_r10))); evalcond[2]=(x262+(((-1.0)*new_r11))); evalcond[3]=(((cj6*x261))+new_r01); evalcond[4]=((((-1.0)*sj6*x263))+new_r20); evalcond[5]=((((-1.0)*cj6*x263))+new_r00); evalcond[6]=(x261+((cj6*new_r01))+((new_r21*sj6))); evalcond[7]=(((new_r20*sj6))+((cj6*new_r00))+(((-1.0)*x263))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(((-3.14159265358979)+j5)))), 6.28318530717959))); evalcond[1]=new_r12; if( IKabs(evalcond[0]) < 0.0000050000000000 && IKabs(evalcond[1]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; if( IKabs(((-1.0)*new_r10)) < IKFAST_ATAN2_MAGTHRESH && IKabs(((-1.0)*new_r11)) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*new_r10))+IKsqr(((-1.0)*new_r11))-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2(((-1.0)*new_r10), ((-1.0)*new_r11)); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[8]; IkReal x264=IKsin(j7); IkReal x265=IKcos(j7); IkReal x266=((1.0)*cj6); IkReal x267=((1.0)*x265); evalcond[0]=(x264+new_r10); evalcond[1]=(x265+new_r11); evalcond[2]=(((sj6*x264))+new_r21); evalcond[3]=((((-1.0)*sj6*x267))+new_r20); evalcond[4]=(((cj6*x264))+(((-1.0)*new_r01))); evalcond[5]=((((-1.0)*new_r00))+(((-1.0)*x265*x266))); evalcond[6]=((((-1.0)*new_r01*x266))+x264+((new_r21*sj6))); evalcond[7]=(((new_r20*sj6))+(((-1.0)*new_r00*x266))+(((-1.0)*x267))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r20))+(IKabs(new_r21))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j7eval[1]; new_r21=0; new_r20=0; new_r02=0; new_r12=0; j7eval[0]=1.0; if( IKabs(j7eval[0]) < 0.0000000100000000 ) { continue; // no branches [j7] } else { IkReal op[2+1], zeror[2]; int numroots; op[0]=-1.0; op[1]=0; op[2]=1.0; polyroots2(op,zeror,numroots); IkReal j7array[2], cj7array[2], sj7array[2], tempj7array[1]; int numsolutions = 0; for(int ij7 = 0; ij7 < numroots; ++ij7) { IkReal htj7 = zeror[ij7]; tempj7array[0]=((2.0)*(atan(htj7))); for(int kj7 = 0; kj7 < 1; ++kj7) { j7array[numsolutions] = tempj7array[kj7]; if( j7array[numsolutions] > IKPI ) { j7array[numsolutions]-=IK2PI; } else if( j7array[numsolutions] < -IKPI ) { j7array[numsolutions]+=IK2PI; } sj7array[numsolutions] = IKsin(j7array[numsolutions]); cj7array[numsolutions] = IKcos(j7array[numsolutions]); numsolutions++; } } bool j7valid[2]={true,true}; _nj7 = 2; for(int ij7 = 0; ij7 < numsolutions; ++ij7) { if( !j7valid[ij7] ) { continue; } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; htj7 = IKtan(j7/2); _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < numsolutions; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { if( 1 ) { bgotonextstatement=false; continue; // branch miss [j7] } } while(0); if( bgotonextstatement ) { } } } } } } } } else { { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; CheckValue<IkReal> x269=IKPowWithIntegerCheck(sj6,-1); if(!x269.valid){ continue; } IkReal x268=x269.value; CheckValue<IkReal> x270=IKPowWithIntegerCheck(sj5,-1); if(!x270.valid){ continue; } if( IKabs(((-1.0)*new_r21*x268)) < IKFAST_ATAN2_MAGTHRESH && IKabs((x268*(x270.value)*((((cj5*cj6*new_r21))+(((-1.0)*new_r01*sj6)))))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*new_r21*x268))+IKsqr((x268*(x270.value)*((((cj5*cj6*new_r21))+(((-1.0)*new_r01*sj6))))))-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2(((-1.0)*new_r21*x268), (x268*(x270.value)*((((cj5*cj6*new_r21))+(((-1.0)*new_r01*sj6)))))); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[12]; IkReal x271=IKsin(j7); IkReal x272=IKcos(j7); IkReal x273=(new_r10*sj5); IkReal x274=((1.0)*cj5); IkReal x275=(cj5*new_r01); IkReal x276=(cj5*cj6); IkReal x277=(new_r11*sj5); IkReal x278=(cj6*x271); IkReal x279=(sj5*x272); IkReal x280=((1.0)*x272); evalcond[0]=(((sj6*x271))+new_r21); evalcond[1]=((((-1.0)*sj6*x280))+new_r20); evalcond[2]=(((new_r00*sj5))+x271+(((-1.0)*new_r10*x274))); evalcond[3]=(((new_r01*sj5))+x272+(((-1.0)*new_r11*x274))); evalcond[4]=(x277+x275+x278); evalcond[5]=(((x271*x276))+x279+new_r01); evalcond[6]=(((cj5*new_r00))+(((-1.0)*cj6*x280))+x273); evalcond[7]=(((sj5*x271))+(((-1.0)*cj6*x272*x274))+new_r00); evalcond[8]=((((-1.0)*x272*x274))+((sj5*x278))+new_r11); evalcond[9]=((((-1.0)*cj6*x279))+(((-1.0)*x271*x274))+new_r10); evalcond[10]=(x271+((new_r21*sj6))+((cj6*x277))+((cj6*x275))); evalcond[11]=(((new_r20*sj6))+((new_r00*x276))+(((-1.0)*x280))+((cj6*x273))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[8]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[9]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[10]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[11]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; CheckValue<IkReal> x281=IKPowWithIntegerCheck(sj6,-1); if(!x281.valid){ continue; } if( IKabs(((-1.0)*new_r21*(x281.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(((((-1.0)*new_r01*sj5))+((cj5*new_r11)))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*new_r21*(x281.value)))+IKsqr(((((-1.0)*new_r01*sj5))+((cj5*new_r11))))-1) <= IKFAST_SINCOS_THRESH ) continue; j7array[0]=IKatan2(((-1.0)*new_r21*(x281.value)), ((((-1.0)*new_r01*sj5))+((cj5*new_r11)))); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[12]; IkReal x282=IKsin(j7); IkReal x283=IKcos(j7); IkReal x284=(new_r10*sj5); IkReal x285=((1.0)*cj5); IkReal x286=(cj5*new_r01); IkReal x287=(cj5*cj6); IkReal x288=(new_r11*sj5); IkReal x289=(cj6*x282); IkReal x290=(sj5*x283); IkReal x291=((1.0)*x283); evalcond[0]=(((sj6*x282))+new_r21); evalcond[1]=((((-1.0)*sj6*x291))+new_r20); evalcond[2]=(((new_r00*sj5))+x282+(((-1.0)*new_r10*x285))); evalcond[3]=(((new_r01*sj5))+x283+(((-1.0)*new_r11*x285))); evalcond[4]=(x289+x288+x286); evalcond[5]=(x290+new_r01+((x282*x287))); evalcond[6]=(((cj5*new_r00))+x284+(((-1.0)*cj6*x291))); evalcond[7]=((((-1.0)*cj6*x283*x285))+((sj5*x282))+new_r00); evalcond[8]=(((sj5*x289))+new_r11+(((-1.0)*x283*x285))); evalcond[9]=((((-1.0)*cj6*x290))+(((-1.0)*x282*x285))+new_r10); evalcond[10]=(x282+((cj6*x288))+((cj6*x286))+((new_r21*sj6))); evalcond[11]=(((new_r20*sj6))+(((-1.0)*x291))+((cj6*x284))+((new_r00*x287))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[8]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[9]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[10]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[11]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; CheckValue<IkReal> x292=IKPowWithIntegerCheck(IKsign(sj6),-1); if(!x292.valid){ continue; } CheckValue<IkReal> x293 = IKatan2WithCheck(IkReal(((-1.0)*new_r21)),IkReal(new_r20),IKFAST_ATAN2_MAGTHRESH); if(!x293.valid){ continue; } j7array[0]=((-1.5707963267949)+(((1.5707963267949)*(x292.value)))+(x293.value)); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[12]; IkReal x294=IKsin(j7); IkReal x295=IKcos(j7); IkReal x296=(new_r10*sj5); IkReal x297=((1.0)*cj5); IkReal x298=(cj5*new_r01); IkReal x299=(cj5*cj6); IkReal x300=(new_r11*sj5); IkReal x301=(cj6*x294); IkReal x302=(sj5*x295); IkReal x303=((1.0)*x295); evalcond[0]=(((sj6*x294))+new_r21); evalcond[1]=((((-1.0)*sj6*x303))+new_r20); evalcond[2]=((((-1.0)*new_r10*x297))+((new_r00*sj5))+x294); evalcond[3]=((((-1.0)*new_r11*x297))+((new_r01*sj5))+x295); evalcond[4]=(x300+x301+x298); evalcond[5]=(x302+((x294*x299))+new_r01); evalcond[6]=(((cj5*new_r00))+x296+(((-1.0)*cj6*x303))); evalcond[7]=(((sj5*x294))+(((-1.0)*cj6*x295*x297))+new_r00); evalcond[8]=(((sj5*x301))+(((-1.0)*x295*x297))+new_r11); evalcond[9]=((((-1.0)*cj6*x302))+new_r10+(((-1.0)*x294*x297))); evalcond[10]=(((cj6*x298))+((cj6*x300))+x294+((new_r21*sj6))); evalcond[11]=(((new_r20*sj6))+((cj6*x296))+((new_r00*x299))+(((-1.0)*x303))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[8]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[9]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[10]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[11]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } } } } else { { IkReal j7array[1], cj7array[1], sj7array[1]; bool j7valid[1]={false}; _nj7 = 1; CheckValue<IkReal> x304=IKPowWithIntegerCheck(IKsign(sj6),-1); if(!x304.valid){ continue; } CheckValue<IkReal> x305 = IKatan2WithCheck(IkReal(((-1.0)*new_r21)),IkReal(new_r20),IKFAST_ATAN2_MAGTHRESH); if(!x305.valid){ continue; } j7array[0]=((-1.5707963267949)+(((1.5707963267949)*(x304.value)))+(x305.value)); sj7array[0]=IKsin(j7array[0]); cj7array[0]=IKcos(j7array[0]); if( j7array[0] > IKPI ) { j7array[0]-=IK2PI; } else if( j7array[0] < -IKPI ) { j7array[0]+=IK2PI; } j7valid[0] = true; for(int ij7 = 0; ij7 < 1; ++ij7) { if( !j7valid[ij7] ) { continue; } _ij7[0] = ij7; _ij7[1] = -1; for(int iij7 = ij7+1; iij7 < 1; ++iij7) { if( j7valid[iij7] && IKabs(cj7array[ij7]-cj7array[iij7]) < IKFAST_SOLUTION_THRESH && IKabs(sj7array[ij7]-sj7array[iij7]) < IKFAST_SOLUTION_THRESH ) { j7valid[iij7]=false; _ij7[1] = iij7; break; } } j7 = j7array[ij7]; cj7 = cj7array[ij7]; sj7 = sj7array[ij7]; { IkReal evalcond[2]; evalcond[0]=(((sj6*(IKsin(j7))))+new_r21); evalcond[1]=((((-1.0)*sj6*(IKcos(j7))))+new_r20); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH ) { continue; } } { IkReal j5eval[3]; j5eval[0]=sj6; j5eval[1]=((IKabs(new_r12))+(IKabs(new_r02))); j5eval[2]=IKsign(sj6); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[2]; j5eval[0]=new_r12; j5eval[1]=sj6; if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 ) { { IkReal evalcond[5]; bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(j6))), 6.28318530717959))); evalcond[1]=new_r02; evalcond[2]=new_r12; evalcond[3]=new_r21; evalcond[4]=new_r20; if( IKabs(evalcond[0]) < 0.0000050000000000 && IKabs(evalcond[1]) < 0.0000050000000000 && IKabs(evalcond[2]) < 0.0000050000000000 && IKabs(evalcond[3]) < 0.0000050000000000 && IKabs(evalcond[4]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[3]; sj6=0; cj6=1.0; j6=0; IkReal x306=((1.0)*new_r11); IkReal x307=((((-1.0)*new_r00*new_r01))+(((-1.0)*new_r10*x306))); j5eval[0]=x307; j5eval[1]=((IKabs((((new_r10*sj7))+((new_r01*sj7)))))+(IKabs(((((-1.0)*sj7*x306))+((new_r00*sj7)))))); j5eval[2]=IKsign(x307); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[3]; sj6=0; cj6=1.0; j6=0; IkReal x308=((((-1.0)*(new_r01*new_r01)))+(((-1.0)*(new_r11*new_r11)))); j5eval[0]=x308; j5eval[1]=((IKabs((((new_r11*sj7))+((cj7*new_r01)))))+(IKabs((((new_r01*sj7))+(((-1.0)*cj7*new_r11)))))); j5eval[2]=IKsign(x308); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[3]; sj6=0; cj6=1.0; j6=0; IkReal x309=((1.0)*new_r11); IkReal x310=((((-1.0)*new_r01*sj7))+(((-1.0)*cj7*x309))); j5eval[0]=x310; j5eval[1]=IKsign(x310); j5eval[2]=((IKabs(((1.0)+(((-1.0)*(cj7*cj7)))+(((-1.0)*new_r00*x309)))))+(IKabs((((new_r00*new_r01))+((cj7*sj7)))))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal evalcond[1]; bool bgotonextstatement = true; do { IkReal x311=((-1.0)*new_r01); IkReal x313 = ((new_r01*new_r01)+(new_r11*new_r11)); if(IKabs(x313)==0){ continue; } IkReal x312=pow(x313,-0.5); CheckValue<IkReal> x314 = IKatan2WithCheck(IkReal(((-1.0)*new_r11)),IkReal(x311),IKFAST_ATAN2_MAGTHRESH); if(!x314.valid){ continue; } IkReal gconst0=((-1.0)*(x314.value)); IkReal gconst1=(new_r11*x312); IkReal gconst2=(x311*x312); CheckValue<IkReal> x315 = IKatan2WithCheck(IkReal(((-1.0)*new_r11)),IkReal(((-1.0)*new_r01)),IKFAST_ATAN2_MAGTHRESH); if(!x315.valid){ continue; } evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(((x315.value)+j7)))), 6.28318530717959))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[3]; IkReal x316=((-1.0)*new_r01); CheckValue<IkReal> x319 = IKatan2WithCheck(IkReal(((-1.0)*new_r11)),IkReal(x316),IKFAST_ATAN2_MAGTHRESH); if(!x319.valid){ continue; } IkReal x317=((-1.0)*(x319.value)); IkReal x318=x312; sj6=0; cj6=1.0; j6=0; sj7=gconst1; cj7=gconst2; j7=x317; IkReal gconst0=x317; IkReal gconst1=(new_r11*x318); IkReal gconst2=(x316*x318); IkReal x320=new_r11*new_r11; IkReal x321=(new_r10*new_r11); IkReal x322=((((-1.0)*x321))+(((-1.0)*new_r00*new_r01))); IkReal x323=x312; IkReal x324=(new_r11*x323); j5eval[0]=x322; j5eval[1]=((IKabs((((new_r00*x324))+(((-1.0)*x320*x323)))))+(IKabs((((new_r01*x324))+((x321*x323)))))); j5eval[2]=IKsign(x322); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[1]; IkReal x325=((-1.0)*new_r01); CheckValue<IkReal> x328 = IKatan2WithCheck(IkReal(((-1.0)*new_r11)),IkReal(x325),IKFAST_ATAN2_MAGTHRESH); if(!x328.valid){ continue; } IkReal x326=((-1.0)*(x328.value)); IkReal x327=x312; sj6=0; cj6=1.0; j6=0; sj7=gconst1; cj7=gconst2; j7=x326; IkReal gconst0=x326; IkReal gconst1=(new_r11*x327); IkReal gconst2=(x325*x327); IkReal x329=new_r11*new_r11; CheckValue<IkReal> x332=IKPowWithIntegerCheck(((new_r01*new_r01)+x329),-1); if(!x332.valid){ continue; } IkReal x330=x332.value; IkReal x331=(x329*x330); j5eval[0]=((IKabs((((new_r00*new_r01*x331))+((new_r01*new_r11*x330))+((new_r00*x330*(new_r01*new_r01*new_r01))))))+(IKabs((((new_r01*new_r10))+x331)))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; IkReal x333=((-1.0)*new_r01); CheckValue<IkReal> x336 = IKatan2WithCheck(IkReal(((-1.0)*new_r11)),IkReal(x333),IKFAST_ATAN2_MAGTHRESH); if(!x336.valid){ continue; } IkReal x334=((-1.0)*(x336.value)); IkReal x335=x312; sj6=0; cj6=1.0; j6=0; sj7=gconst1; cj7=gconst2; j7=x334; IkReal gconst0=x334; IkReal gconst1=(new_r11*x335); IkReal gconst2=(x333*x335); IkReal x337=new_r01*new_r01; IkReal x338=new_r11*new_r11; CheckValue<IkReal> x345=IKPowWithIntegerCheck((x338+x337),-1); if(!x345.valid){ continue; } IkReal x339=x345.value; IkReal x340=(x338*x339); CheckValue<IkReal> x346=IKPowWithIntegerCheck(((((-1.0)*x337))+(((-1.0)*x338))),-1); if(!x346.valid){ continue; } IkReal x341=x346.value; IkReal x342=((1.0)*x341); IkReal x343=(new_r11*x342); IkReal x344=(new_r01*x342); j5eval[0]=((IKabs(((((-1.0)*x343*(new_r01*new_r01*new_r01)))+(((-1.0)*new_r01*x343*(new_r11*new_r11)))+(((-1.0)*new_r01*x343)))))+(IKabs((((x337*x340))+((x339*(x337*x337)))+(((-1.0)*x340)))))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal evalcond[2]; bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r11))+(IKabs(new_r00))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x347=IKPowWithIntegerCheck(gconst2,-1); if(!x347.valid){ continue; } sj5array[0]=(new_r10*(x347.value)); if( sj5array[0] >= -1-IKFAST_SINCOS_THRESH && sj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKasin(sj5array[0]); cj5array[0] = IKcos(j5array[0]); sj5array[1] = sj5array[0]; j5array[1] = j5array[0] > 0 ? (IKPI-j5array[0]) : (-IKPI-j5array[0]); cj5array[1] = -cj5array[0]; } else if( isnan(sj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x348=IKcos(j5); IkReal x349=IKsin(j5); IkReal x350=((-1.0)*x348); evalcond[0]=(new_r01*x348); evalcond[1]=(new_r10*x350); evalcond[2]=(gconst2*x350); evalcond[3]=(gconst2+((new_r01*x349))); evalcond[4]=(new_r01+((gconst2*x349))); evalcond[5]=(((new_r10*x349))+(((-1.0)*gconst2))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r10))+(IKabs(new_r00))); evalcond[1]=gconst1; if( IKabs(evalcond[0]) < 0.0000050000000000 && IKabs(evalcond[1]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[3]; IkReal x351=((-1.0)*new_r01); CheckValue<IkReal> x353 = IKatan2WithCheck(IkReal(((-1.0)*new_r11)),IkReal(x351),IKFAST_ATAN2_MAGTHRESH); if(!x353.valid){ continue; } IkReal x352=((-1.0)*(x353.value)); sj6=0; cj6=1.0; j6=0; sj7=gconst1; cj7=gconst2; j7=x352; new_r00=0; new_r10=0; new_r21=0; new_r22=0; IkReal gconst0=x352; IkReal gconst1=new_r11; IkReal gconst2=x351; j5eval[0]=-1.0; j5eval[1]=-1.0; j5eval[2]=((IKabs((new_r01*new_r11)))+(IKabs(((1.0)+(((-1.0)*(new_r01*new_r01))))))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[3]; IkReal x354=((-1.0)*new_r01); CheckValue<IkReal> x356 = IKatan2WithCheck(IkReal(((-1.0)*new_r11)),IkReal(x354),IKFAST_ATAN2_MAGTHRESH); if(!x356.valid){ continue; } IkReal x355=((-1.0)*(x356.value)); sj6=0; cj6=1.0; j6=0; sj7=gconst1; cj7=gconst2; j7=x355; new_r00=0; new_r10=0; new_r21=0; new_r22=0; IkReal gconst0=x355; IkReal gconst1=new_r11; IkReal gconst2=x354; j5eval[0]=-1.0; j5eval[1]=((IKabs(new_r01*new_r01))+(IKabs((new_r01*new_r11)))); j5eval[2]=-1.0; if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[3]; IkReal x357=((-1.0)*new_r01); CheckValue<IkReal> x359 = IKatan2WithCheck(IkReal(((-1.0)*new_r11)),IkReal(x357),IKFAST_ATAN2_MAGTHRESH); if(!x359.valid){ continue; } IkReal x358=((-1.0)*(x359.value)); sj6=0; cj6=1.0; j6=0; sj7=gconst1; cj7=gconst2; j7=x358; new_r00=0; new_r10=0; new_r21=0; new_r22=0; IkReal gconst0=x358; IkReal gconst1=new_r11; IkReal gconst2=x357; j5eval[0]=1.0; j5eval[1]=1.0; j5eval[2]=((((0.5)*(IKabs(((-1.0)+(((2.0)*(new_r01*new_r01))))))))+(IKabs((new_r01*new_r11)))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { continue; // 3 cases reached } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x360=((1.0)*new_r01); CheckValue<IkReal> x361 = IKatan2WithCheck(IkReal(((new_r01*new_r01)+(((-1.0)*(gconst1*gconst1))))),IkReal(((((-1.0)*new_r11*x360))+((gconst1*gconst2)))),IKFAST_ATAN2_MAGTHRESH); if(!x361.valid){ continue; } CheckValue<IkReal> x362=IKPowWithIntegerCheck(IKsign((((gconst1*new_r11))+(((-1.0)*gconst2*x360)))),-1); if(!x362.valid){ continue; } j5array[0]=((-1.5707963267949)+(x361.value)+(((1.5707963267949)*(x362.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x363=IKsin(j5); IkReal x364=IKcos(j5); IkReal x365=(gconst1*x363); IkReal x366=(gconst1*x364); IkReal x367=(gconst2*x363); IkReal x368=((1.0)*x364); IkReal x369=(gconst2*x368); evalcond[0]=(gconst1+((new_r01*x364))+((new_r11*x363))); evalcond[1]=(x366+x367+new_r01); evalcond[2]=((((-1.0)*x369))+x365); evalcond[3]=(gconst2+((new_r01*x363))+(((-1.0)*new_r11*x368))); evalcond[4]=((((-1.0)*x369))+x365+new_r11); evalcond[5]=((((-1.0)*x366))+(((-1.0)*x367))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x370=IKPowWithIntegerCheck(IKsign(((((-1.0)*(gconst2*gconst2)))+(((-1.0)*(gconst1*gconst1))))),-1); if(!x370.valid){ continue; } CheckValue<IkReal> x371 = IKatan2WithCheck(IkReal((gconst2*new_r01)),IkReal((gconst1*new_r01)),IKFAST_ATAN2_MAGTHRESH); if(!x371.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x370.value)))+(x371.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x372=IKsin(j5); IkReal x373=IKcos(j5); IkReal x374=(gconst1*x372); IkReal x375=(gconst1*x373); IkReal x376=(gconst2*x372); IkReal x377=((1.0)*x373); IkReal x378=(gconst2*x377); evalcond[0]=(gconst1+((new_r01*x373))+((new_r11*x372))); evalcond[1]=(x376+x375+new_r01); evalcond[2]=((((-1.0)*x378))+x374); evalcond[3]=(gconst2+((new_r01*x372))+(((-1.0)*new_r11*x377))); evalcond[4]=((((-1.0)*x378))+x374+new_r11); evalcond[5]=((((-1.0)*x376))+(((-1.0)*x375))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x379 = IKatan2WithCheck(IkReal(gconst1*gconst1),IkReal(((-1.0)*gconst1*gconst2)),IKFAST_ATAN2_MAGTHRESH); if(!x379.valid){ continue; } CheckValue<IkReal> x380=IKPowWithIntegerCheck(IKsign((((gconst2*new_r01))+(((-1.0)*gconst1*new_r11)))),-1); if(!x380.valid){ continue; } j5array[0]=((-1.5707963267949)+(x379.value)+(((1.5707963267949)*(x380.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x381=IKsin(j5); IkReal x382=IKcos(j5); IkReal x383=(gconst1*x381); IkReal x384=(gconst1*x382); IkReal x385=(gconst2*x381); IkReal x386=((1.0)*x382); IkReal x387=(gconst2*x386); evalcond[0]=(((new_r01*x382))+gconst1+((new_r11*x381))); evalcond[1]=(x384+x385+new_r01); evalcond[2]=(x383+(((-1.0)*x387))); evalcond[3]=(((new_r01*x381))+(((-1.0)*new_r11*x386))+gconst2); evalcond[4]=(x383+(((-1.0)*x387))+new_r11); evalcond[5]=((((-1.0)*x385))+(((-1.0)*x384))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r10))+(IKabs(new_r01))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; CheckValue<IkReal> x389 = IKatan2WithCheck(IkReal(((-1.0)*new_r11)),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x389.valid){ continue; } IkReal x388=((-1.0)*(x389.value)); sj6=0; cj6=1.0; j6=0; sj7=gconst1; cj7=gconst2; j7=x388; new_r01=0; new_r10=0; IkReal gconst0=x388; IkReal x390 = new_r11*new_r11; if(IKabs(x390)==0){ continue; } IkReal gconst1=(new_r11*(pow(x390,-0.5))); IkReal gconst2=0; j5eval[0]=new_r00; if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; CheckValue<IkReal> x392 = IKatan2WithCheck(IkReal(((-1.0)*new_r11)),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x392.valid){ continue; } IkReal x391=((-1.0)*(x392.value)); sj6=0; cj6=1.0; j6=0; sj7=gconst1; cj7=gconst2; j7=x391; new_r01=0; new_r10=0; IkReal gconst0=x391; IkReal x393 = new_r11*new_r11; if(IKabs(x393)==0){ continue; } IkReal gconst1=(new_r11*(pow(x393,-0.5))); IkReal gconst2=0; j5eval[0]=new_r11; if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x394=IKPowWithIntegerCheck(gconst1,-1); if(!x394.valid){ continue; } sj5array[0]=((-1.0)*new_r00*(x394.value)); if( sj5array[0] >= -1-IKFAST_SINCOS_THRESH && sj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKasin(sj5array[0]); cj5array[0] = IKcos(j5array[0]); sj5array[1] = sj5array[0]; j5array[1] = j5array[0] > 0 ? (IKPI-j5array[0]) : (-IKPI-j5array[0]); cj5array[1] = -cj5array[0]; } else if( isnan(sj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x395=IKcos(j5); IkReal x396=IKsin(j5); evalcond[0]=(gconst1*x395); evalcond[1]=(new_r00*x395); evalcond[2]=((-1.0)*new_r11*x395); evalcond[3]=(gconst1+((new_r00*x396))); evalcond[4]=(((new_r11*x396))+gconst1); evalcond[5]=(((gconst1*x396))+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } else { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x397=IKPowWithIntegerCheck(new_r11,-1); if(!x397.valid){ continue; } sj5array[0]=((-1.0)*gconst1*(x397.value)); if( sj5array[0] >= -1-IKFAST_SINCOS_THRESH && sj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKasin(sj5array[0]); cj5array[0] = IKcos(j5array[0]); sj5array[1] = sj5array[0]; j5array[1] = j5array[0] > 0 ? (IKPI-j5array[0]) : (-IKPI-j5array[0]); cj5array[1] = -cj5array[0]; } else if( isnan(sj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x398=IKcos(j5); IkReal x399=IKsin(j5); IkReal x400=(gconst1*x399); evalcond[0]=(gconst1*x398); evalcond[1]=(new_r00*x398); evalcond[2]=((-1.0)*new_r11*x398); evalcond[3]=(gconst1+((new_r00*x399))); evalcond[4]=(x400+new_r00); evalcond[5]=(x400+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x401=IKPowWithIntegerCheck(new_r00,-1); if(!x401.valid){ continue; } sj5array[0]=((-1.0)*gconst1*(x401.value)); if( sj5array[0] >= -1-IKFAST_SINCOS_THRESH && sj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKasin(sj5array[0]); cj5array[0] = IKcos(j5array[0]); sj5array[1] = sj5array[0]; j5array[1] = j5array[0] > 0 ? (IKPI-j5array[0]) : (-IKPI-j5array[0]); cj5array[1] = -cj5array[0]; } else if( isnan(sj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x402=IKcos(j5); IkReal x403=IKsin(j5); IkReal x404=(gconst1*x403); evalcond[0]=(gconst1*x402); evalcond[1]=(new_r00*x402); evalcond[2]=((-1.0)*new_r11*x402); evalcond[3]=(gconst1+((new_r11*x403))); evalcond[4]=(x404+new_r00); evalcond[5]=(x404+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=IKabs(new_r11); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; IkReal x405=((-1.0)*new_r01); CheckValue<IkReal> x407 = IKatan2WithCheck(IkReal(0),IkReal(x405),IKFAST_ATAN2_MAGTHRESH); if(!x407.valid){ continue; } IkReal x406=((-1.0)*(x407.value)); sj6=0; cj6=1.0; j6=0; sj7=gconst1; cj7=gconst2; j7=x406; new_r11=0; IkReal gconst0=x406; IkReal gconst1=0; IkReal x408 = new_r01*new_r01; if(IKabs(x408)==0){ continue; } IkReal gconst2=(x405*(pow(x408,-0.5))); j5eval[0]=((IKabs(new_r10))+(IKabs(new_r00))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; IkReal x409=((-1.0)*new_r01); CheckValue<IkReal> x411 = IKatan2WithCheck(IkReal(0),IkReal(x409),IKFAST_ATAN2_MAGTHRESH); if(!x411.valid){ continue; } IkReal x410=((-1.0)*(x411.value)); sj6=0; cj6=1.0; j6=0; sj7=gconst1; cj7=gconst2; j7=x410; new_r11=0; IkReal gconst0=x410; IkReal gconst1=0; IkReal x412 = new_r01*new_r01; if(IKabs(x412)==0){ continue; } IkReal gconst2=(x409*(pow(x412,-0.5))); j5eval[0]=((IKabs(new_r00))+(IKabs(new_r01))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; IkReal x413=((-1.0)*new_r01); CheckValue<IkReal> x415 = IKatan2WithCheck(IkReal(0),IkReal(x413),IKFAST_ATAN2_MAGTHRESH); if(!x415.valid){ continue; } IkReal x414=((-1.0)*(x415.value)); sj6=0; cj6=1.0; j6=0; sj7=gconst1; cj7=gconst2; j7=x414; new_r11=0; IkReal gconst0=x414; IkReal gconst1=0; IkReal x416 = new_r01*new_r01; if(IKabs(x416)==0){ continue; } IkReal gconst2=(x413*(pow(x416,-0.5))); j5eval[0]=new_r01; if( IKabs(j5eval[0]) < 0.0000010000000000 ) { continue; // 3 cases reached } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x417=IKPowWithIntegerCheck(new_r01,-1); if(!x417.valid){ continue; } CheckValue<IkReal> x418=IKPowWithIntegerCheck(gconst2,-1); if(!x418.valid){ continue; } if( IKabs(((-1.0)*gconst2*(x417.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs((new_r00*(x418.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*gconst2*(x417.value)))+IKsqr((new_r00*(x418.value)))-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2(((-1.0)*gconst2*(x417.value)), (new_r00*(x418.value))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x419=IKcos(j5); IkReal x420=IKsin(j5); IkReal x421=((1.0)*gconst2); evalcond[0]=(new_r01*x419); evalcond[1]=((-1.0)*gconst2*x419); evalcond[2]=(gconst2+((new_r01*x420))); evalcond[3]=(((gconst2*x420))+new_r01); evalcond[4]=((((-1.0)*x419*x421))+new_r00); evalcond[5]=((((-1.0)*x420*x421))+new_r10); evalcond[6]=((((-1.0)*new_r10*x419))+((new_r00*x420))); evalcond[7]=((((-1.0)*x421))+((new_r10*x420))+((new_r00*x419))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x422 = IKatan2WithCheck(IkReal(((-1.0)*new_r01)),IkReal(new_r00),IKFAST_ATAN2_MAGTHRESH); if(!x422.valid){ continue; } CheckValue<IkReal> x423=IKPowWithIntegerCheck(IKsign(gconst2),-1); if(!x423.valid){ continue; } j5array[0]=((-1.5707963267949)+(x422.value)+(((1.5707963267949)*(x423.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x424=IKcos(j5); IkReal x425=IKsin(j5); IkReal x426=((1.0)*gconst2); evalcond[0]=(new_r01*x424); evalcond[1]=((-1.0)*gconst2*x424); evalcond[2]=(gconst2+((new_r01*x425))); evalcond[3]=(((gconst2*x425))+new_r01); evalcond[4]=((((-1.0)*x424*x426))+new_r00); evalcond[5]=((((-1.0)*x425*x426))+new_r10); evalcond[6]=((((-1.0)*new_r10*x424))+((new_r00*x425))); evalcond[7]=((((-1.0)*x426))+((new_r10*x425))+((new_r00*x424))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x427=IKPowWithIntegerCheck(IKsign(gconst2),-1); if(!x427.valid){ continue; } CheckValue<IkReal> x428 = IKatan2WithCheck(IkReal(new_r10),IkReal(new_r00),IKFAST_ATAN2_MAGTHRESH); if(!x428.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x427.value)))+(x428.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x429=IKcos(j5); IkReal x430=IKsin(j5); IkReal x431=((1.0)*gconst2); evalcond[0]=(new_r01*x429); evalcond[1]=((-1.0)*gconst2*x429); evalcond[2]=(((new_r01*x430))+gconst2); evalcond[3]=(((gconst2*x430))+new_r01); evalcond[4]=((((-1.0)*x429*x431))+new_r00); evalcond[5]=((((-1.0)*x430*x431))+new_r10); evalcond[6]=(((new_r00*x430))+(((-1.0)*new_r10*x429))); evalcond[7]=((((-1.0)*x431))+((new_r10*x430))+((new_r00*x429))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { if( 1 ) { bgotonextstatement=false; continue; // branch miss [j5] } } while(0); if( bgotonextstatement ) { } } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x432=((1.0)*new_r01); CheckValue<IkReal> x433=IKPowWithIntegerCheck(IKsign(((((-1.0)*gconst2*x432))+((gconst1*new_r11)))),-1); if(!x433.valid){ continue; } CheckValue<IkReal> x434 = IKatan2WithCheck(IkReal(((new_r01*new_r01)+(((-1.0)*(gconst1*gconst1))))),IkReal((((gconst1*gconst2))+(((-1.0)*new_r11*x432)))),IKFAST_ATAN2_MAGTHRESH); if(!x434.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x433.value)))+(x434.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x435=IKsin(j5); IkReal x436=IKcos(j5); IkReal x437=((1.0)*gconst2); IkReal x438=(gconst1*x435); IkReal x439=(gconst1*x436); IkReal x440=((1.0)*x436); IkReal x441=(x436*x437); evalcond[0]=(((new_r01*x436))+gconst1+((new_r11*x435))); evalcond[1]=(((gconst2*x435))+x439+new_r01); evalcond[2]=(((new_r00*x435))+gconst1+(((-1.0)*new_r10*x440))); evalcond[3]=(((new_r01*x435))+gconst2+(((-1.0)*new_r11*x440))); evalcond[4]=((((-1.0)*x441))+x438+new_r00); evalcond[5]=((((-1.0)*x441))+x438+new_r11); evalcond[6]=((((-1.0)*x437))+((new_r00*x436))+((new_r10*x435))); evalcond[7]=((((-1.0)*x439))+(((-1.0)*x435*x437))+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x442=((1.0)*gconst2); CheckValue<IkReal> x443 = IKatan2WithCheck(IkReal(((gconst1*gconst1)+((new_r01*new_r10)))),IkReal((((new_r00*new_r01))+(((-1.0)*gconst1*x442)))),IKFAST_ATAN2_MAGTHRESH); if(!x443.valid){ continue; } CheckValue<IkReal> x444=IKPowWithIntegerCheck(IKsign(((((-1.0)*gconst1*new_r00))+(((-1.0)*new_r10*x442)))),-1); if(!x444.valid){ continue; } j5array[0]=((-1.5707963267949)+(x443.value)+(((1.5707963267949)*(x444.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x445=IKsin(j5); IkReal x446=IKcos(j5); IkReal x447=((1.0)*gconst2); IkReal x448=(gconst1*x445); IkReal x449=(gconst1*x446); IkReal x450=((1.0)*x446); IkReal x451=(x446*x447); evalcond[0]=(((new_r01*x446))+gconst1+((new_r11*x445))); evalcond[1]=(((gconst2*x445))+x449+new_r01); evalcond[2]=(((new_r00*x445))+(((-1.0)*new_r10*x450))+gconst1); evalcond[3]=(((new_r01*x445))+gconst2+(((-1.0)*new_r11*x450))); evalcond[4]=((((-1.0)*x451))+x448+new_r00); evalcond[5]=((((-1.0)*x451))+x448+new_r11); evalcond[6]=(((new_r00*x446))+(((-1.0)*x447))+((new_r10*x445))); evalcond[7]=((((-1.0)*x445*x447))+(((-1.0)*x449))+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x452=((1.0)*new_r11); CheckValue<IkReal> x453 = IKatan2WithCheck(IkReal((((gconst1*new_r10))+((gconst1*new_r01)))),IkReal((((gconst1*new_r00))+(((-1.0)*gconst1*x452)))),IKFAST_ATAN2_MAGTHRESH); if(!x453.valid){ continue; } CheckValue<IkReal> x454=IKPowWithIntegerCheck(IKsign(((((-1.0)*new_r10*x452))+(((-1.0)*new_r00*new_r01)))),-1); if(!x454.valid){ continue; } j5array[0]=((-1.5707963267949)+(x453.value)+(((1.5707963267949)*(x454.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x455=IKsin(j5); IkReal x456=IKcos(j5); IkReal x457=((1.0)*gconst2); IkReal x458=(gconst1*x455); IkReal x459=(gconst1*x456); IkReal x460=((1.0)*x456); IkReal x461=(x456*x457); evalcond[0]=(((new_r11*x455))+((new_r01*x456))+gconst1); evalcond[1]=(x459+new_r01+((gconst2*x455))); evalcond[2]=(((new_r00*x455))+gconst1+(((-1.0)*new_r10*x460))); evalcond[3]=(((new_r01*x455))+(((-1.0)*new_r11*x460))+gconst2); evalcond[4]=((((-1.0)*x461))+x458+new_r00); evalcond[5]=((((-1.0)*x461))+x458+new_r11); evalcond[6]=(((new_r10*x455))+((new_r00*x456))+(((-1.0)*x457))); evalcond[7]=((((-1.0)*x459))+(((-1.0)*x455*x457))+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { IkReal x462=((-1.0)*new_r11); IkReal x464 = ((new_r01*new_r01)+(new_r11*new_r11)); if(IKabs(x464)==0){ continue; } IkReal x463=pow(x464,-0.5); CheckValue<IkReal> x465 = IKatan2WithCheck(IkReal(x462),IkReal(((-1.0)*new_r01)),IKFAST_ATAN2_MAGTHRESH); if(!x465.valid){ continue; } IkReal gconst3=((3.14159265358979)+(((-1.0)*(x465.value)))); IkReal gconst4=(x462*x463); IkReal gconst5=((1.0)*new_r01*x463); CheckValue<IkReal> x466 = IKatan2WithCheck(IkReal(((-1.0)*new_r11)),IkReal(((-1.0)*new_r01)),IKFAST_ATAN2_MAGTHRESH); if(!x466.valid){ continue; } evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(((-3.14159265358979)+(x466.value)+j7)))), 6.28318530717959))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[3]; IkReal x467=((-1.0)*new_r11); CheckValue<IkReal> x470 = IKatan2WithCheck(IkReal(x467),IkReal(((-1.0)*new_r01)),IKFAST_ATAN2_MAGTHRESH); if(!x470.valid){ continue; } IkReal x468=((1.0)*(x470.value)); IkReal x469=x463; sj6=0; cj6=1.0; j6=0; sj7=gconst4; cj7=gconst5; j7=((3.14159265)+(((-1.0)*x468))); IkReal gconst3=((3.14159265358979)+(((-1.0)*x468))); IkReal gconst4=(x467*x469); IkReal gconst5=((1.0)*new_r01*x469); IkReal x471=new_r11*new_r11; IkReal x472=((1.0)*new_r01); IkReal x473=((1.0)*new_r10); IkReal x474=((((-1.0)*new_r00*x472))+(((-1.0)*new_r11*x473))); IkReal x475=x463; IkReal x476=(new_r11*x475); j5eval[0]=x474; j5eval[1]=((IKabs((((x471*x475))+(((-1.0)*new_r00*x476)))))+(IKabs(((((-1.0)*x472*x476))+(((-1.0)*x473*x476)))))); j5eval[2]=IKsign(x474); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[1]; IkReal x477=((-1.0)*new_r11); CheckValue<IkReal> x480 = IKatan2WithCheck(IkReal(x477),IkReal(((-1.0)*new_r01)),IKFAST_ATAN2_MAGTHRESH); if(!x480.valid){ continue; } IkReal x478=((1.0)*(x480.value)); IkReal x479=x463; sj6=0; cj6=1.0; j6=0; sj7=gconst4; cj7=gconst5; j7=((3.14159265)+(((-1.0)*x478))); IkReal gconst3=((3.14159265358979)+(((-1.0)*x478))); IkReal gconst4=(x477*x479); IkReal gconst5=((1.0)*new_r01*x479); IkReal x481=new_r11*new_r11; IkReal x482=new_r01*new_r01*new_r01; CheckValue<IkReal> x486=IKPowWithIntegerCheck(((new_r01*new_r01)+x481),-1); if(!x486.valid){ continue; } IkReal x483=x486.value; IkReal x484=(x481*x483); IkReal x485=(x482*x483); j5eval[0]=((IKabs((((new_r10*x485))+((new_r01*new_r10*x484))+x484)))+(IKabs((((new_r01*new_r11*x483))+((new_r00*x485))+((new_r00*new_r01*x484)))))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; IkReal x487=((-1.0)*new_r11); CheckValue<IkReal> x490 = IKatan2WithCheck(IkReal(x487),IkReal(((-1.0)*new_r01)),IKFAST_ATAN2_MAGTHRESH); if(!x490.valid){ continue; } IkReal x488=((1.0)*(x490.value)); IkReal x489=x463; sj6=0; cj6=1.0; j6=0; sj7=gconst4; cj7=gconst5; j7=((3.14159265)+(((-1.0)*x488))); IkReal gconst3=((3.14159265358979)+(((-1.0)*x488))); IkReal gconst4=(x487*x489); IkReal gconst5=((1.0)*new_r01*x489); IkReal x491=new_r01*new_r01; IkReal x492=new_r11*new_r11; CheckValue<IkReal> x499=IKPowWithIntegerCheck((x492+x491),-1); if(!x499.valid){ continue; } IkReal x493=x499.value; IkReal x494=(x492*x493); CheckValue<IkReal> x500=IKPowWithIntegerCheck(((((-1.0)*x491))+(((-1.0)*x492))),-1); if(!x500.valid){ continue; } IkReal x495=x500.value; IkReal x496=((1.0)*x495); IkReal x497=(new_r11*x496); IkReal x498=(new_r01*x496); j5eval[0]=((IKabs((((x493*(x491*x491)))+((x491*x494))+(((-1.0)*x494)))))+(IKabs(((((-1.0)*new_r01*x497))+(((-1.0)*new_r01*x497*(new_r11*new_r11)))+(((-1.0)*x497*(new_r01*new_r01*new_r01))))))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal evalcond[2]; bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r11))+(IKabs(new_r00))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x501=IKPowWithIntegerCheck(gconst5,-1); if(!x501.valid){ continue; } sj5array[0]=(new_r10*(x501.value)); if( sj5array[0] >= -1-IKFAST_SINCOS_THRESH && sj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKasin(sj5array[0]); cj5array[0] = IKcos(j5array[0]); sj5array[1] = sj5array[0]; j5array[1] = j5array[0] > 0 ? (IKPI-j5array[0]) : (-IKPI-j5array[0]); cj5array[1] = -cj5array[0]; } else if( isnan(sj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x502=IKcos(j5); IkReal x503=IKsin(j5); IkReal x504=((-1.0)*x502); evalcond[0]=(new_r01*x502); evalcond[1]=(new_r10*x504); evalcond[2]=(gconst5*x504); evalcond[3]=(gconst5+((new_r01*x503))); evalcond[4]=(((gconst5*x503))+new_r01); evalcond[5]=((((-1.0)*gconst5))+((new_r10*x503))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r10))+(IKabs(new_r00))); evalcond[1]=gconst4; if( IKabs(evalcond[0]) < 0.0000050000000000 && IKabs(evalcond[1]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[3]; IkReal x505=((-1.0)*new_r11); CheckValue<IkReal> x507 = IKatan2WithCheck(IkReal(x505),IkReal(((-1.0)*new_r01)),IKFAST_ATAN2_MAGTHRESH); if(!x507.valid){ continue; } IkReal x506=((1.0)*(x507.value)); sj6=0; cj6=1.0; j6=0; sj7=gconst4; cj7=gconst5; j7=((3.14159265)+(((-1.0)*x506))); new_r00=0; new_r10=0; new_r21=0; new_r22=0; IkReal gconst3=((3.14159265358979)+(((-1.0)*x506))); IkReal gconst4=x505; IkReal gconst5=((1.0)*new_r01); j5eval[0]=1.0; j5eval[1]=1.0; j5eval[2]=((IKabs(((1.0)+(((-1.0)*(new_r01*new_r01))))))+(IKabs(((1.0)*new_r01*new_r11)))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[4]; IkReal x508=((-1.0)*new_r11); CheckValue<IkReal> x510 = IKatan2WithCheck(IkReal(x508),IkReal(((-1.0)*new_r01)),IKFAST_ATAN2_MAGTHRESH); if(!x510.valid){ continue; } IkReal x509=((1.0)*(x510.value)); sj6=0; cj6=1.0; j6=0; sj7=gconst4; cj7=gconst5; j7=((3.14159265)+(((-1.0)*x509))); new_r00=0; new_r10=0; new_r21=0; new_r22=0; IkReal gconst3=((3.14159265358979)+(((-1.0)*x509))); IkReal gconst4=x508; IkReal gconst5=((1.0)*new_r01); j5eval[0]=-1.0; j5eval[1]=new_r01; j5eval[2]=1.0; j5eval[3]=-1.0; if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 || IKabs(j5eval[3]) < 0.0000010000000000 ) { { IkReal j5eval[3]; IkReal x511=((-1.0)*new_r11); CheckValue<IkReal> x513 = IKatan2WithCheck(IkReal(x511),IkReal(((-1.0)*new_r01)),IKFAST_ATAN2_MAGTHRESH); if(!x513.valid){ continue; } IkReal x512=((1.0)*(x513.value)); sj6=0; cj6=1.0; j6=0; sj7=gconst4; cj7=gconst5; j7=((3.14159265)+(((-1.0)*x512))); new_r00=0; new_r10=0; new_r21=0; new_r22=0; IkReal gconst3=((3.14159265358979)+(((-1.0)*x512))); IkReal gconst4=x511; IkReal gconst5=((1.0)*new_r01); j5eval[0]=-1.0; j5eval[1]=-1.0; j5eval[2]=((IKabs(((2.0)*new_r01*new_r11)))+(IKabs(((-1.0)+(((2.0)*(new_r01*new_r01))))))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { continue; // 3 cases reached } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x514=((1.0)*new_r01); CheckValue<IkReal> x515 = IKatan2WithCheck(IkReal(((new_r01*new_r01)+(((-1.0)*(gconst4*gconst4))))),IkReal(((((-1.0)*new_r11*x514))+((gconst4*gconst5)))),IKFAST_ATAN2_MAGTHRESH); if(!x515.valid){ continue; } CheckValue<IkReal> x516=IKPowWithIntegerCheck(IKsign((((gconst4*new_r11))+(((-1.0)*gconst5*x514)))),-1); if(!x516.valid){ continue; } j5array[0]=((-1.5707963267949)+(x515.value)+(((1.5707963267949)*(x516.