kostas-p's picture
Upload folder using huggingface_hub
582dd5b verified
---
license: apache-2.0
task_categories:
- text-generation
- question-answering
language:
- en
tags:
- code
- api-documentation
- dataframe
- semantic-ai
- fenic
pretty_name: Fenic 0.4.0 API Documentation
size_categories:
- 1K<n<10K
configs:
- config_name: default
data_files:
- split: api
path: "api_df.parquet"
- split: hierarchy
path: "hierarchy_df.parquet"
- split: summary
path: "fenic_summary.parquet"
---
# Fenic 0.4.0 API Documentation Dataset
## Dataset Description
This dataset contains comprehensive API documentation for [Fenic 0.4.0](https://github.com/typedef-ai/fenic), a PySpark-inspired DataFrame framework designed for building production AI and agentic applications. The dataset provides structured information about all public and private API elements, including modules, classes, functions, methods, and attributes.
### Dataset Summary
[Fenic](https://github.com/typedef-ai/fenic) is a DataFrame framework that combines traditional data processing capabilities with semantic/AI operations. It provides:
- A familiar DataFrame API similar to PySpark
- Semantic functions powered by LLMs (map, extract, classify, etc.)
- Integration with multiple AI model providers (Anthropic, OpenAI, Google, Cohere)
- Advanced features like semantic joins and clustering
The dataset captures the complete API surface of Fenic 0.4.0, making it valuable for:
- Code generation and understanding
- API documentation analysis
- Framework comparison studies
- Training models on DataFrame/data processing APIs
## Dataset Structure
The dataset consists of three Parquet files:
### 1. `api_df.parquet` (2,522 rows × 16 columns)
Main API documentation with detailed information about each API element.
**Columns:**
- `type`: Element type (module, class, function, method, attribute)
- `name`: Element name
- `qualified_name`: Fully qualified name (e.g., `fenic.api.dataframe.DataFrame`)
- `docstring`: Documentation string
- `filepath`: Source file path
- `is_public`: Whether the element is public
- `is_private`: Whether the element is private
- `line_start`: Starting line number in source
- `line_end`: Ending line number in source
- `annotation`: Type annotation
- `returns`: Return type annotation
- `parameters`: Function/method parameters
- `parent_class`: Parent class for methods
- `value`: Value for attributes
- `bases`: Base classes for class definitions
- `api_element_summary`: Formatted summary of the element
### 2. `hierarchy_df.parquet` (2,522 rows × 18 columns)
Same as api_df but with additional hierarchy information.
**Additional Columns:**
- `path_parts`: List showing the hierarchical path
- `depth`: Depth in the API hierarchy
### 3. `fenic_summary.parquet` (1 row × 1 column)
High-level project summary.
**Columns:**
- `project_summary`: Comprehensive description of the Fenic framework
## Key API Components
### Core DataFrame Operations
- Standard operations: `select`, `filter`, `join`, `group_by`, `agg`, `sort`
- Data conversion: `to_pandas()`, `to_polars()`, `to_arrow()`, `to_pydict()`, `to_pylist()`
- Lazy evaluation with logical query plans
### Semantic Functions (`fenic.api.functions.semantic`)
- `map`: Apply generation prompts to columns
- `extract`: Extract structured data using Pydantic models
- `classify`: Text classification
- `predicate`: Boolean filtering with natural language
- `reduce`: Aggregate strings using natural language instructions
- `analyze_sentiment`: Sentiment analysis
- `summarize`: Text summarization
- `embed`: Generate embeddings
### Advanced Features
- Semantic joins and clustering
- Model client integrations (Anthropic, OpenAI, Google, Cohere)
- Query optimization and execution planning
- MCP (Model-based Code Production) tool generation
## Usage
### Loading with Fenic (Recommended)
[Fenic](https://github.com/typedef-ai/fenic) natively supports loading datasets directly from Hugging Face using the `hf://` scheme:
```python
import fenic as fc
# Create a Fenic session
session = fc.Session.get_or_create(
fc.SessionConfig(app_name="fenic_api_analysis")
)
# Load the API documentation split
api_df = session.read.parquet("hf://datasets/YOUR_USERNAME/fenic-api-0.4.0/api_df.parquet")
# Or load all splits at once
df = session.read.parquet("hf://datasets/YOUR_USERNAME/fenic-api-0.4.0/*.parquet")
# Explore the dataset
api_df.show(5)
print(f"Total API elements: {api_df.count()}")
print(f"Schema: {api_df.schema}")
# Example: Find all public DataFrame methods
dataframe_methods = api_df.filter(
