type
stringclasses
5 values
name
stringlengths
1
55
qualified_name
stringlengths
5
143
docstring
stringlengths
0
3.59k
filepath
stringclasses
180 values
is_public
bool
2 classes
is_private
bool
2 classes
line_start
float64
0
1.54k
line_end
float64
0
1.56k
annotation
stringclasses
8 values
returns
stringclasses
236 values
parameters
listlengths
0
74
parent_class
stringclasses
298 values
value
stringclasses
112 values
bases
listlengths
0
3
api_element_summary
stringlengths
199
23k
method
check_and_consume_rate_limit
fenic._inference.rate_limit_strategy.UnifiedTokenRateLimitStrategy.check_and_consume_rate_limit
Checks and consumes rate limits for both requests and total tokens. This implementation uses a single token bucket for both input and output tokens, enforcing the total token limit across all token types. Args: token_estimate: A TokenEstimate object containing the estimated input, output, and total tokens for the request. Returns: bool: True if there was enough capacity and it was consumed, False otherwise.
site-packages/fenic/_inference/rate_limit_strategy.py
true
false
126
151
null
bool
[ "self", "token_estimate" ]
UnifiedTokenRateLimitStrategy
null
null
Type: method Member Name: check_and_consume_rate_limit Qualified Name: fenic._inference.rate_limit_strategy.UnifiedTokenRateLimitStrategy.check_and_consume_rate_limit Docstring: Checks and consumes rate limits for both requests and total tokens. This implementation uses a single token bucket for both input and output tokens, enforcing the total token limit across all token types. Args: token_estimate: A TokenEstimate object containing the estimated input, output, and total tokens for the request. Returns: bool: True if there was enough capacity and it was consumed, False otherwise. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "token_estimate"] Returns: bool Parent Class: UnifiedTokenRateLimitStrategy
method
context_tokens_per_minute
fenic._inference.rate_limit_strategy.UnifiedTokenRateLimitStrategy.context_tokens_per_minute
Returns the total token rate limit per minute. Returns: int: The total number of tokens allowed per minute (tpm).
site-packages/fenic/_inference/rate_limit_strategy.py
true
false
153
159
null
int
[ "self" ]
UnifiedTokenRateLimitStrategy
null
null
Type: method Member Name: context_tokens_per_minute Qualified Name: fenic._inference.rate_limit_strategy.UnifiedTokenRateLimitStrategy.context_tokens_per_minute Docstring: Returns the total token rate limit per minute. Returns: int: The total number of tokens allowed per minute (tpm). Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: int Parent Class: UnifiedTokenRateLimitStrategy
method
__str__
fenic._inference.rate_limit_strategy.UnifiedTokenRateLimitStrategy.__str__
Returns a string representation of the rate limit strategy. Returns: str: A string showing the RPM and TPM limits.
site-packages/fenic/_inference/rate_limit_strategy.py
true
false
161
167
null
null
[ "self" ]
UnifiedTokenRateLimitStrategy
null
null
Type: method Member Name: __str__ Qualified Name: fenic._inference.rate_limit_strategy.UnifiedTokenRateLimitStrategy.__str__ Docstring: Returns a string representation of the rate limit strategy. Returns: str: A string showing the RPM and TPM limits. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: UnifiedTokenRateLimitStrategy
class
SeparatedTokenRateLimitStrategy
fenic._inference.rate_limit_strategy.SeparatedTokenRateLimitStrategy
Rate limiting strategy that uses separate token buckets for input and output tokens. This strategy enforces both a request rate limit (RPM) and separate token rate limits for input (input_tpm) and output (output_tpm) tokens. Attributes: input_tpm: Input tokens per minute limit. Must be greater than 0. output_tpm: Output tokens per minute limit. Must be greater than 0. input_tokens_bucket: Token bucket for tracking and limiting input token usage. output_tokens_bucket: Token bucket for tracking and limiting output token usage.
site-packages/fenic/_inference/rate_limit_strategy.py
true
false
170
240
null
null
null
null
null
[ "RateLimitStrategy" ]
Type: class Member Name: SeparatedTokenRateLimitStrategy Qualified Name: fenic._inference.rate_limit_strategy.SeparatedTokenRateLimitStrategy Docstring: Rate limiting strategy that uses separate token buckets for input and output tokens. This strategy enforces both a request rate limit (RPM) and separate token rate limits for input (input_tpm) and output (output_tpm) tokens. Attributes: input_tpm: Input tokens per minute limit. Must be greater than 0. output_tpm: Output tokens per minute limit. Must be greater than 0. input_tokens_bucket: Token bucket for tracking and limiting input token usage. output_tokens_bucket: Token bucket for tracking and limiting output token usage. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic._inference.rate_limit_strategy.SeparatedTokenRateLimitStrategy.__init__
null
site-packages/fenic/_inference/rate_limit_strategy.py
true
false
182
187
null
null
[ "self", "rpm", "input_tpm", "output_tpm" ]
SeparatedTokenRateLimitStrategy
null
null
Type: method Member Name: __init__ Qualified Name: fenic._inference.rate_limit_strategy.SeparatedTokenRateLimitStrategy.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "rpm", "input_tpm", "output_tpm"] Returns: none Parent Class: SeparatedTokenRateLimitStrategy
method
backoff
fenic._inference.rate_limit_strategy.SeparatedTokenRateLimitStrategy.backoff
Backoff the request/token rate limit bucket.
site-packages/fenic/_inference/rate_limit_strategy.py
true
false
189
194
null
int
[ "self", "curr_time" ]
SeparatedTokenRateLimitStrategy
null
null
Type: method Member Name: backoff Qualified Name: fenic._inference.rate_limit_strategy.SeparatedTokenRateLimitStrategy.backoff Docstring: Backoff the request/token rate limit bucket. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "curr_time"] Returns: int Parent Class: SeparatedTokenRateLimitStrategy
method
check_and_consume_rate_limit
fenic._inference.rate_limit_strategy.SeparatedTokenRateLimitStrategy.check_and_consume_rate_limit
Checks and consumes rate limits for requests, input tokens, and output tokens. This implementation uses separate token buckets for input and output tokens, enforcing separate limits for each token type. Args: token_estimate: A TokenEstimate object containing the estimated input, output, and total tokens for the request. Returns: bool: True if there was enough capacity and it was consumed, False otherwise.
site-packages/fenic/_inference/rate_limit_strategy.py
true
false
196
224
null
bool
[ "self", "token_estimate" ]
SeparatedTokenRateLimitStrategy
null
null
Type: method Member Name: check_and_consume_rate_limit Qualified Name: fenic._inference.rate_limit_strategy.SeparatedTokenRateLimitStrategy.check_and_consume_rate_limit Docstring: Checks and consumes rate limits for requests, input tokens, and output tokens. This implementation uses separate token buckets for input and output tokens, enforcing separate limits for each token type. Args: token_estimate: A TokenEstimate object containing the estimated input, output, and total tokens for the request. Returns: bool: True if there was enough capacity and it was consumed, False otherwise. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "token_estimate"] Returns: bool Parent Class: SeparatedTokenRateLimitStrategy
method
context_tokens_per_minute
fenic._inference.rate_limit_strategy.SeparatedTokenRateLimitStrategy.context_tokens_per_minute
Returns the total token rate limit per minute. Returns: int: The sum of input and output tokens allowed per minute.
site-packages/fenic/_inference/rate_limit_strategy.py
true
false
226
232
null
int
[ "self" ]
SeparatedTokenRateLimitStrategy
null
null
Type: method Member Name: context_tokens_per_minute Qualified Name: fenic._inference.rate_limit_strategy.SeparatedTokenRateLimitStrategy.context_tokens_per_minute Docstring: Returns the total token rate limit per minute. Returns: int: The sum of input and output tokens allowed per minute. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: int Parent Class: SeparatedTokenRateLimitStrategy
method
__str__
fenic._inference.rate_limit_strategy.SeparatedTokenRateLimitStrategy.__str__
Returns a string representation of the rate limit strategy. Returns: str: A string showing the RPM, input TPM, and output TPM limits.