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x517=IKsin(j5); IkReal x518=IKcos(j5); IkReal x519=((1.0)*gconst5); IkReal x520=(gconst4*x517); IkReal x521=(gconst4*x518); IkReal x522=(x518*x519); evalcond[0]=(((new_r01*x518))+((new_r11*x517))+gconst4); evalcond[1]=(x521+new_r01+((gconst5*x517))); evalcond[2]=((((-1.0)*x522))+x520); evalcond[3]=(((new_r01*x517))+gconst5+(((-1.0)*new_r11*x518))); evalcond[4]=((((-1.0)*x522))+x520+new_r11); evalcond[5]=((((-1.0)*x521))+(((-1.0)*x517*x519))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x523=IKPowWithIntegerCheck(IKsign(((((-1.0)*(gconst4*gconst4)))+(((-1.0)*(gconst5*gconst5))))),-1); if(!x523.valid){ continue; } CheckValue<IkReal> x524 = IKatan2WithCheck(IkReal((gconst5*new_r01)),IkReal((gconst4*new_r01)),IKFAST_ATAN2_MAGTHRESH); if(!x524.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x523.value)))+(x524.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x525=IKsin(j5); IkReal x526=IKcos(j5); IkReal x527=((1.0)*gconst5); IkReal x528=(gconst4*x525); IkReal x529=(gconst4*x526); IkReal x530=(x526*x527); evalcond[0]=(((new_r01*x526))+gconst4+((new_r11*x525))); evalcond[1]=(((gconst5*x525))+x529+new_r01); evalcond[2]=((((-1.0)*x530))+x528); evalcond[3]=(((new_r01*x525))+gconst5+(((-1.0)*new_r11*x526))); evalcond[4]=((((-1.0)*x530))+x528+new_r11); evalcond[5]=((((-1.0)*x525*x527))+(((-1.0)*x529))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x531=IKPowWithIntegerCheck(IKsign((((gconst5*new_r01))+(((-1.0)*gconst4*new_r11)))),-1); if(!x531.valid){ continue; } CheckValue<IkReal> x532 = IKatan2WithCheck(IkReal(gconst4*gconst4),IkReal(((-1.0)*gconst4*gconst5)),IKFAST_ATAN2_MAGTHRESH); if(!x532.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x531.value)))+(x532.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x533=IKsin(j5); IkReal x534=IKcos(j5); IkReal x535=((1.0)*gconst5); IkReal x536=(gconst4*x533); IkReal x537=(gconst4*x534); IkReal x538=(x534*x535); evalcond[0]=(((new_r01*x534))+gconst4+((new_r11*x533))); evalcond[1]=(((gconst5*x533))+x537+new_r01); evalcond[2]=((((-1.0)*x538))+x536); evalcond[3]=(((new_r01*x533))+gconst5+(((-1.0)*new_r11*x534))); evalcond[4]=((((-1.0)*x538))+x536+new_r11); evalcond[5]=((((-1.0)*x533*x535))+(((-1.0)*x537))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r10))+(IKabs(new_r01))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; IkReal x539=((-1.0)*new_r11); CheckValue<IkReal> x541 = IKatan2WithCheck(IkReal(x539),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x541.valid){ continue; } IkReal x540=((1.0)*(x541.value)); sj6=0; cj6=1.0; j6=0; sj7=gconst4; cj7=gconst5; j7=((3.14159265)+(((-1.0)*x540))); new_r01=0; new_r10=0; IkReal gconst3=((3.14159265358979)+(((-1.0)*x540))); IkReal x542 = new_r11*new_r11; if(IKabs(x542)==0){ continue; } IkReal gconst4=(x539*(pow(x542,-0.5))); IkReal gconst5=0; j5eval[0]=new_r00; if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; IkReal x543=((-1.0)*new_r11); CheckValue<IkReal> x545 = IKatan2WithCheck(IkReal(x543),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x545.valid){ continue; } IkReal x544=((1.0)*(x545.value)); sj6=0; cj6=1.0; j6=0; sj7=gconst4; cj7=gconst5; j7=((3.14159265)+(((-1.0)*x544))); new_r01=0; new_r10=0; IkReal gconst3=((3.14159265358979)+(((-1.0)*x544))); IkReal x546 = new_r11*new_r11; if(IKabs(x546)==0){ continue; } IkReal gconst4=(x543*(pow(x546,-0.5))); IkReal gconst5=0; j5eval[0]=new_r11; if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x547=IKPowWithIntegerCheck(gconst4,-1); if(!x547.valid){ continue; } sj5array[0]=((-1.0)*new_r00*(x547.value)); if( sj5array[0] >= -1-IKFAST_SINCOS_THRESH && sj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKasin(sj5array[0]); cj5array[0] = IKcos(j5array[0]); sj5array[1] = sj5array[0]; j5array[1] = j5array[0] > 0 ? (IKPI-j5array[0]) : (-IKPI-j5array[0]); cj5array[1] = -cj5array[0]; } else if( isnan(sj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x548=IKcos(j5); IkReal x549=IKsin(j5); evalcond[0]=(gconst4*x548); evalcond[1]=(new_r00*x548); evalcond[2]=((-1.0)*new_r11*x548); evalcond[3]=(((new_r00*x549))+gconst4); evalcond[4]=(gconst4+((new_r11*x549))); evalcond[5]=(((gconst4*x549))+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } else { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x550=IKPowWithIntegerCheck(new_r11,-1); if(!x550.valid){ continue; } sj5array[0]=((-1.0)*gconst4*(x550.value)); if( sj5array[0] >= -1-IKFAST_SINCOS_THRESH && sj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKasin(sj5array[0]); cj5array[0] = IKcos(j5array[0]); sj5array[1] = sj5array[0]; j5array[1] = j5array[0] > 0 ? (IKPI-j5array[0]) : (-IKPI-j5array[0]); cj5array[1] = -cj5array[0]; } else if( isnan(sj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x551=IKcos(j5); IkReal x552=IKsin(j5); IkReal x553=(gconst4*x552); evalcond[0]=(gconst4*x551); evalcond[1]=(new_r00*x551); evalcond[2]=((-1.0)*new_r11*x551); evalcond[3]=(gconst4+((new_r00*x552))); evalcond[4]=(x553+new_r00); evalcond[5]=(x553+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x554=IKPowWithIntegerCheck(new_r00,-1); if(!x554.valid){ continue; } sj5array[0]=((-1.0)*gconst4*(x554.value)); if( sj5array[0] >= -1-IKFAST_SINCOS_THRESH && sj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKasin(sj5array[0]); cj5array[0] = IKcos(j5array[0]); sj5array[1] = sj5array[0]; j5array[1] = j5array[0] > 0 ? (IKPI-j5array[0]) : (-IKPI-j5array[0]); cj5array[1] = -cj5array[0]; } else if( isnan(sj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x555=IKcos(j5); IkReal x556=IKsin(j5); IkReal x557=(gconst4*x556); evalcond[0]=(gconst4*x555); evalcond[1]=(new_r00*x555); evalcond[2]=((-1.0)*new_r11*x555); evalcond[3]=(((new_r11*x556))+gconst4); evalcond[4]=(x557+new_r00); evalcond[5]=(x557+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=IKabs(new_r11); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; CheckValue<IkReal> x559 = IKatan2WithCheck(IkReal(0),IkReal(((-1.0)*new_r01)),IKFAST_ATAN2_MAGTHRESH); if(!x559.valid){ continue; } IkReal x558=((1.0)*(x559.value)); sj6=0; cj6=1.0; j6=0; sj7=gconst4; cj7=gconst5; j7=((3.14159265)+(((-1.0)*x558))); new_r11=0; IkReal gconst3=((3.14159265358979)+(((-1.0)*x558))); IkReal gconst4=0; IkReal x560 = new_r01*new_r01; if(IKabs(x560)==0){ continue; } IkReal gconst5=((1.0)*new_r01*(pow(x560,-0.5))); j5eval[0]=((IKabs(new_r10))+(IKabs(new_r00))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; CheckValue<IkReal> x562 = IKatan2WithCheck(IkReal(0),IkReal(((-1.0)*new_r01)),IKFAST_ATAN2_MAGTHRESH); if(!x562.valid){ continue; } IkReal x561=((1.0)*(x562.value)); sj6=0; cj6=1.0; j6=0; sj7=gconst4; cj7=gconst5; j7=((3.14159265)+(((-1.0)*x561))); new_r11=0; IkReal gconst3=((3.14159265358979)+(((-1.0)*x561))); IkReal gconst4=0; IkReal x563 = new_r01*new_r01; if(IKabs(x563)==0){ continue; } IkReal gconst5=((1.0)*new_r01*(pow(x563,-0.5))); j5eval[0]=((IKabs(new_r00))+(IKabs(new_r01))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; CheckValue<IkReal> x565 = IKatan2WithCheck(IkReal(0),IkReal(((-1.0)*new_r01)),IKFAST_ATAN2_MAGTHRESH); if(!x565.valid){ continue; } IkReal x564=((1.0)*(x565.value)); sj6=0; cj6=1.0; j6=0; sj7=gconst4; cj7=gconst5; j7=((3.14159265)+(((-1.0)*x564))); new_r11=0; IkReal gconst3=((3.14159265358979)+(((-1.0)*x564))); IkReal gconst4=0; IkReal x566 = new_r01*new_r01; if(IKabs(x566)==0){ continue; } IkReal gconst5=((1.0)*new_r01*(pow(x566,-0.5))); j5eval[0]=new_r01; if( IKabs(j5eval[0]) < 0.0000010000000000 ) { continue; // 3 cases reached } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x567=IKPowWithIntegerCheck(new_r01,-1); if(!x567.valid){ continue; } CheckValue<IkReal> x568=IKPowWithIntegerCheck(gconst5,-1); if(!x568.valid){ continue; } if( IKabs(((-1.0)*gconst5*(x567.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs((new_r00*(x568.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*gconst5*(x567.value)))+IKsqr((new_r00*(x568.value)))-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2(((-1.0)*gconst5*(x567.value)), (new_r00*(x568.value))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x569=IKcos(j5); IkReal x570=IKsin(j5); IkReal x571=((1.0)*gconst5); evalcond[0]=(new_r01*x569); evalcond[1]=((-1.0)*gconst5*x569); evalcond[2]=(((new_r01*x570))+gconst5); evalcond[3]=(((gconst5*x570))+new_r01); evalcond[4]=((((-1.0)*x569*x571))+new_r00); evalcond[5]=((((-1.0)*x570*x571))+new_r10); evalcond[6]=(((new_r00*x570))+(((-1.0)*new_r10*x569))); evalcond[7]=(((new_r10*x570))+((new_r00*x569))+(((-1.0)*x571))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x572 = IKatan2WithCheck(IkReal(((-1.0)*new_r01)),IkReal(new_r00),IKFAST_ATAN2_MAGTHRESH); if(!x572.valid){ continue; } CheckValue<IkReal> x573=IKPowWithIntegerCheck(IKsign(gconst5),-1); if(!x573.valid){ continue; } j5array[0]=((-1.5707963267949)+(x572.value)+(((1.5707963267949)*(x573.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x574=IKcos(j5); IkReal x575=IKsin(j5); IkReal x576=((1.0)*gconst5); evalcond[0]=(new_r01*x574); evalcond[1]=((-1.0)*gconst5*x574); evalcond[2]=(((new_r01*x575))+gconst5); evalcond[3]=(((gconst5*x575))+new_r01); evalcond[4]=((((-1.0)*x574*x576))+new_r00); evalcond[5]=((((-1.0)*x575*x576))+new_r10); evalcond[6]=(((new_r00*x575))+(((-1.0)*new_r10*x574))); evalcond[7]=(((new_r00*x574))+((new_r10*x575))+(((-1.0)*x576))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x577 = IKatan2WithCheck(IkReal(new_r10),IkReal(new_r00),IKFAST_ATAN2_MAGTHRESH); if(!x577.valid){ continue; } CheckValue<IkReal> x578=IKPowWithIntegerCheck(IKsign(gconst5),-1); if(!x578.valid){ continue; } j5array[0]=((-1.5707963267949)+(x577.value)+(((1.5707963267949)*(x578.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x579=IKcos(j5); IkReal x580=IKsin(j5); IkReal x581=((1.0)*gconst5); evalcond[0]=(new_r01*x579); evalcond[1]=((-1.0)*gconst5*x579); evalcond[2]=(gconst5+((new_r01*x580))); evalcond[3]=(((gconst5*x580))+new_r01); evalcond[4]=((((-1.0)*x579*x581))+new_r00); evalcond[5]=((((-1.0)*x580*x581))+new_r10); evalcond[6]=((((-1.0)*new_r10*x579))+((new_r00*x580))); evalcond[7]=(((new_r00*x579))+(((-1.0)*x581))+((new_r10*x580))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { if( 1 ) { bgotonextstatement=false; continue; // branch miss [j5] } } while(0); if( bgotonextstatement ) { } } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x582=((1.0)*new_r01); CheckValue<IkReal> x583 = IKatan2WithCheck(IkReal(((new_r01*new_r01)+(((-1.0)*(gconst4*gconst4))))),IkReal(((((-1.0)*new_r11*x582))+((gconst4*gconst5)))),IKFAST_ATAN2_MAGTHRESH); if(!x583.valid){ continue; } CheckValue<IkReal> x584=IKPowWithIntegerCheck(IKsign((((gconst4*new_r11))+(((-1.0)*gconst5*x582)))),-1); if(!x584.valid){ continue; } j5array[0]=((-1.5707963267949)+(x583.value)+(((1.5707963267949)*(x584.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x585=IKsin(j5); IkReal x586=IKcos(j5); IkReal x587=((1.0)*gconst5); IkReal x588=(gconst4*x585); IkReal x589=((1.0)*x586); IkReal x590=(x586*x587); evalcond[0]=(gconst4+((new_r01*x586))+((new_r11*x585))); evalcond[1]=(((gconst5*x585))+((gconst4*x586))+new_r01); evalcond[2]=(gconst4+((new_r00*x585))+(((-1.0)*new_r10*x589))); evalcond[3]=(gconst5+(((-1.0)*new_r11*x589))+((new_r01*x585))); evalcond[4]=((((-1.0)*x590))+x588+new_r00); evalcond[5]=((((-1.0)*x590))+x588+new_r11); evalcond[6]=(((new_r00*x586))+(((-1.0)*x587))+((new_r10*x585))); evalcond[7]=((((-1.0)*gconst4*x589))+(((-1.0)*x585*x587))+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x591=((1.0)*gconst4); CheckValue<IkReal> x592 = IKatan2WithCheck(IkReal(((gconst4*gconst4)+((new_r01*new_r10)))),IkReal((((new_r00*new_r01))+(((-1.0)*gconst5*x591)))),IKFAST_ATAN2_MAGTHRESH); if(!x592.valid){ continue; } CheckValue<IkReal> x593=IKPowWithIntegerCheck(IKsign(((((-1.0)*new_r00*x591))+(((-1.0)*gconst5*new_r10)))),-1); if(!x593.valid){ continue; } j5array[0]=((-1.5707963267949)+(x592.value)+(((1.5707963267949)*(x593.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x594=IKsin(j5); IkReal x595=IKcos(j5); IkReal x596=((1.0)*gconst5); IkReal x597=(gconst4*x594); IkReal x598=((1.0)*x595); IkReal x599=(x595*x596); evalcond[0]=(((new_r11*x594))+gconst4+((new_r01*x595))); evalcond[1]=(((gconst5*x594))+((gconst4*x595))+new_r01); evalcond[2]=(gconst4+(((-1.0)*new_r10*x598))+((new_r00*x594))); evalcond[3]=((((-1.0)*new_r11*x598))+gconst5+((new_r01*x594))); evalcond[4]=((((-1.0)*x599))+x597+new_r00); evalcond[5]=((((-1.0)*x599))+x597+new_r11); evalcond[6]=(((new_r10*x594))+((new_r00*x595))+(((-1.0)*x596))); evalcond[7]=((((-1.0)*gconst4*x598))+(((-1.0)*x594*x596))+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x600=((1.0)*new_r11); CheckValue<IkReal> x601 = IKatan2WithCheck(IkReal((((gconst4*new_r10))+((gconst4*new_r01)))),IkReal((((gconst4*new_r00))+(((-1.0)*gconst4*x600)))),IKFAST_ATAN2_MAGTHRESH); if(!x601.valid){ continue; } CheckValue<IkReal> x602=IKPowWithIntegerCheck(IKsign(((((-1.0)*new_r10*x600))+(((-1.0)*new_r00*new_r01)))),-1); if(!x602.valid){ continue; } j5array[0]=((-1.5707963267949)+(x601.value)+(((1.5707963267949)*(x602.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x603=IKsin(j5); IkReal x604=IKcos(j5); IkReal x605=((1.0)*gconst5); IkReal x606=(gconst4*x603); IkReal x607=((1.0)*x604); IkReal x608=(x604*x605); evalcond[0]=(gconst4+((new_r11*x603))+((new_r01*x604))); evalcond[1]=(((gconst5*x603))+((gconst4*x604))+new_r01); evalcond[2]=((((-1.0)*new_r10*x607))+gconst4+((new_r00*x603))); evalcond[3]=((((-1.0)*new_r11*x607))+gconst5+((new_r01*x603))); evalcond[4]=(x606+(((-1.0)*x608))+new_r00); evalcond[5]=(x606+(((-1.0)*x608))+new_r11); evalcond[6]=(((new_r10*x603))+((new_r00*x604))+(((-1.0)*x605))); evalcond[7]=((((-1.0)*x603*x605))+new_r10+(((-1.0)*gconst4*x607))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(j7))), 6.28318530717959))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; if( IKabs(((-1.0)*new_r01)) < IKFAST_ATAN2_MAGTHRESH && IKabs(new_r00) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*new_r01))+IKsqr(new_r00)-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2(((-1.0)*new_r01), new_r00); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x609=IKsin(j5); IkReal x610=IKcos(j5); IkReal x611=((1.0)*x610); evalcond[0]=(x609+new_r01); evalcond[1]=((((-1.0)*x611))+new_r00); evalcond[2]=((((-1.0)*x611))+new_r11); evalcond[3]=((((-1.0)*x609))+new_r10); evalcond[4]=(((new_r11*x609))+((new_r01*x610))); evalcond[5]=((((-1.0)*new_r10*x611))+((new_r00*x609))); evalcond[6]=((-1.0)+((new_r10*x609))+((new_r00*x610))); evalcond[7]=((1.0)+(((-1.0)*new_r11*x611))+((new_r01*x609))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(((-3.14159265358979)+j7)))), 6.28318530717959))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; if( IKabs(((-1.0)*new_r10)) < IKFAST_ATAN2_MAGTHRESH && IKabs(((-1.0)*new_r00)) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*new_r10))+IKsqr(((-1.0)*new_r00))-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2(((-1.0)*new_r10), ((-1.0)*new_r00)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x612=IKcos(j5); IkReal x613=IKsin(j5); IkReal x614=((1.0)*x612); evalcond[0]=(x612+new_r00); evalcond[1]=(x612+new_r11); evalcond[2]=(x613+new_r10); evalcond[3]=((((-1.0)*x613))+new_r01); evalcond[4]=(((new_r11*x613))+((new_r01*x612))); evalcond[5]=((((-1.0)*new_r10*x614))+((new_r00*x613))); evalcond[6]=((1.0)+((new_r10*x613))+((new_r00*x612))); evalcond[7]=((-1.0)+(((-1.0)*new_r11*x614))+((new_r01*x613))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r11))+(IKabs(new_r00))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[3]; sj6=0; cj6=1.0; j6=0; new_r11=0; new_r00=0; j5eval[0]=new_r01; j5eval[1]=IKsign(new_r01); j5eval[2]=((IKabs(cj7))+(IKabs(sj7))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[2]; sj6=0; cj6=1.0; j6=0; new_r11=0; new_r00=0; j5eval[0]=new_r01; j5eval[1]=new_r10; if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 ) { { IkReal j5eval[2]; sj6=0; cj6=1.0; j6=0; new_r11=0; new_r00=0; j5eval[0]=new_r01; j5eval[1]=sj7; if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 ) { { IkReal evalcond[1]; bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(j7))), 6.28318530717959))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; sj5array[0]=new_r10; if( sj5array[0] >= -1-IKFAST_SINCOS_THRESH && sj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKasin(sj5array[0]); cj5array[0] = IKcos(j5array[0]); sj5array[1] = sj5array[0]; j5array[1] = j5array[0] > 0 ? (IKPI-j5array[0]) : (-IKPI-j5array[0]); cj5array[1] = -cj5array[0]; } else if( isnan(sj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x615=IKcos(j5); IkReal x616=IKsin(j5); IkReal x617=((-1.0)*x615); evalcond[0]=(new_r01*x615); evalcond[1]=(x616+new_r01); evalcond[2]=x617; evalcond[3]=(new_r10*x617); evalcond[4]=((1.0)+((new_r01*x616))); evalcond[5]=((-1.0)+((new_r10*x616))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(((-3.14159265358979)+j7)))), 6.28318530717959))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; sj5array[0]=new_r01; if( sj5array[0] >= -1-IKFAST_SINCOS_THRESH && sj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKasin(sj5array[0]); cj5array[0] = IKcos(j5array[0]); sj5array[1] = sj5array[0]; j5array[1] = j5array[0] > 0 ? (IKPI-j5array[0]) : (-IKPI-j5array[0]); cj5array[1] = -cj5array[0]; } else if( isnan(sj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x618=IKcos(j5); IkReal x619=IKsin(j5); evalcond[0]=x618; evalcond[1]=(new_r01*x618); evalcond[2]=(x619+new_r10); evalcond[3]=((-1.0)*new_r10*x618); evalcond[4]=((-1.0)+((new_r01*x619))); evalcond[5]=((1.0)+((new_r10*x619))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { if( 1 ) { bgotonextstatement=false; continue; // branch miss [j5] } } while(0); if( bgotonextstatement ) { } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x621=IKPowWithIntegerCheck(new_r01,-1); if(!x621.valid){ continue; } IkReal x620=x621.value; CheckValue<IkReal> x622=IKPowWithIntegerCheck(sj7,-1); if(!x622.valid){ continue; } CheckValue<IkReal> x623=IKPowWithIntegerCheck(x620,-2); if(!x623.valid){ continue; } if( IKabs(((-1.0)*cj7*x620)) < IKFAST_ATAN2_MAGTHRESH && IKabs((x620*(x622.value)*(((cj7*cj7)+(((-1.0)*(x623.value))))))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*cj7*x620))+IKsqr((x620*(x622.value)*(((cj7*cj7)+(((-1.0)*(x623.value)))))))-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2(((-1.0)*cj7*x620), (x620*(x622.value)*(((cj7*cj7)+(((-1.0)*(x623.value))))))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[7]; IkReal x624=IKcos(j5); IkReal x625=IKsin(j5); IkReal x626=(cj7*x625); IkReal x627=((1.0)*x624); evalcond[0]=(cj7+((new_r01*x625))); evalcond[1]=(sj7+((new_r01*x624))); evalcond[2]=(sj7+(((-1.0)*new_r10*x627))); evalcond[3]=(((new_r10*x625))+(((-1.0)*cj7))); evalcond[4]=(((sj7*x624))+x626+new_r01); evalcond[5]=(((sj7*x625))+(((-1.0)*cj7*x627))); evalcond[6]=((((-1.0)*sj7*x627))+(((-1.0)*x626))+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x628=IKPowWithIntegerCheck(new_r01,-1); if(!x628.valid){ continue; } CheckValue<IkReal> x629=IKPowWithIntegerCheck(new_r10,-1); if(!x629.valid){ continue; } if( IKabs(((-1.0)*cj7*(x628.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs((sj7*(x629.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*cj7*(x628.value)))+IKsqr((sj7*(x629.value)))-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2(((-1.0)*cj7*(x628.value)), (sj7*(x629.value))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[7]; IkReal x630=IKcos(j5); IkReal x631=IKsin(j5); IkReal x632=(cj7*x631); IkReal x633=((1.0)*x630); evalcond[0]=(cj7+((new_r01*x631))); evalcond[1]=(sj7+((new_r01*x630))); evalcond[2]=(sj7+(((-1.0)*new_r10*x633))); evalcond[3]=(((new_r10*x631))+(((-1.0)*cj7))); evalcond[4]=(((sj7*x630))+x632+new_r01); evalcond[5]=(((sj7*x631))+(((-1.0)*cj7*x633))); evalcond[6]=((((-1.0)*sj7*x633))+(((-1.0)*x632))+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x634 = IKatan2WithCheck(IkReal(((-1.0)*cj7)),IkReal(((-1.0)*sj7)),IKFAST_ATAN2_MAGTHRESH); if(!x634.valid){ continue; } CheckValue<IkReal> x635=IKPowWithIntegerCheck(IKsign(new_r01),-1); if(!x635.valid){ continue; } j5array[0]=((-1.5707963267949)+(x634.value)+(((1.5707963267949)*(x635.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[7]; IkReal x636=IKcos(j5); IkReal x637=IKsin(j5); IkReal x638=(cj7*x637); IkReal x639=((1.0)*x636); evalcond[0]=(cj7+((new_r01*x637))); evalcond[1]=(sj7+((new_r01*x636))); evalcond[2]=(sj7+(((-1.0)*new_r10*x639))); evalcond[3]=(((new_r10*x637))+(((-1.0)*cj7))); evalcond[4]=(((sj7*x636))+x638+new_r01); evalcond[5]=(((sj7*x637))+(((-1.0)*cj7*x639))); evalcond[6]=((((-1.0)*sj7*x639))+(((-1.0)*x638))+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r11))+(IKabs(new_r01))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; sj6=0; cj6=1.0; j6=0; new_r11=0; new_r01=0; new_r22=0; new_r20=0; j5eval[0]=((IKabs(new_r10))+(IKabs(new_r00))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { continue; // no branches [j5] } else { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x641 = IKatan2WithCheck(IkReal(new_r00),IkReal(new_r10),IKFAST_ATAN2_MAGTHRESH); if(!x641.valid){ continue; } IkReal x640=x641.value; j5array[0]=((-1.0)*x640); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); j5array[1]=((3.14159265358979)+(((-1.0)*x640))); sj5array[1]=IKsin(j5array[1]); cj5array[1]=IKcos(j5array[1]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; if( j5array[1] > IKPI ) { j5array[1]-=IK2PI; } else if( j5array[1] < -IKPI ) { j5array[1]+=IK2PI; } j5valid[1] = true; for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[1]; evalcond[0]=((((-1.0)*new_r10*(IKcos(j5))))+((new_r00*(IKsin(j5))))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r10))+(IKabs(new_r00))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; sj6=0; cj6=1.0; j6=0; new_r00=0; new_r10=0; new_r21=0; new_r22=0; j5eval[0]=((IKabs(new_r11))+(IKabs(new_r01))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { continue; // no branches [j5] } else { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x643 = IKatan2WithCheck(IkReal(new_r01),IkReal(new_r11),IKFAST_ATAN2_MAGTHRESH); if(!x643.valid){ continue; } IkReal x642=x643.value; j5array[0]=((-1.0)*x642); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); j5array[1]=((3.14159265358979)+(((-1.0)*x642))); sj5array[1]=IKsin(j5array[1]); cj5array[1]=IKcos(j5array[1]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; if( j5array[1] > IKPI ) { j5array[1]-=IK2PI; } else if( j5array[1] < -IKPI ) { j5array[1]+=IK2PI; } j5valid[1] = true; for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[1]; evalcond[0]=((((-1.0)*new_r11*(IKcos(j5))))+((new_r01*(IKsin(j5))))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r10))+(IKabs(new_r01))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[3]; sj6=0; cj6=1.0; j6=0; new_r01=0; new_r10=0; j5eval[0]=new_r11; j5eval[1]=IKsign(new_r11); j5eval[2]=((IKabs(cj7))+(IKabs(sj7))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[3]; sj6=0; cj6=1.0; j6=0; new_r01=0; new_r10=0; j5eval[0]=new_r00; j5eval[1]=IKsign(new_r00); j5eval[2]=((IKabs(cj7))+(IKabs(sj7))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[2]; sj6=0; cj6=1.0; j6=0; new_r01=0; new_r10=0; j5eval[0]=new_r00; j5eval[1]=new_r11; if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 ) { continue; // no branches [j5] } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x644=IKPowWithIntegerCheck(new_r00,-1); if(!x644.valid){ continue; } CheckValue<IkReal> x645=IKPowWithIntegerCheck(new_r11,-1); if(!x645.valid){ continue; } if( IKabs(((-1.0)*sj7*(x644.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs((cj7*(x645.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*sj7*(x644.value)))+IKsqr((cj7*(x645.value)))-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2(((-1.0)*sj7*(x644.value)), (cj7*(x645.value))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[7]; IkReal x646=IKsin(j5); IkReal x647=IKcos(j5); IkReal x648=((1.0)*cj7); IkReal x649=(sj7*x646); IkReal x650=(x647*x648); evalcond[0]=(sj7+((new_r00*x646))); evalcond[1]=(sj7+((new_r11*x646))); evalcond[2]=(cj7+(((-1.0)*new_r11*x647))); evalcond[3]=((((-1.0)*x648))+((new_r00*x647))); evalcond[4]=(((sj7*x647))+((cj7*x646))); evalcond[5]=((((-1.0)*x650))+x649+new_r00); evalcond[6]=((((-1.0)*x650))+x649+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x651 = IKatan2WithCheck(IkReal(((-1.0)*sj7)),IkReal(cj7),IKFAST_ATAN2_MAGTHRESH); if(!x651.valid){ continue; } CheckValue<IkReal> x652=IKPowWithIntegerCheck(IKsign(new_r00),-1); if(!x652.valid){ continue; } j5array[0]=((-1.5707963267949)+(x651.value)+(((1.5707963267949)*(x652.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[7]; IkReal x653=IKsin(j5); IkReal x654=IKcos(j5); IkReal x655=((1.0)*cj7); IkReal x656=(sj7*x653); IkReal x657=(x654*x655); evalcond[0]=(sj7+((new_r00*x653))); evalcond[1]=(sj7+((new_r11*x653))); evalcond[2]=((((-1.0)*new_r11*x654))+cj7); evalcond[3]=((((-1.0)*x655))+((new_r00*x654))); evalcond[4]=(((sj7*x654))+((cj7*x653))); evalcond[5]=((((-1.0)*x657))+x656+new_r00); evalcond[6]=((((-1.0)*x657))+x656+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x658=IKPowWithIntegerCheck(IKsign(new_r11),-1); if(!x658.valid){ continue; } CheckValue<IkReal> x659 = IKatan2WithCheck(IkReal(((-1.0)*sj7)),IkReal(cj7),IKFAST_ATAN2_MAGTHRESH); if(!x659.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x658.value)))+(x659.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[7]; IkReal x660=IKsin(j5); IkReal x661=IKcos(j5); IkReal x662=((1.0)*cj7); IkReal x663=(sj7*x660); IkReal x664=(x661*x662); evalcond[0]=(sj7+((new_r00*x660))); evalcond[1]=(sj7+((new_r11*x660))); evalcond[2]=(cj7+(((-1.0)*new_r11*x661))); evalcond[3]=((((-1.0)*x662))+((new_r00*x661))); evalcond[4]=(((sj7*x661))+((cj7*x660))); evalcond[5]=((((-1.0)*x664))+x663+new_r00); evalcond[6]=((((-1.0)*x664))+x663+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { if( 1 ) { bgotonextstatement=false; continue; // branch miss [j5] } } while(0); if( bgotonextstatement ) { } } } } } } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x665=((1.0)*new_r11); CheckValue<IkReal> x666=IKPowWithIntegerCheck(IKsign(((((-1.0)*new_r01*sj7))+(((-1.0)*cj7*x665)))),-1); if(!x666.valid){ continue; } CheckValue<IkReal> x667 = IKatan2WithCheck(IkReal((((new_r00*new_r01))+((cj7*sj7)))),IkReal(((1.0)+(((-1.0)*(cj7*cj7)))+(((-1.0)*new_r00*x665)))),IKFAST_ATAN2_MAGTHRESH); if(!x667.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x666.value)))+(x667.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x668=IKcos(j5); IkReal x669=IKsin(j5); IkReal x670=((1.0)*cj7); IkReal x671=(sj7*x669); IkReal x672=((1.0)*x668); IkReal x673=(x668*x670); evalcond[0]=(sj7+((new_r11*x669))+((new_r01*x668))); evalcond[1]=(((sj7*x668))+new_r01+((cj7*x669))); evalcond[2]=(sj7+((new_r00*x669))+(((-1.0)*new_r10*x672))); evalcond[3]=(cj7+(((-1.0)*new_r11*x672))+((new_r01*x669))); evalcond[4]=(x671+new_r00+(((-1.0)*x673))); evalcond[5]=(x671+new_r11+(((-1.0)*x673))); evalcond[6]=(((new_r10*x669))+((new_r00*x668))+(((-1.0)*x670))); evalcond[7]=((((-1.0)*x669*x670))+new_r10+(((-1.0)*sj7*x672))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x674=IKPowWithIntegerCheck(IKsign(((((-1.0)*(new_r01*new_r01)))+(((-1.0)*(new_r11*new_r11))))),-1); if(!x674.valid){ continue; } CheckValue<IkReal> x675 = IKatan2WithCheck(IkReal((((new_r11*sj7))+((cj7*new_r01)))),IkReal((((new_r01*sj7))+(((-1.0)*cj7*new_r11)))),IKFAST_ATAN2_MAGTHRESH); if(!x675.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x674.value)))+(x675.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x676=IKcos(j5); IkReal x677=IKsin(j5); IkReal x678=((1.0)*cj7); IkReal x679=(sj7*x677); IkReal x680=((1.0)*x676); IkReal x681=(x676*x678); evalcond[0]=(((new_r11*x677))+((new_r01*x676))+sj7); evalcond[1]=(((cj7*x677))+new_r01+((sj7*x676))); evalcond[2]=((((-1.0)*new_r10*x680))+((new_r00*x677))+sj7); evalcond[3]=(((new_r01*x677))+cj7+(((-1.0)*new_r11*x680))); evalcond[4]=((((-1.0)*x681))+x679+new_r00); evalcond[5]=((((-1.0)*x681))+x679+new_r11); evalcond[6]=(((new_r00*x676))+((new_r10*x677))+(((-1.0)*x678))); evalcond[7]=((((-1.0)*sj7*x680))+new_r10+(((-1.0)*x677*x678))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x682=((1.0)*new_r11); CheckValue<IkReal> x683=IKPowWithIntegerCheck(IKsign(((((-1.0)*new_r10*x682))+(((-1.0)*new_r00*new_r01)))),-1); if(!x683.valid){ continue; } CheckValue<IkReal> x684 = IKatan2WithCheck(IkReal((((new_r10*sj7))+((new_r01*sj7)))),IkReal((((new_r00*sj7))+(((-1.0)*sj7*x682)))),IKFAST_ATAN2_MAGTHRESH); if(!x684.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x683.value)))+(x684.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x685=IKcos(j5); IkReal x686=IKsin(j5); IkReal x687=((1.0)*cj7); IkReal x688=(sj7*x686); IkReal x689=((1.0)*x685); IkReal x690=(x685*x687); evalcond[0]=(sj7+((new_r01*x685))+((new_r11*x686))); evalcond[1]=(((sj7*x685))+((cj7*x686))+new_r01); evalcond[2]=((((-1.0)*new_r10*x689))+sj7+((new_r00*x686))); evalcond[3]=(cj7+((new_r01*x686))+(((-1.0)*new_r11*x689))); evalcond[4]=(x688+(((-1.0)*x690))+new_r00); evalcond[5]=(x688+(((-1.0)*x690))+new_r11); evalcond[6]=((((-1.0)*x687))+((new_r00*x685))+((new_r10*x686))); evalcond[7]=((((-1.0)*sj7*x689))+(((-1.0)*x686*x687))+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(((-3.14159265358979)+j6)))), 6.28318530717959))); evalcond[1]=new_r02; evalcond[2]=new_r12; evalcond[3]=new_r21; evalcond[4]=new_r20; if( IKabs(evalcond[0]) < 0.0000050000000000 && IKabs(evalcond[1]) < 0.0000050000000000 && IKabs(evalcond[2]) < 0.0000050000000000 && IKabs(evalcond[3]) < 0.0000050000000000 && IKabs(evalcond[4]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[3]; sj6=0; cj6=-1.0; j6=3.14159265358979; IkReal x691=((1.0)*new_r10); IkReal x692=((((-1.0)*new_r11*x691))+(((-1.0)*new_r00*new_r01))); j5eval[0]=x692; j5eval[1]=((IKabs((((cj7*new_r00))+((cj7*new_r11)))))+(IKabs((((cj7*new_r01))+(((-1.0)*cj7*x691)))))); j5eval[2]=IKsign(x692); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[3]; sj6=0; cj6=-1.0; j6=3.14159265358979; IkReal x693=((1.0)*new_r10); IkReal x694=((((-1.0)*sj7*x693))+(((-1.0)*cj7*new_r00))); j5eval[0]=x694; j5eval[1]=((IKabs((((new_r00*new_r01))+((cj7*sj7)))))+(IKabs(((cj7*cj7)+(((-1.0)*new_r01*x693)))))); j5eval[2]=IKsign(x694); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[3]; sj6=0; cj6=-1.0; j6=3.14159265358979; IkReal x695=((1.0)*new_r00); IkReal x696=((((-1.0)*sj7*x695))+((cj7*new_r10))); j5eval[0]=x696; j5eval[1]=IKsign(x696); j5eval[2]=((IKabs(((((-1.0)*(cj7*cj7)))+(new_r00*new_r00))))+(IKabs(((((-1.0)*new_r10*x695))+((cj7*sj7)))))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal evalcond[1]; bool bgotonextstatement = true; do { IkReal x697=((-1.0)*new_r00); IkReal x699 = ((new_r10*new_r10)+(new_r00*new_r00)); if(IKabs(x699)==0){ continue; } IkReal x698=pow(x699,-0.5); CheckValue<IkReal> x700 = IKatan2WithCheck(IkReal(new_r10),IkReal(x697),IKFAST_ATAN2_MAGTHRESH); if(!x700.valid){ continue; } IkReal gconst6=((-1.0)*(x700.value)); IkReal gconst7=((-1.0)*new_r10*x698); IkReal gconst8=(x697*x698); CheckValue<IkReal> x701 = IKatan2WithCheck(IkReal(new_r10),IkReal(((-1.0)*new_r00)),IKFAST_ATAN2_MAGTHRESH); if(!x701.valid){ continue; } evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs((j7+(x701.value))))), 6.28318530717959))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[3]; IkReal x702=((-1.0)*new_r00); CheckValue<IkReal> x705 = IKatan2WithCheck(IkReal(new_r10),IkReal(x702),IKFAST_ATAN2_MAGTHRESH); if(!x705.valid){ continue; } IkReal x703=((-1.0)*(x705.value)); IkReal x704=x698; sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst7; cj7=gconst8; j7=x703; IkReal gconst6=x703; IkReal gconst7=((-1.0)*new_r10*x704); IkReal gconst8=(x702*x704); IkReal x706=new_r00*new_r00; IkReal x707=((1.0)*new_r11); IkReal x708=((1.0)*new_r00*new_r01); IkReal x709=((((-1.0)*x708))+(((-1.0)*new_r10*x707))); IkReal x710=x698; IkReal x711=(new_r00*x710); j5eval[0]=x709; j5eval[1]=((IKabs(((((-1.0)*x706*x710))+(((-1.0)*x707*x711)))))+(IKabs(((((-1.0)*x708*x710))+((new_r10*x711)))))); j5eval[2]=IKsign(x709); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[1]; IkReal x712=((-1.0)*new_r00); CheckValue<IkReal> x715 = IKatan2WithCheck(IkReal(new_r10),IkReal(x712),IKFAST_ATAN2_MAGTHRESH); if(!x715.valid){ continue; } IkReal x713=((-1.0)*(x715.value)); IkReal x714=x698; sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst7; cj7=gconst8; j7=x713; IkReal gconst6=x713; IkReal gconst7=((-1.0)*new_r10*x714); IkReal gconst8=(x712*x714); IkReal x716=new_r10*new_r10; IkReal x717=new_r00*new_r00; CheckValue<IkReal> x720=IKPowWithIntegerCheck((x717+x716),-1); if(!x720.valid){ continue; } IkReal x718=x720.value; IkReal x719=(new_r00*x718); j5eval[0]=((IKabs((((new_r01*x716*x719))+((new_r01*x719*(new_r00*new_r00)))+((new_r10*x719)))))+(IKabs((((x717*x718))+(((-1.0)*new_r01*new_r10)))))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; IkReal x721=((-1.0)*new_r00); CheckValue<IkReal> x724 = IKatan2WithCheck(IkReal(new_r10),IkReal(x721),IKFAST_ATAN2_MAGTHRESH); if(!x724.valid){ continue; } IkReal x722=((-1.0)*(x724.value)); IkReal x723=x698; sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst7; cj7=gconst8; j7=x722; IkReal gconst6=x722; IkReal gconst7=((-1.0)*new_r10*x723); IkReal gconst8=(x721*x723); IkReal x725=new_r00*new_r00; IkReal x726=new_r10*new_r10; CheckValue<IkReal> x730=IKPowWithIntegerCheck((x725+x726),-1); if(!x730.valid){ continue; } IkReal x727=x730.value; IkReal x728=(new_r10*x727); IkReal x729=((1.0)*x727); j5eval[0]=((IKabs(((((-1.0)*x729*(x726*x726)))+(((-1.0)*x725*x726*x729))+((x725*x727)))))+(IKabs((((new_r00*x728))+((new_r00*x728*(new_r10*new_r10)))+((x728*(new_r00*new_r00*new_r00))))))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal evalcond[3]; bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r11))+(IKabs(new_r00))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; CheckValue<IkReal> x732 = IKatan2WithCheck(IkReal(new_r10),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x732.valid){ continue; } IkReal x731=((-1.0)*(x732.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst7; cj7=gconst8; j7=x731; new_r11=0; new_r00=0; IkReal gconst6=x731; IkReal x733 = new_r10*new_r10; if(IKabs(x733)==0){ continue; } IkReal gconst7=((-1.0)*new_r10*(pow(x733,-0.5))); IkReal gconst8=0; j5eval[0]=new_r10; if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x734=IKPowWithIntegerCheck(gconst7,-1); if(!x734.valid){ continue; } cj5array[0]=(new_r01*(x734.value)); if( cj5array[0] >= -1-IKFAST_SINCOS_THRESH && cj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKacos(cj5array[0]); sj5array[0] = IKsin(j5array[0]); cj5array[1] = cj5array[0]; j5array[1] = -j5array[0]; sj5array[1] = -sj5array[0]; } else if( isnan(cj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x735=IKsin(j5); IkReal x736=IKcos(j5); IkReal x737=((1.0)*gconst7); evalcond[0]=(new_r01*x735); evalcond[1]=(new_r10*x735); evalcond[2]=(gconst7*x735); evalcond[3]=(gconst7+(((-1.0)*new_r10*x736))); evalcond[4]=((((-1.0)*x736*x737))+new_r10); evalcond[5]=(((new_r01*x736))+(((-1.0)*x737))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } else { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x738=IKPowWithIntegerCheck(new_r10,-1); if(!x738.valid){ continue; } cj5array[0]=(gconst7*(x738.value)); if( cj5array[0] >= -1-IKFAST_SINCOS_THRESH && cj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKacos(cj5array[0]); sj5array[0] = IKsin(j5array[0]); cj5array[1] = cj5array[0]; j5array[1] = -j5array[0]; sj5array[1] = -sj5array[0]; } else if( isnan(cj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x739=IKsin(j5); IkReal x740=IKcos(j5); IkReal x741=((1.0)*gconst7); IkReal x742=(x740*x741); evalcond[0]=(new_r01*x739); evalcond[1]=(new_r10*x739); evalcond[2]=(gconst7*x739); evalcond[3]=(new_r01+(((-1.0)*x742))); evalcond[4]=(new_r10+(((-1.0)*x742))); evalcond[5]=(((new_r01*x740))+(((-1.0)*x741))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r11))+(IKabs(new_r01))); evalcond[1]=gconst8; evalcond[2]=gconst7; if( IKabs(evalcond[0]) < 0.0000050000000000 && IKabs(evalcond[1]) < 0.0000050000000000 && IKabs(evalcond[2]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[3]; IkReal x743=((-1.0)*new_r00); CheckValue<IkReal> x745 = IKatan2WithCheck(IkReal(new_r10),IkReal(x743),IKFAST_ATAN2_MAGTHRESH); if(!x745.valid){ continue; } IkReal x744=((-1.0)*(x745.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst7; cj7=gconst8; j7=x744; new_r11=0; new_r01=0; new_r22=0; new_r20=0; IkReal gconst6=x744; IkReal gconst7=((-1.0)*new_r10); IkReal gconst8=x743; j5eval[0]=1.0; j5eval[1]=1.0; j5eval[2]=((IKabs(((1.0)+(((-1.0)*(new_r10*new_r10))))))+(IKabs((new_r00*new_r10)))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[3]; IkReal x746=((-1.0)*new_r00); CheckValue<IkReal> x748 = IKatan2WithCheck(IkReal(new_r10),IkReal(x746),IKFAST_ATAN2_MAGTHRESH); if(!x748.valid){ continue; } IkReal x747=((-1.0)*(x748.