fc.col("qualified_name").contains("fenic.api.dataframe.DataFrame.") &
(fc.col("type") == "method") &
(fc.col("is_public") == True)
).select("name", "docstring", "parameters", "returns")
dataframe_methods.show(10)
# Example: Find all semantic functions
semantic_functions = api_df.filter(
fc.col("qualified_name").contains("fenic.api.functions.semantic.") &
(fc.col("type") == "function")
).select("name", "qualified_name", "docstring")
semantic_functions.show()
# Get statistics about the codebase
stats = api_df.group_by("type").agg(
fc.count("*").alias("count")
).order_by(fc.col("count").desc())
print("\nAPI Element Statistics:")
stats.show()
# Search for specific functionality
embedding_apis = api_df.filter(
fc.col("name").contains("embed") |
fc.col("docstring").contains("embedding")
).select("type", "qualified_name", "docstring")
print(f"\nFound {embedding_apis.count()} embedding-related APIs")
embedding_apis.show(5)
```
### Loading with Pandas
```python
import pandas as pd
from datasets import load_dataset
# Option 1: Using Hugging Face datasets library
dataset = load_dataset("YOUR_USERNAME/fenic-api-0.4.0")
# Access different splits and convert to pandas
api_df = dataset['api'].to_pandas()
hierarchy_df = dataset['hierarchy'].to_pandas()
summary_df = dataset['summary'].to_pandas()
# Option 2: Direct parquet loading
api_df = pd.read_parquet('hf://datasets/YOUR_USERNAME/fenic-api-0.4.0/api_df.parquet')
hierarchy_df = pd.read_parquet('hf://datasets/YOUR_USERNAME/fenic-api-0.4.0/hierarchy_df.parquet')
summary_df = pd.read_parquet('hf://datasets/YOUR_USERNAME/fenic-api-0.4.0/fenic_summary.parquet')
# Example: Find all public DataFrame methods
dataframe_methods = api_df[
(api_df['qualified_name'].str.startswith('fenic.api.dataframe.DataFrame.')) &
(api_df['type'] == 'method') &
(api_df['is_public'] == True)
]
print(f"Found {len(dataframe_methods)} DataFrame methods")
print(dataframe_methods[['name', 'docstring']].head(10))
# Example: Analyze module structure
modules = api_df[api_df['type'] == 'module']
print(f"\nTotal modules: {len(modules)}")
print("Top-level modules:")
print(modules[modules['qualified_name'].str.count('\.') == 1]['name'].unique())
# Example: Find all semantic functions
semantic_functions = api_df[
(api_df['qualified_name'].str.startswith('fenic.api.functions.semantic.')) &
(api_df['type'] == 'function')
]
print(f"\nSemantic functions available:")
for _, func in semantic_functions.iterrows():
doc_first_line = func['docstring'].split('\n')[0] if pd.notna(func['docstring']) else "No description"
print(f" • {func['name']}: {doc_first_line}")
```
### Authentication for Private Datasets
If you're using a private dataset, set your Hugging Face token:
```bash
export HF_TOKEN=your_token_here
```
Or in Python:
```python
import os
os.environ['HF_TOKEN'] = 'your_token_here'
```
## Dataset Creation
This dataset was automatically extracted from the Fenic 0.4.0 codebase using API documentation parsing tools. It captures the complete public and private API surface, including:
- All modules and submodules
- Classes with their methods and attributes
- Functions with their signatures
- Complete docstrings and type annotations
## Considerations for Using the Data
### Use Cases
- Training code generation models on DataFrame APIs
- Building API documentation search/retrieval systems
- Analyzing API design patterns in data processing frameworks
- Creating intelligent code completion for Fenic
### Limitations
- This dataset represents a snapshot of Fenic 0.4.0 and may not reflect newer versions
- Some internal/private APIs may change between versions
- Generated protobuf files are included but may be less useful for learning
## Additional Information
### Project Links
- **Fenic Framework**: [https://github.com/typedef-ai/fenic](https://github.com/typedef-ai/fenic)
- **Documentation**: See the official repository for the latest documentation
- **Issues**: Report issues with the dataset or framework on the GitHub repository
### Licensing
This dataset is released under the Apache 2.0 license, consistent with the Fenic framework's licensing.
### Citation
If you use this dataset, please cite:
```
@dataset{fenic_api_2025,
title={Fenic 0.4.0 API Documentation Dataset},
year={2025},
publisher={Hugging Face},
license={Apache-2.0}
}
```
### Maintenance
This dataset is a static snapshot of Fenic 0.4.0. For the latest API documentation and updates, refer to the official [Fenic repository](https://github.com/typedef-ai/fenic).