site-packages/fenic/_inference/rate_limit_strategy.py
true
false
234
240
null
null
[ "self" ]
SeparatedTokenRateLimitStrategy
null
null
Type: method Member Name: __str__ Qualified Name: fenic._inference.rate_limit_strategy.SeparatedTokenRateLimitStrategy.__str__ Docstring: Returns a string representation of the rate limit strategy. Returns: str: A string showing the RPM, input TPM, and output TPM limits. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: SeparatedTokenRateLimitStrategy
module
cohere
fenic._inference.cohere
null
site-packages/fenic/_inference/cohere/__init__.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: cohere Qualified Name: fenic._inference.cohere Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
module
cohere_provider
fenic._inference.cohere.cohere_provider
Cohere model provider implementation.
site-packages/fenic/_inference/cohere/cohere_provider.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: cohere_provider Qualified Name: fenic._inference.cohere.cohere_provider Docstring: Cohere model provider implementation. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
logger
fenic._inference.cohere.cohere_provider.logger
null
site-packages/fenic/_inference/cohere/cohere_provider.py
true
false
10
10
null
null
null
null
logging.getLogger(__name__)
null
Type: attribute Member Name: logger Qualified Name: fenic._inference.cohere.cohere_provider.logger Docstring: none Value: logging.getLogger(__name__) Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
CohereModelProvider
fenic._inference.cohere.cohere_provider.CohereModelProvider
Cohere implementation of ModelProvider.
site-packages/fenic/_inference/cohere/cohere_provider.py
true
false
13
38
null
null
null
null
null
[ "ModelProviderClass" ]
Type: class Member Name: CohereModelProvider Qualified Name: fenic._inference.cohere.cohere_provider.CohereModelProvider Docstring: Cohere implementation of ModelProvider. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
get_api_key
fenic._inference.cohere.cohere_provider.CohereModelProvider.get_api_key
Get the Cohere API key.
site-packages/fenic/_inference/cohere/cohere_provider.py
true
false
20
24
null
str
[ "self" ]
CohereModelProvider
null
null
Type: method Member Name: get_api_key Qualified Name: fenic._inference.cohere.cohere_provider.CohereModelProvider.get_api_key Docstring: Get the Cohere API key. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: str Parent Class: CohereModelProvider
method
create_client
fenic._inference.cohere.cohere_provider.CohereModelProvider.create_client
Create a Cohere client instance.
site-packages/fenic/_inference/cohere/cohere_provider.py
true
false
26
28
null
null
[ "self" ]
CohereModelProvider
null
null
Type: method Member Name: create_client Qualified Name: fenic._inference.cohere.cohere_provider.CohereModelProvider.create_client Docstring: Create a Cohere client instance. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: CohereModelProvider
method
create_aio_client
fenic._inference.cohere.cohere_provider.CohereModelProvider.create_aio_client
Create a Cohere async client instance.
site-packages/fenic/_inference/cohere/cohere_provider.py
true
false
30
32
null
null
[ "self" ]
CohereModelProvider
null
null
Type: method Member Name: create_aio_client Qualified Name: fenic._inference.cohere.cohere_provider.CohereModelProvider.create_aio_client Docstring: Create a Cohere async client instance. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: CohereModelProvider
method
validate_api_key
fenic._inference.cohere.cohere_provider.CohereModelProvider.validate_api_key
Validate Cohere API key by making a minimal API call.
site-packages/fenic/_inference/cohere/cohere_provider.py
true
false
34
38
null
None
[ "self" ]
CohereModelProvider
null
null
Type: method Member Name: validate_api_key Qualified Name: fenic._inference.cohere.cohere_provider.CohereModelProvider.validate_api_key Docstring: Validate Cohere API key by making a minimal API call. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: None Parent Class: CohereModelProvider
module
cohere_profile_manager
fenic._inference.cohere.cohere_profile_manager
null
site-packages/fenic/_inference/cohere/cohere_profile_manager.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: cohere_profile_manager Qualified Name: fenic._inference.cohere.cohere_profile_manager Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
CohereEmbeddingsProfileConfiguration
fenic._inference.cohere.cohere_profile_manager.CohereEmbeddingsProfileConfiguration
Configuration for Cohere embeddings model profiles. Attributes: output_dimensionality: The desired output dimensionality for embeddings input_type: The type of input text (search_query, search_document, classification, clustering) Note: Cohere supports other embedding types, but we only support float embeddings.
site-packages/fenic/_inference/cohere/cohere_profile_manager.py
true
false
12
24
null
null
null
null
null
[ "BaseProfileConfiguration" ]
Type: class Member Name: CohereEmbeddingsProfileConfiguration Qualified Name: fenic._inference.cohere.cohere_profile_manager.CohereEmbeddingsProfileConfiguration Docstring: Configuration for Cohere embeddings model profiles. Attributes: output_dimensionality: The desired output dimensionality for embeddings input_type: The type of input text (search_query, search_document, classification, clustering) Note: Cohere supports other embedding types, but we only support float embeddings. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic._inference.cohere.cohere_profile_manager.CohereEmbeddingsProfileConfiguration.__init__
null
site-packages/fenic/_inference/cohere/cohere_profile_manager.py
true
false
0
0
null
None
[ "self", "output_dimensionality", "input_type" ]
CohereEmbeddingsProfileConfiguration
null
null
Type: method Member Name: __init__ Qualified Name: fenic._inference.cohere.cohere_profile_manager.CohereEmbeddingsProfileConfiguration.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "output_dimensionality", "input_type"] Returns: None Parent Class: CohereEmbeddingsProfileConfiguration
class
CohereEmbeddingsProfileManager
fenic._inference.cohere.cohere_profile_manager.CohereEmbeddingsProfileManager
Manages Cohere-specific profile configurations for embeddings.
site-packages/fenic/_inference/cohere/cohere_profile_manager.py
true
false
26
61
null
null
null
null
null
[ "ProfileManager[ResolvedCohereModelProfile, CohereEmbeddingsProfileConfiguration]" ]
Type: class Member Name: CohereEmbeddingsProfileManager Qualified Name: fenic._inference.cohere.cohere_profile_manager.CohereEmbeddingsProfileManager Docstring: Manages Cohere-specific profile configurations for embeddings. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic._inference.cohere.cohere_profile_manager.CohereEmbeddingsProfileManager.__init__
null
site-packages/fenic/_inference/cohere/cohere_profile_manager.py
true
false
29
36
null
null
[ "self", "model_parameters", "profile_configurations", "default_profile_name" ]
CohereEmbeddingsProfileManager
null
null
Type: method Member Name: __init__ Qualified Name: fenic._inference.cohere.cohere_profile_manager.CohereEmbeddingsProfileManager.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "model_parameters", "profile_configurations", "default_profile_name"] Returns: none Parent Class: CohereEmbeddingsProfileManager
method
_process_profile
fenic._inference.cohere.cohere_profile_manager.CohereEmbeddingsProfileManager._process_profile
Process Cohere profile configuration. Args: name: Name of the profile profile: The profile configuration to process Returns: Processed Cohere-specific profile configuration Raises: ConfigurationError: If dimensionality is invalid
site-packages/fenic/_inference/cohere/cohere_profile_manager.py
false
true
38
57
null
CohereEmbeddingsProfileConfiguration
[ "self", "profile" ]
CohereEmbeddingsProfileManager
null
null
Type: method Member Name: _process_profile Qualified Name: fenic._inference.cohere.cohere_profile_manager.CohereEmbeddingsProfileManager._process_profile Docstring: Process Cohere profile configuration. Args: name: Name of the profile profile: The profile configuration to process Returns: Processed Cohere-specific profile configuration Raises: ConfigurationError: If dimensionality is invalid Value: none Annotation: none is Public? : false is Private? : true Parameters: ["self", "profile"] Returns: CohereEmbeddingsProfileConfiguration Parent Class: CohereEmbeddingsProfileManager
method
get_default_profile
fenic._inference.cohere.cohere_profile_manager.CohereEmbeddingsProfileManager.get_default_profile
Get default Cohere configuration.