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst7; cj7=gconst8; j7=x747; new_r11=0; new_r01=0; new_r22=0; new_r20=0; IkReal gconst6=x747; IkReal gconst7=((-1.0)*new_r10); IkReal gconst8=x746; j5eval[0]=-1.0; j5eval[1]=((IKabs(((-1.0)+(new_r10*new_r10))))+(IKabs((new_r00*new_r10)))); j5eval[2]=-1.0; if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[3]; IkReal x749=((-1.0)*new_r00); CheckValue<IkReal> x751 = IKatan2WithCheck(IkReal(new_r10),IkReal(x749),IKFAST_ATAN2_MAGTHRESH); if(!x751.valid){ continue; } IkReal x750=((-1.0)*(x751.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst7; cj7=gconst8; j7=x750; new_r11=0; new_r01=0; new_r22=0; new_r20=0; IkReal gconst6=x750; IkReal gconst7=((-1.0)*new_r10); IkReal gconst8=x749; j5eval[0]=1.0; j5eval[1]=((((0.5)*(IKabs(((1.0)+(((-2.0)*(new_r10*new_r10))))))))+(IKabs((new_r00*new_r10)))); j5eval[2]=1.0; if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { continue; // 3 cases reached } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x752=IKPowWithIntegerCheck(IKsign(((((-1.0)*gconst7*new_r10))+(((-1.0)*gconst8*new_r00)))),-1); if(!x752.valid){ continue; } CheckValue<IkReal> x753 = IKatan2WithCheck(IkReal((((new_r00*new_r10))+((gconst7*gconst8)))),IkReal(((gconst8*gconst8)+(((-1.0)*(new_r10*new_r10))))),IKFAST_ATAN2_MAGTHRESH); if(!x753.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x752.value)))+(x753.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x754=IKsin(j5); IkReal x755=IKcos(j5); IkReal x756=((1.0)*gconst7); IkReal x757=(gconst8*x754); IkReal x758=(gconst8*x755); IkReal x759=(x755*x756); evalcond[0]=(x757+(((-1.0)*x759))); evalcond[1]=(gconst8+((new_r00*x755))+((new_r10*x754))); evalcond[2]=(((gconst7*x754))+x758+new_r00); evalcond[3]=(gconst7+(((-1.0)*new_r10*x755))+((new_r00*x754))); evalcond[4]=((((-1.0)*x754*x756))+(((-1.0)*x758))); evalcond[5]=(x757+new_r10+(((-1.0)*x759))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x760 = IKatan2WithCheck(IkReal((gconst7*new_r00)),IkReal((gconst8*new_r00)),IKFAST_ATAN2_MAGTHRESH); if(!x760.valid){ continue; } CheckValue<IkReal> x761=IKPowWithIntegerCheck(IKsign(((((-1.0)*(gconst8*gconst8)))+(((-1.0)*(gconst7*gconst7))))),-1); if(!x761.valid){ continue; } j5array[0]=((-1.5707963267949)+(x760.value)+(((1.5707963267949)*(x761.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x762=IKsin(j5); IkReal x763=IKcos(j5); IkReal x764=((1.0)*gconst7); IkReal x765=(gconst8*x762); IkReal x766=(gconst8*x763); IkReal x767=(x763*x764); evalcond[0]=((((-1.0)*x767))+x765); evalcond[1]=(((new_r10*x762))+gconst8+((new_r00*x763))); evalcond[2]=(((gconst7*x762))+x766+new_r00); evalcond[3]=((((-1.0)*new_r10*x763))+gconst7+((new_r00*x762))); evalcond[4]=((((-1.0)*x762*x764))+(((-1.0)*x766))); evalcond[5]=((((-1.0)*x767))+x765+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x768 = IKatan2WithCheck(IkReal((gconst7*gconst8)),IkReal(gconst8*gconst8),IKFAST_ATAN2_MAGTHRESH); if(!x768.valid){ continue; } CheckValue<IkReal> x769=IKPowWithIntegerCheck(IKsign(((((-1.0)*gconst7*new_r10))+(((-1.0)*gconst8*new_r00)))),-1); if(!x769.valid){ continue; } j5array[0]=((-1.5707963267949)+(x768.value)+(((1.5707963267949)*(x769.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x770=IKsin(j5); IkReal x771=IKcos(j5); IkReal x772=((1.0)*gconst7); IkReal x773=(gconst8*x770); IkReal x774=(gconst8*x771); IkReal x775=(x771*x772); evalcond[0]=(x773+(((-1.0)*x775))); evalcond[1]=(gconst8+((new_r00*x771))+((new_r10*x770))); evalcond[2]=(x774+((gconst7*x770))+new_r00); evalcond[3]=((((-1.0)*new_r10*x771))+gconst7+((new_r00*x770))); evalcond[4]=((((-1.0)*x774))+(((-1.0)*x770*x772))); evalcond[5]=(x773+(((-1.0)*x775))+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r10))+(IKabs(new_r01))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; IkReal x776=((-1.0)*new_r00); CheckValue<IkReal> x778 = IKatan2WithCheck(IkReal(0),IkReal(x776),IKFAST_ATAN2_MAGTHRESH); if(!x778.valid){ continue; } IkReal x777=((-1.0)*(x778.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst7; cj7=gconst8; j7=x777; new_r01=0; new_r10=0; IkReal gconst6=x777; IkReal gconst7=0; IkReal x779 = new_r00*new_r00; if(IKabs(x779)==0){ continue; } IkReal gconst8=(x776*(pow(x779,-0.5))); j5eval[0]=new_r11; if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x780=IKPowWithIntegerCheck(gconst8,-1); if(!x780.valid){ continue; } cj5array[0]=(new_r11*(x780.value)); if( cj5array[0] >= -1-IKFAST_SINCOS_THRESH && cj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKacos(cj5array[0]); sj5array[0] = IKsin(j5array[0]); cj5array[1] = cj5array[0]; j5array[1] = -j5array[0]; sj5array[1] = -sj5array[0]; } else if( isnan(cj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x781=IKsin(j5); IkReal x782=IKcos(j5); evalcond[0]=(new_r00*x781); evalcond[1]=(new_r11*x781); evalcond[2]=(gconst8*x781); evalcond[3]=(gconst8+((new_r00*x782))); evalcond[4]=(new_r00+((gconst8*x782))); evalcond[5]=(gconst8+(((-1.0)*new_r11*x782))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } else { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x783=IKPowWithIntegerCheck(new_r11,-1); if(!x783.valid){ continue; } cj5array[0]=(gconst8*(x783.value)); if( cj5array[0] >= -1-IKFAST_SINCOS_THRESH && cj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKacos(cj5array[0]); sj5array[0] = IKsin(j5array[0]); cj5array[1] = cj5array[0]; j5array[1] = -j5array[0]; sj5array[1] = -sj5array[0]; } else if( isnan(cj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x784=IKsin(j5); IkReal x785=IKcos(j5); IkReal x786=(gconst8*x785); evalcond[0]=(new_r00*x784); evalcond[1]=(new_r11*x784); evalcond[2]=(gconst8*x784); evalcond[3]=(gconst8+((new_r00*x785))); evalcond[4]=(x786+new_r00); evalcond[5]=((((-1.0)*x786))+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=IKabs(new_r00); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; CheckValue<IkReal> x788 = IKatan2WithCheck(IkReal(new_r10),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x788.valid){ continue; } IkReal x787=((-1.0)*(x788.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst7; cj7=gconst8; j7=x787; new_r00=0; IkReal gconst6=x787; IkReal x789 = new_r10*new_r10; if(IKabs(x789)==0){ continue; } IkReal gconst7=((-1.0)*new_r10*(pow(x789,-0.5))); IkReal gconst8=0; j5eval[0]=((IKabs(new_r11))+(IKabs(new_r01))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; CheckValue<IkReal> x791 = IKatan2WithCheck(IkReal(new_r10),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x791.valid){ continue; } IkReal x790=((-1.0)*(x791.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst7; cj7=gconst8; j7=x790; new_r00=0; IkReal gconst6=x790; IkReal x792 = new_r10*new_r10; if(IKabs(x792)==0){ continue; } IkReal gconst7=((-1.0)*new_r10*(pow(x792,-0.5))); IkReal gconst8=0; j5eval[0]=((IKabs(new_r11))+(IKabs(new_r10))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; CheckValue<IkReal> x794 = IKatan2WithCheck(IkReal(new_r10),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x794.valid){ continue; } IkReal x793=((-1.0)*(x794.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst7; cj7=gconst8; j7=x793; new_r00=0; IkReal gconst6=x793; IkReal x795 = new_r10*new_r10; if(IKabs(x795)==0){ continue; } IkReal gconst7=((-1.0)*new_r10*(pow(x795,-0.5))); IkReal gconst8=0; j5eval[0]=new_r10; if( IKabs(j5eval[0]) < 0.0000010000000000 ) { continue; // 3 cases reached } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x796=IKPowWithIntegerCheck(gconst7,-1); if(!x796.valid){ continue; } CheckValue<IkReal> x797=IKPowWithIntegerCheck(new_r10,-1); if(!x797.valid){ continue; } if( IKabs((new_r11*(x796.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs((gconst7*(x797.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr((new_r11*(x796.value)))+IKsqr((gconst7*(x797.value)))-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2((new_r11*(x796.value)), (gconst7*(x797.value))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x798=IKsin(j5); IkReal x799=IKcos(j5); IkReal x800=((1.0)*gconst7); IkReal x801=((1.0)*x799); IkReal x802=(x799*x800); evalcond[0]=(new_r10*x798); evalcond[1]=(gconst7*x798); evalcond[2]=(gconst7+(((-1.0)*new_r10*x801))); evalcond[3]=(new_r01+(((-1.0)*x802))); evalcond[4]=((((-1.0)*x798*x800))+new_r11); evalcond[5]=(new_r10+(((-1.0)*x802))); evalcond[6]=(((new_r01*x798))+(((-1.0)*new_r11*x801))); evalcond[7]=(((new_r11*x798))+((new_r01*x799))+(((-1.0)*x800))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x803=IKPowWithIntegerCheck(IKsign(gconst7),-1); if(!x803.valid){ continue; } CheckValue<IkReal> x804 = IKatan2WithCheck(IkReal(new_r11),IkReal(new_r10),IKFAST_ATAN2_MAGTHRESH); if(!x804.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x803.value)))+(x804.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x805=IKsin(j5); IkReal x806=IKcos(j5); IkReal x807=((1.0)*gconst7); IkReal x808=((1.0)*x806); IkReal x809=(x806*x807); evalcond[0]=(new_r10*x805); evalcond[1]=(gconst7*x805); evalcond[2]=(gconst7+(((-1.0)*new_r10*x808))); evalcond[3]=(new_r01+(((-1.0)*x809))); evalcond[4]=((((-1.0)*x805*x807))+new_r11); evalcond[5]=(new_r10+(((-1.0)*x809))); evalcond[6]=(((new_r01*x805))+(((-1.0)*new_r11*x808))); evalcond[7]=(((new_r11*x805))+((new_r01*x806))+(((-1.0)*x807))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x810=IKPowWithIntegerCheck(IKsign(gconst7),-1); if(!x810.valid){ continue; } CheckValue<IkReal> x811 = IKatan2WithCheck(IkReal(new_r11),IkReal(new_r01),IKFAST_ATAN2_MAGTHRESH); if(!x811.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x810.value)))+(x811.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x812=IKsin(j5); IkReal x813=IKcos(j5); IkReal x814=((1.0)*gconst7); IkReal x815=((1.0)*x813); IkReal x816=(x813*x814); evalcond[0]=(new_r10*x812); evalcond[1]=(gconst7*x812); evalcond[2]=(gconst7+(((-1.0)*new_r10*x815))); evalcond[3]=((((-1.0)*x816))+new_r01); evalcond[4]=((((-1.0)*x812*x814))+new_r11); evalcond[5]=((((-1.0)*x816))+new_r10); evalcond[6]=(((new_r01*x812))+(((-1.0)*new_r11*x815))); evalcond[7]=(((new_r11*x812))+((new_r01*x813))+(((-1.0)*x814))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { if( 1 ) { bgotonextstatement=false; continue; // branch miss [j5] } } while(0); if( bgotonextstatement ) { } } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x817=IKPowWithIntegerCheck(IKsign(((((-1.0)*gconst7*new_r10))+(((-1.0)*gconst8*new_r00)))),-1); if(!x817.valid){ continue; } CheckValue<IkReal> x818 = IKatan2WithCheck(IkReal((((new_r00*new_r10))+((gconst7*gconst8)))),IkReal(((gconst8*gconst8)+(((-1.0)*(new_r10*new_r10))))),IKFAST_ATAN2_MAGTHRESH); if(!x818.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x817.value)))+(x818.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x819=IKsin(j5); IkReal x820=IKcos(j5); IkReal x821=((1.0)*gconst7); IkReal x822=(gconst8*x819); IkReal x823=(gconst8*x820); IkReal x824=((1.0)*x820); IkReal x825=(x820*x821); evalcond[0]=(((new_r10*x819))+gconst8+((new_r00*x820))); evalcond[1]=(((gconst7*x819))+new_r00+x823); evalcond[2]=(((new_r00*x819))+gconst7+(((-1.0)*new_r10*x824))); evalcond[3]=(((new_r01*x819))+gconst8+(((-1.0)*new_r11*x824))); evalcond[4]=((((-1.0)*x825))+new_r01+x822); evalcond[5]=((((-1.0)*x825))+new_r10+x822); evalcond[6]=(((new_r11*x819))+((new_r01*x820))+(((-1.0)*x821))); evalcond[7]=((((-1.0)*x819*x821))+(((-1.0)*x823))+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x826=((1.0)*new_r10); CheckValue<IkReal> x827=IKPowWithIntegerCheck(IKsign(((((-1.0)*gconst7*x826))+(((-1.0)*gconst8*new_r00)))),-1); if(!x827.valid){ continue; } CheckValue<IkReal> x828 = IKatan2WithCheck(IkReal((((new_r00*new_r01))+((gconst7*gconst8)))),IkReal(((gconst8*gconst8)+(((-1.0)*new_r01*x826)))),IKFAST_ATAN2_MAGTHRESH); if(!x828.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x827.value)))+(x828.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x829=IKsin(j5); IkReal x830=IKcos(j5); IkReal x831=((1.0)*gconst7); IkReal x832=(gconst8*x829); IkReal x833=(gconst8*x830); IkReal x834=((1.0)*x830); IkReal x835=(x830*x831); evalcond[0]=(gconst8+((new_r10*x829))+((new_r00*x830))); evalcond[1]=(new_r00+x833+((gconst7*x829))); evalcond[2]=((((-1.0)*new_r10*x834))+gconst7+((new_r00*x829))); evalcond[3]=((((-1.0)*new_r11*x834))+((new_r01*x829))+gconst8); evalcond[4]=((((-1.0)*x835))+new_r01+x832); evalcond[5]=((((-1.0)*x835))+new_r10+x832); evalcond[6]=(((new_r01*x830))+((new_r11*x829))+(((-1.0)*x831))); evalcond[7]=((((-1.0)*x833))+new_r11+(((-1.0)*x829*x831))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x836=((1.0)*new_r10); CheckValue<IkReal> x837=IKPowWithIntegerCheck(IKsign(((((-1.0)*new_r11*x836))+(((-1.0)*new_r00*new_r01)))),-1); if(!x837.valid){ continue; } CheckValue<IkReal> x838 = IKatan2WithCheck(IkReal((((gconst8*new_r11))+((gconst8*new_r00)))),IkReal(((((-1.0)*gconst8*x836))+((gconst8*new_r01)))),IKFAST_ATAN2_MAGTHRESH); if(!x838.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x837.value)))+(x838.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x839=IKsin(j5); IkReal x840=IKcos(j5); IkReal x841=((1.0)*gconst7); IkReal x842=(gconst8*x839); IkReal x843=(gconst8*x840); IkReal x844=((1.0)*x840); IkReal x845=(x840*x841); evalcond[0]=(gconst8+((new_r00*x840))+((new_r10*x839))); evalcond[1]=(new_r00+x843+((gconst7*x839))); evalcond[2]=((((-1.0)*new_r10*x844))+gconst7+((new_r00*x839))); evalcond[3]=((((-1.0)*new_r11*x844))+gconst8+((new_r01*x839))); evalcond[4]=((((-1.0)*x845))+new_r01+x842); evalcond[5]=((((-1.0)*x845))+new_r10+x842); evalcond[6]=(((new_r11*x839))+((new_r01*x840))+(((-1.0)*x841))); evalcond[7]=((((-1.0)*x843))+(((-1.0)*x839*x841))+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { IkReal x848 = ((new_r10*new_r10)+(new_r00*new_r00)); if(IKabs(x848)==0){ continue; } IkReal x846=pow(x848,-0.5); IkReal x847=((1.0)*x846); CheckValue<IkReal> x849 = IKatan2WithCheck(IkReal(new_r10),IkReal(((-1.0)*new_r00)),IKFAST_ATAN2_MAGTHRESH); if(!x849.valid){ continue; } IkReal gconst9=((3.14159265358979)+(((-1.0)*(x849.value)))); IkReal gconst10=(new_r10*x847); IkReal gconst11=(new_r00*x847); CheckValue<IkReal> x850 = IKatan2WithCheck(IkReal(new_r10),IkReal(((-1.0)*new_r00)),IKFAST_ATAN2_MAGTHRESH); if(!x850.valid){ continue; } evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(((-3.14159265358979)+j7+(x850.value))))), 6.28318530717959))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[3]; CheckValue<IkReal> x854 = IKatan2WithCheck(IkReal(new_r10),IkReal(((-1.0)*new_r00)),IKFAST_ATAN2_MAGTHRESH); if(!x854.valid){ continue; } IkReal x851=((1.0)*(x854.value)); IkReal x852=x846; IkReal x853=((1.0)*x852); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst10; cj7=gconst11; j7=((3.14159265)+(((-1.0)*x851))); IkReal gconst9=((3.14159265358979)+(((-1.0)*x851))); IkReal gconst10=(new_r10*x853); IkReal gconst11=(new_r00*x853); IkReal x855=new_r00*new_r00; IkReal x856=((1.0)*new_r00); IkReal x857=((((-1.0)*new_r01*x856))+(((-1.0)*new_r10*new_r11))); IkReal x858=x846; IkReal x859=(new_r00*x858); j5eval[0]=x857; j5eval[1]=((IKabs(((((-1.0)*new_r10*x856*x858))+((new_r01*x859)))))+(IKabs((((x855*x858))+((new_r11*x859)))))); j5eval[2]=IKsign(x857); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[1]; CheckValue<IkReal> x863 = IKatan2WithCheck(IkReal(new_r10),IkReal(((-1.0)*new_r00)),IKFAST_ATAN2_MAGTHRESH); if(!x863.valid){ continue; } IkReal x860=((1.0)*(x863.value)); IkReal x861=x846; IkReal x862=((1.0)*x861); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst10; cj7=gconst11; j7=((3.14159265)+(((-1.0)*x860))); IkReal gconst9=((3.14159265358979)+(((-1.0)*x860))); IkReal gconst10=(new_r10*x862); IkReal gconst11=(new_r00*x862); IkReal x864=new_r10*new_r10; IkReal x865=new_r00*new_r00; IkReal x866=((1.0)*new_r01); CheckValue<IkReal> x870=IKPowWithIntegerCheck((x865+x864),-1); if(!x870.valid){ continue; } IkReal x867=x870.value; IkReal x868=(new_r10*x867); IkReal x869=(new_r01*x867); j5eval[0]=((IKabs(((((-1.0)*x866*x868*(new_r10*new_r10)))+(((-1.0)*x865*x866*x868))+((x865*x867)))))+(IKabs((((new_r00*x868))+((new_r00*x864*x869))+((x869*(new_r00*new_r00*new_r00))))))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; CheckValue<IkReal> x874 = IKatan2WithCheck(IkReal(new_r10),IkReal(((-1.0)*new_r00)),IKFAST_ATAN2_MAGTHRESH); if(!x874.valid){ continue; } IkReal x871=((1.0)*(x874.value)); IkReal x872=x846; IkReal x873=((1.0)*x872); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst10; cj7=gconst11; j7=((3.14159265)+(((-1.0)*x871))); IkReal gconst9=((3.14159265358979)+(((-1.0)*x871))); IkReal gconst10=(new_r10*x873); IkReal gconst11=(new_r00*x873); IkReal x875=new_r00*new_r00; IkReal x876=new_r10*new_r10; CheckValue<IkReal> x880=IKPowWithIntegerCheck((x875+x876),-1); if(!x880.valid){ continue; } IkReal x877=x880.value; IkReal x878=(new_r10*x877); IkReal x879=((1.0)*x877); j5eval[0]=((IKabs((((new_r00*x878))+((x878*(new_r00*new_r00*new_r00)))+((new_r00*x878*(new_r10*new_r10))))))+(IKabs(((((-1.0)*x875*x876*x879))+(((-1.0)*x879*(x876*x876)))+((x875*x877)))))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal evalcond[3]; bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r11))+(IKabs(new_r00))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; CheckValue<IkReal> x882 = IKatan2WithCheck(IkReal(new_r10),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x882.valid){ continue; } IkReal x881=((1.0)*(x882.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst10; cj7=gconst11; j7=((3.14159265)+(((-1.0)*x881))); new_r11=0; new_r00=0; IkReal gconst9=((3.14159265358979)+(((-1.0)*x881))); IkReal x883 = new_r10*new_r10; if(IKabs(x883)==0){ continue; } IkReal gconst10=((1.0)*new_r10*(pow(x883,-0.5))); IkReal gconst11=0; j5eval[0]=new_r10; if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x884=IKPowWithIntegerCheck(gconst10,-1); if(!x884.valid){ continue; } cj5array[0]=(new_r01*(x884.value)); if( cj5array[0] >= -1-IKFAST_SINCOS_THRESH && cj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKacos(cj5array[0]); sj5array[0] = IKsin(j5array[0]); cj5array[1] = cj5array[0]; j5array[1] = -j5array[0]; sj5array[1] = -sj5array[0]; } else if( isnan(cj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x885=IKsin(j5); IkReal x886=IKcos(j5); IkReal x887=((1.0)*x886); evalcond[0]=(new_r01*x885); evalcond[1]=(new_r10*x885); evalcond[2]=(gconst10*x885); evalcond[3]=((((-1.0)*new_r10*x887))+gconst10); evalcond[4]=((((-1.0)*gconst10*x887))+new_r10); evalcond[5]=(((new_r01*x886))+(((-1.0)*gconst10))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } else { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x888=IKPowWithIntegerCheck(new_r10,-1); if(!x888.valid){ continue; } cj5array[0]=(gconst10*(x888.value)); if( cj5array[0] >= -1-IKFAST_SINCOS_THRESH && cj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKacos(cj5array[0]); sj5array[0] = IKsin(j5array[0]); cj5array[1] = cj5array[0]; j5array[1] = -j5array[0]; sj5array[1] = -sj5array[0]; } else if( isnan(cj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x889=IKsin(j5); IkReal x890=IKcos(j5); IkReal x891=((1.0)*gconst10); IkReal x892=(x890*x891); evalcond[0]=(new_r01*x889); evalcond[1]=(new_r10*x889); evalcond[2]=(gconst10*x889); evalcond[3]=((((-1.0)*x892))+new_r01); evalcond[4]=((((-1.0)*x892))+new_r10); evalcond[5]=(((new_r01*x890))+(((-1.0)*x891))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r11))+(IKabs(new_r01))); evalcond[1]=gconst11; evalcond[2]=gconst10; if( IKabs(evalcond[0]) < 0.0000050000000000 && IKabs(evalcond[1]) < 0.0000050000000000 && IKabs(evalcond[2]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[3]; CheckValue<IkReal> x894 = IKatan2WithCheck(IkReal(new_r10),IkReal(((-1.0)*new_r00)),IKFAST_ATAN2_MAGTHRESH); if(!x894.valid){ continue; } IkReal x893=((1.0)*(x894.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst10; cj7=gconst11; j7=((3.14159265)+(((-1.0)*x893))); new_r11=0; new_r01=0; new_r22=0; new_r20=0; IkReal gconst9=((3.14159265358979)+(((-1.0)*x893))); IkReal gconst10=((1.0)*new_r10); IkReal gconst11=((1.0)*new_r00); j5eval[0]=-1.0; j5eval[1]=-1.0; j5eval[2]=((IKabs(((1.0)+(((-1.0)*(new_r10*new_r10))))))+(IKabs(((1.0)*new_r00*new_r10)))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[3]; CheckValue<IkReal> x896 = IKatan2WithCheck(IkReal(new_r10),IkReal(((-1.0)*new_r00)),IKFAST_ATAN2_MAGTHRESH); if(!x896.valid){ continue; } IkReal x895=((1.0)*(x896.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst10; cj7=gconst11; j7=((3.14159265)+(((-1.0)*x895))); new_r11=0; new_r01=0; new_r22=0; new_r20=0; IkReal gconst9=((3.14159265358979)+(((-1.0)*x895))); IkReal gconst10=((1.0)*new_r10); IkReal gconst11=((1.0)*new_r00); j5eval[0]=-1.0; j5eval[1]=-1.0; j5eval[2]=((IKabs(((1.0)+(((-1.0)*(new_r10*new_r10))))))+(IKabs(((1.0)*new_r00*new_r10)))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[3]; CheckValue<IkReal> x898 = IKatan2WithCheck(IkReal(new_r10),IkReal(((-1.0)*new_r00)),IKFAST_ATAN2_MAGTHRESH); if(!x898.valid){ continue; } IkReal x897=((1.0)*(x898.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst10; cj7=gconst11; j7=((3.14159265)+(((-1.0)*x897))); new_r11=0; new_r01=0; new_r22=0; new_r20=0; IkReal gconst9=((3.14159265358979)+(((-1.0)*x897))); IkReal gconst10=((1.0)*new_r10); IkReal gconst11=((1.0)*new_r00); j5eval[0]=-1.0; j5eval[1]=-1.0; j5eval[2]=((IKabs(((1.0)+(((-2.0)*(new_r10*new_r10))))))+(IKabs(((2.0)*new_r00*new_r10)))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { continue; // 3 cases reached } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x899 = IKatan2WithCheck(IkReal((((gconst10*gconst11))+((new_r00*new_r10)))),IkReal(((((-1.0)*(new_r10*new_r10)))+(gconst11*gconst11))),IKFAST_ATAN2_MAGTHRESH); if(!x899.valid){ continue; } CheckValue<IkReal> x900=IKPowWithIntegerCheck(IKsign(((((-1.0)*gconst10*new_r10))+(((-1.0)*gconst11*new_r00)))),-1); if(!x900.valid){ continue; } j5array[0]=((-1.5707963267949)+(x899.value)+(((1.5707963267949)*(x900.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x901=IKsin(j5); IkReal x902=IKcos(j5); IkReal x903=(gconst11*x901); IkReal x904=(gconst10*x901); IkReal x905=((1.0)*x902); IkReal x906=(gconst10*x905); evalcond[0]=((((-1.0)*x906))+x903); evalcond[1]=(gconst11+((new_r10*x901))+((new_r00*x902))); evalcond[2]=(((gconst11*x902))+new_r00+x904); evalcond[3]=(gconst10+((new_r00*x901))+(((-1.0)*new_r10*x905))); evalcond[4]=((((-1.0)*gconst11*x905))+(((-1.0)*x904))); evalcond[5]=((((-1.0)*x906))+new_r10+x903); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x907=IKPowWithIntegerCheck(IKsign(((((-1.0)*(gconst11*gconst11)))+(((-1.0)*(gconst10*gconst10))))),-1); if(!x907.valid){ continue; } CheckValue<IkReal> x908 = IKatan2WithCheck(IkReal((gconst10*new_r00)),IkReal((gconst11*new_r00)),IKFAST_ATAN2_MAGTHRESH); if(!x908.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x907.value)))+(x908.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x909=IKsin(j5); IkReal x910=IKcos(j5); IkReal x911=(gconst11*x909); IkReal x912=(gconst10*x909); IkReal x913=((1.0)*x910); IkReal x914=(gconst10*x913); evalcond[0]=((((-1.0)*x914))+x911); evalcond[1]=(gconst11+((new_r10*x909))+((new_r00*x910))); evalcond[2]=(((gconst11*x910))+new_r00+x912); evalcond[3]=(gconst10+((new_r00*x909))+(((-1.0)*new_r10*x913))); evalcond[4]=((((-1.0)*x912))+(((-1.0)*gconst11*x913))); evalcond[5]=((((-1.0)*x914))+new_r10+x911); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x915 = IKatan2WithCheck(IkReal((gconst10*gconst11)),IkReal(gconst11*gconst11),IKFAST_ATAN2_MAGTHRESH); if(!x915.valid){ continue; } CheckValue<IkReal> x916=IKPowWithIntegerCheck(IKsign(((((-1.0)*gconst10*new_r10))+(((-1.0)*gconst11*new_r00)))),-1); if(!x916.valid){ continue; } j5array[0]=((-1.5707963267949)+(x915.value)+(((1.5707963267949)*(x916.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x917=IKsin(j5); IkReal x918=IKcos(j5); IkReal x919=(gconst11*x917); IkReal x920=(gconst10*x917); IkReal x921=((1.0)*x918); IkReal x922=(gconst10*x921); evalcond[0]=((((-1.0)*x922))+x919); evalcond[1]=(gconst11+((new_r10*x917))+((new_r00*x918))); evalcond[2]=(((gconst11*x918))+new_r00+x920); evalcond[3]=(gconst10+(((-1.0)*new_r10*x921))+((new_r00*x917))); evalcond[4]=((((-1.0)*x920))+(((-1.0)*gconst11*x921))); evalcond[5]=((((-1.0)*x922))+new_r10+x919); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r10))+(IKabs(new_r01))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; CheckValue<IkReal> x924 = IKatan2WithCheck(IkReal(0),IkReal(((-1.0)*new_r00)),IKFAST_ATAN2_MAGTHRESH); if(!x924.valid){ continue; } IkReal x923=((1.0)*(x924.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst10; cj7=gconst11; j7=((3.14159265)+(((-1.0)*x923))); new_r01=0; new_r10=0; IkReal gconst9=((3.14159265358979)+(((-1.0)*x923))); IkReal gconst10=0; IkReal x925 = new_r00*new_r00; if(IKabs(x925)==0){ continue; } IkReal gconst11=((1.0)*new_r00*(pow(x925,-0.5))); j5eval[0]=new_r11; if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x926=IKPowWithIntegerCheck(gconst11,-1); if(!x926.valid){ continue; } cj5array[0]=(new_r11*(x926.value)); if( cj5array[0] >= -1-IKFAST_SINCOS_THRESH && cj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKacos(cj5array[0]); sj5array[0] = IKsin(j5array[0]); cj5array[1] = cj5array[0]; j5array[1] = -j5array[0]; sj5array[1] = -sj5array[0]; } else if( isnan(cj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x927=IKsin(j5); IkReal x928=IKcos(j5); evalcond[0]=(new_r00*x927); evalcond[1]=(new_r11*x927); evalcond[2]=(gconst11*x927); evalcond[3]=(gconst11+((new_r00*x928))); evalcond[4]=(((gconst11*x928))+new_r00); evalcond[5]=(gconst11+(((-1.0)*new_r11*x928))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } else { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x929=IKPowWithIntegerCheck(new_r11,-1); if(!x929.valid){ continue; } cj5array[0]=(gconst11*(x929.value)); if( cj5array[0] >= -1-IKFAST_SINCOS_THRESH && cj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKacos(cj5array[0]); sj5array[0] = IKsin(j5array[0]); cj5array[1] = cj5array[0]; j5array[1] = -j5array[0]; sj5array[1] = -sj5array[0]; } else if( isnan(cj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x930=IKsin(j5); IkReal x931=IKcos(j5); IkReal x932=(gconst11*x931); evalcond[0]=(new_r00*x930); evalcond[1]=(new_r11*x930); evalcond[2]=(gconst11*x930); evalcond[3]=(gconst11+((new_r00*x931))); evalcond[4]=(new_r00+x932); evalcond[5]=((((-1.0)*x932))+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=IKabs(new_r00); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; CheckValue<IkReal> x934 = IKatan2WithCheck(IkReal(new_r10),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x934.valid){ continue; } IkReal x933=((1.0)*(x934.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst10; cj7=gconst11; j7=((3.14159265)+(((-1.0)*x933))); new_r00=0; IkReal gconst9=((3.14159265358979)+(((-1.0)*x933))); IkReal x935 = new_r10*new_r10; if(IKabs(x935)==0){ continue; } IkReal gconst10=((1.0)*new_r10*(pow(x935,-0.5))); IkReal gconst11=0; j5eval[0]=((IKabs(new_r11))+(IKabs(new_r01))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; CheckValue<IkReal> x937 = IKatan2WithCheck(IkReal(new_r10),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x937.valid){ continue; } IkReal x936=((1.0)*(x937.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst10; cj7=gconst11; j7=((3.14159265)+(((-1.0)*x936))); new_r00=0; IkReal gconst9=((3.14159265358979)+(((-1.0)*x936))); IkReal x938 = new_r10*new_r10; if(IKabs(x938)==0){ continue; } IkReal gconst10=((1.0)*new_r10*(pow(x938,-0.5))); IkReal gconst11=0; j5eval[0]=((IKabs(new_r11))+(IKabs(new_r10))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; CheckValue<IkReal> x940 = IKatan2WithCheck(IkReal(new_r10),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x940.valid){ continue; } IkReal x939=((1.0)*(x940.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst10; cj7=gconst11; j7=((3.14159265)+(((-1.0)*x939))); new_r00=0; IkReal gconst9=((3.14159265358979)+(((-1.0)*x939))); IkReal x941 = new_r10*new_r10; if(IKabs(x941)==0){ continue; } IkReal gconst10=((1.0)*new_r10*(pow(x941,-0.5))); IkReal gconst11=0; j5eval[0]=new_r10; if( IKabs(j5eval[0]) < 0.0000010000000000 ) { continue; // 3 cases reached } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x942=IKPowWithIntegerCheck(gconst10,-1); if(!x942.valid){ continue; } CheckValue<IkReal> x943=IKPowWithIntegerCheck(new_r10,-1); if(!x943.valid){ continue; } if( IKabs((new_r11*(x942.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs((gconst10*(x943.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr((new_r11*(x942.value)))+IKsqr((gconst10*(x943.value)))-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2((new_r11*(x942.value)), (gconst10*(x943.value))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x944=IKsin(j5); IkReal x945=IKcos(j5); IkReal x946=(gconst10*x944); IkReal x947=((1.0)*x945); IkReal x948=(gconst10*x947); evalcond[0]=(new_r10*x944); evalcond[1]=x946; evalcond[2]=(gconst10+(((-1.0)*new_r10*x947))); evalcond[3]=((((-1.0)*x948))+new_r01); evalcond[4]=((((-1.0)*x946))+new_r11); evalcond[5]=((((-1.0)*x948))+new_r10); evalcond[6]=(((new_r01*x944))+(((-1.0)*new_r11*x947))); evalcond[7]=(((new_r01*x945))+((new_r11*x944))+(((-1.0)*gconst10))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x949=IKPowWithIntegerCheck(IKsign(gconst10),-1); if(!x949.valid){ continue; } CheckValue<IkReal> x950 = IKatan2WithCheck(IkReal(new_r11),IkReal(new_r10),IKFAST_ATAN2_MAGTHRESH); if(!x950.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x949.value)))+(x950.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x951=IKsin(j5); IkReal x952=IKcos(j5); IkReal x953=(gconst10*x951); IkReal x954=((1.0)*x952); IkReal x955=(gconst10*x954); evalcond[0]=(new_r10*x951); evalcond[1]=x953; evalcond[2]=(gconst10+(((-1.0)*new_r10*x954))); evalcond[3]=(new_r01+(((-1.0)*x955))); evalcond[4]=((((-1.0)*x953))+new_r11); evalcond[5]=(new_r10+(((-1.0)*x955))); evalcond[6]=(((new_r01*x951))+(((-1.0)*new_r11*x954))); evalcond[7]=(((new_r01*x952))+(((-1.0)*gconst10))+((new_r11*x951))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x956=IKPowWithIntegerCheck(IKsign(gconst10),-1); if(!x956.valid){ continue; } CheckValue<IkReal> x957 = IKatan2WithCheck(IkReal(new_r11),IkReal(new_r01),IKFAST_ATAN2_MAGTHRESH); if(!x957.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x956.value)))+(x957.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x958=IKsin(j5); IkReal x959=IKcos(j5); IkReal x960=(gconst10*x958); IkReal x961=((1.0)*x959); IkReal x962=(gconst10*x961); evalcond[0]=(new_r10*x958); evalcond[1]=x960; evalcond[2]=(gconst10+(((-1.0)*new_r10*x961))); evalcond[3]=(new_r01+(((-1.0)*x962))); evalcond[4]=((((-1.0)*x960))+new_r11); evalcond[5]=(new_r10+(((-1.0)*x962))); evalcond[6]=(((new_r01*x958))+(((-1.0)*new_r11*x961))); evalcond[7]=(((new_r01*x959))+(((-1.0)*gconst10))+((new_r11*x958))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { if( 1 ) { bgotonextstatement=false; continue; // branch miss [j5] } } while(0); if( bgotonextstatement ) { } } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x963 = IKatan2WithCheck(IkReal((((gconst10*gconst11))+((new_r00*new_r10)))),IkReal(((((-1.0)*(new_r10*new_r10)))+(gconst11*gconst11))),IKFAST_ATAN2_MAGTHRESH); if(!x963.valid){ continue; } CheckValue<IkReal> x964=IKPowWithIntegerCheck(IKsign(((((-1.0)*gconst10*new_r10))+(((-1.0)*gconst11*new_r00)))),-1); if(!x964.valid){ continue; } j5array[0]=((-1.5707963267949)+(x963.value)+(((1.5707963267949)*(x964.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x965=IKsin(j5); IkReal x966=IKcos(j5); IkReal x967=(gconst11*x965); IkReal x968=((1.0)*x966); IkReal x969=(gconst10*x965); IkReal x970=(gconst10*x968); evalcond[0]=(((new_r00*x966))+gconst11+((new_r10*x965))); evalcond[1]=(((gconst11*x966))+new_r00+x969); evalcond[2]=(((new_r00*x965))+gconst10+(((-1.0)*new_r10*x968))); evalcond[3]=(((new_r01*x965))+gconst11+(((-1.0)*new_r11*x968))); evalcond[4]=(new_r01+x967+(((-1.0)*x970))); evalcond[5]=(new_r10+x967+(((-1.0)*x970))); evalcond[6]=(((new_r11*x965))+((new_r01*x966))+(((-1.0)*gconst10))); evalcond[7]=((((-1.0)*x969))+new_r11+(((-1.0)*gconst11*x968))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x971=((1.0)*new_r10); CheckValue<IkReal> x972 = IKatan2WithCheck(IkReal((((gconst10*gconst11))+((new_r00*new_r01)))),IkReal(((((-1.0)*new_r01*x971))+(gconst11*gconst11))),IKFAST_ATAN2_MAGTHRESH); if(!x972.valid){ continue; } CheckValue<IkReal> x973=IKPowWithIntegerCheck(IKsign(((((-1.0)*gconst11*new_r00))+(((-1.0)*gconst10*x971)))),-1); if(!x973.valid){ continue; } j5array[0]=((-1.5707963267949)+(x972.value)+(((1.5707963267949)*(x973.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x974=IKsin(j5); IkReal x975=IKcos(j5); IkReal x976=(gconst11*x974); IkReal x977=((1.0)*x975); IkReal x978=(gconst10*x974); IkReal x979=(gconst10*x977); evalcond[0]=(gconst11+((new_r10*x974))+((new_r00*x975))); evalcond[1]=(((gconst11*x975))+new_r00+x978); evalcond[2]=(gconst10+(((-1.0)*new_r10*x977))+((new_r00*x974))); evalcond[3]=(((new_r01*x974))+gconst11+(((-1.0)*new_r11*x977))); evalcond[4]=(new_r01+x976+(((-1.0)*x979))); evalcond[5]=(new_r10+x976+(((-1.0)*x979))); evalcond[6]=(((new_r01*x975))+((new_r11*x974))+(((-1.0)*gconst10))); evalcond[7]=((((-1.0)*x978))+(((-1.0)*gconst11*x977))+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x980=((1.0)*new_r10); CheckValue<IkReal> x981 = IKatan2WithCheck(IkReal((((gconst11*new_r00))+((gconst11*new_r11)))),IkReal((((gconst11*new_r01))+(((-1.0)*gconst11*x980)))),IKFAST_ATAN2_MAGTHRESH); if(!x981.valid){ continue; } CheckValue<IkReal> x982=IKPowWithIntegerCheck(IKsign(((((-1.0)*new_r11*x980))+(((-1.0)*new_r00*new_r01)))),-1); if(!x982.valid){ continue; } j5array[0]=((-1.5707963267949)+(x981.value)+(((1.5707963267949)*(x982.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x983=IKsin(j5); IkReal x984=IKcos(j5); IkReal x985=(gconst11*x983); IkReal x986=((1.0)*x984); IkReal x987=(gconst10*x983); IkReal x988=(gconst10*x986); evalcond[0]=(((new_r00*x984))+gconst11+((new_r10*x983))); evalcond[1]=(((gconst11*x984))+new_r00+x987); evalcond[2]=(((new_r00*x983))+gconst10+(((-1.0)*new_r10*x986))); evalcond[3]=(gconst11+(((-1.0)*new_r11*x986))+((new_r01*x983))); evalcond[4]=((((-1.0)*x988))+new_r01+x985); evalcond[5]=((((-1.0)*x988))+new_r10+x985); evalcond[6]=((((-1.0)*gconst10))+((new_r11*x983))+((new_r01*x984))); evalcond[7]=((((-1.0)*x987))+(((-1.0)*gconst11*x986))+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { IkReal x989=((-1.0)*new_r10); IkReal x991 = ((new_r10*new_r10)+(new_r00*new_r00)); if(IKabs(x991)==0){ continue; } IkReal x990=pow(x991,-0.5); CheckValue<IkReal> x992 = IKatan2WithCheck(IkReal(((-1.0)*new_r00)),IkReal(x989),IKFAST_ATAN2_MAGTHRESH); if(!x992.valid){ continue; } IkReal gconst12=((-1.0)*(x992.value)); IkReal gconst13=(new_r00*x990); IkReal gconst14=(x989*x990); CheckValue<IkReal> x993 = IKatan2WithCheck(IkReal(((-1.0)*new_r00)),IkReal(((-1.0)*new_r10)),IKFAST_ATAN2_MAGTHRESH); if(!x993.valid){ continue; } evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(((x993.value)+j7)))), 6.28318530717959))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[3]; IkReal x994=((-1.0)*new_r10); CheckValue<IkReal> x997 = IKatan2WithCheck(IkReal(((-1.0)*new_r00)),IkReal(x994),IKFAST_ATAN2_MAGTHRESH); if(!x997.valid){ continue; } IkReal x995=((-1.0)*(x997.value)); IkReal x996=x990; sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst13; cj7=gconst14; j7=x995; IkReal gconst12=x995; IkReal gconst13=(new_r00*x996); IkReal gconst14=(x994*x996); IkReal x998=new_r10*new_r10; IkReal x999=((1.0)*new_r00); IkReal x1000=((1.0)*new_r10*new_r11); IkReal x1001=((((-1.0)*x1000))+(((-1.0)*new_r01*x999))); IkReal x1002=x990; IkReal x1003=(new_r10*x1002); j5eval[0]=x1001; j5eval[1]=((IKabs(((((-1.0)*x1003*x999))+(((-1.0)*x1000*x1002)))))+(IKabs(((((-1.0)*new_r01*x1003))+((x1002*x998)))))); j5eval[2]=IKsign(x1001); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[1]; IkReal x1004=((-1.0)*new_r10); CheckValue<IkReal> x1007 = IKatan2WithCheck(IkReal(((-1.0)*new_r00)),IkReal(x1004),IKFAST_ATAN2_MAGTHRESH); if(!x1007.valid){ continue; } IkReal x1005=((-1.0)*(x1007.value)); IkReal x1006=x990; sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst13; cj7=gconst14; j7=x1005; IkReal gconst12=x1005; IkReal gconst13=(new_r00*x1006); IkReal gconst14=(x1004*x1006); IkReal x1008=new_r10*new_r10; CheckValue<IkReal> x1011=IKPowWithIntegerCheck((x1008+(new_r00*new_r00)),-1); if(!x1011.valid){ continue; } IkReal x1009=x1011.value; IkReal x1010=(new_r00*x1009); j5eval[0]=((IKabs((((new_r01*x1010*(new_r00*new_r00)))+((new_r10*x1010))+((new_r01*x1008*x1010)))))+(IKabs((((x1008*x1009))+((new_r00*new_r11)))))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; IkReal x1012=((-1.0)*new_r10); CheckValue<IkReal> x1015 = IKatan2WithCheck(IkReal(((-1.0)*new_r00)),IkReal(x1012),IKFAST_ATAN2_MAGTHRESH); if(!x1015.valid){ continue; } IkReal x1013=((-1.0)*(x1015.value)); IkReal x1014=x990; sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst13; cj7=gconst14; j7=x1013; IkReal gconst12=x1013; IkReal gconst13=(new_r00*x1014); IkReal gconst14=(x1012*x1014); IkReal x1016=new_r10*new_r10; IkReal x1017=new_r00*new_r00; CheckValue<IkReal> x1021=IKPowWithIntegerCheck((x1016+x1017),-1); if(!x1021.valid){ continue; } IkReal x1018=x1021.value; IkReal x1019=(new_r10*x1018); IkReal x1020=(x1016*x1018); j5eval[0]=((IKabs((((x1019*(new_r00*new_r00*new_r00)))+((new_r00*x1019))+((new_r00*x1019*(new_r10*new_r10))))))+(IKabs((x1020+(((-1.0)*x1017*x1020))+(((-1.0)*x1018*(x1017*x1017))))))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal evalcond[3]; bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r11))+(IKabs(new_r00))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; IkReal x1022=((-1.0)*new_r10); CheckValue<IkReal> x1024 = IKatan2WithCheck(IkReal(0),IkReal(x1022),IKFAST_ATAN2_MAGTHRESH); if(!x1024.valid){ continue; } IkReal x1023=((-1.0)*(x1024.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst13; cj7=gconst14; j7=x1023; new_r11=0; new_r00=0; IkReal gconst12=x1023; IkReal gconst13=0; IkReal x1025 = new_r10*new_r10; if(IKabs(x1025)==0){ continue; } IkReal gconst14=(x1022*(pow(x1025,-0.5))); j5eval[0]=new_r01; if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x1026=IKPowWithIntegerCheck(gconst14,-1); if(!x1026.valid){ continue; } sj5array[0]=((-1.0)*new_r01*(x1026.value)); if( sj5array[0] >= -1-IKFAST_SINCOS_THRESH && sj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKasin(sj5array[0]); cj5array[0] = IKcos(j5array[0]); sj5array[1] = sj5array[0]; j5array[1] = j5array[0] > 0 ? (IKPI-j5array[0]) : (-IKPI-j5array[0]); cj5array[1] = -cj5array[0]; } else if( isnan(sj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x1027=IKcos(j5); IkReal x1028=IKsin(j5); evalcond[0]=(new_r01*x1027); evalcond[1]=(gconst14*x1027); evalcond[2]=((-1.0)*new_r10*x1027); evalcond[3]=(gconst14+((new_r01*x1028))); evalcond[4]=(((new_r10*x1028))+gconst14); evalcond[5]=(((gconst14*x1028))+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } else { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x1029=IKPowWithIntegerCheck(new_r01,-1); if(!x1029.valid){ continue; } sj5array[0]=((-1.0)*gconst14*(x1029.value)); if( sj5array[0] >= -1-IKFAST_SINCOS_THRESH && sj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKasin(sj5array[0]); cj5array[0] = IKcos(j5array[0]); sj5array[1] = sj5array[0]; j5array[1] = j5array[0] > 0 ? (IKPI-j5array[0]) : (-IKPI-j5array[0]); cj5array[1] = -cj5array[0]; } else if( isnan(sj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x1030=IKcos(j5); IkReal x1031=IKsin(j5); IkReal x1032=(gconst14*x1031); evalcond[0]=(new_r01*x1030); evalcond[1]=(gconst14*x1030); evalcond[2]=((-1.0)*new_r10*x1030); evalcond[3]=(x1032+new_r01); evalcond[4]=(gconst14+((new_r10*x1031))); evalcond[5]=(x1032+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r11))+(IKabs(new_r01))); evalcond[1]=gconst14; evalcond[2]=gconst13; if( IKabs(evalcond[0]) < 0.0000050000000000 && IKabs(evalcond[1]) < 0.0000050000000000 && IKabs(evalcond[2]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[3]; IkReal x1033=((-1.0)*new_r10); CheckValue<IkReal> x1035 = IKatan2WithCheck(IkReal(((-1.0)*new_r00)),IkReal(x1033),IKFAST_ATAN2_MAGTHRESH); if(!x1035.valid){ continue; } IkReal x1034=((-1.0)*(x1035.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst13; cj7=gconst14; j7=x1034; new_r11=0; new_r01=0; new_r22=0; new_r20=0; IkReal gconst12=x1034; IkReal gconst13=new_r00; IkReal gconst14=x1033; j5eval[0]=-1.0; j5eval[1]=-1.0; j5eval[2]=((IKabs(((1.0)+(((-1.0)*(new_r10*new_r10))))))+(IKabs((new_r00*new_r10)))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[3]; IkReal x1036=((-1.0)*new_r10); CheckValue<IkReal> x1038 = IKatan2WithCheck(IkReal(((-1.0)*new_r00)),IkReal(x1036),IKFAST_ATAN2_MAGTHRESH); if(!x1038.valid){ continue; } IkReal x1037=((-1.0)*(x1038.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst13; cj7=gconst14; j7=x1037; new_r11=0; new_r01=0; new_r22=0; new_r20=0; IkReal gconst12=x1037; IkReal gconst13=new_r00; IkReal gconst14=x1036; j5eval[0]=-1.0; j5eval[1]=-1.0; j5eval[2]=((IKabs(((1.0)+(((-1.0)*(new_r10*new_r10))))))+(IKabs((new_r00*new_r10)))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[3]; IkReal x1039=((-1.0)*new_r10); CheckValue<IkReal> x1041 = IKatan2WithCheck(IkReal(((-1.0)*new_r00)),IkReal(x1039),IKFAST_ATAN2_MAGTHRESH); if(!x1041.valid){ continue; } IkReal x1040=((-1.0)*(x1041.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst13; cj7=gconst14; j7=x1040; new_r11=0; new_r01=0; new_r22=0; new_r20=0; IkReal gconst12=x1040; IkReal gconst13=new_r00; IkReal gconst14=x1039; j5eval[0]=1.0; j5eval[1]=1.0; j5eval[2]=((((0.5)*(IKabs(((-1.0)+(((2.0)*(new_r10*new_r10))))))))+(IKabs((new_r00*new_r10)))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { continue; // 3 cases reached } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x1042=((1.0)*gconst14); CheckValue<IkReal> x1043=IKPowWithIntegerCheck(IKsign((((gconst13*new_r00))+(((-1.0)*new_r10*x1042)))),-1); if(!x1043.valid){ continue; } CheckValue<IkReal> x1044 = IKatan2WithCheck(IkReal(((gconst14*gconst14)+(((-1.0)*(new_r00*new_r00))))),IkReal(((((-1.0)*gconst13*x1042))+((new_r00*new_r10)))),IKFAST_ATAN2_MAGTHRESH); if(!x1044.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x1043.value)))+(x1044.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x1045=IKsin(j5); IkReal x1046=IKcos(j5); IkReal x1047=(gconst14*x1045); IkReal x1048=(gconst14*x1046); IkReal x1049=(gconst13*x1045); IkReal x1050=((1.0)*x1046); IkReal x1051=(gconst13*x1050); evalcond[0]=((((-1.0)*x1051))+x1047); evalcond[1]=(gconst14+((new_r00*x1046))+((new_r10*x1045))); evalcond[2]=(x1049+x1048+new_r00); evalcond[3]=(gconst13+((new_r00*x1045))+(((-1.0)*new_r10*x1050))); evalcond[4]=((((-1.0)*x1048))+(((-1.0)*x1049))); evalcond[5]=((((-1.0)*x1051))+x1047+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1052=IKPowWithIntegerCheck(IKsign(((((-1.0)*(gconst14*gconst14)))+(((-1.0)*(gconst13*gconst13))))),-1); if(!x1052.valid){ continue; } CheckValue<IkReal> x1053 = IKatan2WithCheck(IkReal((gconst13*new_r00)),IkReal((gconst14*new_r00)),IKFAST_ATAN2_MAGTHRESH); if(!x1053.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x1052.value)))+(x1053.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x1054=IKsin(j5); IkReal x1055=IKcos(j5); IkReal x1056=(gconst14*x1054); IkReal x1057=(gconst14*x1055); IkReal x1058=(gconst13*x1054); IkReal x1059=((1.0)*x1055); IkReal x1060=(gconst13*x1059); evalcond[0]=(x1056+(((-1.0)*x1060))); evalcond[1]=(gconst14+((new_r00*x1055))+((new_r10*x1054))); evalcond[2]=(x1057+x1058+new_r00); evalcond[3]=(gconst13+((new_r00*x1054))+(((-1.0)*new_r10*x1059))); evalcond[4]=((((-1.0)*x1057))+(((-1.0)*x1058))); evalcond[5]=(x1056+new_r10+(((-1.0)*x1060))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1061 = IKatan2WithCheck(IkReal(gconst13*gconst13),IkReal((gconst13*gconst14)),IKFAST_ATAN2_MAGTHRESH); if(!x1061.valid){ continue; } CheckValue<IkReal> x1062=IKPowWithIntegerCheck(IKsign(((((-1.0)*gconst13*new_r00))+((gconst14*new_r10)))),-1); if(!x1062.valid){ continue; } j5array[0]=((-1.5707963267949)+(x1061.value)+(((1.5707963267949)*(x1062.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x1063=IKsin(j5); IkReal x1064=IKcos(j5); IkReal x1065=(gconst14*x1063); IkReal x1066=(gconst14*x1064); IkReal x1067=(gconst13*x1063); IkReal x1068=((1.0)*x1064); IkReal x1069=(gconst13*x1068); evalcond[0]=(x1065+(((-1.0)*x1069))); evalcond[1]=(gconst14+((new_r00*x1064))+((new_r10*x1063))); evalcond[2]=(x1067+x1066+new_r00); evalcond[3]=((((-1.0)*new_r10*x1068))+gconst13+((new_r00*x1063))); evalcond[4]=((((-1.0)*x1067))+(((-1.0)*x1066))); evalcond[5]=(x1065+new_r10+(((-1.0)*x1069))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r10))+(IKabs(new_r01))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x1070=IKPowWithIntegerCheck(gconst13,-1); if(!x1070.valid){ continue; } sj5array[0]=(new_r11*(x1070.value)); if( sj5array[0] >= -1-IKFAST_SINCOS_THRESH && sj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKasin(sj5array[0]); cj5array[0] = IKcos(j5array[0]); sj5array[1] = sj5array[0]; j5array[1] = j5array[0] > 0 ? (IKPI-j5array[0]) : (-IKPI-j5array[0]); cj5array[1] = -cj5array[0]; } else if( isnan(sj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x1071=IKcos(j5); IkReal x1072=IKsin(j5); IkReal x1073=((-1.0)*x1071); evalcond[0]=(new_r00*x1071); evalcond[1]=(new_r11*x1073); evalcond[2]=(gconst13*x1073); evalcond[3]=(gconst13+((new_r00*x1072))); evalcond[4]=(((gconst13*x1072))+new_r00); evalcond[5]=(((new_r11*x1072))+(((-1.0)*gconst13))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r11))+(IKabs(new_r10))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; CheckValue<IkReal> x1075 = IKatan2WithCheck(IkReal(((-1.0)*new_r00)),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x1075.valid){ continue; } IkReal x1074=((-1.0)*(x1075.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst13; cj7=gconst14; j7=x1074; new_r11=0; new_r10=0; new_r22=0; new_r02=0; IkReal gconst12=x1074; IkReal x1076 = ((1.0)+(((-1.0)*(new_r01*new_r01)))); if(IKabs(x1076)==0){ continue; } IkReal gconst13=(new_r00*(pow(x1076,-0.5))); IkReal gconst14=0; j5eval[0]=((IKabs(new_r00))+(IKabs(new_r01))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; CheckValue<IkReal> x1078 = IKatan2WithCheck(IkReal(((-1.0)*new_r00)),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x1078.valid){ continue; } IkReal x1077=((-1.0)*(x1078.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst13; cj7=gconst14; j7=x1077; new_r11=0; new_r10=0; new_r22=0; new_r02=0; IkReal gconst12=x1077; IkReal x1079 = ((1.0)+(((-1.0)*(new_r01*new_r01)))); if(IKabs(x1079)==0){ continue; } IkReal gconst13=(new_r00*(pow(x1079,-0.5))); IkReal gconst14=0; j5eval[0]=new_r00; if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[2]; CheckValue<IkReal> x1081 = IKatan2WithCheck(IkReal(((-1.0)*new_r00)),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x1081.valid){ continue; } IkReal x1080=((-1.0)*(x1081.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst13; cj7=gconst14; j7=x1080; new_r11=0; new_r10=0; new_r22=0; new_r02=0; IkReal gconst12=x1080; IkReal x1082 = ((1.0)+(((-1.0)*(new_r01*new_r01)))); if(IKabs(x1082)==0){ continue; } IkReal gconst13=(new_r00*(pow(x1082,-0.5))); IkReal gconst14=0; j5eval[0]=new_r00; j5eval[1]=new_r01; if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 ) { continue; // 3 cases reached } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1083=IKPowWithIntegerCheck(new_r00,-1); if(!x1083.valid){ continue; } CheckValue<IkReal> x1084=IKPowWithIntegerCheck(new_r01,-1); if(!x1084.valid){ continue; } if( IKabs(((-1.0)*gconst13*(x1083.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs((gconst13*(x1084.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*gconst13*(x1083.value)))+IKsqr((gconst13*(x1084.value)))-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2(((-1.0)*gconst13*(x1083.value)), (gconst13*(x1084.value))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1085=IKsin(j5); IkReal x1086=IKcos(j5); IkReal x1087=((1.0)*gconst13); IkReal x1088=(gconst13*x1085); evalcond[0]=(new_r01*x1085); evalcond[1]=(new_r00*x1086); evalcond[2]=((-1.0)*x1088); evalcond[3]=((-1.0)*gconst13*x1086); evalcond[4]=(((new_r00*x1085))+gconst13); evalcond[5]=(x1088+new_r00); evalcond[6]=(new_r01+(((-1.0)*x1086*x1087))); evalcond[7]=(((new_r01*x1086))+(((-1.0)*x1087))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1089=IKPowWithIntegerCheck(new_r00,-1); if(!x1089.valid){ continue; } CheckValue<IkReal> x1090=IKPowWithIntegerCheck(gconst13,-1); if(!x1090.valid){ continue; } if( IKabs(((-1.0)*gconst13*(x1089.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs((new_r01*(x1090.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*gconst13*(x1089.value)))+IKsqr((new_r01*(x1090.value)))-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2(((-1.0)*gconst13*(x1089.value)), (new_r01*(x1090.value))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1091=IKsin(j5); IkReal x1092=IKcos(j5); IkReal x1093=((1.0)*gconst13); IkReal x1094=(gconst13*x1091); evalcond[0]=(new_r01*x1091); evalcond[1]=(new_r00*x1092); evalcond[2]=((-1.0)*x1094); evalcond[3]=((-1.0)*gconst13*x1092); evalcond[4]=(((new_r00*x1091))+gconst13); evalcond[5]=(x1094+new_r00); evalcond[6]=((((-1.0)*x1092*x1093))+new_r01); evalcond[7]=(((new_r01*x1092))+(((-1.0)*x1093))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1095 = IKatan2WithCheck(IkReal(((-1.0)*new_r00)),IkReal(new_r01),IKFAST_ATAN2_MAGTHRESH); if(!x1095.valid){ continue; } CheckValue<IkReal> x1096=IKPowWithIntegerCheck(IKsign(gconst13),-1); if(!x1096.valid){ continue; } j5array[0]=((-1.5707963267949)+(x1095.value)+(((1.5707963267949)*(x1096.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1097=IKsin(j5); IkReal x1098=IKcos(j5); IkReal x1099=((1.0)*gconst13); IkReal x1100=(gconst13*x1097); evalcond[0]=(new_r01*x1097); evalcond[1]=(new_r00*x1098); evalcond[2]=((-1.0)*x1100); evalcond[3]=((-1.0)*gconst13*x1098); evalcond[4]=(((new_r00*x1097))+gconst13); evalcond[5]=(x1100+new_r00); evalcond[6]=(new_r01+(((-1.0)*x1098*x1099))); evalcond[7]=(((new_r01*x1098))+(((-1.0)*x1099))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=IKabs(new_r10); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; CheckValue<IkReal> x1102 = IKatan2WithCheck(IkReal(((-1.0)*new_r00)),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x1102.valid){ continue; } IkReal x1101=((-1.0)*(x1102.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst13; cj7=gconst14; j7=x1101; new_r10=0; IkReal gconst12=x1101; IkReal x1103 = new_r00*new_r00; if(IKabs(x1103)==0){ continue; } IkReal gconst13=(new_r00*(pow(x1103,-0.5))); IkReal gconst14=0; j5eval[0]=((IKabs(new_r11))+(IKabs(new_r01))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; CheckValue<IkReal> x1105 = IKatan2WithCheck(IkReal(((-1.0)*new_r00)),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x1105.valid){ continue; } IkReal x1104=((-1.0)*(x1105.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst13; cj7=gconst14; j7=x1104; new_r10=0; IkReal gconst12=x1104; IkReal x1106 = new_r00*new_r00; if(IKabs(x1106)==0){ continue; } IkReal gconst13=(new_r00*(pow(x1106,-0.5))); IkReal gconst14=0; j5eval[0]=((IKabs(new_r00))+(IKabs(new_r01))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; CheckValue<IkReal> x1108 = IKatan2WithCheck(IkReal(((-1.0)*new_r00)),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x1108.valid){ continue; } IkReal x1107=((-1.0)*(x1108.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst13; cj7=gconst14; j7=x1107; new_r10=0; IkReal gconst12=x1107; IkReal x1109 = new_r00*new_r00; if(IKabs(x1109)==0){ continue; } IkReal gconst13=(new_r00*(pow(x1109,-0.5))); IkReal gconst14=0; j5eval[0]=new_r00; if( IKabs(j5eval[0]) < 0.0000010000000000 ) { continue; // 3 cases reached } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1110=IKPowWithIntegerCheck(new_r00,-1); if(!x1110.valid){ continue; } CheckValue<IkReal> x1111=IKPowWithIntegerCheck(gconst13,-1); if(!x1111.valid){ continue; } if( IKabs(((-1.0)*gconst13*(x1110.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs((new_r01*(x1111.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*gconst13*(x1110.value)))+IKsqr((new_r01*(x1111.value)))-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2(((-1.0)*gconst13*(x1110.value)), (new_r01*(x1111.value))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1112=IKcos(j5); IkReal x1113=IKsin(j5); IkReal x1114=((1.0)*gconst13); evalcond[0]=(new_r00*x1112); evalcond[1]=((-1.0)*gconst13*x1112); evalcond[2]=(gconst13+((new_r00*x1113))); evalcond[3]=(((gconst13*x1113))+new_r00); evalcond[4]=((((-1.0)*x1112*x1114))+new_r01); evalcond[5]=((((-1.0)*x1113*x1114))+new_r11); evalcond[6]=(((new_r01*x1113))+(((-1.0)*new_r11*x1112))); evalcond[7]=(((new_r11*x1113))+((new_r01*x1112))+(((-1.0)*x1114))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1115 = IKatan2WithCheck(IkReal(((-1.0)*new_r00)),IkReal(new_r01),IKFAST_ATAN2_MAGTHRESH); if(!x1115.valid){ continue; } CheckValue<IkReal> x1116=IKPowWithIntegerCheck(IKsign(gconst13),-1); if(!x1116.valid){ continue; } j5array[0]=((-1.5707963267949)+(x1115.value)+(((1.5707963267949)*(x1116.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1117=IKcos(j5); IkReal x1118=IKsin(j5); IkReal x1119=((1.0)*gconst13); evalcond[0]=(new_r00*x1117); evalcond[1]=((-1.0)*gconst13*x1117); evalcond[2]=(gconst13+((new_r00*x1118))); evalcond[3]=(((gconst13*x1118))+new_r00); evalcond[4]=(new_r01+(((-1.0)*x1117*x1119))); evalcond[5]=(new_r11+(((-1.0)*x1118*x1119))); evalcond[6]=(((new_r01*x1118))+(((-1.0)*new_r11*x1117))); evalcond[7]=(((new_r11*x1118))+((new_r01*x1117))+(((-1.0)*x1119))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1120 = IKatan2WithCheck(IkReal(new_r11),IkReal(new_r01),IKFAST_ATAN2_MAGTHRESH); if(!x1120.valid){ continue; } CheckValue<IkReal> x1121=IKPowWithIntegerCheck(IKsign(gconst13),-1); if(!x1121.valid){ continue; } j5array[0]=((-1.5707963267949)+(x1120.value)+(((1.5707963267949)*(x1121.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1122=IKcos(j5); IkReal x1123=IKsin(j5); IkReal x1124=((1.0)*gconst13); evalcond[0]=(new_r00*x1122); evalcond[1]=((-1.0)*gconst13*x1122); evalcond[2]=(gconst13+((new_r00*x1123))); evalcond[3]=(((gconst13*x1123))+new_r00); evalcond[4]=((((-1.0)*x1122*x1124))+new_r01); evalcond[5]=((((-1.0)*x1123*x1124))+new_r11); evalcond[6]=(((new_r01*x1123))+(((-1.0)*new_r11*x1122))); evalcond[7]=(((new_r01*x1122))+(((-1.0)*x1124))+((new_r11*x1123))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { if( 1 ) { bgotonextstatement=false; continue; // branch miss [j5] } } while(0); if( bgotonextstatement ) { } } } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x1125=((1.0)*gconst14); CheckValue<IkReal> x1126=IKPowWithIntegerCheck(IKsign(((((-1.0)*new_r10*x1125))+((gconst13*new_r00)))),-1); if(!x1126.valid){ continue; } CheckValue<IkReal> x1127 = IKatan2WithCheck(IkReal(((gconst14*gconst14)+(((-1.0)*(new_r00*new_r00))))),IkReal(((((-1.0)*gconst13*x1125))+((new_r00*new_r10)))),IKFAST_ATAN2_MAGTHRESH); if(!x1127.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x1126.value)))+(x1127.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1128=IKsin(j5); IkReal x1129=IKcos(j5); IkReal x1130=((1.0)*gconst13); IkReal x1131=(gconst14*x1128); IkReal x1132=(gconst14*x1129); IkReal x1133=((1.0)*x1129); IkReal x1134=(x1129*x1130); evalcond[0]=(gconst14+((new_r10*x1128))+((new_r00*x1129))); evalcond[1]=(x1132+((gconst13*x1128))+new_r00); evalcond[2]=(gconst13+(((-1.0)*new_r10*x1133))+((new_r00*x1128))); evalcond[3]=((((-1.0)*new_r11*x1133))+gconst14+((new_r01*x1128))); evalcond[4]=(x1131+(((-1.0)*x1134))+new_r01); evalcond[5]=(x1131+(((-1.0)*x1134))+new_r10); evalcond[6]=((((-1.0)*x1130))+((new_r01*x1129))+((new_r11*x1128))); evalcond[7]=((((-1.0)*x1132))+(((-1.0)*x1128*x1130))+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x1135=((1.0)*gconst14); CheckValue<IkReal> x1136 = IKatan2WithCheck(IkReal(((gconst14*gconst14)+((new_r00*new_r11)))),IkReal(((((-1.0)*gconst13*x1135))+((new_r00*new_r01)))),IKFAST_ATAN2_MAGTHRESH); if(!x1136.valid){ continue; } CheckValue<IkReal> x1137=IKPowWithIntegerCheck(IKsign(((((-1.0)*gconst13*new_r11))+(((-1.0)*new_r01*x1135)))),-1); if(!x1137.valid){ continue; } j5array[0]=((-1.5707963267949)+(x1136.value)+(((1.5707963267949)*(x1137.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1138=IKsin(j5); IkReal x1139=IKcos(j5); IkReal x1140=((1.0)*gconst13); IkReal x1141=(gconst14*x1138); IkReal x1142=(gconst14*x1139); IkReal x1143=((1.0)*x1139); IkReal x1144=(x1139*x1140); evalcond[0]=(gconst14+((new_r00*x1139))+((new_r10*x1138))); evalcond[1]=(x1142+((gconst13*x1138))+new_r00); evalcond[2]=(gconst13+((new_r00*x1138))+(((-1.0)*new_r10*x1143))); evalcond[3]=(gconst14+(((-1.0)*new_r11*x1143))+((new_r01*x1138))); evalcond[4]=(x1141+(((-1.0)*x1144))+new_r01); evalcond[5]=(x1141+(((-1.0)*x1144))+new_r10); evalcond[6]=((((-1.0)*x1140))+((new_r11*x1138))+((new_r01*x1139))); evalcond[7]=((((-1.0)*x1142))+new_r11+(((-1.0)*x1138*x1140))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x1145=((1.0)*new_r10); CheckValue<IkReal> x1146 = IKatan2WithCheck(IkReal((((gconst14*new_r00))+((gconst14*new_r11)))),IkReal((((gconst14*new_r01))+(((-1.0)*gconst14*x1145)))),IKFAST_ATAN2_MAGTHRESH); if(!x1146.valid){ continue; } CheckValue<IkReal> x1147=IKPowWithIntegerCheck(IKsign(((((-1.0)*new_r11*x1145))+(((-1.0)*new_r00*new_r01)))),-1); if(!x1147.valid){ continue; } j5array[0]=((-1.5707963267949)+(x1146.value)+(((1.5707963267949)*(x1147.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1148=IKsin(j5); IkReal x1149=IKcos(j5); IkReal x1150=((1.0)*gconst13); IkReal x1151=(gconst14*x1148); IkReal x1152=(gconst14*x1149); IkReal x1153=((1.0)*x1149); IkReal x1154=(x1149*x1150); evalcond[0]=(((new_r00*x1149))+gconst14+((new_r10*x1148))); evalcond[1]=(x1152+((gconst13*x1148))+new_r00); evalcond[2]=(((new_r00*x1148))+gconst13+(((-1.0)*new_r10*x1153))); evalcond[3]=(gconst14+((new_r01*x1148))+(((-1.0)*new_r11*x1153))); evalcond[4]=(x1151+(((-1.0)*x1154))+new_r01); evalcond[5]=(x1151+(((-1.0)*x1154))+new_r10); evalcond[6]=((((-1.0)*x1150))+((new_r01*x1149))+((new_r11*x1148))); evalcond[7]=((((-1.0)*x1152))+(((-1.0)*x1148*x1150))+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { IkReal x1155=((-1.0)*new_r00); IkReal x1157 = ((new_r10*new_r10)+(new_r00*new_r00)); if(IKabs(x1157)==0){ continue; } IkReal x1156=pow(x1157,-0.5); CheckValue<IkReal> x1158 = IKatan2WithCheck(IkReal(x1155),IkReal(((-1.0)*new_r10)),IKFAST_ATAN2_MAGTHRESH); if(!x1158.valid){ continue; } IkReal gconst15=((3.14159265358979)+(((-1.0)*(x1158.value)))); IkReal gconst16=(x1155*x1156); IkReal gconst17=((1.0)*new_r10*x1156); CheckValue<IkReal> x1159 = IKatan2WithCheck(IkReal(((-1.0)*new_r00)),IkReal(((-1.0)*new_r10)),IKFAST_ATAN2_MAGTHRESH); if(!x1159.valid){ continue; } evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(((-3.14159265358979)+(x1159.value)+j7)))), 6.28318530717959))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[3]; IkReal x1160=((-1.0)*new_r00); CheckValue<IkReal> x1163 = IKatan2WithCheck(IkReal(x1160),IkReal(((-1.0)*new_r10)),IKFAST_ATAN2_MAGTHRESH); if(!x1163.valid){ continue; } IkReal x1161=((1.0)*(x1163.value)); IkReal x1162=x1156; sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst16; cj7=gconst17; j7=((3.14159265)+(((-1.0)*x1161))); IkReal gconst15=((3.14159265358979)+(((-1.0)*x1161))); IkReal gconst16=(x1160*x1162); IkReal gconst17=((1.0)*new_r10*x1162); IkReal x1164=new_r10*new_r10; IkReal x1165=(new_r10*new_r11); IkReal x1166=((((-1.0)*new_r00*new_r01))+(((-1.0)*x1165))); IkReal x1167=x1156; IkReal x1168=(new_r10*x1167); j5eval[0]=x1166; j5eval[1]=((IKabs((((x1165*x1167))+((new_r00*x1168)))))+(IKabs(((((-1.0)*x1164*x1167))+((new_r01*x1168)))))); j5eval[2]=IKsign(x1166); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[1]; IkReal x1169=((-1.0)*new_r00); CheckValue<IkReal> x1172 = IKatan2WithCheck(IkReal(x1169),IkReal(((-1.0)*new_r10)),IKFAST_ATAN2_MAGTHRESH); if(!x1172.valid){ continue; } IkReal x1170=((1.0)*(x1172.value)); IkReal x1171=x1156; sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst16; cj7=gconst17; j7=((3.14159265)+(((-1.0)*x1170))); IkReal gconst15=((3.14159265358979)+(((-1.0)*x1170))); IkReal gconst16=(x1169*x1171); IkReal gconst17=((1.0)*new_r10*x1171); IkReal x1173=new_r10*new_r10; IkReal x1174=new_r00*new_r00*new_r00; CheckValue<IkReal> x1178=IKPowWithIntegerCheck((x1173+(new_r00*new_r00)),-1); if(!x1178.valid){ continue; } IkReal x1175=x1178.value; IkReal x1176=(x1173*x1175); IkReal x1177=(x1174*x1175); j5eval[0]=((IKabs((((new_r00*new_r01*x1176))+((new_r01*x1177))+((new_r00*new_r10*x1175)))))+(IKabs((((new_r00*new_r11*x1176))+x1176+((new_r11*x1177)))))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; IkReal x1179=((-1.0)*new_r00); CheckValue<IkReal> x1182 = IKatan2WithCheck(IkReal(x1179),IkReal(((-1.0)*new_r10)),IKFAST_ATAN2_MAGTHRESH); if(!x1182.valid){ continue; } IkReal x1180=((1.0)*(x1182.value)); IkReal x1181=x1156; sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst16; cj7=gconst17; j7=((3.14159265)+(((-1.0)*x1180))); IkReal gconst15=((3.14159265358979)+(((-1.0)*x1180))); IkReal gconst16=(x1179*x1181); IkReal gconst17=((1.0)*new_r10*x1181); IkReal x1183=new_r10*new_r10; IkReal x1184=new_r00*new_r00; CheckValue<IkReal> x1188=IKPowWithIntegerCheck((x1184+x1183),-1); if(!x1188.valid){ continue; } IkReal x1185=x1188.value; IkReal x1186=(new_r10*x1185); IkReal x1187=(x1183*x1185); j5eval[0]=((IKabs((x1187+(((-1.0)*x1184*x1187))+(((-1.0)*x1185*(x1184*x1184))))))+(IKabs((((x1186*(new_r00*new_r00*new_r00)))+((new_r00*x1186))+((new_r00*x1186*(new_r10*new_r10))))))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal evalcond[3]; bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r11))+(IKabs(new_r00))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; CheckValue<IkReal> x1190 = IKatan2WithCheck(IkReal(0),IkReal(((-1.0)*new_r10)),IKFAST_ATAN2_MAGTHRESH); if(!x1190.valid){ continue; } IkReal x1189=((1.0)*(x1190.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst16; cj7=gconst17; j7=((3.14159265)+(((-1.0)*x1189))); new_r11=0; new_r00=0; IkReal gconst15=((3.14159265358979)+(((-1.0)*x1189))); IkReal gconst16=0; IkReal x1191 = new_r10*new_r10; if(IKabs(x1191)==0){ continue; } IkReal gconst17=((1.0)*new_r10*(pow(x1191,-0.5))); j5eval[0]=new_r01; if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x1192=IKPowWithIntegerCheck(gconst17,-1); if(!x1192.valid){ continue; } sj5array[0]=((-1.0)*new_r01*(x1192.value)); if( sj5array[0] >= -1-IKFAST_SINCOS_THRESH && sj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKasin(sj5array[0]); cj5array[0] = IKcos(j5array[0]); sj5array[1] = sj5array[0]; j5array[1] = j5array[0] > 0 ? (IKPI-j5array[0]) : (-IKPI-j5array[0]); cj5array[1] = -cj5array[0]; } else if( isnan(sj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x1193=IKcos(j5); IkReal x1194=IKsin(j5); evalcond[0]=(new_r01*x1193); evalcond[1]=(gconst17*x1193); evalcond[2]=((-1.0)*new_r10*x1193); evalcond[3]=(gconst17+((new_r01*x1194))); evalcond[4]=(gconst17+((new_r10*x1194))); evalcond[5]=(((gconst17*x1194))+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } else { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x1195=IKPowWithIntegerCheck(new_r01,-1); if(!x1195.valid){ continue; } sj5array[0]=((-1.0)*gconst17*(x1195.value)); if( sj5array[0] >= -1-IKFAST_SINCOS_THRESH && sj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKasin(sj5array[0]); cj5array[0] = IKcos(j5array[0]); sj5array[1] = sj5array[0]; j5array[1] = j5array[0] > 0 ? (IKPI-j5array[0]) : (-IKPI-j5array[0]); cj5array[1] = -cj5array[0]; } else if( isnan(sj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x1196=IKcos(j5); IkReal x1197=IKsin(j5); IkReal x1198=(gconst17*x1197); evalcond[0]=(new_r01*x1196); evalcond[1]=(gconst17*x1196); evalcond[2]=((-1.0)*new_r10*x1196); evalcond[3]=(x1198+new_r01); evalcond[4]=(gconst17+((new_r10*x1197))); evalcond[5]=(x1198+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r11))+(IKabs(new_r01))); evalcond[1]=gconst17; evalcond[2]=gconst16; if( IKabs(evalcond[0]) < 0.0000050000000000 && IKabs(evalcond[1]) < 0.0000050000000000 && IKabs(evalcond[2]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[3]; IkReal x1199=((-1.0)*new_r00); CheckValue<IkReal> x1201 = IKatan2WithCheck(IkReal(x1199),IkReal(((-1.0)*new_r10)),IKFAST_ATAN2_MAGTHRESH); if(!x1201.valid){ continue; } IkReal x1200=((1.0)*(x1201.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst16; cj7=gconst17; j7=((3.14159265)+(((-1.0)*x1200))); new_r11=0; new_r01=0; new_r22=0; new_r20=0; IkReal gconst15=((3.14159265358979)+(((-1.0)*x1200))); IkReal gconst16=x1199; IkReal gconst17=((1.0)*new_r10); j5eval[0]=1.0; j5eval[1]=1.0; j5eval[2]=((IKabs(((1.0)+(((-1.0)*(new_r10*new_r10))))))+(IKabs(((1.0)*new_r00*new_r10)))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[3]; IkReal x1202=((-1.0)*new_r00); CheckValue<IkReal> x1204 = IKatan2WithCheck(IkReal(x1202),IkReal(((-1.0)*new_r10)),IKFAST_ATAN2_MAGTHRESH); if(!x1204.valid){ continue; } IkReal x1203=((1.0)*(x1204.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst16; cj7=gconst17; j7=((3.14159265)+(((-1.0)*x1203))); new_r11=0; new_r01=0; new_r22=0; new_r20=0; IkReal gconst15=((3.14159265358979)+(((-1.0)*x1203))); IkReal gconst16=x1202; IkReal gconst17=((1.0)*new_r10); j5eval[0]=-1.0; j5eval[1]=-1.0; j5eval[2]=((IKabs(((1.0)*new_r00*new_r10)))+(IKabs(((-1.0)+(new_r10*new_r10))))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[3]; IkReal x1205=((-1.0)*new_r00); CheckValue<IkReal> x1207 = IKatan2WithCheck(IkReal(x1205),IkReal(((-1.0)*new_r10)),IKFAST_ATAN2_MAGTHRESH); if(!x1207.valid){ continue; } IkReal x1206=((1.0)*(x1207.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst16; cj7=gconst17; j7=((3.14159265)+(((-1.0)*x1206))); new_r11=0; new_r01=0; new_r22=0; new_r20=0; IkReal gconst15=((3.14159265358979)+(((-1.0)*x1206))); IkReal gconst16=x1205; IkReal gconst17=((1.0)*new_r10); j5eval[0]=-1.0; j5eval[1]=-1.0; j5eval[2]=((IKabs(((-1.0)+(((2.0)*(new_r10*new_r10))))))+(IKabs(((2.0)*new_r00*new_r10)))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { continue; // 3 cases reached } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x1208=((1.0)*gconst17); CheckValue<IkReal> x1209 = IKatan2WithCheck(IkReal(((((-1.0)*(new_r00*new_r00)))+(gconst17*gconst17))),IkReal((((new_r00*new_r10))+(((-1.0)*gconst16*x1208)))),IKFAST_ATAN2_MAGTHRESH); if(!x1209.valid){ continue; } CheckValue<IkReal> x1210=IKPowWithIntegerCheck(IKsign((((gconst16*new_r00))+(((-1.0)*new_r10*x1208)))),-1); if(!x1210.valid){ continue; } j5array[0]=((-1.5707963267949)+(x1209.value)+(((1.5707963267949)*(x1210.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x1211=IKsin(j5); IkReal x1212=IKcos(j5); IkReal x1213=((1.0)*gconst16); IkReal x1214=(gconst17*x1211); IkReal x1215=((1.0)*x1212); IkReal x1216=(x1212*x1213); evalcond[0]=(x1214+(((-1.0)*x1216))); evalcond[1]=(((new_r10*x1211))+gconst17+((new_r00*x1212))); evalcond[2]=(new_r00+((gconst16*x1211))+((gconst17*x1212))); evalcond[3]=(gconst16+((new_r00*x1211))+(((-1.0)*new_r10*x1215))); evalcond[4]=((((-1.0)*gconst17*x1215))+(((-1.0)*x1211*x1213))); evalcond[5]=(x1214+new_r10+(((-1.0)*x1216))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1217=IKPowWithIntegerCheck(IKsign(((((-1.0)*(gconst17*gconst17)))+(((-1.0)*(gconst16*gconst16))))),-1); if(!x1217.valid){ continue; } CheckValue<IkReal> x1218 = IKatan2WithCheck(IkReal((gconst16*new_r00)),IkReal((gconst17*new_r00)),IKFAST_ATAN2_MAGTHRESH); if(!x1218.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x1217.value)))+(x1218.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x1219=IKsin(j5); IkReal x1220=IKcos(j5); IkReal x1221=((1.0)*gconst16); IkReal x1222=(gconst17*x1219); IkReal x1223=((1.0)*x1220); IkReal x1224=(x1220*x1221); evalcond[0]=(x1222+(((-1.0)*x1224))); evalcond[1]=(((new_r10*x1219))+gconst17+((new_r00*x1220))); evalcond[2]=(((gconst17*x1220))+new_r00+((gconst16*x1219))); evalcond[3]=(gconst16+((new_r00*x1219))+(((-1.0)*new_r10*x1223))); evalcond[4]=((((-1.0)*gconst17*x1223))+(((-1.0)*x1219*x1221))); evalcond[5]=(x1222+(((-1.0)*x1224))+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1225=IKPowWithIntegerCheck(IKsign(((((-1.0)*gconst16*new_r00))+((gconst17*new_r10)))),-1); if(!x1225.valid){ continue; } CheckValue<IkReal> x1226 = IKatan2WithCheck(IkReal(gconst16*gconst16),IkReal((gconst16*gconst17)),IKFAST_ATAN2_MAGTHRESH); if(!x1226.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x1225.value)))+(x1226.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x1227=IKsin(j5); IkReal x1228=IKcos(j5); IkReal x1229=((1.0)*gconst16); IkReal x1230=(gconst17*x1227); IkReal x1231=((1.0)*x1228); IkReal x1232=(x1228*x1229); evalcond[0]=(x1230+(((-1.0)*x1232))); evalcond[1]=(gconst17+((new_r00*x1228))+((new_r10*x1227))); evalcond[2]=(((gconst17*x1228))+((gconst16*x1227))+new_r00); evalcond[3]=(gconst16+((new_r00*x1227))+(((-1.0)*new_r10*x1231))); evalcond[4]=((((-1.0)*x1227*x1229))+(((-1.0)*gconst17*x1231))); evalcond[5]=(x1230+(((-1.0)*x1232))+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r10))+(IKabs(new_r01))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x1233=IKPowWithIntegerCheck(gconst16,-1); if(!x1233.valid){ continue; } sj5array[0]=(new_r11*(x1233.value)); if( sj5array[0] >= -1-IKFAST_SINCOS_THRESH && sj5array[0] <= 1+IKFAST_SINCOS_THRESH ) { j5valid[0] = j5valid[1] = true; j5array[0] = IKasin(sj5array[0]); cj5array[0] = IKcos(j5array[0]); sj5array[1] = sj5array[0]; j5array[1] = j5array[0] > 0 ? (IKPI-j5array[0]) : (-IKPI-j5array[0]); cj5array[1] = -cj5array[0]; } else if( isnan(sj5array[0]) ) { // probably any value will work j5valid[0] = true; cj5array[0] = 1; sj5array[0] = 0; j5array[0] = 0; } for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[6]; IkReal x1234=IKcos(j5); IkReal x1235=IKsin(j5); IkReal x1236=((-1.0)*x1234); evalcond[0]=(new_r00*x1234); evalcond[1]=(new_r11*x1236); evalcond[2]=(gconst16*x1236); evalcond[3]=(gconst16+((new_r00*x1235))); evalcond[4]=(((gconst16*x1235))+new_r00); evalcond[5]=(((new_r11*x1235))+(((-1.0)*gconst16))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r11))+(IKabs(new_r10))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; IkReal x1237=((-1.0)*new_r00); CheckValue<IkReal> x1239 = IKatan2WithCheck(IkReal(x1237),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x1239.valid){ continue; } IkReal x1238=((1.0)*(x1239.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst16; cj7=gconst17; j7=((3.14159265)+(((-1.0)*x1238))); new_r11=0; new_r10=0; new_r22=0; new_r02=0; IkReal gconst15=((3.14159265358979)+(((-1.0)*x1238))); IkReal x1240 = ((1.0)+(((-1.0)*(new_r01*new_r01)))); if(IKabs(x1240)==0){ continue; } IkReal gconst16=(x1237*(pow(x1240,-0.5))); IkReal gconst17=0; j5eval[0]=((IKabs(new_r00))+(IKabs(new_r01))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; IkReal x1241=((-1.0)*new_r00); CheckValue<IkReal> x1243 = IKatan2WithCheck(IkReal(x1241),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x1243.valid){ continue; } IkReal x1242=((1.0)*(x1243.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst16; cj7=gconst17; j7=((3.14159265)+(((-1.0)*x1242))); new_r11=0; new_r10=0; new_r22=0; new_r02=0; IkReal gconst15=((3.14159265358979)+(((-1.0)*x1242))); IkReal x1244 = ((1.0)+(((-1.0)*(new_r01*new_r01)))); if(IKabs(x1244)==0){ continue; } IkReal gconst16=(x1241*(pow(x1244,-0.5))); IkReal gconst17=0; j5eval[0]=new_r00; if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[2]; IkReal x1245=((-1.0)*new_r00); CheckValue<IkReal> x1247 = IKatan2WithCheck(IkReal(x1245),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x1247.valid){ continue; } IkReal x1246=((1.0)*(x1247.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst16; cj7=gconst17; j7=((3.14159265)+(((-1.0)*x1246))); new_r11=0; new_r10=0; new_r22=0; new_r02=0; IkReal gconst15=((3.14159265358979)+(((-1.0)*x1246))); IkReal x1248 = ((1.0)+(((-1.0)*(new_r01*new_r01)))); if(IKabs(x1248)==0){ continue; } IkReal gconst16=(x1245*(pow(x1248,-0.5))); IkReal gconst17=0; j5eval[0]=new_r00; j5eval[1]=new_r01; if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 ) { continue; // 3 cases reached } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1249=IKPowWithIntegerCheck(new_r00,-1); if(!x1249.valid){ continue; } CheckValue<IkReal> x1250=IKPowWithIntegerCheck(new_r01,-1); if(!x1250.valid){ continue; } if( IKabs(((-1.0)*gconst16*(x1249.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs((gconst16*(x1250.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*gconst16*(x1249.value)))+IKsqr((gconst16*(x1250.value)))-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2(((-1.0)*gconst16*(x1249.value)), (gconst16*(x1250.value))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1251=IKsin(j5); IkReal x1252=IKcos(j5); IkReal x1253=((1.0)*gconst16); IkReal x1254=(gconst16*x1251); evalcond[0]=(new_r01*x1251); evalcond[1]=(new_r00*x1252); evalcond[2]=((-1.0)*x1254); evalcond[3]=((-1.0)*gconst16*x1252); evalcond[4]=(((new_r00*x1251))+gconst16); evalcond[5]=(x1254+new_r00); evalcond[6]=((((-1.0)*x1252*x1253))+new_r01); evalcond[7]=((((-1.0)*x1253))+((new_r01*x1252))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1255=IKPowWithIntegerCheck(new_r00,-1); if(!x1255.valid){ continue; } CheckValue<IkReal> x1256=IKPowWithIntegerCheck(gconst16,-1); if(!x1256.valid){ continue; } if( IKabs(((-1.0)*gconst16*(x1255.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs((new_r01*(x1256.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*gconst16*(x1255.value)))+IKsqr((new_r01*(x1256.value)))-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2(((-1.0)*gconst16*(x1255.value)), (new_r01*(x1256.value))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1257=IKsin(j5); IkReal x1258=IKcos(j5); IkReal x1259=((1.0)*gconst16); IkReal x1260=(gconst16*x1257); evalcond[0]=(new_r01*x1257); evalcond[1]=(new_r00*x1258); evalcond[2]=((-1.0)*x1260); evalcond[3]=((-1.0)*gconst16*x1258); evalcond[4]=(((new_r00*x1257))+gconst16); evalcond[5]=(x1260+new_r00); evalcond[6]=((((-1.0)*x1258*x1259))+new_r01); evalcond[7]=((((-1.0)*x1259))+((new_r01*x1258))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1261 = IKatan2WithCheck(IkReal(((-1.0)*new_r00)),IkReal(new_r01),IKFAST_ATAN2_MAGTHRESH); if(!x1261.valid){ continue; } CheckValue<IkReal> x1262=IKPowWithIntegerCheck(IKsign(gconst16),-1); if(!x1262.valid){ continue; } j5array[0]=((-1.5707963267949)+(x1261.value)+(((1.5707963267949)*(x1262.