site-packages/fenic/_inference/cohere/cohere_profile_manager.py
true
false
59
61
null
CohereEmbeddingsProfileConfiguration
[ "self" ]
CohereEmbeddingsProfileManager
null
null
Type: method Member Name: get_default_profile Qualified Name: fenic._inference.cohere.cohere_profile_manager.CohereEmbeddingsProfileManager.get_default_profile Docstring: Get default Cohere configuration. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: CohereEmbeddingsProfileConfiguration Parent Class: CohereEmbeddingsProfileManager
module
cohere_batch_embeddings_client
fenic._inference.cohere.cohere_batch_embeddings_client
null
site-packages/fenic/_inference/cohere/cohere_batch_embeddings_client.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: cohere_batch_embeddings_client Qualified Name: fenic._inference.cohere.cohere_batch_embeddings_client Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
logger
fenic._inference.cohere.cohere_batch_embeddings_client.logger
null
site-packages/fenic/_inference/cohere/cohere_batch_embeddings_client.py
true
false
26
26
null
null
null
null
logging.getLogger(__name__)
null
Type: attribute Member Name: logger Qualified Name: fenic._inference.cohere.cohere_batch_embeddings_client.logger Docstring: none Value: logging.getLogger(__name__) Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
CohereBatchEmbeddingsClient
fenic._inference.cohere.cohere_batch_embeddings_client.CohereBatchEmbeddingsClient
Client for making batch requests to Cohere's embeddings API.
site-packages/fenic/_inference/cohere/cohere_batch_embeddings_client.py
true
false
29
192
null
null
null
null
null
[ "ModelClient[FenicEmbeddingsRequest, List[float]]" ]
Type: class Member Name: CohereBatchEmbeddingsClient Qualified Name: fenic._inference.cohere.cohere_batch_embeddings_client.CohereBatchEmbeddingsClient Docstring: Client for making batch requests to Cohere's embeddings API. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic._inference.cohere.cohere_batch_embeddings_client.CohereBatchEmbeddingsClient.__init__
Initialize the Cohere batch embeddings client. Args: rate_limit_strategy: Strategy for handling rate limits model: The model to use queue_size: Size of the request queue max_backoffs: Maximum number of backoff attempts preset_configurations: Dictionary of preset configurations default_preset_name: Default preset to use when none specified
site-packages/fenic/_inference/cohere/cohere_batch_embeddings_client.py
true
false
32
73
null
null
[ "self", "rate_limit_strategy", "model", "queue_size", "max_backoffs", "profile_configurations", "default_profile_name" ]
CohereBatchEmbeddingsClient
null
null
Type: method Member Name: __init__ Qualified Name: fenic._inference.cohere.cohere_batch_embeddings_client.CohereBatchEmbeddingsClient.__init__ Docstring: Initialize the Cohere batch embeddings client. Args: rate_limit_strategy: Strategy for handling rate limits model: The model to use queue_size: Size of the request queue max_backoffs: Maximum number of backoff attempts preset_configurations: Dictionary of preset configurations default_preset_name: Default preset to use when none specified Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "rate_limit_strategy", "model", "queue_size", "max_backoffs", "profile_configurations", "default_profile_name"] Returns: none Parent Class: CohereBatchEmbeddingsClient
method
make_single_request
fenic._inference.cohere.cohere_batch_embeddings_client.CohereBatchEmbeddingsClient.make_single_request
Make a single request to the Cohere embeddings API. Args: request: The embedding request to process Returns: List of embedding floats, or an exception wrapper
site-packages/fenic/_inference/cohere/cohere_batch_embeddings_client.py
true
false
75
138
null
Union[None, List[float], TransientException, FatalException]
[ "self", "request" ]
CohereBatchEmbeddingsClient
null
null
Type: method Member Name: make_single_request Qualified Name: fenic._inference.cohere.cohere_batch_embeddings_client.CohereBatchEmbeddingsClient.make_single_request Docstring: Make a single request to the Cohere embeddings API. Args: request: The embedding request to process Returns: List of embedding floats, or an exception wrapper Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "request"] Returns: Union[None, List[float], TransientException, FatalException] Parent Class: CohereBatchEmbeddingsClient
method
get_request_key
fenic._inference.cohere.cohere_batch_embeddings_client.CohereBatchEmbeddingsClient.get_request_key
Generate a unique key for request deduplication. Args: request: The request to generate a key for Returns: A unique key for the request
site-packages/fenic/_inference/cohere/cohere_batch_embeddings_client.py
true
false
140
158
null
str
[ "self", "request" ]
CohereBatchEmbeddingsClient
null
null
Type: method Member Name: get_request_key Qualified Name: fenic._inference.cohere.cohere_batch_embeddings_client.CohereBatchEmbeddingsClient.get_request_key Docstring: Generate a unique key for request deduplication. Args: request: The request to generate a key for Returns: A unique key for the request Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "request"] Returns: str Parent Class: CohereBatchEmbeddingsClient
method
estimate_tokens_for_request
fenic._inference.cohere.cohere_batch_embeddings_client.CohereBatchEmbeddingsClient.estimate_tokens_for_request
Estimate the number of tokens for a request. Args: request: The request to estimate tokens for Returns: TokenEstimate: The estimated token usage
site-packages/fenic/_inference/cohere/cohere_batch_embeddings_client.py
true
false
160
172
null
TokenEstimate
[ "self", "request" ]
CohereBatchEmbeddingsClient
null
null
Type: method Member Name: estimate_tokens_for_request Qualified Name: fenic._inference.cohere.cohere_batch_embeddings_client.CohereBatchEmbeddingsClient.estimate_tokens_for_request Docstring: Estimate the number of tokens for a request. Args: request: The request to estimate tokens for Returns: TokenEstimate: The estimated token usage Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "request"] Returns: TokenEstimate Parent Class: CohereBatchEmbeddingsClient
method
_get_max_output_tokens
fenic._inference.cohere.cohere_batch_embeddings_client.CohereBatchEmbeddingsClient._get_max_output_tokens
Get maximum output tokens (always 0 for embeddings). Returns: 0 since embeddings don't produce text tokens
site-packages/fenic/_inference/cohere/cohere_batch_embeddings_client.py
false
true
174
180
null
int
[ "self", "request" ]
CohereBatchEmbeddingsClient
null
null
Type: method Member Name: _get_max_output_tokens Qualified Name: fenic._inference.cohere.cohere_batch_embeddings_client.CohereBatchEmbeddingsClient._get_max_output_tokens Docstring: Get maximum output tokens (always 0 for embeddings). Returns: 0 since embeddings don't produce text tokens Value: none Annotation: none is Public? : false is Private? : true Parameters: ["self", "request"] Returns: int Parent Class: CohereBatchEmbeddingsClient
method
reset_metrics
fenic._inference.cohere.cohere_batch_embeddings_client.CohereBatchEmbeddingsClient.reset_metrics
Reset all metrics to their initial values.