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1263=IKsin(j5); IkReal x1264=IKcos(j5); IkReal x1265=((1.0)*gconst16); IkReal x1266=(gconst16*x1263); evalcond[0]=(new_r01*x1263); evalcond[1]=(new_r00*x1264); evalcond[2]=((-1.0)*x1266); evalcond[3]=((-1.0)*gconst16*x1264); evalcond[4]=(gconst16+((new_r00*x1263))); evalcond[5]=(x1266+new_r00); evalcond[6]=((((-1.0)*x1264*x1265))+new_r01); evalcond[7]=(((new_r01*x1264))+(((-1.0)*x1265))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=IKabs(new_r10); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; IkReal x1267=((-1.0)*new_r00); CheckValue<IkReal> x1269 = IKatan2WithCheck(IkReal(x1267),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x1269.valid){ continue; } IkReal x1268=((1.0)*(x1269.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst16; cj7=gconst17; j7=((3.14159265)+(((-1.0)*x1268))); new_r10=0; IkReal gconst15=((3.14159265358979)+(((-1.0)*x1268))); IkReal x1270 = new_r00*new_r00; if(IKabs(x1270)==0){ continue; } IkReal gconst16=(x1267*(pow(x1270,-0.5))); IkReal gconst17=0; j5eval[0]=((IKabs(new_r11))+(IKabs(new_r01))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; IkReal x1271=((-1.0)*new_r00); CheckValue<IkReal> x1273 = IKatan2WithCheck(IkReal(x1271),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x1273.valid){ continue; } IkReal x1272=((1.0)*(x1273.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst16; cj7=gconst17; j7=((3.14159265)+(((-1.0)*x1272))); new_r10=0; IkReal gconst15=((3.14159265358979)+(((-1.0)*x1272))); IkReal x1274 = new_r00*new_r00; if(IKabs(x1274)==0){ continue; } IkReal gconst16=(x1271*(pow(x1274,-0.5))); IkReal gconst17=0; j5eval[0]=((IKabs(new_r00))+(IKabs(new_r01))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; IkReal x1275=((-1.0)*new_r00); CheckValue<IkReal> x1277 = IKatan2WithCheck(IkReal(x1275),IkReal(0),IKFAST_ATAN2_MAGTHRESH); if(!x1277.valid){ continue; } IkReal x1276=((1.0)*(x1277.value)); sj6=0; cj6=-1.0; j6=3.14159265358979; sj7=gconst16; cj7=gconst17; j7=((3.14159265)+(((-1.0)*x1276))); new_r10=0; IkReal gconst15=((3.14159265358979)+(((-1.0)*x1276))); IkReal x1278 = new_r00*new_r00; if(IKabs(x1278)==0){ continue; } IkReal gconst16=(x1275*(pow(x1278,-0.5))); IkReal gconst17=0; j5eval[0]=new_r00; if( IKabs(j5eval[0]) < 0.0000010000000000 ) { continue; // 3 cases reached } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1279=IKPowWithIntegerCheck(new_r00,-1); if(!x1279.valid){ continue; } CheckValue<IkReal> x1280=IKPowWithIntegerCheck(gconst16,-1); if(!x1280.valid){ continue; } if( IKabs(((-1.0)*gconst16*(x1279.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs((new_r01*(x1280.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*gconst16*(x1279.value)))+IKsqr((new_r01*(x1280.value)))-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2(((-1.0)*gconst16*(x1279.value)), (new_r01*(x1280.value))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1281=IKcos(j5); IkReal x1282=IKsin(j5); IkReal x1283=(gconst16*x1282); IkReal x1284=((1.0)*x1281); evalcond[0]=(new_r00*x1281); evalcond[1]=((-1.0)*gconst16*x1281); evalcond[2]=(gconst16+((new_r00*x1282))); evalcond[3]=(x1283+new_r00); evalcond[4]=(new_r01+(((-1.0)*gconst16*x1284))); evalcond[5]=((((-1.0)*x1283))+new_r11); evalcond[6]=(((new_r01*x1282))+(((-1.0)*new_r11*x1284))); evalcond[7]=(((new_r11*x1282))+((new_r01*x1281))+(((-1.0)*gconst16))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1285 = IKatan2WithCheck(IkReal(((-1.0)*new_r00)),IkReal(new_r01),IKFAST_ATAN2_MAGTHRESH); if(!x1285.valid){ continue; } CheckValue<IkReal> x1286=IKPowWithIntegerCheck(IKsign(gconst16),-1); if(!x1286.valid){ continue; } j5array[0]=((-1.5707963267949)+(x1285.value)+(((1.5707963267949)*(x1286.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1287=IKcos(j5); IkReal x1288=IKsin(j5); IkReal x1289=(gconst16*x1288); IkReal x1290=((1.0)*x1287); evalcond[0]=(new_r00*x1287); evalcond[1]=((-1.0)*gconst16*x1287); evalcond[2]=(gconst16+((new_r00*x1288))); evalcond[3]=(x1289+new_r00); evalcond[4]=((((-1.0)*gconst16*x1290))+new_r01); evalcond[5]=((((-1.0)*x1289))+new_r11); evalcond[6]=((((-1.0)*new_r11*x1290))+((new_r01*x1288))); evalcond[7]=(((new_r11*x1288))+((new_r01*x1287))+(((-1.0)*gconst16))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1291=IKPowWithIntegerCheck(IKsign(gconst16),-1); if(!x1291.valid){ continue; } CheckValue<IkReal> x1292 = IKatan2WithCheck(IkReal(new_r11),IkReal(new_r01),IKFAST_ATAN2_MAGTHRESH); if(!x1292.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x1291.value)))+(x1292.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1293=IKcos(j5); IkReal x1294=IKsin(j5); IkReal x1295=(gconst16*x1294); IkReal x1296=((1.0)*x1293); evalcond[0]=(new_r00*x1293); evalcond[1]=((-1.0)*gconst16*x1293); evalcond[2]=(gconst16+((new_r00*x1294))); evalcond[3]=(x1295+new_r00); evalcond[4]=((((-1.0)*gconst16*x1296))+new_r01); evalcond[5]=((((-1.0)*x1295))+new_r11); evalcond[6]=((((-1.0)*new_r11*x1296))+((new_r01*x1294))); evalcond[7]=(((new_r11*x1294))+(((-1.0)*gconst16))+((new_r01*x1293))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { if( 1 ) { bgotonextstatement=false; continue; // branch miss [j5] } } while(0); if( bgotonextstatement ) { } } } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x1297=((1.0)*gconst17); CheckValue<IkReal> x1298=IKPowWithIntegerCheck(IKsign((((gconst16*new_r00))+(((-1.0)*new_r10*x1297)))),-1); if(!x1298.valid){ continue; } CheckValue<IkReal> x1299 = IKatan2WithCheck(IkReal(((((-1.0)*(new_r00*new_r00)))+(gconst17*gconst17))),IkReal(((((-1.0)*gconst16*x1297))+((new_r00*new_r10)))),IKFAST_ATAN2_MAGTHRESH); if(!x1299.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x1298.value)))+(x1299.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1300=IKcos(j5); IkReal x1301=IKsin(j5); IkReal x1302=(gconst17*x1301); IkReal x1303=((1.0)*x1300); IkReal x1304=(gconst16*x1301); IkReal x1305=(gconst16*x1303); evalcond[0]=(gconst17+((new_r10*x1301))+((new_r00*x1300))); evalcond[1]=(x1304+((gconst17*x1300))+new_r00); evalcond[2]=((((-1.0)*new_r10*x1303))+gconst16+((new_r00*x1301))); evalcond[3]=(gconst17+((new_r01*x1301))+(((-1.0)*new_r11*x1303))); evalcond[4]=(x1302+(((-1.0)*x1305))+new_r01); evalcond[5]=(x1302+(((-1.0)*x1305))+new_r10); evalcond[6]=(((new_r11*x1301))+(((-1.0)*gconst16))+((new_r01*x1300))); evalcond[7]=((((-1.0)*x1304))+(((-1.0)*gconst17*x1303))+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x1306=((1.0)*gconst17); CheckValue<IkReal> x1307 = IKatan2WithCheck(IkReal((((new_r00*new_r11))+(gconst17*gconst17))),IkReal(((((-1.0)*gconst16*x1306))+((new_r00*new_r01)))),IKFAST_ATAN2_MAGTHRESH); if(!x1307.valid){ continue; } CheckValue<IkReal> x1308=IKPowWithIntegerCheck(IKsign(((((-1.0)*gconst16*new_r11))+(((-1.0)*new_r01*x1306)))),-1); if(!x1308.valid){ continue; } j5array[0]=((-1.5707963267949)+(x1307.value)+(((1.5707963267949)*(x1308.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1309=IKcos(j5); IkReal x1310=IKsin(j5); IkReal x1311=(gconst17*x1310); IkReal x1312=((1.0)*x1309); IkReal x1313=(gconst16*x1310); IkReal x1314=(gconst16*x1312); evalcond[0]=(gconst17+((new_r10*x1310))+((new_r00*x1309))); evalcond[1]=(x1313+((gconst17*x1309))+new_r00); evalcond[2]=((((-1.0)*new_r10*x1312))+((new_r00*x1310))+gconst16); evalcond[3]=(((new_r01*x1310))+(((-1.0)*new_r11*x1312))+gconst17); evalcond[4]=(x1311+(((-1.0)*x1314))+new_r01); evalcond[5]=(x1311+(((-1.0)*x1314))+new_r10); evalcond[6]=(((new_r11*x1310))+(((-1.0)*gconst16))+((new_r01*x1309))); evalcond[7]=((((-1.0)*x1313))+(((-1.0)*gconst17*x1312))+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x1315=((1.0)*new_r10); CheckValue<IkReal> x1316=IKPowWithIntegerCheck(IKsign(((((-1.0)*new_r11*x1315))+(((-1.0)*new_r00*new_r01)))),-1); if(!x1316.valid){ continue; } CheckValue<IkReal> x1317 = IKatan2WithCheck(IkReal((((gconst17*new_r11))+((gconst17*new_r00)))),IkReal(((((-1.0)*gconst17*x1315))+((gconst17*new_r01)))),IKFAST_ATAN2_MAGTHRESH); if(!x1317.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x1316.value)))+(x1317.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1318=IKcos(j5); IkReal x1319=IKsin(j5); IkReal x1320=(gconst17*x1319); IkReal x1321=((1.0)*x1318); IkReal x1322=(gconst16*x1319); IkReal x1323=(gconst16*x1321); evalcond[0]=(((new_r00*x1318))+gconst17+((new_r10*x1319))); evalcond[1]=(x1322+((gconst17*x1318))+new_r00); evalcond[2]=(((new_r00*x1319))+(((-1.0)*new_r10*x1321))+gconst16); evalcond[3]=(((new_r01*x1319))+(((-1.0)*new_r11*x1321))+gconst17); evalcond[4]=(x1320+(((-1.0)*x1323))+new_r01); evalcond[5]=(x1320+(((-1.0)*x1323))+new_r10); evalcond[6]=(((new_r01*x1318))+((new_r11*x1319))+(((-1.0)*gconst16))); evalcond[7]=((((-1.0)*x1322))+(((-1.0)*gconst17*x1321))+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(((-1.5707963267949)+j7)))), 6.28318530717959))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; if( IKabs(((-1.0)*new_r00)) < IKFAST_ATAN2_MAGTHRESH && IKabs(new_r01) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*new_r00))+IKsqr(new_r01)-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2(((-1.0)*new_r00), new_r01); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1324=IKsin(j5); IkReal x1325=IKcos(j5); IkReal x1326=((1.0)*x1325); evalcond[0]=(x1324+new_r00); evalcond[1]=((((-1.0)*x1326))+new_r01); evalcond[2]=((((-1.0)*x1324))+new_r11); evalcond[3]=((((-1.0)*x1326))+new_r10); evalcond[4]=(((new_r00*x1325))+((new_r10*x1324))); evalcond[5]=(((new_r01*x1324))+(((-1.0)*new_r11*x1326))); evalcond[6]=((-1.0)+((new_r01*x1325))+((new_r11*x1324))); evalcond[7]=((1.0)+((new_r00*x1324))+(((-1.0)*new_r10*x1326))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((-3.14159265358979)+(IKfmod(((3.14159265358979)+(IKabs(((1.5707963267949)+j7)))), 6.28318530717959))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; if( IKabs(((-1.0)*new_r11)) < IKFAST_ATAN2_MAGTHRESH && IKabs(((-1.0)*new_r01)) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*new_r11))+IKsqr(((-1.0)*new_r01))-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2(((-1.0)*new_r11), ((-1.0)*new_r01)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1327=IKcos(j5); IkReal x1328=IKsin(j5); IkReal x1329=((1.0)*x1327); evalcond[0]=(x1327+new_r01); evalcond[1]=(x1328+new_r11); evalcond[2]=(x1327+new_r10); evalcond[3]=((((-1.0)*x1328))+new_r00); evalcond[4]=(((new_r00*x1327))+((new_r10*x1328))); evalcond[5]=(((new_r01*x1328))+(((-1.0)*new_r11*x1329))); evalcond[6]=((1.0)+((new_r01*x1327))+((new_r11*x1328))); evalcond[7]=((-1.0)+((new_r00*x1328))+(((-1.0)*new_r10*x1329))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r11))+(IKabs(new_r00))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[3]; sj6=0; cj6=-1.0; j6=3.14159265358979; new_r11=0; new_r00=0; j5eval[0]=new_r10; j5eval[1]=IKsign(new_r10); j5eval[2]=((IKabs(cj7))+(IKabs(sj7))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[3]; sj6=0; cj6=-1.0; j6=3.14159265358979; new_r11=0; new_r00=0; j5eval[0]=new_r01; j5eval[1]=IKsign(new_r01); j5eval[2]=((IKabs(cj7))+(IKabs(sj7))); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[2]; sj6=0; cj6=-1.0; j6=3.14159265358979; new_r11=0; new_r00=0; j5eval[0]=new_r01; j5eval[1]=new_r10; if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 ) { continue; // no branches [j5] } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1330=IKPowWithIntegerCheck(new_r01,-1); if(!x1330.valid){ continue; } CheckValue<IkReal> x1331=IKPowWithIntegerCheck(new_r10,-1); if(!x1331.valid){ continue; } if( IKabs(((-1.0)*cj7*(x1330.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs((sj7*(x1331.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*cj7*(x1330.value)))+IKsqr((sj7*(x1331.value)))-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2(((-1.0)*cj7*(x1330.value)), (sj7*(x1331.value))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[7]; IkReal x1332=IKsin(j5); IkReal x1333=IKcos(j5); IkReal x1334=(cj7*x1332); IkReal x1335=((1.0)*x1333); IkReal x1336=(sj7*x1335); evalcond[0]=(cj7+((new_r01*x1332))); evalcond[1]=(cj7+((new_r10*x1332))); evalcond[2]=(sj7+(((-1.0)*new_r10*x1335))); evalcond[3]=((((-1.0)*sj7))+((new_r01*x1333))); evalcond[4]=(((cj7*x1333))+((sj7*x1332))); evalcond[5]=(x1334+new_r01+(((-1.0)*x1336))); evalcond[6]=(x1334+new_r10+(((-1.0)*x1336))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1337=IKPowWithIntegerCheck(IKsign(new_r01),-1); if(!x1337.valid){ continue; } CheckValue<IkReal> x1338 = IKatan2WithCheck(IkReal(((-1.0)*cj7)),IkReal(sj7),IKFAST_ATAN2_MAGTHRESH); if(!x1338.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x1337.value)))+(x1338.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[7]; IkReal x1339=IKsin(j5); IkReal x1340=IKcos(j5); IkReal x1341=(cj7*x1339); IkReal x1342=((1.0)*x1340); IkReal x1343=(sj7*x1342); evalcond[0]=(cj7+((new_r01*x1339))); evalcond[1]=(cj7+((new_r10*x1339))); evalcond[2]=(sj7+(((-1.0)*new_r10*x1342))); evalcond[3]=((((-1.0)*sj7))+((new_r01*x1340))); evalcond[4]=(((sj7*x1339))+((cj7*x1340))); evalcond[5]=(x1341+(((-1.0)*x1343))+new_r01); evalcond[6]=(x1341+(((-1.0)*x1343))+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1344=IKPowWithIntegerCheck(IKsign(new_r10),-1); if(!x1344.valid){ continue; } CheckValue<IkReal> x1345 = IKatan2WithCheck(IkReal(((-1.0)*cj7)),IkReal(sj7),IKFAST_ATAN2_MAGTHRESH); if(!x1345.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x1344.value)))+(x1345.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[7]; IkReal x1346=IKsin(j5); IkReal x1347=IKcos(j5); IkReal x1348=(cj7*x1346); IkReal x1349=((1.0)*x1347); IkReal x1350=(sj7*x1349); evalcond[0]=(cj7+((new_r01*x1346))); evalcond[1]=(cj7+((new_r10*x1346))); evalcond[2]=(sj7+(((-1.0)*new_r10*x1349))); evalcond[3]=((((-1.0)*sj7))+((new_r01*x1347))); evalcond[4]=(((sj7*x1346))+((cj7*x1347))); evalcond[5]=(x1348+(((-1.0)*x1350))+new_r01); evalcond[6]=(x1348+(((-1.0)*x1350))+new_r10); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r11))+(IKabs(new_r01))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; sj6=0; cj6=-1.0; j6=3.14159265358979; new_r11=0; new_r01=0; new_r22=0; new_r20=0; j5eval[0]=((IKabs(new_r10))+(IKabs(new_r00))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { continue; // no branches [j5] } else { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x1352 = IKatan2WithCheck(IkReal(new_r00),IkReal(new_r10),IKFAST_ATAN2_MAGTHRESH); if(!x1352.valid){ continue; } IkReal x1351=x1352.value; j5array[0]=((-1.0)*x1351); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); j5array[1]=((3.14159265358979)+(((-1.0)*x1351))); sj5array[1]=IKsin(j5array[1]); cj5array[1]=IKcos(j5array[1]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; if( j5array[1] > IKPI ) { j5array[1]-=IK2PI; } else if( j5array[1] < -IKPI ) { j5array[1]+=IK2PI; } j5valid[1] = true; for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[1]; evalcond[0]=((((-1.0)*new_r10*(IKcos(j5))))+((new_r00*(IKsin(j5))))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r10))+(IKabs(new_r00))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; sj6=0; cj6=-1.0; j6=3.14159265358979; new_r00=0; new_r10=0; new_r21=0; new_r22=0; j5eval[0]=((IKabs(new_r11))+(IKabs(new_r01))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { continue; // no branches [j5] } else { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x1354 = IKatan2WithCheck(IkReal(new_r01),IkReal(new_r11),IKFAST_ATAN2_MAGTHRESH); if(!x1354.valid){ continue; } IkReal x1353=x1354.value; j5array[0]=((-1.0)*x1353); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); j5array[1]=((3.14159265358979)+(((-1.0)*x1353))); sj5array[1]=IKsin(j5array[1]); cj5array[1]=IKcos(j5array[1]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; if( j5array[1] > IKPI ) { j5array[1]-=IK2PI; } else if( j5array[1] < -IKPI ) { j5array[1]+=IK2PI; } j5valid[1] = true; for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[1]; evalcond[0]=((((-1.0)*new_r11*(IKcos(j5))))+((new_r01*(IKsin(j5))))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r10))+(IKabs(new_r01))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[3]; sj6=0; cj6=-1.0; j6=3.14159265358979; new_r01=0; new_r10=0; j5eval[0]=new_r00; j5eval[1]=((IKabs(cj7))+(IKabs(sj7))); j5eval[2]=IKsign(new_r00); if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 || IKabs(j5eval[2]) < 0.0000010000000000 ) { { IkReal j5eval[2]; sj6=0; cj6=-1.0; j6=3.14159265358979; new_r01=0; new_r10=0; j5eval[0]=new_r00; j5eval[1]=new_r11; if( IKabs(j5eval[0]) < 0.0000010000000000 || IKabs(j5eval[1]) < 0.0000010000000000 ) { continue; // no branches [j5] } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1355=IKPowWithIntegerCheck(new_r00,-1); if(!x1355.valid){ continue; } CheckValue<IkReal> x1356=IKPowWithIntegerCheck(new_r11,-1); if(!x1356.valid){ continue; } if( IKabs(((-1.0)*sj7*(x1355.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs((cj7*(x1356.value))) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr(((-1.0)*sj7*(x1355.value)))+IKsqr((cj7*(x1356.value)))-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2(((-1.0)*sj7*(x1355.value)), (cj7*(x1356.value))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[7]; IkReal x1357=IKcos(j5); IkReal x1358=IKsin(j5); IkReal x1359=((1.0)*sj7); IkReal x1360=((1.0)*x1357); evalcond[0]=(sj7+((new_r00*x1358))); evalcond[1]=(cj7+((new_r00*x1357))); evalcond[2]=(cj7+(((-1.0)*new_r11*x1360))); evalcond[3]=((((-1.0)*x1359))+((new_r11*x1358))); evalcond[4]=(((cj7*x1358))+(((-1.0)*x1357*x1359))); evalcond[5]=(((cj7*x1357))+new_r00+((sj7*x1358))); evalcond[6]=(new_r11+(((-1.0)*x1358*x1359))+(((-1.0)*cj7*x1360))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1361 = IKatan2WithCheck(IkReal(((-1.0)*sj7)),IkReal(((-1.0)*cj7)),IKFAST_ATAN2_MAGTHRESH); if(!x1361.valid){ continue; } CheckValue<IkReal> x1362=IKPowWithIntegerCheck(IKsign(new_r00),-1); if(!x1362.valid){ continue; } j5array[0]=((-1.5707963267949)+(x1361.value)+(((1.5707963267949)*(x1362.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[7]; IkReal x1363=IKcos(j5); IkReal x1364=IKsin(j5); IkReal x1365=((1.0)*sj7); IkReal x1366=((1.0)*x1363); evalcond[0]=(sj7+((new_r00*x1364))); evalcond[1]=(cj7+((new_r00*x1363))); evalcond[2]=(cj7+(((-1.0)*new_r11*x1366))); evalcond[3]=((((-1.0)*x1365))+((new_r11*x1364))); evalcond[4]=(((cj7*x1364))+(((-1.0)*x1363*x1365))); evalcond[5]=(((cj7*x1363))+new_r00+((sj7*x1364))); evalcond[6]=((((-1.0)*x1364*x1365))+new_r11+(((-1.0)*cj7*x1366))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { if( 1 ) { bgotonextstatement=false; continue; // branch miss [j5] } } while(0); if( bgotonextstatement ) { } } } } } } } } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x1367=((1.0)*new_r00); CheckValue<IkReal> x1368 = IKatan2WithCheck(IkReal(((((-1.0)*(cj7*cj7)))+(new_r00*new_r00))),IkReal(((((-1.0)*new_r10*x1367))+((cj7*sj7)))),IKFAST_ATAN2_MAGTHRESH); if(!x1368.valid){ continue; } CheckValue<IkReal> x1369=IKPowWithIntegerCheck(IKsign(((((-1.0)*sj7*x1367))+((cj7*new_r10)))),-1); if(!x1369.valid){ continue; } j5array[0]=((-1.5707963267949)+(x1368.value)+(((1.5707963267949)*(x1369.value)))); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1370=IKcos(j5); IkReal x1371=IKsin(j5); IkReal x1372=((1.0)*sj7); IkReal x1373=(cj7*x1371); IkReal x1374=(cj7*x1370); IkReal x1375=((1.0)*x1370); IkReal x1376=(x1370*x1372); evalcond[0]=(cj7+((new_r10*x1371))+((new_r00*x1370))); evalcond[1]=(x1374+new_r00+((sj7*x1371))); evalcond[2]=(sj7+((new_r00*x1371))+(((-1.0)*new_r10*x1375))); evalcond[3]=((((-1.0)*new_r11*x1375))+cj7+((new_r01*x1371))); evalcond[4]=(x1373+(((-1.0)*x1376))+new_r01); evalcond[5]=(x1373+(((-1.0)*x1376))+new_r10); evalcond[6]=((((-1.0)*x1372))+((new_r11*x1371))+((new_r01*x1370))); evalcond[7]=((((-1.0)*x1371*x1372))+(((-1.0)*x1374))+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x1377=((1.0)*new_r10); CheckValue<IkReal> x1378=IKPowWithIntegerCheck(IKsign(((((-1.0)*cj7*new_r00))+(((-1.0)*sj7*x1377)))),-1); if(!x1378.valid){ continue; } CheckValue<IkReal> x1379 = IKatan2WithCheck(IkReal((((new_r00*new_r01))+((cj7*sj7)))),IkReal(((cj7*cj7)+(((-1.0)*new_r01*x1377)))),IKFAST_ATAN2_MAGTHRESH); if(!x1379.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x1378.value)))+(x1379.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1380=IKcos(j5); IkReal x1381=IKsin(j5); IkReal x1382=((1.0)*sj7); IkReal x1383=(cj7*x1381); IkReal x1384=(cj7*x1380); IkReal x1385=((1.0)*x1380); IkReal x1386=(x1380*x1382); evalcond[0]=(((new_r10*x1381))+cj7+((new_r00*x1380))); evalcond[1]=(x1384+((sj7*x1381))+new_r00); evalcond[2]=(sj7+(((-1.0)*new_r10*x1385))+((new_r00*x1381))); evalcond[3]=(cj7+((new_r01*x1381))+(((-1.0)*new_r11*x1385))); evalcond[4]=((((-1.0)*x1386))+x1383+new_r01); evalcond[5]=((((-1.0)*x1386))+x1383+new_r10); evalcond[6]=((((-1.0)*x1382))+((new_r11*x1381))+((new_r01*x1380))); evalcond[7]=((((-1.0)*x1381*x1382))+(((-1.0)*x1384))+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; IkReal x1387=((1.0)*new_r10); CheckValue<IkReal> x1388=IKPowWithIntegerCheck(IKsign(((((-1.0)*new_r11*x1387))+(((-1.0)*new_r00*new_r01)))),-1); if(!x1388.valid){ continue; } CheckValue<IkReal> x1389 = IKatan2WithCheck(IkReal((((cj7*new_r00))+((cj7*new_r11)))),IkReal((((cj7*new_r01))+(((-1.0)*cj7*x1387)))),IKFAST_ATAN2_MAGTHRESH); if(!x1389.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x1388.value)))+(x1389.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[8]; IkReal x1390=IKcos(j5); IkReal x1391=IKsin(j5); IkReal x1392=((1.0)*sj7); IkReal x1393=(cj7*x1391); IkReal x1394=(cj7*x1390); IkReal x1395=((1.0)*x1390); IkReal x1396=(x1390*x1392); evalcond[0]=(cj7+((new_r10*x1391))+((new_r00*x1390))); evalcond[1]=(x1394+((sj7*x1391))+new_r00); evalcond[2]=(sj7+((new_r00*x1391))+(((-1.0)*new_r10*x1395))); evalcond[3]=(cj7+(((-1.0)*new_r11*x1395))+((new_r01*x1391))); evalcond[4]=(x1393+new_r01+(((-1.0)*x1396))); evalcond[5]=(x1393+new_r10+(((-1.0)*x1396))); evalcond[6]=(((new_r11*x1391))+((new_r01*x1390))+(((-1.0)*x1392))); evalcond[7]=((((-1.0)*x1391*x1392))+(((-1.0)*x1394))+new_r11); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { evalcond[0]=((IKabs(new_r12))+(IKabs(new_r02))); if( IKabs(evalcond[0]) < 0.0000050000000000 ) { bgotonextstatement=false; { IkReal j5eval[1]; new_r02=0; new_r12=0; new_r20=0; new_r21=0; j5eval[0]=((IKabs(new_r11))+(IKabs(new_r01))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; new_r02=0; new_r12=0; new_r20=0; new_r21=0; j5eval[0]=((IKabs(new_r10))+(IKabs(new_r00))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { { IkReal j5eval[1]; new_r02=0; new_r12=0; new_r20=0; new_r21=0; j5eval[0]=((IKabs((new_r11*new_r22)))+(IKabs((new_r01*new_r22)))); if( IKabs(j5eval[0]) < 0.0000010000000000 ) { continue; // no branches [j5] } else { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x1398 = IKatan2WithCheck(IkReal((new_r01*new_r22)),IkReal((new_r11*new_r22)),IKFAST_ATAN2_MAGTHRESH); if(!x1398.valid){ continue; } IkReal x1397=x1398.value; j5array[0]=((-1.0)*x1397); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); j5array[1]=((3.14159265358979)+(((-1.0)*x1397))); sj5array[1]=IKsin(j5array[1]); cj5array[1]=IKcos(j5array[1]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; if( j5array[1] > IKPI ) { j5array[1]-=IK2PI; } else if( j5array[1] < -IKPI ) { j5array[1]+=IK2PI; } j5valid[1] = true; for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[5]; IkReal x1399=IKsin(j5); IkReal x1400=IKcos(j5); IkReal x1401=(new_r10*x1399); IkReal x1402=((1.0)*x1400); IkReal x1403=(new_r00*x1400); evalcond[0]=(((new_r11*x1399))+((new_r01*x1400))); evalcond[1]=(x1403+x1401); evalcond[2]=(((new_r00*x1399))+(((-1.0)*new_r10*x1402))); evalcond[3]=(((new_r01*x1399))+(((-1.0)*new_r11*x1402))); evalcond[4]=(((new_r22*x1401))+((new_r22*x1403))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x1405 = IKatan2WithCheck(IkReal(new_r00),IkReal(new_r10),IKFAST_ATAN2_MAGTHRESH); if(!x1405.valid){ continue; } IkReal x1404=x1405.value; j5array[0]=((-1.0)*x1404); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); j5array[1]=((3.14159265358979)+(((-1.0)*x1404))); sj5array[1]=IKsin(j5array[1]); cj5array[1]=IKcos(j5array[1]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; if( j5array[1] > IKPI ) { j5array[1]-=IK2PI; } else if( j5array[1] < -IKPI ) { j5array[1]+=IK2PI; } j5valid[1] = true; for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[5]; IkReal x1406=IKsin(j5); IkReal x1407=IKcos(j5); IkReal x1408=(new_r11*x1406); IkReal x1409=((1.0)*x1407); IkReal x1410=(new_r22*x1407); evalcond[0]=(((new_r01*x1407))+x1408); evalcond[1]=(((new_r00*x1406))+(((-1.0)*new_r10*x1409))); evalcond[2]=(((new_r01*x1406))+(((-1.0)*new_r11*x1409))); evalcond[3]=(((new_r01*x1410))+((new_r22*x1408))); evalcond[4]=(((new_r00*x1410))+((new_r10*new_r22*x1406))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[2], cj5array[2], sj5array[2]; bool j5valid[2]={false}; _nj5 = 2; CheckValue<IkReal> x1412 = IKatan2WithCheck(IkReal(new_r01),IkReal(new_r11),IKFAST_ATAN2_MAGTHRESH); if(!x1412.valid){ continue; } IkReal x1411=x1412.value; j5array[0]=((-1.0)*x1411); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); j5array[1]=((3.14159265358979)+(((-1.0)*x1411))); sj5array[1]=IKsin(j5array[1]); cj5array[1]=IKcos(j5array[1]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; if( j5array[1] > IKPI ) { j5array[1]-=IK2PI; } else if( j5array[1] < -IKPI ) { j5array[1]+=IK2PI; } j5valid[1] = true; for(int ij5 = 0; ij5 < 2; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 2; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[5]; IkReal x1413=IKsin(j5); IkReal x1414=IKcos(j5); IkReal x1415=(new_r10*x1413); IkReal x1416=((1.0)*x1414); IkReal x1417=(new_r00*x1414); evalcond[0]=(x1415+x1417); evalcond[1]=((((-1.0)*new_r10*x1416))+((new_r00*x1413))); evalcond[2]=((((-1.0)*new_r11*x1416))+((new_r01*x1413))); evalcond[3]=(((new_r11*new_r22*x1413))+((new_r01*new_r22*x1414))); evalcond[4]=(((new_r22*x1415))+((new_r22*x1417))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } while(0); if( bgotonextstatement ) { bool bgotonextstatement = true; do { if( 1 ) { bgotonextstatement=false; continue; // branch miss [j5] } } while(0); if( bgotonextstatement ) { } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1419=IKPowWithIntegerCheck(sj6,-1); if(!x1419.valid){ continue; } IkReal x1418=x1419.value; CheckValue<IkReal> x1420=IKPowWithIntegerCheck(new_r12,-1); if(!x1420.valid){ continue; } if( IKabs((x1418*(x1420.value)*(((-1.0)+(new_r02*new_r02)+(cj6*cj6))))) < IKFAST_ATAN2_MAGTHRESH && IKabs(((-1.0)*new_r02*x1418)) < IKFAST_ATAN2_MAGTHRESH && IKabs(IKsqr((x1418*(x1420.value)*(((-1.0)+(new_r02*new_r02)+(cj6*cj6)))))+IKsqr(((-1.0)*new_r02*x1418))-1) <= IKFAST_SINCOS_THRESH ) continue; j5array[0]=IKatan2((x1418*(x1420.value)*(((-1.0)+(new_r02*new_r02)+(cj6*cj6)))), ((-1.0)*new_r02*x1418)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[18]; IkReal x1421=IKcos(j5); IkReal x1422=IKsin(j5); IkReal x1423=(cj6*cj7); IkReal x1424=(cj6*sj7); IkReal x1425=(new_r10*x1422); IkReal x1426=((1.0)*x1421); IkReal x1427=(new_r02*x1421); IkReal x1428=(new_r00*x1421); IkReal x1429=((1.0)*x1422); IkReal x1430=(new_r01*x1421); IkReal x1431=(sj7*x1422); IkReal x1432=(cj6*x1422); evalcond[0]=(new_r02+((sj6*x1421))); evalcond[1]=(new_r12+((sj6*x1422))); evalcond[2]=((((-1.0)*new_r02*x1429))+((new_r12*x1421))); evalcond[3]=(sj6+x1427+((new_r12*x1422))); evalcond[4]=(sj7+(((-1.0)*new_r10*x1426))+((new_r00*x1422))); evalcond[5]=(cj7+(((-1.0)*new_r11*x1426))+((new_r01*x1422))); evalcond[6]=(((cj7*x1422))+new_r01+((x1421*x1424))); evalcond[7]=(x1424+x1430+((new_r11*x1422))); evalcond[8]=((((-1.0)*x1423*x1426))+x1431+new_r00); evalcond[9]=(((x1422*x1424))+(((-1.0)*cj7*x1426))+new_r11); evalcond[10]=((((-1.0)*x1423))+x1425+x1428); evalcond[11]=((((-1.0)*sj7*x1426))+(((-1.0)*x1423*x1429))+new_r10); evalcond[12]=(((cj6*x1427))+((new_r22*sj6))+((new_r12*x1432))); evalcond[13]=(sj7+((new_r11*x1432))+((cj6*x1430))+((new_r21*sj6))); evalcond[14]=((((-1.0)*new_r00*sj6*x1426))+(((-1.0)*sj6*x1425))+((cj6*new_r20))); evalcond[15]=((((-1.0)*new_r11*sj6*x1429))+(((-1.0)*new_r01*sj6*x1426))+((cj6*new_r21))); evalcond[16]=((-1.0)+(((-1.0)*new_r12*sj6*x1429))+(((-1.0)*new_r02*sj6*x1426))+((cj6*new_r22))); evalcond[17]=(((new_r20*sj6))+((cj6*x1425))+((cj6*x1428))+(((-1.0)*cj7))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[8]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[9]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[10]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[11]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[12]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[13]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[14]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[15]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[16]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[17]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } else { { IkReal j5array[1], cj5array[1], sj5array[1]; bool j5valid[1]={false}; _nj5 = 1; CheckValue<IkReal> x1433=IKPowWithIntegerCheck(IKsign(sj6),-1); if(!x1433.valid){ continue; } CheckValue<IkReal> x1434 = IKatan2WithCheck(IkReal(((-1.0)*new_r12)),IkReal(((-1.0)*new_r02)),IKFAST_ATAN2_MAGTHRESH); if(!x1434.valid){ continue; } j5array[0]=((-1.5707963267949)+(((1.5707963267949)*(x1433.value)))+(x1434.value)); sj5array[0]=IKsin(j5array[0]); cj5array[0]=IKcos(j5array[0]); if( j5array[0] > IKPI ) { j5array[0]-=IK2PI; } else if( j5array[0] < -IKPI ) { j5array[0]+=IK2PI; } j5valid[0] = true; for(int ij5 = 0; ij5 < 1; ++ij5) { if( !j5valid[ij5] ) { continue; } _ij5[0] = ij5; _ij5[1] = -1; for(int iij5 = ij5+1; iij5 < 1; ++iij5) { if( j5valid[iij5] && IKabs(cj5array[ij5]-cj5array[iij5]) < IKFAST_SOLUTION_THRESH && IKabs(sj5array[ij5]-sj5array[iij5]) < IKFAST_SOLUTION_THRESH ) { j5valid[iij5]=false; _ij5[1] = iij5; break; } } j5 = j5array[ij5]; cj5 = cj5array[ij5]; sj5 = sj5array[ij5]; { IkReal evalcond[18]; IkReal x1435=IKcos(j5); IkReal x1436=IKsin(j5); IkReal x1437=(cj6*cj7); IkReal x1438=(cj6*sj7); IkReal x1439=(new_r10*x1436); IkReal x1440=((1.0)*x1435); IkReal x1441=(new_r02*x1435); IkReal x1442=(new_r00*x1435); IkReal x1443=((1.0)*x1436); IkReal x1444=(new_r01*x1435); IkReal x1445=(sj7*x1436); IkReal x1446=(cj6*x1436); evalcond[0]=(((sj6*x1435))+new_r02); evalcond[1]=(((sj6*x1436))+new_r12); evalcond[2]=((((-1.0)*new_r02*x1443))+((new_r12*x1435))); evalcond[3]=(sj6+((new_r12*x1436))+x1441); evalcond[4]=(sj7+((new_r00*x1436))+(((-1.0)*new_r10*x1440))); evalcond[5]=(cj7+((new_r01*x1436))+(((-1.0)*new_r11*x1440))); evalcond[6]=(((x1435*x1438))+((cj7*x1436))+new_r01); evalcond[7]=(((new_r11*x1436))+x1438+x1444); evalcond[8]=((((-1.0)*x1437*x1440))+x1445+new_r00); evalcond[9]=(((x1436*x1438))+(((-1.0)*cj7*x1440))+new_r11); evalcond[10]=((((-1.0)*x1437))+x1439+x1442); evalcond[11]=((((-1.0)*x1437*x1443))+(((-1.0)*sj7*x1440))+new_r10); evalcond[12]=(((new_r12*x1446))+((cj6*x1441))+((new_r22*sj6))); evalcond[13]=(((new_r11*x1446))+sj7+((cj6*x1444))+((new_r21*sj6))); evalcond[14]=((((-1.0)*new_r00*sj6*x1440))+(((-1.0)*sj6*x1439))+((cj6*new_r20))); evalcond[15]=((((-1.0)*new_r11*sj6*x1443))+(((-1.0)*new_r01*sj6*x1440))+((cj6*new_r21))); evalcond[16]=((-1.0)+(((-1.0)*new_r12*sj6*x1443))+(((-1.0)*new_r02*sj6*x1440))+((cj6*new_r22))); evalcond[17]=(((new_r20*sj6))+((cj6*x1442))+((cj6*x1439))+(((-1.0)*cj7))); if( IKabs(evalcond[0]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[1]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[2]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[3]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[4]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[5]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[6]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[7]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[8]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[9]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[10]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[11]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[12]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[13]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[14]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[15]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[16]) > IKFAST_EVALCOND_THRESH || IKabs(evalcond[17]) > IKFAST_EVALCOND_THRESH ) { continue; } } { std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(8); vinfos[0].jointtype = 17; vinfos[0].foffset = j0; vinfos[0].indices[0] = _ij0[0]; vinfos[0].indices[1] = _ij0[1]; vinfos[0].maxsolutions = _nj0; vinfos[1].jointtype = 17; vinfos[1].foffset = j1; vinfos[1].indices[0] = _ij1[0]; vinfos[1].indices[1] = _ij1[1]; vinfos[1].maxsolutions = _nj1; vinfos[2].jointtype = 1; vinfos[2].foffset = j2; vinfos[2].indices[0] = _ij2[0]; vinfos[2].indices[1] = _ij2[1]; vinfos[2].maxsolutions = _nj2; vinfos[3].jointtype = 17; vinfos[3].foffset = j3; vinfos[3].indices[0] = _ij3[0]; vinfos[3].indices[1] = _ij3[1]; vinfos[3].maxsolutions = _nj3; vinfos[4].jointtype = 1; vinfos[4].foffset = j4; vinfos[4].indices[0] = _ij4[0]; vinfos[4].indices[1] = _ij4[1]; vinfos[4].maxsolutions = _nj4; vinfos[5].jointtype = 1; vinfos[5].foffset = j5; vinfos[5].indices[0] = _ij5[0]; vinfos[5].indices[1] = _ij5[1]; vinfos[5].maxsolutions = _nj5; vinfos[6].jointtype = 1; vinfos[6].foffset = j6; vinfos[6].indices[0] = _ij6[0]; vinfos[6].indices[1] = _ij6[1]; vinfos[6].maxsolutions = _nj6; vinfos[7].jointtype = 1; vinfos[7].foffset = j7; vinfos[7].indices[0] = _ij7[0]; vinfos[7].indices[1] = _ij7[1]; vinfos[7].maxsolutions = _nj7; std::vector<int> vfree(0); solutions.AddSolution(vinfos,vfree); } } } } } } } } } } } } }static inline void polyroots3(IkReal rawcoeffs[3+1], IkReal rawroots[3], int& numroots) { using std::complex; if( rawcoeffs[0] == 0 ) { // solve with one reduced degree polyroots2(&rawcoeffs[1], &rawroots[0], numroots); return; } IKFAST_ASSERT(rawcoeffs[0] != 0); const IkReal tol = 128.0*std::numeric_limits<IkReal>::epsilon(); const IkReal tolsqrt = sqrt(std::numeric_limits<IkReal>::epsilon()); complex<IkReal> coeffs[3]; const int maxsteps = 110; for(int i = 0; i < 3; ++i) { coeffs[i] = complex<IkReal>(rawcoeffs[i+1]/rawcoeffs[0]); } complex<IkReal> roots[3]; IkReal err[3]; roots[0] = complex<IkReal>(1,0); roots[1] = complex<IkReal>(0.4,0.9); // any complex number not a root of unity works err[0] = 1.0; err[1] = 1.0; for(int i = 2; i < 3; ++i) { roots[i] = roots[i-1]*roots[1]; err[i] = 1.0; } for(int step = 0; step < maxsteps; ++step) { bool changed = false; for(int i = 0; i < 3; ++i) { if ( err[i] >= tol ) { changed = true; // evaluate complex<IkReal> x = roots[i] + coeffs[0]; for(int j = 1; j < 3; ++j) { x = roots[i] * x + coeffs[j]; } for(int j = 0; j < 3; ++j) { if( i != j ) { if( roots[i] != roots[j] ) { x /= (roots[i] - roots[j]); } } } roots[i] -= x; err[i] = abs(x); } } if( !changed ) { break; } } numroots = 0; bool visited[3] = {false}; for(int i = 0; i < 3; ++i) { if( !visited[i] ) { // might be a multiple root, in which case it will have more error than the other roots // find any neighboring roots, and take the average complex<IkReal> newroot=roots[i]; int n = 1; for(int j = i+1; j < 3; ++j) { // care about error in real much more than imaginary if( abs(real(roots[i])-real(roots[j])) < tolsqrt && abs(imag(roots[i])-imag(roots[j])) < 0.002 ) { newroot += roots[j]; n += 1; visited[j] = true; } } if( n > 1 ) { newroot /= n; } // there are still cases where even the mean is not accurate enough, until a better multi-root algorithm is used, need to use the sqrt if( IKabs(imag(newroot)) < tolsqrt ) { rawroots[numroots++] = real(newroot); } } } } static inline void polyroots2(IkReal rawcoeffs[2+1], IkReal rawroots[2], int& numroots) { IkReal det = rawcoeffs[1]*rawcoeffs[1]-4*rawcoeffs[0]*rawcoeffs[2]; if( det < 0 ) { numroots=0; } else if( det == 0 ) { rawroots[0] = -0.5*rawcoeffs[1]/rawcoeffs[0]; numroots = 1; } else { det = IKsqrt(det); rawroots[0] = (-rawcoeffs[1]+det)/(2*rawcoeffs[0]); rawroots[1] = (-rawcoeffs[1]-det)/(2*rawcoeffs[0]);//rawcoeffs[2]/(rawcoeffs[0]*rawroots[0]); numroots = 2; } } static inline void polyroots4(IkReal rawcoeffs[4+1], IkReal rawroots[4], int& numroots) { using std::complex; if( rawcoeffs[0] == 0 ) { // solve with one reduced degree polyroots3(&rawcoeffs[1], &rawroots[0], numroots); return; } IKFAST_ASSERT(rawcoeffs[0] != 0); const IkReal tol = 128.0*std::numeric_limits<IkReal>::epsilon(); const IkReal tolsqrt = sqrt(std::numeric_limits<IkReal>::epsilon()); complex<IkReal> coeffs[4]; const int maxsteps = 110; for(int i = 0; i < 4; ++i) { coeffs[i] = complex<IkReal>(rawcoeffs[i+1]/rawcoeffs[0]); } complex<IkReal> roots[4]; IkReal err[4]; roots[0] = complex<IkReal>(1,0); roots[1] = complex<IkReal>(0.4,0.9); // any complex number not a root of unity works err[0] = 1.0; err[1] = 1.0; for(int i = 2; i < 4; ++i) { roots[i] = roots[i-1]*roots[1]; err[i] = 1.0; } for(int step = 0; step < maxsteps; ++step) { bool changed = false; for(int i = 0; i < 4; ++i) { if ( err[i] >= tol ) { changed = true; // evaluate complex<IkReal> x = roots[i] + coeffs[0]; for(int j = 1; j < 4; ++j) { x = roots[i] * x + coeffs[j]; } for(int j = 0; j < 4; ++j) { if( i != j ) { if( roots[i] != roots[j] ) { x /= (roots[i] - roots[j]); } } } roots[i] -= x; err[i] = abs(x); } } if( !changed ) { break; } } numroots = 0; bool visited[4] = {false}; for(int i = 0; i < 4; ++i) { if( !visited[i] ) { // might be a multiple root, in which case it will have more error than the other roots // find any neighboring roots, and take the average complex<IkReal> newroot=roots[i]; int n = 1; for(int j = i+1; j < 4; ++j) { // care about error in real much more than imaginary if( abs(real(roots[i])-real(roots[j])) < tolsqrt && abs(imag(roots[i])-imag(roots[j])) < 0.002 ) { newroot += roots[j]; n += 1; visited[j] = true; } } if( n > 1 ) { newroot /= n; } // there are still cases where even the mean is not accurate enough, until a better multi-root algorithm is used, need to use the sqrt if( IKabs(imag(newroot)) < tolsqrt ) { rawroots[numroots++] = real(newroot); } } } } }; /// solves the inverse kinematics equations. /// \param pfree is an array specifying the free joints of the chain. IKFAST_API bool ComputeIk(const IkReal* eetrans, const IkReal* eerot, const IkReal* pfree, IkSolutionListBase<IkReal>& solutions) { IKSolver solver; return solver.ComputeIk(eetrans,eerot,pfree,solutions); } IKFAST_API bool ComputeIk2(const IkReal* eetrans, const IkReal* eerot, const IkReal* pfree, IkSolutionListBase<IkReal>& solutions, void* pOpenRAVEManip) { IKSolver solver; return solver.ComputeIk(eetrans,eerot,pfree,solutions); } IKFAST_API const char* GetKinematicsHash() { return "d559213b8fa0a6e94448a10b84cefc7c"; } IKFAST_API const char* GetIkFastVersion() { return "0x10000049"; } #ifdef IKFAST_NAMESPACE } // end namespace #endif #ifndef IKFAST_NO_MAIN #include <stdio.h> #include <stdlib.h> #ifdef IKFAST_NAMESPACE using namespace IKFAST_NAMESPACE; #endif int main(int argc, char** argv) { if( argc != 12+GetNumFreeParameters()+1 ) { printf("\nUsage: ./ik r00 r01 r02 t0 r10 r11 r12 t1 r20 r21 r22 t2 free0 ...\n\n" "Returns the ik solutions given the transformation of the end effector specified by\n" "a 3x3 rotation R (rXX), and a 3x1 translation (tX).\n" "There are %d free parameters that have to be specified.\n\n",GetNumFreeParameters()); return 1; } IkSolutionList<IkReal> solutions; std::vector<IkReal> vfree(GetNumFreeParameters()); IkReal eerot[9],eetrans[3]; eerot[0] = atof(argv[1]); eerot[1] = atof(argv[2]); eerot[2] = atof(argv[3]); eetrans[0] = atof(argv[4]); eerot[3] = atof(argv[5]); eerot[4] = atof(argv[6]); eerot[5] = atof(argv[7]); eetrans[1] = atof(argv[8]); eerot[6] = atof(argv[9]); eerot[7] = atof(argv[10]); eerot[8] = atof(argv[11]); eetrans[2] = atof(argv[12]); for(std::size_t i = 0; i < vfree.size(); ++i) vfree[i] = atof(argv[13+i]); bool bSuccess = ComputeIk(eetrans, eerot, vfree.size() > 0 ? &vfree[0] : NULL, solutions); if( !bSuccess ) { fprintf(stderr,"Failed to get ik solution\n"); return -1; } printf("Found %d ik solutions:\n", (int)solutions.GetNumSolutions()); std::vector<IkReal> solvalues(GetNumJoints()); for(std::size_t i = 0; i < solutions.GetNumSolutions(); ++i) { const IkSolutionBase<IkReal>& sol = solutions.GetSolution(i); printf("sol%d (free=%d): ", (int)i, (int)sol.GetFree().size()); std::vector<IkReal> vsolfree(sol.GetFree().size()); sol.GetSolution(&solvalues[0],vsolfree.size()>0?&vsolfree[0]:NULL); for( std::size_t j = 0; j < solvalues.size(); ++j) printf("%.15f, ", solvalues[j]); printf("\n"); } return 0; } #endif