site-packages/fenic/_inference/cohere/cohere_batch_embeddings_client.py
true
false
182
184
null
null
[ "self" ]
CohereBatchEmbeddingsClient
null
null
Type: method Member Name: reset_metrics Qualified Name: fenic._inference.cohere.cohere_batch_embeddings_client.CohereBatchEmbeddingsClient.reset_metrics Docstring: Reset all metrics to their initial values. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: CohereBatchEmbeddingsClient
method
get_metrics
fenic._inference.cohere.cohere_batch_embeddings_client.CohereBatchEmbeddingsClient.get_metrics
Get the current metrics. Returns: The current metrics
site-packages/fenic/_inference/cohere/cohere_batch_embeddings_client.py
true
false
186
192
null
RMMetrics
[ "self" ]
CohereBatchEmbeddingsClient
null
null
Type: method Member Name: get_metrics Qualified Name: fenic._inference.cohere.cohere_batch_embeddings_client.CohereBatchEmbeddingsClient.get_metrics Docstring: Get the current metrics. Returns: The current metrics Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: RMMetrics Parent Class: CohereBatchEmbeddingsClient
module
google
fenic._inference.google
null
site-packages/fenic/_inference/google/__init__.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: google Qualified Name: fenic._inference.google Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
module
google_profile_manager
fenic._inference.google.google_profile_manager
null
site-packages/fenic/_inference/google/google_profile_manager.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: google_profile_manager Qualified Name: fenic._inference.google.google_profile_manager Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
GoogleCompletionsProfileConfig
fenic._inference.google.google_profile_manager.GoogleCompletionsProfileConfig
Configuration for Google Gemini model profiles. Attributes: thinking_enabled: Whether thinking/reasoning is enabled for this profile thinking_token_budget: Token budget allocated for thinking/reasoning additional_generation_config: Additional Google-specific generation configuration
site-packages/fenic/_inference/google/google_profile_manager.py
true
false
18
29
null
null
null
null
null
[ "BaseProfileConfiguration" ]
Type: class Member Name: GoogleCompletionsProfileConfig Qualified Name: fenic._inference.google.google_profile_manager.GoogleCompletionsProfileConfig Docstring: Configuration for Google Gemini model profiles. Attributes: thinking_enabled: Whether thinking/reasoning is enabled for this profile thinking_token_budget: Token budget allocated for thinking/reasoning additional_generation_config: Additional Google-specific generation configuration Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic._inference.google.google_profile_manager.GoogleCompletionsProfileConfig.__init__
null
site-packages/fenic/_inference/google/google_profile_manager.py
true
false
0
0
null
None
[ "self", "thinking_enabled", "thinking_token_budget", "additional_generation_config" ]
GoogleCompletionsProfileConfig
null
null
Type: method Member Name: __init__ Qualified Name: fenic._inference.google.google_profile_manager.GoogleCompletionsProfileConfig.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "thinking_enabled", "thinking_token_budget", "additional_generation_config"] Returns: None Parent Class: GoogleCompletionsProfileConfig
class
GoogleEmbeddingsProfileConfig
fenic._inference.google.google_profile_manager.GoogleEmbeddingsProfileConfig
Configuration for Google Gemini embeddings model profiles.
site-packages/fenic/_inference/google/google_profile_manager.py
true
false
31
34
null
null
null
null
null
[ "BaseProfileConfiguration" ]
Type: class Member Name: GoogleEmbeddingsProfileConfig Qualified Name: fenic._inference.google.google_profile_manager.GoogleEmbeddingsProfileConfig Docstring: Configuration for Google Gemini embeddings model profiles. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic._inference.google.google_profile_manager.GoogleEmbeddingsProfileConfig.__init__
null
site-packages/fenic/_inference/google/google_profile_manager.py
true
false
0
0
null
None
[ "self", "additional_embedding_config" ]
GoogleEmbeddingsProfileConfig
null
null
Type: method Member Name: __init__ Qualified Name: fenic._inference.google.google_profile_manager.GoogleEmbeddingsProfileConfig.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "additional_embedding_config"] Returns: None Parent Class: GoogleEmbeddingsProfileConfig
class
GoogleEmbeddingsProfileManager
fenic._inference.google.google_profile_manager.GoogleEmbeddingsProfileManager
null
site-packages/fenic/_inference/google/google_profile_manager.py
true
false
36
61
null
null
null
null
null
[ "ProfileManager[ResolvedGoogleModelProfile, GoogleEmbeddingsProfileConfig]" ]
Type: class Member Name: GoogleEmbeddingsProfileManager Qualified Name: fenic._inference.google.google_profile_manager.GoogleEmbeddingsProfileManager Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic._inference.google.google_profile_manager.GoogleEmbeddingsProfileManager.__init__
null
site-packages/fenic/_inference/google/google_profile_manager.py
true
false
38
45
null
null
[ "self", "model_parameters", "profiles", "default_profile_name" ]
GoogleEmbeddingsProfileManager
null
null
Type: method Member Name: __init__ Qualified Name: fenic._inference.google.google_profile_manager.GoogleEmbeddingsProfileManager.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "model_parameters", "profiles", "default_profile_name"] Returns: none Parent Class: GoogleEmbeddingsProfileManager
method
_process_profile
fenic._inference.google.google_profile_manager.GoogleEmbeddingsProfileManager._process_profile
null
site-packages/fenic/_inference/google/google_profile_manager.py
false
true
48
58
null
GoogleEmbeddingsProfileConfig
[ "self", "profile" ]
GoogleEmbeddingsProfileManager
null
null
Type: method Member Name: _process_profile Qualified Name: fenic._inference.google.google_profile_manager.GoogleEmbeddingsProfileManager._process_profile Docstring: none Value: none Annotation: none is Public? : false is Private? : true Parameters: ["self", "profile"] Returns: GoogleEmbeddingsProfileConfig Parent Class: GoogleEmbeddingsProfileManager
method
get_default_profile
fenic._inference.google.google_profile_manager.GoogleEmbeddingsProfileManager.get_default_profile
null
site-packages/fenic/_inference/google/google_profile_manager.py
true
false
60
61
null
GoogleEmbeddingsProfileConfig
[ "self" ]
GoogleEmbeddingsProfileManager
null
null
Type: method Member Name: get_default_profile Qualified Name: fenic._inference.google.google_profile_manager.GoogleEmbeddingsProfileManager.get_default_profile Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: GoogleEmbeddingsProfileConfig Parent Class: GoogleEmbeddingsProfileManager
class
GoogleCompletionsProfileManager
fenic._inference.google.google_profile_manager.GoogleCompletionsProfileManager
Manages Google-specific profile configurations. This class handles the conversion of Fenic profile configurations to Google Gemini-specific configurations, including thinking/reasoning settings.
site-packages/fenic/_inference/google/google_profile_manager.py
true
false
65
151
null
null
null
null
null
[ "ProfileManager[ResolvedGoogleModelProfile, GoogleCompletionsProfileConfig]" ]
Type: class Member Name: GoogleCompletionsProfileManager Qualified Name: fenic._inference.google.google_profile_manager.GoogleCompletionsProfileManager Docstring: Manages Google-specific profile configurations. This class handles the conversion of Fenic profile configurations to Google Gemini-specific configurations, including thinking/reasoning settings. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic._inference.google.google_profile_manager.GoogleCompletionsProfileManager.__init__
Initialize the Google profile configuration manager. Args: model_parameters: Parameters for the completion model profile_configurations: Dictionary of profile configurations default_profile_name: Name of the default profile to use
site-packages/fenic/_inference/google/google_profile_manager.py
true
false
72
86
null
null
[ "self", "model_parameters", "profile_configurations", "default_profile_name" ]
GoogleCompletionsProfileManager
null
null
Type: method Member Name: __init__ Qualified Name: fenic._inference.google.google_profile_manager.GoogleCompletionsProfileManager.__init__ Docstring: Initialize the Google profile configuration manager. Args: model_parameters: Parameters for the completion model profile_configurations: Dictionary of profile configurations default_profile_name: Name of the default profile to use Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "model_parameters", "profile_configurations", "default_profile_name"] Returns: none Parent Class: GoogleCompletionsProfileManager
method
_process_profile
fenic._inference.google.google_profile_manager.GoogleCompletionsProfileManager._process_profile
Process Google profile configuration. Converts a Fenic profile configuration to a Google-specific configuration, handling thinking/reasoning settings based on model capabilities. Args: profile: The Fenic profile configuration to process Returns: Google-specific profile configuration
site-packages/fenic/_inference/google/google_profile_manager.py
false
true
88
132
null
GoogleCompletionsProfileConfig
[ "self", "profile" ]
GoogleCompletionsProfileManager
null
null
Type: method Member Name: _process_profile Qualified Name: fenic._inference.google.google_profile_manager.GoogleCompletionsProfileManager._process_profile Docstring: Process Google profile configuration. Converts a Fenic profile configuration to a Google-specific configuration, handling thinking/reasoning settings based on model capabilities. Args: profile: The Fenic profile configuration to process Returns: Google-specific profile configuration Value: none Annotation: none is Public? : false is Private? : true Parameters: ["self", "profile"] Returns: GoogleCompletionsProfileConfig Parent Class: GoogleCompletionsProfileManager
method
get_default_profile
fenic._inference.google.google_profile_manager.GoogleCompletionsProfileManager.get_default_profile
Get default Google configuration. Returns: Default configuration with thinking disabled
site-packages/fenic/_inference/google/google_profile_manager.py
true
false
134
151
null
GoogleCompletionsProfileConfig
[ "self" ]
GoogleCompletionsProfileManager
null
null
Type: method Member Name: get_default_profile Qualified Name: fenic._inference.google.google_profile_manager.GoogleCompletionsProfileManager.get_default_profile Docstring: Get default Google configuration. Returns: Default configuration with thinking disabled Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: GoogleCompletionsProfileConfig Parent Class: GoogleCompletionsProfileManager
module
gemini_native_chat_completions_client
fenic._inference.google.gemini_native_chat_completions_client
null
site-packages/fenic/_inference/google/gemini_native_chat_completions_client.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: gemini_native_chat_completions_client Qualified Name: fenic._inference.google.gemini_native_chat_completions_client Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
logger
fenic._inference.google.gemini_native_chat_completions_client.logger
null
site-packages/fenic/_inference/google/gemini_native_chat_completions_client.py
true
false
47
47
null
null
null
null
logging.getLogger(__name__)
null
Type: attribute Member Name: logger Qualified Name: fenic._inference.google.gemini_native_chat_completions_client.logger Docstring: none Value: logging.getLogger(__name__) Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
GeminiNativeChatCompletionsClient
fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient
Native (google-genai) Google Gemini chat-completions client. This client handles communication with Google's Gemini models using the native google-genai library. It supports both standard and Vertex AI environments, thinking/reasoning capabilities, structured output, and comprehensive token tracking.