587,721
C++
27.3144
874
0.647503
makolon/hsr_isaac_tamp/hsr_tamp/README.md
# HSR-TAMP
11
Markdown
4.999998
10
0.636364
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_2d/tamp_planner.py
#!/usr/bin/env python3 import os import time import random import numpy as np from itertools import product from utils.optimizer.optimizer import cfree_motion_fn, get_optimize_fn from utils.primitives import ( # generator get_pose_gen, get_stack_pose_gen, get_block_pose_gen, \ get_center_pose_gen, get_stack_center_pose_gen, get_block_center_pose_gen, \ # test function collision_test, stack_test, get_region_test, get_block_region_test, \ # utility distance_fn, inverse_kin_fn, duration_fn, stack_inverse_kin_fn, \ plan_motion, draw_state, get_random_seed, update_state, \ # constant SUCTION_HEIGHT, MOVE_COST, GRASP, ENVIRONMENT_NAMES, PROBLEMS) from hsr_tamp.pddlstream.algorithms.meta import solve, create_parser from hsr_tamp.pddlstream.algorithms.downward import get_cost_scale from hsr_tamp.pddlstream.algorithms.constraints import PlanConstraints, WILD from hsr_tamp.pddlstream.algorithms.visualization import VISUALIZATIONS_DIR from hsr_tamp.pddlstream.language.external import defer_shared, get_defer_all_unbound, get_defer_any_unbound from hsr_tamp.pddlstream.language.constants import And, Equal, PDDLProblem, TOTAL_COST, print_solution, Or, Output from hsr_tamp.pddlstream.language.function import FunctionInfo from hsr_tamp.pddlstream.language.generator import from_gen_fn, from_list_fn, from_test, from_fn from hsr_tamp.pddlstream.language.stream import StreamInfo from hsr_tamp.pddlstream.language.temporal import get_end, compute_duration, retime_plan from hsr_tamp.pddlstream.utils import ensure_dir, safe_rm_dir, user_input, read, INF, get_file_path, str_from_object, \ sorted_str_from_list, implies, inclusive_range, Profiler ################################################## TIGHT_SKELETON = [ ('move', ['r0', '?q0', WILD, '?q1']), ('pick', ['r0', 'B', '?p0', '?g0', '?q1']), ('move', ['r0', '?q1', WILD, '?q2']), ('place', ['r0', 'B', '?p1', '?g0', '?q2']), ('move', ['r0', '?q2', WILD, '?q3']), ('pick', ['r0', 'A', '?p2', '?g1', '?q3']), ('move', ['r0', '?q3', WILD, '?q4']), ('place', ['r0', 'A', '?p3', '?g1', '?q4']), ('move', ['r0', '?q4', WILD, '?q5']), ] MUTEXES = [ #[('kin', '?b1', '?p1', '?q'), ('kin', '?b2', '?p2', '?q')], ] class TAMPPlanner(object): def create_problem(self, tamp_problem, hand_empty=False, manipulate_cost=1.): initial = tamp_problem.initial assert(not initial.holding) init = [ Equal(('Cost',), manipulate_cost), Equal((TOTAL_COST,), 0)] + [('Placeable', b, r) for b in initial.block_poses.keys() for r in tamp_problem.regions if (r in ENVIRONMENT_NAMES)] goal_literals = [] ### Block specification for b, p in initial.block_poses.items(): init += [ ('Block', b), ('Pose', b, p), ('AtPose', b, p), ] for b, r in tamp_problem.goal_in.items(): if isinstance(r, np.ndarray): init += [('Pose', b, r)] goal_literals += [('AtPose', b, r)] else: blocks = [b] if isinstance(b, str) else b regions = [r] if isinstance(r, str) else r conditions = [] for body, region in product(blocks, regions): init += [('Region', region), ('Placeable', body, region)] conditions += [('In', body, region)] goal_literals.append(Or(*conditions)) for on_list in tamp_problem.goal_on: init += [('Placeable', on_list[1], on_list[0])] goal_literals += [('On', on_list[1], on_list[0])] ### Robot specification for r, q in initial.robot_confs.items(): init += [ ('Robot', r), ('CanMove', r), ('Conf', q), ('AtConf', r, q), ('HandEmpty', r), ] if hand_empty: goal_literals += [('HandEmpty', r)] if tamp_problem.goal_conf is not None: goal_literals += [('AtConf', r, q)] goal = And(*goal_literals) return init, goal def pddlstream_from_tamp(self, tamp_problem, use_stream=True, use_optimizer=False, collisions=True, center=False): domain_pddl = read(get_file_path(__file__, 'task/stack/domain.pddl')) external_paths = [] if use_stream: external_paths.append(get_file_path(__file__, 'task/stack/stream.pddl')) if use_optimizer: external_paths.append(get_file_path(__file__, 'optimizer/optimizer.pddl')) external_pddl = [read(path) for path in external_paths] constant_map = {} if center: stream_map = { 's-grasp': from_fn(lambda b: (GRASP,)), 's-motion': from_fn(plan_motion), 's-ik': from_fn(inverse_kin_fn), 's-stackik': from_fn(stack_inverse_kin_fn), 's-region': from_gen_fn(get_center_pose_gen(tamp_problem.regions)), 's-blockregion': from_gen_fn(get_block_center_pose_gen(tamp_problem.regions)), 't-region': from_test(get_region_test(tamp_problem.regions)), 't-blockregion': from_test(get_block_region_test(tamp_problem.regions)), 't-cfree': from_test(lambda *args: implies(collisions, not collision_test(*args))), 't-cstack': from_test(lambda *args: implies(collisions, not stack_test(*args))), 'dist': distance_fn, 'duration': duration_fn, } else: stream_map = { 's-grasp': from_fn(lambda b: (GRASP,)), 's-motion': from_fn(plan_motion), 's-ik': from_fn(inverse_kin_fn), 's-stackik': from_fn(stack_inverse_kin_fn), 's-region': from_gen_fn(get_pose_gen(tamp_problem.regions)), 's-blockregion': from_gen_fn(get_block_pose_gen(tamp_problem.regions)), 't-region': from_test(get_region_test(tamp_problem.regions)), 't-blockregion': from_test(get_block_region_test(tamp_problem.regions)), 't-cfree': from_test(lambda *args: implies(collisions, not collision_test(*args))), 't-cstack': from_test(lambda *args: implies(collisions, not stack_test(*args))), 'dist': distance_fn, 'duration': duration_fn, } if use_optimizer: stream_map.update({ 'gurobi': from_list_fn(get_optimize_fn(tamp_problem.regions, collisions=collisions)), 'rrt': from_fn(cfree_motion_fn), }) init, goal = self.create_problem(tamp_problem) return PDDLProblem(domain_pddl, constant_map, external_pddl, stream_map, init, goal) def display_plan(self, tamp_problem, plan, display=True, save=False, time_step=0.025, sec_per_step=1e-3): from utils.viewer import ContinuousTMPViewer, COLORS if save: example_name = 'continuous_tamp' directory = os.path.join(VISUALIZATIONS_DIR, '{}/'.format(example_name)) safe_rm_dir(directory) ensure_dir(directory) colors = dict(zip(sorted(tamp_problem.initial.block_poses.keys()), COLORS)) viewer = ContinuousTMPViewer(SUCTION_HEIGHT, tamp_problem.regions, title='Continuous TAMP') state = tamp_problem.initial print() print(state) duration = compute_duration(plan) real_time = None if sec_per_step is None else (duration * sec_per_step / time_step) print('Duration: {} | Step size: {} | Real time: {}'.format(duration, time_step, real_time)) draw_state(viewer, state, colors) if display: user_input('Start?') if plan is not None: for t in inclusive_range(0, duration, time_step): for action in plan: if action.start <= t <= get_end(action): update_state(state, action, t - action.start) print('t={} | {}'.format(t, state)) draw_state(viewer, state, colors) if save: viewer.save(os.path.join(directory, 't={}'.format(t))) if display: if sec_per_step is None: user_input('Continue?') else: time.sleep(sec_per_step) if display: user_input('Finish?') return state def set_deterministic(self, seed=0): random.seed(seed=seed) np.random.seed(seed=seed) def initialize(self, parser): parser.add_argument('-c', '--cfree', action='store_true', help='Disables collisions') parser.add_argument('-d', '--deterministic', action='store_true', help='Uses a deterministic sampler') parser.add_argument('-t', '--max_time', default=30, type=int, help='The max time') parser.add_argument('-n', '--number', default=4, type=int, help='The number of blocks') parser.add_argument('-p', '--problem', default='gearbox', help='The name of the problem to solve') parser.add_argument('-v', '--visualize', action='store_true', help='Visualizes graphs') args = parser.parse_args() print('Arguments:', args) np.set_printoptions(precision=2) if args.deterministic: self.set_deterministic() print('Random seed:', get_random_seed()) problem_from_name = {fn.__name__: fn for fn in PROBLEMS} if args.problem not in problem_from_name: raise ValueError(args.problem) print('Problem:', args.problem) problem_fn = problem_from_name[args.problem] tamp_problem = problem_fn(args.number) print(tamp_problem) return tamp_problem, args def dump_pddlstream(self, pddlstream_problem): print('Initial:', sorted_str_from_list(pddlstream_problem.init)) print('Goal:', str_from_object(pddlstream_problem.goal)) def plan(self): parser = create_parser() parser.add_argument('-g', '--gurobi', action='store_true', help='Uses gurobi') parser.add_argument('-o', '--optimal', action='store_true', help='Runs in an anytime mode') parser.add_argument('-s', '--skeleton', action='store_true', help='Enforces skeleton plan constraints') tamp_problem, args = self.initialize(parser) defer_fn = defer_shared # always True stream_info = { 's-grasp': StreamInfo(defer_fn=defer_fn), 's-region': StreamInfo(defer_fn=defer_fn), 's-ik': StreamInfo(defer_fn=get_defer_all_unbound(inputs='?g')), 's-motion': StreamInfo(defer_fn=get_defer_any_unbound()), 't-region': StreamInfo(eager=False, p_success=0), 't-blockregion': StreamInfo(eager=False, p_success=0), 't-cfree': StreamInfo(defer_fn=get_defer_any_unbound(), eager=False), 't-cstack': StreamInfo(eager=False), 'gurobi-cfree': StreamInfo(eager=False, negate=True), 'dist': FunctionInfo(eager=False, defer_fn=get_defer_any_unbound(), opt_fn=lambda q1, q2: MOVE_COST), } hierarchy = [ # ABSTRIPSLayer(pos_pre=['atconf']), #, horizon=1), ] skeletons = [TIGHT_SKELETON] if args.skeleton else None assert implies(args.skeleton, args.problem == 'tight') max_cost = INF constraints = PlanConstraints(skeletons=skeletons, exact=True, max_cost=max_cost) replan_actions = set() pddlstream_problem = self.pddlstream_from_tamp(tamp_problem, collisions=not args.cfree, center=True, use_stream=not args.gurobi, use_optimizer=args.gurobi) self.dump_pddlstream(pddlstream_problem) success_cost = 0 if args.optimal else INF planner = 'max-astar' effort_weight = 1. / get_cost_scale() with Profiler(field='cumtime', num=20): solution = solve(pddlstream_problem, algorithm=args.algorithm, constraints=constraints, stream_info=stream_info, replan_actions=replan_actions, planner=planner, max_planner_time=10, hierarchy=hierarchy, max_time=args.max_time, max_iterations=INF, debug=False, verbose=True, unit_costs=args.unit, success_cost=success_cost, unit_efforts=True, effort_weight=effort_weight, search_sample_ratio=1, visualize=args.visualize) print_solution(solution) plan, cost, evaluations = solution return plan, cost, evaluations def execute(self): parser = create_parser() parser.add_argument('-g', '--gurobi', action='store_true', help='Uses gurobi') parser.add_argument('-o', '--optimal', action='store_true', help='Runs in an anytime mode') parser.add_argument('-s', '--skeleton', action='store_true', help='Enforces skeleton plan constraints') tamp_problem, _ = self.initialize(parser) plan, _, _ = self.plan() print('plan: ', plan) if plan is not None: self.display_plan(tamp_problem, retime_plan(plan)) if __name__ == '__main__': tamp_planner = TAMPPlanner() tamp_planner.execute()
13,511
Python
43.447368
124
0.574199
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_2d/utils/viewer.py
from __future__ import print_function try: from Tkinter import Tk, Canvas, Toplevel except ImportError: from tkinter import Tk, Canvas, Toplevel # NOTE - this will overwrite (but remember) existing drawings # TODO - try PyGame, PyCairo, or Pyglet SUCTION_WIDTH = 1.5 # 1.01 | 1.5 STEM_WIDTH = 1. STEM_HEIGHT = 2.5 PIXEL_BUFFER = 10 ENV_HEIGHT = 1. COLOR_FROM_NAME = { 'stove': 'red', 'table': 'brown', # brown | tan 'shelf': 'grey', } COLORS = ['red', 'orange', 'yellow', 'green', 'blue', 'violet', 'white', 'black'] BACKGROUND_COLOR = 'light blue' # tan | light blue # http://www.science.smith.edu/dftwiki/index.php/File:TkInterColorCharts.png def get_width(interval): return interval[1] - interval[0] ################################################## class ContinuousTMPViewer(object): def __init__(self, suction_height, regions, tl_x=0, tl_y=0, width=400, height=200, title='Grid', background=BACKGROUND_COLOR): self.tk = Tk() # tk.geometry('%dx%d+%d+%d'%(width, height, 100, 0)) self.tk.withdraw() self.top = Toplevel(self.tk) self.top.wm_title(title) self.top.protocol('WM_DELETE_WINDOW', self.top.destroy) self.suction_height = suction_height self.regions = regions self.width = width self.height = height self.canvas = Canvas(self.top, width=self.width, height=self.height, background=background) self.canvas.pack() # self.center() self.move_frame(tl_x, tl_y) min_x = min(x1 for x1, _ in regions.values()) max_x = max(x2 for _, x2 in regions.values()) max_width = max_x - min_x self.dist_to_pixel = (self.width - 2 * PIXEL_BUFFER) / max_width # Maintains aspect ratio self.dist_width = self.width / self.dist_to_pixel self.dist_height = self.height / self.dist_to_pixel self.ground_height = self.height - self.dist_to_pixel * ENV_HEIGHT self.robot_dist = self.dist_height / 2. self.dynamic = [] self.static = [] self.draw_environment() def center(self): self.top.update_idletasks() w = self.top.winfo_screenwidth() h = self.top.winfo_screenheight() size = tuple(int(_) for _ in self.top.geometry().split('+')[0].split('x')) x = w / 2 - size[0] / 2 y = h / 2 - size[1] / 2 self.top.geometry("%dx%d+%d+%d" % (size + (x, y))) def move_frame(self, x, y): self.top.update_idletasks() size = tuple(int(_) for _ in self.top.geometry().split('+')[0].split('x')) self.top.geometry("%dx%d+%d+%d" % (size + (x, y))) def scale_x(self, x): # x \in [-self.dist_width/2, self.dist_width/2] return self.width / 2. + self.dist_to_pixel * x def scale_y(self, y): # y \in [0, self.dist_height] return self.ground_height - self.dist_to_pixel * y def draw_block(self, x, y, width, height, name='', color='blue'): self.dynamic.extend([ self.canvas.create_rectangle(self.scale_x(x - width / 2.), self.scale_y(y), self.scale_x(x + width / 2.), self.scale_y(y + height), fill=color, outline='black', width=2), self.canvas.create_text(self.scale_x(x), self.scale_y(y + height / 2), text=name), ]) def draw_region(self, region, name=''): # TODO: draw table legs (with an offset) x1, x2 = map(self.scale_x, region) y1, y2 = self.ground_height, self.height color = COLOR_FROM_NAME.get(name, name) self.static.extend([ self.canvas.create_rectangle(x1, y1, x2, y2, fill=color, outline='black', width=2), self.canvas.create_text((x1 + x2) / 2, (y1 + y2) / 2, text=name), ]) def draw_environment(self): # TODO: automatically draw in order self.static = [] for name, region in sorted(self.regions.items(), key=lambda pair: get_width(pair[1]), reverse=True): self.draw_region(region, name=name) def draw_robot(self, x, y, name='', color='yellow'): # TODO - could also visualize as top grasps instead of side grasps #y = self.robot_dist self.dynamic.extend([ self.canvas.create_rectangle(self.scale_x(x - SUCTION_WIDTH / 2.), self.scale_y(y - self.suction_height / 2.), self.scale_x(x + SUCTION_WIDTH / 2.), self.scale_y(y + self.suction_height / 2.), fill=color, outline='black', width=2), self.canvas.create_text(self.scale_x(x), self.scale_y(y), text=name), self.canvas.create_rectangle(self.scale_x(x - STEM_WIDTH / 2.), self.scale_y(y + self.suction_height / 2.), self.scale_x(x + STEM_WIDTH / 2.), self.scale_y(y + self.suction_height / 2. + STEM_HEIGHT), fill=color, outline='black', width=2), ]) def clear_state(self): for part in self.dynamic: self.canvas.delete(part) self.dynamic = [] def clear_all(self): self.canvas.delete('all') def save(self, filename): # TODO: screen recording based on location like I did before # TODO: only works on windows # self.canvas.postscript(file='%s.ps'%filename, colormode='color') #from PIL import ImageGrab try: import pyscreenshot as ImageGrab except ImportError: print('Unable to load pyscreenshot') return None # TODO: screenshot is in the wrong place x, y = self.top.winfo_x(), 2*self.top.winfo_y() width, height = self.top.winfo_width(), self.top.winfo_height() # winfo_width, winfo_reqheight path = filename + '.png' print('Saved', path) ImageGrab.grab((x, y, x+width, y+height)).save(path) return path
6,136
Python
39.375
124
0.551662
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_2d/utils/primitives.py
from collections import namedtuple import numpy as np import string import random GROUND_NAME = 'gray' BLOCK_WIDTH = 2 BLOCK_HEIGHT = BLOCK_WIDTH GROUND_Y = 0. SUCTION_HEIGHT = 1. GRASP = -np.array([0, BLOCK_HEIGHT + SUCTION_HEIGHT/2]) # TODO: side grasps CARRY_Y = 2*BLOCK_WIDTH+SUCTION_HEIGHT APPROACH = -np.array([0, CARRY_Y]) - GRASP MOVE_COST = 10. COST_PER_DIST = 1. DISTANCE_PER_TIME = 4.0 def get_block_box(b, p=np.zeros(2)): extent = np.array([BLOCK_WIDTH, BLOCK_HEIGHT]) # TODO: vary per block lower = p - extent/2. upper = p + extent/2. return lower, upper def boxes_overlap(box1, box2): lower1, upper1 = box1 lower2, upper2 = box2 return np.less_equal(lower1, upper2).all() and \ np.less_equal(lower2, upper1).all() def interval_contains(i1, i2): """ :param i1: The container interval :param i2: The possibly contained interval :return: """ return (i1[0] <= i2[0]) and (i2[1] <= i1[1]) def interval_overlap(i1, i2): return (i2[0] <= i1[1]) and (i1[0] <= i2[1]) def get_block_interval(b, p): lower, upper = get_block_box(b, p) return lower[0], upper[0] def get_block_interval_margin(b, p): collision_margin = 0.1 lower, upper = get_block_box(b, p) return lower[0]-collision_margin, upper[0]+collision_margin def sample_region(b, region): x1, x2 = np.array(region, dtype=float) - get_block_interval(b, np.zeros(2)) if x2 < x1: return None x = np.random.uniform(x1, x2) return np.array([x, 0]) def rejection_sample_region(b, region, placed={}, max_attempts=10): for _ in range(max_attempts): p = sample_region(b, region) if p is None: break if not any(collision_test(b, p, b2, p2) for b2, p2 in placed.items()): return p return None def rejection_sample_placed(block_poses={}, block_regions={}, regions={}, max_attempts=10): assert(not set(block_poses.keys()) & set(block_regions.keys())) for _ in range(max_attempts): placed = block_poses.copy() remaining = list(block_regions.items()) random.shuffle(remaining) for b, r in remaining: p = rejection_sample_region(b, regions[r], placed) if p is None: break placed[b] = p else: return placed return None def sample_center_region(b, region): x1, x2 = np.array(region, dtype=float) - get_block_interval(b, np.zeros(2)) if x2 < x1: return None x = (x1+x2)/2. return np.array([x, 0]) ################################################## Streams def collision_test(b1, p1, b2, p2): if b1 == b2: return False return interval_overlap(get_block_interval(b1, p1), get_block_interval(b2, p2)) def collision_test(b1, p1, b2, p2): if b1 == b2: return False return interval_overlap(get_block_interval_margin(b1, p1), get_block_interval_margin(b2, p2)) def stack_test(bu, pu, bl, pl): if interval_contains(get_block_interval(bl, pl)+np.array([-BLOCK_WIDTH,+BLOCK_WIDTH])/2., get_block_interval(bu, pu)): return (pu[1] > pl[1]) and (pu[1] <= pl[1]+BLOCK_HEIGHT) else: return False def stack_free_test(b1, p1, b2, p2): if interval_overlap(get_block_interval(b1, p1), get_block_interval(b2, p2)): return (p1[1] > p2[1]) else: return False def str_eq(s1, s2, ignore_case=True): if ignore_case: s1 = s1.lower() s2 = s2.lower() return s1 == s2 def interpolate(waypoints, velocity=1): import scipy differences = [0.] + [np.linalg.norm(q2 - q1) for q1, q2 in zip(waypoints[:-1], waypoints[1:])] times = np.cumsum(differences) / velocity return scipy.interpolate.interp1d(times, waypoints, kind='linear') def plan_motion(q1, q2, fluents=[]): x1, y1 = q1 x2, y2 = q2 t = [q1, np.array([x1, CARRY_Y]), np.array([x2, CARRY_Y]), q2] grasp = None placed = {} for fluent in fluents: predicate, args = fluent[0], fluent[1:] if str_eq(predicate, 'AtGrasp'): assert grasp is None r, b, g = args grasp = g elif str_eq(predicate, 'AtPose'): b, p = args assert b not in placed placed[b] = p elif str_eq(predicate, 'AtConf'): continue else: raise NotImplementedError(predicate) if grasp is None: return (t,) for q in t: p1 = forward_kin(q, grasp) box1 = get_block_box(None, p1) for b2, p2 in placed.items(): box2 = get_block_box(b2, p2) if boxes_overlap(box1, box2): return None return (t,) def forward_kin(q, g): p = q + g return p def inverse_kin(p, g): q = p - g return q def approach_kin(q): a = q - APPROACH return a def distance_fn(q1, q2): ord = 1 # 1 | 2 return MOVE_COST + COST_PER_DIST*np.linalg.norm(q2 - q1, ord=ord) def pick_distance_fn(q1, b, q2): ord = 1 # 1 | 2 return MOVE_COST + COST_PER_DIST*np.linalg.norm(q2 - q1, ord=ord) def duration_fn(traj): distance = sum(np.linalg.norm(q2 - q1) for q1, q2 in zip(traj, traj[1:])) return distance / DISTANCE_PER_TIME def inverse_kin_fn(b, p, g): q = inverse_kin(p, g) #return (q,) a = approach_kin(q) return (a,) def stack_inverse_kin_fn(b, p, g): q = p - g a = q - APPROACH - np.array([0, p[1]]) return (a,) def unreliable_ik_fn(*args): # For testing the algorithms while 1e-2 < np.random.random(): yield None yield inverse_kin_fn(*args) def get_region_test(regions=[]): def test(b, p, r): return interval_contains(regions[r], get_block_interval(b, p)) return test def get_block_region_test(regions=[]): def test(bu, pu, bl, pl): if interval_contains(get_block_interval(bl, pl)+np.array([-BLOCK_WIDTH,+BLOCK_WIDTH])/2., get_block_interval(bu, pu)): return (pu[1] > pl[1]) and (pu[1] <= pl[1]+BLOCK_HEIGHT+0.1) else: return False return test def get_reach_test(robot_movable_region): def test(r, q): return (robot_movable_region[r][0] <= q[0]) and (q[0] <= robot_movable_region[r][1]) return test def get_pose_gen(regions=[]): def gen_fn(b, r): while True: p = sample_region(b, regions[r]) if p is None: break yield (p,) return gen_fn def get_center_pose_gen(regions=[]): def gen_fn(b, r): while True: p = sample_center_region(b, regions[r]) if p is None: break yield (p,) return gen_fn def get_block_pose_gen(regions=[]): def get_fn(bu, bl, pl): while True: p = sample_region(bu, get_block_interval(bl, pl)+np.array([-BLOCK_WIDTH,+BLOCK_WIDTH])/2.) if p is None: break p[1] = pl[1] + BLOCK_HEIGHT yield (p,) return get_fn def get_block_center_pose_gen(regions=[]): def get_fn(bu, bl, pl): while True: p = sample_center_region(bu, get_block_interval(bl, pl)+np.array([-BLOCK_WIDTH,+BLOCK_WIDTH])/2.) if p is None: break p[0] = pl[0] p[1] = pl[1] + BLOCK_HEIGHT yield (p,) return get_fn def get_stack_pose_gen(regions=[]): def get_fn(bu, bl, pl): while True: p = sample_region(bu, get_block_interval(bl, pl)+np.array([-BLOCK_WIDTH,+BLOCK_WIDTH])/2.) if p is None: break if stack_test(p, pl): yield (p,) return get_fn def get_stack_center_pose_gen(regions=[]): def get_fn(bu, bl, pl): while True: p = sample_center_region(bu, get_block_interval(bl, pl)+np.array([-BLOCK_WIDTH,+BLOCK_WIDTH])/2.) if p is None: break if stack_test(p, pl): yield (p,) return get_fn ################################################## Problems ENVIRONMENT_NAMES = [GROUND_NAME] TAMPState = namedtuple('TAMPState', ['robot_confs', 'holding', 'block_poses']) TAMPProblem = namedtuple('TAMPProblem', ['initial', 'regions', 'goal_conf', 'goal_in', 'goal_on']) GOAL1_NAME = 'red' GOAL2_NAME = 'orange' STOVE_NAME = 'stove' TABLE_NAME = 'table' INITIAL_CONF = np.array([-5, CARRY_Y + 1]) GOAL_CONF = INITIAL_CONF REGIONS = { GROUND_NAME: (-10, 10), GOAL1_NAME: (-2.25, -0.25), GOAL2_NAME: (0.25, 2.25), } def make_blocks(num): return [string.ascii_uppercase[i] for i in range(num)] def gearbox(n_blocks=4, n_robots=1, deterministic=True): confs = [INITIAL_CONF, np.array([-1, 1])*INITIAL_CONF] robots = ['r{}'.format(x) for x in range(n_robots)] initial_confs = dict(zip(robots, confs)) blocks = make_blocks(n_blocks) if deterministic: lower, upper = REGIONS[GROUND_NAME] poses = [np.array([-7.5, 0]), np.array([-5.0, 0]), np.array([5.0, 0]), np.array([7.5, 0])] poses.extend(np.array([lower + BLOCK_WIDTH/2 + (BLOCK_WIDTH + 1) * x, 0]) for x in range(n_blocks-len(poses))) block_poses = dict(zip(blocks, poses)) else: block_regions = {blocks[0]: GROUND_NAME} block_regions.update({b: GOAL1_NAME for b in blocks[1:2]}) block_regions.update({b: GROUND_NAME for b in blocks[2:]}) block_poses = rejection_sample_placed(block_regions=block_regions, regions=REGIONS) initial = TAMPState(initial_confs, {}, block_poses) goal_in = {blocks[0]: GOAL1_NAME, blocks[2]: GOAL2_NAME} goal_on = ((blocks[0], blocks[1]), (blocks[2], blocks[3])) return TAMPProblem(initial, REGIONS, GOAL_CONF, goal_in, goal_on) PROBLEMS = [ gearbox, ] ################################################## Draw functions def draw_robot(viewer, robot, pose, **kwargs): x, y = pose viewer.draw_robot(x, y, name=robot, **kwargs) def draw_block(viewer, block, pose, **kwargs): x, y = pose viewer.draw_block(x, y, BLOCK_WIDTH, BLOCK_HEIGHT, name=block, **kwargs) def draw_state(viewer, state, colors): # TODO: could draw the current time viewer.clear_state() #viewer.draw_environment() print(state) for robot, conf in state.robot_confs.items(): draw_robot(viewer, robot, conf) for block, pose in state.block_poses.items(): draw_block(viewer, block, pose, color=colors[block]) for robot, holding in state.holding.items(): block, grasp = holding pose = forward_kin(state.robot_confs[robot], grasp) draw_block(viewer, block, pose, color=colors[block]) viewer.tk.update() def get_random_seed(): return np.random.get_state()[1][0] ################################################## def apply_action(state, action): robot_confs, holding, block_poses = state # TODO: don't mutate block_poses? name, args = action[:2] if name == 'move': if len(args) == 4: robot, _, traj, _ = args else: robot, q1, q2 = args traj = [q1, q2] #traj = plan_motion(*args)[0] if len(args) == 2 else args[1] for conf in traj[1:]: robot_confs[robot] = conf yield TAMPState(robot_confs, holding, block_poses) elif name == 'pick': # TODO: approach and retreat trajectory robot, block, _, grasp, _ = args holding[robot] = (block, grasp) del block_poses[block] yield TAMPState(robot_confs, holding, block_poses) elif name == 'place': robot, block, pose, _, _ = args del holding[robot] block_poses[block] = pose yield TAMPState(robot_confs, holding, block_poses) else: raise ValueError(name) ################################################## def prune_duplicates(traj): # TODO: could use the more general sparcify function new_traj = [traj[0]] for conf in traj[1:]: if 0 < np.linalg.norm(np.array(conf) - np.array(new_traj[-1])): new_traj.append(conf) return new_traj def get_value_at_time(traj, fraction): waypoints = prune_duplicates(traj) if len(waypoints) == 1: return waypoints[0] distances = [0.] + [np.linalg.norm(np.array(q2) - np.array(q1)) for q1, q2 in zip(waypoints, waypoints[1:])] cum_distances = np.cumsum(distances) cum_fractions = np.minimum(cum_distances / cum_distances[-1], np.ones(cum_distances.shape)) index = np.digitize(fraction, cum_fractions, right=False) if index == len(waypoints): index -= 1 waypoint_fraction = (fraction - cum_fractions[index - 1]) / (cum_fractions[index] - cum_fractions[index - 1]) waypoint1, waypoint2 = np.array(waypoints[index - 1]), np.array(waypoints[index]) conf = (1 - waypoint_fraction) * waypoint1 + waypoint_fraction * waypoint2 return conf def update_state(state, action, t): robot_confs, holding, block_poses = state name, args, start, duration = action fraction = float(t) / duration fraction = max(0, min(fraction, 1)) assert 0 <= fraction <= 1 threshold = 0.5 if name == 'move': robot, _, traj, _ = args robot_confs[robot] = get_value_at_time(traj, fraction) elif name == 'pick': robot, block, pose, grasp, conf = args[:5] traj = [conf, pose - grasp] if fraction < threshold: robot_confs[robot] = get_value_at_time(traj, fraction / threshold) else: holding[robot] = (block, grasp) block_poses.pop(block, None) robot_confs[robot] = get_value_at_time(traj[::-1], (fraction - threshold) / (1 - threshold)) elif name == 'place': robot, block, pose, grasp, conf = args[:5] traj = [conf, pose - grasp] if fraction < threshold: robot_confs[robot] = get_value_at_time(traj, fraction / threshold) else: holding.pop(robot, None) block_poses[block] = pose robot_confs[robot] = get_value_at_time(traj[::-1], (fraction - threshold) / (1 - threshold)) elif name == 'stack': robot, u_block, u_pose, grasp, conf, l_block, l_pose = args traj = [conf, u_pose - grasp] if fraction < threshold: robot_confs[robot] = get_value_at_time(traj, fraction / threshold) else: holding.pop(robot, None) block_poses[u_block] = u_pose robot_confs[robot] = get_value_at_time(traj[::-1], (fraction - threshold) / (1 - threshold)) elif name == 'cook': # TODO: update the object color pass else: raise ValueError(name) return TAMPState(robot_confs, holding, block_poses)
14,894
Python
28.436759
126
0.568148
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_2d/utils/optimizer/optimizer.py