site-packages/fenic/_inference/google/gemini_native_chat_completions_client.py
true
false
50
434
null
null
null
null
null
[ "ModelClient[FenicCompletionsRequest, FenicCompletionsResponse]" ]
Type: class Member Name: GeminiNativeChatCompletionsClient Qualified Name: fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient Docstring: Native (google-genai) Google Gemini chat-completions client. This client handles communication with Google's Gemini models using the native google-genai library. It supports both standard and Vertex AI environments, thinking/reasoning capabilities, structured output, and comprehensive token tracking. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient.__init__
Initialize the Gemini native chat completions client. Args: rate_limit_strategy: Strategy for rate limiting requests model_provider: Google model provider (Developer or Vertex AI) model: Gemini model name to use queue_size: Maximum size of the request queue max_backoffs: Maximum number of retry backoffs profiles: Dictionary of profile configurations default_profile_name: Name of the default profile to use
site-packages/fenic/_inference/google/gemini_native_chat_completions_client.py
true
false
62
107
null
null
[ "self", "rate_limit_strategy", "model_provider", "model", "queue_size", "max_backoffs", "profiles", "default_profile_name" ]
GeminiNativeChatCompletionsClient
null
null
Type: method Member Name: __init__ Qualified Name: fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient.__init__ Docstring: Initialize the Gemini native chat completions client. Args: rate_limit_strategy: Strategy for rate limiting requests model_provider: Google model provider (Developer or Vertex AI) model: Gemini model name to use queue_size: Maximum size of the request queue max_backoffs: Maximum number of retry backoffs profiles: Dictionary of profile configurations default_profile_name: Name of the default profile to use Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "rate_limit_strategy", "model_provider", "model", "queue_size", "max_backoffs", "profiles", "default_profile_name"] Returns: none Parent Class: GeminiNativeChatCompletionsClient
method
reset_metrics
fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient.reset_metrics
Reset metrics to initial state.
site-packages/fenic/_inference/google/gemini_native_chat_completions_client.py
true
false
109
111
null
null
[ "self" ]
GeminiNativeChatCompletionsClient
null
null
Type: method Member Name: reset_metrics Qualified Name: fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient.reset_metrics Docstring: Reset metrics to initial state. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: GeminiNativeChatCompletionsClient
method
get_metrics
fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient.get_metrics
Get current metrics. Returns: Current language model metrics
site-packages/fenic/_inference/google/gemini_native_chat_completions_client.py
true
false
113
119
null
LMMetrics
[ "self" ]
GeminiNativeChatCompletionsClient
null
null
Type: method Member Name: get_metrics Qualified Name: fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient.get_metrics Docstring: Get current metrics. Returns: Current language model metrics Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: LMMetrics Parent Class: GeminiNativeChatCompletionsClient
method
_convert_messages
fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient._convert_messages
Convert Fenic LMRequestMessages → list of google-genai `Content` objects. Converts Fenic message format to Google's Content format, including few-shot examples and the final user prompt. Args: messages: Fenic message format Returns: List of Google Content objects
site-packages/fenic/_inference/google/gemini_native_chat_completions_client.py
false
true
121
155
null
list[genai.types.ContentUnion]
[ "self", "messages" ]
GeminiNativeChatCompletionsClient
null
null
Type: method Member Name: _convert_messages Qualified Name: fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient._convert_messages Docstring: Convert Fenic LMRequestMessages → list of google-genai `Content` objects. Converts Fenic message format to Google's Content format, including few-shot examples and the final user prompt. Args: messages: Fenic message format Returns: List of Google Content objects Value: none Annotation: none is Public? : false is Private? : true Parameters: ["self", "messages"] Returns: list[genai.types.ContentUnion] Parent Class: GeminiNativeChatCompletionsClient
method
count_tokens
fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient.count_tokens
Count tokens in messages. Re-exposes the parent implementation for type checking. Args: messages: Messages to count tokens for Returns: Token count
site-packages/fenic/_inference/google/gemini_native_chat_completions_client.py
true
false
157
169
null
int
[ "self", "messages" ]
GeminiNativeChatCompletionsClient
null
null
Type: method Member Name: count_tokens Qualified Name: fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient.count_tokens Docstring: Count tokens in messages. Re-exposes the parent implementation for type checking. Args: messages: Messages to count tokens for Returns: Token count Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "messages"] Returns: int Parent Class: GeminiNativeChatCompletionsClient
method
_estimate_structured_output_overhead
fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient._estimate_structured_output_overhead
Use Google-specific response schema token estimation. Args: response_format: Pydantic model class defining the response format Returns: Estimated token overhead for structured output
site-packages/fenic/_inference/google/gemini_native_chat_completions_client.py
false
true
171
180
null
int
[ "self", "response_format" ]
GeminiNativeChatCompletionsClient
null
null
Type: method Member Name: _estimate_structured_output_overhead Qualified Name: fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient._estimate_structured_output_overhead Docstring: Use Google-specific response schema token estimation. Args: response_format: Pydantic model class defining the response format Returns: Estimated token overhead for structured output Value: none Annotation: none is Public? : false is Private? : true Parameters: ["self", "response_format"] Returns: int Parent Class: GeminiNativeChatCompletionsClient
method
_get_max_output_tokens
fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient._get_max_output_tokens
Get maximum output tokens including thinking budget. Conservative estimate that includes both completion tokens and thinking token budget with a safety margin. Args: request: The completion request Returns: Maximum output tokens (completion + thinking budget with safety margin)
site-packages/fenic/_inference/google/gemini_native_chat_completions_client.py
false
true
182
199
null
int
[ "self", "request" ]
GeminiNativeChatCompletionsClient
null
null
Type: method Member Name: _get_max_output_tokens Qualified Name: fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient._get_max_output_tokens Docstring: Get maximum output tokens including thinking budget. Conservative estimate that includes both completion tokens and thinking token budget with a safety margin. Args: request: The completion request Returns: Maximum output tokens (completion + thinking budget with safety margin) Value: none Annotation: none is Public? : false is Private? : true Parameters: ["self", "request"] Returns: int Parent Class: GeminiNativeChatCompletionsClient
method
_estimate_response_schema_tokens
fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient._estimate_response_schema_tokens
Estimate token count for a response format schema. Uses Google's tokenizer to count tokens in a JSON schema representation of the response format. Results are cached for performance. Args: response_format: Pydantic model class defining the response format Returns: Estimated token count for the response format
site-packages/fenic/_inference/google/gemini_native_chat_completions_client.py
false
true
201
215
null
int
[ "self", "response_format" ]
GeminiNativeChatCompletionsClient
null
null
Type: method Member Name: _estimate_response_schema_tokens Qualified Name: fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient._estimate_response_schema_tokens Docstring: Estimate token count for a response format schema. Uses Google's tokenizer to count tokens in a JSON schema representation of the response format. Results are cached for performance. Args: response_format: Pydantic model class defining the response format Returns: Estimated token count for the response format Value: none Annotation: none is Public? : false is Private? : true Parameters: ["self", "response_format"] Returns: int Parent Class: GeminiNativeChatCompletionsClient
method
get_request_key
fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient.get_request_key
Generate a unique key for the request. Args: request: The completion request Returns: Unique request key for caching
site-packages/fenic/_inference/google/gemini_native_chat_completions_client.py
true
false
217
226
null
str
[ "self", "request" ]
GeminiNativeChatCompletionsClient
null
null
Type: method Member Name: get_request_key Qualified Name: fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient.get_request_key Docstring: Generate a unique key for the request. Args: request: The completion request Returns: Unique request key for caching Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "request"] Returns: str Parent Class: GeminiNativeChatCompletionsClient
method
estimate_tokens_for_request
fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient.estimate_tokens_for_request
Estimate the number of tokens for a request. Args: request: The request to estimate tokens for Returns: TokenEstimate: The estimated token usage
site-packages/fenic/_inference/google/gemini_native_chat_completions_client.py
true
false
228
245
null
null
[ "self", "request" ]
GeminiNativeChatCompletionsClient
null
null
Type: method Member Name: estimate_tokens_for_request Qualified Name: fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient.estimate_tokens_for_request Docstring: Estimate the number of tokens for a request. Args: request: The request to estimate tokens for Returns: TokenEstimate: The estimated token usage Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "request"] Returns: none Parent Class: GeminiNativeChatCompletionsClient
method
make_single_request
fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient.make_single_request
Make a single completion request to Google Gemini. Handles both text and structured output requests, with support for thinking/reasoning when enabled. Processes responses and extracts comprehensive usage metrics including thinking tokens. Args: request: The completion request to process Returns: Completion response, transient exception, or fatal exception
site-packages/fenic/_inference/google/gemini_native_chat_completions_client.py
true
false
247
391
null
Union[None, FenicCompletionsResponse, TransientException, FatalException]
[ "self", "request" ]
GeminiNativeChatCompletionsClient
null
null
Type: method Member Name: make_single_request Qualified Name: fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient.make_single_request Docstring: Make a single completion request to Google Gemini. Handles both text and structured output requests, with support for thinking/reasoning when enabled. Processes responses and extracts comprehensive usage metrics including thinking tokens. Args: request: The completion request to process Returns: Completion response, transient exception, or fatal exception Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "request"] Returns: Union[None, FenicCompletionsResponse, TransientException, FatalException] Parent Class: GeminiNativeChatCompletionsClient
method
_prepare_schema
fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient._prepare_schema
Google Gemini does not support additionalProperties in JSON schemas, even if it is set to False. This function copies the original schema and recursively removes all additionalProperties from its objects. If additionalProperties is not removed, the genai service will reject the schema and return a 400 error. Args: response_format: The response format to prepare Returns: The prepared schema
site-packages/fenic/_inference/google/gemini_native_chat_completions_client.py
false
true
393
434
null
dict[str, Any]
[ "self", "response_format" ]
GeminiNativeChatCompletionsClient
null
null
Type: method Member Name: _prepare_schema Qualified Name: fenic._inference.google.gemini_native_chat_completions_client.GeminiNativeChatCompletionsClient._prepare_schema Docstring: Google Gemini does not support additionalProperties in JSON schemas, even if it is set to False. This function copies the original schema and recursively removes all additionalProperties from its objects. If additionalProperties is not removed, the genai service will reject the schema and return a 400 error. Args: response_format: The response format to prepare Returns: The prepared schema Value: none Annotation: none is Public? : false is Private? : true Parameters: ["self", "response_format"] Returns: dict[str, Any] Parent Class: GeminiNativeChatCompletionsClient
module
gemini_batch_embeddings_client
fenic._inference.google.gemini_batch_embeddings_client
null
site-packages/fenic/_inference/google/gemini_batch_embeddings_client.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: gemini_batch_embeddings_client Qualified Name: fenic._inference.google.gemini_batch_embeddings_client Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
GoogleBatchEmbeddingsClient
fenic._inference.google.gemini_batch_embeddings_client.GoogleBatchEmbeddingsClient
null
site-packages/fenic/_inference/google/gemini_batch_embeddings_client.py
true
false
30
131
null
null
null
null
null
[ "ModelClient[FenicEmbeddingsRequest, List[float]]" ]
Type: class Member Name: GoogleBatchEmbeddingsClient Qualified Name: fenic._inference.google.gemini_batch_embeddings_client.GoogleBatchEmbeddingsClient Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic._inference.google.gemini_batch_embeddings_client.GoogleBatchEmbeddingsClient.__init__
null
site-packages/fenic/_inference/google/gemini_batch_embeddings_client.py
true
false
31
60
null
null
[ "self", "rate_limit_strategy", "model_provider", "model", "queue_size", "max_backoffs", "profiles", "default_profile_name" ]
GoogleBatchEmbeddingsClient
null
null
Type: method Member Name: __init__ Qualified Name: fenic._inference.google.gemini_batch_embeddings_client.GoogleBatchEmbeddingsClient.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "rate_limit_strategy", "model_provider", "model", "queue_size", "max_backoffs", "profiles", "default_profile_name"] Returns: none Parent Class: GoogleBatchEmbeddingsClient
method
make_single_request
fenic._inference.google.gemini_batch_embeddings_client.GoogleBatchEmbeddingsClient.make_single_request
null
site-packages/fenic/_inference/google/gemini_batch_embeddings_client.py
true
false
62
98
null
Union[None, List[float], TransientException, FatalException]
[ "self", "request" ]
GoogleBatchEmbeddingsClient
null
null
Type: method Member Name: make_single_request Qualified Name: fenic._inference.google.gemini_batch_embeddings_client.GoogleBatchEmbeddingsClient.make_single_request Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "request"] Returns: Union[None, List[float], TransientException, FatalException] Parent Class: GoogleBatchEmbeddingsClient
method
get_request_key
fenic._inference.google.gemini_batch_embeddings_client.GoogleBatchEmbeddingsClient.get_request_key
Generate a unique key for request deduplication. Args: request: The request to generate a key for Returns: A unique key for the request
site-packages/fenic/_inference/google/gemini_batch_embeddings_client.py
true
false
100
117
null
str
[ "self", "request" ]
GoogleBatchEmbeddingsClient
null
null
Type: method Member Name: get_request_key Qualified Name: fenic._inference.google.gemini_batch_embeddings_client.GoogleBatchEmbeddingsClient.get_request_key Docstring: Generate a unique key for request deduplication. Args: request: The request to generate a key for Returns: A unique key for the request Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "request"] Returns: str Parent Class: GoogleBatchEmbeddingsClient
method
estimate_tokens_for_request
fenic._inference.google.gemini_batch_embeddings_client.GoogleBatchEmbeddingsClient.estimate_tokens_for_request
null
site-packages/fenic/_inference/google/gemini_batch_embeddings_client.py
true
false
119
122
null
TokenEstimate
[ "self", "request" ]
GoogleBatchEmbeddingsClient
null
null
Type: method Member Name: estimate_tokens_for_request Qualified Name: fenic._inference.google.gemini_batch_embeddings_client.GoogleBatchEmbeddingsClient.estimate_tokens_for_request Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "request"] Returns: TokenEstimate Parent Class: GoogleBatchEmbeddingsClient
method
_get_max_output_tokens
fenic._inference.google.gemini_batch_embeddings_client.GoogleBatchEmbeddingsClient._get_max_output_tokens
null
site-packages/fenic/_inference/google/gemini_batch_embeddings_client.py
false
true
124
125
null
int
[ "self", "request" ]
GoogleBatchEmbeddingsClient
null
null
Type: method Member Name: _get_max_output_tokens Qualified Name: fenic._inference.google.gemini_batch_embeddings_client.GoogleBatchEmbeddingsClient._get_max_output_tokens Docstring: none Value: none Annotation: none is Public? : false is Private? : true Parameters: ["self", "request"] Returns: int Parent Class: GoogleBatchEmbeddingsClient
method
reset_metrics
fenic._inference.google.gemini_batch_embeddings_client.GoogleBatchEmbeddingsClient.reset_metrics
null
site-packages/fenic/_inference/google/gemini_batch_embeddings_client.py
true
false
127
128
null
null
[ "self" ]
GoogleBatchEmbeddingsClient
null
null
Type: method Member Name: reset_metrics Qualified Name: fenic._inference.google.gemini_batch_embeddings_client.GoogleBatchEmbeddingsClient.reset_metrics Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: GoogleBatchEmbeddingsClient
method
get_metrics
fenic._inference.google.gemini_batch_embeddings_client.GoogleBatchEmbeddingsClient.get_metrics
null
site-packages/fenic/_inference/google/gemini_batch_embeddings_client.py
true
false
130
131
null
RMMetrics
[ "self" ]
GoogleBatchEmbeddingsClient
null
null
Type: method Member Name: get_metrics Qualified Name: fenic._inference.google.gemini_batch_embeddings_client.GoogleBatchEmbeddingsClient.get_metrics Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: RMMetrics Parent Class: GoogleBatchEmbeddingsClient
module
google_provider
fenic._inference.google.google_provider
Google model provider implementation.