from __future__ import print_function import numpy as np import random import time import os from utils.primitives import BLOCK_WIDTH, sample_region, plan_motion, GRASP from hsr_tamp.pddlstream.language.constants import partition_facts, NOT, MINIMIZE, get_constraints, is_parameter from hsr_tamp.pddlstream.language.optimizer import OptimizerOutput from hsr_tamp.pddlstream.utils import INF, elapsed_time MIN_CLEARANCE = 1e-3 # 0 | 1e-3 NAN = float('nan') def has_gurobi(): try: import gurobipy except ImportError: return False return True def value_from_var(vars): import gurobipy if isinstance(vars, float): return vars if isinstance(vars, gurobipy.Var): return vars.X # .Xn new_vars = list(map(value_from_var, vars)) if isinstance(vars, np.ndarray): return np.array(new_vars) return new_vars def unbounded_var(model): from gurobipy import GRB return model.addVar(lb=-GRB.INFINITY, ub=GRB.INFINITY) def np_var(model, d=2, lower=None, upper=None): from gurobipy import GRB if lower is None: lower = d*[-GRB.INFINITY] if upper is None: upper = d*[+GRB.INFINITY] return np.array([model.addVar(lb=lb, ub=ub) for lb, ub in zip(lower, upper)]) def copy_model(model): model.update() return model.copy() def vars_from_expr(expr): return [expr.getVar(i) for i in range(expr.size())] def set_value(var, value): var.LB = value var.UB = value def set_guess(var, value, hard=True): if hard: # solver will try to build a single feasible solution from the provided set of variable values var.Start = value else: # variable hints provide guidance to the MIP solver that affects the entire solution process var.VarHintVal = value ################################################## def collision_constraint(model, name, b1, p1, b2, p2): from gurobipy import GRB dist = unbounded_var(model) abs_dist = unbounded_var(model) model.addConstr(dist, GRB.EQUAL, p2[0] - p1[0], name=name) model.addConstr(BLOCK_WIDTH + MIN_CLEARANCE, GRB.LESS_EQUAL, abs_dist, name=name) model.addGenConstrAbs(abs_dist, dist, name=name) # abs_ def kinematics_constraint(model, name, b, q, p, g): from gurobipy import GRB for i in range(len(q)): model.addConstr(q[i] + g[i], GRB.EQUAL, p[i], name=name) #model.addConstr(p[1], GRB.EQUAL, 0, name=name) # IK vs pick/place semantics def contained_constraint(model, regions, name, b, p, r): from gurobipy import GRB px, py = p x1, x2 = regions[r] model.addConstr(x1, GRB.LESS_EQUAL, px - BLOCK_WIDTH / 2, name=name) model.addConstr(px + BLOCK_WIDTH / 2, GRB.LESS_EQUAL, x2, name=name) model.addConstr(py, GRB.EQUAL, 0, name=name) def motion_constraint(model, name, q1, t, q2): from gurobipy import GRB for i in range(len(q1)): model.addConstr(t[0][i], GRB.EQUAL, q1[i], name=name) for i in range(len(q2)): model.addConstr(t[1][i], GRB.EQUAL, q2[i], name=name) def distance_cost(model, q1, q2, norm=1): from gurobipy import GRB # TODO: cost on endpoints and subtract from total cost terms = [] for i in range(len(q1)): delta = q2[i] - q1[i] if norm == 1: # TODO: doesn't work with deletion filter (additional constraints) distance = model.addVar(lb=0., ub=GRB.INFINITY) model.addConstr(-delta <= distance) model.addConstr(delta <= distance) terms.append(distance) elif norm == 2: terms.append(delta * delta) else: raise RuntimeError(norm) return terms ################################################## def sample_sphere_surface(d, uniform=True): # TODO: hyperspherical coordinates # https://en.wikipedia.org/wiki/N-sphere#Spherical_coordinates while True: v = np.random.randn(d) r = np.sqrt(v.dot(v)) if not uniform or (r <= 1.): return v / r def sample_sphere(d, **kwargs): v = sample_sphere_surface(d, **kwargs) r = np.random.rand() return np.power(r, 1./d)*v def sample_subspace(d, m): # TODO: linear spaces sampling method # https://arxiv.org/abs/1810.06271 A = np.random.randn(m, d) b = np.random.randn(m) return A, b ################################################## def sample_targets(model, variables): # TODO: project without inequality constraints (placement) # TODO: manifold learning for feasible subspace # TODO: sample from neighborhood of the previous solution from gurobipy import GRB model.update() objective_terms = [] for var in variables: # TODO: apply only to some variables if (-INF < var.LB) and (var.UB < INF): # TODO: inequality constraint version of this extent = var.UB - var.LB value = random.uniform(var.LB, var.UB) delta = var - value distance = model.addVar(lb=0., ub=GRB.INFINITY) model.addConstr(-delta <= distance) model.addConstr(delta <= distance) objective_terms.append(distance / extent) # covar_from_paramord.X = 0 # Attribute 'X' cannot be set print(var, var.LB, var.UB, value) # TODO: start with feasible solution and then expand return objective_terms def sample_solutions(model, variables, num_samples=INF, norm=2, closest=True): from gurobipy import GRB, quicksum, abs_ start_time = time.time() objective = model.getObjective() #sprint(objective, objective.getValue()) # model = model.feasibility() # model.setObjective(0.0) if norm == 2: model.setParam(GRB.Param.NonConvex, 2) # PSDTol objective_terms = [] if closest: min_distance = model.addVar(lb=0., ub=GRB.INFINITY) objective_terms.append(min_distance) solutions = [] # TODO: sample initial solution from this set while len(solutions) < num_samples: terms = [] for var in variables: for index, coord in enumerate(var): value = coord.X set_guess(coord, value, hard=True) delta = model.addVar(lb=-GRB.INFINITY, ub=GRB.INFINITY) model.addConstr(delta == coord - value) if norm == 1: term = model.addVar(lb=0., ub=GRB.INFINITY) model.addConstr(term == abs_(delta)) elif norm == 2: term = delta*delta else: raise NotImplementedError(norm) terms.append(term) # TODO: scale distance = quicksum(terms) if closest: model.addConstr(min_distance <= distance) else: objective_terms.append(distance) # TODO: weight model.setObjective(quicksum(objective_terms), sense=GRB.MAXIMIZE) # MINIMIZE | MAXIMIZE model.optimize() print('# {} | objective: {:.3f} | cost: {:.3f} | runtime: {:.3f}'.format( len(solutions), model.ObjVal, objective.getValue(), elapsed_time(start_time))) # min_distance.X solution = [value_from_var(var) for var in variables] solutions.append(solution) yield solution ################################################## def get_optimize_fn(regions, collisions=True, max_time=5., hard=False, diagnostic='all', diagnose_cost=False, verbose=False): # https://www.gurobi.com/documentation/8.1/examples/diagnose_and_cope_with_inf.html # https://www.gurobi.com/documentation/8.1/examples/tsp_py.html#subsubsection:tsp.py # https://examples.xpress.fico.com/example.pl?id=Infeasible_python # https://www.fico.com/fico-xpress-optimization/docs/latest/examples/python/GUID-E77AC35C-9488-3F0A-98B4-7F5FD81AFF1D.html if not has_gurobi(): raise ImportError('This generator requires Gurobi: http://www.gurobi.com/') from gurobipy import Model, GRB, quicksum, abs_ min_x = min(x1 for x1, _ in regions.values()) max_x = max(x2 for _, x2 in regions.values()) min_y, max_y = 0, (max_x - min_x) / 2. lower = [min_x, min_y] upper = [max_x, max_y] # lower = 2*[-INF] # upper = 2*[+INF] # lower = upper = None def fn(outputs, facts, hint={}): # TODO: pass in the variables and constraint streams instead? # The true test is placing two blocks in a tight region obstructed by one constraint_indices = {i for i, term in enumerate(facts) if term[0] != MINIMIZE} positive, negative, costs = partition_facts(facts) #print('Parameters:', outputs) #print('Constraints:', positive + negative) if costs: print('Costs:', costs) # https://github.com/yijiangh/coop_assembly/blob/e52abef7c1cfb1d3e32691d163abc85dd77f27a2/src/coop_assembly/geometry_generation/caelan.py model = Model(name='TAMP') model.setParam(GRB.Param.OutputFlag, verbose) model.setParam(GRB.Param.TimeLimit, max_time) model.setParam(GRB.Param.Cutoff, GRB.INFINITY) # TODO: account for scaling #if num_solutions < INF: # model.setParam(GRB.Param.SolutionLimit, num_solutions) # Limit how many solutions to collect #model.setParam(GRB.Param.PoolSolutions, 2) # Limit the search space by setting a gap for the worst possible solution that will be accepted #model.setParam(GRB.Param.PoolGap, 0.10) # PoolGapAbs # do a systematic search for the k-best solutions #model.setParam(GRB.Param.PoolSearchMode, 2) # 0 | 1 | 2 # https://www.gurobi.com/documentation/9.1/examples/poolsearch_py.html#subsubsection:poolsearch.py ########## # TODO: remove anything that's just a domain condition? variable_indices = {} var_from_param = {} for index, fact in enumerate(facts): prefix, args = fact[0], fact[1:] if prefix == 'conf': param, = args if is_parameter(param): var_from_param[param] = np_var(model, lower=lower, upper=upper) elif prefix == 'pose': _, param = args if is_parameter(param): var_from_param[param] = np_var(model, lower=lower, upper=upper) elif prefix == 'grasp': # TODO: iterate over combinations _, param = args if is_parameter(param): var_from_param[param] = GRASP elif prefix == 'traj': raise NotImplementedError() #param, = args #if param not in var_from_id: # var_from_id[id(param)] = [np_var(model), np_var(model)] else: continue variable_indices[index] = fact dimension = sum(len(var) for var in var_from_param.values()) def get_var(p): return var_from_param[p] if is_parameter(p) else p ########## codimension = 0 objective_terms = [] # TODO: could make a variable to impose a cost constraint constraint_from_name = {} for index, fact in enumerate(facts): prefix, args = fact[0], fact[1:] name = str(index) if prefix == 'kin': kinematics_constraint(model, name, *map(get_var, args)) codimension += 2 elif prefix in ('contain', 'contained'): contained_constraint(model, regions, name, *map(get_var, args)) codimension += 1 elif prefix == 'cfree' and collisions: # TODO: drop collision constraints until violated collision_constraint(model, name, *map(get_var, args)) elif prefix == 'motion': #motion_constraint(model, name, *map(get_var, args)) raise NotImplementedError() elif prefix == NOT: fact = args[0] predicate, args = fact[0], fact[1:] if predicate == 'posecollision' and collisions: collision_constraint(model, name, *map(get_var, args)) elif prefix == MINIMIZE: fact = args[0] func, args = fact[0], fact[1:] if func in ('dist', 'distance'): objective_terms.extend(distance_cost(model, *map(get_var, args))) continue constraint_from_name[name] = fact model.update() ########## #linear_model = model linear_model = copy_model(model) #linear_model = Model(name='Linear TAMP') # TODO: prune linearly dependent constraints linear_constraints = {c for c in linear_model.getConstrs() if c.sense == GRB.EQUAL} codimension = len(linear_constraints) # TODO: account for v.LB == v.UB #linear_variables = {v for v in linear_model.getVars() if v.VType == GRB.CONTINUOUS} #print(vars_from_expr(linear_model.getObjective())) linear_variables = set() for c in linear_constraints: linear_variables.update(vars_from_expr(linear_model.getRow(c))) linear_variables = sorted(linear_variables, key=lambda v: v.VarName) dimension = len(linear_variables) print('{} variables (dim={}): {}'.format(len(variable_indices), dimension, [facts[index] for index in sorted(variable_indices)])) nontrivial_indices = set(constraint_indices) - set(variable_indices) # TODO: rename print('{} constraints: (codim={}): {}'.format(len(nontrivial_indices), codimension, [facts[index] for index in sorted(nontrivial_indices)])) # # https://en.wikipedia.org/wiki/Linear_subspace # # TODO: Equations for a subspace # #for c in model.getConstrs(): # # if c.sense != GRB.EQUAL: # # model.remove(c) # variables = [model.getVarByName(v.VarName) for v in linear_variables] # lower_bound = np.array([v.LB for v in variables]) # upper_bound = np.array([v.UB for v in variables]) # center = (lower_bound + upper_bound) / 2. # extent = (upper_bound - lower_bound) / 2. # radius = np.linalg.norm(extent) # sphere # # point = radius*sample_sphere(dimension) + center # #point = center # basis = [sample_sphere_surface(dimension) for _ in range(codimension)] # #basis = [np.ones(dimension)] # multipliers = [unbounded_var(model) for _ in basis] # subspace_constraints = [] # for i in range(dimension): # combination = sum([m*b[i] for m, b in zip(multipliers, basis)]) # subspace_constraints.append(model.addConstr(variables[i] - point[i] == combination)) # #for c in subspace_constraints: # # model.remove(c) # TODO: generator version # for v in set(linear_model.getVars()) - linear_variables: # linear_model.remove(v) # for c in set(linear_model.getConstrs()) - linear_constraints: # linear_model.remove(c) # linear_model.setObjective(quicksum(sample_targets(linear_model, linear_variables)), sense=GRB.MINIMIZE) # linear_model.optimize() # for v in linear_variables: # Projection method # set_value(model.getVarByName(v.VarName), v.X) ########## # TODO: normalize cost relative to the best cost for a trade-off # TODO: increasing bound on deterioration in quality weight = 0 if weight > 0: primary_variables = {v for var in var_from_param.values() for v in var} objective_terms.extend(weight * term for term in sample_targets(model, primary_variables)) model.setObjective(quicksum(objective_terms), sense=GRB.MINIMIZE) # (1-weight) * quicksum(objective_terms) for out, value in hint.items(): for var, coord in zip(get_var(out), value): # https://www.gurobi.com/documentation/9.1/refman/varhintval.html#attr:VarHintVal set_guess(var, coord, hard=hard) #set_value(var, coord) ########## #m.write("file.lp") model.optimize() # https://www.gurobi.com/documentation/7.5/refman/optimization_status_codes.html #if model.status in (GRB.INFEASIBLE, GRB.INF_OR_UNBD, GRB.CUTOFF): # OPTIMAL | SUBOPTIMAL if model.SolCount == 0: if diagnostic is None: return OptimizerOutput() elif diagnostic == 'all': #infeasible = constraint_indices infeasible = nontrivial_indices elif diagnostic == 'deletion': infeasible = deletion_filter(model, constraint_indices) elif diagnostic == 'elastic': infeasible = elastic_filter(model, constraint_indices) elif diagnostic == 'gurobi': infeasible = compute_inconsistent(model) else: raise NotImplementedError(diagnostic) print('Inconsistent:', [facts[index] for index in sorted(infeasible)]) return OptimizerOutput(infeasible=[infeasible]) #expr.getValue() # TODO: store expressions and evaluate value # for c in model.getConstrs(): # print(c, c.Slack, c.RHS) # print(c.__dict__) # print(dir(c)) ########## print('Solved: {} | Objective: {:.3f} | Solutions: {} | Status: {} | Runtime: {:.3f}'.format( True, model.ObjVal, model.SolCount, model.status, model.runtime)) if costs and diagnose_cost: infeasible = deletion_filter(model, constraint_indices, max_objective=model.ObjVal - 1e-6) else: # TODO: propagate automatically to optimizer #infeasible = constraint_indices infeasible = nontrivial_indices print('Cost inconsistent:', [facts[index] for index in sorted(infeasible)]) # variables = list(var_from_param.values()) # for index, solution in enumerate(sample_solutions(model, variables, num_samples=15)): # print(index, solution) assignment = tuple(value_from_var(get_var(out)) for out in outputs) return OptimizerOutput(assignments=[assignment], infeasible=[infeasible]) return fn #return lambda outputs, facts, **kwargs: \ # identify_infeasibility(fn, outputs, facts, diagnose=False, **kwargs) ################################################## def compute_inconsistent(model): from gurobipy import GRB # TODO: search over irreducible infeasible sets model.setObjective(0.0) # Makes a difference in performance model.setParam(GRB.Param.IISMethod, 1) # -1 | 0 | 1 | 2 | 3 model.computeIIS() print('IIS is minimal\n' if model.IISMinimal else 'IIS is not minimal\n') #assert model.IISMinimal infeasible = {int(c.constrName) for c in model.getConstrs() if c.IISConstr} return infeasible def enumerate_inconsistent(model): # TODO: exhaustively enumerate IIS raise NotImplementedError() ################################################## def constraints_from_indices(model, indices): names = {str(i) for i in indices} return [c for c in model.getConstrs() if c.constrName in names] def deletion_filter(original_model, indices, max_objective=INF): from gurobipy import GRB model = copy_model(original_model) if max_objective < INF: model.setParam(GRB.Param.Cutoff, max_objective) else: model = model.feasibility() # prune_constraints = set(model.getConstrs()) - set(constraints_from_indices(model, indices)) # for c in prune_constraints: # model.remove(c) model.optimize() #assert model.status in (GRB.INFEASIBLE, GRB.INF_OR_UNBD, GRB.CUTOFF) assert model.SolCount == 0 inconsistent = set() for index in sorted(indices): temp_model = copy_model(model) constraints = constraints_from_indices(temp_model, {index}) if not constraints: continue for c in constraints: temp_model.remove(c) temp_model.optimize() #if temp_model.status == GRB.INFEASIBLE: if temp_model.SolCount == 0: model = temp_model else: inconsistent.add(index) return inconsistent ################################################## def relax_constraints(model, indices): from gurobipy import GRB # http://www.sce.carleton.ca/faculty/chinneck/docs/ChinneckDravnieks.pdf model.setObjective(0.0) elastic_constraints = constraints_from_indices(model, indices) objective = model.feasRelax(relaxobjtype=0, # feasRelaxS minrelax=True, vars=[], lbpen=[], ubpen=[], constrs=elastic_constraints, rhspen=[1.]*len(elastic_constraints)) model.optimize() if model.status == GRB.INFEASIBLE: return None #print('Violation:', objective) art_vars = [var for var in model.getVars() if any(var.varname.startswith(p) for p in ['ArtP_', 'ArtN_'])] # Positive & Negative violations = {} for var in art_vars: index = int(var.varname[5:]) violations[index] = violations.get(index, 0) + var.x #for index, value in sorted(violations.items(), key=lambda (i, v): v): # print('{}: {}'.format(facts[index], value)) violated = {index for index, value in violations.items() if 1e-6 < value} return violated def elastic_filter(original_model, indices, postproces=True): elastic = set(indices) inconsistent = set() while True: relaxed_model = copy_model(original_model) violated = relax_constraints(relaxed_model, elastic) if violated is None: break elastic -= violated inconsistent |= violated if postproces: inconsistent = deletion_filter(original_model, inconsistent) return inconsistent ################################################## def identify_infeasibility(fn, parameters, terms, **kwargs): # TODO: apply to general constraint networks output = fn(parameters, terms, **kwargs) if output: return output active_indices = {i for i, term in enumerate(terms) if term[0] != MINIMIZE} for index in list(active_indices): constraints = [terms[i] for i in active_indices - {index}] output = fn(parameters, constraints, **kwargs) if output: active_indices.remove(index) # TODO: be careful about removing variables infeasible_facts = [terms[index] for index in sorted(active_indices)] print('Inconsistent:', infeasible_facts) return OptimizerOutput(infeasible=[infeasible_facts]) def identify_feasible_subsets(facts, model): # TODO: add facts corresponding to feasible subproblems # The trouble is that it's not clear which constraints would be useful to relax model.setObjective(0.0) model.computeIIS() print('IIS is minimal\n' if model.IISMinimal else 'IIS is not minimal\n') iss_constraints = {c.constrName for c in model.getConstrs() if c.IISConstr} #iss_constraints = compute_inconsistent(model) iss_facts = [facts[int(name)] for name in sorted(iss_constraints)] print(iss_facts) for c in model.getConstrs(): if c.constrName in iss_constraints: model.remove(c) # TODO: reoptimize # TODO: drop the objective function and decompose into smaller clusters # Iterate over subsets of constraints that are allowed to be violated/removed # The relaxation is a heuristic to more intelligently guide this search # Use L1 penalization to enforce sparsity. Could even frame as a MILP # The assumption is that there is intersection between the failure and a solution raise NotImplementedError() ################################################## def cfree_motion_fn(outputs, facts, hint={}): if not outputs: return None assert(len(outputs) == 1) # TODO: handle connected components q0, q1 = None, None placed = {} for fact in facts: if fact[0] == 'motion': if q0 is not None: return None q0, _, q1 = fact[1:] if fact[0] == NOT: _, b, p = fact[1][1:] placed[b] = p if q0 is None: t = [] return (t,) return plan_motion(q0, q1) ################################################## def get_cfree_pose_fn(regions): def fn(outputs, certified): b, r = None, None placed = {} for fact in certified: if fact[0] == 'contained': b, _, r = fact[1:] if fact[0] == NOT: _, _, b2, p2 = fact[1][1:] placed[b2] = p2 p = sample_region(b, regions[r]) return (p,) return fn # def get_pose_generator(regions): # class PoseGenerator(Generator): # def __init__(self, *inputs): # super(PoseGenerator, self).__init__() # self.b, self.r = inputs # def generate(self, outputs=None, streams=tuple()): # # TODO: designate which streams can be handled # placed = {} # for stream in streams: # name, args = stream[0], stream[1:] # if name in ['collision-free', 'cfree']: # for i in range(0, len(args), 2): # b, p = args[i:i+2] # if self.b != b: # placed[b] = p # #p = sample_region(self.b, regions[self.r]) # p = rejection_sample_region(self.b, regions[self.r], placed=placed) # if p is None: # return [] # return [(p,)] # return PoseGenerator
26,018
Python
39.528037
145
0.589092
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_3d/tamp_hsr_planner.py
#!/usr/bin/env python import numpy as np from collections import namedtuple from utils.pybullet_tools.hsrb_problems import PROBLEMS from utils.pybullet_tools.hsrb_utils import get_arm_joints, get_gripper_joints, get_group_joints, get_group_conf from utils.pybullet_tools.utils import ( # Simulation utility connect, disconnect, save_state, has_gui, restore_state, wait_if_gui, \ # Getter get_pose, get_distance, get_joint_positions, get_max_limit, \ is_placement, point_from_pose, \ LockRenderer, WorldSaver, SEPARATOR) from utils.pybullet_tools.hsrb_primitives import ( # Geometry Pose, Conf, State, Cook, Clean, \ # Command GripperCommand, Attach, Detach, \ # Utility apply_commands, apply_commands_with_visualization, control_commands, \ # Getter get_ik_ir_gen, get_motion_gen, get_stable_gen, get_grasp_gen, get_insert_gen, \ # Tester get_cfree_approach_pose_test, get_cfree_pose_pose_test, get_cfree_traj_pose_test, \ get_supported, get_inserted, \ # Cost function move_cost_fn) from hsr_tamp.pddlstream.algorithms.meta import solve, create_parser from hsr_tamp.pddlstream.language.generator import from_gen_fn, from_list_fn, from_fn, fn_from_constant, empty_gen, from_test from hsr_tamp.pddlstream.language.constants import print_solution, Equal, AND, PDDLProblem from hsr_tamp.pddlstream.language.external import defer_shared, never_defer from hsr_tamp.pddlstream.language.function import FunctionInfo from hsr_tamp.pddlstream.language.stream import StreamInfo from hsr_tamp.pddlstream.language.object import SharedOptValue from hsr_tamp.pddlstream.utils import find_unique, get_file_path, read, str_from_object, Profiler, INF BASE_CONSTANT = 1 BASE_VELOCITY = 0.5 ####################################################### def extract_point2d(v): if isinstance(v, Conf): return v.values[:2] if isinstance(v, Pose): return point_from_pose(v.value)[:2] if isinstance(v, SharedOptValue): if v.stream == 'sample-place': r, = v.values return point_from_pose(get_pose(r))[:2] if v.stream == 'sample-insert': r, = v.values return point_from_pose(get_pose(r))[:2] if v.stream == 'inverse-kinematics': p, = v.values return extract_point2d(p) if isinstance(v, CustomValue): if v.stream == 'p-sp': r, = v.values return point_from_pose(get_pose(r))[:2] if v.stream == 'q-ik': p, = v.values return extract_point2d(p) raise ValueError(v.stream) ####################################################### CustomValue = namedtuple('CustomValue', ['stream', 'values']) def move_cost_fn(c): return 1 def opt_move_cost_fn(t): return 1 def opt_place_fn(o, r): p2 = CustomValue('p-sp', (r,)) return p2, def opt_insert_fn(o, r): p2 = CustomValue('p-si', (r,)) return p2, def opt_ik_fn(a, o, p, g): q = CustomValue('q-ik', (p,)) t = CustomValue('t-ik', tuple()) return q, t def opt_motion_fn(q1, q2): t = CustomValue('t-pbm', (q1, q2)) return t, ####################################################### class TAMPPlanner(object): def pddlstream_from_problem(self, problem, collisions=True, teleport=False): robot = problem.robot domain_pddl = read(get_file_path(__file__, 'task/assemble/domain.pddl')) stream_pddl = read(get_file_path(__file__, 'task/assemble/stream.pddl')) constant_map = {} initial_bq = Conf(robot, get_group_joints(robot, 'base'), get_group_conf(robot, 'base')) init = [ ('CanMove',), ('BConf', initial_bq), ('AtBConf', initial_bq), Equal(('PickCost',), 1), Equal(('PlaceCost',), 1), Equal(('InsertCost',), 1), ] + [('Sink', s) for s in problem.sinks] + \ [('Stove', s) for s in problem.stoves] + \ [('Connected', b, d) for b, d in problem.buttons] + \ [('Button', b) for b, _ in problem.buttons] joints = get_arm_joints(robot, 'arm') conf = Conf(robot, joints, get_joint_positions(robot, joints)) init += [('Arm', 'arm'), ('AConf', 'arm', conf), ('HandEmpty', 'arm'), ('AtAConf', 'arm', conf)] init += [('Controllable', 'arm')] for body in problem.movable: pose = Pose(body, get_pose(body)) init += [('Graspable', body), ('Pose', body, pose), ('AtPose', body, pose)] goal = [AND] if problem.goal_conf is not None: goal_conf = Pose(robot, problem.goal_conf) init += [('BConf', goal_conf)] goal += [('AtBConf', goal_conf)] for body in problem.surfaces: pose = Pose(body, get_pose(body)) init += [('RegionPose', body, pose)] for body in problem.holes: pose = Pose(body, get_pose(body)) init += [('HolePose', body, pose)] init += [('Inserted', b1) for b1 in problem.holes] init += [('Placeable', b1, b2) for b1, b2 in problem.init_placeable] init += [('Insertable', b1, b2) for b1, b2 in problem.init_insertable] goal += [('Holding', a, b) for a, b in problem.goal_holding] + \ [('On', a, b) for a, b in problem.goal_on] + \ [('InHole', a, b) for a, b in problem.goal_inserted] + \ [('Cleaned', b) for b in problem.goal_cleaned] + \ [('Cooked', b) for b in problem.goal_cooked] stream_map = { 'sample-place': from_gen_fn(get_stable_gen(problem, collisions=collisions)), 'sample-insert': from_gen_fn(get_insert_gen(problem, collisions=collisions)), 'sample-grasp': from_list_fn(get_grasp_gen(problem, collisions=False)), 'plan-base-motion': from_fn(get_motion_gen(problem, collisions=True, teleport=teleport)), 'inverse-kinematics': from_gen_fn(get_ik_ir_gen(problem, collisions=collisions, teleport=teleport)), 'test-cfree-pose-pose': from_test(get_cfree_pose_pose_test(collisions=collisions)), 'test-cfree-approach-pose': from_test(get_cfree_approach_pose_test(problem, collisions=collisions)), 'test-cfree-traj-pose': from_test(get_cfree_traj_pose_test(problem, collisions=collisions)), 'test-supported': from_test(get_supported(problem, collisions=collisions)), 'test-inserted': from_test(get_inserted(problem, collisions=collisions)), 'MoveCost': move_cost_fn, } return PDDLProblem(domain_pddl, constant_map, stream_pddl, stream_map, init, goal) def initialize(self, parser): parser.add_argument('-e', '--enable', action='store_true', help='Enables rendering during planning') parser.add_argument('-d', '--deterministic', action='store_true', help='Uses a deterministic sampler') parser.add_argument('-t', '--max_time', default=30, type=int, help='The max time') parser.add_argument('-c', '--cfree', default=False, type=bool, help="select collision activate") parser.add_argument('-n', '--number', default=4, type=int, help='The number of blocks') parser.add_argument('-p', '--problem', default='gearbox_problem', help='The name of the problem to solve') parser.add_argument('-v', '--visualize', action='store_true', help='Visualizes graphs') parser.add_argument("--gpu_id", help="select using gpu id", type=str, default="-1") parser.add_argument("--save", help="select save models", type=str, default=True) parser.add_argument("--debug", help="save visualization", type=bool, default=False) parser.add_argument("--teleport", action='store_true', help='Teleports between configurations') parser.add_argument("--simulate", action='store_true', help='Simulates the system') args = parser.parse_args() print('Arguments:', args) connect(use_gui=True, shadows=False) np.set_printoptions(precision=2) if args.deterministic: self.set_deterministic() problem_from_name = {fn.__name__: fn for fn in PROBLEMS} if args.problem not in problem_from_name: raise ValueError(args.problem) print('Problem:', args.problem) problem_fn = problem_from_name[args.problem] tamp_problem = problem_fn() return tamp_problem, args def post_process(self, problem, plan, teleport=False): if plan is None: return None commands = [] for i, (name, args) in enumerate(plan): if name == 'move_base': q1, q2, c = args new_commands = c.commands elif name == 'pick': a, b, p, g, _, c = args [traj_approach, traj_pick, traj_return] = c.commands close_gripper = GripperCommand(problem.robot, a, g.grasp_width, teleport=teleport) attach = Attach(problem.robot, a, g, b) new_commands = new_commands = [traj_approach, traj_pick, close_gripper, attach, traj_pick.reverse(), traj_return] elif name == 'place': a, b1, b2, p, g, _, c = args [traj_approach, traj_place] = c.commands gripper_joint = get_gripper_joints(problem.robot, a)[0] position = get_max_limit(problem.robot, gripper_joint) new_commands = [traj_approach, traj_place] elif name == 'insert': a, b1, b2, p1, p2, g, _, _, c = args [traj_insert, traj_depart, traj_return] = c.commands gripper_joint = get_gripper_joints(problem.robot, a)[0] position = get_max_limit(problem.robot, gripper_joint) open_gripper = GripperCommand(problem.robot, a, position, teleport=teleport) detach = Detach(problem.robot, a, b1) new_commands = [traj_insert, detach, open_gripper, traj_depart, traj_return.reverse()] elif name == 'clean': body, sink = args new_commands = [Clean(body)] elif name == 'cook': body, stove = args new_commands = [Cook(body)] else: raise ValueError(name) print(i, name, args, new_commands) commands += new_commands return commands def plan(self): parser = create_parser() parser.add_argument('-g', '--gurobi', action='store_true', help='Uses gurobi') parser.add_argument('-o', '--optimal', action='store_true', help='Runs in an anytime mode') parser.add_argument('-s', '--skeleton', action='store_true', help='Enforces skeleton plan constraints') tamp_problem, args = self.initialize(parser) saver = WorldSaver() pddlstream_problem = self.pddlstream_from_problem(tamp_problem, collisions=not args.cfree, teleport=args.teleport) stream_info = { 'MoveCost': FunctionInfo(opt_move_cost_fn), 'sample-place': StreamInfo(opt_gen_fn=from_fn(opt_place_fn)), 'sample-insert': StreamInfo(opt_gen_fn=from_fn(opt_insert_fn)), 'inverse-kinematics': StreamInfo(opt_gen_fn=from_fn(opt_ik_fn)), 'plan-base-motion': StreamInfo(opt_gen_fn=from_fn(opt_motion_fn)), } _, _, _, stream_map, init, goal = pddlstream_problem print('Init:', init) print('Goal:', goal) print('Streams:', str_from_object(set(stream_map))) print(SEPARATOR) with Profiler(): with LockRenderer(lock=not args.enable): solution = solve(pddlstream_problem, algorithm=args.algorithm, unit_costs=args.unit, stream_info=stream_info, success_cost=INF, verbose=True, debug=False) saver.restore() print_solution(solution) plan, cost, evaluations = solution print('#############################') print('plan: ', plan) print('#############################') if (plan is None) or not has_gui(): return return plan, cost, evaluations def execute(self): parser = create_parser() parser.add_argument('-g', '--gurobi', action='store_true', help='Uses gurobi') parser.add_argument('-o', '--optimal', action='store_true', help='Runs in an anytime mode') parser.add_argument('-s', '--skeleton', action='store_true', help='Enforces skeleton plan constraints') tamp_problem, args = self.initialize(parser) saver = WorldSaver() pddlstream_problem = self.pddlstream_from_problem(tamp_problem, collisions=not args.cfree, teleport=args.teleport) stream_info = { 'MoveCost': FunctionInfo(opt_move_cost_fn), 'sample-place': StreamInfo(opt_gen_fn=from_fn(opt_place_fn)), 'sample-insert': StreamInfo(opt_gen_fn=from_fn(opt_insert_fn)), 'inverse-kinematics': StreamInfo(opt_gen_fn=from_fn(opt_ik_fn)), 'plan-base-motion': StreamInfo(opt_gen_fn=from_fn(opt_motion_fn)), } _, _, _, stream_map, init, goal = pddlstream_problem print('Init:', init) print('Goal:', goal) print('Streams:', str_from_object(set(stream_map))) print(SEPARATOR) with Profiler(): with LockRenderer(lock=not args.enable): solution = solve(pddlstream_problem, algorithm=args.algorithm, unit_costs=args.unit, stream_info=stream_info, success_cost=INF, verbose=True, debug=False) saver.restore() print_solution(solution) plan, cost, evaluations = solution print('#############################') print('plan: ', plan) print('#############################') if (plan is None) or not has_gui(): disconnect() return with LockRenderer(lock=not args.enable): commands = self.post_process(tamp_problem, plan) tamp_problem.remove_gripper() saver.restore() saver.restore() wait_if_gui('Execute?') if args.simulate: control_commands(commands) else: apply_commands_with_visualization(State(), commands, time_step=0.03) wait_if_gui('Finish?') disconnect() if __name__ == '__main__': tamp_planner = TAMPPlanner() tamp_planner.execute()
14,569
Python
41.852941
129
0.581577
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_3d/tamp_pr2_planner.py
#!/usr/bin/env python from __future__ import print_function from utils.pybullet_tools.pr2_primitives import Pose, Conf, get_ik_ir_gen, get_motion_gen, \ get_stable_gen, get_grasp_gen, Attach, Detach, Clean, Cook, control_commands, \ get_gripper_joints, GripperCommand, apply_commands, State, get_cfree_approach_pose_test, \ get_cfree_pose_pose_test, get_cfree_traj_pose_test, move_cost_fn from utils.pybullet_tools.pr2_problems import cleaning_problem, cooking_problem, stacking_problem, holding_problem from utils.pybullet_tools.pr2_utils import get_arm_joints, ARM_NAMES, get_group_joints, get_group_conf from utils.pybullet_tools.utils import connect, get_pose, is_placement, point_from_pose, \ disconnect, get_joint_positions, enable_gravity, save_state, restore_state, HideOutput, \ get_distance, LockRenderer, get_min_limit, get_max_limit, has_gui, WorldSaver, wait_if_gui, add_line, SEPARATOR from hsr_tamp.pddlstream.algorithms.meta import solve, create_parser from hsr_tamp.pddlstream.language.generator import from_gen_fn, from_list_fn, from_fn, fn_from_constant, empty_gen, from_test from hsr_tamp.pddlstream.language.constants import Equal, AND, print_solution, PDDLProblem from hsr_tamp.pddlstream.language.function import FunctionInfo from hsr_tamp.pddlstream.language.stream import StreamInfo, PartialInputs from hsr_tamp.pddlstream.language.object import SharedOptValue from hsr_tamp.pddlstream.language.external import defer_shared, never_defer from hsr_tamp.pddlstream.utils import read, INF, get_file_path, find_unique, Profiler, str_from_object from collections import namedtuple BASE_CONSTANT = 1 BASE_VELOCITY = 0.5 ####################################################### def extract_point2d(v): if isinstance(v, Conf): return v.values[:2] if isinstance(v, Pose): return point_from_pose(v.value)[:2] if isinstance(v, SharedOptValue): if v.stream == 'sample-pose': r, = v.values return point_from_pose(get_pose(r))[:2] if v.stream == 'inverse-kinematics': p, = v.values return extract_point2d(p) if isinstance(v, CustomValue): if v.stream == 'p-sp': r, = v.values return point_from_pose(get_pose(r))[:2] if v.stream == 'q-ik': p, = v.values return extract_point2d(p) raise ValueError(v.stream) ####################################################### CustomValue = namedtuple('CustomValue', ['stream', 'values']) def move_cost_fn(c): return 1 def opt_move_cost_fn(t): return 1 def opt_pose_fn(o, r): p = CustomValue('p-sp', (r,)) return p, def opt_ik_fn(a, o, p, g): q = CustomValue('q-ik', (p,)) t = CustomValue('t-ik', tuple()) return q, t def opt_motion_fn(q1, q2): t = CustomValue('t-pbm', (q1, q2)) return t, ####################################################### class TAMPPlanner(object): def pddlstream_from_problem(self, problem, collisions=True, teleport=False): robot = problem.robot domain_pddl = read(get_file_path(__file__, 'task/cook/domain.pddl')) stream_pddl = read(get_file_path(__file__, 'task/cook/stream.pddl')) constant_map = {} initial_bq = Conf(robot, get_group_joints(robot, 'base'), get_group_conf(robot, 'base')) init = [ ('CanMove',), ('BConf', initial_bq), ('AtBConf', initial_bq), Equal(('PickCost',), 1), Equal(('PlaceCost',), 1), ] + [('Sink', s) for s in problem.sinks] + \ [('Stove', s) for s in problem.stoves] + \ [('Connected', b, d) for b, d in problem.buttons] + \ [('Button', b) for b, _ in problem.buttons] for arm in ARM_NAMES: joints = get_arm_joints(robot, arm) conf = Conf(robot, joints, get_joint_positions(robot, joints)) init += [('Arm', arm), ('AConf', arm, conf), ('HandEmpty', arm), ('AtAConf', arm, conf)] if arm in problem.arms: init += [('Controllable', arm)] for body in problem.movable: pose = Pose(body, get_pose(body)) init += [('Graspable', body), ('Pose', body, pose), ('AtPose', body, pose)] for surface in problem.surfaces: init += [('Stackable', body, surface)] if is_placement(body, surface): init += [('Supported', body, pose, surface)] goal = [AND] if problem.goal_conf is not None: goal_conf = Pose(robot, problem.goal_conf) init += [('BConf', goal_conf)] goal += [('AtBConf', goal_conf)] goal += [('Holding', a, b) for a, b in problem.goal_holding] + \ [('On', b, s) for b, s in problem.goal_on] + \ [('Cleaned', b) for b in problem.goal_cleaned] + \ [('Cooked', b) for b in problem.goal_cooked] stream_map = { 'sample-pose': from_gen_fn(get_stable_gen(problem, collisions=collisions)), 'sample-grasp': from_list_fn(get_grasp_gen(problem, collisions=False)), 'inverse-kinematics': from_gen_fn(get_ik_ir_gen(problem, collisions=collisions, teleport=teleport)), 'plan-base-motion': from_fn(get_motion_gen(problem, collisions=collisions, teleport=teleport)), 'test-cfree-pose-pose': from_test(get_cfree_pose_pose_test(collisions=collisions)), 'test-cfree-approach-pose': from_test(get_cfree_approach_pose_test(problem, collisions=collisions)), 'test-cfree-traj-pose': from_test(get_cfree_traj_pose_test(problem.robot, collisions=collisions)), 'MoveCost': move_cost_fn, } return PDDLProblem(domain_pddl, constant_map, stream_pddl, stream_map, init, goal) def post_process(self, problem, plan, teleport=False): if plan is None: return None commands = [] for i, (name, args) in enumerate(plan): if name == 'move_base': c = args[-1] new_commands = c.commands elif name == 'pick': a, b, p, g, _, c = args [t] = c.commands close_gripper = GripperCommand(problem.robot, a, g.grasp_width, teleport=teleport) attach = Attach(problem.robot, a, g, b) new_commands = [t, close_gripper, attach, t.reverse()] elif name == 'place': a, b, p, g, _, c = args [t] = c.commands gripper_joint = get_gripper_joints(problem.robot, a)[0] position = get_max_limit(problem.robot, gripper_joint) open_gripper = GripperCommand(problem.robot, a, position, teleport=teleport) detach = Detach(problem.robot, a, b) new_commands = [t, detach, open_gripper, t.reverse()] elif name == 'clean': body, sink = args new_commands = [Clean(body)] elif name == 'cook': body, stove = args new_commands = [Cook(body)] elif name == 'press_clean': body, sink, arm, button, bq, c = args [t] = c.commands new_commands = [t, Clean(body), t.reverse()] elif name == 'press_cook': body, sink, arm, button, bq, c = args [t] = c.commands new_commands = [t, Cook(body), t.reverse()] else: raise ValueError(name) print(i, name, args, new_commands) commands += new_commands return commands def plan(self, partial=False, defer=False, verbose=True): parser = create_parser() parser.add_argument('-cfree', action='store_true', help='Disables collisions during planning') parser.add_argument('-enable', action='store_true', help='Enables rendering during planning') parser.add_argument('-teleport', action='store_true', help='Teleports between configurations') parser.add_argument('-simulate', action='store_true', help='Simulates the system') args = parser.parse_args() print('Arguments:', args) connect(use_gui=True) problem_fn = stacking_problem with HideOutput(): problem = problem_fn() saver = WorldSaver() pddlstream_problem = self.pddlstream_from_problem(problem, collisions=not args.cfree, teleport=args.teleport) stream_info = { 'MoveCost': FunctionInfo(opt_move_cost_fn), } stream_info.update({ 'sample-pose': StreamInfo(opt_gen_fn=PartialInputs('?r')), 'inverse-kinematics': StreamInfo(opt_gen_fn=PartialInputs('?p')), 'plan-base-motion': StreamInfo(opt_gen_fn=PartialInputs('?q1 ?q2'), defer_fn=defer_shared if defer else never_defer), } if partial else { 'sample-pose': StreamInfo(opt_gen_fn=from_fn(opt_pose_fn)), 'inverse-kinematics': StreamInfo(opt_gen_fn=from_fn(opt_ik_fn)), 'plan-base-motion': StreamInfo(opt_gen_fn=from_fn(opt_motion_fn)), }) _, _, _, stream_map, init, goal = pddlstream_problem print('Init:', init) print('Goal:', goal) print('Streams:', str_from_object(set(stream_map))) print(SEPARATOR) with Profiler(): with LockRenderer(lock=not args.enable): solution = solve(pddlstream_problem, algorithm=args.algorithm, unit_costs=args.unit, stream_info=stream_info, success_cost=INF, verbose=True, debug=False) saver.restore() print_solution(solution) plan, cost, evaluations = solution if (plan is None) or not has_gui(): disconnect() return print(SEPARATOR) with LockRenderer(lock=not args.enable): commands = self.post_process(problem, plan) problem.remove_gripper() saver.restore() saver.restore() wait_if_gui('Execute?') if args.simulate: control_commands(commands) else: apply_commands(State(), commands, time_step=0.01) wait_if_gui('Finish?') disconnect() if __name__ == '__main__': tamp_planner = TAMPPlanner() tamp_planner.plan()
10,450
Python
42.365145
129
0.575407
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_3d/create_dataset_mt.py
import subprocess num_count = 10000 for i in range(num_count): # Execute create_dataset.py result = subprocess.run(['python3', 'create_dataset.py', '--skill'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) # Get results from create_dataset.py stdout = result.stdout.decode('utf-8') stderr = result.stderr.decode('utf-8') # If finish with no error if result.returncode == 0: print("create_dataset.py completed successfully.") else: # Prin error message print("create_dataset.py encountered an error:") print(stderr) # Rerun create_dataset.py print("Restarting create_dataset.py...")