site-packages/fenic/_inference/google/google_provider.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: google_provider Qualified Name: fenic._inference.google.google_provider Docstring: Google model provider implementation. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
logger
fenic._inference.google.google_provider.logger
null
site-packages/fenic/_inference/google/google_provider.py
true
false
11
11
null
null
null
null
logging.getLogger(__name__)
null
Type: attribute Member Name: logger Qualified Name: fenic._inference.google.google_provider.logger Docstring: none Value: logging.getLogger(__name__) Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
GoogleModelProvider
fenic._inference.google.google_provider.GoogleModelProvider
Google implementation of ModelProvider.
site-packages/fenic/_inference/google/google_provider.py
true
false
14
30
null
null
null
null
null
[ "ModelProviderClass" ]
Type: class Member Name: GoogleModelProvider Qualified Name: fenic._inference.google.google_provider.GoogleModelProvider Docstring: Google implementation of ModelProvider. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
create_client
fenic._inference.google.google_provider.GoogleModelProvider.create_client
null
site-packages/fenic/_inference/google/google_provider.py
true
false
17
19
null
null
[ "self" ]
GoogleModelProvider
null
null
Type: method Member Name: create_client Qualified Name: fenic._inference.google.google_provider.GoogleModelProvider.create_client Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: GoogleModelProvider
method
validate_api_key
fenic._inference.google.google_provider.GoogleModelProvider.validate_api_key
Validate Google API key by listing models.
site-packages/fenic/_inference/google/google_provider.py
true
false
21
26
null
None
[ "self" ]
GoogleModelProvider
null
null
Type: method Member Name: validate_api_key Qualified Name: fenic._inference.google.google_provider.GoogleModelProvider.validate_api_key Docstring: Validate Google API key by listing models. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: None Parent Class: GoogleModelProvider
method
create_aio_client
fenic._inference.google.google_provider.GoogleModelProvider.create_aio_client
Create a Google async client instance.
site-packages/fenic/_inference/google/google_provider.py
true
false
28
30
null
null
[ "self" ]
GoogleModelProvider
null
null
Type: method Member Name: create_aio_client Qualified Name: fenic._inference.google.google_provider.GoogleModelProvider.create_aio_client Docstring: Create a Google async client instance. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: GoogleModelProvider
class
GoogleDeveloperModelProvider
fenic._inference.google.google_provider.GoogleDeveloperModelProvider
Google Developer implementation of ModelProvider.
site-packages/fenic/_inference/google/google_provider.py
true
false
33
45
null
null
null
null
null
[ "GoogleModelProvider" ]
Type: class Member Name: GoogleDeveloperModelProvider Qualified Name: fenic._inference.google.google_provider.GoogleDeveloperModelProvider Docstring: Google Developer implementation of ModelProvider. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
create_client
fenic._inference.google.google_provider.GoogleDeveloperModelProvider.create_client
Create a Google Developer client instance.
site-packages/fenic/_inference/google/google_provider.py
true
false
40
45
null
null
[ "self" ]
GoogleDeveloperModelProvider
null
null
Type: method Member Name: create_client Qualified Name: fenic._inference.google.google_provider.GoogleDeveloperModelProvider.create_client Docstring: Create a Google Developer client instance. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: GoogleDeveloperModelProvider
class
GoogleVertexModelProvider
fenic._inference.google.google_provider.GoogleVertexModelProvider
Google Vertex implementation of ModelProvider.
site-packages/fenic/_inference/google/google_provider.py
true
false
48
60
null
null
null
null
null
[ "GoogleModelProvider" ]
Type: class Member Name: GoogleVertexModelProvider Qualified Name: fenic._inference.google.google_provider.GoogleVertexModelProvider Docstring: Google Vertex implementation of ModelProvider. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
create_client
fenic._inference.google.google_provider.GoogleVertexModelProvider.create_client
Create a Google Vertex client instance. Passing `vertexai=True` automatically routes traffic through Vertex-AI if the environment is configured for it.
site-packages/fenic/_inference/google/google_provider.py
true
false
55
60
null
null
[ "self" ]
GoogleVertexModelProvider
null
null
Type: method Member Name: create_client Qualified Name: fenic._inference.google.google_provider.GoogleVertexModelProvider.create_client Docstring: Create a Google Vertex client instance. Passing `vertexai=True` automatically routes traffic through Vertex-AI if the environment is configured for it. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: GoogleVertexModelProvider
module
common_openai
fenic._inference.common_openai
null
site-packages/fenic/_inference/common_openai/__init__.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: common_openai Qualified Name: fenic._inference.common_openai Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
module
openai_chat_completions_core
fenic._inference.common_openai.openai_chat_completions_core
Core functionality for OpenAI chat completions clients.
site-packages/fenic/_inference/common_openai/openai_chat_completions_core.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: openai_chat_completions_core Qualified Name: fenic._inference.common_openai.openai_chat_completions_core Docstring: Core functionality for OpenAI chat completions clients. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
logger
fenic._inference.common_openai.openai_chat_completions_core.logger
null
site-packages/fenic/_inference/common_openai/openai_chat_completions_core.py
true
false
36
36
null
null
null
null
logging.getLogger(__name__)
null
Type: attribute Member Name: logger Qualified Name: fenic._inference.common_openai.openai_chat_completions_core.logger Docstring: none Value: logging.getLogger(__name__) Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
OpenAIChatCompletionsCore
fenic._inference.common_openai.openai_chat_completions_core.OpenAIChatCompletionsCore
Core functionality for OpenAI chat completions clients.
site-packages/fenic/_inference/common_openai/openai_chat_completions_core.py
true
false
39
206
null
null
null
null
null
[]
Type: class Member Name: OpenAIChatCompletionsCore Qualified Name: fenic._inference.common_openai.openai_chat_completions_core.OpenAIChatCompletionsCore Docstring: Core functionality for OpenAI chat completions clients. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic._inference.common_openai.openai_chat_completions_core.OpenAIChatCompletionsCore.__init__
Initialize the OpenAI chat completions client core. Args: model: The model to use model_provider: The provider of the model token_counter: Counter for estimating token usage client: The OpenAI client additional_params: Additional parameters to pass to the API, e.g. {"reasoning_effort": "none"} for thinking models.