660
Python
30.476189
120
0.665152
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_3d/utils/create_ir_database.py
#!/usr/bin/env python import argparse import random import time from pybullet_tools.pr2_utils import set_arm_conf, get_other_arm, arm_conf, REST_LEFT_ARM, \ get_carry_conf, get_gripper_link, GET_GRASPS, IR_FILENAME, get_database_file, DRAKE_PR2_URDF, \ set_group_conf, get_group_conf, get_base_pose from pybullet_tools.utils import create_box, disconnect, add_data_path, connect, get_movable_joints, get_joint_positions, \ sample_placement, set_pose, multiply, invert, set_joint_positions, pairwise_collision, inverse_kinematics, \ get_link_pose, get_body_name, write_pickle, uniform_pose_generator, set_base_values, \ load_pybullet, HideOutput, wait_if_gui, draw_point, point_from_pose, has_gui, elapsed_time, \ sub_inverse_kinematics, BodySaver from pybullet_tools.pr2_problems import create_table from pybullet_tools.ikfast.pr2.ik import pr2_inverse_kinematics, is_ik_compiled from pybullet_tools.ikfast.utils import USE_CURRENT from pybullet_tools.pr2_primitives import get_stable_gen, get_grasp_gen, get_ik_ir_gen def save_inverse_reachability(robot, arm, grasp_type, tool_link, gripper_from_base_list): # TODO: store value of torso and roll joint for the IK database. Sample the roll joint. # TODO: hash the pr2 urdf as well filename = IR_FILENAME.format(grasp_type, arm) path = get_database_file(filename) data = { 'filename': filename, 'robot': get_body_name(robot), 'grasp_type': grasp_type, 'arm': arm, 'torso': get_group_conf(robot, 'torso'), 'carry_conf': get_carry_conf(arm, grasp_type), 'tool_link': tool_link, 'ikfast': is_ik_compiled(), 'gripper_from_base': gripper_from_base_list, } write_pickle(path, data) if has_gui(): handles = [] for gripper_from_base in gripper_from_base_list: handles.extend(draw_point(point_from_pose(gripper_from_base), color=(1, 0, 0))) wait_if_gui() return path ####################################################### def create_inverse_reachability(robot, body, table, arm, grasp_type, max_attempts=500, num_samples=500): tool_link = get_gripper_link(robot, arm) robot_saver = BodySaver(robot) gripper_from_base_list = [] grasps = GET_GRASPS[grasp_type](body) start_time = time.time() while len(gripper_from_base_list) < num_samples: box_pose = sample_placement(body, table) set_pose(body, box_pose) grasp_pose = random.choice(grasps) gripper_pose = multiply(box_pose, invert(grasp_pose)) for attempt in range(max_attempts): robot_saver.restore() base_conf = next(uniform_pose_generator(robot, gripper_pose)) #, reachable_range=(0., 1.))) #set_base_values(robot, base_conf) set_group_conf(robot, 'base', base_conf) if pairwise_collision(robot, table): continue grasp_conf = pr2_inverse_kinematics(robot, arm, gripper_pose) #, nearby_conf=USE_CURRENT) #conf = inverse_kinematics(robot, link, gripper_pose) if (grasp_conf is None) or pairwise_collision(robot, table): continue gripper_from_base = multiply(invert(get_link_pose(robot, tool_link)), get_base_pose(robot)) #wait_if_gui() gripper_from_base_list.append(gripper_from_base) print('{} / {} | {} attempts | [{:.3f}]'.format( len(gripper_from_base_list), num_samples, attempt, elapsed_time(start_time))) wait_if_gui() break else: print('Failed to find a kinematic solution after {} attempts'.format(max_attempts)) return save_inverse_reachability(robot, arm, grasp_type, tool_link, gripper_from_base_list) ####################################################### class MockProblem(object): def __init__(self, robot, fixed=[], grasp_types=[]): self.robot = robot self.fixed = fixed self.grasp_types = grasp_types def create_inverse_reachability2(robot, body, table, arm, grasp_type, max_attempts=500, num_samples=500): tool_link = get_gripper_link(robot, arm) problem = MockProblem(robot, fixed=[table], grasp_types=[grasp_type]) placement_gen_fn = get_stable_gen(problem) grasp_gen_fn = get_grasp_gen(problem, collisions=True) ik_ir_fn = get_ik_ir_gen(problem, max_attempts=max_attempts, learned=False, teleport=True) placement_gen = placement_gen_fn(body, table) grasps = list(grasp_gen_fn(body)) print('Grasps:', len(grasps)) # TODO: sample the torso height # TODO: consider IK with respect to the torso frame start_time = time.time() gripper_from_base_list = [] while len(gripper_from_base_list) < num_samples: [(p,)] = next(placement_gen) (g,) = random.choice(grasps) output = next(ik_ir_fn(arm, body, p, g), None) if output is None: print('Failed to find a solution after {} attempts'.format(max_attempts)) else: (_, ac) = output [at,] = ac.commands at.path[-1].assign() gripper_from_base = multiply(invert(get_link_pose(robot, tool_link)), get_base_pose(robot)) gripper_from_base_list.append(gripper_from_base) print('{} / {} [{:.3f}]'.format( len(gripper_from_base_list), num_samples, elapsed_time(start_time))) wait_if_gui() return save_inverse_reachability(robot, arm, grasp_type, tool_link, gripper_from_base_list) ####################################################### def main(): parser = argparse.ArgumentParser() # Automatically includes help parser.add_argument('-arm', required=True) parser.add_argument('-grasp', required=True) parser.add_argument('-viewer', action='store_true', help='enable viewer.') args = parser.parse_args() arm = args.arm other_arm = get_other_arm(arm) grasp_type = args.grasp connect(use_gui=args.viewer) add_data_path() with HideOutput(): robot = load_pybullet(DRAKE_PR2_URDF) set_group_conf(robot, 'torso', [0.2]) set_arm_conf(robot, arm, get_carry_conf(arm, grasp_type)) set_arm_conf(robot, other_arm, arm_conf(other_arm, REST_LEFT_ARM)) #plane = p.loadURDF("plane.urdf") #table = p.loadURDF("table/table.urdf", 0, 0, 0, 0, 0, 0.707107, 0.707107) table = create_table() box = create_box(.07, .07, .14) #create_inverse_reachability(robot, box, table, arm=arm, grasp_type=grasp_type) create_inverse_reachability2(robot, box, table, arm=arm, grasp_type=grasp_type) disconnect() if __name__ == '__main__': main()
6,677
Python
42.647059
123
0.627677
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_3d/utils/README.md
# pybullet-planning (previously ss-pybullet) A repository of [PyBullet](https://pypi.python.org/pypi/pybullet) utility functions for robotic motion planning, manipulation planning, and task and motion planning (TAMP). This repository was originally developed for the [PDDLStream](https://github.com/caelan/pddlstream) (previously named [STRIPStream](https://github.com/caelan/stripstream)) approach to TAMP. <!--![Alt text](images/test.png?raw=true "Title")--> <!--img src="images/pr2.png" height="300">&emsp;<img src="images/kuka.png" height="300"--> <!-- ## PyBullet Planning --> With the help of [Yijiang Huang](https://github.com/yijiangh), a stable and documented fork of **pybullet-planning** named [pybullet_planning](https://github.com/yijiangh/pybullet_planning) is available through [PyPI](https://pypi.org/project/pybullet-planning/). However, new features will continue to be introduced first through **pybullet-planning**. ## Citation Caelan Reed Garrett. PyBullet Planning. https://pypi.org/project/pybullet-planning/. 2018. ## Installation Install for macOS or Linux using: <!-- `pybullet-planning$ git clone --recursive git@github.com:caelan/pybullet-planning.git` --> ``` $ git clone --recurse-submodules https://github.com/caelan/pybullet-planning.git $ cd pybullet-planning pybullet-planning$ pip install -r requirements.txt ``` <!-- Install PyBullet on OS X or Linux using: ``` $ pip install numpy pybullet $ git clone --recurse-submodules https://github.com/caelan/ss-pybullet.git $ cd ss-pybullet $ git pull --recurse-submodules ``` --> **pybullet-planning** is intended to have ongoing support for both python2.7 and python3.* Make sure to recursively update **pybullet-planning**'s submodules when pulling new commits. ``` pybullet-planning$ git pull --recurse-submodules ``` <!-- `pybullet-planning$ git submodule update --init --recursive` --> ## IKFast Compilation We recommend using [IKFast](http://openrave.org/docs/0.8.2/openravepy/ikfast/), an analytical inverse kinematics solver, instead of PyBullet's damped least squares solver. IKFast bindings are included for the following robots: * Franka Panda - `pybullet-planning$ (cd pybullet_tools/ikfast/franka_panda; python setup.py)` * MOVO - `pybullet-planning$ (cd pybullet_tools/ikfast/movo; python setup.py)` * PR2 - `pybullet-planning$ (cd pybullet_tools/ikfast/pr2; python setup.py)` <!-- https://stackoverflow.com/questions/10382141/temporarily-change-current-working-directory-in-bash-to-run-a-command --> To create IKFast bindings for a new robot, following the instructions in [ikfast_pybind](https://github.com/yijiangh/ikfast_pybind). <!-- https://pypi.org/project/ikfast-pybind/ --> ## Tests 1) Test PyBullet - ```pybullet-planning$ python -c 'import pybullet'``` ## Tutorial [test_turtlebot](https://github.com/caelan/pybullet-planning/blob/master/examples/test_turtlebot.py) - ```$ python -m examples.test_turtlebot``` <img src="images/turtlebot.png" height="150"> <!--img src="images/turtlebot2.png" height="150"--> Heavily annotated simple example that demonstrates: * Creating a PyBullet simulation * Waiting for user input (useful on macOS) * Programmatically creating objects * Getting/setting object base poses * Loading a robot [URDF](http://wiki.ros.org/urdf) * Getting/setting robot joint positions * Looking up named robot links and joints * Computing an object's current Axis-Aligned Bounding Box (AABB) * Drawing coordinate frames and bounding boxes * Checking collisions between two objects * Temporarily disabling rendering for efficiency purposes ## Planning Examples * [Kuka IIWA pick motion planning](examples/test_kuka_pick.py) - `pybullet-planning$ python -m examples.test_kuka_pick` * [TutleBot base motion planning](examples/test_turtlebot_motion.py) - ```pybullet-planning$ python -m examples.test_turtlebot_motion``` * [PR2 base & arm motion planning](examples/test_pr2_motion.py) - ```pybullet-planning$ python -m examples.test_pr2_motion``` * [Franka Panda workspace planning](examples/test_franka.py) - ```pybullet-planning$ python -m examples.test_franka``` * [Kinova MOVO workspace planning](examples/test_movo.py) - ```pybullet-planning$ python -m examples.test_movo``` * [Cylinder SE(3) motion planning](examples/test_se3.py) - ```pybullet-planning$ python -m examples.test_se3``` * [PR2 teleoperation](examples/teleop_pr2.py) - ```pybullet-planning$ python -m examples.teleop_pr2``` <!--img src="images/movo.png" height="150"--> <img src="images/kuka_pick.png" height="150">&emsp;<img src="images/turtlebot_motion.png" height="150"> &emsp;<img src="images/pr2_motion.png" height="150"> <img src="images/franka.png" height="150">&emsp;<img src="images/movo2.png" height="150"> &emsp;<img src="images/se3.png" height="150"> ## Debug Examples * [TAMP environments](examples/test_json.py) - ```pybullet-planning$ python -m examples.test_json``` * [TAMP benchmarks](examples/test_tamp_xml.py) - ```pybullet-planning$ python -m examples.test_tamp_xml``` * [Gripper side grasps](examples/gripper/test_side.py) - ```pybullet-planning$ python -m examples.gripper.test_side``` * [Gripper top grasps](examples/gripper/test_top.py) - ```pybullet-planning$ python -m examples.gripper.test_top``` * [Dropping particles](examples/test_water.py) - ```pybullet-planning$ python -m examples.test_water``` * [PR2 cloning](examples/test_clone.py) - ```pybullet-planning$ python -m examples.test_clone``` <img src="images/json.png" height="150">&emsp;<img src="images/tamp_xml.png" height="150"> &emsp;<img src="images/water.png" height="150"> <!--&emsp;<img src="images/test_side.png" height="150"> &emsp;<img src="images/test_top.png" height="150"--> <!-- * [OpenRAVE bodies](examples/test_kinbody.py) - ```pybullet-planning$ python -m examples.test_kinbody``` * [Kiva shelves](examples/test_kiva.py) - ```pybullet-planning$ python -m examples.test_kiva``` * [LIS/YCB models](examples/test_models.py) - ```pybullet-planning$ python -m examples.test_models``` * [PR2 visibility](examples/test_visibility.py) - ```pybullet-planning$ python -m examples.test_visibility``` * [TurtleBot collisions](examples/test_turtlebot.py) - ```pybullet-planning$ python -m examples.test_turtlebot``` --> ## PDDLStream Examples See the following examples: https://github.com/caelan/pddlstream/tree/master/examples/pybullet [<img src="https://img.youtube.com/vi/3HJrkgIGK7c/0.jpg" height="200">](https://www.youtube.com/watch?v=3HJrkgIGK7c) [<img src="https://img.youtube.com/vi/oWr6m12nXcM/0.jpg" height="200">](https://www.youtube.com/watch?v=oWr6m12nXcM) ## Forks * https://github.com/yijiangh/pybullet_planning * https://github.com/rachelholladay/pb_robot * https://github.com/mike-n-7/pb_robot * https://github.com/carismoses/pb_robot ## Gallery * PDDLStream for TAMP - https://github.com/caelan/pddlstream * Online TAMP under Partial Observability - https://github.com/caelan/SS-Replan * Automated Construction - https://github.com/caelan/pb-construction * Learning + TAMP (LTAMP) - https://github.com/caelan/LTAMP ## PyBullet Resources * PyPI - https://pypi.python.org/pypi/pybullet * Quickstart - https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/ * Forum - https://pybullet.org/Bullet/phpBB3/ * Wordpress - https://pybullet.org/wordpress/ * Examples - https://github.com/bulletphysics/bullet3/tree/master/examples/pybullet/examples * Bindings - https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/pybullet.c ## Bullet Resources * GitHub - https://github.com/bulletphysics/bullet3
7,571
Markdown
47.229299
263
0.743627
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_3d/utils/motion/README.md
# motion-planners Python implementations of several robotic motion planners ## Citation Caelan Reed Garrett. Motion Planners. https://github.com/caelan/motion-planners. 2017. ## Algorithms Sampling-based: * Probabilistic Roadmap (PRM) * Rapidly-Exploring Random Tree (RRT) * RRT-Connect (BiRRT) * Linear Shortcutting * MultiRRT * RRT* Grid search * Breadth-First Search (BFS) * A*
386
Markdown
17.428571
86
0.759067
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_3d/utils/motion/motion_planners/diverse.py
from itertools import combinations, product, permutations from scipy.spatial.kdtree import KDTree import numpy as np from motion_planners.utils import INF, compute_path_cost, get_distance def compute_median_distance(path1, path2): differences = [get_distance(q1, q2) for q1, q2 in product(path1, path2)] return np.median(differences) def compute_minimax_distance(path1, path2): overall_distance = 0. for path, other in permutations([path1, path2]): tree = KDTree(other) for q1 in path: #closest_distance = min(get_distance(q1, q2) for q2 in other) closest_distance, closest_index = tree.query(q1, k=1, eps=0.) overall_distance = max(overall_distance, closest_distance) return overall_distance def compute_portfolio_distance(path1, path2, min_distance=0.): # TODO: generic distance_fn # TODO: min_distance from stats about the portfolio distance = compute_minimax_distance(path1, path2) if distance < min_distance: return 0. return sum(compute_path_cost(path, get_distance) for path in [path1, path2]) def score_portfolio(portfolio, **kwargs): # TODO: score based on collision voxel overlap at different resolutions score_fn = compute_minimax_distance # compute_median_distance | compute_minimax_distance | compute_portfolio_distance score = INF for path1, path2 in combinations(portfolio, r=2): score = min(score, score_fn(path1, path2, **kwargs)) return score def exhaustively_select_portfolio(candidates, k=10, **kwargs): if len(candidates) <= k: return candidates # TODO: minimum length portfolio such that at nothing is within a certain distance best_portfolios, best_score = [], 0 for portfolio in combinations(candidates, r=k): score = score_portfolio(portfolio, **kwargs) if score > best_score: best_portfolios, best_score = portfolio, score return best_portfolios def greedily_select_portfolio(candidates, k=10): # Higher score is better if len(candidates) <= k: return candidates raise NotImplementedError() #return best_portfolios
2,161
Python
35.644067
121
0.697362
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_3d/utils/motion/motion_planners/multi_rrt.py
from collections import Mapping from random import random from .rrt import TreeNode, configs from .utils import irange, argmin, get_pairs, randomize, take, enum ts = enum('ALL', 'SUCCESS', 'PATH', 'NONE') # TODO - resample and use nearest neighbors when the tree is large # TODO - possible bug if a node is already in the tree class MultiTree(Mapping, object): def __init__(self, start, distance, sample, extend, collision): self.nodes = {} self.distance = distance self.sample = sample self.extend = extend self.collision = collision self.add(TreeNode(start)) def add(self, *nodes): for n in nodes: self.nodes[n.config] = n def __getitem__(self, q): return self.nodes[q] # return first(lambda v: self.distance(v.config, q) < 1e-6, self.nodes) def __len__(self): return len(self.nodes) def __iter__(self): for n in self.nodes.values(): yield n def __call__(self, q1, q2=None, iterations=50): if q1 in self: path1 = self[q1].retrace() else: path1 = self.grow(q1, iterations=iterations) if q2 is None: return configs(path1) if q2 in self: path2 = self[q2].retrace() else: path2 = self.grow(q2, iterations=iterations) if path1 is None or path2 is None: return None for i in range(min(len(path1), len(path2))): if path1[i] != path2[i]: break else: i += 1 return configs(path1[:i - 1:-1] + path2[i - 1:]) def clear(self): for n in self: n.clear() def draw(self, env): for n in self: n.draw(env) class MultiRRT(MultiTree): def grow(self, goal_sample, iterations=50, goal_probability=.2, store=ts.PATH, max_tree_size=500): if not callable(goal_sample): goal_sample = lambda: goal_sample nodes, new_nodes = list( take(randomize(self.nodes.values()), max_tree_size)), [] for i in irange(iterations): goal = random() < goal_probability or i == 0 s = goal_sample() if goal else self.sample() last = argmin(lambda n: self.distance( n.config, s), nodes + new_nodes) for q in self.extend(last.config, s): if self.collision(q): break last = TreeNode(q, parent=last) new_nodes.append(last) else: if goal: path = last.retrace() if store in [ts.ALL, ts.SUCCESS]: self.add(*new_nodes) elif store == ts.PATH: new_nodes_set = set(new_nodes) self.add(*[n for n in path if n in new_nodes_set]) return path if store == ts.ALL: self.add(*new_nodes) return None class MultiBiRRT(MultiTree): def grow(self, goal, iterations=50, store=ts.PATH, max_tree_size=500): if goal in self: return self[goal].retrace() if self.collision(goal): return None nodes1, new_nodes1 = list( take(randomize(self.nodes.values()), max_tree_size)), [] nodes2, new_nodes2 = [], [TreeNode(goal)] for _ in irange(iterations): if len(nodes1) + len(new_nodes1) > len(nodes2) + len(new_nodes2): nodes1, nodes2 = nodes2, nodes1 new_nodes1, new_nodes2 = new_nodes2, new_nodes1 s = self.sample() last1 = argmin(lambda n: self.distance( n.config, s), nodes1 + new_nodes1) for q in self.extend(last1.config, s): if self.collision(q): break last1 = TreeNode(q, parent=last1) new_nodes1.append(last1) last2 = argmin(lambda n: self.distance( n.config, last1.config), nodes2 + new_nodes2) for q in self.extend(last2.config, last1.config): if self.collision(q): break last2 = TreeNode(q, parent=last2) new_nodes2.append(last2) else: if len(nodes1) == 0: nodes1, nodes2 = nodes2, nodes1 new_nodes1, new_nodes2 = new_nodes2, new_nodes1 last1, last2 = last2, last1 path1, path2 = last1.retrace(), last2.retrace()[:-1][::-1] for p, n in get_pairs(path2): n.parent = p if len(path2) == 0: # TODO - still some kind of circular error for n in new_nodes2: if n.parent == last2: n.parent = path1[-1] else: path2[0].parent = path1[-1] path = path1 + path2 if store in [ts.ALL, ts.SUCCESS]: self.add(*(new_nodes1 + new_nodes2[:-1])) elif store == ts.PATH: new_nodes_set = set(new_nodes1 + new_nodes2[:-1]) self.add(*[n for n in path if n in new_nodes_set]) return path if store == ts.ALL: self.add(*new_nodes1) return None
5,397
Python
33.382165
102
0.503798
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_3d/utils/motion/motion_planners/prm.py
from collections import namedtuple, Mapping from heapq import heappop, heappush import operator from .utils import INF, get_pairs, merge_dicts, flatten # TODO - Visibility-PRM, PRM* class Vertex(object): def __init__(self, q): self.q = q self.edges = {} self._handle = None def clear(self): self._handle = None def draw(self, env, color=(1, 0, 0, .5)): from manipulation.primitives.display import draw_node self._handle = draw_node(env, self.q, color=color) def __str__(self): return 'Vertex(' + str(self.q) + ')' __repr__ = __str__ class Edge(object): def __init__(self, v1, v2, path): self.v1, self.v2 = v1, v2 self.v1.edges[v2], self.v2.edges[v1] = self, self self._path = path #self._handle = None self._handles = [] def end(self, start): if self.v1 == start: return self.v2 if self.v2 == start: return self.v1 assert False def path(self, start): if self._path is None: return [self.end(start).q] if self.v1 == start: return self._path + [self.v2.q] if self.v2 == start: return self._path[::-1] + [self.v1.q] assert False def configs(self): if self._path is None: return [] return [self.v1.q] + self._path + [self.v2.q] def clear(self): #self._handle = None self._handles = [] def draw(self, env, color=(1, 0, 0, .5)): if self._path is None: return from manipulation.primitives.display import draw_edge #self._handle = draw_edge(env, self.v1.q, self.v2.q, color=color) for q1, q2 in get_pairs(self.configs()): self._handles.append(draw_edge(env, q1, q2, color=color)) def __str__(self): return 'Edge(' + str(self.v1.q) + ' - ' + str(self.v2.q) + ')' __repr__ = __str__ ################################################## SearchNode = namedtuple('SearchNode', ['cost', 'parent']) class Roadmap(Mapping, object): def __init__(self, samples=[]): self.vertices = {} self.edges = [] self.add(samples) def __getitem__(self, q): return self.vertices[q] def __len__(self): return len(self.vertices) def __iter__(self): return iter(self.vertices) def __call__(self, q1, q2): if q1 not in self or q2 not in self: return None start, goal = self[q1], self[q2] queue = [(0, start)] nodes, processed = {start: SearchNode(0, None)}, set() def retrace(v): pv = nodes[v].parent if pv is None: return [v.q] return retrace(pv) + v.edges[pv].path(pv) while len(queue) != 0: _, cv = heappop(queue) if cv in processed: continue processed.add(cv) if cv == goal: return retrace(cv) for nv, edge in cv.edges.items(): cost = nodes[cv].cost + len(edge.path(cv)) if nv not in nodes or cost < nodes[nv].cost: nodes[nv] = SearchNode(cost, cv) heappush(queue, (cost, nv)) return None def add(self, samples): new_vertices = [] for q in samples: if q not in self: self.vertices[q] = Vertex(q) new_vertices.append(self[q]) return new_vertices def connect(self, v1, v2, path=None): if v1 not in v2.edges: # TODO - what about parallel edges? edge = Edge(v1, v2, path) self.edges.append(edge) return edge return None def clear(self): for v in self.vertices.values(): v.clear() for e in self.edges: e.clear() def draw(self, env): for v in self.vertices.values(): v.draw(env) for e in self.edges: e.draw(env) @staticmethod def merge(*roadmaps): new_roadmap = Roadmap() new_roadmap.vertices = merge_dicts( *[roadmap.vertices for roadmap in roadmaps]) new_roadmap.edges = list( flatten(roadmap.edges for roadmap in roadmaps)) return new_roadmap class PRM(Roadmap): def __init__(self, distance, extend, collision, samples=[]): super(PRM, self).__init__() self.distance = distance self.extend = extend self.collision = collision self.grow(samples) def grow(self, samples): raise NotImplementedError() def __call__(self, q1, q2): self.grow([q1, q2]) if q1 not in self or q2 not in self: return None start, goal = self[q1], self[q2] heuristic = lambda v: self.distance(v.q, goal.q) # lambda v: 0 queue = [(heuristic(start), start)] nodes, processed = {start: SearchNode(0, None)}, set() def retrace(v): if nodes[v].parent is None: return [v.q] return retrace(nodes[v].parent) + v.edges[nodes[v].parent].path(nodes[v].parent) while len(queue) != 0: _, cv = heappop(queue) if cv in processed: continue processed.add(cv) if cv == goal: return retrace(cv) for nv in cv.edges: cost = nodes[cv].cost + self.distance(cv.q, nv.q) if nv not in nodes or cost < nodes[nv].cost: nodes[nv] = SearchNode(cost, cv) heappush(queue, (cost + heuristic(nv), nv)) return None class DistancePRM(PRM): def __init__(self, distance, extend, collision, samples=[], connect_distance=.5): self.connect_distance = connect_distance super(self.__class__, self).__init__( distance, extend, collision, samples=samples) def grow(self, samples): old_vertices, new_vertices = self.vertices.keys(), self.add(samples) for i, v1 in enumerate(new_vertices): for v2 in new_vertices[i + 1:] + old_vertices: if self.distance(v1.q, v2.q) <= self.connect_distance: path = list(self.extend(v1.q, v2.q))[:-1] if not any(self.collision(q) for q in path): self.connect(v1, v2, path) return new_vertices class DegreePRM(PRM): def __init__(self, distance, extend, collision, samples=[], target_degree=4, connect_distance=INF): self.target_degree = target_degree self.connect_distance = connect_distance super(self.__class__, self).__init__( distance, extend, collision, samples=samples) def grow(self, samples): # TODO: do sorted edges version new_vertices = self.add(samples) if self.target_degree == 0: return new_vertices for v1 in new_vertices: degree = 0 for _, v2 in sorted(filter(lambda pair: pair[1] != v1 and pair[0] <= self.connect_distance, map(lambda v: (self.distance(v1.q, v.q), v), self.vertices.values())), key=operator.itemgetter(0)): # TODO - slow, use nearest neighbors if self.target_degree <= degree: break if v2 not in v1.edges: path = list(self.extend(v1.q, v2.q))[:-1] if not any(self.collision(q) for q in path): self.connect(v1, v2, path) degree += 1 else: degree += 1 return new_vertices
7,745
Python
30.233871
109
0.518786
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_3d/utils/motion/motion_planners/rrt.py
from random import random from .utils import irange, argmin, RRT_ITERATIONS class TreeNode(object): def __init__(self, config, parent=None): self.config = config self.parent = parent #def retrace(self): # if self.parent is None: # return [self] # return self.parent.retrace() + [self] def retrace(self): sequence = [] node = self while node is not None: sequence.append(node) node = node.parent return sequence[::-1] def clear(self): self.node_handle = None self.edge_handle = None def draw(self, env, color=(1, 0, 0, .5)): from manipulation.primitives.display import draw_node, draw_edge self.node_handle = draw_node(env, self.config, color=color) if self.parent is not None: self.edge_handle = draw_edge( env, self.config, self.parent.config, color=color) def __str__(self): return 'TreeNode(' + str(self.config) + ')' __repr__ = __str__ def configs(nodes): if nodes is None: return None return list(map(lambda n: n.config, nodes)) def rrt(start, goal_sample, distance, sample, extend, collision, goal_test=lambda q: False, iterations=RRT_ITERATIONS, goal_probability=.2): if collision(start): return None if not callable(goal_sample): g = goal_sample goal_sample = lambda: g nodes = [TreeNode(start)] for i in irange(iterations): goal = random() < goal_probability or i == 0 s = goal_sample() if goal else sample() last = argmin(lambda n: distance(n.config, s), nodes) for q in extend(last.config, s): if collision(q): break last = TreeNode(q, parent=last) nodes.append(last) if goal_test(last.config): return configs(last.retrace()) else: if goal: return configs(last.retrace()) return None
2,026
Python
27.549295
91
0.571076
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_3d/utils/motion/motion_planners/discrete.py
from collections import deque from heapq import heappop, heappush from recordclass import recordclass import numpy as np from .utils import INF Node = recordclass('Node', ['g', 'parent']) def retrace(visited, q): if q is None: return [] return retrace(visited, visited[tuple(q)].parent) + [q] def bfs(start, goal, neighbors, collision, max_iterations=INF): if collision(start) or collision(goal): return None iterations = 0 visited = {tuple(start): Node(0, None)} expanded = [] queue = deque([start]) while len(queue) != 0 and iterations < max_iterations: current = queue.popleft() iterations += 1 expanded.append(current) if goal is not None and tuple(current) == tuple(goal): return retrace(visited, current) for next in neighbors(current): # TODO - make edges for real (and store bad edges) if tuple(next) not in visited and not collision(next): visited[tuple(next)] = Node( next, visited[tuple(current)].g + 1, current) queue.append(next) return None def astar(start, goal, distance, neighbors, collision, max_iterations=INF, cost=lambda g, h: g + h): # TODO - put start and goal in neighbors if collision(start) or collision(goal): return None queue = [(cost(0, distance(start, goal)), 0, start)] visited = {tuple(start): Node(0, None)} iterations = 0 while len(queue) != 0 and iterations < max_iterations: _, current_g, current = heappop(queue) current = np.array(current) if visited[tuple(current)].g != current_g: continue iterations += 1 if tuple(current) == tuple(goal): return retrace(visited, current) for next in neighbors(current): next_g = current_g + distance(current, next) if (tuple(next) not in visited or next_g < visited[tuple(next)].g) and not collision(next): visited[tuple(next)] = Node(next_g, current) # ValueError: The truth value of an array with more than one # element is ambiguous. heappush(queue, (cost(next_g, distance(next, goal)), next_g, next)) return None
2,285
Python
35.285714
103
0.606127
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_3d/utils/motion/motion_planners/rrt_connect.py
import time from itertools import takewhile from .meta import direct_path from .smoothing import smooth_path, smooth_path_old from .rrt import TreeNode, configs from .utils import irange, argmin, RRT_ITERATIONS, RRT_RESTARTS, RRT_SMOOTHING, INF, elapsed_time, \ negate def asymmetric_extend(q1, q2, extend_fn, backward=False): if backward: return reversed(list(extend_fn(q2, q1))) return extend_fn(q1, q2) def extend_towards(tree, target, distance_fn, extend_fn, collision_fn, swap, tree_frequency): last = argmin(lambda n: distance_fn(n.config, target), tree) extend = list(asymmetric_extend(last.config, target, extend_fn, swap)) safe = list(takewhile(negate(collision_fn), extend)) for i, q in enumerate(safe): if (i % tree_frequency == 0) or (i == len(safe) - 1): last = TreeNode(q, parent=last) tree.append(last) success = len(extend) == len(safe) return last, success def rrt_connect(q1, q2, distance_fn, sample_fn, extend_fn, collision_fn, iterations=RRT_ITERATIONS, tree_frequency=1, max_time=INF): start_time = time.time() assert tree_frequency >= 1 if collision_fn(q1) or collision_fn(q2): return None nodes1, nodes2 = [TreeNode(q1)], [TreeNode(q2)] for iteration in irange(iterations): if max_time <= elapsed_time(start_time): break swap = len(nodes1) > len(nodes2) tree1, tree2 = nodes1, nodes2 if swap: tree1, tree2 = nodes2, nodes1 last1, _ = extend_towards(tree1, sample_fn(), distance_fn, extend_fn, collision_fn, swap, tree_frequency) last2, success = extend_towards(tree2, last1.config, distance_fn, extend_fn, collision_fn, not swap, tree_frequency) if success: path1, path2 = last1.retrace(), last2.retrace() if swap: path1, path2 = path2, path1 #print('{} iterations, {} nodes'.format(iteration, len(nodes1) + len(nodes2))) return configs(path1[:-1] + path2[::-1]) return None ################################################################# def birrt(q1, q2, distance, sample, extend, collision, restarts=RRT_RESTARTS, smooth=RRT_SMOOTHING, max_time=INF, **kwargs): # TODO: move to the meta class start_time = time.time() if collision(q1) or collision(q2): return None path = direct_path(q1, q2, extend, collision) if path is not None: return path for attempt in irange(restarts + 1): # TODO: use the restart wrapper if max_time <= elapsed_time(start_time): break path = rrt_connect(q1, q2, distance, sample, extend, collision, max_time=max_time - elapsed_time(start_time), **kwargs) if path is not None: #print('{} attempts'.format(attempt)) if smooth is None: return path #return smooth_path_old(path, extend, collision, iterations=smooth) return smooth_path(path, extend, collision, distance_fn=distance, iterations=smooth, max_time=max_time - elapsed_time(start_time)) return None
3,280
Python
39.506172
100
0.595427
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_3d/utils/motion/motion_planners/lazy_prm.py
from scipy.spatial.kdtree import KDTree from heapq import heappush, heappop from collections import namedtuple from .utils import INF, elapsed_time from .rrt_connect import direct_path from .smoothing import smooth_path import random import time import numpy as np Node = namedtuple('Node', ['g', 'parent']) unit_cost_fn = lambda v1, v2: 1. zero_heuristic_fn = lambda v: 0 def retrace_path(visited, vertex): if vertex is None: return [] return retrace_path(visited, visited[vertex].parent) + [vertex] def dijkstra(start_v, neighbors_fn, cost_fn=unit_cost_fn): # Update the heuristic over time start_g = 0 visited = {start_v: Node(start_g, None)} queue = [(start_g, start_v)] while queue: current_g, current_v = heappop(queue) if visited[current_v].g < current_g: continue for next_v in neighbors_fn(current_v): next_g = current_g + cost_fn(current_v, next_v) if (next_v not in visited) or (next_g < visited[next_v].g): visited[next_v] = Node(next_g, current_v) heappush(queue, (next_g, next_v)) return visited def wastar_search(start_v, end_v, neighbors_fn, cost_fn=unit_cost_fn, heuristic_fn=zero_heuristic_fn, w=1, max_cost=INF, max_time=INF): # TODO: lazy wastar to get different paths #heuristic_fn = lambda v: cost_fn(v, end_v) priority_fn = lambda g, h: g + w*h goal_test = lambda v: v == end_v start_time = time.time() start_g, start_h = 0, heuristic_fn(start_v) visited = {start_v: Node(start_g, None)} queue = [(priority_fn(start_g, start_h), start_g, start_v)] while queue and (elapsed_time(start_time) < max_time): _, current_g, current_v = heappop(queue) if visited[current_v].g < current_g: continue if goal_test(current_v): return retrace_path(visited, current_v) for next_v in neighbors_fn(current_v): next_g = current_g + cost_fn(current_v, next_v) if (next_v not in visited) or (next_g < visited[next_v].g): visited[next_v] = Node(next_g, current_v) next_h = heuristic_fn(next_v) if priority_fn(next_g, next_h) < max_cost: heappush(queue, (priority_fn(next_g, next_h), next_g, next_v)) return None def check_path(path, colliding_vertices, colliding_edges, samples, extend_fn, collision_fn): # TODO: bisect order vertices = list(path) random.shuffle(vertices) for v in vertices: if v not in colliding_vertices: colliding_vertices[v] = collision_fn(samples[v]) if colliding_vertices[v]: return False edges = list(zip(path, path[1:])) random.shuffle(edges) for v1, v2 in edges: if (v1, v2) not in colliding_edges: segment = list(extend_fn(samples[v1], samples[v2])) random.shuffle(segment) colliding_edges[v1, v2] = any(map(collision_fn, segment)) colliding_edges[v2, v1] = colliding_edges[v1, v2] if colliding_edges[v1, v2]: return False return True def lazy_prm(start_conf, end_conf, sample_fn, extend_fn, collision_fn, num_samples=100, max_degree=10, weights=None, p_norm=2, max_distance=INF, approximate_eps=0.0, max_cost=INF, max_time=INF, max_paths=INF): # TODO: multi-query motion planning start_time = time.time() # TODO: can embed pose and/or points on the robot for other distances if weights is None: weights = np.ones(len(start_conf)) embed_fn = lambda q: weights * q distance_fn = lambda q1, q2: np.linalg.norm(embed_fn(q2) - embed_fn(q1), ord=p_norm) cost_fn = lambda v1, v2: distance_fn(samples[v1], samples[v2]) # TODO: can compute cost between waypoints from extend_fn samples = [] while len(samples) < num_samples: conf = sample_fn() if (distance_fn(start_conf, conf) + distance_fn(conf, end_conf)) < max_cost: samples.append(conf) start_index, end_index = 0, 1 samples[start_index] = start_conf samples[end_index] = end_conf embedded = list(map(embed_fn, samples)) kd_tree = KDTree(embedded) vertices = list(range(len(samples))) edges = set() for v1 in vertices: # TODO: could dynamically compute distances distances, neighbors = kd_tree.query(embedded[v1], k=max_degree+1, eps=approximate_eps, p=p_norm, distance_upper_bound=max_distance) for d, v2 in zip(distances, neighbors): if (d < max_distance) and (v1 != v2): edges.update([(v1, v2), (v2, v1)]) neighbors_from_index = {v: set() for v in vertices} for v1, v2 in edges: neighbors_from_index[v1].add(v2) #print(time.time() - start_time, len(edges), float(len(edges))/len(samples)) colliding_vertices, colliding_edges = {}, {} def neighbors_fn(v1): for v2 in neighbors_from_index[v1]: if not (colliding_vertices.get(v2, False) or colliding_edges.get((v1, v2), False)): yield v2 visited = dijkstra(end_index, neighbors_fn, cost_fn) heuristic_fn = lambda v: visited[v].g if v in visited else INF while elapsed_time(start_time) < max_time: # TODO: extra cost to prioritize reusing checked edges path = wastar_search(start_index, end_index, neighbors_fn=neighbors_fn, cost_fn=cost_fn, heuristic_fn=heuristic_fn, max_cost=max_cost, max_time=max_time-elapsed_time(start_time)) if path is None: return None, edges, colliding_vertices, colliding_edges cost = sum(cost_fn(v1, v2) for v1, v2 in zip(path, path[1:])) print('Length: {} | Cost: {:.3f} | Vertices: {} | Edges: {} | Time: {:.3f}'.format( len(path), cost, len(colliding_vertices), len(colliding_edges), elapsed_time(start_time))) if check_path(path, colliding_vertices, colliding_edges, samples, extend_fn, collision_fn): break solution = [start_conf] for q1, q2 in zip(path, path[1:]): solution.extend(extend_fn(samples[q1], samples[q2])) return solution, samples, edges, colliding_vertices, colliding_edges def replan_loop(start_conf, end_conf, sample_fn, extend_fn, collision_fn, params_list, smooth=0, **kwargs): if collision_fn(start_conf) or collision_fn(end_conf): return None path = direct_path(start_conf, end_conf, extend_fn, collision_fn) if path is not None: return path for num_samples in params_list: path = lazy_prm(start_conf, end_conf, sample_fn, extend_fn, collision_fn, num_samples=num_samples, **kwargs) if path is not None: return smooth_path(path, extend_fn, collision_fn, iterations=smooth) return None
6,946
Python
41.882716
107
0.613015
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_3d/utils/motion/motion_planners/star_roadmap.py
from collections import Mapping #class StarRoadmap(Mapping, object): class StarRoadmap(Mapping, object): def __init__(self, center, planner): self.center = center self.planner = planner self.roadmap = {} """ def __getitem__(self, q): return self.roadmap[q] def __len__(self): return len(self.roadmap) def __iter__(self): return iter(self.roadmap) """ def grow(self, goal): if goal not in self.roadmap: self.roadmap[goal] = self.planner(self.center, goal) return self.roadmap[goal] def __call__(self, start, goal): start_traj = self.grow(start) if start_traj is None: return None goal_traj = self.grow(goal) if goal_traj is None: return None return start_traj.reverse(), goal_traj
859
Python
23.571428
64
0.573923
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_3d/utils/motion/motion_planners/utils.py
from random import shuffle from itertools import islice import time import contextlib import pstats import cProfile import numpy as np INF = float('inf') RRT_ITERATIONS = 20 RRT_RESTARTS = 2 RRT_SMOOTHING = 20 try: user_input = raw_input except NameError: user_input = input def irange(start, stop=None, step=1): # np.arange if stop is None: stop = start start = 0 while start < stop: yield start start += step def negate(test): return lambda *args, **kwargs: not test(*args, **kwargs) def argmin(function, sequence): # TODO: use min values = list(sequence) scores = [function(x) for x in values] return values[scores.index(min(scores))] def get_pairs(lst): return zip(lst[:-1], lst[1:]) def merge_dicts(*args): result = {} for d in args: result.update(d) return result # return dict(reduce(operator.add, [d.items() for d in args])) def flatten(iterable_of_iterables): return (item for iterables in iterable_of_iterables for item in iterables) def randomize(sequence): sequence = list(sequence) shuffle(sequence) return sequence def traverse(sequence, random=False): # TODO: bisect return randomize(sequence) def take(iterable, n=INF): if n == INF: n = None # NOTE - islice takes None instead of INF elif n is None: n = 0 # NOTE - for some of the uses return islice(iterable, n) def enum(*sequential, **named): enums = dict(zip(sequential, range(len(sequential))), **named) enums['names'] = sorted(enums.keys(), key=lambda k: enums[k]) return type('Enum', (), enums) def elapsed_time(start_time): return time.time() - start_time @contextlib.contextmanager def profiler(field='tottime', num=10): pr = cProfile.Profile() pr.enable() yield pr.disable() pstats.Stats(pr).sort_stats(field).print_stats(num) # cumtime | tottime def inf_sequence(): return iter(int, 1) def get_delta(q1, q2): return np.array(q2) - np.array(q1) def get_distance(q1, q2): return np.linalg.norm(get_delta(q1, q2)) def get_unit_vector(vec): norm = np.linalg.norm(vec) if norm == 0: return vec return np.array(vec) / norm def compute_path_cost(path, cost_fn=get_distance): if path is None: return INF return sum(cost_fn(*pair) for pair in get_pairs(path)) def remove_redundant(path, tolerance=1e-3): assert path new_path = [path[0]] for conf in path[1:]: difference = np.array(new_path[-1]) - np.array(conf) if not np.allclose(np.zeros(len(difference)), difference, atol=tolerance, rtol=0): new_path.append(conf) return new_path def waypoints_from_path(path, tolerance=1e-3): path = remove_redundant(path, tolerance=tolerance) if len(path) < 2: return path difference_fn = lambda q2, q1: np.array(q2) - np.array(q1) #difference_fn = get_difference_fn(body, joints) waypoints = [path[0]] last_conf = path[1] last_difference = get_unit_vector(difference_fn(last_conf, waypoints[-1])) for conf in path[2:]: difference = get_unit_vector(difference_fn(conf, waypoints[-1])) if not np.allclose(last_difference, difference, atol=tolerance, rtol=0): waypoints.append(last_conf) difference = get_unit_vector(difference_fn(conf, waypoints[-1])) last_conf = conf last_difference = difference waypoints.append(last_conf) return waypoints def convex_combination(x, y, w=0.5): return (1-w)*np.array(x) + w*np.array(y)
3,606
Python
22.270968
90
0.644481
makolon/hsr_isaac_tamp/hsr_tamp/experiments/env_3d/utils/motion/motion_planners/meta.py
import time from .smoothing import smooth_path from .utils import RRT_RESTARTS, RRT_SMOOTHING, INF, irange, elapsed_time, compute_path_cost, traverse def direct_path(q1, q2, extend_fn, collision_fn): # TODO: version which checks whether the segment is valid if collision_fn(q1) or collision_fn(q2): return None path = [q1] + list(extend_fn(q1, q2)) if any(collision_fn(q) for q in traverse(path)): return None return path # path = [q1] # for q in extend_fn(q1, q2): # if collision_fn(q): # return None # path.append(q) # return path def random_restarts(solve_fn, q1, q2, distance_fn, sample_fn, extend_fn, collision_fn, restarts=RRT_RESTARTS, smooth=RRT_SMOOTHING, success_cost=0., max_time=INF, max_solutions=1, **kwargs): start_time = time.time() solutions = [] if any(collision_fn(q) for q in [q1, q2]): return solutions path = direct_path(q1, q2, extend_fn, collision_fn) if path is not None: solutions.append(path) for attempt in irange(restarts + 1): if (len(solutions) >= max_solutions) or (elapsed_time(start_time) > max_time): break attempt_time = (max_time - elapsed_time(start_time)) path = solve_fn(q1, q2, distance_fn, sample_fn, extend_fn, collision_fn, max_time=attempt_time, **kwargs) if path is None: continue if smooth is not None: path = smooth_path(path, extend_fn, collision_fn, iterations=smooth) solutions.append(path) if compute_path_cost(path, distance_fn) < success_cost: break solutions = sorted(solutions, key=lambda path: compute_path_cost(path, distance_fn)) print('Solutions ({}): {} | Time: {:.3f}'.format(len(solutions), [(len(path), round(compute_path_cost( path, distance_fn), 3)) for path in solutions], elapsed_time(start_time))) return solutions
1,994
Python
38.117646
106
0.614845