site-packages/fenic/_inference/common_openai/openai_chat_completions_core.py
true
false
42
64
null
null
[ "self", "model", "model_provider", "token_counter", "client" ]
OpenAIChatCompletionsCore
null
null
Type: method Member Name: __init__ Qualified Name: fenic._inference.common_openai.openai_chat_completions_core.OpenAIChatCompletionsCore.__init__ Docstring: Initialize the OpenAI chat completions client core. Args: model: The model to use model_provider: The provider of the model token_counter: Counter for estimating token usage client: The OpenAI client additional_params: Additional parameters to pass to the API, e.g. {"reasoning_effort": "none"} for thinking models. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "model", "model_provider", "token_counter", "client"] Returns: none Parent Class: OpenAIChatCompletionsCore
method
reset_metrics
fenic._inference.common_openai.openai_chat_completions_core.OpenAIChatCompletionsCore.reset_metrics
Reset the metrics.
site-packages/fenic/_inference/common_openai/openai_chat_completions_core.py
true
false
66
68
null
None
[ "self" ]
OpenAIChatCompletionsCore
null
null
Type: method Member Name: reset_metrics Qualified Name: fenic._inference.common_openai.openai_chat_completions_core.OpenAIChatCompletionsCore.reset_metrics Docstring: Reset the metrics. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: None Parent Class: OpenAIChatCompletionsCore
method
get_metrics
fenic._inference.common_openai.openai_chat_completions_core.OpenAIChatCompletionsCore.get_metrics
Get the metrics.
site-packages/fenic/_inference/common_openai/openai_chat_completions_core.py
true
false
70
72
null
LMMetrics
[ "self" ]
OpenAIChatCompletionsCore
null
null
Type: method Member Name: get_metrics Qualified Name: fenic._inference.common_openai.openai_chat_completions_core.OpenAIChatCompletionsCore.get_metrics Docstring: Get the metrics. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: LMMetrics Parent Class: OpenAIChatCompletionsCore
method
make_single_request
fenic._inference.common_openai.openai_chat_completions_core.OpenAIChatCompletionsCore.make_single_request
Make a single request to the OpenAI API. Args: request: The messages to send profile_configuration: The optional profile configuration for the request (for passing reasoning_effort and verbosity) Returns: The response text or an exception
site-packages/fenic/_inference/common_openai/openai_chat_completions_core.py
true
false
74
195
null
Union[None, FenicCompletionsResponse, TransientException, FatalException]
[ "self", "request", "profile_configuration" ]
OpenAIChatCompletionsCore
null
null
Type: method Member Name: make_single_request Qualified Name: fenic._inference.common_openai.openai_chat_completions_core.OpenAIChatCompletionsCore.make_single_request Docstring: Make a single request to the OpenAI API. Args: request: The messages to send profile_configuration: The optional profile configuration for the request (for passing reasoning_effort and verbosity) Returns: The response text or an exception Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "request", "profile_configuration"] Returns: Union[None, FenicCompletionsResponse, TransientException, FatalException] Parent Class: OpenAIChatCompletionsCore
method
get_request_key
fenic._inference.common_openai.openai_chat_completions_core.OpenAIChatCompletionsCore.get_request_key
Generate a unique key for request deduplication. Args: request: The request to generate a key for Returns: A unique key for the request
site-packages/fenic/_inference/common_openai/openai_chat_completions_core.py
true
false
197
206
null
str
[ "self", "request" ]
OpenAIChatCompletionsCore
null
null
Type: method Member Name: get_request_key Qualified Name: fenic._inference.common_openai.openai_chat_completions_core.OpenAIChatCompletionsCore.get_request_key Docstring: Generate a unique key for request deduplication. Args: request: The request to generate a key for Returns: A unique key for the request Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "request"] Returns: str Parent Class: OpenAIChatCompletionsCore
module
openai_provider
fenic._inference.common_openai.openai_provider
OpenAI model provider implementation.
site-packages/fenic/_inference/common_openai/openai_provider.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: openai_provider Qualified Name: fenic._inference.common_openai.openai_provider Docstring: OpenAI model provider implementation. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
logger
fenic._inference.common_openai.openai_provider.logger
null
site-packages/fenic/_inference/common_openai/openai_provider.py
true
false
9
9
null
null
null
null
logging.getLogger(__name__)
null
Type: attribute Member Name: logger Qualified Name: fenic._inference.common_openai.openai_provider.logger Docstring: none Value: logging.getLogger(__name__) Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
OpenAIModelProvider
fenic._inference.common_openai.openai_provider.OpenAIModelProvider
OpenAI implementation of ModelProvider.
site-packages/fenic/_inference/common_openai/openai_provider.py
true
false
12
31
null
null
null
null
null
[ "ModelProviderClass" ]
Type: class Member Name: OpenAIModelProvider Qualified Name: fenic._inference.common_openai.openai_provider.OpenAIModelProvider Docstring: OpenAI implementation of ModelProvider. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
create_client
fenic._inference.common_openai.openai_provider.OpenAIModelProvider.create_client
Create an OpenAI client instance.
site-packages/fenic/_inference/common_openai/openai_provider.py
true
false
19
21
null
null
[ "self" ]
OpenAIModelProvider
null
null
Type: method Member Name: create_client Qualified Name: fenic._inference.common_openai.openai_provider.OpenAIModelProvider.create_client Docstring: Create an OpenAI client instance. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: OpenAIModelProvider
method
create_aio_client
fenic._inference.common_openai.openai_provider.OpenAIModelProvider.create_aio_client
Create an OpenAI async client instance.
site-packages/fenic/_inference/common_openai/openai_provider.py
true
false
23
25
null
null
[ "self" ]
OpenAIModelProvider
null
null
Type: method Member Name: create_aio_client Qualified Name: fenic._inference.common_openai.openai_provider.OpenAIModelProvider.create_aio_client Docstring: Create an OpenAI async client instance. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: OpenAIModelProvider
method
validate_api_key
fenic._inference.common_openai.openai_provider.OpenAIModelProvider.validate_api_key
Validate OpenAI API key by listing models.
site-packages/fenic/_inference/common_openai/openai_provider.py
true
false
27
31
null
None
[ "self" ]
OpenAIModelProvider
null
null
Type: method Member Name: validate_api_key Qualified Name: fenic._inference.common_openai.openai_provider.OpenAIModelProvider.validate_api_key Docstring: Validate OpenAI API key by listing models. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: None Parent Class: OpenAIModelProvider
module
openai_embeddings_core
fenic._inference.common_openai.openai_embeddings_core
Core functionality for OpenAI embeddings clients.
site-packages/fenic/_inference/common_openai/openai_embeddings_core.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: openai_embeddings_core Qualified Name: fenic._inference.common_openai.openai_embeddings_core Docstring: Core functionality for OpenAI embeddings clients. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
logger
fenic._inference.common_openai.openai_embeddings_core.logger
null
site-packages/fenic/_inference/common_openai/openai_embeddings_core.py
true
false
29
29
null
null
null
null
logging.getLogger(__name__)
null
Type: attribute Member Name: logger Qualified Name: fenic._inference.common_openai.openai_embeddings_core.logger Docstring: none Value: logging.getLogger(__name__) Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
OpenAIEmbeddingsCore
fenic._inference.common_openai.openai_embeddings_core.OpenAIEmbeddingsCore
Core functionality for OpenAI embeddings clients.
site-packages/fenic/_inference/common_openai/openai_embeddings_core.py
true
false
31
143
null
null
null
null
null
[]
Type: class Member Name: OpenAIEmbeddingsCore Qualified Name: fenic._inference.common_openai.openai_embeddings_core.OpenAIEmbeddingsCore Docstring: Core functionality for OpenAI embeddings clients. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none